Science.gov

Sample records for acute sediment toxicity

  1. Measuring the acute toxicity of estuarine sediments

    SciTech Connect

    DeWitt, T.H.; Swartz, R.C.; Lanberson, J.O.

    1989-01-01

    Estuarine sediments frequently are repositories and sources of anthropogenic contaminants. Toxicity is one method of assessing the environmental quality of sediments, yet because of the extreme range of salinities that characterize estuaries few infaunal organisms have both the physiological tolerance and sensitivity to chemical contaminants to serve in estuarine sediment toxicity tests. The study describes research on the estuarine burrowing amphipod, Eohaustorius estuarius Bosworth, 1973, whose survival was >95% in control sediments across a 2 to 28% salinity range over 10-d periods. E. estuarius also was acutely sensitive to low sediment concentrations of the polycyclic aromatic hydrocarbon, fluoranthene (LC50 approximately = 10.6 mg/kg), and its sensitivity to fluoranthene was not affected by salinity. E. estuarius was almost as sensitive as Rhepoxynius abronius to fluoranthene and to field-collected sediments from Puget Sound urban and industrial bays. E. estuarius was also more tolerant of very fine, uncontaminated sediments than R. abronius. Furthermore, E. estuarius was more sensitive to sediments spiked with fluoranthene than the freshwater amphipod, Hyalella azteca. E. estuarius, and possibly other estuarine haustoriid species, appears to be an excellent candidate for testing the acute toxicity if estuarine and marine sediments.

  2. Acute toxicity screening of sediments utilizing Chydorus sphaericus

    SciTech Connect

    Campbell, M.G.S.; Crisman, T.; Bitton, G.; Delfino, J.

    1997-08-01

    Out of over 165 species of organisms that have been proposed for use in toxicity bioassays only a few are invertebrates and even fewer have ever been cultured in the laboratory. Many of the invertebrates that have been applied in sediment toxicity tests are not benthic organisms and possess few characteristics of the ideal sediment bioassay organism. Some tests species have limited ecological ranges; some may not be widely available for testing and many are not easily maintained in the laboratory. In addition, some traditional sediment toxicity tests utilize organisms that spend no part or only part of their life cycle in contact with sediment constituents, and therefore lack, in some degree, ecological relevance. The study reported involved the development and evaluation of a 48-hour lethality bioassay employing the benthic cladoceran, Chydorus sphaericus. The bioassay is ecologically relevant because the test organism is ubiquitous and it lives associated with sediments in freshwater aquatic environments. The bioassay was evaluated by direct comparison with standard bioassays using sediment samples collected from hazardous waste sites in Florida.

  3. Estimates of the spatial extent of acute toxicity in sediments of selected USA estuaries

    SciTech Connect

    Long, E.; Robertson, A.; Sloane, G.; Boswell, H.

    1995-12-31

    Acute toxicity has been measured in sediments collected during surveys of 18 estuaries in the USA. The spatial patterns, severity, and magnitude of toxicity have been determined during these surveys. Also, by weighting the toxicity data to the sizes of the sampling strata, the spatial extent of toxicity (expressed in kilometers{sup 2}) was estimated. The data from a battery of tests with different sensitivities were used to identify the relative severity of toxicity and to identify those areas that were most degraded. Accordingly, the spatial scales of toxicity within each estuary differed according to the sensitivities of the different tests. The spatial extent of toxicity measured in each standardized test was compared among different areas. For example, the results of the amphipod survival tests indicated that the spatial extent of toxicity ranged from 0.0% to over 85% among the different study areas.

  4. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments

    SciTech Connect

    Di Toro, D.M.; Mahony, J.D.; Hansen, D.J.; Scott, K.J.; Carlson, A.R.

    1991-01-01

    Laboratory toxicity tests using amphipods, oligochaetes, and snails with spiked freshwater and marine sediments and with contaminated sediments collected from an EPA Superfund site demonstrate that no significant mortality occurs relative to controls if the molar concentration of acid volatile sulfide (AVS) in the sediment is greater than the molar concentration of simultaneously extracted cadmium and/or nickel. Although it is well-known that these metals can form insoluble sulfides, it apparently has not been realized that AVS is a reactive pool of solid-phase sulfide that is available to bind metals and render that portion unavailable and nontoxic to biota. Thus, the AVS concentration of a sediment establishes the boundary below which these metals cease to exhibit an acute toxicity in freshwater and marine sediments.

  5. Evaluation of reduced sediment volume procedures for acute toxicity tests using the estuarine amphipod Leptocheirus plumulosus.

    PubMed

    Stanley, Jacob K; Kennedy, Alan J; Farrar, J Daniel; Mount, David R; Steevens, Jeffery A

    2010-12-01

    The volume of sediment required to perform a sediment toxicity bioassay is a major driver of the overall cost associated with that bioassay. Sediment volume affects bioassay cost because of sediment collection, transportation, storage, and disposal costs as well as labor costs associated with organism recovery at the conclusion of the exposure. The objective of the current study was to evaluate reduced sediment volume versions of the standard U.S. Environmental Protection Agency (U.S. EPA) 10-d acute Leptocheirus plumulosus method that uses a beaker size of 1,000 ml and 20 organisms. The test design used evaluated the effects of beaker size (250 and 100 ml) and associated sediment volume (75 and 30 ml, respectively) as well as organism loading density (10 and 20 organisms) on test endpoint responsiveness relative to the standard 10-d test method. These comparisons were completed with three different types of contaminated sediments: a field-collected polycyclic aromatic hydrocarbon (PAH)-contaminated sediment, a lead-spiked control sediment, and a control sediment spiked with mineral oil. Assessment criteria included test endpoint sensitivity, endpoint consistency, statistical power, water quality, and logistical assessments. Results indicate that the current U.S. EPA method is preferable to the reduced sediment volume methods we assessed, but that a 250-ml beaker/10 organism experimental design is of comparable utility and may be advantageous when reduced sediment volumes are desirable because of high contaminant (spiking studies) or sediment disposal costs. In addition, the results of the current study provide toxicity reference values for PAHs, lead, and an oil surrogate for petroleum hydrocarbons. PMID:20890914

  6. Evaluation of Reduced Sediment Volume Procedures for Acute Toxicity Tests Using the Estuarine Amphipod Leptocheirus plumulosus

    EPA Science Inventory

    The volume of sediment required to perform a sediment toxicity bioassay is a major driver of the overall cost associated with that bioassay. Sediment volume affects bioassay cost due to sediment collection, transportation, storage, and disposal costs as well as labor costs assoc...

  7. Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Approach combining chemical manipulations and aquatic toxicity testing, generally with whole organisms, to systematically characterize, identify and confirm toxic substances causing toxicity in whole sediments and sediment interstitial waters. The approach is divided into thre...

  8. TOXICANT IDENTIFICATION STUDIES ON A HARBOR SEDIMENT

    EPA Science Inventory

    Presentation summarizes the results of experiments on sediment toxicity identification evaluation (TIE) techniques that allow researchers to characterize and identify chemical causes of acute toxicity in sediments that can be applied using the 10-d solid-phase sediment toxicity t...

  9. Comparison of bulk sediment and sediment elutriate toxicity testing methods

    EPA Science Inventory

    Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...

  10. Genotype and toxicity relationships among Hyalella azteca: II. Acute exposure to fluoranthene-contaminated sediment

    SciTech Connect

    Duan, Y.; Guttman, S.I.; Oris, J.T.; Huang, X.; Burton, G.A.

    2000-05-01

    This study examined the genotypic responses of Hyalella azteca to the toxicity of sediment contaminated by the polycyclic aromatic hydrocarbon (PAH) fluoranthene. The authors monitored the time to death for 696 H. azteca exposed to ultraviolet light and sediment spiked with fluoranthene. The survival distribution functions within the genotypes at each of these variable allozyme loci (acid phosphatase [ACP*], glucose-6-phosphate isomerase [GPI*], and phosphoglucomutase [PGM*]) were compared using a long-rank test. Results showed significant differences among SDFs at all three loci. No association of heterozygosity with time to death was observed. The homozygote ACP*-CC was associated with decreased survivorship compared with ACP*-AA, ACP*-BB, and ACP*-AB. However, GPI*-AA was associated with increased survivorship compared with GPI*-BB, GPI*-CC, and GPI*-BC. Significant differences in resistance also were observed for PGM*-BB versus either PGM*-AC or PGM*-BC. These results indicate that differential resistance to PAH phototoxicity was genetically related, producing significant alteration in the frequencies of several genotypes in the population.

  11. STORAGE DURATION AND TEMPERATURE AND THE ACUTE TOXICITIES OF ESTUARINE SEDIMENTS TO MYSIDOPSIS BAHIA AND LEPTOCHEIRUS PLUMULOSUS

    EPA Science Inventory

    Many statutory needs for sediment quality assessment exist (U.S. EPA 1996). A variety of sediment toxicity tests have been used to support the development of sediment quality guidelines and to determine the benthic impacts of dredging activities and point and non-point source tox...

  12. Acute toxicity and environmental risk of teflubenzuron to Daphnia magna, Poecilia reticulata and Lemna minor in the absence and presence of sediment.

    PubMed

    Medeiros, Louise S; Souza, Jaqueline P; Winkaler, Elissandra U; Carraschi, Silvia P; Cruz, Claudinei; Souza-Júnior, Severino C; Machado-Neto, Joaquim G

    2013-01-01

    This study aimed to estimate the acute toxicity of teflubenzuron (1-(3,5-dichloro-2,4-difluorophenyl)-3-(2,6-difluorobenzoyl)urea) (TFB) for Daphnia magna, Lemna minor and Poecilia reticulata, in the absence and presence of sediment; evaluate the effect of sediment on the TFB bioavailability; and to classify this insecticide according to its environmental poisoning risk for agricultural and aquaculture uses. The tests of TFB acute toxicity were conducted in static system in a completely randomized design with increasing TFB concentrations, and a control group. The TFB has been classified according to the estimated values of EC50 and LC50 by its acute toxicity and environmental risk. The sediment significantly reduced toxicity and bioavailability of TFB in water column. Therefore, the insecticide can be classified as being highly toxic to Daphnia magna, which means the agricultural and aquacultural uses of TFB pose a high risk of environmental toxicity to non-target organisms. However, it was practically non-toxic to L. minor and P. reticulata.

  13. ACUTE TOXICITY OF FIVE SEDIMENT-ASSOCIATED METALS, INDIVIDUALLY AND IN A MIXTURE, TO THE ESTUARINE MEIOBENTHIC HARPACTICOID COPEPOD AMPHIASCUS TENUIREMIS. (R825279)

    EPA Science Inventory

    Abstract

    The acute effects of many individual, seawater-solubilized metals on meiobenthic copepods and nematodes are well known. In sediments, however, metals most often occur as mixtures, and it is not known whether such mixtures exhibit simple additive toxicity to me...

  14. Sediment Toxicity Identification and Evaluation (TIE) Phases I, II and III Guidance Document

    EPA Science Inventory

    This presentation summarizes the sediment toxicity identification evaluation (TIE) techniques that allow researchers to characterize and identify chemical causes of acute toxicity in sediments that can be applied using the 10-d solid-phase sediment toxicity tests.

  15. New Zealand sediment toxicity testing methodologies

    SciTech Connect

    Hickey, C.W.; Roper, D.S.; Nipper, M.; Martin, M.L.

    1995-12-31

    Sediment toxicity testing in New Zealand is developing against a background of an increasing public desire for environmental protection and strict legislative requirements that contaminant discharges should not have any significant adverse effects on aquatic life. The importance of sediment contamination and its potential immediate and long term adverse effects on aquatic biota in general is becoming widely recognized, This has lead to an effort to develop acute and chronic sediment toxicity tests with organisms representative of the New Zealand indigenous biota. An amphipod species occurring in both freshwater and estuarine environments, Chaetocorophium cf lucasi, and the marine bivalve Macomona liliana, a common inhabitant of intertidal sandflats, have been evaluated for their sensitivity to natural sediment characteristics. The amphipod and bivalve are presently being used for testing sediment acute (10d) and chronic toxicity (20--30d), with survival and growth as test endpoints, and the bivalve has shown to be a useful organism for behavioral tests with burial and sediment avoidance by movement and drifting as endpoints. The estuarine bivalve Arthritica bifurca, abundant in muddy sediments, is a self-fertilizing hermaphroditic species and its suitability for sediment tests with a reproductive endpoint is underway. Freshwater sphaeriid bivalves, Sphaerium novazelandiae, are also being used for survival, growth, reproduction and behavioral endpoints. Sensitivity to reference toxicants and results for contaminated sediments will be presented and discussed in relation to sediment quality criteria developed elsewhere.

  16. Are WWTPs effluents responsible for acute toxicity? Seasonal variations of sediment quality at the Bay of Cádiz (SW, Spain).

    PubMed

    Maranho, L A; Garrido-Pérez, M C; Baena-Nogueras, R M; Lara-Martín, P A; Antón-Martín, R; DelValls, T A; Martín-Díaz, M L

    2015-03-01

    Adverse effects of wastewater treatment plants (WWTPs) on sediment quality at the Bay of Cádiz (SW, Spain) were evaluated by a battery of acute bioassays and chemical contamination. Five sites directly affected by WWTPs effluents and one control site were chosen. Results evidenced clear deterioration of ecological sediment quality parameters and possible effects on aquatic communities towards WWTPs areas. Acute toxicity and chemical contamination varied significantly across the studied sites and differed between winter and summer seasons. The Bay of Cádiz is contaminated by PAHs, metals, detergents (SAS) and pharmaceutical products. Principal Component Analyses indicated metals, SAS and pharmaceutical products as the major environmental stresses. Sea-urchin embryo-larval and microalgae growth rate were the most sensitive bioassays to evaluate resuspension of contaminants (elutriate) from bulk sediment. Amphipods mortality and Microtox(®) solid phase test bioassays were recommended to evaluate bulk sediment quality. Therefore, the use of multiple-bioassays, sensitive to sediment pollution, may provide complementary information to diagnose environmental factors that can impair aquatic communities. The battery of bioassays is recommended to assess and monitor marine sediments directly affected by a mixture of contaminants released from WWTPs. PMID:25410810

  17. Acute toxicity screening of reservoir water and sediment using rotifers (Rotox{reg_sign}) and light emitting bacteria (Microtox{reg_sign}), reservoir vital signs monitoring, 1991

    SciTech Connect

    Moses, J.; Wade, D.C.

    1992-03-01

    Toxicological screening of reservoir sediments (porewater or interstitial water) and reservoir water (collected three meters above the sediments) was initiated in fourteen Tennessee River mainstem impoundments during the summer of 1990 as part of TVA`s Reservoir Vital Signs monitoring. Twenty-four stations representing transition-zone and forebay reservoir habitats were identified for study. Toxicity test methods evaluated acute response of the freshwater rotifer Brachionus calyciflorus (Rotox{trademark}) and the light emitting bacterium Photobacterium phosphoreum (Microtox{trademark}). The second series of Vital Signstoxicity biomonitoring tests was conducted during the summer of 1991. Results of this study indicated toxicity at several locations. The Vital Signs Reservoir Monitoring project allows several years of testing to establish toxicity baseline data and identify trends. Comparison of results from the first two years of testing show that Wilson Reservoir forebay (TRM 260.8) and Nickajack Reservoir forebay (TRM 425.5) bothexhibited mild toxicity to Microtox{trademark} in 1990 and toxicity to rotifers in 1991. No other stations exhibited toxicity both years.

  18. Acute toxicity screening of reservoir water and sediment using rotifers (Rotox[reg sign]) and light emitting bacteria (Microtox[reg sign]), reservoir vital signs monitoring, 1991

    SciTech Connect

    Moses, J.; Wade, D.C.

    1992-03-01

    Toxicological screening of reservoir sediments (porewater or interstitial water) and reservoir water (collected three meters above the sediments) was initiated in fourteen Tennessee River mainstem impoundments during the summer of 1990 as part of TVA's Reservoir Vital Signs monitoring. Twenty-four stations representing transition-zone and forebay reservoir habitats were identified for study. Toxicity test methods evaluated acute response of the freshwater rotifer Brachionus calyciflorus (Rotox[trademark]) and the light emitting bacterium Photobacterium phosphoreum (Microtox[trademark]). The second series of Vital Signstoxicity biomonitoring tests was conducted during the summer of 1991. Results of this study indicated toxicity at several locations. The Vital Signs Reservoir Monitoring project allows several years of testing to establish toxicity baseline data and identify trends. Comparison of results from the first two years of testing show that Wilson Reservoir forebay (TRM 260.8) and Nickajack Reservoir forebay (TRM 425.5) bothexhibited mild toxicity to Microtox[trademark] in 1990 and toxicity to rotifers in 1991. No other stations exhibited toxicity both years.

  19. Acute systemic toxicity.

    PubMed

    Botham, Philip A

    2002-01-01

    Use of the test that aimed to identify the single lethal dose of a substance that kills half the animals in a test group (the LD50 test) should finally be discontinued by the end of 2002, after many years of controversy and debate. In its stead are three recently developed alternative animal tests that significantly improve animal welfare: the fixed dose procedure, the acute toxic class method, and the up and down procedure. These tests have already undergone revision, both to improve their scientific performance and, importantly, to increase their regulatory acceptance. They can now be used within a strategy of acute toxicity testing for all types of test substances and for all regulatory and in-house purposes. In vitro cytotoxicity tests could be used (perhaps by mid-2002) as adjuncts to these alternative animal tests to improve dose level selection and reduce (at least modestly) the number of animals used. However, the total replacement of animal tests requires a considerable amount of further test development, followed by validation, which will require at least 10 yr.

  20. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    SciTech Connect

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-11-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. The authors investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by {ge}70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  1. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    USGS Publications Warehouse

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-01-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  2. Short term chronic and acute toxicity screening of water and sediment using fathead minnows, daphnids, rotifers (Rotox[reg sign]) and light emitting bacteria (Microtox[reg sign]), Ambient Stream Monitoring, summers of 1990 and 1991

    SciTech Connect

    Moses, J.; Wade, D.C.

    1992-07-01

    Toxicological evaluation of water column and sediment samples from six locations in the Ambient Stream Monitoring fixed station network was initiated in 1986 using short-term chronic bioassay methods. Toxicological evaluation of six additional stations was initiated in 1990. Chronic studies were conducted at one of these new stations and acute screening methods were used at all twelve locations now included in the activity. This report provides results from studies conducted during the summers of 1990 and 1991. The 1990--91 studies evaluated toxicity of stream water and porewater extracted from sediments as test media, whereas previous studies evaluated water and sediment elutriate samples.

  3. Short term chronic and acute toxicity screening of water and sediment using fathead minnows, daphnids, rotifers (Rotox{reg_sign}) and light emitting bacteria (Microtox{reg_sign}), Ambient Stream Monitoring, summers of 1990 and 1991

    SciTech Connect

    Moses, J.; Wade, D.C.

    1992-07-01

    Toxicological evaluation of water column and sediment samples from six locations in the Ambient Stream Monitoring fixed station network was initiated in 1986 using short-term chronic bioassay methods. Toxicological evaluation of six additional stations was initiated in 1990. Chronic studies were conducted at one of these new stations and acute screening methods were used at all twelve locations now included in the activity. This report provides results from studies conducted during the summers of 1990 and 1991. The 1990--91 studies evaluated toxicity of stream water and porewater extracted from sediments as test media, whereas previous studies evaluated water and sediment elutriate samples.

  4. Toxicity assessment of sediments from three European river basins using a sediment contact test battery.

    PubMed

    Tuikka, A I; Schmitt, C; Höss, S; Bandow, N; von der Ohe, P C; de Zwart, D; de Deckere, E; Streck, G; Mothes, S; van Hattum, B; Kocan, A; Brix, R; Brack, W; Barceló, D; Sormunen, A J; Kukkonen, J V K

    2011-01-01

    The toxicity of four polluted sediments and their corresponding reference sediments from three European river basins were investigated using a battery of six sediment contact tests representing three different trophic levels. The tests included were chronic tests with the oligochaete Lumbriculus variegatus, the nematode Caenorhabditis elegans and the mudsnail Potamopyrgus antipodarum, a sub-chronic test with the midge Chironomus riparius, an early life stage test with the zebra fish Danio rerio, and an acute test with the luminescent bacterium Vibrio fischeri. The endpoints, namely survival, growth, reproduction, embryo development and light inhibition, differed between tests. The measured effects were compared to sediment contamination translated into toxic units (TU) on the basis of acute toxicity to Daphnia magna and Pimephales promelas, and multi-substance Potentially Affected Fractions of species (msPAF) as an estimate for expected community effects. The test battery could clearly detect toxicity of the polluted sediments with test-specific responses to the different sediments. The msPAF and TU-based toxicity estimations confirmed the results of the biotests by predicting a higher toxic risk for the polluted sediments compared to the corresponding reference sediments, but partly having a different emphasis from the biotests. The results demonstrate differences in the sensitivities of species and emphasize the need for data on multiple species, when estimating the effects of sediment pollution on the benthic community.

  5. Comparison of the acute toxicity of various contaminants to Ampelisca verrilli versus A. abdita in aqueous and sediment exposure tests

    SciTech Connect

    Van Dolah, R.F.; Jones, J.D.; Maier, P.P.; Levisen, M.V.; Fulton, M.H.; Scott, G.I.; Lewis, M.

    1995-12-31

    The infaunal amphipod Ampelisca verrilli is commonly found in estuarine and marine environments along much of the Atlantic coast and part of the Gulf of Mexico. This species is often much more abundant than A. abdita in southeastern estuaries, particularly when water temperatures are high, and it survives well in a variety of sediment types. Static aqueous (24 and 96 hr) and sediment (10 d) bioassays were conducted using both species to compare their relative sensitivity to various contaminants. Results of the 24 and 96 hr aqueous tests indicated that A. verrilli is less sensitive to SDS than A. abdita, but both species showed comparable sensitivity when exposed to Cd. Results from 10-d sediment assays of samples collected at 19 sites throughout SC during 1994 showed significant mortality at 50% of the sites which had elevated (> ERL) levels of two or more contaminants. In contrast, no significant mortality was noted when these sediments were tested with A. abdita. Results obtained from additional sediment assays using both species and sediments spiked with different concentrations of Cd will also be presented.

  6. Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments

    SciTech Connect

    Burgess, R.M.; Cantwell, M.G.; Pelletier, M.C.; Ho, K.T.; Serbst, J.R.; Cook, H.F.; Kuhn, A.

    2000-04-01

    A multiagency effort is underway to develop whole sediment toxicity identification evaluation (TIE) methods. Whole sediment TIE methods will be critical tools for characterizing toxicity at hazardous waste sites and in the conduct of environmental risk assessments. The research approach is based on the predominance of three classes of toxicants in sediments: ammonia, nonpolar organic chemicals, and metals. Here the authors describe a procedure for characterizing acute toxicity caused by metals in whole marine sediments. The procedure involves adding a chelating resin to sediments, resulting in the sequestration of bioavailable metal while not stressing testing organisms. Within the testing chambers, the presence of resin resulted in statistically significant reductions in the overlying and interstitial water concentrations of five metals (cadmium, copper, nickel, lead, and zinc) generally by factors of 40 and 200. Toxicity to both the amphipod Ampelisca abdita and mysid Americamysis bahia (formerly Mysidopsis bahia) of sediments spiked with the five metals was decreased by approximately a factor of four when resin was present. While very effective at reducing the concentrations and toxicity of metals, the resin has only minor ameliorative effects on the toxicity of ammonia and a representative nonpolar toxicant (Endosulfan). Resin and accumulated metal were easily isolated from the testing system following exposures allowing for the initiation of phase II TIE (identification) procedures. This procedure using the addition of a chelating resin provides an approach for determining the importance of metals to the toxicity of marine sediments. Work is continuing to validate the method with environmentally contaminated sediments.

  7. Identification and confirmation of ammonia toxicity in contaminated sediments using a modified toxicity identification evaluation approach

    SciTech Connect

    Sprang, P.A. Van; Janssen, C.R.

    1997-12-01

    Toxicity identification of sediment pore waters from four sites in the Upper Scheldt (Belgium) was assessed using a simplified and discriminative toxicity identification evaluation procedure. The samples from all locations exhibited acute toxicity toward the freshwater crustacean Thamnocephalus platyurus. Toxicity was removed or considerably reduced by the cation exchange resins and air stripping at pH 11. In addition, the toxicity of the pore waters was found to be highly pH dependent. Increased toxicity was observed at higher pH levels, whereas reduced toxicity was found at lower pH levels. Based on these results, ammonia was suggested as the main toxic agent. The presence of ammonia concentrations exceeding the 24-h median lethal concentration and comparison of the toxicity characterization profiles of the pore waters with those of the suspected toxicant supported this hypothesis. Furthermore, a significant positive correlation between the observed toxicity of the pore waters and the expected toxicity (due to the presence of the suspected toxicant) confirmed ammonia as the true toxic agent. Finally, the ratio between the expected ammonia toxicity and the observed toxicity from the characterization tests was approx. 1, meaning that all or most of the observed toxicity was caused by the presence of one toxicant (i.e., ammonia). The developed toxicity identification evaluation procedure is suggested as a useful tool for the identification and confirmation of toxicants in contaminated sediments.

  8. Evaluation of the Polyethylene Reverse Sampler as a Dosing System in Marine Phase II Whole Sediment Toxicity Identification Evaluations (TIEs)

    EPA Science Inventory

    Contaminated marine sediments can cause acute and chronic impairments to benthic organisms. Nonionic organic contaminants (NOCs) are often a primary cause of impairment. Toxicity Identification Evaluations (TIEs) are used to identify chemicals causing toxicity in sediments. Ph...

  9. An interlaboratory comparison of sediment elutriate preparation and toxicity test methods

    EPA Science Inventory

    Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...

  10. Arsenic toxicity changes in the presence of sediment

    SciTech Connect

    Burton, G.A. Jr.; Lazorchak, J.M.; Waller, W.T.; Lanza, G.R.

    1987-03-01

    Arsenic has been widely used in herbicides resulting in high soil and sediment concentrations in some areas. D. magna has been a commonly used indicator of aquatic toxicity and standardized methods have been developed for acute toxicity testing. Arsenic is quite similar chemically to phosphorus and sulfur, thus it produces toxic effects, in part, by replacing these elements in essential metabolic processes. The effect of sediments on ameliorating metal toxicity to Daphnia has not been reported. However, arsenic and other metalloids/metal are known to concentrate in sediment and adsorb to particulates. This study investigated the effect of sediments on standard arsenite LC50 determinations with D. magna and alkaline phosphatase activity (APA).

  11. TOXICITY TESTS FOR SEDIMENT QUALITY ASSESSMENTS

    EPA Science Inventory

    Toxic sediments have contributed to a wide-variety of environmental problems around the world. The observed effects include direct toxic effects to aquatic life, bio-magnification of toxicants in the food chain, and economic impacts. This chapter discusses the use of toxicity...

  12. Development of toxicant identification procedures for whole sediment toxicity tests

    SciTech Connect

    Mount, D.R.; Henke, C.E.; Ingersoll, C.G.; Besser, J.M.; Ankley, G.T.; Norberg-King, T.J.; West, C.W.

    1995-12-31

    To effectively assess and manage contaminated sediments, identifying the specific contaminants responsible for sediment toxicity is highly desirable. Though effective toxicity identification evaluation (TIE) methods are well established for water column toxicity, new TIE methodologies are needed that address the special characteristics of whole sediment toxicity tests. Much of the effort to date has focused on the assessment of ammonia toxicity. Whereas pH manipulation is a key tool used to characterize ammonia toxicity in water column TIE, control of pH in interstitial water is much more challenging. Direct addition of hard acid has shown undesirable side effects (e.g., liberation and oxidation of iron), while CO{sub 2}-enrichment is limited in penetration of fine-grained sediments. Biological buffers (MES and POPSO) incorporated into the sediment are effective at altering interstitial pH without causing direct toxicity to Chironomus tentans, Lumbriculus variegatus, and to a lesser extent Hyalella azteca, but the range of pH control achieved has been small ({+-} 0.5 units). Introduction of aquatic plants reduces ammonia concentrations in the water column, but may not provide sufficient control of interstitial water. To date, the most promising results have been achieved using zeolite; adding zeolite to sediment produces moderate reductions in interstitial ammonia concentrations and is non-toxic to the organisms referenced above. Attempts to induce microbial removal of ammonia have been unsuccessful thus far. This presentation will review these and other sediment TIE methods currently under development in laboratories.

  13. Regional Models for Sediment Toxicity Assessment

    EPA Science Inventory

    This paper investigates the use of empirical models to predict the toxicity of sediment samples within a region to laboratory test organisms based on sediment chemistry. In earlier work, we used a large nationwide database of matching sediment chemistry and marine amphipod sedim...

  14. Benthic invertebrate bioassays with toxic sediment and pore water

    USGS Publications Warehouse

    Giesy, John P.; Rosiu, Cornell J.; Graney, Robert L.; Henry, Mary G.

    1990-01-01

    The relative sensitivities of bioassays to determine the toxicity of sediments were investigated and three methods of making the sample dilutions required to generate dose-response relationships were compared. The assays studied were: (a) Microtox®, a 15-min assay ofPhotobacterium phosphoreum bioluminescence inhibition by pore water; (b) 48-h Daphnia magnalethality test in pore water; (c) 10-d subchronic assay of lethality to and reduction of weight gain by Chironomus tentans performed in either whole sediment or pore water; (d) 168-h acute lethality assay of Hexagenia limbata in either whole sediment or pore water. The three methods of diluting sediments were: (a) extracting pore water from the toxic location and dilution with pore water from the control station; (b) diluting whole sediment from the toxic location with control whole sediment from a reference location, then extracting pore water; and (c) diluting toxic, whole sediment with whole sediment from a reference location, then using the whole sediment in bioassays. Based on lethality, H. limbata was the most sensitive organism to the toxicity of Detroit River sediment. Lethality of D. magna in pore water was similar to that of H. limbata in whole sediment and can be used to predict effects of whole sediment toxicity to H. limbata. The concentration required to cause a 50% reduction in C. tentans growth (10-d EC50) was approximately that which caused 50% lethality of D. magna (48-h LC50) and was similar to the toxicity that restricts benthic invertebrate colonization of contaminated sediments. While the three dilution techniques gave similar results with some assays, they gave very different results in other assays. The dose-response relationships determined by the three dilution techniques would be expected to vary with sediment, toxicant and bioassay type, and the dose-response relationship derived from each technique needs to be interpreted accordingly.

  15. Acute and chronic arsenic toxicity.

    PubMed

    Ratnaike, R N

    2003-07-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption occurs from skin contact and inhalation. Arsenic exerts its toxicity by inactivating up to 200 enzymes, especially those involved in cellular energy pathways and DNA synthesis and repair. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhoea. Encephalopathy and peripheral neuropathy are reported. Chronic arsenic toxicity results in multisystem disease. Arsenic is a well documented human carcinogen affecting numerous organs. There are no evidence based treatment regimens to treat chronic arsenic poisoning but antioxidants have been advocated, though benefit is not proven. The focus of management is to reduce arsenic ingestion from drinking water and there is increasing emphasis on using alternative supplies of water.

  16. Acute and chronic arsenic toxicity

    PubMed Central

    Ratnaike, R

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption occurs from skin contact and inhalation. Arsenic exerts its toxicity by inactivating up to 200 enzymes, especially those involved in cellular energy pathways and DNA synthesis and repair. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhoea. Encephalopathy and peripheral neuropathy are reported. Chronic arsenic toxicity results in multisystem disease. Arsenic is a well documented human carcinogen affecting numerous organs. There are no evidence based treatment regimens to treat chronic arsenic poisoning but antioxidants have been advocated, though benefit is not proven. The focus of management is to reduce arsenic ingestion from drinking water and there is increasing emphasis on using alternative supplies of water. PMID:12897217

  17. TOXICITY CHARACTERIZATION PROCEDURES FOR ORGANIC TOXICANTS IN BULK SEDIMENTS

    EPA Science Inventory

    We have been pursuing development of toxicant characterization, isolation, and identification procedures for organic toxicants that can be applied in the context of 10-d solid-phase sediment tests measuring survival and growth of freshwater in the context of 10-d solid-phase sedi...

  18. ACUTE TOXICITY OF PARA-NONYLPHENOL TO SALTWATER ANIMALS

    EPA Science Inventory

    ?para-Nonylphenol (PNP), a mixture of alkylphenols used in producing nonionic surfactants, is distributed widely in surface waters and aquatic sediments, where it can affect saltwater species. This article describes a database for acute toxicity of PNP derived for calculating a n...

  19. APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS

    EPA Science Inventory

    Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation (TIE) methods for contaminated sediments and focusing on three toxicant groups (ammoni...

  20. RESULTS OF APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS

    EPA Science Inventory

    Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation TIE) methods for contaminated sediments and are focusing on three toxicant groups (amm...

  1. Toxicity of sediment collected upriver and downriver of major cities along the lower Mississippi River

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1998-01-01

    The Lower Mississippi River contributes significantly to the biodiversity and ecological stability of the alluvial valley. Agricultural, industrial and municipal developments have historically impacted environmental quality of the river. Toxicity of sediment and sediment pore water was used to assess the current effects of major cities on sediment quality along the Lower Mississippi River. Composite sediment samples were collected from four sites upriver and four sites downriver of five major cities: Cairo, IL; Memphis, TN; Vicksburg, MS; Baton Rouge, LA; and New Orleans, LA. Following EPA's standard methods for acute toxicity testing of freshwater solid-phase sediment, Hyalella azteca were exposed to the sediments for 10 d with two water renewals per day. Hyalella azteca were also exposed for 96 h to pore water extracted from the sediments. After the initial tests, the animals were exposed to ultraviolet light for 12 h. Sediments were analyzed for organics (organochlorine pesticides, PCBs, organophosphate insecticides, and PAHs) and metals (Cr, Cu, Pb, Mn, Ni, Zn). With the exception of upriver from Memphis, solid-phase sediments were not toxic to H. azteca. Pore water from sediments collected upriver of Memphis showed slight toxicity. Exposure of H. azteca to ultraviolet light did not increase the toxicity of the sediment or pore-water samples, indicating a lack of PAH toxicity. Chemical analyses did not reveal any contaminant levels of concern in the sediments. Based on toxicity testing and chemical analyses, quality of sediments collected from the Lower Mississippi was good, with the exception of sites sampled upriver of Memphis.

  2. Formulated sediment for use in whole-sediment toxicity testing

    SciTech Connect

    Kemble, N.E.; Dwyer, F.J.; Hardesty, D.K.; Ingersoll, C.G.

    1995-12-31

    A formulated control sediment was developed to provide consistent and acceptable biological endpoints for a variety of species used in whole sediment toxicity testing. In an attempt to develop such a sediment the authors conducted multiple tests to evaluate: (1) {alpha}-cellulose as an organic carbon source, (2) various TOC concentrations, (3) various grain sizes, (4) different food types, and (5) overlying waters. Studies were conducted with the amphipod Hyalella azteca the midges Chironomus riparius, Chironomus tentans and the oligochaete Lumbriculus variegatus in 10 d exposures and H. azteca in 28 d exposures. Sediment from West Bearskin Lake Minnesota was used as a control sediment with each species in each test. Survival of test organisms in all of the 10-d experiments, with the exception of C. riparius, was above the acceptable levels for a control sediment. Survival in the formulated sediments also was not significantly different when compared to the control sediment. Amphipod survival in the 28-d exposures was low; however, the use of reconstituted water in combination with the formulated sediment may have been a problem. The authors are currently evaluating various types of overlying water with formulated sediments and sublethal endpoints in each of the exposures (i.e., growth, sexual maturation or head capsule width).

  3. Sediment toxicity to a marine infaunal amphipod: cadmium and its interaction with sewage sludge

    SciTech Connect

    Swartz, R.C.; Ditsworth, G.R.; Schults, D.W.; Lamberson, J.O.

    1985-01-01

    The acute toxicity of cadmium to the marine infaunal amphipod, Rhepoxynius abronius, was determined separately in sediment and seawater. Most cadmium added to test sediment was bound to particles and less than 5% was dissolved in interstitial water. The LC50 based on cadmium concentration in interstitial water was similar to the LC50 based on cadmium concentration in seawater without sediment. Cadmium in interstitial water, rather than that bound to particles, therefore appears responsible for acute sediment toxicity to this species. The addition of small quantities of sewage sludge or an increase in the proportion of the fine fraction of sediment particles significantly reduced the toxicity of cadmium in sediment. Binding of cadmium by sediment particles may explain the presence of phoxocephalid amphipods at sites where sewage and metal pollution occur together.

  4. Toxicity of silicon carbide nanowires to sediment-dwelling invertebrates in water or sediment exposures

    USGS Publications Warehouse

    Mwangi, Joseph N.; Wang, Ning; Ritts, Andrew; Kunz, James L.; Ingersoll, Christopher G.; Li, Hao; Deng, Baolin

    2011-01-01

    Silicon carbide nanowires (SiCNW) are insoluble in water. When released into an aquatic environment, SiCNW would likely accumulate in sediment. The objective of this study was to assess the toxicity of SiCNW to four freshwater sediment-dwelling organisms: amphipods (Hyalella azteca), midges (Chironomus dilutus), oligochaetes (Lumbriculus variegatus), and mussels (Lampsilis siliquoidea). Amphipods were exposed to either sonicated or nonsonicated SiCNW in water (1.0 g/L) for 48 h. Midges, mussels, and oligochaetes were exposed only to sonicated SiCNW in water for 96 h. In addition, amphipods were exposed to sonicated SiCNW in whole sediment for 10 d (44% SiCNW on dry wt basis). Mean 48-h survival of amphipods exposed to nonsonicated SiCNW in water was not significantly different from the control, whereas mean survival of amphipods exposed to sonicated SiCNW in two 48-h exposures (0 or 15% survival) was significantly different from the control (90 or 98% survival). In contrast, no effect of sonicated SiCNW was observed on survival of midges, mussels, or oligochaetes. Survival of amphipods was not significantly reduced in 10-d exposures to sonicated SiCNW either mixed in the sediment or layered on the sediment surface. However, significant reduction in amphipod biomass was observed with the SiCNW either mixed in sediment or layered on the sediment surface, and the reduction was more pronounced for SiCNW layered on the sediment. These results indicated that, under the experimental conditions, nonsonicated SiCNW in water were not acutely toxic to amphipods, sonicated SiCNW in water were acutely toxic to the amphipods, but not to other organisms tested, and sonicated SiCNW in sediment affected the growth but not the survival of amphipods.

  5. Assessing the potential toxicity of resuspended sediment

    SciTech Connect

    Bonnet, C.; Babut, M.; Ferard, J.F.; Martel, L.; Garric, J.

    2000-05-01

    Two moderately contaminated freshwater sediments (Sorel Harbour, St. Lawrence River, Canada) were subjected to a suspension event. The objective was to assess the environmental impact of the disposal of dredged material in water, in particular, the short-term effects of dumping on the water column and the long-term effects of dredged sediment deposits. In a series of microcosms, the sediments were left to stand for 25 d under flow-through conditions. In a second series of microcosms, sediments were vigorously suspended for 15 min before being left to settle and were submitted to the same treatment as reference sediments during the following 25 d. Physicochemical and biological parameters (Daphnia magna and Hydra attenuata survival) were measured in overlying water throughout the experiment. Sediment toxicity was assessed with Chironomus tentans and Hyalella azteca exposed to sediments collected at both the beginning and end of the 25-d period. Pore-water toxicity was evaluated with D. magna. During the suspension process, in the Sorel Harbour mixed sediment overlying water, the authors observed effects on H. attenuata survival and ammonia and metals (chromium, copper, and zinc) releases. Meanwhile, in reference (nonmixed) and mixed sediments as well as in associated pore waters, there were no significant chemical modifications no biological effects after the 25-d experiments. The developed approach, which attempts to simulate a dumping process, aims at allowing the assessment of the short- and long-term hazards resulting from a resuspension process in overlying water and in resettled sediments using both chemical and biological measurements.

  6. Toxicity of sediment-incorporated drilling fluids

    SciTech Connect

    Clark, J.R.; Patrick, J.M.

    1987-01-01

    The 24, 96, or 168-h LC50s of four used drilling fluids or barite incorporated into sediment were determined in toxicity tests with lancelets (Branchiostoma caribaeum), a benthic chordate. The number of lancelets that did not burrow into contaminated sediments was used to calculate EC50s at the same times that LC50s were determined. Observations of the burrowing behavior allowed quantitation of effects after 24-h exposures to each of the drilling fluids whereas lancelet mortality was sufficient to calculate 24-h LC50s for only one drilling fluid. Drilling fluids were less toxic to lancelets when incorporated into sediments than to mysids (Mysidopsis bahia) or benthic invertebrate communities in water-column exposures.

  7. A COMPARISON OF BULK SEDIMENT TOXICITY TESTING METHODS AND SEDIMENT ELUTRIATE TOXICITY

    EPA Science Inventory

    Bulk sediment toxicity tests are routinely used to assess the level and extent of contamination in natural sediments. While reliable, these tests can be resource intensive, requiring significant outlays of time and materials. The purpose of this study was to compare the results ...

  8. TOXICITY IDENTIFICATION EVALUATION (TIE) RESULTS FOR METAL CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Identification of contaminants in sediment is necessary for sound management decisions on sediment disposal, remediation, determination of ecological risk, and source identification. We have been developing sediment toxicity identification evaluation (TIE) techniques that allow ...

  9. Development of a Complete Life Cycle Sediment Toxicity Test for the Sheepshead Minnow (Cyprinodon variegatus)

    EPA Science Inventory

    Existing sediment toxicity test methods are limited to acute and chronic exposure of invertebrates and acute exposure of vertebrates, with limited guidance on the chronic exposure of vertebrates, specifically fishes. A series of life stage-specific studies were conducted to dete...

  10. Acute arsenic toxicity--an opaque poison.

    PubMed

    Gray, J R; Khalil, A; Prior, J C

    1989-08-01

    We report a patient with fatal acute arsenic poisoning presenting as vomiting and diarrhea with the finding of intra-abdominal radiopacities on radiographs. These represent the classic features of acute arsenic toxicity and are detailed here as a reminder to others facing a similar puzzling patient with this potentially treatable poisoning.

  11. Acute toxicity of methyl mercury to the larval lamprey, Petromyzon marinus

    SciTech Connect

    Mallatt, J.; Barron, M.G.; McDonough, C.

    1986-08-01

    Mercury compounds pollute many aquatic habitats and are extremely toxic to aquatic organisms. Acute toxicity of waterborne methyl mercury has been studied in several teleost species. Lampreys are taxonomically distant from teleosts and are used for comparative toxicological purposes. Landlocked sea lampreys, Petromyzon marinus, inhabit the Great Lakes region, and their larvae (ammocoetes) burrow in stream sediments. In this study, the authors present toxicity curves for ammocoetes exposed acutely to methyl mercuric chloride solutions. Susceptibility was related to temperature and animal size.

  12. Acute aquatic toxicity of biodiesel fuels

    SciTech Connect

    Wright, B.; Haws, R.; Little, D.; Reese, D.; Peterson, C.; Moeller, G.

    1995-12-31

    This study develops data on the acute aquatic toxicity of selected biodiesel fuels which may become subject to environmental effects test regulations under the US Toxic Substances Control Act (TSCA). The test substances are Rape Methyl Ester (RME), Rape Ethyl Ester (REE), Methyl Soyate (MS), a biodiesel mixture of 20% REE and 80% Diesel, a biodiesel mixture of 50% REE and diesel, and a reference substance of Phillips D-2 Reference Diesel. The test procedure follows the Daphnid Acute Toxicity Test outlined in 40 CFR {section} 797.1300 of the TSCA regulations. Daphnia Magna are exposed to the test substance in a flow-through system consisting of a mixing chamber, a proportional diluter, and duplicate test chambers. Novel system modifications are described that accommodate the testing of oil-based test substances with Daphnia. The acute aquatic toxicity is estimated by an EC50, an effective concentration producing immobility in 50% of the test specimen.

  13. Ocean acidification increases the toxicity of contaminated sediments.

    PubMed

    Roberts, David A; Birchenough, Silvana N R; Lewis, Ceri; Sanders, Matthew B; Bolam, Thi; Sheahan, Dave

    2013-02-01

    Ocean acidification (OA) may alter the behaviour of sediment-bound metals, modifying their bioavailability and thus toxicity. We provide the first experimental test of this hypothesis with the amphipod Corophium volutator. Amphipods were exposed to two test sediments, one with relatively high metals concentrations (Σmetals 239 mg kg(-1) ) and a reference sediment with lower contamination (Σmetals 82 mg kg(-1) ) under conditions that mimic current and projected conditions of OA (390-1140 μatm pCO2 ). Survival and DNA damage was measured in the amphipods, whereas the flux of labile metals was measured in the sediment and water column (WC) using Diffusive Gradients in Thin-films. The contaminated sediments became more acutely toxic to C. volutator under elevated pCO2 (1140 μatm). There was also a 2.7-fold increase in DNA damage in amphipods exposed to the contaminated sediment at 750 μatm pCO2 , as well as increased DNA damage in organisms exposed to the reference sediment, but only at 1140 μatm pCO2 . The projected pCO2 concentrations increased the flux of nickel and zinc to labile states in the WC and pore water. However, the increase in metal flux at elevated pCO2 was equal between the reference and contaminated sediments or, occasionally, greater from reference sediments. Hence, the toxicological interaction between OA and contaminants could not be explained by e ffects of pH on metal speciation. We propose that the additive physiological effects of OA and contaminants will be more important than changes in metal speciation in determining the responses of benthos to contaminated sediments under OA. Our data demonstrate clear potential for near-future OA to increase the susceptibility of benthic ecosystems to contaminants. Environmental policy should consider contaminants within the context of changing environmental conditions. Specifically, sediment metals guidelines may need to be reevaluated to afford appropriate environmental protection under future

  14. CHARACTERIZATION AND ISOLATION OF ORGANIC TOXICANTS IN WHOLE SEDIMENT TOXICITY INDENTIFICATION EVALUATIONS (TIES)

    EPA Science Inventory

    Development of whole sediment toxicity identification and evaluation (TIEs) methods has been under way for approximately four years. These methods are necessary to define cause and effect relationships in toxic sediments during ecological risk assessments, remediation and disposa...

  15. Development and application of a marine sediment porewater toxicity test using algal spores

    SciTech Connect

    Hooten, R.; Carr, R.S.

    1995-12-31

    An acute pore water toxicity test protocol using germination and growth of marine macroalgae as endpoints was developed to indicate the presence of toxic compounds in marine/estuarine and sediment porewater samples. Zoospores collected from Ulva fasciata and U. lactuca were used as test organisms. Preliminary results with sodium dodecyl sulfate (SDS, a reference toxicant) indicate that zoospores germination and growth of embryonic gametophytes are as sensitive as the sea urchin fertilization and embryological development toxicity tests. Algal germination and growth data for copper, mercury and other metals will be presented. The results of tests utilizing this algal assay with sediment pore water from contaminated sediments will be compared with more traditional sediment toxicity test methods.

  16. PROFILE OF TOXIC RESPONSE TO SEDIMENTS USING WHOLE-ANIMAL AND IN VITRO SUBMITOCHONDRIAL PARTICLE (SMP) ASSAYS

    EPA Science Inventory

    A rapid bioassy for monitoring acute toxicity of wastewater, ground water, and soil and sediment extracts using submitochondrial particles (SMP) has been developed. The assay utilizes the mitochondrial electron transfer enzyme complex present in all eukaryotic cells. Prior develo...

  17. Acute toxicity of gasoline and some additives.

    PubMed Central

    Reese, E; Kimbrough, R D

    1993-01-01

    The acute toxicity of gasoline; its components benzene, toluene, and xylene; and the additives ethanol, methanol, and methyl tertiary butyl ether are reviewed. All of these chemicals are only moderately to mildly toxic at acute doses. Because of their volatility, these compounds are not extensively absorbed dermally unless the exposed skin is occluded. Absorption through the lungs and the gastrointestinal tract is quite efficient. After ingestion, the principal danger for a number of these chemicals, particularly gasoline, is aspiration pneumonia, which occurs mainly in children. It is currently not clear whether aspiration pneumonia would still be a problem if gasoline were diluted with ethanol or methanol. During the normal use of gasoline or mixtures of gasoline and the other solvents as a fuel, exposures would be much lower than the doses that have resulted in poisoning. No acute toxic health effects would occur during the normal course of using automotive fuels. PMID:8020435

  18. Acute toxicity of gasoline and some additives

    SciTech Connect

    Reese, E.; Kimbrough, R.D.

    1993-12-01

    The acute toxicity of gasoline; its components benzene, toluene, and xylene; and the additives ethanol, methanol, and methyl tertiary butyl ether are reviewed. All of these chemicals are only moderately to mildly toxic at acute doses. Because of their volatility, these compounds are not extensively absorbed dermally unless the exposed skin is occluded. Absorption through the lungs and the gastrointestinal tract is quite efficient. After ingestion, the principal danger for a number of these chemicals, particularly gasoline, is aspiration pneumonia, which occurs mainly in children. It is currently not clear whether aspiration pneumonia would still be a problem if gasoline were diluted with ethanol or methanol. During the normal use of gasoline or mixtures of gasoline and the other solvents as a fuel, exposures would be much lower than the doses that have resulted in poisoning. No acute toxic health effects would occur during the normal course of using automotive fuels. 128 refs., 7 tabs.

  19. Sediment toxicity assessment through evaluation of the toxicity of interstitial water

    SciTech Connect

    Ankley, G.

    1989-01-01

    The interstitial-water-toxicity approach is a multiphase procedure for assessing sediment toxicity using interstitial (i.e., pore) water. The use of pore water for sediment toxicity assessment was based on the strong correlations between contaminant concentrations in pore water and toxicity (and/or bioaccumulation) of sediment-associated contaminants by benthic macroinvertebrates. The approach combines the quantitation of pore water toxicity with toxicity identification evaluation (TIE) procedures to identify and quantify chemical components responsible for sediment toxicity. TIE involves recently developed procedures for the identification of toxic compounds in aqueous samples containing complex mixtures of chemicals. In the interstitial water-toxicity method, TIE procedures are implemented in three phases to characterize pore-water toxicity, identify the suspected toxicant, and confirm toxicant identification.

  20. Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments

    SciTech Connect

    Casas, A.M. . School of Fisheries); Crecelius, E.A. )

    1994-03-01

    It has been proposed that acid volatile sulfide (AVS) is an important sediment phase for determining the toxicity of certain trace metals. By evaluating the ratio of the molar quantities of simultaneously extracted metal (SEM) to AVS, the toxicity of metals to organisms in contact with sediment can be predicted. This study examines the role of AVS in prediction the toxicity of zinc, lead, and copper in marine sediments. Sediment samples were titrated with zinc, lead, and copper and subsequently analyzed for SEM, pore-water (PW) metal, and AVS retention. In most cases, metal was not detected in the pore waters until the AVS was exceeded, suggesting that AVS is an adequate measure of the metal-blinding capacity of a sediment. The [SEM]-to-[AVS] ratios were calculated and toxicities predicted for each spiking concentration where [SEM]/[AVS] > 1. A 10-d, flow-though, acute bioassay using the marine polychaete Capitella capita was conducted to examine the prediction of toxicity from the metal titrations and the bioassay sediment chemistry data. In most cases, mortalities occurred as predicted. AVS and the [SEM]-to-[AVS] ratio proved useful as predictors of toxicity for zinc, lead, and perhaps copper. Another tool for predicting metal toxicity in sediments may be the [PW]/LC50 value; in every case where this ratio was > 1, mortalities occurred.

  1. A SEDIMENT TOXICITY METHOD USING LEMNA MINOR, DUCKWEED

    EPA Science Inventory

    We developed a Lemna minor sediment toxicity test method to assess sediment contaminants which may affect plants. This 96-hour test used 15 ml of sediment and 2 ml of overlying water which was renewed after 48 hours. Sand was used as the control sediment and also to dilute test ...

  2. Consensus Modeling of Oral Rat Acute Toxicity

    EPA Science Inventory

    An acute toxicity dataset (oral rat LD50) with about 7400 compounds was compiled from the ChemIDplus database. This dataset was divided into a modeling set and a prediction set. The compounds in the prediction set were selected so that they were present in the modeling set used...

  3. Ecotoxicity of sediments in rivers: Invertebrate community, toxicity bioassays and the toxic unit approach as complementary assessment tools.

    PubMed

    de Castro-Català, Núria; Kuzmanovic, Maja; Roig, Neus; Sierra, Jordi; Ginebreda, Antoni; Barceló, Damià; Pérez, Sandra; Petrovic, Mira; Picó, Yolanda; Schuhmacher, Marta; Muñoz, Isabel

    2016-01-01

    The determination of the real toxicity of sediments in aquatic ecosystems is challenging and necessary for an appropriate risk assessment. Different approaches have been developed and applied over the last several decades. Currently, the joint implementation of chemical, ecological and toxicological tools is recommended for an appropriate and successful toxicity risk assessment. We chose the combination of the toxic unit approach with acute pore water tests (Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna) and whole-sediment exposure tests (V. fischeri, Chironomus riparius), together with invertebrate community composition (multivariate analyses) to detect short and long-term responses of the organisms in four rivers of the Iberian Peninsula. High toxicity was detected in three sites (the downstream sites of the Llobregat and the Júcar, and the most upstream site of the Ebro). We identified organophosphate insecticides and metals as the main variables responsible for this toxicity, particularly in the whole-sediment tests. In particular, chlorpyrifos was mostly responsible for the toxicity (TUs) of D. magna, coinciding with the C. riparius mortality (long-term toxicity) in the mentioned sites, and copper was the main pollutant responsible for the short-term toxicity of P. subcapitata. The combination of the different approaches allowed us to detect ecotoxicological effects in organisms and identify the main contributors to the toxicity in these multi-stressed rivers. PMID:26118861

  4. Ecotoxicity of sediments in rivers: Invertebrate community, toxicity bioassays and the toxic unit approach as complementary assessment tools.

    PubMed

    de Castro-Català, Núria; Kuzmanovic, Maja; Roig, Neus; Sierra, Jordi; Ginebreda, Antoni; Barceló, Damià; Pérez, Sandra; Petrovic, Mira; Picó, Yolanda; Schuhmacher, Marta; Muñoz, Isabel

    2016-01-01

    The determination of the real toxicity of sediments in aquatic ecosystems is challenging and necessary for an appropriate risk assessment. Different approaches have been developed and applied over the last several decades. Currently, the joint implementation of chemical, ecological and toxicological tools is recommended for an appropriate and successful toxicity risk assessment. We chose the combination of the toxic unit approach with acute pore water tests (Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna) and whole-sediment exposure tests (V. fischeri, Chironomus riparius), together with invertebrate community composition (multivariate analyses) to detect short and long-term responses of the organisms in four rivers of the Iberian Peninsula. High toxicity was detected in three sites (the downstream sites of the Llobregat and the Júcar, and the most upstream site of the Ebro). We identified organophosphate insecticides and metals as the main variables responsible for this toxicity, particularly in the whole-sediment tests. In particular, chlorpyrifos was mostly responsible for the toxicity (TUs) of D. magna, coinciding with the C. riparius mortality (long-term toxicity) in the mentioned sites, and copper was the main pollutant responsible for the short-term toxicity of P. subcapitata. The combination of the different approaches allowed us to detect ecotoxicological effects in organisms and identify the main contributors to the toxicity in these multi-stressed rivers.

  5. Effects of organic amendments on the toxicity and bioavailability of cadmium and copper in spiked formulated sediments

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Ingersoll, C.G.

    2003-01-01

    We evaluated the partitioning and toxicity of cadmium (Cd) and copper (Cu) spiked into formulated sediments containing two types of organic matter (OM), i.e., cellulose and humus. Amendments of cellulose up to 12.5% total organic carbon (TOC) did not affect partitioning of Cd or Cu between sediment and pore water and did not significantly affect the toxicity of spiked sediments in acute toxicity tests with the amphipod Hyalella azteca. In contrast, amendments of natural humus shifted the partitioning of both Cd and Cu toward greater concentrations in sediment and lesser concentrations in pore water and significantly reduced toxic effects of both metals. Thresholds for toxicity, based on measured metal concentrations in whole sediment, were greater for both Cd and Cu in sediments amended with a low level of humus (2.9% TOC) than in sediments without added OM. Amendments with a high level of humus (8.9% TOC) eliminated toxicity at the highest spike concentrations of both metals (sediment concentrations of 12.4 ??g Cd/g and 493 ??g Cu/g). Concentrations of Cd in pore water associated with acute toxicity were similar between sediments with and without humus amendments, suggesting that toxicity of Cd was reduced primarily by sorption to sediment OM. However, toxic effects of Cu in humus treatments were associated with greater pore-water concentrations than in controls, suggesting that toxicity of Cu was reduced both by sorption and by complexation with soluble ligands. Both sorption and complexation by OM tend to make proposed sediment quality guidelines (SQGs) based on total metal concentrations more protective for high-OM sediments. Our results suggest that the predictive ability of SQGs could be improved by models of metal interactions with natural OM in sediment and pore water.

  6. Multiple life stage sensitivity of a deposit-feeding polychaete to chemical toxicants in sediment

    SciTech Connect

    Rice, C.A.; Sibley, T.; Ylitalo, G.M.; Casillas, E.

    1995-12-31

    By focusing on acute toxicity in species with habitat and food preferences often quite different from the environments of primary interest; that is, the depositional, fine-grained, organically enriched benthos, standard methods of testing sediment toxicity using single species have important problems of relevance in terms of test endpoints and target species. This study addresses these issues by building a set of baseline toxicity data that emphasizes critical life stage sensitivity over a wide range of toxicant concentrations in long-term sediment exposures for an animal with a model life history. The opportunistic, deposit-feeding polychaete Armandia brevis was exposed to sediments supplemented with fluoranthene, cadmium, copper, lead, and mercury, alone and in a model mixture, for 60 days. Mortality and emergence from sediment were recorded daily, and growth and maturity were measured at 20, 40, and 60d. To measure recruitment, cultured larvae were presented with the same sediments and allowed to settle and complete metamorphosis. Differential endpoint sensitivity, and differential chemical toxicity were evaluated. In addition, sediment and tissue concentrations of organic toxicants were used to link toxic responses to body burdens, and to consider the role of benthic infauna as contaminant vectors in the marine environment.

  7. WHAT’S CAUSING TOXICITY IN SEDIMENTS? RESULTS OF 20 YEARS OF TOXICITY IDENTIFICATION AND EVALUATIONS

    EPA Science Inventory

    Sediment toxicity identification and evaluation (TIE) methods have been used for 20 yr to identify the causes of toxicity in sediments around the world. In the present study, the authors summarize and categorize results of 36 peer-reviewed TIE studies (67 sediments) into nonioni...

  8. Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: bioavailability, biodegradability, and toxicity issues.

    PubMed

    Tabak, Henry H; Lazorchak, James M; Lei, Li; Khodadoust, Amid P; Antia, Jimmy E; Bagchi, Rajesh; Suidan, Makram T

    2003-03-01

    The widespread contamination by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes. This research studied a chronically PAH-contaminated estuarine sediment from the East River (ER; NY, USA) characterized by high concentrations of PAHs (approximately 4-190 ppm), sulfide, and metals and a marine sediment from New York/ New Jersey Harbor (NY/NJH; USA) with only trace quantities of PAHs (0.1-0.6 ppm). The focus was to examine the relationship between bioavailability of PAHs and their biological removal in a slurry system. Freshwater and marine sediment toxicity tests were conducted to measure baseline toxicity of both sediments to amphipods, aquatic worms, fathead and sheepshead minnow larvae, and a vascular plant; to determine the cause of toxicity; and to evaluate the effectiveness of the biotreatment strategies in reducing toxicity. Results showed the ER sediment was acutely toxic to all freshwater and marine organisms tested and that the toxicity was mainly caused by sulfide, PAHs, and metals present in the sediment. In spite of the high toxicity, most of the PAH compounds showed significant degradation in the aerobic sediment/water slurry system if the initial high oxygen demand due to the high sulfide content of the sediment was overcome. The removal of PAHs by biodegradation was closely related to their desorbed amount in 90% isopropanol solution during 24 h of contact, while the desorption of model PAH compounds from freshly spiked NY/NJH sediment did not describe the bioavailability of PAHs in the East River sediment well. The research improves our understanding of bioavailability as a controlling factor in bioremediation of PAHs and the potential of aerobic biodegradation for PAH removal and ecotoxicity reduction. PMID:12627632

  9. Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: bioavailability, biodegradability, and toxicity issues.

    PubMed

    Tabak, Henry H; Lazorchak, James M; Lei, Li; Khodadoust, Amid P; Antia, Jimmy E; Bagchi, Rajesh; Suidan, Makram T

    2003-03-01

    The widespread contamination by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes. This research studied a chronically PAH-contaminated estuarine sediment from the East River (ER; NY, USA) characterized by high concentrations of PAHs (approximately 4-190 ppm), sulfide, and metals and a marine sediment from New York/ New Jersey Harbor (NY/NJH; USA) with only trace quantities of PAHs (0.1-0.6 ppm). The focus was to examine the relationship between bioavailability of PAHs and their biological removal in a slurry system. Freshwater and marine sediment toxicity tests were conducted to measure baseline toxicity of both sediments to amphipods, aquatic worms, fathead and sheepshead minnow larvae, and a vascular plant; to determine the cause of toxicity; and to evaluate the effectiveness of the biotreatment strategies in reducing toxicity. Results showed the ER sediment was acutely toxic to all freshwater and marine organisms tested and that the toxicity was mainly caused by sulfide, PAHs, and metals present in the sediment. In spite of the high toxicity, most of the PAH compounds showed significant degradation in the aerobic sediment/water slurry system if the initial high oxygen demand due to the high sulfide content of the sediment was overcome. The removal of PAHs by biodegradation was closely related to their desorbed amount in 90% isopropanol solution during 24 h of contact, while the desorption of model PAH compounds from freshly spiked NY/NJH sediment did not describe the bioavailability of PAHs in the East River sediment well. The research improves our understanding of bioavailability as a controlling factor in bioremediation of PAHs and the potential of aerobic biodegradation for PAH removal and ecotoxicity reduction.

  10. Acute aquatic toxicity of alkyl phenol ethoxylates

    SciTech Connect

    Schueuermann G2 )

    1991-04-01

    The recently derived log Kow (octanol/water partition coefficient in logarithmic form) increment for a nonterminal oxyethylene unit was used to calculate a quantitative structure-activity relationships for literature data on the acute crustacean toxicity of polyoxyethylene surfactants. The resulting log Kow regression parameters are between the corresponding values for nonpolar and polar narcosis, which supports an interpretation of the surfactants' aquatic toxicity on the basis of another distinct mode of action. Furthermore, a comparison with calculated water solubility data indicates that for log Kow greater than 5 an aquatic toxicity decrease due to a solubility limit is expected, which gets support from two other sets on toxicity data of nonyl phenol polyethoxylates.

  11. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  12. Development of a chronic sediment toxicity test for marine benthic amphipods

    SciTech Connect

    DeWitt, T.H.; Redmond, M.S.; Sewall, J.E.; Swartz, R.C.

    1992-12-01

    The results of the research effort culminated in the development of a research method for assessing the chronic toxicity of contaminated marine and estuarine sediments using the benthic amphipod, Leptocheirus plumulosus. The first chapter describes the efforts at collecting, handling, and culturing four estuarine amphipods from Chesapeake Bay, including L. plumulosus. This chapter includes maps of the distribution and abundance of these amphipods within Chesapeake Bay and methodologies for establishing cultures of amphipods which could be readily adopted by other laboratories. The second chapter reports the development of acute and chronic sediment toxicity test methods for L. plumulosus, its sensitivity to non-contaminant environmental variables, cadmium, two polynuclear aromatic hydrocarbons, and contaminated sediment from Baltimore Harbor, MD. The third chapter reports the authors attempts to develop a chronic sediment toxicity test with Ampelisca abdita.

  13. Acute inhalation toxicity of carbonyl sulfide

    SciTech Connect

    Benson, J.M.; Hahn, F.F.; Barr, E.B.

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  14. Acute toxicity from baking soda ingestion.

    PubMed

    Thomas, S H; Stone, C K

    1994-01-01

    Sodium bicarbonate is an extremely well-known agent that historically has been used for a variety of medical conditions. Despite the widespread use of oral bicarbonate, little documented toxicity has occurred, and the emergency medicine literature contains no reports of toxicity caused by the ingestion of baking soda. Risks of acute and chronic oral bicarbonate ingestion include metabolic alkalosis, hypernatremia, hypertension, gastric rupture, hyporeninemia, hypokalemia, hypochloremia, intravascular volume depletion, and urinary alkalinization. Abrupt cessation of chronic excessive bicarbonate ingestion may result in hyperkalemia, hypoaldosteronism, volume contraction, and disruption of calcium and phosphorus metabolism. The case of a patient with three hospital admissions in 4 months, all the result of excessive oral intake of bicarbonate for symptomatic relief of dyspepsia is reported. Evaluation and treatment of patients with acute bicarbonate ingestion is discussed.

  15. Characterizing toxicity of metal-contaminated sediments from mining areas

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  16. Multi-level assessment of chronic toxicity of estuarine sediments with the amphipod Gammarus locusta: I. Biochemical endpoints.

    PubMed

    Neuparth, Teresa; Correia, Ana D; Costa, Filipe O; Lima, Gláucia; Costa, Maria Helena

    2005-07-01

    We report on biomarker responses conducted as part of a multi-level assessment of the chronic toxicity of estuarine sediments to the amphipod Gammarus locusta. A companion article accounts for organism and population-level effects. Five moderately contaminated sediments from two Portuguese estuaries, Sado and Tagus, were assessed. Three of them were muddy and two were sandy sediments. The objective was to assess sediments that were not acutely toxic. Three of the sediments met this criterion, the other two were diluted (50% and 75%) with clean sediment until acute toxicity was absent. Following 28-d exposures, the amphipods were analysed for whole-body metal bioaccumulation, metallothionein induction (MT), DNA strand breakage (SB) and lipid peroxidation (LP). Two of the muddy sediments did not cause chronic toxicity. These findings were consistent with responses at organism and population levels that showed higher growth rates and improvement of reproductive traits for amphipods exposed to these two sediments. Two other sediments, one muddy and one sandy, exhibited pronounced chronic toxicity, affecting SB, MT induction (in muddy sediment), survival and reproduction. Potential toxicants involved in these effects were identified. The last sandy sediment exhibited some loss of DNA integrity, however growth was also enhanced. Present results, together with the organism/population-level data, and also benthic communities information, were analysed under a weight-of-evidence approach. By providing evidence of exposure (or lack of it) to contaminants in sediments, the biomarkers here applied assisted in distinguishing toxicants' impacts in test organisms from the confounding influence of other geochemical features of the sediments. PMID:15649528

  17. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; Schweitzer, K.A.; McKinney, R.A.; Phelps, D.K.

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentrations of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial waters did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  18. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; McKinney, R.A. ); Schweitzer, K.A. ); Phelps, D.K. )

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentration of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial water did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  19. MARINE SEDIMENT TOXICITY IDNETIFICATION EVALUATION METHODS FOR THE ANIONIC METALS ARSENIC AND CHROMIUM

    EPA Science Inventory

    Marine sediments accumulate a diversity of contaminants and, in some cases, demonstrate toxicity because of this contamination. Toxicity Identification Evaluation (TIE) methods provide tools for identifying the toxic chemicals causing sediment toxicity. Currently, whole sedimen...

  20. Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee.

    PubMed

    Amweg, Erin L; Weston, Donald P; You, Jing; Lydy, Michael J

    2006-03-01

    Pyrethroid pesticides have replaced organophosphates for many urban applications, including structural pest control, landscape maintenance, and residential home and garden use. This study was intended to determine if pyrethroids are detectable and widespread in diverse urban systems and if concentrations are high enough to cause associated aquatic toxicity. Urban creeks in California and Tennessee were tested on up to four occasions for pesticide residues in sediments, and aquatic toxicity was determined by acute toxicity tests using the amphipod, Hyalella azteca. In California, 12 of the 15 creeks tested were toxic on at least one sampling occasion, and sediment pyrethroid concentrations were sufficient to explain the observed toxicity in most cases. The pyrethroid bifenthrin, due to its high concentrations and relative toxicity as compared to other pyrethroids, was likely responsible for the majority of the toxicity at most sites. Cypermethrin, cyfluthrin, deltamethrin, and lambda-cyhalothrin also contributed to toxicity at some locations. The source of cypermethrin and deltamethrin was probably almost entirely structural pest control by professional applicators. Bifenthrin, cyfluthrin, and lambda-cyhalothrin may have originated either from professional structural pest control or from lawn and garden care by homeowners. None of the sediments collected from the 12 Tennessee creeks were toxic, and pyrethroids were rarely detectable. Regional differences between Tennessee and California are possibly attributable to climate, differences in types of residential development, and pesticide use practices.

  1. The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments.

    PubMed

    Strom, David; Simpson, Stuart L; Batley, Graeme E; Jolley, Dianne F

    2011-07-01

    The use of sediment quality guidelines to predict the toxicity of metals in sediments is limited by an inadequate understanding of exposure pathways and by poor causal links between exposure and effects. For a 10-d exposure to Cu-spiked sediments, toxicity to the amphipod Melita plumulosa was demonstrated to occur through a combination of dissolved and dietary Cu exposure pathways, but for the bivalves Spisula trigonella and Tellina deltoidalis, toxicity occurred primarily by exposure to dissolved Cu. For relatively oxidized sediments that had moderate amounts of organic carbon (2.6-8.3% OC), silt (20-100% <63-µm particles) but low acid-volatile sulfide (AVS), acute toxicity thresholds for the three species were derived based on the OC-normalized Cu concentration of the less than 63-µm sediment fraction. For all three species, no effects were observed at concentrations below 10 µg/L dissolved Cu (in pore water and overlying water) or below 12 mg Cu/g OC (for <63 µm sediment). For sediments with silt/OC properties of 20/0.5, 50/1, or 70/4%, the particulate Cu-based threshold equated to 60, 120, or 480 mg Cu/kg, respectively. For oxic/suboxic sediments in which AVS is not limiting metal availability, sediment quality guidelines of this form will provide adequate protection against toxicity and improve the prediction of effects for sediments with varying properties.

  2. Massive strontium ferrite ingestion without acute toxicity.

    PubMed

    Kirrane, Barbara M; Nelson, Lewis S; Hoffman, Robert S

    2006-11-01

    Ingestion of strontium ferrite is previously unreported. We document absorption of strontium without acute toxicity. A 22 year-old schizophrenic man was brought to hospital after he was witnessed to pulverize and ingest flexible adhesive magnets, which later were identified as strontium ferrite. Other than auditory hallucinations his vital signs, physical examination, ECG and routine laboratories were unremarkable. Abdominal radiographs revealed diffuse radiopaque material. He was treated with whole bowel irrigation with polyethylene glycol electrolyte lavage solution (PEG-ELS) until radiographically cleared. His initial blood and urine strontium levels were 2900 microg/l and 15,000 microg/l, respectively (reference range for urine: <240 microg/l, occupational threshold 800 microg/l). A repeat urine level one week later was 370 microg/l. His hospital course was complicated by bacteraemia secondary to a thrombophlebitis at the site of the intravenous catheter, and the patient was treated with intravenous and oral antibiotics. He remained otherwise asymptomatic and was discharged to a psychiatric unit approximately 3 weeks later. Although clearly absorbed, strontium ferrite does not appear to produce acute toxicity. Delayed, and or chronic toxicity cannot be excluded based on this report.

  3. Sediment toxicity and benthic communities in mildly contaminated mudflats

    SciTech Connect

    Nipper, M.G.; Roper, D.S.; Williams, E.K.; Martin, M.L.; Van Dam, L.F.; Mills, G.N.

    1998-03-01

    Sediment physicochemical characteristics, benthic community structure, and toxicity were measured at reference and contaminated intertidal mudflats around the North Island of New Zealand. Chronic whole-sediment toxicity tests were conducted with the estuarine amphipod, Chaetocorophium lucasi and the marine bivalve, Macomona lilana, and pore-water toxicity tests were conducted with embryos of the echinoid, Fellaster zelandiae. Although concentrations of organic chemicals and heavy metals were up to several orders of magnitude higher at the sites considered to be contaminated, levels of contamination were relatively low compared to internationally based sediment quality guidelines. Although no pronounced difference was found in benthic community structure between reference and contaminated sites, multivariate analysis indicated that natural sediment characteristics and factors related to contamination may have been affecting community structure. Although benthic effects caused by present levels of contamination are not yet dramatic, subtle changes in community structure related to pollution may be occurring. The two whole-sediment and the pore-water toxicity tests presented different response patterns. Growth of C. lucasi and M. liliana was a less sensitive endpoint than survival. None of the three toxicity tests responded more strongly to the contaminated than to the reference sites, that is, neither natural-sediment and pore-water characteristics nor unmeasured contaminants affected the test organisms. It is possible that sediment collection and handling may have induced chemical changes, confounding interpretation of toxicity tests.

  4. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Geitner, H.

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 ug/g (dry weight), with the highest concentrations found in surface (0?8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox? bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 ug/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 ug/g. On a molar basis, acid-volatile sulfide concentrations (20?45 umol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  5. DEVELOPMENT OF A TOXICITY INDENTIFICATION EVALUATION (TIE) PROCEDURE FOR CHARACTERIZING METAL TOXICITY IN MARINE SEDIMENTS

    EPA Science Inventory

    A multi-Agency effort is underway to develop whole sediment Toxicity Identification Evaluation (TIE) methods. Whole sediment TIE methods will be critical tools for characterizing toxicity at hazardous waste sites (e.g., Superfund sites) and in the conduct of environmental risk as...

  6. DEVELOPMENT OF A TOXICITY INDENTIFICATION EVALUATION (TIE) PROCEDURE FOR CHARACTERIZING METAL TOXICITY IN MARINE SEDIMENTS

    EPA Science Inventory

    multiagency effort is underway to develop whole sediment toxicity identification evaluation (TIE) methods. Whole sediment TIE methods will be critical tools for characterizing toxicity at hazardous waste sites (e.g., Superfund sites) and in the conduct of environmental risk asse...

  7. Sediment toxicity in Boston Harbor: Magnitude, extent, and relationships with chemical toxicants. Technical memo

    SciTech Connect

    Long, E.R.; Sloane, G.M.; Carr, R.S.; Scott, K.J.; Thursby, G.B.

    1996-06-01

    A survey of the toxicity of sediments throughout Boston Harbor and vicinity was conducted by NOAA`s National Status and Trends (NS&T) Program. The objectives of the survey were to determine the magnitude and spatial extent of toxicity and the relationship between measures of toxicity and the concentrations of chemical toxicants in the sediments. Multiple toxicity tests were performed including: an amphipod survival test performed with whole sediments, a microbial bioluminescence test performed with organic solvent extracts of the sediments, and sea urchin fertilization and embryological development tests performed with the pore waters extracted from the sediments. Chemical analyses were performed on selected samples for trace metals, polynuclear aromatic hydrcarbons, chlorinated pesticides, PCBs, and butyltins.

  8. AVS regulation of cadmium bioavailability in a life-cycle sediment toxicity test using Leptocheirus plumulosus

    SciTech Connect

    DeWitt, T.H.; Swartz, R.C.; Hansen, D.J.; McGovern, D.; Berry, W.J.

    1995-12-31

    Numerous studies have shown the utility of interstitial water concentrations of metals and simultaneously extracted metals:acid volatile sulfide ratios (SEM:AVS) in explaining the acute toxicity of sediment-associated metals to benthic organisms, but no full life-cycle chronic tests have been conducted for this purpose. In this study, cohorts of newborn amphipods, Leptocheirus plumulosus, were exposed to cadmium-spiked estuarine sediment for 28 days to determine effects on mortality, growth, and reproduction relative to interstitial water and SEM:AVS normalizations. Seven treatments of Cd were tested: control, 0.35, 0.87, 1.32, 1.53, 2.22, and 5.10 molar SEM:AVS ratios. Overlying water, interstitial water and sediment concentrations of SEM Cd and AVS were monitored periodically and by depth during the exposure. When sediments SEM:AVS ratios were < 1.53, interstitial water concentrations of Cd were less than the 10-day water-only Cd LC50, and mortality, growth and reproduction were not affected. When SEM:AVS ratios were > 2.22, interstitial water Cd concentrations were greater than 100 times the 10-day water-only Cd LC50, and all amphipods died. These results are consistent with predictions of metal bioavailability from acute tests with metals-spiked sediments, i.e. that sediments with SEM:AVS ratios less than 1.0 and less than 0.5 interstitial water toxic units are not toxic, while sediments with SEM:AVS ratios greater than 1.0 and interstitial water toxic units (IWTUS) greater than 0.5 may be toxic.

  9. Bioavailability of fluoranthene in freshwater sediment toxicity tests

    SciTech Connect

    Suedel, B.C.; Rodgers, J.H. Jr. ); Clifford, P.A. )

    1993-01-01

    To examine equilibrium-partitioning model predictions of interstitial water concentrations of fluoranthene as part of the equilibrium-partitioning (EqP) approach to sediment quality criteria development, the bioavailability (toxicity) of fluoranthene-amended sediment to Hyalella azteca, Daphnia magna, and Chironomus tentans was determined. Fluoranthene was added to three freshwater sediments with similar organic carbon content. Predicted interstitial water concentrations from the equilibrium-partitioning model were similar to measured interstitial water concentrations for WRFS and TR sediment, but the model underpredicted measured values for LF sediment by a factor of two. EC50s for Daphnia magna, Hyalella azteca, and Chironomus tentans in interstitial water were a factor of two to five greater for LF than for WRFS and TR sediments. Factors other than organic carbon content of sediments probably contributed to the variability in bioavailability of fluoranthene. Based on 10-d sediment toxicity tests with Hylella azteca, Daphnia magna, and Chironomus tentans, organic carbon-normalized sediment concentrations were better predictors of toxicity than interstitial water and bulk sediment fluoranthene concentrations. In 10-d aqueous-phase tests with fluoranthene, Chironomus tentans and Hyalella azteca were twice as sensitive as Daphnia magna.

  10. Acute Toxic Neuropathy Mimicking Guillain Barre Syndrome

    PubMed Central

    Jalal, Muhammed Jasim Abdul; Fernandez, Shirley Joan; Menon, Murali Krishna

    2015-01-01

    Case: A 30 year old male presented with numbness of palms and soles followed by weakness of upper limbs and lower limbs of 5 days duration, which was ascending and progressive. Three months back he was treated for oral and genital ulcers with oral steroids. His ulcers improved and shifted to indigenous medication. His clinical examination showed polyneuropathy. CSF study did not show albuminocytological dissociation. Nerve conduction study showed demyelinating polyneuropathy. His blood samples and the ayurvedic drug samples were sent for toxicological analysis. Inference: Acute toxic neuropathy - Arsenic PMID:25811007

  11. The status of toxicity tests with sediment in Brazil

    SciTech Connect

    Araujo, R.P.A.

    1995-12-31

    The earliest studies in Brazil aiming to evaluate sediment quality through toxicity tests started in the beginning of the 80`s. These were developed by the Environmental Sanitation Agency of Sao Paulo State (CETESB) in Cubatao River and Billings Reservoir, which are located in industrialized and populous regions. Elutriate phase sediment toxicity tests were run with Daphnia similis. In the Cubatao River Basin the combination of toxicity, chemistry data and benthic community structure provided clear indications of sites with different levels of pollution. At this time there was a consensus that the study of a complex compartment such as sediment needed improvements in sampling and analysis procedures. Only in the 90`s the investigations involving sediment toxicity assessment were resumed by CETESB, and it was clear that integrative studies were needed in order to make environmental quality assessment. This kind of studies were conducted by CETESB in some highly polluted areas of Sao Paulo State, Ceriodaphnia dubia and Photobacterium phosphoreum interstitial water tests and Hyalella sp whole sediment tests were run, and the results correlated with several sediment organic and inorganic contaminants. The Sediment Quality Triad proposed by Chapman was applied in one of these studies. This approach was extremely useful in interpreting the data. At the same time marine sediment toxicity tests were developed by CETESB in collaboration with Sao Paulo University, and tests were run with the amphipods Tiburonella viscana, Battyporeiapus bisetosus; tanaidacean Kalliapseudes shubarti and the echinoderm Lytechinus variegatus. The embryo test with L. variegatus was the most adequate in these studies. Nowadays there are other groups in some universities developing sediment toxicity tests with Hyalella and Chironomus in response to a growing concern in Brazil to establish adequate sediment quality assessment guidelines.

  12. Effects of sample homogenization on solid phase sediment toxicity

    SciTech Connect

    Anderson, B.S.; Hunt, J.W.; Newman, J.W.; Tjeerdema, R.S.; Fairey, W.R.; Stephenson, M.D.; Puckett, H.M.; Taberski, K.M.

    1995-12-31

    Sediment toxicity is typically assessed using homogenized surficial sediment samples. It has been recognized that homogenization alters sediment integrity and may result in changes in chemical bioavailability through oxidation-reduction or other chemical processes. In this study, intact (unhomogenized) sediment cores were taken from a Van Veen grab sampler and tested concurrently with sediment homogenate from the same sample in order to investigate the effect of homogenization on toxicity. Two different solid-phase toxicity test protocols were used for these comparisons. Results of amphipod exposures to samples from San Francisco Bay indicated minimal difference between intact and homogenized samples. Mean amphipod survival in intact cores relative to homogenates was similar at two contaminated sites. Mean survival was 34 and 33% in intact and homogenized samples, respectively, at Castro Cove. Mean survival was 41% and 57%, respectively, in intact and homogenized samples from Islais Creek. Studies using the sea urchin development protocol, modified for testing at the sediment/water interface, indicated considerably more toxicity in intact samples relative to homogenized samples from San Diego Bay. Measures of metal flux into the overlying water demonstrated greater flux of metals from the intact samples. Zinc flux was five times greater, and copper flux was twice as great in some intact samples relative to homogenates. Future experiments will compare flux of metals and organic compounds in intact and homogenized sediments to further evaluate the efficacy of using intact cores for solid phase toxicity assessment.

  13. Extensive review of fish embryo acute toxicities for the prediction of GHS acute systemic toxicity categories.

    PubMed

    Scholz, Stefan; Ortmann, Julia; Klüver, Nils; Léonard, Marc

    2014-08-01

    Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos.

  14. Extensive review of fish embryo acute toxicities for the prediction of GHS acute systemic toxicity categories.

    PubMed

    Scholz, Stefan; Ortmann, Julia; Klüver, Nils; Léonard, Marc

    2014-08-01

    Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos. PMID:24929227

  15. Methotrexate-induced acute toxic leukoencephalopathy.

    PubMed

    Salkade, Parag R; Lim, Teh Aun

    2012-01-01

    Acute lymphoblastic leukemia (ALL) is one of the most common malignancies of childhood, which is treated with high doses of methotrexate (MTX), as it crosses the blood-brain barrier and can be administered intravenously and via intrathecal route to eradicate leukemic cells from central nervous system (CNS). Additionally, high doses of MTX not only prevent CNS recurrence but also hematologic relapses. Although, standard treatment protocol for ALL includes multimodality therapy, MTX is usually associated with neurotoxicity and affects periventricular deep white matter region. Methotrexate-induced 'acute toxic leukoencephalopathy' has varying clinical manifestations ranging from acute neurological deficit to seizures or encephalopathy. Diffusion weighted magnetic resonance imaging (DW-MRI) is widely available and routinely used in clinical practice to identify acute stroke and also to distinguish acute stroke from non-stroke like conditions. We report a local teenage Chinese girl who developed 2 discrete episodes of left upper and lower limb weakness with left facial nerve paresis after receiving the 2 nd and 3 rd cycle of high dose of intravenous and intrathecal methotrexate, without having cranial irradiation. After each episode of her neurological deficit, the DW-MRI scan showed focal restricted diffusion in right centrum semiovale. Her left sided focal neurological deficit and facial nerve paresis almost completely subsided on both these occasions within 3 days of symptom onset. Follow-up DW-MRI, after her neurological recovery, revealed almost complete resolution of previously noted restricted diffusion in right centrum semiovale, while the lesion was not evident on concurrent T2W (T2-weighted) and FLAIR (Fluid-Attenuated Inversion recovery) sequences, nor showed any post contrast enhancement on post gadolinium enhanced T1W (T1-weighted) sequences. No residual neurological deficit or intellectual impairment was identified on clinical follow up over a 2 year

  16. Acute toxic effects of fragrance products.

    PubMed

    Anderson, R C; Anderson, J H

    1998-01-01

    To evaluate whether fragrance products can produce acute toxic effects in mammals, we allowed groups of male Swiss-Webster mice to breathe the emissions of five commercial colognes or toilet water for 1 h. We used the ASTM-E-981 test method to evaluate sensory irritation and pulmonary irritation. We used a computerized version of this test to measure the duration of the break at the end of inspiration and the duration of the pause at the end of expiration. Decreases in expiratory flow velocity indicated airflow limitation. We subjected the mice to a functional observational battery to probe for changes in nervous system function. The emissions of these fragrance products caused various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity, as well as alterations of the functional observational battery indicative of neurotoxicity. Neurotoxicity was more severe after mice were repeatedly exposed to the fragrance products. Evaluation of one of the test atmospheres with gas chromatography/mass spectrometry revealed the presence of chemicals for which irritant and neurotoxic properties had been documented previously. In summary, some fragrance products emitted chemicals that caused a variety of acute toxicities in mice.

  17. Assessment of the use of the AVS concept for the routine toxicity monitoring of contaminated freshwater sediments

    SciTech Connect

    Vangheluwe, M.L.; Janssen, C.R.; Goyvaerts, M.P.; Cooman, P.

    1995-12-31

    Acid volatile sulfides (AVS) have been shown to be an important factor mediating the bioavailability of heavy metals in sediments and have consequently been suggested as a possible predictive tool for toxicity assessment of these matrices. The potential use and limitations of the AVS method for predictive toxicity screening and priority setting was assessed in a large scale sediment monitoring study (Flanders, Belgium). The acute toxicity of 50 metal contaminated freshwater sediments, with varying metal concentrations and sediment characteristics, were tested using the Microtox{reg_sign} Solid Phase test and the 10 day test with Chironomus riparius and Hyalella azteca. Uni and multivariate statistical techniques were used to asses the relations between acute toxicity and SEM/AVS ratio`s and to evaluate the influence of sediment characteristics on metal bioavailability and toxicity. In general, the results of this study indicate that the AVS-toxicity relationship proposed in literature does have certain limitations. Finally, the potential use of a concentration-addition model for predicting metal-mixture toxicity in sediments will be presented and discussed.

  18. Toxicity and bioavailability of heavy metal mixtures in natural and synthetic sediments

    SciTech Connect

    Frugis, M.; Clements, W.H.

    1994-12-31

    Toxicity tests were conducted to compare differences in bioavailability of a metal mixture (zinc, copper, cadmium and lead) in natural and synthetic sediments to Chironomus tentans and Ceriodaphnia dubia. Preliminary tests were conducted with sediment collected at five stations from the Arkansas River (Leadville, CO) and one from the La Cache Poudre River (Fort Collins, CO). After seven days of exposure, mortality on C. tentans in sediment from the most contaminated station (AR3) was significantly different from the reference station (PDR). Bioaccumulation in these insects showed significant correlation with abiotic factors: particle size, organic matter, total carbon and cation exchange capacity. During a second experiment, particle size and carbon contents of synthetic sediment were modified to reflect composition of natural sediment. Two types of artificial sediments were spiked with 0X, 0.085X, 0.175X and 0.35X of metal mixture measured in AR3. After ten days, mortality of C. tentans in the 0.35X and AR3 treatments were similar. In a final experiment, synthetic and natural sediments were spiked at 0X, 0.175X, 0.35X, and 0.70X. Again, mortality of contents in 0.35X and AR3 were not significantly different. A 48hrs-acute test conducted with C. dubia showed that interstitial water from AR3 and AR5 stations had higher toxicity than other stations. In addition, toxicity of interstitial water from synthetic sediment was greater than from spiked natural sediment or sediments collected from the Arkansas River. These results indicate that heavy metals are more bioavailable in synthetic sediments than in natural substrates.

  19. Toxicity and Geochemistry of Missouri Cave Stream Sediments

    NASA Astrophysics Data System (ADS)

    Lawler, C. A.; Besser, J.; Wicks, C. M.

    2005-05-01

    Water and sediment quality are among the most important variables affecting the survival of stygobites. In Tumbling Creek Cave, Taney County Missouri the population of the endangered cave snail, Antrobia culveri, has declined significantly over the past decade. The cause of the population decline is unknown but could be related to the quality of streambed sediment in which the cave snail lives. The objective of this study was to determine the toxicity and concentrations of heavy metals in the sediment of Tumbling Creek Cave and five other caves in Missouri. These sediments were analyzed to assess possible point sources from within the recharge areas of the caves and to provide baseline geochemical data to which Tumbling Creek Cave sediments could be compared. Standard sediment toxicity tests and ICP-MS analysis for heavy metals were conducted. Survival and reproduction of the amphipod, Hyalella azteca, did not differ significantly between cave sediments and a control sediment. However the growth of amphipods differed significantly among sites and was significantly reduced in sediments from Tumbling Creek Cave relative to controls. Concentrations of several metals in sediments differed substantially among locations, with elevated levels of zinc and copper occurring in Tumbling Creek Cave. However, none of the measured metal concentrations exceeded sediment quality guidelines derived to predict probable effects on benthic organisms and correlations between sediment metal concentrations and toxicity endpoints were generally weak. While elevated metal levels may play a part in the cave snail's decline, other factors may be of equal or greater importance. Ongoing analyses of persistent organic contaminants and total organic carbon in cave sediments, along with continued water quality monitoring, may provide data that will allow us to better understand this complicated problem.

  20. Flow-through bioassay for measuring bioaccumulation of toxic substances from sediment

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol C.; Hesselberg, Robert J.; Sayers, Richard E.

    1984-01-01

    Over 10 million cubic meters of sediment are dredged annually from Great Lakes waterways. Because much of this material is taken from harbors, connecting channels, and other nearshore areas that often are contaminated with toxic substances, the sediments proposed for dredging need to be evaluated for the presence of bioavailable contaminants and the potential for toxicity to the biota. Sound decisions on the appropriate disposal of the dredged material can be made only after such an evaluation. Presently, no standardized procedure exists for evaluating dredged material in freshwater systems although current criteria for discharge of dredged material into marine water have been developed (USEPA/CE 1977). In the ocean discharge guideline, it is recommended that bioassays be conducted on liquid, solid, and suspended particulate phases of dredged material. because it appears that the solid phase has the greatest potential for environmental damage and because measurement of bioaccumulation must be made to evaluate sediments for disposal (USEPA/CE 1977, Seeyle and Mac 1983), we developed a bioassay for testing the solid phase of dredged material that measures the survival of organisms and, perhaps more important, the bioaccumulation of toxic substances by aquatic organisms from naturally contaminated sediments (Peddicord et al. 1980; Rubinstein et al. 1980, 1983; Seeyle st al. 1982), several have used testing methods that result in unacceptable mortality to control organisms (Bahnick et al. 1981, Prater et al. 1983). Our bioassay is intended to estimate the potential for bioaccumlation of contaminants from sediments that are not acutely toxic to test organisms, but are suspected of containing persistent contaminants. By using test organisms that are not highly susceptible to toxic compounds, the bioaccumulation test allows estimation of the potential food-chain accumulation of contaminants that may occur in local biota from surficial sediments. In practice

  1. Nickel phase partitioning and toxicity in field-deployed sediments.

    PubMed

    Costello, David M; Burton, G Allen; Hammerschmidt, Chad R; Rogevich, Emily C; Schlekat, Christian E

    2011-07-01

    The pool of bioavailable metal in sediments can be much smaller than total metal concentration due to complexation and precipitation with ligands. Metal bioavailability and toxicity in sediment is often predicted from models of simultaneous extracted metal and acid volatile sulfide (SEM-AVS); however, studies of the applicability of these models for Ni-contaminated sediments have been conducted primarily in laboratory settings. We investigated the utility of the SEM-AVS models under field conditions: Five lotic sediments with a range of sulfide and organic carbon contents were amended with four concentrations of Ni, deployed in streams for eight weeks, and examined for colonizing macroinvertebrates. After four weeks, colonizing macroinvertebrates showed a strong negative response to the Ni-treated sediments and SEM-AVS models of bioavailability differentiated between toxic and nontoxic conditions. By Week 8, relationships deteriorated between colonizing macroinvertebrates and SEM-AVS model predictions. Total Ni in the sediment did not change through time; however, Ni partitioning shifted from being dominated by organic cabon at deployment to associations with Fe and Mn. Combined geochemical and toxicity results suggest that Fe and Mn oxides in surface sediments resulted in Ni being less available to biota. This implies that current SEM-AVS models may overestimate bioavailable Ni in sediments with oxic surface layers and sufficient Fe and Mn. PMID:21648434

  2. Microtox as an indicator of sediment toxicity in southeastern estuaries

    SciTech Connect

    DeLorenzo, M.E.; Ringwood, A.H.; Ross, P.E.

    1995-12-31

    Sediment quality is an important factor in the health of an aquatic environment. Microtox has proven to be a sensitive, quick and repeatable method for analyzing sediment toxicity. The Microtox bioassay was used as an estuarine sediment toxicity test in the Environmental Monitoring and Assessment Program (EMAP) of the southeast (Carolinian Province) during the 1993--1995 sampling seasons. Photobacterium phosphoreum, naturally bioluminescent bacteria, were exposed to sediments and EC50 values were obtained by measuring decreases in light production. The correlation between Microtox-generated EC50 values and the sediment chemistry of 24 EMAP sites in South Carolina and Georgia was evaluated. Multivariate analyses were used to determine the variables most influential in differentiating the sites. Concentrations of PAHs, PCBs, pesticides, metals, and other abiotic variables were considered in the analyses.

  3. Toxicity of sediment-associated pyrene and phenanthrene to Limnodrilus hoffmeisteri (Oligochaeta: Tubificidae)

    SciTech Connect

    Lotufo, G.R.; Fleeger, J.W.

    1996-09-01

    Acute and sublethal toxicities of sediment-spiked pyrene and phenanthrene to Limnodrilus hoffmeisteri Cleparede were investigated. Phenanthrene was acutely toxic at high sediment concentrations (10-d median lethal concentration of 297.5 {micro}g g{sup {minus}1}; 252.2--348.3, 95% confidence interval [Cl]). Pyrene was not acutely toxic, even at concentrations as high as 841 {micro}g g{sup {minus}1}. A significant impact of pyrene and phenanthrene on the feeding activity of L. hoffmeisteri was demonstrated through daily collection of egested fecal material during 5- and 10-d experiments. A short (5-d) exposure detected toxic effects more efficiently than a 10-d exposure, yielding IC25 values (estimated concentration causing a 25% reduction of measured endpoint in relation to the control[s]) of 58.9 {micro}g g{sup {minus}1} (32.1--89.4, 95% CI) for pyrene and 28.4 {micro}g g{sup {minus}1} (10.0--41.3, 95% CI) for phenanthrene. Effects on burrowing behavior and reproduction were assessed in a 28-d sediment exposure. Low burrowing avoidance (< 25%) was detected in high phenanthrene concentrations (143--612 {micro}g g{sup {minus}1}) but was not detected with pyrene. Offspring production was significantly reduced in dosed sediments yielding IC25 values of 59.1 {micro}g g{sup {minus}1} (38.3--112.5, 95% CI) for pyrene and 40.5 {micro}g g{sup {minus}1} (12.1--165.5, 955 CI) for phenanthrene. Decreases in egestion rates in the presence of nonpolar contaminants should be quantified when investigating the effects of bioturbation by deposit feeders on the flux of contaminants from sediment into the water column.

  4. Silver toxicity to Chironomus tentans in two freshwater sediments

    SciTech Connect

    Call, D.J.; Polkinghorne, C.N.; Markee, T.P.; Brooke, L.T.; Geiger, D.L.; Gorsuch, J.W.; Robillard, K.A.

    1999-01-01

    Sediment collected from two freshwater lakes, West Bearskin Lake (Cook, MN, USA) and Bond Lake (Douglas, WI, USA), was characterized for grain size, total organic carbon, (TOC), acid-volatile sulfides (AVS), simultaneously extracted metals (SEM), and iron (Fe). Both sediments had low levels of TOC. West Bearskin Lake sediment contained more small particles than Bond Lake, which was 95% sand. West Bearskin Lake also had higher SEM and had an Fe content that was approximately 30-fold greater than that of Bond Lake. These sediments were amended with AgNO{sub 3} in a series of concentrations, some of which were intended to exceed the total silver (Ag)-binding capacity of the sediments, allowing for the appearance of dissolved Ag in pore water (PW). Sediment toxicity tests were then designed such that the AgNO{sub 3} amendment levels would result in PW concentrations that bracketed the 10-d concentration causing 50% lethality for dissolved Ag of 0.057 mg/L, as determined in a toxicity test in water alone. The 10-d LC50 values for Chironomus tentans, based upon nominal additions of Ag to the sediments, were 2.75 and 1.17 g Ag per kilogram dry sediment for West Bearskin and Bond Lake sediments, respectively. An LC50 value based upon dissolved Ag in the PW was determined only for Bond Lake sediment and was approximately 275 times greater than the water-only LC50 value. This indicated that a high proportion of the dissolved fraction was not readily bioavailable to cause lethality. A reduction in PW pH and the displacement of other metals from sediment into PW with Ag additions to the sediment likely contributed to the observed mortalities and weight losses, particularly at the higher exposure levels. The concentrations of Ag in these sediments that resulted in biological effects are considerably higher than levels reported in the environment.

  5. Toxicity of stormwater treatment pond sediments to Hyalella azteca (Amphipoda)

    SciTech Connect

    Karouna-Renier, N.K. |; Sparling, D.W.

    1997-04-01

    Stormwater runoff from highways and commercial, industrial, and residential areas contains a wide spectrum of pollutants including heavy metals, petroleum hydrocarbons, pesticides, herbicides, sediment, and nutrients. Recent efforts to reduce the impacts of urbanization on natural wetlands and other receiving waters have included the construction of stormwater treatment ponds and wetlands. These systems provide flood control and improve water quality through settling, adsorption, and precipitation of pollutants removing up to 95% of metals, nutrients and sediment before discharged from the site. The design of stormwater ponds to provide habitat for aquatic wildlife has prompted concern over the potential exposure of aquatic organisms to these contaminants. Aquatic sediments concentrate a wide array of organic and inorganic pollutants. Although water quality criteria may not be exceeded, organisms living in or near the sediments may be adversely affected. The availability of chemicals in sediments depends strongly on the prevailing chemistry. Physical conditions of the sediment and water quality characteristics including pH, redox potential and hardness, also influence contaminant availability. Studies have shown that heavy metals and nutrients carried by runoff concentrate in the sediment of stormwater ponds. Although several investigations have assessed the toxicity of sediments in streams receiving urban runoff, there have been few studies of the toxicity of stormwater treatment pond sediments to aquatic organisms. This study was part of a large-scale assessment of the contaminant hazards of stormwater treatment ponds. The objective of this study was to evaluate the toxicity of sediments and water from stormwater ponds over a 10-d period to juvenile Hyalella azteca. Bioassay results were related to concentrations of acid volatile sulfides and metals of the tested sediments. 17 refs., 4 tabs.

  6. Electrophiles and acute toxicity to fish

    SciTech Connect

    Hermens, J.L. )

    1990-07-01

    Effect concentrations in fish LC50 tests with directly acting electrophiles are lower than those of unreactive chemicals that act by narcosis. LC50 values of more hydrophobic reactive chemicals tend to approach those of unreactive chemicals. Quantitative studies to correlate fish LC50 data to physical-chemical properties indicate that LC50 values of reactive chemicals depend on hydrophobicity as well as chemical reactivity. In this paper, several examples will be given of chemical structures that are known as direct electrophiles. This classification might be useful to identify chemicals that are more effective at lower concentrations than unreactive compounds. Chemicals that require bioactivation are not included because almost no information is available on the influence of bioactivation on acute toxic effects in aquatic organisms.32 references.

  7. Sediment toxicity, contamination and amphipod abundance at a DDT- and dieldrin-contaminated site in San Francisco Bay

    SciTech Connect

    Swartz, R.C.; Cole, F.A.; Lamberson, J.O.; Ferraro, S.P.; Schults, D.W.

    1994-01-01

    Sediment toxicity to the amphipod Eohaustorius estuarius, sediment contamination, and the abundance of amphipods were examined along a contamination gradient in the Lauritzen Channel and adjacent parts of Richmond Harbor, California. Dieldrin and DDT were formulated and ground at this site from 1945 to 1966. Sediment contamination by both dieldrin and the sum of DDT and its metabolites (DDT's) was positively correlated with sediment toxicity and negatively correlated with the abundance of amphipods excluding Grandidierella japonica. The maximum dieldrin and DDT's concentrations in toxic units were 0.018 and 9.43, respectively, indicating that DDT's was the dominant ecotoxicological factor. Concentrations of PAHs, PCBs, and metals were not sufficient to cause appreciable toxicity, except at one PAH-contaminated station. Relations between DDT's, sediment toxicity, and amphipod abundance are similar at three DDT's-contaminated sites. The 10-d LC50 for DDT's in field-collected sediment was 2,500 micrograms/gram organic carbon (OC) for Eohaustorius estuarius in the study, 1,040 micrograms/gram OC for Rhepoxynius abronius exposed to Palos Verdes Shelf, California, sediment, and 2,580 micrograms/gram OC for Hyalella azteca exposed to sediment from a freshwater stream system near Huntsville, Alabama. The threshold for 10-d sediment toxicity occurred at about 300 micrograms DDT's/gram OC. The abundance of amphipods (except Grandidierella japonica) was reduced at DDT's concentrations >100 micrograms/gram OC. Correlations between toxicity, contamination, and biology indicate that acute sediment toxicity to Eohaustorius estuarius, Rhopoxynius abronius, or Hyalella azteca in lab tests provides reliable evidence of biologically adverse sediment contamination in the field.

  8. Rapid toxicity assessment of sediments from estuarine ecosystems: A new tandem in vitro testing approach

    USGS Publications Warehouse

    Johnson, B.T.; Long, E.R.

    1998-01-01

    Microtox?? and Mutatox?? were used to evaluate the acute toxicity and genotoxicity, respectively, of organic sediment extracts from Pensacola Bay and St. Andrew Bay, two estuaries that cover about 273 and 127 km2, respectively, along the Gulf coast of Florida, USA. The sensitivity and selectivity of these two bioluminescent toxicity assays were demonstrated in validation studies with over 50 pesticides, genotoxins, and industrial pollutants, both as single compounds and in complex mixtures. The 50% effective concentration (EC50) values of insecticides, petroleum products, and polychlorinated biphenyls determined by Microtox all tended to group around the mean EC50 value of 1.2 (0.8) mg/L. The polycyclic aromatic hydrocarbon sensitivity of Mutatox was in general similar to that reported in the Ames test. Surficial sediment samples were collected, extracted with dichloromethane, evaporated and concentrated under nitrogen, dissolved in dimethyl sulfoxide, assayed for acute toxicity and genotoxicity, and compared with reference sediments. Samples with low EC50 values, and determined to be genotoxic, were detected in Massalina Bayou, Watson Bayou, East Bay, and St. Andrew Bay-East in St. Andrew Bay as well as Bayou Grande, Bayou Chico, and Bayou Texar in Pensacola Bay. An overview of these data sets analyzed by Spearman rank correlation showed a significant correlation between acute toxicity and genotoxicity (p < 0.05). Microtox and Mutatox in tandem was a sensitive, cost-effective, and rapid (<24 h) screening tool that identified troublesome areas of pollution and assessed the potential sediment toxicity of lipophilic contaminants in aquatic ecosystems.

  9. Effects of sediment bioturbation by Chironomus tentans on toxicity of heavy metals to Ceriodaphnia dubia

    SciTech Connect

    Pearson, M.S.; Clements, W.H.

    1994-12-31

    A laboratory study was conducted to examine the toxicological significance of bioturbation by Chironomus tentans (Diptera: Chironomidae) exposed to mixtures of heavy metals (Cd, Cu, Pb and Zn) in sediment. Overlying water was collected from beakers with and without chironomids. Overlying water samples from beakers with chironomids showed significantly higher levels of total zinc (p = 0.0088), copper (p < 0.0001) and lead (p = 0.0485) compared to beakers without chironomids. Ceriodaphnia dubia chronic toxicity tests were used to evaluate toxicity of the overlying water. Overlying water from beakers without chironomids was not toxic to C. dubia. In contrast, overlying water from beakers with chironomids was acutely toxic to C. dubia at dilutions > 50%. Dilutions of 6.25%, 12.5% and 25% had a reproductive effect on C. dubia. Results of this laboratory experiment indicate that benthic invertebrates may be responsible for increased toxicity of overlying waters.

  10. Effectiveness of bioremediation in reducing toxicity in oiled intertidal sediments

    SciTech Connect

    Lee, K.; Tremblay, G.H.; Siron, R.

    1995-12-31

    A 123-day field study was conducted with in situ enclosures to compare the effectiveness of bioremediation strategies based in inorganic and organic fertilizer additions to accelerate the biodegradation rates and reduce the toxicity of Venture{trademark} condensate stranded within sand-beach sediments. Comparison of the two fertilizer formulations with identical nitrogen and phosphorus concentrations showed that the organic fertilizer stimulated bacterial productivity within the oiled sediments to the greatest extent. However, detailed chemical analysis indicated that inorganic fertilizer additions were the most effective in enhancing condensate biodegradation rates. The Microtox{reg_sign} Solid-Phase Test (SPT) bioassay was determined to be sensitive to Venture Condensate in laboratory tests. Subsequent application of this procedure to oiled sediment in the field showed a reduction in sediment toxicity over time. However, the Microtox{reg_sign} bioassay procedure did not identify significant reductions in sediment toxicity following bioremediation treatment. An observed increase in toxicity following periodic additions of the organic fertilizer was attributed to rapid biodegradation rates of the fertilizer, which resulted in the production of toxic metabolic products.

  11. The acute toxicity of coal liquefaction-derived materials.

    PubMed

    McKee, R H; Biles, R W; Kapp, R W; Hinz, J P

    1984-08-01

    The acute toxicity of a series of potential streams from the EDS coal liquefaction process have been assessed in animal bioassays. In general, the materials present minimal acute toxic hazards. However, there was some evidence of ocular and dermal irritation. These results indicate that eye and dermal contact should be minimized, particularly when the process streams contain high concentrations of phenolic materials.

  12. Exploring waiving opportunities for mammalian acute systemic toxicity tests.

    PubMed

    Graepel, Rabea; Asturiol, David; Prieto, Pilar; Worth, Andrew P

    2016-07-01

    A survey was carried out to explore opportunities for waiving mammalian acute systemic toxicity tests. We were interested in finding out whether data from a sub-acute toxicity test could be used to predict the outcome of an acute systemic toxicity test. The survey was directed at experts in the field of toxicity testing, and was carried out in the context of the upcoming 2018 final registration deadline for chemicals under the EU REACH Regulation. In addition to the survey, a retrospective data analysis of chemicals that had already been registered with the European Chemicals Agency, and for which both acute and sub-acute toxicity data were available, was carried out. This data analysis was focused on chemicals that were administered via the oral route. The answers to the questionnaire showed a willingness to adopt waiving opportunities. In addition, the responses showed that data from a sub-acute toxicity test or dose-range finding study might be useful for predicting chemicals that do not require classification for acute oral toxicity (LD50 > 2000mg/kg body weight). However, with the exception of substances that fall into the non-classified category, it is difficult to predict current acute oral toxicity categories. PMID:27494626

  13. Comparisons of Sediment Test Volumes for Freshwater Solid Phase Sediment Toxicity Tests

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates are commonly used to assess the potential toxicity of contaminated sediments, and detailed standard test procedures have been developed for various species. For freshwater, two benthic organisms, Hyalella azteca and Chironomus dil...

  14. Development of marine sediment bioassays and toxicity tests for monitoring and regulation in Europe

    SciTech Connect

    Thain, J.; Matthiessen, P.

    1995-12-31

    There is a need in Europe and elsewhere for a broad suite of whole-sediment bioassays and toxicity tests which can be used for routine monitoring and assessment of the marine environment and for evaluating the toxic effects of chemicals which may find their way into sediments. Until recently, few European species had been incorporated into such tests but the availability of suitable methodologies is now increasing rapidly. Perhaps the most important recent activity in this area consisted of an international ring test of acute sediment toxicity test methods which was organized by the Oslo and Paris Commissions in 1993, using up to 4 offshore chemicals as test materials. It evaluated the performance of 4 acute (5--10 day) tests involving: the sea urchin Echinocardium cordatum, the bivalve mollusc Abra alba, the amphipod crustacean Corophium volutator, and the polychaete worm Arenicola marina. The ring test concluded that the C. volutator test was the most appropriate for evaluating offshore chemicals, but all these methods are now widely used in Europe, both as toxicity tests and as bioassays. For example, the A. marina procedure (which has both lethal and sublethal endpoints), in combination with the C. volutator method, is now routinely used in the UK for monitoring the toxicity of estuarine sediments. Further activities are in progress. Perhaps the most important is the development of chronic marine sediment tests and bioassays which can be used to assess the long-term effects of the many sedimentary contaminants which are able to persist in this type of habitat and possibly cause delayed effects on the growth and reproduction, etc. of benthic fauna.

  15. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Ivey, Chris D.; Kunz, James L.; Kemble, Nile E.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94–38 µmol/g) and total organic carbon (TOC; 0.42–10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.

  16. PREDICTING SEDIMENT METAL TOXICITY USING A SEDIMENT BIOTIC LIGAND MODEL: METHODOLOGY AND INITIAL APPLICATION

    EPA Science Inventory

    An extension of the simultaneously extracted metals/acid-volatile sulfide (SEM/AVS) procedure is presented that predicts the acute and chronic sediment metals effects concentrations. A biotic ligand model (BLM) and a pore water–sediment partitioning model are used to predict the ...

  17. Bioavailability and chronic toxicity of cadmium in sediment to the estuarine amphipod Leptocheirus plumulosus

    SciTech Connect

    DeWitt, T.H.; Swartz, R.C.; Hansen, D.J.; McGovern, D.; Berry, W.J.

    1996-12-01

    Numerous studies have demonstrated the efficacy of interstitial water metal concentrations and simultaneously extracted metals/acid-volatile sulfide (SEM/AVS) ratios in explaining the acute toxicity of sediment-associated metals to benthic organisms. However, no full life-cycle chronic marine or estuarine tests have been conducted for this purpose. In this study, cohorts of newborn amphipods, Leptocheirus plumulosus, were exposed to cadmium-spiked estuarine sediment for 28 d to determine effects on mortality, growth, and reproduction relative to interstitial water and SEM/AVS normalization. Seven treatments of cadmium were tested: 0 (control), 0.34, 0.74, 1.31, 1.55, 2.23, and 4.82 M SEM{sub Cd}/AVS ratios (measured concentrations). Interstitial water cadmium (IW{sub Cd}) and sediment concentrations of SEM{sub Cd} and AVS were monitored periodically and by depth during the exposure. When sediment SEM{sub Cd}/AVS ratios were {le} 1.55, mean IW{sub Cd} concentrations were less than the 96-h water-only cadmium LC50 for juvenile and subadult L. plumulosus, and mortality, growth, and reproduction were not affected. When SEM{sub Cd}/AVD ratios were {ge} 2.23, IW{sub Cd} concentrations were more than 100 times greater than the 96-h water-only cadmium LC50, and all amphipods died. These results are consistent with predictions of metal bioavailability from acute tests with metal-spiked sediments, i.e., that sediments with SEM{sub Cd}/AVS ratios < 1 are not toxic, while sediments with SEM{sub Cd}/AVS ratios > 1 may be toxic.

  18. Toxicity and photoactivation of PAH mixtures in marine sediment

    SciTech Connect

    Swartz, R.; Ferraro, S.; Lamberson, J.; Cole, F.; Ozretich, R.; Boese, B.; Schults, D.; Behrenfeld, M.; Ankley, G.

    1995-12-31

    The toxicity and toxicological photoactivation of mixtures of sediment-associated fluoranthene, phenanthrene, pyrene, and acenaphthene were determined using standard 10 d sediment toxicity tests with the marine amphipod, Rhepoxynius abronius. The four PAHs were spiked into sediment in a concentration series of either single compounds or an equitoxic mixture. Spiked sediment was stored at 4 C for 28 d before testing. Toxicity tests were conducted under fluorescent lighting. Survivors after 10 d in PAH-contaminated sediment were exposed for 1 h to UV light in the absence of sediment and then tested for their ability to bury in clean sediment. The 10 d LC50s for single PAHs were 3.3, 2.2, 2.8, and 2.3 mg/g oc for fluoranthene, phenanthrene, pyrene, and acenaphthene, respectively. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the equitoxic mixture treatments. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicological interaction of the four PAHs in the mixture was additive, the {Sigma}TU LC50 should equal 1.0. The observed {Sigma}TU LC50 in the mixture was 1.55, indicating the interaction was slightly less than additive. UV enhancement of toxic effects of individual PAHs was correctly predicted by photophysical properties, i.e. pyrene and fluoranthene were photoactivated and phenanthrene and acenaphthene were not. UV effects in the mixture of four PAHs can be explained by the photoactivation of pyrene and fluoranthene alone.

  19. Sediment toxicity in the Duluth-Superior Harbor: Use of Microtox{reg_sign} and Mutatox{reg_sign} as screening assays

    SciTech Connect

    Schubauer-Berigan, M.; Hubbard, C.; Schubauer-Berigan, J.; Tesser, G.

    1995-12-31

    Sediment toxicity tests were conducted in the Duluth-Superior Harbor at 40 sites as part of an integrated sediment assessment during the fall of 1993. Two rapid assays conducted with Photobacterium phosphoreum (Microtox{reg_sign} and Mutatox{reg_sign}) were compared with three standard US EPA sediment toxicity tests: Hyalella azteca (acute tests) and Chironomus tentans (acute and sub-lethal tests). The response in the two microbial assays was also evaluated for sensitivity to various contaminants analyzed simultaneously in the Duluth-Superior Harbor sediments. Microtox{reg_sign} and Mutatox{reg_sign} were found to be sensitive to approximately one-third and one-half the sediments, respectively; Chironomus tentans was sensitive to 15% of the sediments (either acutely or sub-lethally), while Hyalella azteca was not sensitive to any of the sediments. In almost all cases, Microtox{reg_sign} and Mutatox{reg_sign} correctly identified samples that were toxic to the chironomid, making it useful as a screening tool for toxicity, to reduce the number of sites to be tested with the benthic organisms. The subsequent application of Microtox{reg_sign} as a screen for sediment toxicity in an EMAP survey in the St. Louis River (MN) estuary will be discussed. Correlation of Microtox{reg_sign} and Mutatox{reg_sign} toxicity to environmental contaminants found in the sediments will be presented.

  20. Multi-level assessment of chronic toxicity of estuarine sediments with the amphipod Gammarus locusta: II. Organism and population-level endpoints.

    PubMed

    Costa, Filipe O; Neuparth, Teresa; Correia, Ana D; Costa, Maria Helena

    2005-07-01

    This study aimed to test the performance of the amphipod Gammarus locusta (L.) in chronic sediment toxicity tests. It constitutes part of a multi-level assessment of chronic toxicity of estuarine sediments, integrating organism and population-level endpoints with biochemical markers responses. Here we account for organism and population-level effects, while biomarker responses were reported in a companion article. Five moderately contaminated sediments from Sado and Tagus estuaries were tested, comprising 3 muddy and 2 sandy sediments. These sediments either did not show acute toxicity or were diluted with control sediment as much as required to remove acute toxicity. Subsequent chronic tests consisted of 28-day exposures with survival, individual growth and reproductive traits as endpoints. Two of the muddy sediments induced higher growth rates in the amphipods, and improved reproductive traits. This was understood to be a consequence of the amount of organic matter in the sediment, which was nutritionally beneficial to the amphipods, while concurrently decreasing contaminant bioavailability. Biomarker responses did not reveal toxicant-induced stress in amphipods exposed to these sediments. One of the sandy sediments was acutely toxic at 50% dilution, but in contrast stimulated amphipod growth when diluted 75%. This was presumed to be an indication of a hormetic response. Finally the two remaining contaminated sediments showed pronounced chronic toxicity, affecting survival and reproduction. The sex ratio of survivors was highly biased towards females, and offspring production was severely impaired. The particulars of the responses of this amphipod were examined, as well as strengths versus limitations of the sediment test. This study illustrates the utility of this chronic test for toxicity assessment of contaminated estuarine sediments, with potential application all along Atlantic Europe. PMID:15649529

  1. Effects of ammonia on juvenile unionid mussels (Lampsilis cardium) in laboratory sediment toxicity tests

    USGS Publications Warehouse

    Newton, Teresa J.; Allran, John W.; O'Donnell, Jonathan A.; Bartsch, Michelle; Richardson, William B.

    2003-01-01

    Ammonia is a relatively toxic compound generated in water and sediments by heterotrophic bacteria and accumulates in sediments and pore water. Recent data suggest that unionid mussels are sensitive to un-ionized ammonia (NH3) relative to other organisms. Existing sediment exposure systems are not suitable for ammonia toxicity studies with juvenile unionids; thus, we modified a system to expose juveniles to ammonia that was continuously infused into sediments. This system maintained consistent concentrations of ammonia in pore water up to 10 d. Juvenile Lampsilis cardium mussels were exposed to NH3 in pore water in replicate 96-h and 10-d sediment toxicity tests. The 96-h median lethal concentrations (LC50s) were 127 and 165 μg NH3-N/L, and the 10-d LC50s were 93 and 140 μg NH3-N/L. The median effective concentrations (EC50s) (based on the proportion affected, including dead and inactive mussels) were 73 and 119 μg NH3-N/L in the 96-h tests and 71 and 99 μg NH3-N/L in the 10-d tests. Growth rate was substantially reduced at concentrations between 31 and 76 μg NH3-N/L. The lethality results (when expressed as total ammonia) are about one-half the acute national water quality criteria for total ammonia, suggesting that existing criteria may not protect juvenile unionids.

  2. Toxicity of lead-contaminated sediment to mallards

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Sileo, L.; Audet, D.J.; LeCaptain, L.J.

    1999-01-01

    Because consumption of lead-contaminated sediment has been suspected as the cause of waterfowl mortality in the Coeur d?Alene River basin in Idaho, we studied the bioavailability and toxicity of this sediment to mallards (Anas platyrhynchos). In experiment 1, one of 10 adult male mallards died when fed a pelleted commercial duck diet that contained 24% lead-contaminated sediment (with 3,400 μg/g lead in the sediment). Protoporphyrin levels in the blood increased as the percentage of lead-contaminated sediment in the diet increased. Birds fed 24% lead-contaminated sediment exhibited atrophy of the breast muscles, green staining of the feathers around the vent, viscous bile, green staining of the gizzard lining, and renal tubular intranuclear inclusion bodies. Mallards fed 24% lead-contaminated sediment had means of 6.1 μg/g of lead in the blood and 28 μg/g in the liver (wet-weight basis) and 1,660 μg/g in the feces (dry-weight basis). In experiment 2, we raised the dietary concentration of the lead-contaminated sediment to 48%, but only about 20% sediment was actually ingested due to food washing by the birds. Protoporphyrin levels were elevated in the lead-exposed birds, and all of the mallards fed 48% lead-contaminated sediment had renal tubular intranuclear inclusion bodies. The concentrations of lead in the liver were 9.1 μg/g for mallards fed 24% lead-contaminated sediment and 16 μg/g for mallards fed 48% lead-contaminated sediment. In experiment 3, four of five mallards died when fed a ground corn diet containing 24% lead-contaminated sediment (with 4,000 μg/g lead in this sample of sediment), but none died when the 24% lead-contaminated sediment was mixed into a nutritionally balanced commercial duck diet; estimated actual ingestion rates for sediment were 14% and 17% for the corn and commercial diets. Lead exposure caused elevations in protoporphyrin, and four of the five mallards fed 24% lead-contaminated sediment in a commercial diet and all five

  3. A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS

    EPA Science Inventory

    Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...

  4. Occurrence and toxicity of sediment-associated contaminants in Guangzhou College City and its adjacent areas: the relationship to urbanization.

    PubMed

    Sun, Bao-Quan; Wang, Fei; Li, Hui-Zhen; You, Jing

    2015-01-01

    Guangzhou College City in the southeast of Guangzhou, China, became a home to 10 universities in 2003 after a largely agricultural past. The city has since experienced rapid urbanization with limited development of adjacent areas. Twenty-one sediment samples were collected in the city and its adjacent areas to evaluate the influence of urbanization in different functional zones on sediment quality in local waterways. Sediment toxicity was assessed by 10-day toxicity tests using two benthic invertebrates, Chironomus dilutus and Hyalella azteca. In addition, various organic contaminants-including current-use pesticides (pyrethroids and organophosphate insecticides) and polycyclic aromatic hydrocarbons-were analyzed, and a toxic unit (TU) approach was applied to identify possible toxicity contributors. In general, 38 and 4.8% of the sediments exhibited acute toxicity to C. dilutus and H. azteca, respectively, with 9.5% of the samples resulting in 100% mortality to C. dilutus. Distribution analysis showed that the rural industrial area, which is south of the city, had the greatest contaminant concentrations and greatest toxicity to both organisms compared with the other areas. Pyrethroids, especially cypermethrin, appeared to contribute the most to the observed toxicity, yet the lack of relationship between the toxicity and TU of pyrethroids may reflect toxicity associated with other contaminants.

  5. Waterborne and sediment-source toxicities of six organic chemicals to grass shrimp (Palaemonetes pugio) and amphioxus (Branchiostoma caribaeum)

    SciTech Connect

    Clark, J.R.; Patrick, J.M.; Moore, J.C.; Lores, E.M.

    1987-01-01

    Grass shrimp (Palaemonetes pugio) were exposed to either waterborne or sediment-source concentrations of fenvalerate, cypermethrin, 1,2,4-trichlorobenzene (TCB), tributyltin oxide (TBTO), triphenyltin oxide, and di-n-butylphthalate in static or flow-through test systems. Similarly, amphioxus (Branchiostoma caribaeum) were tested with fenvalerate, TCB, and TBTO. The LC50 and no-effect and 100% mortality concentrations are reported from 96-hr and 10-day tests. The toxicity of contaminated sediments could be explained by chemical partitioning into overlying or interstitial water. Amphioxus is not recommended as a routine test species because of (1) difficulty in distinguishing severely affected from dead individuals, (2) inability to determine the status of burrowed animals without disrupting sediment, (3) their relative lack of sensitivity in acute exposures to toxic chemicals, and (4) difficulty in routine collection of sufficient numbers of animals. Grass shrimp, however, are useful as an epibenthic test species for waterborne and sediment-source toxicants.

  6. [Acute toxicity of different type pesticide surfactants to Daphnia magna].

    PubMed

    Li, Xiu-huan; Li, Hua; Chen, Cheng-yu; Li, Jian-tao; Liu, Feng

    2013-08-01

    By using the standard test methods in Experimental Guideline for Environmental Safety Evaluation of Chemical Pesticide to aquatic organisms, a comparative study was conducted on the acute toxicity of 39 nonionic, 6 anionic, and 3 cationic surfactants to Daphnia magna. The acute toxicity of three cationic surfactants 1427, 1227 and C8-10 to D. magna belonged to virulent level, and the toxicity of 1427 was the highest, with the EC50 value being 0.97 x 10(-2) mg x L(-1). The acute toxicity of nonionic surfactants polyoxyethylene ether castor oil EL, Tween, and Span emulsifiers belonged to low level, but the toxicity of alkylphenol polyoxyethylene ether and fatty alcohol polyoxyethylene ether surfactants was relatively high, of which, AEO-7 and AEO-5 displayed high toxicity, with the EC50 value being 0.82 and 0.97 mg x L(-1), respectively. In these surfactants, the more liposolubility, the higher the toxicity was. Most of the anionic surfactants were medium in toxicity, but the acute toxicity of NNO belonged to high toxicity, with the EC50 value being 0.17 mg x L(-1).

  7. Identifying the causes of sediment-associated toxicity in urban waterways in South China: incorporating bioavailabillity-based measurements into whole-sediment toxicity identification evaluation.

    PubMed

    Yi, Xiaoyi; Li, Huizhen; Ma, Ping; You, Jing

    2015-08-01

    Sediments in urban waterways of Guangzhou, China, were contaminated by a variety of chemicals and showed prevalent toxicity to benthic organisms. A combination of whole-sediment toxicity identification evaluation (TIE) and bioavailability-based extraction was used to identify the causes of sediment toxicity. Of the 6 sediment samples collected, 4 caused 100% mortality to Chironomus dilutus in 10-d bioassays, and the potential toxicants were assessed using TIE in these sediments after dilution. The results of phase I characterization showed that organic contaminants were the principal contributors to the mortality of the midges in 2 sediments and that metals and organics jointly caused the mortality in the other 2 sediments. Ammonia played no role in the mortality for any samples. Conventional toxic unit analysis in phase II testing identified Cr, Cu, Ni, Pb, and Zn as the toxic metals, with cypermethrin, lambda-cyhalothrin, deltamethrin, and fipronils being the toxic organics. To improve the accuracy of identifying the toxicants, 4-step sequential extraction and Tenax extraction were conducted to analyze the bioavailability of the metals and organics, respectively. Bioavailable toxic unit analysis narrowed the list of toxic contributors, and the putative toxicants included 3 metals (Zn, Ni, and Pb) and 3 pesticides (cypermethrin, lambda-cyhalothrin, and fipronils). Metals contributed to the mortality in all sediments, but sediment dilution reduced the toxicity and confounded the characterization of toxicity contribution from metals in 2 sediments in phase I. Incorporating bioavailability-based measurements into whole-sediment TIE improved the accuracy of identifying the causative toxicants in urban waterways where multiple stressors occurred and contributed to sediment toxicity jointly.

  8. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    PubMed

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted.

  9. Developmental toxicity of lead-contaminated sediment to mallard ducklings

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.; Sileo, L.; Audet, D.J.; Campbell, J.K.; LeCaptain, L.J.

    2000-01-01

    Sediment ingestion has been identified as an important exposure route for toxicants in waterfowl. The toxicity of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho was examined on posthatching development of mallard (Anas platyrhynchos) ducklings for 6 weeks. Day-old ducklings received either untreated control diet, clean sediment (24%) supplemented control diet, CDARB sediment (3,449 ug/g lead) supplemented diets at 12% or 24%, or a positive control diet containing lead acetate equivalent to that found in 24% CDARB. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 1.41 ppm (WW) with over 90% depression of red blood cell ALAD activity and over threefold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 2.56 ppm with over sixfold elevation of protoporphyrin and lower brain weight. In this group the liver lead concentration was 7.92 ppm (WW), and there was a 40% increase in hepatic reduced glutathione concentration. The kidney lead concentration in this group was 7.97 ppm, and acid-fast inclusion bodies were present in the kidneys of four of nine ducklings. The lead acetate positive control group was more adversely affected in most respects than the 24% CDARB group. With a less optimal diet (mixture of two thirds corn and one third standard diet), CDARB sediment was more toxic; blood lead levels were higher, body growth and liver biochemistry (TBARS) were more affected, and prevalence of acid-fast inclusion bodies increased. Lead from CDARB sediment accumulated more readily in duckling blood and liver than reported in goslings, but at given concentrations was generally less toxic to ducklings. Many of these effects are similar to ones reported in wild mallards and geese within the CDARB.

  10. Developmental toxicity of lead contaminated sediment to mallard ducks

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.; Sileo, L.; Audet, D.J.; Campbell, J.K.; LeCaptain, L.J.

    2000-01-01

    Sediment ingestion has been identified as an important exposure route for toxicants in waterfowl. The toxicity of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho was examined on posthatching development of mallard (Anas platyrhynchos) ducklings for 6 weeks. Day-old ducklings received either untreated control diet, clean sediment (24%) supplemented control diet, CDARB sediment (3,449 I?g/g lead) supplemented diets at 12% or 24%, or a positive control diet containing lead acetate equivalent to that found in 24% CDARB. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 1.41 ppm (WW) with over 90% depression of red blood cell ALAD activity and over threefold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 2.56 ppm with over sixfold elevation of protoporphyrin and lower brain weight. In this group the liver lead concentration was 7.92 ppm (WW), and there was a 40% increase in hepatic reduced glutathione concentration. The kidney lead concentration in this group was 7.97 ppm, and acid-fast inclusion bodies were present in the kidneys of four of nine ducklings. The lead acetate positive control group was more adversely affected in most respects than the 24% CDARB group. With a less optimal diet (mixture of two thirds corn and one third standard diet), CDARB sediment was more toxic; blood lead levels were higher, body growth and liver biochemistry (TBARS) were more affected, and prevalence of acid-fast inclusion bodies increased. Lead from CDARB sediment accumulated more readily in duckling blood and liver than reported in goslings, but at given concentrations was generally less toxic to ducklings. Many of these effects are similar to ones reported in wild mallards and geese within the CDARB.

  11. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    SciTech Connect

    Hooten, R.L.; Carr, R.S.

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciata zoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH{sub 3}) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH{sub 3} than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH{sub 3} concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciata zoospore germination was not affected by samples with high NH{sub 3} concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH{sub 3} and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH{sub 3}.

  12. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    USGS Publications Warehouse

    Hooten, R.L.; Carr, R.S.

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciata zoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH3) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH3 than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH3 concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciata zoospore germination was not affected by samples with high NH3 concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH3 and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH3.

  13. Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan.

    PubMed

    Chen, Chih-Feng; Chen, Chiu-Wen; Dong, Cheng-Di; Kao, Chih-Ming

    2013-10-01

    Polycyclic aromatic hydrocarbon (PAH) contamination and toxicity levels in the surface sediments of Kaohsiung Harbor, Taiwan were evaluated using sediment quality guidelines (SQGs) and toxic equivalent factors. Eighty surface sediment samples were collected from twenty locations in Kaohsiung Harbor for PAH analysis using gas chromatography/mass spectrometry (GC/MS). Concentrations of total PAHs varies from 34.0 to 16,700 ng/g with a mean concentration of 1490±2689 ng/g. The spatial distribution of PAHs reveals that PAH concentration is relatively higher in the river mouth regions, especially in the Salt River mouth where it gradually diminishes toward the harbor region. Distributions of PAHs, during both the wet and dry seasons, show that PAHs are more easily disbursed in the receiving sea water thereby leading to a wider range of chemical distribution. Hence, most of the chemicals accumulate in the harbor water channel. Diagnostic ratios show that the possible source of PAHs in the southern industrial area of the harbor could be coal combustion while in the other zones it could be petroleum combustion and/or a mixed sources. The toxic equivalent concentrations (TEQ(carc)) of PAHs varied from 3.9 to 1970 ng TEQ/g. The higher total TEQ(carc) values were found in the southern industrial area of the harbor. As compared with US sediment quality guidelines, the observed levels of PAHs in the industrial zone exceeded the effects range low (ERL), which will eventually cause acute biological damage. Based on the analyses using the SQGs, surface sediments from Kaohsiung Harbor were moderately contaminated and most samples have a low probability of toxicity pollution, except for the Salt River mouth situated in the south Kaohsiung Harbor area. This area has a medium to high probability of toxicity pollution. PMID:22818911

  14. Investigations on sediment toxicity of German rivers applying a standardized bioassay battery.

    PubMed

    Hafner, Christoph; Gartiser, Stefan; Garcia-Käufer, Manuel; Schiwy, Sabrina; Hercher, Christoph; Meyer, Wiebke; Achten, Christine; Larsson, Maria; Engwall, Magnus; Keiter, Steffen; Hollert, Henner

    2015-11-01

    River sediments may contain a huge variety of environmental contaminants and play a key role in the ecological status of aquatic ecosystems. Contaminants adsorbed to sediments and suspended solids may contribute directly or after remobilization to an adverse ecological and chemical status of surface water. In this subproject of the joint research project DanTox, acetonic Soxhlet extracts from three German river sediments from the River Rhine (Altrip and Ehrenbreitstein with moderate contamination) and River Elbe (Veringkanal Hamburg heavily contaminated) were prepared and redissolved in dimethyl sulfoxide (DMSO). These extracts were analyzed with a standard bioassay battery with organisms from different trophic levels (bacteria, algae, Daphnia, fish) as well as in the Ames test and the umuC test for bacterial mutagenicity and genotoxicity according to the respective OECD and ISO guidelines. In total, 0.01% (standard) up to 0.25% (only fish embryo test) of the DMSO sediment extract was dosed to the test systems resulting in maximum sediment equivalent concentrations (SEQ) of 2 up to 50 g l(-1). The sediment of Veringkanal near Hamburg harbor was significantly more toxic in most tests compared to the sediment extracts from Altrip and Ehrenbreitstein from the River Rhine. The most toxic effect found for Veringkanal was in the algae test with an ErC50 (72 h) of 0.00226 g l(-1) SEQ. Ehrenbreitstein and Altrip samples were about factor 1,000 less toxic. In the Daphnia, Lemna, and acute fish toxicity tests, no toxicity at all was found at 2 g l(-1) SEQ. corresponding to 0.01% DMSO. Only when increasing the DMSO concentration the fish embryo test showed a 22-fold higher toxicity for Veringkanal than for Ehrenbreitstein and Altrip samples, while the toxicity difference was less evident for the Daphnia test due to the overlaying solvent toxicity above 0.05% dimethyl sulfoxide (DMSO). The higher toxicities observed with the Veringkanal sample are supported by the PAH and PCB

  15. Investigations on sediment toxicity of German rivers applying a standardized bioassay battery.

    PubMed

    Hafner, Christoph; Gartiser, Stefan; Garcia-Käufer, Manuel; Schiwy, Sabrina; Hercher, Christoph; Meyer, Wiebke; Achten, Christine; Larsson, Maria; Engwall, Magnus; Keiter, Steffen; Hollert, Henner

    2015-11-01

    River sediments may contain a huge variety of environmental contaminants and play a key role in the ecological status of aquatic ecosystems. Contaminants adsorbed to sediments and suspended solids may contribute directly or after remobilization to an adverse ecological and chemical status of surface water. In this subproject of the joint research project DanTox, acetonic Soxhlet extracts from three German river sediments from the River Rhine (Altrip and Ehrenbreitstein with moderate contamination) and River Elbe (Veringkanal Hamburg heavily contaminated) were prepared and redissolved in dimethyl sulfoxide (DMSO). These extracts were analyzed with a standard bioassay battery with organisms from different trophic levels (bacteria, algae, Daphnia, fish) as well as in the Ames test and the umuC test for bacterial mutagenicity and genotoxicity according to the respective OECD and ISO guidelines. In total, 0.01% (standard) up to 0.25% (only fish embryo test) of the DMSO sediment extract was dosed to the test systems resulting in maximum sediment equivalent concentrations (SEQ) of 2 up to 50 g l(-1). The sediment of Veringkanal near Hamburg harbor was significantly more toxic in most tests compared to the sediment extracts from Altrip and Ehrenbreitstein from the River Rhine. The most toxic effect found for Veringkanal was in the algae test with an ErC50 (72 h) of 0.00226 g l(-1) SEQ. Ehrenbreitstein and Altrip samples were about factor 1,000 less toxic. In the Daphnia, Lemna, and acute fish toxicity tests, no toxicity at all was found at 2 g l(-1) SEQ. corresponding to 0.01% DMSO. Only when increasing the DMSO concentration the fish embryo test showed a 22-fold higher toxicity for Veringkanal than for Ehrenbreitstein and Altrip samples, while the toxicity difference was less evident for the Daphnia test due to the overlaying solvent toxicity above 0.05% dimethyl sulfoxide (DMSO). The higher toxicities observed with the Veringkanal sample are supported by the PAH and PCB

  16. Acute toxicity of dietary polybrominated biphenyls in Bobwhite Quail

    SciTech Connect

    Cottrell, W.O.; Ringer, R.K.; Babish, J.G.

    1984-09-01

    This investigation was undertaken to study the acute oral toxicity of PBB to Bobwhite Quail (Colinus virginianus). The median lethal dietary concentration (LC/sub 56/) of PBB was determined over 8 days and clinical signs of intoxication are described.

  17. Sediment Toxicity Identification Evaluations (TIEs): Manipulating Bioavailability to Whole Organisms to Identify Environmental Toxins

    EPA Science Inventory

    Toxicity tests are a common method for determining whether sediment contaminants represent an environmental risk. Toxicity tests indicate if contaminants in sediments are bioavailable and capable of causing adverse biological effects to whole aquatic organisms. Several environmen...

  18. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  19. A TOXICITY IDENTIFICATION EVALUATION OF SILTY MARINE HARBOR SEDIMENTS TO CHARACTERIZE PERSISTENT AND NON-PERSISTENT CONSTITUENTS

    EPA Science Inventory

    Sediment toxicity in silty marine harbor sediments is frequently dominated by ammonia or sulfide, leaving the adverse effects of persistent toxic substances unnoticed. To investigate the latter, we subjected interstitial water from three contaminated silty sediments to toxicity i...

  20. Development of a standardized sediment reference toxicant test using formulated sediment and copper sulfate

    SciTech Connect

    Suedel, B.C.; Hartzell, R.S.; Williams, C.W.; Connelly, R.A.

    1994-12-31

    The lack of suitable reference toxicant tests to assess the condition or health of populations of benthic test organisms is problematic because the precision and accuracy of definitive whole sediment tests cannot be assessed without this reference. To address this need, formulated sediment was prepared to provide a consistent substrate with respect to percent solids, particle size distribution, cation exchange capacity, organic carbon, organic matter, redox potential, and pH. Hyalella azteca and Chironomus tentans were exposed for 96-h to formulated sediment amended with serial dilutions of copper sulfate. Results indicate that (1) formulated sediments can be prepared consistently between batches with minimal variability with respect to sediment characteristics, providing a consistent test substrate; (2) when combined with formulated sediment, copper sulfate is a suitable sediment reference toxicant for assessing the condition and health of H. azteca and C tentans populations; and (3) formulated sediment provides a suitable substrate for H. azteca and C tentans (control survival > 80%). This method provides a means by which the health and sensitivity of benthic test organisms can be assessed and provides a measure of precision within and among laboratories through time.

  1. Photoinduced toxicity of sediment-bound polycyclic aromatic hydrocarbons

    SciTech Connect

    Greenberg, B.M.; Duxbury, C.L.; Marwood, C.A.; Huang, X.D.; Dixon, D.G.

    1994-12-31

    Polycyclic aromatic hydrocarbons (PAHs) are known to be both mutagenic and toxic. Light, in particular UV irradiation, increases their toxicity. Since aquatic plants cannot avoid PAHs or light, they are at risk. However, the major loadings of PAHs are in sediment. In this study the authors examined the assimilation of both intact and photomodified labelled PAHs bound to a surrogate, sediment (sand) by the higher aquatic plant Lemna gibba L. G-3. They found that simulated solar radiation significantly promoted the release of PAHs from sand and their assimilation by Lemna, although assimilation from the solid phase was slower than for chemicals placed directly into the aqueous medium. Toxicity of PAHs bound to sand was then measured by exposing plants to the sand-chemical composite for 8 d. Plants were exposed to both visible and SSR light conditions during this period, and toxicity was measured as inhibition of growth, inhibition of photosynthesis (chlorophyll fluorescence induction) and chlorosis. All three endpoints indicated that PAHs bound to a sediment phase can express phototoxicity and that the effects are most strongly promoted by the UV region of the solar spectrum. The authors have now extended this work to probe the effects of UV-B and PAHs on chloroplast development, with the finding that both stresses inhibit development of the photosynthetic apparatus.

  2. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    SciTech Connect

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-12-31

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO{sub 2} and by observing the disappearance of test substance with gas chromatography. Additional BOD{sub 5} and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population.

  3. A TOXICITY ASSESSMENT APPROACH TO EVALUATING IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Freshwater and marine sediment toxicity tests were used to measure baseline toxicity of sediment samples collected from New Jersey/New York Harbor (NJ/NY) (non-PAH- contaminated) sediment (ERC). Four freshwater toxicity tests were used: 1) amphipod (Hyalella azteca) mortality and...

  4. Acute and oral subchronic toxicity of D-003 in rats.

    PubMed

    Gámez, R; Mas, R; Noa, M; Menéndez, R; Alemán, C; Acosta, P; García, H; Hernández, C; Amor, A; Pérez, J; Goicochea, E

    2000-12-20

    D-003 is a mixture of higher aliphatic primary acids purified from sugar cane wax (Saccharum officinarum) with cholesterol-lowering and antiplatelet effects experimentally proven. The present work reports the results of two studies investigating the acute and subchronic oral toxicity of D-003 in rats. Oral acute toxicity of D-003 (2000 mg/kg) was investigated according to the Acute Toxic Class (ATC) method (an alternative for the classical LD(50) test), which was performed in Wistar rats. The results obtained in this study defined D-003 oral acute toxicity as unclassified. In the subchronic study, rats of both sexes were orally treated with D-003 at 50, 200 and 1250 mg/kg for 90 days. At this time, animals were sacrificed. No evidence of treatment-related toxicity was detected during the study. Thus, data analysis of body weight gain, food consumption, clinical observations, blood biochemical, haematology, organ weight ratios and histopathological findings did not show significant differences between control and treated groups. It is concluded that D-003 orally administered to rats was safe and that no drug-related toxicity was detected even at the highest doses investigated in both acute (2000 mg/kg) and subchronic (1250 mg/kg) studies.

  5. Profile of toxic response to sediments using whole-animal and in vitro submitochondrial particle (SMP) assays

    SciTech Connect

    Bettermann, A.D.; Dorofi, J.C.; Lazorchak, J.M.

    1996-03-01

    A rapid bioassay for monitoring acute toxicity of wastewater, ground water, and soil and sediment extracts using submitochondrial particles (SMP) has been developed. The assay utilizes the mitochondrial electron transfer enzyme complex, present in all eukaryotic cells. Prior developmental work with pure chemicals chosen from the US Environmental Protection Agency`s (EPA) priority pollutant list documented order-of-magnitude predictability between the bioassay response and whole-organism tests (e.g., fathead minnow). Recent work has adapted the assay for analysis of uncharacterized environmental samples, including stormwater runoff, landfill leachate, and soil and sediment extracts. A feasibility study was performed to determine whether the SMP assay could detect toxicity in samples previously assessed for toxicity to amphipods. Acute toxicity tests using Hyalella azteca were performed on 30 sediment samples from Colorado`s Arkansas River, Eagle River, and Chalk Creek watersheds, all of which have been directly or indirectly affected by heavy metal mine tailings and drainage. In parallel, two SMP assay protocols designed to differentiate between modes of toxicity were performed on elutriate samples from 23 of the above sites. The results from analysis of the sediments differed widely in the nature and degree of test responses. Significant correlation was found between the responses of the SMP electron transfer protocol and the whole-organisms assay, and between the responses of the SMP electron transfer protocol and levels of zinc and sulfur, as determined by inductively coupled plasma spectroscopy.

  6. Comparison of standard acute toxicity tests with rapid-screening toxicity tests

    SciTech Connect

    Toussaint, M.W.; Shedd, T.R.; VanDerSchal, W.H.; Leather, G.R.

    1995-10-01

    This study compared the relative sensitivity of five inexpensive, rapid toxicity tests to the sensitivity of five standard aquatic acute toxicity tests through literature review and testing. The rapid toxicity tests utilized organisms that require little culturing or handling prior to testing: a freshwater rotifer (Branchionus ccalyciflorus); brine shrimp (Artemia salina); lettuce (Lactuca sativa); and two microbial tests (Photo bacterium phosphoreum - Microtox test, and a mixture of bacterial species - the polytox test). Standard acute toxicity test species included water fleas (Daphnia magna and Ceriadaphnta dubia), green algae (Setenastrum capricarnutum), fathead minnows (Pimephalespromelas), and mysid shrimp (Mysidopsis bahia). Sensitivity comparisons between rapid and standard acute toxicity tests were based on LC5O/EC50 data from 11 test chemicals. Individually, the lettuce and rotifer tests ranked most similar in sensitivity to the standard tests, while Microtox fell just outside the range of sensitivities represented by the group of standard acute toxicity tests. The brine shrimp and Polytox tests were one or more orders of magnitude different from the standard acute toxicity tests for most compounds. The lettuce, rotifer, and Microtox tests could be used as a battery for preliminary toxicity screening of chemicals. Further evaluation of complex real-world environmental samples is recommended.

  7. A comparison of standard acute toxicity tests with rapid-screening toxicity tests

    SciTech Connect

    Toussaint, M.W.; Shedd, T.R.; Schalie, W.H. van der; Leather, G.R.

    1995-05-01

    This study compared the relative sensitivity of five inexpensive, rapid toxicity tests to the sensitivity of five standard aquatic acute toxicity tests through literature review and testing. The rapid toxicity tests utilized organisms that require little culturing or handling prior to testing: a freshwater rotifer (Branchionus calyciflorus); brine shrimp (Artemia salina); lettuce (Lactuca sativa); and two microbial tests (Photobacterium phosphoreum--Microtox{reg_sign} test, and a mixture of bacterial species--the Polytox{reg_sign} test). Standard acute toxicity test species included water fleas (Daphnia magna and Ceriodaphnia dubia), green algae (Selenastrum capricornutum), fathead minnows (Pimephales promelas), and mysid shrimp (Mysidopsis bahia). Sensitivity comparisons between rapid and standard acute toxicity tests were based on LC50/EC50 data from 11 test chemicals. Individually, the lettuce and rotifer tests ranked most similar in sensitivity to the standard tests, while Microtox fell just outside the range of sensitivities represented by the group of standard acute toxicity tests. The brine shrimp and Polytox tests were one or more orders of magnitude different from the standard acute toxicity tests for most compounds. The lettuce, rotifer, and Microtox tests could be used as a battery for preliminary toxicity screening of chemicals. Further evaluation of complex real-world environmental samples is recommended.

  8. Acute and chronic toxicity studies with monochlorobenzene in rainbow trout

    USGS Publications Warehouse

    Dahlich, G.M.; Larson, R.E.; Gingerich, W.H.

    1982-01-01

    The toxicity of monochlorobenzene (CB) was investigated in rainbow trout following acute intraperitoneal (i.p.) administration and chronic exposure via the water in a continuously flowing system for 15 or 30 days. In the acute study overt toxicity and hepatotoxicity were monitored over a 96-h time period. Variables measured to assess toxicity included weight changes, liver weight to body weight ratios, behavioral changes, alanine aminotransferase activity (GPT), sulfobromophthalein (BSP) retention, total plasma protein concentration and liver histopathology. In the chronic study the same measures of toxicity were followed as well as food consumption and alkaline phosphatase (AP) activity. Upon acute i.p. exposure the toxicant (9.8 mmol/kg) caused behavioral changes in the fish which were consistent with the known anesthetic properties of CB in mammals. Elevations in BSP retention and GPT activity, and histopathology indicated that CB was hepatotoxic in fish. The LC50 of CB in trout exposed via the water for 96 h was 4.7 mg/l. Chronic exposure of trout to 2 or 3 mg/l CB resulted in similar behavioral changes as seen in the acute study. Liver toxicity was evident from elevations in GPT activity. BSP retention and AP activity appeared to be affected by the nutritional status of the trout as much as by the CB treatment. After 30 days of exposure to 3 mg/l CB, trout appeared to have developed some tolerance to the toxic effects.

  9. Toxicity of lead-contaminated sediment to mute swans

    USGS Publications Warehouse

    Day, D.D.; Beyer, W.N.; Hoffman, D.J.; Morton, Alexandra; Sileo, L.; Audet, D.J.; Ottinger, M.A.

    2003-01-01

    weight and hematocrit and hemoglobin concentrations in swans on control (no sediment) and reference (uncontaminated) sediment diets remained unchanged. These data provide evidence that mute swans consuming environmentally relevant concentrations of Coeur d'Alene River Basin sediment developed severe sublethal lead poisoning. Furthermore, toxic effects were more pronounced when the birds were fed lead contaminated sediment combined with rice, which closely resembles the diet of swans in the wild.

  10. Assessment of sediment toxicity in the Lagoon of Venice (Italy) using a multi-species set of bioassays.

    PubMed

    Picone, Marco; Bergamin, Martina; Losso, Chiara; Delaney, Eugenia; Arizzi Novelli, Alessandra; Ghirardini, Annamaria Volpi

    2016-01-01

    Within the framework of a Weight of Evidence (WoE) approach, a set of four toxicity bioassays involving the amphipod Corophium volutator (10 d lethality test on whole sediment), the sea urchin Paracentrotus lividus (fertilization and embryo toxicity tests on elutriate) and the pacific oyster Crassostrea gigas (embryo toxicity test on elutriate) was applied to sediments from 10 sampling sites of the Venice Lagoon (Italy). Sediments were collected during three campaigns carried out in May 2004 (spring campaign), October 2004 (autumn campaign) and February 2005 (winter campaign). Toxicity tests were performed on all sediment samples. Sediment grain-size and chemistry were measured during spring and autumn campaigns. This research investigated (i) the ability of toxicity tests in discriminating among sites with different contamination level, (ii) the occurrence of a gradient of effect among sampling sites, (iii) the possible correlation among toxicity tests, sediment chemistry, grain size and organic carbon, and (iv) the possible occurrence of toxicity seasonal variability. Sediment contamination levels were from low to moderate. No acute toxicity toward amphipods was observed, while sea urchin fertilization was affected only in few sites in just a single campaign. Short-term effects on larval development of sea urchin and oyster evidenced a clear spatial trend among sites, with increasing effects along the axis connecting the sea-inlets with the industrial area. The set of bioassays allowed the identification of a spatial gradient of effect, with decreasing toxicity from the industrial area toward the sea-inlets. Multivariate data analysis showed that the malformations of oyster embryos were significantly correlated to the industrial contamination (metals, polynuclear aromatic hydrocarbons, hexachlorobenzene and polychlorinated biphenyls), while sea urchin development to sediment concentrations of As, Cr and organic carbon. Both embryo toxicity tests were

  11. Sediment toxicity and lethal body burdens of chlorophenols in an oligochaete worm, Lumbriculus variegatus

    SciTech Connect

    Kukkonen, J.; Halme, A.; Nikkilae, A.

    1995-12-31

    The toxicokinetics, acute toxicity and lethal body burden of 2,4,5-trichlorophenol (TCP) and pentachlorophenol (PCP) in Lumbriculus variegatus were measured in two different clean sediments. The sediments had an organic carbon content of 0.5% and 6.5%. The uptake rate coefficients (k{sub s}) of TCP at low TCP concentration (0.25 {micro}g g{sup {minus}1}) were 0.67 and 0.13 g dry sed. g{sup {minus}1} org. h{sup {minus}1} in low and high organic carbon content sediments, respectively. Organic carbon normalized uptake rate coefficient (k{sub oc}) was 0.0034 gOC g{sup {minus}1} org. h{sup {minus}1} for the low organic content sediment and 0.0085 gOC g{sup {minus}1} org. h{sup {minus}1} for the high organic content sediment showing that the organic carbon content does not explain all of the difference between the sediments. Similar to that, LC{sub 50} (24h) for the TCP was 37.4 and 121.5 {micro}g g{sup {minus}1} dw in low and high organic carbon content sediments, respectively. If organic carbon normalization is done the figures are 7,880 and 1,869 {micro}g g{sup {minus}1} OC. However, the lethal body burden of TCP in Lumbriculus variegatus is between 0.5--0.9 {micro}mol g{sup {minus}1} in both sediments. Similar type of results will be shown for PCP and the use of lethal body burden approach in sediment toxicology will be discussed.

  12. Toxicity assessment of peptaibols and contaminated sediments on Crassostrea gigas embryos.

    PubMed

    Poirier, Laurence; Quiniou, Françoise; Ruiz, Nicolas; Montagu, Monique; Amiard, Jean-Claude; Pouchus, Yves François

    2007-08-01

    Peptaibols are known membrane-modifying peptides that were recently detected in marine sediments and mussels collected from a shellfish farming area (Fier d'Ars, Atlantic coast, France). In this investigation, embryotoxicity bioassays with oysters (Crassostrea gigas) were performed to assess acute toxicity of alamethicin and different groups of peptaibols produced by a Trichoderma longibrachiatum strain isolated from marine environment. C. gigas embryos appeared very sensitive to all the metabolites examined with higher toxic effects for long-sequence peptides (EC50 ranging from 10 to 64 nM). D-shaped larvae with mantle abnormality were particularly noticed when peptaibol concentrations increased. Disturbances of embryogenesis were also observed following exposure to organic and aqueous extract of sediments from Fier d'Ars (EC50=42.4 and 6.6 g L(-1) dry weight, respectively). Although peptaibol concentrations measured in these sediments could explain only a part of the toxic effects observed, this study suggests that these mycotoxins can induce larval abnormalities in a population of exposed animals at environmentally realistic concentrations. Their detection in coastal areas devoted to bivalve culture should be taken into account.

  13. Acute toxicity of the herbicide bromoxynil to Daphnia magna

    USGS Publications Warehouse

    Buhl, Kevin J.; Hamilton, Steven J.; Schmulbach, James C.

    1993-01-01

    The acute toxicities of technical-grade bromoxynil octanoate (BO) and two commercial formulations, Buctril® and Bronate®, to < 24-h-old neonate Daphnia magna (Straus) were determined in soft, hard, and oligosaline water. In addition, effects of life stage, feeding, aging the herbicide, and exposure duration on BO toxicity to daphnids were investigated. Regardless of formulation, life stage, and water quality, BO was found to be extremely to highly toxic to daphnids in standard tests; 48-h EC50 values ranged from 41 to 161 m̈g/L. Bromoxynil octanoate was the most toxic to neonates in soft water and the least toxic in hard water. The acute toxicities of the three bromoxynil herbicides to a given age group of daphnids were similar within the same water type. Overall, neonates and 7-d-old adults were more sensitive than 14- or 15-d-old adults to each herbicide. Feeding daphnids during the toxicity test significantly decreased BO toxicity compared to not feeding them. Aging BO (as Buctril) in hard water decreased its toxicity, and the rate of deactivation was rapid, with an estimated half-life of biological activity of 13 h. Daphnids immobilized by exposures to toxic BO concentrations for ≤ 6 h recovered their mobility, whereas exposures of 18 and 24 h to BO produced toxic effects in daphnids similar to those exposed for 48 h. These results indicated that standard continuous exposure tests may not adequately predict the acute toxicity of BO to freshwater animals in the field.

  14. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments.

    PubMed

    Ogendi, George M; Brumbaugh, William G; Hannigan, Robyn E; Farris, Jerry L

    2007-02-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the

  15. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments

    USGS Publications Warehouse

    Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.

    2007-01-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the

  16. Ecological impacts of lead mining on Ozark streams: Toxicity of sediment and pore water

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Allert, A.L.; Poulton, B.C.; Schmitt, C.J.; Ingersoll, C.G.

    2009-01-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  17. On the performance of acute toxicity tests using the National Reference Toxicant Database

    SciTech Connect

    Zaidhk, B.

    1995-12-31

    The US National Reference Toxicant Database was used to compile data from 158 Ceriodaphnia dubia, and 187 fathead minnow acute toxicity tests. The data are analyzed using the EPA flow-chart for acute toxicity tests to determine the distribution of test methods selected. The data are reanalyzed using maximum likelihood estimation assuming probit, logit and Gompertz tolerance distributions and non-parametrically using the Spearman-Karber method with and without trimming. The results of these analyses are compared with respect to mean square error for the parametric methods and confidence intervals for the point estimate for all analyses.

  18. Indices of benthic community tolerance in contaminated Great Lakes sediments: Relations with sediment contaminant concentrations, sediment toxicity, and the sediment quality triad

    USGS Publications Warehouse

    Wildhaber, M.L.; Schmitt, C.J.

    1998-01-01

    We evaluated the toxic-units model developed by Wildhaber and Schmitt (1996) as a predictor of indices of mean tolerance to pollution (i.e., Lenat, 1993; Hilsenhoff, 1987) and other benthic community indices from Great Lakes sediments containing complex mixtures of environmental contaminants (e.g., polychlorinated biphenyls - PCBs, polycyclic aromatic hydrocarbons PAHs, pesticides, chlorinated dioxins, and metals). Sediment toxic units were defined as the ratio of the estimated pore-water concentration of a contaminant to its chronic toxicity as estimated by U.S. Environmental Protection Agency Ambient Water Quality Criteria (AWQC) or other applicable standard. The total hazard of a sediment to aquatic life was assessed by summing toxic units for all contaminants quantified. Among the benthic community metrics evaluated, total toxic units were most closely correlated with Lenat's (1993) and Hilsenhoff's (1987) indices of community tolerance (T(L), and T(H), respectively); toxic units accounted for 42% (T(L)) and 53% (T(H)) of variability in community tolerance as measured by Ponar grabs. In contrast, taxonomic richness and Shannon-Wiener diversity were not correlated (P > 0.05) with toxic units. Substitution of order- or family-level identifications for lowest possible (mostly genus- or species-) level identifications in the calculation of T(L) and T(H) indices weakened the relationships with toxic units. Tolerance values based on order- and family-level identifications of benthos for artificial substrate samples were more strongly correlated with toxic units than tolerance values for benthos from Ponar grabs. The ability of the toxic-units model to predict the other two components (i.e., laboratory-measured sediment toxicity and benthic community composition) of the Sediment Quality Triad (SQT) may obviate the need for the SQT in some situations.

  19. Sediment toxicity screening with cost-effective microbiotests and conventional assays: A comparative study

    SciTech Connect

    Vanciheluwe, M.L.; Janssen, C.R.; Persoone, G.

    1995-12-31

    A large monitoring study of freshwater sediments, using the TRIAD approach, was conducted in Flanders (Belgium). This paper reports on the results of the toxicity assessment of 80 sediment samples evaluated with a battery of microbiotests and conventional assays. Sediment pore waters, extracted by squeezing, were tested with the Microtox{reg_sign} (Vibrio fischerii) and Thamnotoxkit{trademark} F (Thamnocephalus platyurus) microbiotests and the conventional (acute) assays with algae (Selenastrum capricornutum) and daphnids (Daphnia magna). A newly developed 5 day ELS test with the catfish Clarias gariepinus was also applied to the pore waters. Solid-phase testing was performed with the Microtox Sp{reg_sign} assay and the 10 day tests with Chironomus riparius and Hyalella azteca. Uni- and multivariate statistical techniques were applied to the data matrix to select a minimal test battery from the water phase and solid phase assays and from all tests combined. The influence of sediment associated confounding factors on the validity of the test results obtained with the various assays will be discussed. Finally a comparison of the predictive power of the selected battery of signal tests and that of the complete battery will be made and the potential use of the minimal battery for the initial hazard assessment of contaminated sediments will be reviewed.

  20. Uranium Exerts Acute Toxicity by Binding to Pyrroloquinoline Quinone Cofactor

    SciTech Connect

    Michael R. VanEngelen; Robert I. Szilagyi; Robin Gerlach; Brady E. Lee; William A. Apel; Brent M. Peyton

    2011-02-01

    Uranium as an environmental contaminant has been shown to be toxic to eukaryotes and prokaryotes; however, no specific mechanisms of uranium toxicity have been proposed so far. Here a combination of in vivo, in vitro, and in silico studies are presented describing direct inhibition of pyrroloquinoline quinone (PQQ)-dependent growth and metabolism by uranyl cations. Electrospray-ionization mass spectroscopy, UV-vis optical spectroscopy, competitive Ca2+/uranyl binding studies, relevant crystal structures, and molecular modeling unequivocally indicate the preferred binding of uranyl simultaneously to the carboxyl oxygen, pyridine nitrogen, and quinone oxygen of the PQQ molecule. The observed toxicity patterns are consistent with the biotic ligand model of acute metal toxicity. In addition to the environmental implications, this work represents the first proposed molecular mechanism of uranium toxicity in bacteria, and has relevance for uranium toxicity in many living systems.

  1. What’s Causing Toxicity in Sediments? Results of Twenty Years of Toxicity Identification and Evaluations (TIEs)

    EPA Science Inventory

    Sediment Toxicity Identification and Evaluation (TIEs) methods have been used for twenty years to identify the causes of toxicity in sediments around the world. We summarized and categorized results of more than 80 peer-reviewed TIE studies into non-ionic organic, cationic, ammo...

  2. Resolving some practical questions about Daphnia acute toxicity tests

    SciTech Connect

    Barera, Y.; Adams, W.J.

    1981-10-01

    Acute toxicity tests were performed with six age groups of Daphnia magna, ranging from less than or equal to6 h to 216 h, and with five chemicals, selected on the basis of their physical and chemical properties as well as their acute toxicity to D. magna. The age of the daphnids did not significantly alter the 48-h EC/sub 50/ values for the chemicals tested. The maximum difference observed in the 48-h EC/sub 50/ values between the 6-h and 216-h age groups was a factor of 3.9 for linear alkylbenzene sulfonate (LAS). For purposes of standardization, it appears that D. magna up to 48 h of age at the beginning of the test can be used to conduct acute toxicity tests with most chemicals. The results of static acute toxicity tests conducted with butylbenzyl phthalate (BBP) and D. magna in the presence and absence of several commonly used solvents indicate that the acute toxicity of this chemical is not altered by the use of a solvent carrier. The 48-h EC/sub 50/ value for BBP without a solvent was 1.0 mg/L, compared with a range of 1.6 to 2.2 mg/L when acetone, dimethylformamide, ethanol, or triethylene glycol were used as solvent carriers. The acute toxicities of the solvents in the absence of BBP were also determined for D. magna. The values ranged from 9.3 to 52.4 g/L. The results of static acute tests performed with D. magna and BBP in the presence of various concentrations of daphnid foods (algae or trout chow), indicate that the 48-h EC/sub 50/ values increase proportionally with an increase in food concentrations. These results suggest that acute toxicity tests with D. magna should be conducted in the presence of food with chemicals with a high Ksigma if the results are to be used to select the test concentrations for a chronic study with daphnids. The type of food and the concentration used in the acute test should be the same as those used in a chronic test.

  3. Acute toxicity of peracetic acid to fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA; also called peroxyacetic acid) is a promising new therapeutant for parasites and fungus. It is registered with the U.S. Environmental Protection Agency (EPA) as an antimicrobial compound approved for indoor use on hard, non-porous surfaces. This study determined the acute toxi...

  4. Effects of storage on sediment toxicity, bioaccumulation potential, and chemistry. Final report

    SciTech Connect

    Tatem, H.E.; Brandon, D.L.; Lee, C.R.; Jarvis, A.S.; Rhett, R.G.

    1991-01-01

    Current guidance on storage of sediments for bioassay/bioaccumulation tests requires that samples be held at 4 C and used within 2 weeks of collection. The objective of this study was to determine the effects of sediment storage for 40 weeks on sediment toxicity, bioaccumulation potential, and chemical analyses. Toxicity and bioaccumulation tests were conducted five times during 40 weeks of storage. Chemical analyses were performed three times during this period. The data indicate that sediments can be held for longer than 2 to 4 weeks, in many cases, without significant effect on test results. However, results of the study also show that tests performed at different times can produce different results. This study showed that a sediment that was toxic to mysids remained toxic during 16 weeks of sediment storage. Two sediments that were toxic initially continued to show significant toxicity after 8 and 16 weeks of sediment storage. One sediment, not toxic initially or at 4 weeks, changed during storage, becoming significantly toxic compared to the Atlantic Ocean (Ref) sediment. The bioaccumulation results showed that certain sediment contaminants (lead, mercury, polychlorinated biphenyls, and some polycyclic aromatic hydrocarbons, PAHs), generally do not reveal a statistical change in bioaccumulation, relative to Ref animals, during 16 weeks of sediment storage. Other PAHs, including phenanthrene, anthracene, benzo (a) anthracene, and chrysene, did change in bioaccumulation potential during storage.

  5. SEDIMENT TOXICITY AS AN INDICATOR OF CONTAMINANT STRESS IN EMAP-ESTUARIES

    EPA Science Inventory

    Toxicity of sediments is widely used in EPA, ACOE, and NOAA monitoring and regulatory programs as a complement to measuring of chemical concentrations as it provides an indication of the bioavailability of sediment contaminants. Sediment toxicity was included as an abiotic condit...

  6. A TOXICITY ASSESSMENT APPROACH FOR THE EVALUATION OF IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Freshwater and marine sediment toxicity test were used to measure baseline toxicity of sediment samples collected from New York/New Jersey Harbor (NY/NJH) and East River (ER) (PAH contaminated) sediments and to determine the effectiveness of the developed biotreatment strategies ...

  7. Acute toxicity and QSAR of chlorophenols on Daphnia magna

    SciTech Connect

    Devillers, J.; Chambon, P.

    1986-10-01

    Chlorophenols which are released into natural waters from various industrial processes and from agricultural uses have been recognized as a group of chemical substances potentially hazardous to the aquatic environment. Therefore it is important to estimate their toxic impact on biota. Thus, the scope of this research was to obtain acute toxicity data for seventeen chlorophenols towards Daphnia magna and to explore the possibilities of deriving QSAR's (quantitative structure-activity relationship) from the above values.

  8. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity. PMID:26412262

  9. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity.

  10. Patterns and trends in sediment toxicity in the San Francisco Estuary

    USGS Publications Warehouse

    Anderson, B.; Hunt, J.; Phillips, B.; Thompson, B.; Lowe, S.; Taberski, K.; Scott, Carr R.

    2007-01-01

    Widespread sediment toxicity has been documented throughout the San Francisco Estuary since the mid-1980s. Studies conducted in the early 1990s as part of the Bay Protection and Toxic Cleanup Program (BPTCP), and more recently as part of the Regional Monitoring Program (RMP) have continued to find sediment toxicity in the Estuary. Results of these studies have shown a number of sediment toxic hotspots located at selected sites in the margins of the Estuary. Recent RMP monitoring has indicated that the magnitude and frequency of sediment toxicity is greater in the winter wet season than in the summer dry season, which suggests stormwater inputs are associated with sediment toxicity. Additionally, spatial trends in sediment toxicity data indicate that toxic sediments are associated with inputs from urban creeks surrounding the Estuary, and from Central Valley rivers entering the northern Estuary via the Delta. Sediment toxicity has been correlated with a number of contaminants, including selected metals, PAHs and organochlorine pesticides. While toxicity identification evaluations (TIEs) suggest that metals are the primary cause of sediment toxicity to bivalve embryos; TIEs conducted with amphipods have been inconclusive. ?? 2006 Elsevier Inc. All rights reserved.

  11. A mechanism for acute aluminium toxicity in fish.

    PubMed

    Exley, C; Chappell, J S; Birchall, J D

    1991-08-01

    Aluminium is acutely toxic to fish in acid waters. The gill is the principal target organ and death is due to a combination of ionoregulatory, osmoregulatory and respiratory dysfunction. The toxic mechanism has hitherto received little direct consideration and is unknown. In this paper the mechanism of acute aluminium toxicity is approached from a chemical perspective. Symptomatic evidence of toxicity is taken from the literature and combined with our own research to elucidate a biochemically sound model to describe a possible mechanism of acute aluminium toxicity in fish. The proposed model delineates the chemical conditions immediately adjacent to the gill surface and emphasizes their importance in aluminium's toxic mode of action. The mechanism is shown to be bipartite. Aluminium binding to functional groups both apically located at the gill surface and intracellularly located within lamellar epithelial cells disrupts the barrier properties of the gill epithelium. The concomitant iono- and osmoregulatory dysfunction results in accelerated cell necrosis, sloughing and death of the fish. The mechanism of epithelial cell death is proposed as a general mechanism of aluminium-induced accelerated cell death.

  12. Bioavailability Assessment of a Contaminated Field Sediment from Patrick Bayou, Texas, USA: Toxicity Identification Evaluation and Equilibrium Partitioning

    EPA Science Inventory

    Contaminated sediments are commonly found in urbanized harbors. At sufficiently high contaminant levels, sediments can cause toxicity to aquatic organisms and impair benthic communities. As a result, remediation is necessary and diagnosing the cause of sediment toxicity become...

  13. Extrapolation of acute toxicity across bee species.

    PubMed

    Thompson, Helen

    2016-10-01

    In applying cross-species extrapolation safety factors from honeybees to other bee species, some basic principles of toxicity have not been included, for example, the importance of body mass in determining a toxic dose. The present study re-analyzed published toxicity data, taking into account the reported mass of the individuals in the identified species. The analysis demonstrated a shift to the left in the distribution of sensitivity of honeybees relative to 20 other bee species when body size is taken into account, with the 95(th) percentile for contact and oral toxicity reducing from 10.7 (based on μg/individual bee) to 5.0 (based on μg/g bodyweight). Such an approach results in the real drivers of species differences in sensitivity-such as variability in absorption, distribution, metabolism, and excretion in and target-receptor binding-being more realistically reflected in the revised safety factor. Body mass can also be used to underpin the other parameter of first-tier risk assessment, that is, exposure. However, the key exposure factors that cannot be predicted from bodyweight are the effects of ecology and behavior of the different species on exposure to a treated crop. Further data are required to understand the biology of species associated with agricultural crops and the potential consequences of effects on individuals at the levels of the colony or bee populations. This information will allow the development of appropriate higher-tier refinement of risk assessments and testing strategies rather than extensive additional toxicity testing at Tier 1. Integr Environ Assess Manag 2016;12:622-626. © 2015 SETAC. PMID:26595163

  14. Extrapolation of acute toxicity across bee species.

    PubMed

    Thompson, Helen

    2016-10-01

    In applying cross-species extrapolation safety factors from honeybees to other bee species, some basic principles of toxicity have not been included, for example, the importance of body mass in determining a toxic dose. The present study re-analyzed published toxicity data, taking into account the reported mass of the individuals in the identified species. The analysis demonstrated a shift to the left in the distribution of sensitivity of honeybees relative to 20 other bee species when body size is taken into account, with the 95(th) percentile for contact and oral toxicity reducing from 10.7 (based on μg/individual bee) to 5.0 (based on μg/g bodyweight). Such an approach results in the real drivers of species differences in sensitivity-such as variability in absorption, distribution, metabolism, and excretion in and target-receptor binding-being more realistically reflected in the revised safety factor. Body mass can also be used to underpin the other parameter of first-tier risk assessment, that is, exposure. However, the key exposure factors that cannot be predicted from bodyweight are the effects of ecology and behavior of the different species on exposure to a treated crop. Further data are required to understand the biology of species associated with agricultural crops and the potential consequences of effects on individuals at the levels of the colony or bee populations. This information will allow the development of appropriate higher-tier refinement of risk assessments and testing strategies rather than extensive additional toxicity testing at Tier 1. Integr Environ Assess Manag 2016;12:622-626. © 2015 SETAC.

  15. An evaluation of the toxicity of contaminated sediments from Waukegan Harbor, Illinois, following remediation

    USGS Publications Warehouse

    Kemble, N.E.; Hardesty, D.G.; Ingersoll, C.G.; Johnson, B.T.; Dwyer, F.J.; MacDonald, D.D.

    2000-01-01

    Waukegan Harbor in Illinois was designated as a Great Lakes Area of Concern due to high concentrations of sediment-associated polychlorinated biphenyls (PCBs). The objective of this study was to evaluate the toxicity of 20 sediment samples collected after remediation (primarily dredging) of Waukegan Harbor for PCBs. A 42-day whole sediment toxicity test with the amphipod Hyalella azteca (28-day sediment exposure followed by a 14-day reproductive phase) and sediment toxicity tests with Microtox® were conducted to evaluate sediments from Waukegan Harbor. Endpoints measured were survival, growth, and reproduction (amphipods) and luminescent light emission (bacteria). Survival of amphipods was significantly reduced in 6 of the 20 sediment samples relative to the control. Growth of amphipods (either length or weight) was significantly reduced relative to the control in all samples. However, reproduction of amphipods identified only two samples as toxic relative to the control. The Microtox basic test, conducted with organic extracts of sediments identified only one site as toxic. In contrast, the Microtox solid-phase test identified about 50% of the samples as toxic. A significant negative correlation was observed between reproduction and the concentration of three polynuclear aromatic hydrocarbons (PAHs) normalized to total organic carbon. Sediment chemistry and toxicity data were evaluated using sediment quality guidelines (consensus-based probable effect concentrations, PECs). Results of these analyses indicate that sediment samples from Waukegan Harbor were toxic to H. azteca contaminated at similar contaminant concentrations as sediment samples that were toxic to H. azteca from other areas of the United States. The relationship between PECs and the observed toxicity was not as strong for the Microtox test. The results of this study indicate that the first phase of sediment remediation in Waukegan Harbor successfully lowered concentrations of PCBs at the site

  16. Butachlor-induced acute toxic hepatitis.

    PubMed

    Daryani, Nasser Ebrahimi; Hosseini, Parviz; Bashashati, Mohammad; Haidarali, Mona; Sayyah, Alireza

    2007-01-01

    Butachlor is a highly effective herbicidal substance widely used by farmers. We report a 60-year-old man with exfoliative dermatitis, jaundice, increase in liver enzymes and eosinophilia one day after accidental dermal exposure to butachlor toxin. The diagnostic workup showed no other cause and liver histology was consistent with substance-induced toxic hepatitis. Within two weeks of conservative therapy, his liver function tests returned to normal.

  17. A comparison of sediment toxicity test methods at three Great Lake Areas of Concern

    USGS Publications Warehouse

    Burton, G. Allen; Ingersoll, Christopher G.; Burnett, LouAnn C.; Henry, Mary; Hinman, Mark L.; Klaine, Stephen J.; Landrum, Peter F.; Ross, Phillipe; Tuchman, Marc

    1996-01-01

    The significance of sediment contamination is often evaluated using sediment toxicity (bioassay) testing. There are relatively few “standardized” test methods for evaluating sediments. Popular sediment toxicity methods examine the extractable water (elutriate), interstitial water, or whole (bulk) sediment phases using test species spanning the aquatic food chain from bacteria to fish. The current study was designed to evaluate which toxicity tests were most useful in evaluations of sediment contamination at three Great Lake Areas of Concern. Responses of 24 different organisms including fish, mayflies, amphipods, midges, cladocerans, rotifers, macrophytes, algae, and bacteria were compared using whole sediment or elutriate toxicity assays. Sediments from several sites in the Buffalo River, Calumet River (Indiana Harbor), and Saginaw River were tested, as part of the U.S. Environmental Protection Agency's (USEPA) Assessment and Remediation of Contaminated Sediments (ARCS) Project. Results indicated several assays to be sensitive to sediment toxicity and able to discriminate between differing levels of toxicity. Many of the assay responses were significantly correlated to other toxicity responses and were similar based on factor analysis. For most applications, a test design consisting of two to three assays should adequately detect sediment toxicity, consisting of various groupings of the following species: Hyalella azteca, Ceriodaphnia dubia, Chironomus riparius, Chironomus tentans, Daphnia magna, Pimephales promelas, Hexagenia bilineata, Diporeia sp., Hydrilla verticillata, or Lemna minor.

  18. Acute toxicity of pinnatoxins E, F and G to mice.

    PubMed

    Munday, Rex; Selwood, Andrew I; Rhodes, Lesley

    2012-11-01

    The acute toxicities to mice of pinnatoxins E, F and G, members of the cyclic imine group of phycotoxins, by intraperitoneal injection and/or oral administration, have been determined. These substances were all very toxic by intraperitoneal injection, with LD(50) values between 12.7 and 57 μg/kg. Pinnatoxin E was much less toxic by oral administration than by intraperitoneal injection, but this was not the case for pinnatoxin F. The median lethal doses of the latter substance by gavage and by voluntary intake were only 2 and 4 times higher than that by injection. The high oral toxicity of pinnatoxin F raises concerns as to the possibility of adverse effects of this substance in shellfish consumers, although it should be noted that no toxic effects in humans have been recorded with pinnatoxins or with any other compound of the cyclic imine group. PMID:22813782

  19. Metals in sediments: bioavailability and toxicity in a tropical reservoir used for public water supply.

    PubMed

    Cardoso-Silva, Sheila; Da Silva, Daniel Clemente Vieira Rego; Lage, Fernanda; de Paiva, Teresa Cristina Brazil; Moschini-Carlos, Viviane; Rosa, André Henrique; Pompêo, Marcelo

    2016-05-01

    Sediments may be a repository of contaminants in freshwater ecosystems. One way to assess the quality of this compartment, in terms of potentially bioavailable metals, is by the analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM). In order to investigate the bioavailability, toxicity, and compartmentalization of different metals (Cd, Cr, Cu, Ni, Pb, Zn), sampling of surface sediments was performed at nine stations along the Paiva Castro reservoir (São Paulo, Brazil). The metals were analyzed using atomic absorption spectroscopy. Sediment organic matter (OM), organic carbon (OC), and grain size were also measured. The parameters pH, EH, temperature, and dissolved oxygen were determined at the sediment-water interface. Chronic and acute toxicological tests were performed with sediments from the area where water was extracted for the public water supply. Low levels of OM, associated with loss of stratification in the water column, explained the relatively low AVS values. The molar ratio ∑[SEM]-[AVS]/fOC was less than 130 mmol/kg(-1) for all the sampling stations, indicating that the metals were not bioavailable. With the exception of Cd, metal levels were in accordance with background concentrations and the threshold effect level (TEL) established by the Canadian Council of Ministers of the Environment. The ecotoxicological tests confirmed the absence of toxic effects to biota. Application of principal component analysis indicated the presence of four compartments along the reservoir: (1) a riverine zone, potentially threatened by contamination with Cd; (2) an intermediate zone; (3) a limnic area; and (4) the area where water was taken for the public water supply. PMID:27117444

  20. Metals in sediments: bioavailability and toxicity in a tropical reservoir used for public water supply.

    PubMed

    Cardoso-Silva, Sheila; Da Silva, Daniel Clemente Vieira Rego; Lage, Fernanda; de Paiva, Teresa Cristina Brazil; Moschini-Carlos, Viviane; Rosa, André Henrique; Pompêo, Marcelo

    2016-05-01

    Sediments may be a repository of contaminants in freshwater ecosystems. One way to assess the quality of this compartment, in terms of potentially bioavailable metals, is by the analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM). In order to investigate the bioavailability, toxicity, and compartmentalization of different metals (Cd, Cr, Cu, Ni, Pb, Zn), sampling of surface sediments was performed at nine stations along the Paiva Castro reservoir (São Paulo, Brazil). The metals were analyzed using atomic absorption spectroscopy. Sediment organic matter (OM), organic carbon (OC), and grain size were also measured. The parameters pH, EH, temperature, and dissolved oxygen were determined at the sediment-water interface. Chronic and acute toxicological tests were performed with sediments from the area where water was extracted for the public water supply. Low levels of OM, associated with loss of stratification in the water column, explained the relatively low AVS values. The molar ratio ∑[SEM]-[AVS]/fOC was less than 130 mmol/kg(-1) for all the sampling stations, indicating that the metals were not bioavailable. With the exception of Cd, metal levels were in accordance with background concentrations and the threshold effect level (TEL) established by the Canadian Council of Ministers of the Environment. The ecotoxicological tests confirmed the absence of toxic effects to biota. Application of principal component analysis indicated the presence of four compartments along the reservoir: (1) a riverine zone, potentially threatened by contamination with Cd; (2) an intermediate zone; (3) a limnic area; and (4) the area where water was taken for the public water supply.

  1. Acute toxicity handbook of chemicals to estuarine organisms

    SciTech Connect

    Mayer, F.L.

    1987-04-01

    All acute toxicity data developed by the Gulf Breeze Environmental Research Laboratory, U.S. Environmental Protection Agency, since 1961 were evaluated for quality. A data base was established for 1175 tests with 197 chemicals and 52 species of estuarine organisms. The chemicals represent all major groups of pesticides, as well as numerous industrial and inorganic chemicals.

  2. 40 CFR 799.9120 - TSCA acute dermal toxicity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the vehicle on penetration of skin by the test substance should be taken into account. It is... of a substance that can be expected to cause death in 50% of treated animals when applied to the skin... need to be considered. (2) (e) Conventional acute toxicity test—(1) Principle of the test method....

  3. 40 CFR 799.9120 - TSCA acute dermal toxicity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the vehicle on penetration of skin by the test substance should be taken into account. It is... of a substance that can be expected to cause death in 50% of treated animals when applied to the skin... need to be considered. (2) (e) Conventional acute toxicity test—(1) Principle of the test method....

  4. 40 CFR 799.9120 - TSCA acute dermal toxicity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the vehicle on penetration of skin by the test substance should be taken into account. It is... of a substance that can be expected to cause death in 50% of treated animals when applied to the skin... need to be considered. (2) (e) Conventional acute toxicity test—(1) Principle of the test method....

  5. Effects of a nearshore wastewater discharge: Water column and sediment pore water toxicity

    SciTech Connect

    Krause, P.R.; Carr, R.S.

    1995-12-31

    The relationship between water column and sediment pore water toxicity was investigated near a municipal-industrial wastewater discharge in southern Texas. Toxicity associated with effluent distributions in the water column are known to vary in both time and space. Toxicity of sediment, however, is often more stable over time. Sediment can serve as a long-term integrator of toxicity in areas subject to chronic exposure of effluents. This study addressed the relationship between water column toxicity and that found in the sediments on both spatial and temporal scales. Four 2 Km transacts were established around a nearshore wastewater outfall. Eight stations along each transact were sampled for both surface waters and sediment pore water toxicity. Toxicity was determined using a modified sea urchin fertilization test. Surface waters were sampled and tested for eight consecutive months, while sediment pore waters were sampled on three occasions over the length of this study. Results have shown that toxicity in receiving waters was a good indicator to trace movements of the highly variable effluent plume. The distribution of effluent in the water column, and hence water column toxicity, was primarily driven by local wind conditions. Toxicity in sediment porewater was, much less variable and more evenly distributed over the study site. Sediment pore water toxicity was also a good predictor of the distribution of benthic infaunal invertebrates over much of the study site.

  6. A meta-analysis comparing the toxicity of sediments in the laboratory and in situ.

    PubMed

    Hose, Grant C; Murray, Brad R; Park, Margaux L; Kelaher, Brendan P; Figueira, Will E

    2006-04-01

    Sediment toxicity tests in the laboratory are an important part of ecological risk assessments, yet how they relate to sediment toxicity in situ has rarely been explored. Using meta-analysis, we examined differences in the toxicity of sediment tested in the laboratory and in situ. Data from four published studies were subjected to rigorous statistical analyses. Overall, the toxicity of sediments in laboratory tests was substantially less than their toxicity in situ. Differences between laboratory and in situ toxicity, expressed using the log odds ratio effect size, varied significantly among published studies. Effect size increased significantly with increasing sediment toxicity, showing that the more toxic the sediment, the greater the disparity between laboratory and field toxicities. Our findings may not apply to all laboratory/field comparisons; however, we consider that the overlying water in field situations is a significant contributor to this relationship through additional contamination and toxicity. Our findings also have important implications for the use of laboratory tests to assess improvements in sediment quality and remediation, because changes in laboratory toxicity may not reflect the true improvements to sediment quality in situ.

  7. USE OF POWDERED COCONUT CHARCOAL AS A TOXICITY IDENTIFICATION AND EVALUATION MANIPULATION FOR ORGANIC TOXICANTS IN MARINE SEDIMENTS

    EPA Science Inventory

    We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endos...

  8. ISOLATING AND EVALUATING ORGANIC TOXICANTS IN SEDIMENTS: EVALUATION OF AN EXPERIMENTAL APPROACH

    EPA Science Inventory

    Most solid-phase sediment toxicity identification and evaluation (TIE) techniques for organic chemicals have been focused on solid phase sorptive techniques, such as amending contaminated sediments with the carbonaceous resin, Ambersorb, coconut charcoal, or XAD resin to reduce t...

  9. ISOLATING AND FRACTIONATING ORGANIC TOXICANTS IN SEDIMENTS: EVALUATION OF AN EXPERIMENTAL APPROACH

    EPA Science Inventory

    Most solid-phase sediment TIE techniques for organic chemicals have been focused on solid phase sorptive techniques, such as amending contaminated sediments with the carbonaceousresin, Ambersorb coconut charcoal, or XAD resin to reduce toxicity caused by organic contaminants. Cha...

  10. Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe.

    PubMed

    Hsu, P; Matthäi, A; Heise, S; Ahlf, W

    2007-08-01

    Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation.

  11. Acute toxicity of eight oil spill response chemicals to temperate, boreal, and Arctic species.

    PubMed

    Hansen, Bjørn Henrik; Altin, Dag; Bonaunet, Kristin; Overjordet, Ida Beathe

    2014-01-01

    The objectives of this study were to (1) determine the acute toxicity of selected shoreline washing agents (SWA) and dispersants, and (2) assess interspecies differences in sensitivity to the products. Eight shoreline washing agents (Hela saneringsvæske, Bios, Bioversal, Absorrep K212, and Corexit 9580) and chemical dispersants (Corexit 9500, Dasic NS, and Gamlen OD4000) were tested on five marine species, algae Skeletonema costatum, planktonic copepod species Acartia tonsa (temperate species), Calanus finmarchicus (boreal species) and Calanus glacialis (Arctic species), and benthic amphipod Corophium volutator. For most products, A. tonsa was the most sensitive species, whereas C. volutator was the least sensitive; however, these species were exposed through different media (water/sediment). In general, all copepod species displayed a relatively similar sensitivity to all products. However, A. tonsa was somewhat more sensitive than other copepods to most of the tested products. Thus, A. tonsa appears to be a candidate species for boreal and Arctic copepods for acute toxicity testing, and data generated on this species may be used as to provide conservative estimates. The benthic species (C. volutator) had a different sensitivity pattern relative to pelagic species, displaying higher sensitivity to solvent-based SWA than to water-based SWA. Comparing product toxicity, the dispersants were in general most toxic while the solvent-based SWA were least toxic to pelagic species. PMID:24754387

  12. Acute toxicity of eight oil spill response chemicals to temperate, boreal, and Arctic species.

    PubMed

    Hansen, Bjørn Henrik; Altin, Dag; Bonaunet, Kristin; Overjordet, Ida Beathe

    2014-01-01

    The objectives of this study were to (1) determine the acute toxicity of selected shoreline washing agents (SWA) and dispersants, and (2) assess interspecies differences in sensitivity to the products. Eight shoreline washing agents (Hela saneringsvæske, Bios, Bioversal, Absorrep K212, and Corexit 9580) and chemical dispersants (Corexit 9500, Dasic NS, and Gamlen OD4000) were tested on five marine species, algae Skeletonema costatum, planktonic copepod species Acartia tonsa (temperate species), Calanus finmarchicus (boreal species) and Calanus glacialis (Arctic species), and benthic amphipod Corophium volutator. For most products, A. tonsa was the most sensitive species, whereas C. volutator was the least sensitive; however, these species were exposed through different media (water/sediment). In general, all copepod species displayed a relatively similar sensitivity to all products. However, A. tonsa was somewhat more sensitive than other copepods to most of the tested products. Thus, A. tonsa appears to be a candidate species for boreal and Arctic copepods for acute toxicity testing, and data generated on this species may be used as to provide conservative estimates. The benthic species (C. volutator) had a different sensitivity pattern relative to pelagic species, displaying higher sensitivity to solvent-based SWA than to water-based SWA. Comparing product toxicity, the dispersants were in general most toxic while the solvent-based SWA were least toxic to pelagic species.

  13. Toxicity identification evaluation of metal-contaminated sediments using an artificial pore water containing dissolved organic carbons

    SciTech Connect

    Boucher, A.M.; Watzin, M.C.

    1999-03-01

    Recent investigations of sediment-associated pollutants in Lake Champlain indicated significant contamination with As, Mn, and Ni in Outer Malletts Bay, Vermont, US. Ceriodaphnia dubia exposed to sediment pore water from several sites in Outer Malletts Bay showed repeatable, acute mortality at only one site. A toxicity identification evaluation (TIE) was conducted on pore water to determine the contaminants causing mortality at this site. Unlike most TIE applications, the dilution water used in these tests was formulated to match the hardness, alkalinity, pH, conductivity, and dissolved organic carbon content of the pore water. Results from phase 1 of the TIE indicated that divalent metals may be responsible for toxicity. Phase 2 results revealed levels of Mn above LC50 values. Spiking experiments employed in phase 3 confirmed Mn as the principal toxicant in sediment pore water. The formulated pore water worked well and helped ensure that toxicant behavior was influenced primarily by each TIE manipulation and not by physical and chemical differences between the dilution and site water. Although the Mn toxicity at this site may be the result of its unique geomorphology, this situation underscores the need to look broadly for potential toxicants when evaluating contaminated sites.

  14. Acute and subchronic dermal toxicity of nanosilver in guinea pig.

    PubMed

    Korani, M; Rezayat, S M; Gilani, K; Arbabi Bidgoli, S; Adeli, S

    2011-01-01

    Silver has been used as an antimicrobial agent for a long time in different forms, but silver nanoparticles (nanosilver) have recently been recognized as potent antimicrobial agents. Although nanosilver is finding diverse medical applications such as silver-based dressings and silver-coated medical devices, its dermal and systemic toxicity via dermal use has not yet been identified. In this study, we analyzed the potential toxicity of colloidal nanosilver in acute and subchronic guinea pigs. Before toxicity assessments, the size of colloidal nanosilver was recorded in sizes <100 nm by X-ray diffraction and transmission electron microscopy. For toxicological assessments, male guinea pigs weighing 350 to 400 g were exposed to two different concentrations of nanosilver (1000 and 10,000 μg/mL) in an acute study and three concentrations of nanosilver (100, 1000, and 10,000 μg/mL) in a subchronic study. Toxic responses were assessed by clinical and histopathologic parameters. In all experimental animals the sites of exposure were scored for any type of dermal toxicity and compared with negative control and positive control groups. In autopsy studies during the acute test, no significant changes in organ weight or major macroscopic changes were detected, but dose-dependent histopathologic abnormalities were seen in skin, liver, and spleen of all test groups. In addition, experimental animals subjected to subchronic tests showed greater tissue abnormalities than the subjects of acute tests. It seems that colloidal nanosilver has the potential to provide target organ toxicities in a dose- and time-dependent manner.

  15. What food and feeding rates are optimum for the Chironomus dilutus sediment toxicity test method?

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates conducted using standard toxicity test procedures are used to assess the potential toxicity of contaminated sediments. Results are compared across sites or for batches of samples, and the performance of organisms in control treatme...

  16. Acute toxicity value extrapolation with fish and aquatic invertebrates

    USGS Publications Warehouse

    Buckler, Denny R.; Mayer, Foster L.; Ellersieck, Mark R.; Asfaw, Amha

    2005-01-01

    Assessment of risk posed by an environmental contaminant to an aquatic community requires estimation of both its magnitude of occurrence (exposure) and its ability to cause harm (effects). Our ability to estimate effects is often hindered by limited toxicological information. As a result, resource managers and environmental regulators are often faced with the need to extrapolate across taxonomic groups in order to protect the more sensitive members of the aquatic community. The goals of this effort were to 1) compile and organize an extensive body of acute toxicity data, 2) characterize the distribution of toxicant sensitivity across taxa and species, and 3) evaluate the utility of toxicity extrapolation methods based upon sensitivity relations among species and chemicals. Although the analysis encompassed a wide range of toxicants and species, pesticides and freshwater fish and invertebrates were emphasized as a reflection of available data. Although it is obviously desirable to have high-quality acute toxicity values for as many species as possible, the results of this effort allow for better use of available information for predicting the sensitivity of untested species to environmental contaminants. A software program entitled “Ecological Risk Analysis” (ERA) was developed that predicts toxicity values for sensitive members of the aquatic community using species sensitivity distributions. Of several methods evaluated, the ERA program used with minimum data sets comprising acute toxicity values for rainbow trout, bluegill, daphnia, and mysids provided the most satisfactory predictions with the least amount of data. However, if predictions must be made using data for a single species, the most satisfactory results were obtained with extrapolation factors developed for rainbow trout (0.412), bluegill (0.331), or scud (0.041). Although many specific exceptions occur, our results also support the conventional wisdom that invertebrates are generally more

  17. Spatial and temporal variability in metal bioavailability and toxicity of sediment from Hamilton Harbour, Lake Ontario

    SciTech Connect

    Krantzberg, G. )

    1994-10-01

    Trace metals in sediment from nearshore urban and industrialized centers of the Great Lakes are frequently at concentrations well above geological background values. Total metal content in sediment, however, is a weak predictor of sediment toxicity. This study examined the bioavailability of metals from Hamilton Harbor in Lake Ontario and considered variability in metal forms on a temporal basis. Sediment from regions within Hamilton Harbor is highly contaminated with metals; nevertheless, not all metal-contaminated sites were toxic to test organisms. Most sediment did elicit sublethal and/or lethal responses in bioassay organisms. Metal bioavailability, as measured by weak acid extractions, metal bioaccumulation by fathead minnows, and sediment toxicity, was greater in sediment collected in the fall as compared to sediment collected in the spring. Results of analyses of tissue residues in test organisms and the reduced toxicity observed in sediment collected from some stations in the spring as compared to the fall implicate trace metals and sediment oxygen demand as contributing to sediment toxicity. The suitability for colonization by benthic invertebrates of sediment in some areas of Hamilton Harbor appears to be limited by both contaminants and high sediment oxygen demand. Improving the oxygen regime of the harbor should result in improvements in the benthic invertebrate community directly, by providing a suitable oxygen regime for organisms less tolerant of temporal anoxia, and indirectly by decreasing metal bioavailability, possibly through the co-precipitation of trace metals with iron and manganese hydroxides.

  18. The effect of manipulations of freshwater sediments on responses of benthic invertebrates in whole-sediment toxicity tests

    SciTech Connect

    Day, K.E.; Kirby, R.S.; Reynoldson, T.B.

    1995-08-01

    Manipulations of freshwater sediment were performed to remove indigenous organisms prior to conducting toxicity tests with three species of benthic invertebrates. The effects of these treatments on end points in bioassays were compared within and between two sediments, i.e., a ``clean`` sediment and a ``contaminated`` sediment. In addition, the effects of manipulations on the physicochemical structure of the two sediments and the presence of metals, PAHs, and PCBs in the contaminated sediment were examined. The amphipod Hyalella azteca was most sensitive to the manipulations and had low survival in sediment that was sterilized. Growth (milligrams dry weight per individual) was affected by the presence of contaminants. Survival of Chironomus riparius was not affected by any manipulation but was reduced by contaminants as well as indigenous organisms. Growth of C. riparius was higher in autoclaved sediment but lower in sediment containing endemic tubificid worms. Production of young by Tubifex tubifex increased in sediment that was irradiated, possibly due to increased detrital material. Particle size distribution, metals, nutrients, and PAHs varied little as a function of manipulation; however, sieving of sediment through 250-{micro}m mesh did reduce percent total organic carbon (TOC), percent loss on ignition (LOI), and concentrations of some PCBs in either clean or contaminated sediment. Manipulation of sediments to remove endemic species should be determined on a case-by-case basis and is specific to the organisms used in toxicity tests.

  19. Evolving Role of Passive Samplers in Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In Phase II of the TIE, the specific toxicants causing observed toxicity are identified. For a...

  20. Assessing acute toxicity potential of persulfate ISCO treated water.

    PubMed

    Liang, Chenju; Wang, Chi-Wei

    2013-11-01

    Persulfate anion (S2O8(2-)), a widely used in situ chemical oxidation agent, is increasingly applied for environmental remediation. However, limited information on environmental and toxicological effects is available for the evaluation of the environmental risk of exposure to S2O8(2-), particularly after its application. In this study, the acute toxic effects on the common carp (Cyprinus carpio) were employed as a model to investigate S2O8(2-), sulfate ion (decomposition product of S2O8(2-)), hydrogen/hydroxide ions and also the mixtures of these ion species. Acute toxicity test results showed 96h median lethal concentrations (LC50) of 540±23mgL(-1) for S2O8(2-) and 4100±110mgL(-1) for SO4(2-). S2O8(2-) was considerably more toxic than its decomposition product SO4(2-). Additionally, solution pH was also an important factor influencing toxicity, and S2O8(2-) posed reduced acute toxicity when pH was in the range of 6-10. Water conductivity up to approximately 8000μScm(-1) did not appear to significantly increase fish mortality. In the mixture toxicity test (i.e., S2O8(2-)/OH(-)), LC50 values of 130±10mgL(-1) for S2O8(2-) and 23±2mgL(-1) for OH(-) were lower than those obtained from the individual toxicity tests and therefore exhibited higher toxicity to fish. However, upon complete decomposition of S2O8(2-) in the mixture, a reduction in acute toxicity may be expected. The results of this study revealed that it may be necessary and/or desirable to control the residual S2O8(2-)and pH after S2O8(2-) addition when potential exposure to an aquatic system is a concern.

  1. Acute toxicity of cyanogen chloride to Daphnia magna

    SciTech Connect

    Kononen, D.W.

    1988-09-01

    The destruction of cyanide in waste waters by chlorination has been shown to result in the formation of the extremely toxic compound, cyanogen chloride. Industrial cyanide-containing waste waters may be treated by a batch chlorination process under highly alkaline conditions prior to being discharged into a receiving water systems. Alternatively, if the concentration of cyanide is relatively low, and such waste waters may be diverted to municipal waste treatment facilities where they may be subjected to a process of chlorination which may not be sufficient for the complete oxidative destruction of the available cyanide. Although a large body of literature exists concerning the toxicity of HCN and metallic cyanide compounds to aquatic organisms, there is a comparative scarcity of information concerning cyanogen chloride toxicity. This study was designed to determine the acute toxicity of CNCl to Daphnia magna neonates under static bioassay conditions.

  2. Acute toxicity of 50 metals to Daphnia magna.

    PubMed

    Okamoto, Akira; Yamamuro, Masumi; Tatarazako, Norihisa

    2015-07-01

    Metals are essential for human life and physiological functions but may sometimes cause disorders. Therefore, we conducted acute toxicity testing of 50 metals in Daphnia magna: EC50s of seven elements (Be, Cu, Ag, Cd, Os, Au and Hg) were < 100 µg l(-1) ; EC50s of 13 elements (Al, Sc, Cr, Co, Ni, Zn, Se, Rb, Y, Rh, Pt, Tl and Pb) were between 100 and 1000 µg l(-1) ; EC50s of 14 elements (Li, V, Mn, Fe, Ge, As, In, Sn, Sb, Te, Cs, Ba, W and Ir) were between 1,001 and 100,000 µg l(-1) ; EC50s of six elements (Na, Mg, K, Ca, Sr and Mo) were > 100,000 µg l(-1) ; and. 7 elements (Ti, Zr, Bi, Nb, Hf, Re and Ta) did not show EC50 at the upper limit of respective aqueous solubility, and EC50s were not obtained. Ga, Ru and Pd adhered to the body of D. magna and physically retarded the movement of D. magna. These metals formed hydroxides after adjusting the pH. Therefore, here, we distinguished this physical effect from the physiological toxic effect. The acute toxicity results of 40 elements obtained in this study were not correlated with electronegativity. Similarly, the acute toxicity results of metals including the rare metals were also not correlated with first ionization energy, atomic weight, atomic number, covalent radius, atomic radius or ionic radius.

  3. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates

    SciTech Connect

    Not Available

    1994-06-01

    The procedures are described for testing freshwater organisms in the laboratory to evaluate the toxicity or bioaccumulation of contaminants associated with whole sediments. Sediments may be collected from the field or spiked with compounds in the laboratory. Toxicity methods are outlined for two organisms, the amphipod Hyalella azteca and the midge Chironomus tentans. The toxicity tests are conducted for 10 d in 300 ml chambers containing 100 ml of sediment and 175 ml of overlying water. Overlying water is renewed daily and test organisms are fed during the toxicity tests. The endpoint in the toxicity test with H. azteca is survival and the endpoints in the toxicity test with C. tentans are survival and growth. Procedures are primarily described for testing freshwater sediments; however, estaurine sediments (up to 15%) can also be tested with H. azteca. Guidance for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus is provided in the manual.

  4. Evaluation of water column and sediment toxicity from an abandoned uranium mine using a battery of bioassays.

    PubMed

    Antunes, S C; de Figueiredo, D R; Marques, S M; Castro, B B; Pereira, R; Gonçalves, F

    2007-03-15

    Uranium mining activities in Cunha Baixa, Mangualde (Portugal), were extensive between 1967 and 1993, with high production of poor ore. Ore exploitation left millions of tons of tailings in the surrounding area, close to human houses. Contamination of the area (water and soil compartment) presently represents a serious hazard to humans and wildlife. The aim of this work was to evaluate the acute toxicity of water and sediments from a pond that floods a uranium mine pit, in two periods (spring and autumn). High contents of metals were found in water samples (chiefly Mn, Fe, Al, U, Sr). A battery of assays was applied to screen the acute toxicity of the different compartments using algae, crustaceans and dipterans. Results showed that the sediments were non-toxic, unlike the superficial water. Water toxicity was higher in the autumn, when the effluent was more acidic, compared to spring. In the water toxicity assays, the relative sensitivity of the test species used was Daphnia longispina>Pseudokirchneriella subcapitata>Daphnia magna. The present study is part of the chemical and ecotoxicological characterisation of the aquatic compartment performed in the Tier 1 of the Ecological Risk Assessment of the Cunha Baixa mining area. PMID:17316767

  5. Toxicity of Detroit River sediment interstitial water to the bacterium Photobacterium phosphoreum

    SciTech Connect

    Giesy, J.P.; Rosiu, C.J.; Graney, R.L.; Nested, J.L.; Benda, A. ); Kreis, R.G. Jr. ); Horvath, F.J. )

    1988-01-01

    The authors used the Photobacterium phosphoreum bacterial luminescence assay (Microtox{sup R}) to survey the distribution of the toxicity of the sediments from the lower Detroit River during the summer of 1986. Of the 136 locations tested, 25 were classified as very toxic, 60 as moderately toxic, 10 as slightly toxic, and 41 were classified as being non-toxic. The greatest number of very toxic sites was observed on the western shore of the Trenton Channel; however, some very toxic locations were observed throughout the study area. The least toxic areas were observed at the eastern-most locations studied. The Microtox{sup R} assay has been found to be a sensitive assay, which can be calibrated to the responses of other organisms such as macroinvertebrates and can be related to the potential for distribution of macroinvertebrates in sediments. Therefore, the Microtox{sup R} assay is useful for rapid screening and mapping of toxicity of sediments.

  6. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides.

    PubMed

    Nowell, Lisa H; Norman, Julia E; Ingersoll, Christopher G; Moran, Patrick W

    2016-04-15

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n=3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics

  7. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides.

    PubMed

    Nowell, Lisa H; Norman, Julia E; Ingersoll, Christopher G; Moran, Patrick W

    2016-04-15

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n=3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics

  8. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    USGS Publications Warehouse

    Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.

    2016-01-01

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical

  9. Cannabidiol Rescues Acute Hepatic Toxicity and Seizure Induced by Cocaine

    PubMed Central

    Vilela, Luciano Rezende; Gomides, Lindisley Ferreira; David, Bruna Araújo; Antunes, Maísa Mota; Diniz, Ariane Barros; Moreira, Fabrício de Araújo; Menezes, Gustavo Batista

    2015-01-01

    Cocaine is a commonly abused illicit drug that causes significant morbidity and mortality. The most severe and common complications are seizures, ischemic strokes, myocardial infarction, and acute liver injury. Here, we demonstrated that acute cocaine intoxication promoted seizure along with acute liver damage in mice, with intense inflammatory infiltrate. Considering the protective role of the endocannabinoid system against cell toxicity, we hypothesized that treatment with an anandamide hydrolysis inhibitor, URB597, or with a phytocannabinoid, cannabidiol (CBD), protects against cocaine toxicity. URB597 (1.0 mg/kg) abolished cocaine-induced seizure, yet it did not protect against acute liver injury. Using confocal liver intravital microscopy, we observed that CBD (30 mg/kg) reduced acute liver inflammation and damage induced by cocaine and prevented associated seizure. Additionally, we showed that previous liver damage induced by another hepatotoxic drug (acetaminophen) increased seizure and lethality induced by cocaine intoxication, linking hepatotoxicity to seizure dynamics. These findings suggest that activation of cannabinoid system may have protective actions on both liver and brain induced by cocaine, minimizing inflammatory injury promoted by cocaine, supporting its further clinical application in the treatment of cocaine abuse. PMID:25999668

  10. Effect of sulfidation and dissolved organic matters on toxicity of silver nanoparticles in sediment dwelling organism, Chironomus riparius.

    PubMed

    Lee, Si-Won; Park, Sun-Young; Kim, Younghun; Im, Hosub; Choi, Jinhee

    2016-05-15

    The properties, fate, and toxicity of silver nanoparticles (AgNPs) are readily modified in the environment. Thus, in order to predict the environmental impact of AgNPs, the toxicity test should be conducted to assess the interactions of AgNPs with environmental matrices. Dissolved organic matter (DOM) is known to mitigate AgNPs toxicity in natural systems, and it is also known that silver binds strongly to sulfur. Little is known, however, about the effect of sulfidation and to what extent it could compete with DOM in the sediment. We therefore investigated the effect of sulfide on a sediment dwelling organism, Chironomus riparius using ecotoxicity endpoints. We then investigated how sulfide and a combination of sulfide and DOM affect the toxicity of AgNPs in C. riparius. We also monitored the concentrations of silver in the water and sediment compartments, as well as in C. riparius tissue, in the presence and absence of sulfide. Finally, in order to investigate how sulfide and DOM affect the release of ions from AgNPs, we also monitored released Ag(+) in each treatment. In the presence of sulfide, AgNPs were found to be less toxic to C. riparius in acute and chronic endpoints than AgNPs alone, whereas DOM treatment did not modulate the toxicity of AgNPs. Sulfide treatment reduced the release of Ag(+) from AgNPs. Water-spiked AgNPs with sulfide were found to be more slowly incorporated into both sediment and larvae as compared to the AgNP alone. Overall, the results suggest that the presence of sulfide in sediment mitigates the ecotoxicity of AgNPs in C. riparius. PMID:26938319

  11. Laboratory culture of the freshwater benthic gastropod Bellamya aeruginosa (Reeve) and its utility as a test species for sediment toxicity.

    PubMed

    Ma, Taowu; Gong, Shuangjiao; Zhou, Ke; Zhu, Cheng; Deng, Kaidong; Luo, Qinghua; Wang, Zijian

    2010-01-01

    This study aimed to develop original laboratory culture and sediment toxicity testing protocols for the freshwater gastropod Bellamya aeruginosa (Reeve), a new potential species for sediment toxicity testing. B. aeruginosa was successfully cultured with an effective culture system under proposed laboratory conditions. Optimal ad libitum feeding levels for larvae, juveniles, and adults were 2.0, 6.0, and 16.0 mg fish food/(snail x day), respectively. Mean survival rates of juveniles were higher than 90%. The snails could be sexed at 9 weeks of age, and their generation time is approximately 4 months. Reproduction continued all year around; the mean fecundity was 0.55 newborn/(female x day). The utility of this species for bioassays was evaluated in both 10-day and 28-day case studies with artificial sediments. The 10-day LC50 of Cu for larvae was 480 gg/g dry weight (dw), and the lowest observed effects concentration of Cu for survival and growth of larvae was 195 microg/g dw. Survival and growth are reliable indicators of acute toxicity. Larvae accumulated more Cu than adults. B. aeruginosa exhibited a higher sensitivity to Cu exposure than standard test species (Hyalella azteca and Chironomus tentans). The 28-day test of sediment toxicity with adults showed that fecundity was a robust endpoint indicator of reproductive toxicity, and the biochemical endpoints of superoxide dismutase, catalase, and glutathione could be used as sensitive biomarkers for Cu-induced oxidative damage. B. aeruginosa can be therefore recommended as a candidate for the standardization of the freshwater sediment toxicity test protocol.

  12. The use of carbon resin for the reduction of sediment toxicity to infaunal amphipods

    SciTech Connect

    Hurk, P. van den; Vogelbein, M.A.; McCullough, D.; Roberts, M.H. Jr.

    1995-12-31

    Commercially available carbon resins are designed to absorb non-polar organic compounds. To evaluate the potential of resins to absorb hydrophobic pore water pollutants and thus reduce the toxicity of sediments the Ambersorb 1500 resin was mixed with PAH-contaminated sediment samples and tested with infaunal amphipods. The sediments were collected at a freshwater site in the Little Scioto River, OH and at an estuarine site in the Elisabeth River, VA. The bulk chemical analysis of both sediments was comparable in that they both show creosote pollution. The sediments were tested in dilution series with clean reference sediments and with increasing amounts of resin (2, 4 and 8% dry sediment weight). The freshwater sediments were tested with both Hyalella azteca (a freshwater infaunal amphipod) and Leptocheirus plumulosus (an estuarine infaunal amphipod). The estuarine sediments were only tested with L. plumulosus. Significant effects of the resin were recognized by comparing polluted sediment LC50s with their 95% confidence intervals, as calculated with the Trimmed Spearman-Karber test. The results show that the freshwater samples were not very toxic to either of the species (LC50: 80--100% polluted sediment), and there was no significant effect of the resin. The estuarine samples were highly toxic (LC50: 3--13% polluted sediment) and there was a significant reduction of toxicity with increasing amount of resin. Pore water chemical analysis will be evaluated to explain the toxicity differences between the freshwater and estuarine samples.

  13. Acute toxicity of saline produced waters to marine organisms

    SciTech Connect

    Pillard, D.A.; Evans, J.M.; DuFresne, D.L.

    1996-11-01

    Produced waters from oil and gas drilling operations are typically very saline, and may cause acute toxicity to marine organisms due imbalances as well as to an excess or deficiency of to osmotic specific common ions. In order to better understand the relationship between toxicity and ion concentration, laboratory toxicity tests were conducted using mysid shrimp (Mysidopsis bahia), sheepshead minnow, (Cyprinodon variegatus), and inland silvemide (Menidia beryllina). For each species the ionic concentration of standard laboratory water was proportionally increased or decreased to produce test solutions with a range of salinities. Individual ions (sodium, potassium, calcium, magnesium, strontium, chloride, bromide, sulfate, bicarbonate, and borate) were also manipulated to examine individual ion toxicity. Organisms were exposed for 48 hours. The three test species differ in their tolerance of salinity. Mysid shrimp show a marked decrease in survival at salinities less than approximately 5 ppt. Both fish species tolerated low salinity water, however, silversides were less tolerant of saline waters (salinity greater than 40 ppt). There were also significant differences in the responses of the organisms to different ions. The results show that salinity of the test solution may play an important role in the responses of the organisms to produced water effluent. Predictable toxicity/ion relationships developed in this study can be used to estimate whether toxicity in produced water is a result of common ions, salinity, or some other unknown toxicant.

  14. Sediment quality assessment and Toxicity Identification Evaluation studies in Lavaca Bay, Texas -- An estuarine Superfund site

    SciTech Connect

    Carr, R.S.; Biedenbach, J.; Hooten, R.; May, L.; Teas, T.

    1995-12-31

    A sediment quality assessment survey was conducted in the Lavaca Bay system which has been designated a Superfund site because of elevated concentrations of mercury and other contaminants (e.g., PAHs) in the sediments. Twenty-four stations were sampled in the initial survey. Sediment pore water was extracted pneumatically and the toxicity of the pore water determined using the sea urchin fertilization and embryological development assays. Based on the results of the toxicity tests, aliquots of the toxic sediments were analyzed for metals, PAHs, and pesticides. Based on these results, several of the most toxic sites were resampled and a preliminary Toxicity Identification Evaluation (TIE) was performed with the pore water using the sea urchin fertilization test. Preliminary results indicated that the toxic components were removed by adsorption on a C-18 column but were not affected by EDTA additions and, therefore, the primary toxicants are hydrophobic in nature.

  15. Effects of storage time on the toxicity of sediments to freshwater benthic invertebrates

    SciTech Connect

    DeFoe, D.L.; Ankley, G.T.

    1995-12-31

    The objective of this study was to define the effects of storage time on the toxicity of a series of freshwater sediments. Sixteen sediments with varying types of contaminants (metals, pesticides, PCBs, ammonia) were collected, held at 4 C, and periodically tested for toxicity to the amphipod Hyalella azteca and the midge Chironomus tentans for storage times ranging from 8.5 to 25 months. The sediments ranged from nontoxic to extremely toxic (100% mortality) in 10-d assays with both species, with the majority of samples displaying an intermediate degree of toxicity (e.g., partial kills, reduced growth). Toxicity of sediments causing total mortality of organisms in 10-d was quantified through the determination of LT50 (lethal time to 50% mortality) assays, in addition to the standard 10-d tests. Toxicity of nearly all the samples did not vary significantly with storage time; in those instances when toxicity did change, the same relative conclusions concerning sample toxicity generally would have been made regardless of when they were tested (e.g., toxic samples did not become non-toxic). This data suggests that current guidelines concerning sediment storage times (e.g., 0--8 weeks) may be overly restrictive, at least with respect to toxicity testing. The results also suggested that some test variability inherent in whole sediment assays can actually be reduced by short term storage. That is, among replicates, variability appeared to decrease with increasing storage time.

  16. Acute systemic toxicity--prospects for tiered testing strategies.

    PubMed

    Botham, P A

    2004-04-01

    After many years of controversy and debate, the LD50 test was finally deleted by the end of 2002. Three alternative animal tests, the Fixed Dose Procedure, the Acute Toxic Class Method and the Up and Down Procedure have been developed which give rise to significant improvements in animal welfare. They have recently undergone revision to improve their scientific performance but more importantly to increase their regulatory acceptance. They can now be used within a strategy for acute toxicity testing for all types of test substances and for all regulatory and in-house purposes. In vitro cytotoxicity tests could be used as adjuncts to these alternative animal tests within the next year or so to improve dose level selection and thus give further modest improvements in the numbers of animals used. However, the total replacement of animal tests requires a considerable amount of further test development, followed by validation, and is at least 10 years away.

  17. Water and sediment toxicity of freshwater mussels from population crashes of Asiatic clams

    SciTech Connect

    Scheller, J.L.; Cherry, D.S.; Yeager, M.M.; Lynde, S.R.; Shepard, N.D.

    1994-12-31

    The Clinch River watershed in Virginia contains one of the most diverse communities of freshwater bivalves or unionids in North America. These communities are becoming depleted over the past few decades due to various point (industrial, municipal) and nonpoint (roadside and agricultural runoff) discharges. By the latter 1980`s, the Asiatic clam (Corbicula fluminea) had invaded most reaches of this system and may be becoming a contributing factor to the demise of native mussels by the natural release of toxic ammonia from dense population crashes during late summer, low flow conditions. When densities surpassed 1,500 clams/m{sup 2}, crashes resulting in >99% mortality have been observed in various areas of the river. Total ammonia release from dying clams reached and sustained 70 mg/L for several days in laboratory artificial stream experiments. These ammonia levels resulted in acute toxicity and reproductive chronic impairment to Daphnia magna in 10-day sediment toxicity tests. Pediveliger larvae of Corbicula were acutely sensitive (48 hr LC{sub 50}) to 1.72 mg/L total ammonia (O.05 mg/L unionized), mortality was 100% to juvenile and adult clams in 9 to 13 days at 16.1 mg/L total (0.74 mg/L unionized ammonia). Mussel glochidia were sensitive to 24-hr ammonia exposures (LC{sub 50} = 3.29 and 0.11 mg/L as total and unionized ammonia, respectively). Juvenile and adult mussels are predicted to be less sensitive members of the unionid life cycle as observed from earlier studies involving copper toxicity in the Clinch River.

  18. EFFECT OF NITRATE-BASED BIOREMEDIATION ON CONTAMINANT DISTRIBUTION AND SEDIMENT TOXICITY-COLUMN STUDY

    EPA Science Inventory

    A laboratory column study was set up to evaluate changes in contaminant distribution and sediment toxicity following nitrate-based bioremediation and to correlate toxicity reduction with loss of fuel components. Glass columns were packed with sediment from an aquifer that had be...

  19. Capturing Bioavailable Organic Contaminants for Phase II Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In the whole sediment Phase I TIEs performed so far, organic chemicals have been shown to be t...

  20. Coastal circulation and sediment dynamics in Hanalei Bay, Kaua'i, Hawaii, part III, studies of sediment toxicity

    USGS Publications Warehouse

    Carr, Robert S.; Nipper, Marion; Field, Michael; Biedenbach, James M.

    2006-01-01

    Toxicity tests are commonly conducted as a measure of the bioavailability of toxic chemicals to biota in an environment. Chemical analyses alone are insufficient to determine whether contaminants pose a threat to biota. Porewater toxicity tests are extremely sensitive to a broad range of contaminants in marine environments and provide ecologically relevant data on sensitive life stages. The inclusion of porewater toxicity testing as an additional indicator of sediment quality provides a more comprehensive picture of contaminant effects in these sensitive habitats. In this study purple-spined sea urchin (Arbacia punctulata) fertilization and embryological development porewater toxicity tests were used to evaluate the sediments collected from the coastal environment around Hanalei Bay, Kaua’i, Hawaii. These tests have been used previously to assess the bioavailability of contaminants associated with sediments in the vicinity of coral reefs.

  1. Field monitoring of toxic organic pollution in the sediments of Pearl River estuary and its tributaries.

    PubMed

    Fu, J; Wang, Z; Mai, B; Kang, Y

    2001-01-01

    Field monitoring of the toxic organic compounds (PCBs, PAHs, organochlorine pesticides) in the top sediments of Pearl River Estuary and its up-streams were made. It was found that the highest concentrations of these toxic organic compounds occurred in the sediment sampled at Macau inner harbor (ZB013), which is a sink of suspended fine particles transported from the upstream waterways. Because of the affinity of the hydrophobic organic compounds (PAHs, PCBs) for the solid phase, these fine particle depositions led to accumulation of these compounds in the sediment of Macau. The atmospheric dry deposition may be another source of the toxic organic pollution in the sediment.

  2. Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria

    SciTech Connect

    Benton, M.J.; Malott, M.L. |; Knight, S.S.; Cooper, C.M.; Benson, W.H.

    1995-03-01

    Clean and spiked sediment formulations of various silt:sand and clay:sand ratios were tested for toxicity using a bioassay that utilizes bioluminescent bacteria. Measured toxicities of clean and copper sulfate-spiked sediments were negatively but nonlinearly related with percent silt and percent clay, but no significant relationship existed between measured toxicity and sediment composition for methyl parathion-spiked formulations. Results suggest that solid-phase sediment bioassays using bioluminescence bacteria may be useful for testing the toxicities of single contaminants in formulated artificial sediments of known particle-size composition, and for repeated samples collected from the same site. However, extreme caution must be taken when testing sediments of varying composition or which may be differentially contaminated or contain a suite of contaminants.

  3. Toxicity of hexachlorobenzene to Hyalella azteca and Chironomus tentans in spiked sediment bioassays

    SciTech Connect

    Barber, T.R.; Fuchsman, P.C.; Chappie, D.J.; Sferra, J.C.; Sheehan, P.J.

    1997-08-01

    Fourteen-day, whole-sediment toxicity tests using the amphipod Hyalella azteca and the midge Chironomus tentans were conducted on spiked sediment samples representing a range of hexachlorobenzene (HCB) concentrations. High rates of survival and growth relative to controls were observed in both test species. No observed effects concentrations (NOECs) were equal to the highest HCB concentration tested (42 mg/kg, normalized to 1% total organic carbon). Available literature on the aquatic toxicity of this hydrophobic chemical shows an absence of lethal and sublethal effects from exposure to HCB or below water solubility concentrations, and toxicity from exposure to dissolved HCB in sediment porewater therefore would not be expected. Because whole-sediment toxicity tests integrate exposure to HCB dissolved in porewater and adsorbed to particles, it was considered possible that exposure via sediment ingestion could cause toxicity; however, no such effect was observed in this study.

  4. Solid-phase sediment toxicity identification evaluation in an agricultural stream.

    PubMed

    Phillips, Bryn M; Anderson, Brian S; Hunt, John W; Huntley, Sarah A; Tjeerdema, Ron S; Kapellas, Nancy; Worcester, Karen

    2006-06-01

    The lower Santa Maria River watershed provides important aquatic habitat on the central California coast and is influenced heavily by agricultural runoff. As part of a recently completed water quality assessment, we conducted a series of water column and sediment toxicity tests throughout this watershed. Sediment from Orcutt Creek, a tributary that drains agricultural land, consistently was toxic to the amphipod Hyalella azteca, which is a resident genus in this river. Toxicity identification evaluations (TIEs) were conducted to determine cause(s) of toxicity. We observed no toxicity in sediment interstitial water even though concentrations of chlorpyrifos exceeded published aqueous toxicity thresholds for H. azteca. In contrast to interstitial water, bulk sediment was toxic to H. azteca. In bulk-phase sediment TIEs, the addition of 20% (by volume) coconut charcoal increased survival by 41%, implicating organic chemical(s). Addition of 5% (by volume) of the carbonaceous resin Ambersorb 563 increased survival by 88%, again suggesting toxicity due to organic chemicals. Toxicity was confirmed by isolating Ambersorb from the sediment, eluting the resin with methanol, and observing significant toxicity in control water spiked with the methanol eluate. A carboxylesterase enzyme that hydrolyzes synthetic pyrethroids was added to overlying water, and this significantly reduced toxicity to amphipods. Although the pesticides chlorpyrifos, DDT, permethrin, esfenvalerate, and fenvalerate were detected in this sediment, and their concentrations were below published toxicity thresholds for H. azteca, additivity or synergism may have occurred. The weight-of-evidence suggests toxicity of this sediment was caused by an organic contaminant, most likely a synthetic pyrethroid. PMID:16764488

  5. Improvement of acute cadmium toxicity by pretreatment with copper salt

    SciTech Connect

    Li, D.; Katakura, M.; Sugawara, N.

    1995-06-01

    The toxicity of Cd compounds has been thoroughly reviewed. Furthermore, modification of the toxicity by other metals is well known. For example, pre-treatment with Zn significantly decreases the lethality of Cd. Testicular injuries induced by Cd are improved by simultaneous injection of Zn or Se. Thus, such preventive action might be expected as a result of prior or simultaneous injection of Cu salts. Hill et al (1963) reported that supplementation of the basal diet (1 ppm Cu) with 40 ppm copper sulphate markedly reduced Cd-induced lethality. Gunn and Gould (1970) reported that Cu affords protection against testicular injuries caused by Cd. Recently, Kaji et al (1992) found that Cu could prevent Cd cytotoxicity in cultured vascular endothelial cells. On the other hand, Irons and Smith (1976) reported previously that injection of Cu along with Cd decreases the binding of Cd to hepatic metallothionein (MT) and increases the toxicity of the Cd. An interactive increase in toxicity caused by a similar mechanism was observed in embryonic chick bone treated with both Cd and Cu in a culture system. Accordingly, we should accumulate further data to understand the preventive effect of Cu against Cd toxicity. The aim of this study was to determine the effect of Cu pretreatment on the acute toxicity of Cd in mice. We focused on two organs, the liver and testis. 17 refs., 4 tabs.

  6. Aquatic acute toxicity assessments of molybdenum (+VI) to Daphnia magna.

    PubMed

    Wang, Chi-Wei; Liang, Chenju; Yeh, Hui-Ju

    2016-03-01

    Generally, molybdenum (Mo) metals in the environment are very rare, but wastewater discharges from industrial processes may contain high concentrations of Mo, which has the potential to contaminate water or soil if not handled properly. In this study, the impact of three common compounds of hexavalent Mo (sodium molybdate (Na2MoO4‧2H2O), ammonium molybdate ((NH4)6Mo7O24‧4H2O) and molybdenum trioxide (MoO3)) in an aquatic system were assessed based on 48-h exposure acute toxicity to Daphnia magna (D. magna). The LC50 toxicities for associated conjugate ions including Na(+), Cl(-), SO4(2-), and NH4(+) were determined. Furthermore, the LC50 values for the three forms of hexavalent Mo were determined, and the acute toxicities of the Mo forms were found to follow the order: (NH4)6Mo7O24‧4H2O > MoO3 > Na2MoO4‧2H2O in solution. (NH4)6Mo7O24‧4H2O exhibited the lowest LC50 of 43.3 mg L(-1) (corresponding to 23.5 mg Mo L(-1)) among the three molybdenum salts. The research confirmed that the toxicity of molybdenum in the aquatic system is highly dependent on the form of molybdenum salts used, and is also associated with the influence of the background water quality.

  7. Evaluation of the Reference Envelope Approach for Assessing Toxicity in Contaminated Surficial Urban Freshwater Sediments

    EPA Science Inventory

    The reference envelope (RE) has been proposed as an alternative approach to assess sediment toxicity to overcome limitations imposed by the use of control sediments including differences in non-contaminant characteristics and low statistical power when many test sediments are com...

  8. SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE)PHASE I,II,III GUIDANCE DOCUMENT

    EPA Science Inventory

    Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites hav...

  9. Assessment of Supercritical Fluid Extraction Use in Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In this investigation, supercritical fluid extraction (SFE) with pure CO2 was assessed as a confirmatory tool in Phase III of whole sediment toxicity identification evaluations (TIEs). The SFE procedure was assessed on two reference sediments and three contaminated sediments usi...

  10. Acute and delayed toxicities of total body irradiation

    SciTech Connect

    Deeg, H.J.

    1983-12-01

    Total body irradiation is being used with increasing frequency for the treatment of lymphopoietic malignancies and in preparation for marrow transplantation. Acute toxicities include reversible gastroeneritis, mucositis, myelosuppression alopecia. As the success of treatment improves and more patients become long-term survivors, manifestations of delayed and chronic toxicity become evident. These include impairment of growth and development, gonadal failure and sterility, cataract formation and possibly secondary malignancies. The contribution of total body irradiation to the development of pneumonitis and pulmonary fibrosis is still poorly understood. Some of these changes are reversible or correctable, whereas others are permanent. Nevertheless, until equally effective but less toxic regimens become available, total body irradiation appears to be the treatment of choice to prepare patients with leukemia for marrow transplantation.

  11. Assessment of sediment toxicity to marine benthos. (Chapter 9). Book chapter

    SciTech Connect

    Lamberson, J.O.; DeWitt, T.H.; Swartz, R.C.

    1992-01-01

    Most chemical contaminants entering the marine environment eventually accumulate in sediments and, thereby, potentially render the sediments toxic to benthic and demersal organisms. Through deposition, adsorption, diffusion, resuspension, and emigration, sediments serve as both a sink and source for toxic contaminants in the marine environment. The relationship between the concentrations of chemicals in sediments and in the tissues of benthic biota is well established. Although the linkage between bioaccumulation and toxicological responses is poorly documented, logic indicates a strong association. Chemical contaminants in sediments have been implicated as the cause of the abnormal pathology observed in benthic and demersal organisms and the alterations in the structure of benthic invertebrate populations and communities.

  12. Tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity tests

    SciTech Connect

    Kemble, N.E.; Dwyer, F.J.; Ingersoll, C.G.; Dawson, T.D.; Norberg-King, T.J.

    1999-02-01

    A method is described for preparing formulated sediments for use in toxicity testing. Ingredients used to prepare formulated sediments included commercially available silt, clay, sand, humic acid, dolomite, and {alpha}-cellulose (as a source of organic carbon). {alpha}-Cellulose was selected as the source of organic carbon because it is commercially available, consistent from batch to batch, and low in contaminant concentrations. The tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity testing was evaluated. Sediment exposures were conducted for 10 d with the amphipod Hyalella azteca, the midges Chironomus riparius and C. tentans, and the oligochaete Lumbriculus variegatus and for 28 d with H. azteca. Responses of organisms in formulated sediments was compared with a field-collected control sediment that has routinely been used to determine test acceptability. Tolerance of organisms to formulated sediments was evaluated by determining responses to varying levels of {alpha}-cellulose, to varying levels of grain size, to evaluation of different food types, or to evaluation of different sources of overlying water. In the 10-d exposures, survival of organisms exposed to the formulated sediments routinely met or exceeded the responses of test organisms exposed to the control sediment and routinely met test acceptability criteria required in standard methods. Growth of amphipods and oligochaetes in 10-d exposures with formulated sediment was often less than growth of organisms in the field-collected control sediment. Additional research is needed, using the method employed to prepare formulated sediment, to determine if conditioning formulated sediments before starting 10-d tests would improve the growth of amphipods. In the 28-d exposures, survival of H. azteca was low when reconstituted water was used as the source of overlying water. However, when well water was used as the source of overlying water in

  13. Tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity tests

    USGS Publications Warehouse

    Kemble, N.E.; Dwyer, F.J.; Ingersoll, C.G.; Dawson, T.D.; Norberg-King, T. J.

    1999-01-01

    A method is described for preparing formulated sediments for use in toxicity testing. Ingredients used to prepare formulated sediments included commercially available silt, clay, sand, humic acid, dolomite, and ??- cellulose (as a source of organic carbon). ??-Cellulose was selected as the source of organic carbon because it is commercially available, consistent from batch to batch, and low in contaminant concentrations. The tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity testing was evaluated. Sediment exposures were conducted for 10 d with the amphipod Hyalella azteca, the midges Chironomus riparius and C. tentans, and the oligochaete Lumbriculus variegatus and for 28 d with H. azteca. Responses of organisms in formulated sediments was compared with a field-collected control sediment that has routinely been used to determine test acceptability. Tolerance of organisms to formulated sediments was evaluated by determining responses to varying levels of ??-cellulose, to varying levels of grain size, to evaluation of different food types, or to evaluation of different sources of overlying water. In the 10-d exposures, survival of organisms exposed to the formulated sediments routinely met or exceeded the responses of test organisms exposed to the control sediment and routinely met test acceptability criteria required in standard methods. Growth of amphipods and oligochaetes in 10-d exposures with formulated sediment was often less than growth of organisms in the field-collected control sediment. Additional research is needed, using the method employed to prepare formulated sediment, to determine if conditioning formulated sediments before starting 10-d tests would improve the growth of amphipods. In the 28-d exposures, survival of H. azteca was low when reconstituted water was used as the source of overlying water. However, when well water was used as the source of overlying water in 28-d exposures

  14. Toxicity of phthalates to selected benthic organisms via water and sediment exposures

    SciTech Connect

    Call, D.J.; Markee, T.P.; VandeVenter, F.A.; Cox, D.A.; Geiger, D.L.; Brooke, L.T.

    1995-12-31

    A three-tiered approach was applied to evaluate the bioavailability and toxicity of a series of phthalic acid esters to selected benthic invertebrates. Tier 1 consisted of 10-day exposures of the test species to the phthalates in water without sediments to determine toxicity. Tier 2 consisted of incorporating the phthalates into natural sediments and evaluating their persistence in phthalate-amended sediments under conditions simulating those of a 10-day toxicity test of contaminated sediments. Tier 3 consisted of performing 10-day exposures of test animals to phthalate-amended sediments. Phthalates were amended to sediments for Tier 3 testing based upon the results of Tier 1 and Tier 2 tests, and an estimation of partitioning between sediment and pore water based upon equilibrium partitioning theory (EPT). Sediments of varying organic carbon content were used to evaluate the bioavailability and toxicity of phthalate-amended sediments. The phthalates included in this study were dimethyl, diethyl, di-n-butyl, butylbenzyl, di-n-hexyl, di-2-ethylhexyl and di-n-decyl phthalate. The sensitivities of the three test species followed the general order in water-only tests: Hyalella azteca > Chironomus tentans > Lumbriculus variegatus. The persistence of selected phthalates from Tier 2 tests, their respective toxicities from Tier 3 tests, and the utility of the EPT approach in assessing phthalate toxicity will be discussed.

  15. Suitability of the marine prosobranch snail Hydrobia ulvae for sediment toxicity assessment: A case study with the anionic surfactant linear alkylbenzene sulphonate (LAS).

    PubMed

    Hampel, M; Moreno-Garrido, I; González-Mazo, E; Blasco, J

    2009-05-01

    Individuals of the mudsnail Hydrobia ulvae (Pennant) (Mollusca: Prosobranchia) were exposed to sediments spiked with increasing concentrations (1.59-123.13mgkg(-1) dry weight) of the anionic surfactant linear alkylbenzene sulphonate (LAS) which is employed in the formulation of laundry powders and liquids, as well as hand dishwashing products. The suitability of the selected organism, H. ulvae for routine sediment toxicity testing was evaluated by measuring acute toxicity recording survival. Sublethal toxicity was evaluated as total number of produced veliger larvae per treatment throughout the test (9d). Mortality has shown to be a reliable and reproducible indicator of acute toxicity. LC(50) values were comprised between 203.4 (48h) and 94.3mgkg(-1) (9d) dry weight. As sublethal endpoint, the total number of produced larvae showed to be a useful indicator of toxicity for this organism. The number of produced larvae increased at lower exposure concentrations, whereas at the highest LAS concentration, the number of produced larvae decreased. This is the first report of acute and sublethal toxicity of sediment associated LAS for this species.

  16. Sediment toxicity testing with the amphipod Ampelisca abdita in Calcasieu Estuary, Louisiana

    USGS Publications Warehouse

    Redmond, M.S.; Crocker, P.A.; McKenna, K.M.; Petrocelli, E.A.; Scott, K.J.; Demas, C.R.

    1996-01-01

    Discharges from chemical and petrochemical manufacturing facilities have contaminated portions of Louisiana's Calcasieu River estuary with a variety of organic and inorganic contaminants. As part of a special study, sediment toxicity testing was conducted to assess potential impact to the benthic community. Ten-day flow-through sediment toxicity tests with the amphipod Ampelisca abdita revealed significant toxicity at 68% (26 of 38) of the stations tested. A. abdita mortality was highest in the effluent-dominated bayous, which are tributaries to the Calcasieu River. Mortality was correlated with total heavy metal and total organic compound concentrations in the sediments. Ancillary experiments showed that sediment interstitial water salinity as low as 2.5 o/o-o did not significantly affect A. abdita's, response in the flow-through system; sediment storage for 7 weeks at 4??C did not significantly affect toxicity. Sediment toxicity to A. abdita was more prevalent than receiving water toxicity using three short-term chronic bioassays. Results suggest that toxicity testing using this amphipod is a valuable tool when assessing sediments containing complex contaminant mixtures and for assessing effects of pollutant loading over time. In conjunction with chemical analyses, the testing indicated that the effluent-dominated, brackish bayous (Bayou d'Inde and Bayou Verdine) were the portions of the estuary most impacted by toxicity.

  17. Use of the aquatic oligochaete lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants

    SciTech Connect

    Phipps, G.L.; Ankley, G.T.; Benoit, D.A.; Mattson, V.R. )

    1993-02-01

    In this paper the authors describe test methods utilizing the aquatic oligochaete Lumbriculus variegatus to assess the acute and chronic toxicity and the presence of bioaccumulatable compounds in contaminated sediments. Lumbriculus variegatus was chosen as a test species because (a) it represents an ecologically relevant component of freshwater ecosystems; (b) it is suitable for long-term testing and evaluation of chronic toxicity end points (e.g., growth, reproduction); (c) it is exposed via all important routes of concern, including ingesting of contaminated particles; and (d) it has sufficient biomass to assess bioaccumulation of contaminants. Also, Lumbriculus variegatus is easily cultured and handled. Described herein are culturing procedures and test protocols for Lumbriculus variegatus, as well as two examples of the types of experimental data generated when using the oligochaete in test with contaminated sediments. Two case studies are presented in which L. variegatus was used to assess the bioaccumulation of metals (cadmium, nickel) from contaminated sediments and assess the toxicity of sediment samples collected from the copper-contaminated Keweenaw Waterway system in Michigan.

  18. Validation and sensitivity comparisons of micro-scale toxicity tests for the evaluation of freshwater sediment toxicity

    SciTech Connect

    Riebel, P.; Bureau, J.; Blaise, C.; Michaud, J.R.

    1995-12-31

    A three-year study is currently underway to develop a representative and cost-effective battery of toxicity tests for evaluating freshwater sediment and porewater toxicity. Among the tests currently being evaluated are the following: Microtox{trademark} chronic test, Microtox{trademark} solid-phase test, Microtox{trademark} liquid phase test, Thamnotoxkit F{trademark}, Rotoxkit F{trademark}, Daphnia magna IQ test{trademark}, Sediment Toxkit, SOS Chromotest, a Selenastrum capricornutum short exposure assay, and trout hepatocyte assays. Conventional sediment tests with Chironomus tentans, Hyalella azteca and Lumbriculus variegatus, as well as benthic macroinvertebrate community assessments and sediment chemical characterizations are being conducted at two contaminated sites. Toxicity test reproducibility, sensitivity, practicality, cost and ecological relevance are discussed.

  19. Use of porewater extracts to identify the cause of toxicity in marine and estuarine sediments

    SciTech Connect

    Douglas, W.S.

    1994-12-31

    Amphipod toxicity tests in the evaluation of dredged material proposed for ocean disposal has come under increased scrutiny by the regulated community in the Port of NY/NJ. In recent large-scale assessments of sediment quality in the harbor, the vast majority of locations were deemed highly contaminated when tested with Ampelisca abdita. Toxicity tests, by themselves, do not provide data regarding the cause of toxicity of these sediments. The enormous potential costs associated with most proposed alternatives to ocean disposal of dredged sediments has prompted the investigation of the causative agents of toxicity in sediments of the NY/NJ Harbor. Sediment from five locations in the harbor, selected in consultation with local regulatory agencies to represent diverse potential contamination scenarios, was collected and tested for toxicity to the amphipods Ampelisca abdita, Leptocheirus plumulosus, Eohaustorius estuadus, Rhepoxynius abronius, and the mysid shrimp, Mysidopsis bahia, using 10-day static bioassays. Porewater from each of the five sediments was extracted under centrifugation and used in water-only toxicity tests with A. abdita, L. plumulosus, R. abronius, E. estuadus, M. bahia, M. beryllina, and Microtox. A Phase 1 Toxicity Identification Evaluation of the three most toxic porewater samples was conducted using several of the species tested. Results from the preliminary investigations and the ongoing TIE`s will be presented. Species selection, porewater toxicity test procedures, and Phase 1, 2, and 3 paradigms will be discussed.

  20. BIOASSAY OF POLLUTED SEDIMENTS AND REDUCTION OF TOXICITY BY AEROBIC TREATMENT

    NASA Astrophysics Data System (ADS)

    Sumikura, Mitsuhiro; Kojima, Toshikazu; Okamura, Kazuo; Horiuchi, Sumio

    Aerobic treatment is being studied as an efficient in-situ remediation method for polluted sediments. This treatment method is able to decompose organic substances that are otherwise difficult to degrade. Changes in toxicity during such treatment is the subject of this study. Bioassay utilizing Daphnia magna was conducted for toxicity assessment of sediment. Laboratory treatment experiment was conducted, and changes in toxicity and dissolved ion concentrations were measured.Conclusions from this test are, as follows; (1) toxicity of chloride, ammonia, and sulfide was found to be masked by the coexisting materials in the sample matrix, and (2) changes of toxicity was dependent on the forms of sulfur and nitrogen species.

  1. Copper Sediment Toxicity and Partitioning during Oxidation in a Flow-Through Flume.

    PubMed

    Costello, David M; Hammerschmidt, Chad R; Burton, G Allen

    2015-06-01

    The bioavailability of transition metals in sediments often depends on redox conditions in the sediment. We explored how the physicochemistry and toxicity of anoxic Cu-amended sediments changed as they aged (i.e., naturally oxidized) in a flow-through flume. We amended two sediments (Dow and Ocoee) with Cu, incubated the sediments in a flow-through flume, and measured sediment physicochemistry and toxicity over 213 days. As sediments aged, oxygen penetrated sediment to a greater depth, the relative abundance of Fe oxides increased in surface and deep sediments, and the concentration of acid volatile sulfide declined in Ocoee surface sediments. The total pool of Cu in sediments did not change during aging, but porewater Cu, and Cu bound to amorphous Fe oxides decreased while Cu associated with crystalline Fe oxides increased. The dose-response of the epibenthic amphipod Hyalella azteca to sediment total Cu changed over time, with older sediments being less toxic than freshly spiked sediments. We observed a strong dose-response relationship between porewater Cu and H. azteca growth across all sampling periods, and measurable declines in relative growth rates were observed at concentrations below interstitial water criteria established by the U.S. EPA. Further, solid-phase bioavailability models based on AVS and organic carbon were overprotective and poorly predicted toxicity in aged sediments. We suggest that sediment quality criteria for Cu is best established from measurement of Cu in pore water rather than estimating bioavailable Cu from the various solid-phase ligands, which vary temporally and spatially. PMID:25966043

  2. Effects of storage time on the toxicity of sediments to freshwater benthic invertebrates

    SciTech Connect

    DeFoe, D.L.; Ankley, G.T.

    1994-12-31

    Current guidance concerning recommended storage times for sediments to be subjected to toxicity tests has been based largely on limited studies with a small number of samples. The objective of this study was to better define the effects of storage time on the toxicity of a series of freshwater sediments. Eighteen sediments with varying types of contaminants (metals, pesticides, PCBs, ammonia) were collected, held at 4 C, and periodically tested for toxicity to the amphipod Hyalella azteca and the midge Chironomus tentans for storage times ranging from 4 to 16 months. The sediments ranged from non-toxic to, extremely toxic (100% mortality) in 10-d assays with both species, with the majority of samples displaying an intermediate degree of toxicity. Toxicity of most of the samples did not vary significantly with storage time; in those instances when toxicity did change, the same relative conclusions concerning sample toxicity generally would have been made regardless of when they were tested. Their data suggest that current guidelines concerning sediment storage times may be overly restrictive, at least with respect toxicity testing.

  3. Determination of acute oral toxicity of flumethrin in honey bees.

    PubMed

    Oruc, H H; Hranitz, J M; Sorucu, A; Duell, M; Cakmak, I; Aydin, L; Orman, A

    2012-12-01

    Flumethrin is one of many pesticides used for the control and treatment of varroatosis in honey bees and for the control of mosquitoes and ticks in the environment. For the control of varroatosis, flumethrin is applied to hives formulated as a plastic strip for several weeks. During this time, honey bees are treated topically with flumethrin, and hive products may accumulate the pesticide. Honey bees may indirectly ingest flumethrin through hygienic behaviors during the application period and receive low doses of flumethrin through comb wax remodeling after the application period. The goal of our study was to determine the acute oral toxicity of flumethrin and observe the acute effects on motor coordination in honey bees (Apis mellifera anatoliaca). Six doses (between 0.125 and 4.000 microg per bee) in a geometric series were studied. The acute oral LD50 of flumethrin was determined to be 0.527 and 0.178 microg per bee (n = 210, 95% CI) for 24 and 48 h, respectively. Orally administered flumethrin is highly toxic to honey bees. Oral flumethrin disrupted the motor coordination of honey bees. Honey bees that ingested flumethrin exhibited convulsions in the antennae, legs, and wings at low doses. At higher doses, partial and total paralysis in the antennae, legs, wings, proboscises, bodies, and twitches in the antennae and legs were observed.

  4. Acute oral toxicities of wildland fire control chemicals to birds.

    PubMed

    Vyas, Nimish B; Spann, James W; Hill, Elwood F

    2009-03-01

    Wildland fire control chemicals are released into the environment by aerial and ground applications to manage rangeland, grassland, and forest fires. Acute oral 24h median lethal dosages (LD50) for three fire retardants (Fire-Trol GTS-R, Phos-Chek D-75F, and Fire-Trol LCG-R) and two Class A fire suppressant foams (Silv-Ex and Phos-Chek WD881) were estimated for northern bobwhites, Colinus virginianus, American kestrels, Falco sparverius, and red-winged blackbirds, Agelaius phoeniceus. The LD50s of all chemicals for the bobwhites and red-winged blackbirds and for kestrels dosed with Phos-Chek WD881 and Silv-Ex were above the predetermined 2000mg chemical/kg body mass regulatory limit criteria for acute oral toxicity. The LD50s were not quantifiable for kestrels dosed with Fire-Trol GTS-R, Phos-Chek D-75F, and Fire-Trol LCG-R because of the number of birds which regurgitated the dosage. These chemicals appear to be of comparatively low order of acute oral toxicity to the avian species tested.

  5. Acute oral toxicities of wildland fire control chemicals to birds

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Hill, E.F.

    2009-01-01

    Wildland fire control chemicals are released into the environment by aerial and ground applications to manage rangeland, grassland, and forest fires. Acute oral 24 h median lethal dosages (LD50) for three fire retardants (Fire-Trol GTS-R?, Phos-Chek D-75F?, and Fire-Trol LCG-R?) and two Class A fire suppressant foams (Silv-Ex? and Phos-Chek WD881?) were estimated for northern bobwhites, Colinus virginianus, American kestrels, Falco sparverius, and red-winged blackbirds, Agelaius phoeniceus. The LD50s of all chemicals for the bobwhites and red-winged blackbirds and for kestrels dosed with Phos-Chek WD881? and Silv-Ex? were above the predetermined 2000 mg chemical/kg body mass regulatory limit criteria for acute oral toxicity. The LD50s were not quantifiable for kestrels dosed with Fire-Trol GTS-R?, Phos-Chek D-75F?, and Fire-Trol LCG-R? because of the number of birds which regurgitated the dosage. These chemicals appear to be of comparatively low order of acute oral toxicity to the avian species tested.

  6. An evaluation of the toxicity of contaminated sediments from Waukegan Harbor, Illinois, following remediation.

    PubMed

    Kemble, N E; Hardesty, D G; Ingersoll, C G; Johnson, B T; Dwyer, F J; MacDonald, D D

    2000-11-01

    Waukegan Harbor in Illinois was designated as a Great Lakes Area of Concern due to high concentrations of sediment-associated polychlorinated biphenyls (PCBs). The objective of this study was to evaluate the toxicity of 20 sediment samples collected after remediation (primarily dredging) of Waukegan Harbor for PCBs. A 42-day whole sediment toxicity test with the amphipod Hyalella azteca (28-day sediment exposure followed by a 14-day reproductive phase) and sediment toxicity tests with Microtox(R) were conducted to evaluate sediments from Waukegan Harbor. Endpoints measured were survival, growth, and reproduction (amphipods) and luminescent light emission (bacteria). Survival of amphipods was significantly reduced in 6 of the 20 sediment samples relative to the control. Growth of amphipods (either length or weight) was significantly reduced relative to the control in all samples. However, reproduction of amphipods identified only two samples as toxic relative to the control. The Microtox basic test, conducted with organic extracts of sediments identified only one site as toxic. In contrast, the Microtox solid-phase test identified about 50% of the samples as toxic. A significant negative correlation was observed between reproduction and the concentration of three polynuclear aromatic hydrocarbons (PAHs) normalized to total organic carbon. Sediment chemistry and toxicity data were evaluated using sediment quality guidelines (consensus-based probable effect concentrations, PECs). Results of these analyses indicate that sediment samples from Waukegan Harbor were toxic to H. azteca contaminated at similar contaminant concentrations as sediment samples that were toxic to H. azteca from other areas of the United States. The relationship between PECs and the observed toxicity was not as strong for the Microtox test. The results of this study indicate that the first phase of sediment remediation in Waukegan Harbor successfully lowered concentrations of PCBs at the site

  7. Identifying and designing chemicals with minimal acute aquatic toxicity

    PubMed Central

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T.; Zimmerman, Julie Beth

    2015-01-01

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure–activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical–chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard. PMID:24639521

  8. Antioxidant Capacity, Cytotoxicity, and Acute Oral Toxicity of Gynura bicolor.

    PubMed

    Teoh, Wuen Yew; Sim, Kae Shin; Moses Richardson, Jaime Stella; Abdul Wahab, Norhanom; Hoe, See Ziau

    2013-01-01

    Gynura bicolor (Compositae) which is widely used by the locals as natural remedies in folk medicine has limited scientific studies to ensure its efficacy and nontoxicity. The current study reports the total phenolic content, antioxidant capacity, cytotoxicity, and acute oral toxicity of crude methanol and its fractionated extracts (hexane, ethyl acetate, and water) of G. bicolor leaves. Five human colon cancer cell lines (HT-29, HCT-15, SW480, Caco-2, and HCT 116), one human breast adenocarcinoma cell line (MCF7), and one human normal colon cell line (CCD-18Co) were used to evaluate the cytotoxicity of G. bicolor. The present findings had clearly demonstrated that ethyl acetate extract of G. bicolor with the highest total phenolic content among the extracts showed the strongest antioxidant activity (DPPH radical scavenging assay and metal chelating assay), possessed cytotoxicity, and induced apoptotic and necrotic cell death, especially towards the HCT 116 and HCT-15 colon cancer cells. The acute oral toxicity study indicated that methanol extract of G. bicolor has negligible level of toxicity when administered orally and has been regarded as safe in experimental rats. The findings of the current study clearly established the chemoprevention potential of G. bicolor and thus provide scientific validation on the therapeutic claims of G. bicolor. PMID:24369485

  9. Antioxidant Capacity, Cytotoxicity, and Acute Oral Toxicity of Gynura bicolor

    PubMed Central

    Sim, Kae Shin; Abdul Wahab, Norhanom

    2013-01-01

    Gynura bicolor (Compositae) which is widely used by the locals as natural remedies in folk medicine has limited scientific studies to ensure its efficacy and nontoxicity. The current study reports the total phenolic content, antioxidant capacity, cytotoxicity, and acute oral toxicity of crude methanol and its fractionated extracts (hexane, ethyl acetate, and water) of G. bicolor leaves. Five human colon cancer cell lines (HT-29, HCT-15, SW480, Caco-2, and HCT 116), one human breast adenocarcinoma cell line (MCF7), and one human normal colon cell line (CCD-18Co) were used to evaluate the cytotoxicity of G. bicolor. The present findings had clearly demonstrated that ethyl acetate extract of G. bicolor with the highest total phenolic content among the extracts showed the strongest antioxidant activity (DPPH radical scavenging assay and metal chelating assay), possessed cytotoxicity, and induced apoptotic and necrotic cell death, especially towards the HCT 116 and HCT-15 colon cancer cells. The acute oral toxicity study indicated that methanol extract of G. bicolor has negligible level of toxicity when administered orally and has been regarded as safe in experimental rats. The findings of the current study clearly established the chemoprevention potential of G. bicolor and thus provide scientific validation on the therapeutic claims of G. bicolor. PMID:24369485

  10. Identifying and designing chemicals with minimal acute aquatic toxicity.

    PubMed

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T; Zimmerman, Julie Beth

    2015-05-19

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure-activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical-chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard.

  11. Mobility and toxicity of metals in sandy sediments deposited on land.

    PubMed

    Prokop, Z; Vangheluwe, M L; Van Sprang, P A; Janssen, C R; Holoubek, I

    2003-01-01

    A times series of laboratory experiments were conducted to investigate the effect of land deposition of contaminated sediments on the bioavailability and mobility of metals. Four sandy sediments were sampled at sites expected to have elevated levels of cadmium and zinc. The physical and chemical characteristics and ecotoxicity of sediments, pore waters, and leachates were evaluated after periods ranging from 1 to 45 days of land deposition. Cd and Zn retardation and leaching potential were calculated and this simulation gave good predictions of subsequently observed Cd and Zn mobility. The mobility and leaching of Cd and Zn in the sediments increased with decreasing pH and with decreasing content of organic matter. During the deposition an increase in sediment toxicity to plants and an increase in eluate toxicity to invertebrates were observed. A high rate of water flow through the sediment resulted in a lower toxicity enhancement of the sediments and a higher toxicity enhancement of the eluates. This result suggests that water flow through the sediment reduces the actual toxicity of the upper layer of deposited sediment but at the same time intensifies the risk of groundwater contamination.

  12. The use of chironomid deformation in an in situ test for sediment toxicity.

    PubMed

    Meregalli, G; Vermeulen, A C; Ollevier, F

    2000-11-01

    An in situ bioassay using mouthpart deformities in Chironomus riparius larvae was developed to monitor sediment toxicity. Second-instar larvae, along with a standardized amount of food and sediment taken from the study locations, were enclosed in cages that were placed on the sediment surface of rivers. Mouthpart deformities were screened after larval molting to the fourth instar (exposure time: 7-10 days). Mouthpart deformities of caged and field larvae (when present) were related to the estimated sediment toxicity. By summing toxicant concentrations and normalizing them to the organic matter and clay contents, a significant relationship between toxicity levels and mouthpart deformities in the mentum was revealed. Results suggest that the pattern of observed deformities was indicative of site toxicity rather than a characteristic of the laboratory larval population used. The main advantage of the proposed in situ bioassay is the possibility to assess the incidence of deformities at sites where C. riparius does not occur naturally. PMID:11139175

  13. Development of marine sediment toxicity identification evaluation methods using Strongylocentrotus purpuratus, Mytilus edulis, and Eohaustorius estuarius

    SciTech Connect

    Wortham, G.; Cotsifas, J.S.; Taberski, K.; Hansen, S.R.

    1994-12-31

    Widespread sediment toxicity, including ``clean`` reference sites, dictates that the causes of toxicity in sediments be determined. Toxicity Identification Evaluations (TIE) are useful tools in characterizing compounds responsible for toxicity, but were unavailable for sediment samples. TIE methods were developed for sediment porewater and included the following components: determination of an appropriate porewater extraction process; control TIE tests using marine water and porewater evaluating species sensitivities to the fractionation procedures; validation experiments investigating the removal efficiencies of organics using C18 solid phase extraction, and metals chelation using EDTA and STS; spiking experiments to determine the effectiveness of the TIE procedure in identifying multiple toxicants. The authors determined that fractionation procedures could be applied to both marine water and porewater using S. purpuratus, M. edulis and E. estuarius as biological detectors.

  14. Acute and late gastrointestinal toxicity after radiotherapy in prostate cancer patients: Consequential late damage

    SciTech Connect

    Heemsbergen, Wilma D. . E-mail: w.heemsbergen@nki.nl; Peeters, Stephanie T.H.; Koper, Peter; Hoogeman, Mischa S.; Lebesque, Joos V.

    2006-09-01

    Purpose: Late gastrointestinal (GI) toxicity after radiotherapy can be partly explained by late effects of acute toxicity (consequential late damage). We studied whether there is a direct relationship between acute and late GI toxicity. Patients and Methods: A total of 553 evaluable patients from the Dutch dose escalation trial (68 Gy vs. 78 Gy) were included. We defined three outcomes for acute reactions: 1) maximum Radiation Therapy Oncology Group acute toxicity, 2) maximum acute mucous discharge (AMD), and 3) maximum acute proctitis. Within a multivariable model, late endpoints (overall toxicity and five toxicity indicators) were studied as a function of acute toxicity, pretreatment symptoms, and relevant dose parameters. Results: At multivariable analysis, AMD and acute proctitis were strong predictors for overall toxicity, 'intermittent bleeding,' and 'incontinence pads' (p {<=} 0.01). For 'stools {>=}6/day' all three were strong predictors. No significant associations were found for 'severe bleeding' and 'use of steroids.' The predictive power of the dose parameters remained at the same level or became weaker for most late endpoints. Conclusions: Acute GI toxicity is an independent significant predictor of late GI toxicity. This suggests a significant consequential component in the development of late GI toxicity.

  15. Accuracy of Chronic Aquatic Toxicity Estimates Determined from Acute Toxicity Data and Two Time–Response Models.

    EPA Science Inventory

    Traditionally, chronic toxicity in aquatic organisms and wildlife has been determined from either toxicity test data, acute to chronic ratios, or application of safety factors. A more recent alternative approach has been to estimate chronic toxicity by modeling the time course of...

  16. Use of sublethal endpoints in sediment toxicity testing with the amphipod Hyalella azteca

    SciTech Connect

    Kemble, N.E.; Brunson, E.B.; Dwyer, F.J.; Ehrhardt, E.A.; Hardesty, D.K.; Haverland, P.S.; Ingersoll, C.G.

    1995-12-31

    ASTM and EPA standard methods for sediment toxicity tests with Hyalella azteca typically recommend use of lethality as the endpoint in a 10-d exposure. However, data from 10- to 28-d exposures with amphipods indicate sublethal endpoints (i.e., growth, sexual maturation, or reproduction) identify additional samples as toxic. The authors compared the frequency that lethal and sublethal endpoints identified a sediment sample as toxic in 14- and 28-d amphipod exposures. In the 14-d amphipod exposures, lethality identified 20% of the samples as toxic, and sublethal endpoints identified an additional 16% of the samples as toxic using sublethal endpoints only. Similarly, in the 28-d exposures, lethality identified 14% of the samples as toxic and sublethal endpoints identified an additional 18% of the samples as toxic. The authors are also currently evaluating Sediment Effect Concentrations (SECs) relative to both lethal and sublethal endpoints in H. azteca exposures. These SECs will be used to evaluate reliability in estimating toxicity of samples. Potential factors which may confound interpretation of sublethal endpoints in sediment tests include: (1) changes in sediment chemistry resulting from long-term storage or feeding (2) the influence of physical characteristics of sediment (grain size), and (3) effects of ammonia or hydrogen sulfide.

  17. The problem of variability in assessing sediment toxicity

    SciTech Connect

    McIntosh, A.; Watzin, M.; Lacey, R.; Newbrough, K.; Williams, A.; King, J.

    1995-12-31

    An assessment of sediment-associated contaminants at 20 sites in Inner Burlington Harbor, Lake Champlain, underscores the challenges posed by working in highly variable environments. Chemical analyses revealed levels of several trace metals, including lead, silver and zinc, and total PAHs exceeding available severe effects guidelines. Biological measures, however, did not correlate strongly with areas of highest chemical contamination. In particular, the 48-hr Ceriodaphnia dubia test was a poor predictor of contaminant concentration, while the 10-day growth test with Chironomus tentans proved a stronger indicator. Additional tests in which larval fathead minnows were exposed to pore water proved inconclusive. Infaunal communities seemed to be responding to concentrations of organic matter, not contaminant levels. There was no demonstrable relationship between any taxonomic group, such as the number of genera of Chironomus, and contaminant level. Sites where the AVS/SEM ratios exceeded one did generally correspond with the sites where positive toxicity tests results occurred. Results of the study argue for the use of a weight-of-evidence approach when working in highly disturbed, highly variable environments.

  18. DETERMINANTS OF VARIABILITY IN ACUTE TO CHRONIC TOXICITY RATIOS IN AQUATIC INVERTEBRATES AND FISH

    EPA Science Inventory

    Variability in acute to chronic ratios (ACRs; LC50/chronic value) has been a continuing interest in aquatic toxicology because of the reliance on ACRs to estimate chronic toxicity for chemicals and species with known acute toxicity but limited or no information on sublethal toxic...

  19. Removal of organic contaminant toxicity from sediments - Early work toward development of a toxicity identification evaluation (TIE) method

    USGS Publications Warehouse

    Lebo, J.A.; Huckins, J.N.; Petty, J.D.; Ho, K.T.

    1999-01-01

    Work was performed to determine the feasibility of selectively detoxifying organic contaminants in sediments. The results of this research will be used to aid in the development of a scheme for whole-sediment toxicity identification evaluations (TIEs). The context in which the method will be used inherently restricts the treatments to which the sediments can be subjected: Sediments cannot be significantly altered physically or chemically and the presence and bioavailabilities of other toxicants must not be changed. The methodological problem is daunting because of the requirement that the detoxification method be relatively fast and convenient together with the stipulation that only innocuous and minimally invasive treatments be used. Some of the experiments described here dealt with degrees of decontamination (i.e., detoxification as predicted from instrumental measurements) of spiked sediments rather than with degrees of detoxification as gauged by toxicity tests (e.g., 48-h toxicity tests with amphipods). Although the larger TIE scheme itself is mostly outside the scope of this paper, theoretical aspects of bioavailability and of the desorption of organic contaminants from sediments are discussed.

  20. Acute oral and percutaneous toxicity of pesticides to mallards: Correlations with mammalian toxicity data

    USGS Publications Warehouse

    Hudson, R.H.; Haegele, M.A.; Tucker, R.K.

    1979-01-01

    Acute oral (po) and 24-hr percutaneous (perc) LD50 values for 21 common pesticides (19 anticholinesterases, of which 18 were organophosphates, and one was a carbamate; one was an organochlorine central nervous system stimulant; and one was an organonitrogen pneumotoxicant) were determined in mallards (Anas platyrhynchos). Three of the pesticides tested were more toxic percutaneously than orally. An index to the percutaneous hazard of a pesticide, the dermal toxicity index (DTI = po LD50/perc LD50 ? 100), was also calculated for each pesticide. These toxicity values in mallards were compared with toxicity data for rats from the literature. Significant positive correlations were found between log po and log percutaneous LD50 values in mallards (r = 0.65, p 0.10). Variations in percutaneous methodologies are discussed with reference to interspecies variation in toxicity values. It is recommended that a mammalian DTI value approaching 30 be used as a guideline for the initiation of percutaneous toxicity studies in birds, when the po LD50 and/or projected percutaneous LD50 are less than expected field exposure levels.

  1. Non-animal Replacements for Acute Toxicity Testing.

    PubMed

    Barker-Treasure, Carol; Coll, Kevin; Belot, Nathalie; Longmore, Chris; Bygrave, Karl; Avey, Suzanne; Clothier, Richard

    2015-07-01

    Current approaches to predicting adverse effects in humans from acute toxic exposure to cosmetic ingredients still heavily necessitate the use of animals under EU legislation, particularly in the context of the REACH system, when cosmetic ingredients are also destined for use in other industries. These include the LD50 test, the Up-and-Down Procedure and the Fixed Dose Procedure, which are regarded as having notable scientific deficiencies and low transferability to humans. By expanding on previous in vitro tests, such as the animal cell-based 3T3 Neutral Red Uptake (NRU) assay, this project aims to develop a truly animal-free predictive test for the acute toxicity of cosmetic ingredients in humans, by using human-derived cells and a prediction model that does not rely on animal data. The project, funded by Innovate UK, will incorporate the NRU assay with human dermal fibroblasts in animal product-free culture, to generate an in vitro protocol that can be validated as an accepted replacement for the currently available in vivo tests. To date, the project has successfully completed an assessment of the robustness and reproducibility of the method, by using sodium lauryl sulphate (SLS) as a positive control, and displaying analogous results to those of the original studies with mouse 3T3 cells. Currently, the testing of five known ingredients from key groups (a surfactant, a preservative, a fragrance, a colour and an emulsifier) is under way. The testing consists of initial range-finding runs followed by three valid runs of a main experiment with the appropriate concentration ranges, to generate IC50 values. Expanded blind trials of 20 ingredients will follow. Early results indicate that this human cell-based test holds the potential to replace aspects of in vivo animal acute toxicity testing, particularly with reference to cosmetic ingredients.

  2. Non-animal Replacements for Acute Toxicity Testing.

    PubMed

    Barker-Treasure, Carol; Coll, Kevin; Belot, Nathalie; Longmore, Chris; Bygrave, Karl; Avey, Suzanne; Clothier, Richard

    2015-07-01

    Current approaches to predicting adverse effects in humans from acute toxic exposure to cosmetic ingredients still heavily necessitate the use of animals under EU legislation, particularly in the context of the REACH system, when cosmetic ingredients are also destined for use in other industries. These include the LD50 test, the Up-and-Down Procedure and the Fixed Dose Procedure, which are regarded as having notable scientific deficiencies and low transferability to humans. By expanding on previous in vitro tests, such as the animal cell-based 3T3 Neutral Red Uptake (NRU) assay, this project aims to develop a truly animal-free predictive test for the acute toxicity of cosmetic ingredients in humans, by using human-derived cells and a prediction model that does not rely on animal data. The project, funded by Innovate UK, will incorporate the NRU assay with human dermal fibroblasts in animal product-free culture, to generate an in vitro protocol that can be validated as an accepted replacement for the currently available in vivo tests. To date, the project has successfully completed an assessment of the robustness and reproducibility of the method, by using sodium lauryl sulphate (SLS) as a positive control, and displaying analogous results to those of the original studies with mouse 3T3 cells. Currently, the testing of five known ingredients from key groups (a surfactant, a preservative, a fragrance, a colour and an emulsifier) is under way. The testing consists of initial range-finding runs followed by three valid runs of a main experiment with the appropriate concentration ranges, to generate IC50 values. Expanded blind trials of 20 ingredients will follow. Early results indicate that this human cell-based test holds the potential to replace aspects of in vivo animal acute toxicity testing, particularly with reference to cosmetic ingredients. PMID:26256397

  3. Assessing acute toxicities of pre- and post-treatment industrial wastewaters with Hydra attenuata: A comparative study of acute toxicity with the fathead minnow, Pimephales promelas

    SciTech Connect

    Fu, L.J.; Staples, R.E.; Stahl, R.G. Jr. . Haskell Lab. for Toxicology and Industrial Medicine)

    1994-04-01

    This study was undertaken to (a) determine wastewater treatment effectiveness using two freshwater organisms, (b) compare acute toxicity results from the two species exposed to the wastewaters, and (c) link acute and potential developmental toxicity of wastewaters in one organism. The acute toxicities of several pretreatment and post-treatment industrial waste-water samples wee evaluated with adult Hydra attenuata and fathead minnows. The acute LC50s agreed closely when results in Hydra attenuata were compared with those from fathead minnow tests. Acute LC50s ranged from 3 to >100% of samples with hydra, and from 1.0 to >100% of sample with fathead minnows. The results provided strong evidence of treatment effectiveness because toxicity decreased with progressive stages of treatment. Previously the Hydra Developmental Toxicity Assay was used as a prescreen mainly for in vitro assessment of developmental toxicity with pure compounds and to prioritized toxicants according to selective toxicity to the developing embryo. Recently the authors modified the assay for testing natural waters and wastewaters; hence, some of the wastewater samples also were tested for their developmental toxicity. In this case, the relative selective toxicity of these wastewater samples ranged from 0.7 to 2.1, indicating that no sample was uniquely toxic to the developing embryo, although acute toxicity was manifested. Overall, their results indicate the Hydra Assay functions appropriately in assessments of acute and developmental toxicity of industrial wastewaters and may be a simple and useful tool in a battery of tests for broader scale detection of environmental hazards.

  4. Acute methyl salicylate toxicity complicating herbal skin treatment for psoriasis.

    PubMed

    Bell, Anthony J; Duggin, Geoffrey

    2002-06-01

    We present an interesting case of salicylism arising from the use of methyl salicylate as part of a herbal skin cream for the treatment of psoriasis. A 40-year-old man became quite suddenly and acutely unwell after receiving treatment from an unregistered naturopath. Methyl salicylate (Oil of Wintergreen) is widely available in many over the counter topical analgesic preparations and Chinese medicated oils. Transcutaneous absorption of the methyl salicylate was enhanced in this case due to the abnormal areas of skin and use of an occlusive dressing. The presence of tinnitus, vomiting, tachypnoea and typical acid/base disturbance allowed a diagnosis of salicylate toxicity to be made. Our patient had decontaminated his skin prior to presentation, limiting the extent of toxicity and was successfully treated with rehydration and establishment of good urine flow.

  5. Comparative acute toxicities of surfactants to aquatic invertebrates

    SciTech Connect

    Lewis, M.A.; Suprenant, D.

    1983-06-01

    Investigations of the toxicity of surfactants to aquatic invertebrates have been limited primarily to determining the effects on a few species. In this study, the 48-hr LC50 values for three surfactants are reported for six species of aquatic invertebrates. The acute toxicities (LC50) for each surfactant (mg/liter) varied 159 to 580 X and were as follows: C11.8LAS (anionic), 1.7 (Dero sp.) to 270 (Asellus sp.); C14-15 alkylethoxylate (nonionic), 1.0 (Dugesia sp.) to 6.8 (Rhabditis sp.); CTAC (cationic), 0.1 (Gammarus sp.) to 58 (Asellus sp.). When compared to previously developed data, Daphnia magna was typically found to be the most sensitive of all species tested, including fish, to the surfactants.

  6. Acute methyl salicylate toxicity complicating herbal skin treatment for psoriasis.

    PubMed

    Bell, Anthony J; Duggin, Geoffrey

    2002-06-01

    We present an interesting case of salicylism arising from the use of methyl salicylate as part of a herbal skin cream for the treatment of psoriasis. A 40-year-old man became quite suddenly and acutely unwell after receiving treatment from an unregistered naturopath. Methyl salicylate (Oil of Wintergreen) is widely available in many over the counter topical analgesic preparations and Chinese medicated oils. Transcutaneous absorption of the methyl salicylate was enhanced in this case due to the abnormal areas of skin and use of an occlusive dressing. The presence of tinnitus, vomiting, tachypnoea and typical acid/base disturbance allowed a diagnosis of salicylate toxicity to be made. Our patient had decontaminated his skin prior to presentation, limiting the extent of toxicity and was successfully treated with rehydration and establishment of good urine flow. PMID:12147116

  7. Acute renal toxicity after ingestion of Lava light liquid.

    PubMed

    Erickson, T B; Aks, S E; Zabaneh, R; Reid, R

    1996-06-01

    A 65-year-old man with a history of alcohol abuse and seizure disorder presented to the emergency department with altered mental status, increased anion gap acidosis, phenytoin toxicity, and acute kidney failure. The patient had ingested the liquid contents of a Lava light, which contained chlorinated paraffin, polyethylene glycol (molecular weight 200), kerosene, and micro-crystalline wax. Gas chromatography-mass spectrophotometry of the patient's blood produced results consistent with the same analysis of the Lava light contents. After 3 days of declining mental status and worsening kidney function, the patient required hemodialysis. After a prolonged hospitalization, the patient was discharged home with residual renal insufficiency. Although multifactorial, the associated renal toxicity was most probably related to the low molecular weight polyethylene glycol content of the lamp's liquid contents. PMID:8644972

  8. [Acute and chronic toxicity of saponins from Argania spinosa].

    PubMed

    Alaoui, K; Belabbes, M; Cherrah, Y; Hassar, M; Charrouf, Z; Amarouch, H; Roquebert, J

    1998-01-01

    We evaluated the acute and chronic experimental toxicity of a water extract of saponins from Argania spinosa following oral and intraperitoneal (i.p.) administration in mice (Iops Ofa) and rats (Wistar). The DL50 obtained were 79 mg/kg for the i.p. route and 1,300 mg/kg for the oral route. For the chronic toxicity studies, we administred 100 and 200 mg/kg orally once a day during a 3 month period. There was a decrease in blood sugar in the third month of each therapy. Blood creatinine levels increased, thus evoking a renal pathology. A slight increase in transaminases levels was not significatif. Hematologic parameters were unchanged during the treatment and the histopathologic study showed hepatic glycogen decrease and a focal renal tube deterioration. PMID:9805821

  9. Indium-111 WBC scan in acute toxic centrilobular hepatic necrosis

    SciTech Connect

    Davidson, R.M.; Dhekne, R.D.; Moore, W.H. )

    1989-12-01

    In this case of prolonged fever and abnormal liver functions, dual tracer scintigraphy with In-111 WBCs and Tc-99m SC led to a biopsy-proven diagnosis of severe acute toxic hepatitis (hepatocellular necrosis). Correlation of the Tc-99m SC scan findings with those previously reported for pseudotumors of the liver is discussed. A pseudonormal scan pattern is described for the In-111 WBC scintigraphy. Discordance between In-111 WBC and Tc-99m SC scintigraphy in this clinical setting should raise the possibility of hepatic necrosis as a diagnostic alternative to hepatic abscess.

  10. Soil ingestion: a concern for acute toxicity in children.

    PubMed Central

    Calabrese, E J; Stanek, E J; James, R C; Roberts, S M

    1997-01-01

    Several soil ingestion studies have indicated that some children ingest substantial amounts of soil on given days. Although the EPA has assumed that 95% of children ingest 200 mg soil/day or less for exposure assessment purposes, some children have been observed to ingest up to 25-60 g soil during a single day. In light of the potential for children to ingest such large amounts of soil, an assessment was made of the possibility for soil pica episodes to result in acute intoxication from contaminant concentrations the EPA regards as representing conservative screening values (i.e., EPA soil screening levels and EPA Region III risk-based concentrations for residential soils). For a set of 13 chemicals included in the analysis, contaminant doses resulting from a one-time soil pica episode (5-50 g of soil ingested) were compared with acute dosages shown to produce toxicity in humans in clinical studies or case reports. For four of these chemicals, a soil pica episode was found to result in a contaminant dose approximating or exceeding the acute human lethal dose. For five of the remaining chemicals, the contaminant dose from a soil pica episode was well within the reported dose range in humans for toxicity other than lethality. Because both the exposure episodes and the toxicological response information are derived from observations in humans, these findings are regarded as particularly relevant for human health risk assessment. They suggest that, for some chemicals, ostensibly conservative soil criteria based on chronic exposure using current EPA methodology may not be protective of children during acute soil pica episodes. PMID:9405323

  11. Sediment testing intermittent renewal system for the automated renewal of overlying water in toxicity tests with contaminated sediments

    SciTech Connect

    Benoit, D.A.; Phipps, G.L.; Ankley, G.T.

    1993-01-01

    A sediment testing intermittent renewal (STIR) system (stationary or portable) for invertebrate toxicity testing with contaminated sediments has been successfully developed and thoroughly tested at ERL-Duluth. Both the stationary and portable systems enable the maintenance of acceptable water quality (e.g. DO) through the capability of automatically renewing overlying water in sediment tests at rates ranging from 1 to 21 volume renewals/day. The STIR system not only significantly reduces the labor associated with renewal of overlying water but also affords a gentle exchange of water that results in virtually no sediment resuspension. Both systems can also be installed in a compact vented enclosure to permit safe testing of hazardous contaminated sediments. To date the STIR system has been used extensively for conducting 10-day bulk sediment tests with Chironomus tentans, Hyalella azteca and Lumbriculus variegatus.

  12. Acute and subacute toxicity of 10B-paraboronophenylalanine

    SciTech Connect

    Taniyama, K.; Fujiwara, H.; Kuno, T.; Saito, N.; Shuntoh, H.; Sakaue, M.; Tanaka, C. )

    1989-07-01

    The acute and subacute toxicities of 10B-paraboronophenylalanine (10B-BPA) were investigated in the rat, according to the Good Laboratory Practice Standard for safety studies on drugs in Japan. In the acute toxicity test of 10B-BPA, LD50 values of acidic 10B-BPA for intraperitoneal and subcutaneous injections were 640 mg/kg for male and 710 mg/kg for female rats, and more than 1,000 mg/kg for male and female rats, respectively. The LD50 values of neutral 10B-BPA for intraperitoneal and subcutaneous injections were more than 3,000 mg/kg for male and female rats. The difference in LD50 values between acidic and neutral 10B-BPA may be attributed to the acidity of material. From the subacute toxicity test, in which the rats were injected daily subcutaneously for 28 days, the following toxic effects of 10B-BPA were observed. Increase in ketone level in the urine was induced in all rats treated with 10B-BPA. High dose of 10B-BPA (1,500 mg/kg) induced increase in spleen weight and reticulocyte count, and decrease in hemoglobin count, thereby suggesting that 10B-BPA causes hemolysis. Increases in the leukocyte count and the ratio of neutrophils and lymphocytes were also observed in rats treated with a high dose of 10B-BPA. This may be attributed to local reactions at the injection site. There were no significant differences in the findings between control rats and rats treated with a low dose of 10B-BPA (300 mg/kg). Thus, low doses of neutral 10B-BPA may be available for use as a drug.

  13. IDENTIFICATION OF TOXICANTS IN WHOLE MARINE SEDIMENTS: METHODS AND RESULTS

    EPA Science Inventory

    Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways. Information from stressor identification can be useful in designing effective sediment remediation methods, assessing options for sediment disposal, allowing m...

  14. Marine sediment toxicity identification evaluation methods for the anionic metals arsenic and chromium.

    PubMed

    Burgess, Robert M; Perron, Monique M; Cantwell, Mark G; Ho, Kay T; Pelletier, Marguerite C; Serbst, Jonathan R; Ryba, Stephan A

    2007-01-01

    Marine sediments accumulate a variety of contaminants and, in some cases, demonstrate toxicity because of this contamination. Toxicity identification evaluation (TIE) methods provide tools for identifying the toxic chemicals causing sediment toxicity. Currently, whole-sediment TIE methods are not available for anionic metals like arsenic and chromium. In the present paper, we describe two new anion-exchange resins used in the development of whole-sediment TIE methods for arsenic and chromium. Resins were shown to reduce whole-sediment toxicity and overlying water concentrations of the anionic metals. Sediment toxicity, expressed as the median lethal concentration, was reduced by a factor of two to a factor of nearly six between amended sediment treatments containing resin and those without resin. Aqueous concentrations of arsenic and chromium in the toxicity exposures decreased to less than the detection limits or to concentrations much lower than those measured in treatments without resin. Interference studies indicated that the anion-exchange resins had no significant effect on concentrations of the representative pesticide endosulfan and minimal effects on concentrations of ammonia. However, the anion-exchange resins did significantly reduce the concentrations of a selection of cationic metals (Cd, Cu, Ni, Pb, and Zn). These data demonstrate the utility of anion-exchange resins for determining the contribution of arsenic and chromium to whole-sediment toxicity. The present results also indicate the importance of using TIE methods in a formal TIE structure to ensure that results are not misinterpreted. These methods should be useful in the performance of marine whole-sediment TIEs.

  15. Use of the aquatic plant Elodea canadensis to assess toxicity and genotoxicity of Yenisei River sediments.

    PubMed

    Zotina, Tatiana A; Trofimova, Elena A; Medvedeva, Marina Yu; Dementyev, Dmitry V; Bolsunovsky, Alexander Ya

    2015-10-01

    The toxicity, cytotoxicity, and genotoxicity of bulk sediments from the Yenisei River (Siberia, Russia) were estimated in laboratory bioassays based on several endpoints in the aquatic plant Elodea canadensis. The bottom sediment samples were collected in the Yenisei River upstream and downstream of the sources of chemical and radioactive contamination. The testing revealed different sensitivities of Elodea endpoints to the quality of the bottom sediment: weight of shoots < length of shoots < mitotic index < length of roots < percentage of abnormal cells. The response of the genotoxicity endpoint (percentage of cells with chromosome abnormalities in roots of Elodea) was the highest in sediments with chemical pollution, whereas the highest inhibition of toxicity endpoints (shoot and root length) occurred in sediments with the highest level of radioactive pollution. The extreme response of Elodea endpoints to the quality of certain sediment samples may be regarded as related to the possible presence of unknown toxicants. The results show that E. canadensis can be used as an indicator species in laboratory contact testing of bottom sediment. The responses of shoot and root length growth endpoints of Elodea can be recommended as basic sensitivity indicators of bottom sediment toxicity. Analysis of cells carrying abnormal chromosomes in the apical root meristem of Elodea can be performed optionally in the same test to assess the genotoxicity of sediments. PMID:25940213

  16. [Acute Toxicity of Coptis chinensis Rhizome Extracts to Daphnia carinata].

    PubMed

    Chen, Ya-nan; Yuan, Ling

    2015-10-01

    Coptis chinensis rhizome and preparations were widely used for the treatment of fish diseases in aquaculture. the acute toxicological effect of CRE on lethal, movement and phototaxis was studied on Daphnia carinata monoclone as a test animal in the present experiment. The results showed that CRE was acute toxic to this animal and alkaloids berberine concentrations in CRE changed in the following sequence: half lethal > half inhibitory > limitable, which led to a significant change in phototaxis index of Daphnia carinata. The concentration of CRE for the significant change in phototaxis index was 4.27 mg x L(-1), which was lower than the concentration in water to cure the fish diseases and this conclusion indicated an ecological risk of this antibiotic to Daphnia carinata in aquaculture. In addition, the concentration of CRE in phototaxis index was changed from 30.62 times at 48th hour to 36.51 times at 24th hour that were lower than half lethal concentration. Detecting phototaxis index was easy and only 3 hours was required, so utilizing the quickly change of Daphnia carinata phototaxis can be an effective method to monitor the toxicity effect of CRE on Daphnia carinata. The abuse of rhizome or preparations in aquaculture might destroy the aquatic food chain, resulting in an imbalance of aquatic ecosystems.

  17. Acute Toxicity of Ochratoxins A and B in Chicks 1

    PubMed Central

    Peckham, John C.; Doupnik, Ben; Jones, Oscar H.

    1971-01-01

    Ochratoxins A and B were given to 1-day-old Babcock B-300 cockerels to evaluate acute toxic effects. Two trials with ochratoxin A gave 7-day oral median lethal dose estimates of 116 μg (3.3 mg/kg) and 135 μg (3.9 mg/kg) per chick. Chicks given daily oral doses of 100 μg of ochratoxin A died on the second day. Single subcutaneous doses of 400 μg of ochratoxin A were also lethal. The 7-day oral median lethal dose of B was estimated at 1,890 μg (54 mg/kg) per chick. Chicks given oral doses of 100 μg of ochratoxin B daily for 10 days survived. Sublethal doses of both ochratoxins A and B resulted in growth suppression which was proportional to the amount of ochratoxin given. Visceral gout was the principal gross finding. Microscopic examinations revealed acute nephrosis, hepatic degeneration or focal necrosis, and enteritis. Suppression of hematopoiesis in the bone marrow and depletion of lymphoid elements from the spleen and bursa of Fabricius were frequently seen. Both ochratoxins appeared to have similar pathological effects. This is the first report on the toxicity of ochratoxin B. PMID:4928604

  18. [Acute Toxicity of Coptis chinensis Rhizome Extracts to Daphnia carinata].

    PubMed

    Chen, Ya-nan; Yuan, Ling

    2015-10-01

    Coptis chinensis rhizome and preparations were widely used for the treatment of fish diseases in aquaculture. the acute toxicological effect of CRE on lethal, movement and phototaxis was studied on Daphnia carinata monoclone as a test animal in the present experiment. The results showed that CRE was acute toxic to this animal and alkaloids berberine concentrations in CRE changed in the following sequence: half lethal > half inhibitory > limitable, which led to a significant change in phototaxis index of Daphnia carinata. The concentration of CRE for the significant change in phototaxis index was 4.27 mg x L(-1), which was lower than the concentration in water to cure the fish diseases and this conclusion indicated an ecological risk of this antibiotic to Daphnia carinata in aquaculture. In addition, the concentration of CRE in phototaxis index was changed from 30.62 times at 48th hour to 36.51 times at 24th hour that were lower than half lethal concentration. Detecting phototaxis index was easy and only 3 hours was required, so utilizing the quickly change of Daphnia carinata phototaxis can be an effective method to monitor the toxicity effect of CRE on Daphnia carinata. The abuse of rhizome or preparations in aquaculture might destroy the aquatic food chain, resulting in an imbalance of aquatic ecosystems. PMID:26841628

  19. IN SITU BIOASSAY CHAMBER FOR ASSESSMENT OF SEDIMENT TOXICITY AND BIOACCUMULATION USING BENTHIC INVERTEBRATES

    EPA Science Inventory

    In this study, we describe the construction of a simple, inexpensive bioassay chamber for testing sediment toxicity (survival and growth) and bioaccumulation under field conditions using the midge Chironomus tentans and the oligochaete Lumbriculus variegatus. The test chamber is ...

  20. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    EPA Science Inventory

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  1. Toxicity tests of effluents with marsh plants in water and sediment

    SciTech Connect

    Walsh, G.E.; Weber, D.E.; Simon, T.L.; Brashers, L.K.

    1991-01-01

    Methods are described for toxicity testing of water and sediment with two varieties of the freshwater marsh plant Echinochloa crusgalli (Linneaus) Palisot de Beauvois (Poaceae), and complex effluents. Two tests are described: a seed germination and early seedling growth test in water, and a survival and seedling growth test in natural and synthetic sediments. Effects of effluents from a sewage treatment plant, tannery, textile mill, pulp and paper mill, coking plant and sewage treatment plant included inhibition of germination, chlorophyll synthesis and growth. The tests with rooted marsh plants were sensitive to pollutants and detected toxicity of a range of pollutants in water and sediment. Synthetic sediments similar to natural sediments allowed toxicity tests to be done under carefully controlled conditions of particle size distribution, organic content, pH, electrode potential (Eh) and cation exchange capacity (CEC).

  2. INTER-SPECIES MODELS FOR ACUTE AQUATIC TOXICITY BASED ON MECHANISM OF ACTION

    EPA Science Inventory

    This presentation will provide interspecies QSARs for acute toxicity to 17 aquatic species, such as fish, snail, tadpole, hydrozoan, crustacean, insect larvae, and bacteria developed using 5,000 toxic effect results for approximately 2400 chemicals.

  3. Dexrazoxane Abrogates Acute Doxorubicin Toxicity in Marmoset Ovary1

    PubMed Central

    Salih, Sana M.; Ringelstetter, Ashley K.; Elsarrag, Mazin Z.; Abbott, David H.; Roti, Elon C. Roti

    2015-01-01

    ABSTRACT Preservation of ovarian function following chemotherapy for nonovarian cancers is a formidable challenge. For prepubescent girls, the only option to prevent chemotherapy damage to the ovary is ovarian tissue cryopreservation, an experimental procedure requiring invasive surgeries to harvest and reimplant tissue, which carries the risk of cancer reintroduction. Drugs that block the primary mechanism of chemotherapy insult, such as dexrazoxane (Dexra) in the context of anthracycline chemotherapy, provide a novel approach for ovarian protection and have the potential to overcome current limitations to oncofertility treatment. Dexra is a catalytic topoisomerase 2 inhibitor that protects the mouse ovary from acute doxorubicin (DXR) chemotherapy toxicity in vitro by preventing DXR-induced DNA damage and subsequent gammaH2AX activation. To translate acute DXR ovarian insult and Dexra protection from mouse to nonhuman primate, freshly obtained marmoset ovarian tissue was cultured in vitro and treated with vehicle or 20 μM Dexra 1 h prior to 50 nM DXR. Cultured ovarian tissue was harvested at 2, 4, or 24 h post-DXR treatment. Dexra prevented DXR-induced DNA double-strand breaks as quantified by the neutral comet assay. DXR treatment for 24 h increased gammaH2AX phosphorylation, specifically increasing the number of foci-positive granulosa cells in antral follicles, while Dexra pretreatment inhibited DXR-induced gammaH2AX phosphorylation foci formation. Additionally, Dexra pretreatment trended toward attenuating DXR-induced AKT1 phosphorylation and caspase-9 activation as assayed by Western blots of ovarian tissue lysates. The combined findings suggest Dexra prevents primary DXR-induced DNA damage, the subsequent cellular response to DNA damage, and may diminish early apoptotic signaling in marmoset ovarian tissue. This study provides initial translation of Dexra protection against acute ovarian DXR toxicity from mice to marmoset monkey tissue. PMID:25609833

  4. Influence of water quality parameters on acute silver toxicity

    SciTech Connect

    Bills, T.; Forsythe, B. II; Wenholz, M.; Jeffers, R.; Waldrop, V.; La Point, T.; Bens, C.; Cobb, G.; Klaine, S.J.

    1995-12-31

    The data to adequately characterize the influence of water quality on silver toxicity in freshwater are lacking or poorly developed. Current attempts to extrapolate existing data sets to many sites result in extremely low silver limits. The error associated with these extrapolations dictate that a silver toxicity data set, accounting for various water quality parameters, be generated. The interactive effects of chloride, hardness, alkalinity, total organic carbon, and pH on the acute toxicity of silver (AgNO{sub 3}) were measured using juvenile fathead minnows (Pimephales promelas) and Daphnia magna. The 96-hr LC50 for fathead minnows at the lowest tested levels of water quality parameters was 1.4 ug/L. At the highest levels tested, the 96-hr LC50 for fathead minnows was 3.8 ug/L. Preliminary results suggest the 48-hr LC50 values for Daphnia magna were similar to those of the fish. These results indicate a mitigating effect of certain water quality parameters.

  5. Acute and chronic toxicity of effluent water from an abandoned uranium mine.

    PubMed

    Antunes, S C; Pereira, R; Gonçalves, F

    2007-08-01

    Inactive or abandoned mines represent a significant source of environmental, chemical, physical, and aesthetic impact. Among concerning situations, the occurrence of abandoned or semi-abandoned mine-associated ponds (for sedimentation of solids, for effluent neutralization, or for washing the ore) is a common feature in this type of system. These ponds are a source of contamination for the groundwater resources and adjacent soils, because they lack appropriate impermeabilization. The use of this water for agriculture may also pose chronic risks to humans. In Portugal, these problems have been diagnosed and some remediation projects have been developed. The purpose of our study was to evaluate the acute and chronic toxicity of water samples collected from the aquatic system surrounding an abandoned uranium mine (Cunha Baixa, Mangualde, Central Portugal). The present study focuses on the water compartment, whose toxicity was evaluated by means of standard toxicity assays using two Daphnia species (D. longispina and D. magna). Three different ponds were used in the characterization of the aquatic system from Cunha Baixa mine: a reference pond (Ref), a mine effluent treatment pond (T), and a mine pit pond (M). Metal analyses performed in the water samples from these ponds showed values that, in some cases, were much higher than maximum recommendable values established (especially Al, Mn) by Portuguese legislation for waters for crop irrigation. Acute toxicity was only observed in the mine pit pond, with EC(50) values of 28.4% and 50.4% for D. longispina and D. magna, respectively. The significant impairment of chronic endpoints, translated in reductions in the population growth rate for both species, gives rise to concerns regarding the potential risks for aquatic zooplanktonic communities, from local receiving waters, potentially exposed to point source discharges of the treated and nontreated effluent from Cunha Baixa uranium mine.

  6. SEDIMENT TOXICITY IDENTIFICATION AND EVALUATIONS: NEW TEST METHODS. WHAT'S BEEN DONE? WHERE ARE WE GOING?

    EPA Science Inventory

    Toxic sediments pose a risk to aquatic life, human health and wildlife throughout the world. There is an overwhelming amount of evidence that demonstrates chemicals in sediments are responsible for toxicological and ecological effects. The ability to identify the class or specifi...

  7. USEFULNESS OF CURRENT SEDIMENT TOXICITY TESTS TO INDICATE CONTAMINATION IN GULF OF MEXICO ESTUARIES.

    EPA Science Inventory

    Sediment toxicity evaluations were conducted during a three-year period in several Gulf of Mexico near-coastal areas using a variety of laboratory and field methods. The sediments were collected adjacent to Superfund sites, urban runoff discharges, treated municipal and industria...

  8. Effects of a simulated agricultural runoff event on sediment toxicity in a managed backwater wetland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    permethrin (both cis and trans isomers), on 10-day sediment toxicity to Hyalella azteca in a managed natural backwater wetland after a simulated agricultural runoff event. Sediment samples were collected at 10, 40, 100, 300, and 500 m from inflow 13 days prior to amendment and 1, 5, 12, 22, and 36 ...

  9. Toxicity in Chironomus tentans larvae from exposure to sediments containing PAHs, PCBs and PCDDs/PCDFs

    SciTech Connect

    O`Keefe, P.W.; Wood, L.W.; Bush, B.; Hong, C.S.

    1994-12-31

    Sediments were collected in the Massena area of the St. Lawrence River near an effluent discharge point from an aluminum manufacturing plant (A) and opposite a waste disposal site associated with a plant manufacturing die-cast aluminum parts for the automotive industry (B). The Grasse River is a tributary of the St. Lawrence River and an additional sediment sample was collected in the Grasse River near the discharge point of a second aluminum plant (C). The plant A sediment contained high concentrations of PAHs (3,234 mg/kg), PCBs (702 mg/kg) and PCDFs (1652 ng/g) and there were no survivors when Chironomus tentans larvae at the 3{sup rd} instar stage were exposed to a dilution of 33% of the sediment in control sediment for 2 weeks. Even a 3--6 dilution of this sediment resulted in 75% mortality while the mortalities for exposure to the undiluted sediments from plants B and C were 50% and < 20% respectively. However the PAH and PCB concentrations in larvae exposed to the undiluted sediments from plants B and C were comparable or lower (PAHs in plant B sediment) than concentrations of the same compounds in larvae exposed to the diluted plant A sediment. Differences in the concentrations of coplanar PCBs may account for the higher toxicity of the plant A sediment. Toxicity contributions from 2,3,7,8-substituted PCDFs appear to be negligible.

  10. [Acute Toxic Effects of Bromate on Aquatic Organisms].

    PubMed

    Wang, Zhi-wei; Liu, Dong-mei; Zhang, Wen-juan; Cui, Fu-yi

    2016-02-15

    Acute toxic effects of potassium bromate, sodium bromate and potassium bromide on luminescent bacteria, water flea, green alga and zebrafish were studied using standard toxic testing methods. The results showed that the pollutants had no effect on the luminous intensity of luminescent bacteria. The 96 h EC5. of potassium bromate on Scenedesmus obliquus was 738.18 mg x L(-1), 48 h EC50 on Daphnia magna and Moina was 154.01 mg x L(-1) was 161.80 mg x L(-1), while 48 h LC50 was 198 52 mg x L(-1), 175.68 mg x L(-1), and 96 h LC50 on zebrafish was 931.4 mg x L(-1). The 96 h EC50 of sodium bromate on Scenedesmus obliquus was 540.26 mg x L(-1), 48 h EC50 Daphnia magna and Moina was 127.90 mg x L(-1), 111.07 mg x L(-1), while 48 h LC50 was 161.80 mg x L(-1), 123.47 mg x L(-1), and 96 h LC50 on zebrafish was 1065.6 mg x L(-1). But the effects of potassium bromide on the above several kinds of aquatic organisms were far smaller than those of potassium bromate and sodium bromate. The toxic effects on test organisms were due to the impacts of bromate after the comparison of different pollutants, and the effects were more obvious with the increase of exposure time. The order of sensitivity to the toxic effects of bromate was Daphnia magna, Moina > Scenedesmus obliquus > zebrafish > Chlorella vulgaris, luminescent bacteria. PMID:27363170

  11. Recent Developments in Whole Sediment Toxicity Identification Evaluations: Innovations in Manipulations and Endpoints

    EPA Science Inventory

    Whole sediment Toxicity Identification Evaluation (TIE) methods were developed primarily in the late 1990s and early 2000s in research programs dedicated to developing manipulations and endpoints to characterize and identify causes of toxicity to benthic freshwater and marine org...

  12. Neutral red uptake cytotoxicity tests for estimating starting doses for acute oral toxicity tests.

    PubMed

    Stokes, William S; Casati, Silvia; Strickland, Judy; Paris, Michael

    2008-05-01

    In vitro cytotoxicity assays can be used as alternative toxicity tests to reduce the total number of animals needed for acute oral toxicity tests. This unit describes two methods for determining the in vitro cytotoxicity of test substances using neutral red uptake (NRU) and using the in vitro data to determine starting doses for in vivo acute oral systemic toxicity tests, e.g., the up-and-down procedure or the acute toxic class method. The use of the NRU methods to determine starting doses for acute oral toxicity tests may reduce the number of animals required, and for relatively toxic substances, this approach may also reduce the number of animals that die or require humane euthanasia due to severe toxicity. An interlaboratory validation study has demonstrated that the methods are useful and reproducible for these purposes. Two standardized protocols provide details for performing NRU tests with rodent and human cells.

  13. Biological effects of toxic contaminants in sediments from Long Island sound and environs. Technical memo

    SciTech Connect

    Wolfe, D.A.; Bricker, S.B.; Long, E.R.; Scott, K.J.; Thursby, G.B.

    1994-08-01

    The distribution and severity of toxicity and relationships between toxicity and chemical contamination in the sediments in Long Island Sound was determined. Samples from 20 coastal bays were tested for toxicity with three independent protocols: (1) amphipod survival, (2) survival and development of clam larvae, and (3) a microbial bioluminescence. Sediments were analyzed for heavy metals, PAHs, chlorinated pesticides and PCBs. Significant toxicity was found in each of the 20 coastal bays. Only 11 of the 60 stations showed no significant toxicity in any of the three tests. Statistical tests indicated that the toxicity observed in these samples was strongly influenced not only by gross contaminant content, but also by intrinsic sample characteristics such as grain size and TOC content.

  14. Evaluation of acute and sub-acute toxicity of Pinus eldarica bark extract in Wistar rats

    PubMed Central

    Ghadirkhomi, Akram; Safaeian, Leila; Zolfaghari, Behzad; Agha Ghazvini, Mohammad Reza; Rezaei, Parisa

    2016-01-01

    Objective: Pinus eldarica (P. eldarica) is one of the most common pines in Iran which has various bioactive constituents and different uses in traditional medicine. Since there is no documented evidence for P. eldarica safety, the acute and sub-acute oral toxicities of hydroalcoholic extract of P. eldarica bark were investigated in male and female Wistar rats in this study. Materials and Methods: In the acute study, a single dose of extract (2000 mg/kg) was orally administered and animals were monitored for 7 days. In the sub-acute study, repeated doses (125, 250 and 500 mg/kg/day) of the extract were administered for 28 days and biochemical, hematological and histopathological parameters were evaluated. Results: Our results showed no sign of toxicity and no mortality after single or repeated administration of P. eldarica. The median lethal dose (LD50) of P. eldarica was determined to be higher than 2000 mg/kg. The mean body weight and most of the biochemical and hematological parameters showed normal levels. There were only significant decreases in serum triglyceride levels at the doses of 250 and 500 mg/kg of the extract in male rats (p<0.05 and p<0.01, respectively) and in monocyte counts at the highest dose of the extract in both male and female rats (p<0.05). Mild inflammation was also found in histological examination of kidney and liver tissues at the highest dose of extract. Conclusion: Oral administration of the hydroalcoholic extract of P. eldarica bark may be considered as relatively non-toxic particularly at the doses of 125 and 250 mg/kg. PMID:27761426

  15. The Influence of Test Conditions on the Performance of Chironomus dilutus and Hyalella azteca in Sediment Toxicity Tests

    EPA Science Inventory

    In most all sediment toxicity assessments, the performance of organisms in control sediments is a key parameter in defining sediment toxicity, whether through direct statistical comparison to control or by normalizing to control performance to compare results across sites or batc...

  16. Development and Evaluation of Reverse Polyethylene Samplers for Marine Phase II Whole-Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to mar...

  17. Relatively spared central multifocal electroretinogram responses in acute quinine toxicity

    PubMed Central

    Saeed, Muhammad Usman; Noonan, Carmel; Hagan, Richard; Brown, Malcolm

    2011-01-01

    A 71-year-old man was investigated with electrodiagnostic testing 4 months after a deliberate quinine overdose. Initially he was admitted to intensive care unit with visual acuity (VA) of perception of light in both eyes. VA recovered to 6/6 right eye and 6/12 left eye, though severely constricted fields were noted. Slow stimulus (base period of 83 ms) multifocal electroretinogram (ERG) showed electronegative responses outside the inner 5 degrees, with a reduced but electropositive response seen in this central area. It appears that in this case of bilaterally negative ERGs that the macula/fovea (which has a vascular supply through the choroid) is relatively spared as is seen in bilateral vascular electronegative ERGs. This may indicate that quinine toxicity to the retina may be secondary to effects similar to vascular occlusion or severe ischemia during the acute phase of quinine poisoning. PMID:22693278

  18. The application of a weight of evidence approach to compare the quality of coastal sediments affected by acute (Prestige 2002) and chronic (Bay of Algeciras) oil spills.

    PubMed

    Morales-Caselles, Carmen; Riba, Inmaculada; Sarasquete, Carmen; Angel DelValls, T

    2008-11-01

    To evaluate sediment quality in different areas affected by oil spills, a weight of evidence approach was employed by including a complete set of parameters as part of four lines of evidence: sediment contamination, biological effects (including biomarkers) and bioaccumulation under laboratory conditions, toxicity in field conditions and benthic community structure. The methodology was applied to sediments from the Bay of Algeciras (S Spain) chronically impacted by different spills, and the Galician Coast (NW Spain) acutely impacted by an oil spill (Prestige 2002). Results obtained have elucidated the sources and fates of pollutants and the type of risk involved for the ecosystem. Factorial analysis revealed that the main factors were those containing toxicity, chemistry and benthic community variables indicating degradation in Algeciras. It has been demonstrated that the impact associated with chronic event of contamination by oil spills are significantly more dangerous and polluted than those related to acute effects.

  19. Contributions of contamination and organic enrichment to sediment toxicity near a sewage outfall

    SciTech Connect

    Bay, S.M.; Greenstein, D.J.

    1994-12-31

    Sediment and interstitial water toxicity and contamination were measured at 12 sites near the Los Angeles County Sanitation Districts sewage outfall on the Palos Verdes (Calif.) shelf, a region contaminated with many metal and organic contaminants. The spatial pattern of biological effects (sea urchin growth and fertilization) was compared with chemical concentrations in sediment, interstitial water, and gonad tissue to identify potentially meaningful relationships. Tissue analyses indicated that sediment metals were not bioavailable and therefore unlikely to be a significant factor in the sediment toxicity test responses. Sediment DDTs, PCBs, and PAHs were bioavailable and showed significant correlations with sea urchin growth effects. Interstitial water toxicity was most strongly correlated with measures of organic enrichment (hydrogen sulfide, ammonia) and hydrocarbon contamination. Subsequent dose response experiments confirmed the important role of hydrogen sulfide in interstitial water toxicity but failed to demonstrate an effect of DDE (the most abundant sediment organic contaminant) on growth. Overall, variations in measured sediment characteristics accounted for a relatively small portion of the biological responses.

  20. Toxicity assessment in marine sediment for the Terra Nova environmental effects monitoring program (1997-2010)

    NASA Astrophysics Data System (ADS)

    Whiteway, Sandra A.; Paine, Michael D.; Wells, Trudy A.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory

    2014-12-01

    This paper discusses toxicity test results on sediments from the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada). The amphipod (Rhepoxynius abronius) survival and solid phase luminescent bacteria (Vibrio fischeri, or Microtox) assays were conducted on sediment samples collected from approximately 50 stations per program year around Terra Nova during baseline (1997), prior to drilling, and in 2000, 2001, 2002, 2004, 2006, 2008 and 2010 after drilling began. The frequency of toxic responses in the amphipod toxicity test was low. Of the ten stations that were toxic in environmental effects monitoring (EEM) years, only one (station 30(FE)) was toxic in more than one year and could be directly attributed to Terra Nova project activities. In contrast, 65 (18%) of 364 EEM samples were toxic to Microtox. Microtox toxicity in EEM years was not related to distance from Terra Nova drill centres or concentrations of >C10-C21 hydrocarbons or barium, the primary constituents of the synthetic-based drill muds used at Terra Nova. Of the variables tested, fines and strontium levels showed the strongest (positive) correlations with toxicity. Neither fines nor strontium levels were affected by drill cuttings discharge at Terra Nova, except at station 30(FE) (and that station was not toxic to Microtox). Benthic macro-invertebrate abundance, richness and diversity were greater in toxic than in non-toxic sediments. Therefore, Microtox responses indicating toxicity were associated with positive biological responses in the field. This result may have been an indirect function of the increased abundance of most invertebrate taxa in less sandy sediments with higher gravel content, where fines and strontium levels and, consequently, toxicity to Microtox were high; or chemical substances released by biodegradation of organic matter, where invertebrates are abundant, may be toxic to Microtox. Given

  1. Combinatorial QSAR Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Quantitative Structure-Activity Relationship (QSAR) toxicity models have become popular tools for identifying potential toxic compounds and prioritizing candidates for animal toxicity tests. However, few QSAR studies have successfully modeled large, diverse mammalian toxicity end...

  2. A field assessment of long-term laboratory sediment toxicity tests with the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Wang, Ning; Hayward, Jeannie M. R.; Jones, John R.; Jones, Susan B.; Ireland, D. Scott

    2005-01-01

    Response of the amphipod Hyalella azteca exposed to contaminated sediments for 10 to 42 d in laboratory toxicity tests was compared to responses observed in controlled three-month invertebrate colonization exposures conducted in a pond. Sediments evaluated included a sediment spiked with dichlorodiphenyldichloroethane (DDD) or dilutions of a field sediment collected from the Grand Calumet River (GCR) in Indiana (USA) (contaminated with organic compounds and metals). Consistent effects were observed at the highest exposure concentrations (400 ??g DDD/goc [DDD concentrations normalized to grams of organic carbon (goc) in sedimentl or 4% GCR sediment) on survival, length, and reproduction of amphipods in the laboratory and on abundance of invertebrates colonizing sediments in the field. Effect concentrations for DDD observed for 10-d length and 42-d reproduction of amphipods (e.g., chronic value [ChV] of 66 ??g DDD/goc and 25% inhibition concentration [IC25] of 68 ??g DDD/goc for reproduction) were similar to the lowest effect concentrations for DDD measured on invertebrates colonizing sediment the field. Effect concentrations for GCR sediment on 28-d survival and length and 42-d reproduction and length of amphipods (i.e., ChVs of 0.20-0.66% GCR sediment) provided more conservative effect concentrations compared to 10-d survival or length of amphipods in the laboratory or the response of invertebrates colonizing sediment in the field (e.g., ChVs of 2.2% GCR sediment). Results of this study indicate that use of chronic laboratory toxicity tests with H. azteca and benthic colonization studies should be used to provide conservative estimates of impacts on benthic communities exposed to contaminated sediments. Bioaccumulation of DDD by oligochaetes colonizing the DDD-spiked sediment was similar to results of laboratory sediment tests previously conducted with the oligochaete Lumbriculus variegates, confirming that laboratory exposures can be used to estimate

  3. From streets to streams: assessing the toxicity potential of urban sediment by particle size

    USGS Publications Warehouse

    Corsi, Steven R.; Selbig, William R.; Roger T. Bannerman,; ,

    2013-01-01

    Urban sediment can act as a transport mechanism for a variety of pollutants to move towards a receiving water body. The concentrations of these pollutants oftentimes exceed levels that are toxic to aquatic organisms. Many treatment structures are designed to capture coarse sediment but do not work well to similarly capture the fines. This study measured concentrations of select trace metals and PAHs in both the silt and sand fractions of urban sediment from four sources: stormwater bed, stormwater suspended, street dirt, and streambed. Concentrations were used to assess the toxic potential of sediment based on published sediment quality guidelines. All sources of sediment showed some level of toxic potential with stormwater bed sediment the highest followed by stormwater suspended, street dirt, and streambed. Both metal and PAH concentration distributions were highly correlated between the four sampling locations suggesting the presence of one or perhaps only a few sources of these pollutants which remain persistent as sediment is transported from street to stream. Comparison to other forms of combustion- and vehicle-related sources of PAHs revealed coal tar sealants to have the strongest correlation, in both the silt and sand fractions, at all four sampling sites. This information is important for environmental managers when selecting the most appropriate Best Management Practice (BMP) as a way to mitigate pollution conveyed in urban stormwater from source to sink.

  4. Influence of a Brazilian sewage outfall on the toxicity and contamination of adjacent sediments

    USGS Publications Warehouse

    Abessa, D.M.S.; Carr, R.S.; Rachid, B.R.F.; Sousa, E.C.P.M.; Hortelani, M.A.; Sarkis, J.E.

    2005-01-01

    The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the “Threshold Effect Level” values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted.

  5. Mustard gas toxicity: the acute and chronic pathological effects.

    PubMed

    Ghabili, Kamyar; Agutter, Paul S; Ghanei, Mostafa; Ansarin, Khalil; Shoja, Mohammadali M

    2010-10-01

    Ever since it was first used in armed conflict, mustard gas (sulfur mustard, MG) has been known to cause a wide range of acute and chronic injuries to exposure victims. The earliest descriptions of these injuries were published during and in the immediate aftermath of the First World War, and a further series of accounts followed the Second World War. More recently, MG has been deployed in warfare in the Middle East and this resulted in large numbers of victims, whose conditions have been studied in detail at hospitals in the region. In this review, we bring together the older and more recent clinical studies on MG toxicity and summarize what is now known about the acute and chronic effects of the agent on the eyes, skin, respiratory tract and other physiological systems. In the majority of patients, the most clinically serious long-term consequences of MG poisoning are on the respiratory system, but the effects on the skin and other systems also have a significant impact on quality of life. Aspects of the management of these patients are discussed.

  6. Influence of chemical and environmental stressors on acute cadmium toxicity

    SciTech Connect

    Baer, K.N.; Benson, W.H.

    1987-01-01

    Previous investigations have demonstrated that the cytosolic protein metallothionein (MT) is induced not only by exposure to certain heavy metals but also by a variety of other factors, including environmental stress. While MT synthesis has been observed with exposure to cold temperatures, there is a paucity of data concerning the influence of cold on heavy-metal toxicity. The present investigation focused on the influence of metal and cold pretreatments on the acute toxicity of cadmium. Mortalities of 80% and 100% were observed for mice orally administered challenge doses of 100 mg Cd/kg and 150 mg Cd/kg, respectively. To determine a protective cadmium pretreatment dose, animals were administered 2.5, 5, 10, 20, 25, and 50 mg Cd/kg 24 h prior to cadmium challenge. In animals pretreated with 10 mg Cd/kg, mortalities of 20% and 70% were observed with the respective challenge doses. Immediately following cold stress (4/sup 0/C, 12 h), mortalities of 30% and 90% were observed with cadmium challenge doses of 100 and 150 mg Cd/kg, respectively. Significant correlations were demonstrated between induced hepatic MT concentrations and cadmium pretreatment, as well as cold pretreatment. The induced tolerance to cadmium was attributed, in part, to the induction of MT synthesis. Furthermore, the induced levels of MT resulting from cold stress may confound the simplistic approach of using MT as a biological monitor of occupational exposure to cadmium.

  7. Toxicity of white phosphorus to waterfowl: acute exposure in mallards

    USGS Publications Warehouse

    Sparling, D.W.; Gustafson, M.; Klein, P.; Karouna-Renier, N.

    1997-01-01

    As part of an effort to understand extensive, white phosphorus (P4)-induced waterfowl mortality at Eagle River Flats, Fort Richardson, Alaska, we conducted a number of acute toxicity tests using penned mallards (Anas platyrhynchos) in 1993 and 1994. The 24-hr median lethal dose (LD50) for P4 dissolved in oil was 6.46 mg/kg in adult males and 6.96 mg/kg in adult females. Although the median lethal doses were not statistically different, the female dose-response curve had a statistically shallower slope than that of males. The LD50 for the ecologically more relevant pelletized form of P4 in adult males was 4.05 mg/kg. In mallards, one mechanism of P4 toxicity caused rapid (3 to 10 hr) mortality and had signs consistent with anoxia. A second, slower acting mechanism resulted in hepatic and renal pathology including extensive fat deposition in the liver and cellular necrosis. White phosphorus accumulated in adipose tissues, but only for a few days.

  8. Acute toxicity of heavy metals towards freshwater ciliated protists.

    PubMed

    Madoni, Paolo; Romeo, Maria Giuseppa

    2006-05-01

    The acute toxicity of five heavy metals to four species of freshwater ciliates (Colpidium colpoda, Dexiotricha granulosa, Euplotes aediculatus, and Halteria grandinella) was examined in laboratory tests. After exposing the ciliates to soluble compound of cadmium, copper, chromium, lead, and nickel at several selected concentrations, the mortality rate was registered and the LC50 values (with 95% confidence intervals) were calculated. Large differences appeared in sensitivities of the four species to the metals. H. grandinella showed the highest sensitivity for cadmium (0.07 mg l(-1), LC50) and lead (0.12 mg l(-1), LC50), whilst E. aediculatus showed the highest sensitivity for nickel (0.03 mg l(-1), LC50). The comparison with data obtained with other species indicate that Halteria grandinella and Euplotes aediculatus are excellent and convenient bioindicator for evaluating the toxicity of waters and wastewaters polluted by heavy metals. The short time (24 h) and simplicity of the test procedure enable this test to be used in laboratory studies.

  9. Toxicity of sediment-associated pesticides to Chironomus dilutus and Hyalella azteca.

    PubMed

    Ding, Yuping; Weston, Donald P; You, Jing; Rothert, Amanda K; Lydy, Michael J

    2011-07-01

    Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC₅₀) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no-observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC₅₀ of 1-2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC₅₀s 2.8-26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC₅₀s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the

  10. Reduction of acute toxicity and genotoxicity of dye effluent using Fenton-coagulation process.

    PubMed

    Zhang, Jing; Chen, Shuo; Zhang, Ying; Quan, Xie; Zhao, Huimin; Zhang, Yaobin

    2014-06-15

    Dye wastewater exhibits significant ecotoxicity even though its physico-chemical parameters meet the discharge standards. In this work, the acute toxicity and genotoxicity of dye effluent were tested, and the Fenton-coagulation process was carried out to detoxify this dye effluent. The acute toxicity was evaluated according to the mortality rate of zebrafish, and genotoxicity was evaluated by micronucleus (MN) and comet assays. Removal of color and chemical oxygen demand (COD) was also investigated. The results indicated that the dye effluent showed strong acute toxicity and genotoxicity to zebrafish. After 4h of treatment by Fenton-coagulation process, the dye effluent exhibited no significant acute toxicity and genotoxicity to zebrafish. In addition, its COD was less than 50mg/L, which met the discharge standard. It demonstrates that Fenton-coagulation process can comprehensively reduce the acute toxicity and genotoxicity as well as the COD of the dye effluent.

  11. Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish

    EPA Science Inventory

    Embryonic exposures to polycyclic aromatic hydrocarbons (PAHs) and petroleum products cause a characteristic suite of developmental defects in a variety of fish species. We exposed zebrafish embryos to sediment mixed with laboratory weathered South Louisiana crude oil. Oiled sedi...

  12. Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish - Abstract

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) cause a number of developmental abnormalities in developing fish embryos, which has been primarily demonstrated through water-accommodated fractions. PAH-bound sediment is a more ecologically relevant route of exposure to many developing fi...

  13. Isolation and characterization of acutely toxic fractions in oil sands wastewater

    SciTech Connect

    Verbeek, A.; Mackay, W.; MacKinnon, M.

    1995-12-31

    Extraction of oil from oil sand using the hot water flotation method results in the production of large volumes of wastewater that are acutely toxic to aquatic organisms. At Syncrude Canada Ltd. and Suncor Oil Sands Group Inc., this wastewater is stored in large tailings ponds that must eventually be reclaimed. The acute toxicity of these wastewaters was assessed and the acutely toxic fractions were identified. Samples were collected from the surface and fine tails zones of the Syncrude and Suncor tailings ponds during the summers of 1991 and 1992. The Microtox bioassay was used to assess the acute toxicity before and after various treatments. Where significant reductions in acute toxicity were found, further acute toxicity tests were carried out using Daphnia magna and rainbow trout. The Microtox IC{sub 50} of all centrifuged tailings pond water samples varied between 26.5 and 46%. Daphnia LC{sub 50}s varied between 76 and 98% and a rainbow trout LC{sub 50} was 12.5 %. Organic compounds that have a non-polar component, as removed by solid phase extraction with C{sub 18} sorbent, accounted for all the acute toxicity (100%) of all samples. Organic ``acids``, as removed by precipitation at pH 2.5, also accounted for all the acute toxicity (100%) of all samples except those from pond 1A of Suncor. In pond 1A, organic ``acids`` accounted for approximately 55--60% of the acute toxicity, nonpolar organic volatile compounds accounted for approximately 20--35% and the balance of the acute toxicity was due to non-polar organic compounds that were neither volatile nor organic ``acids``, as removed by precipitation at pH 2.5.

  14. Sediment organic matter content as a confounding factor in toxicity tests with Chironomus tentans

    SciTech Connect

    Lacey, R.; Watzin, M.C.; McIntosh, A.W.

    1999-02-01

    Physicochemical characteristics of sediment unrelated to contaminant levels and bioavailability may influence the outcome of toxicity tests. In particular, sediment organic matter content has the potential to be a confounding factor in toxicity tests using the midge larva Chironomus tentans because the larvae are infaunal and feed on organic matter in the sediments. To examine the possibility, the authors conducted a series of tests using formulated sediments with varying organic matter contents following the standard US Environmental Protection Agency (US EPA) 10-day C. tentans growth and survival protocol. Formulated sediments made with peat moss, {alpha}-cellulose, and maple leaves were tested. An organic-rich natural sediment diluted with formulated sediment to achieve a range of organic matter contents was also examined. In a final experiment, sediments containing each of the four organic matter sources at the same concentration were tested against one another. Survival was not greatly affected by concentration of organic matter, except at the lowest concentrations in natural sediment, where survival dipped below 70%. In experiments using peat moss, {alpha}-cellulose, and maple leaves, significant differences in C. tentans growth were found at different organic matter concentrations. In contrast, concentration of organic matter in the natural sediment dilution series had little effect on growth, perhaps because much of this material was highly refractory. In the comparison experiment, growth differed significantly among the four sediments, with best growth achieved with {alpha}-cellulose and leaves. These results suggest that both organic matter quantity and quality can be confounding factors in toxicity tests using C. tentans.

  15. Use of sublethal endpoints in sediment toxicity tests with the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, C.G.; Brunson, E.L.; Dwyer, F.J.; Hardesty, D.K.; Kemble, N.E.

    1998-01-01

    Short-term sediment toxicity tests that only measure effects on survival can be used to identify high levels of contamination but may not be able to identify marginally contaminated sediments. The objective of the present study was to develop a method for determining the potential sublethal effects of contaminants associated with sediment on the amphipod Hyalella azteca (e.g., reproduction). Exposures to sediment were started with 7- to 8-d-old amphipods. On day 28, amphipods were isolated from the sediment and placed in water-only chambers where reproduction was measured on day 35 and 42. Typically, amphipods were first in amplexus at about day 21 to 28 with release of the first brood between day 28 to 42. Endpoints measured included survival (day 28, 35, and 42), growth (as length and weight on day 28 and 42), and reproduction (number of young/female produced from day 28 to 42). This method was used to evaluate a formulated sediment and field-collected sediments with low to moderate concentrations of contaminants. Survival of amphipods in these sediments was typically >85% after the 28-d sediment exposures and the 14-d holding period in water to measure reproduction. Reproduction was more variable than growth; hence, more replicates might be needed to establish statistical differences among treatments. Previous studies have demonstrated that growth of H. azteca in sediment tests often provides unique information that can be used to discriminate toxic effects of exposure to contaminants. Either length or weight can be measured in sediment tests with H. azteca. However, additional statistical options are available if length is measured on individual amphipods, such as nested analysis of variance that can account for variance in length within replicates. Ongoing water-only studies testing select contaminants will provide additional data on the relative sensitivity and variability of sublethal endpoints in toxicity tests with H. azteca.

  16. Effect of sampling method on measured concentrations of sulfide and ammonia in sediment toxicity tests

    SciTech Connect

    Phillips, B.M.; Anderson, B.S.; Hunt, J.W.

    1994-12-31

    Sulfide and ammonia are natural components of marine sediments which may occur in concentrations toxic to marine organisms. Because these compounds are toxic, it is important to measure them accurately to determine their influence on toxicity test results. Standard solid phase test protocols may not adequately address sampling methodology for ammonia and sulfide analysis. Samples are commonly taken from overlying water in test containers, which may not adequately characterize the medium to which test animals are exposed. As part of research conducted under the California State Water Resources Control Board`s Bay Protection and Toxic Cleanup Program, the authors are investigating alternative sampling methods to more accurately characterize sulfide and ammonia in sediments. Measurements taken from water overlying test sediment are compared to those taken from interstitial water in tests using Neanthes and Rhepoxynius. Pre-test interstitial samples are extracted from sediment using centrifugation. Final measurements are made on water centrifuged from sediment in an additional laboratory replicate. Oxidation can affect the measurement of both constituents, therefore efforts are made to reduce oxidation by centrifuging with no head space. Ammonia is analyzed immediately using an ion specific electrode, and sulfide samples are preserved for spectrophotometric analysis. In preliminary studies sulfide concentrations were 13 times higher and ammonia concentrations 4 times higher in the interstitial water than in samples taken from overlying water. Results will be discussed in terms of sulfide and ammonia toxicity and possible ways of improving sampling methodology.

  17. Toxicity of sediments and interstitial waters form the Southern California Bight

    SciTech Connect

    Bay, S.; Greenstein, D.; Brown, J.; Jirik, A.

    1995-12-31

    The toxicity of 72 sediment samples collected during the EMAP Southern California Bight Pilot Project (SCBPP) was measured. Sediments from the mainland shelf between Point Conception and the Mexican border were collected from various depths and tested for toxicity using two methods. The toxicity of bulk sediment was measured using a 10-day amphipod (Ampelisca abdita) survival test. Interstitial water was also extracted from the samples and tested for toxicity using a 72-hour sea urchin (Strongylocentrotus purpuratus) embryo development test. Amphipod survival was high (> 80%) at all stations tested, although several sites near large sewage outfalls had statistically significant reductions in survival. No interference related to grain size variation was observed with the amphipod test. Most of the interstitial water samples produced abnormal sea urchin embryo development. Effects were not related to the presumed level of sediment contamination, but rather to ammonia concentration in virtually all cases. The impacts of sample handling procedures and ammonia on sediment toxicity data interpretation will be discussed.

  18. Toxicity evaluation of sediments from potential reference sites in San Francisco Bay

    SciTech Connect

    Taberski, K.M.; Hunt, J.W.; Anderson, B.S.; Fairey, W.R.; Puckett, H.M.; Stephenson, M.; Smith, R.W.; Hanson, S.R.; Wortham, G.G.

    1995-12-31

    Relatively uncontaminated sites in San Francisco Bay, Tomales Bay and Bolinas Lagoon were evaluated as reference sites for sediment quality assessment studies. Toxicity test results from reference sites can be used to characterize natural variation among sites in the absence of contaminant effects. This natural variation, which includes variation in space, time and sediment composition, can then be used as the variance component in a ``reference envelope`` statistical analysis to determine whether toxicity observed at potentially contaminated sites is statistically significant. In this study, the authors collected field-replicated sediment samples from seven potential reference sites and three contaminated sites. Solid phase sediment and pore water from each site were tested three separate times with protocols for Eohaustorius, Neanthes, Ampelisca, Nebalia, Strongylocentrotus, and Mytilus. Results indicated consistently low toxicity for many potential reference sites, unexplained toxicity at some uncontaminated sites (which are being investigated with TIES) , and high toxicity at two known contaminated sites. Of the protocols employed, the sea urchin larval development test gave the most consistent results, while the Neanthes growth and survival test did not respond at highly contaminated sites. Test performance and reference site selection are discussed in terms of their effects on sediment quality assessment.

  19. Assessment of metal toxicity in sediment pore water from Lake Macquarie, Australia.

    PubMed

    Doyle, C J; Pablo, F; Lim, R P; Hyne, R V

    2003-04-01

    Recent investigations into the level of heavy metal enrichment in the sediments of Lake Macquarie have indicated that significant contamination has occurred over the past 100 years, with elevated levels of lead, zinc, cadmium, copper, and selenium being observed in most parts of the lake. Pore water extracted from sediments showing the greatest contamination by these metals exhibited toxicity to the larval development of the sea urchin Heliocidaris tuberculata. However, an analysis of pore water metal concentrations revealed that the concentrations of these metals were too low to cause toxicity. Rather, pore water toxicity was highly correlated with manganese for the majority of sites sampled; subsequent spiking experiments confirmed manganese as a cause of toxicity. Current levels of manganese in the sediments of Lake Macquarie have arisen from natural sources and are not the result of anthropogenic activities. These results reiterate the importance of identifying the causes of toxicity in assessments of sediment contamination, particularly when testing sediment pore waters using sensitive early life stages. PMID:12712294

  20. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-11-01

    Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material. PMID:27454093

  1. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-11-01

    Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material.

  2. Effects of storage temperature and duration on toxicity of sediments assessed by Crassostrea gigas oyster embryo bioassay

    SciTech Connect

    Beiras, R.; His, E.; Seaman, M.N.L.

    1998-10-01

    The effects of temperature and duration of storage on the toxicity of estuarine sediments were investigated with the Crassostrea gigas oyster embryo bioassay. Sediments ranging from unpolluted (controls) to extremely polluted with heavy metals (>100 ppm Hg, Cu, Zn, and Pb) and total hydrocarbons (>1,000 ppm) were collected from sites in southwest France and northern Spain, Control sediments were toxic only at the highest concentrations tested and after freezing in liquid nitrogen ({minus}196 C). Polluted sediments significantly reduced the success of oyster embryogenesis. Analysis of variance showed that the effect of storage temperature on toxicity increased with the prolongation of storage. Prolonged storage of fresh (4 C) sediments resulted in a loss of toxicity, which was more rapid in the less-polluted sediments. Deep-frozen sediments ({minus}196 C) were highly toxic regardless of origin and storage time, and because deep-freezing causes spurious toxicity in the control samples, it cannot be recommended for toxicological studies. In the context of the assessment of sediment toxicity by embryo-larval bioassays, fresh (4 C) storage is recommended when sediments need to be stored for no longer than a few days. The advisable duration of fresh storage to avoid false-negative results is directly related to the degree of toxicity. Should the sediments require prolonged storage, freezing at {minus}20 C appears to be the best choice.

  3. Perfluoro-n-butyl iodide: acute toxicity, subchronic toxicity and genotoxicity evaluations.

    PubMed

    Dodd, Darol; Hoffman, Gary; Hardy, Colin

    2004-01-01

    Perfluoro-n-butyl iodide (PFBI) is a promising alternative to chlorofluorocarbon solvents used in aircraft ground maintenance operations and other military and commercial operations, because it cleans well, has zero ozone depletion potential, and has extremely low global warming properties. Toxicity tests were performed with PFBI to determine and evaluate its health hazard. Using standard testing guidelines (e.g., Organization for Economic Cooperation and Development [OECD]), tests included acute (4-h) and 4-week (6 h/day, 5 days/week) inhalation (nose-only) toxicity studies in rats, acute (10-min) inhalation cardiac sensitization study in dogs, in vitro chromosomal aberrations experiments in human lymphocytes, and in vitro mutagenic experiments in Salmonella typhimurium and Escherichia coli. There were no mortalities in rats (n = 10) exposed for 4 h to 10,000 ppm PFBI, but all rats (n = 10) died within 2 h when exposed to 20,000 ppm PFBI. The 4-h LC50 (95% confidence limits) was 14,000 ppm (13,000 ppm to 16,000 ppm). Signs (nasal discharge and labored breathing) observed in the rats exposed to 10,000 ppm returned to normal within 48 h. PFBI has the potential to cause cardiac sensitization in epinephrine-challenged dogs at 6200 ppm. A concentration of 3900 ppm was a no-observed-adverse-effect level (NOAEL) in the cardiac sensitization study. In the 4-week inhalation study (5 rats/sex/group), respiratory mucosal hypertrophy/hyperplasia was observed in rats of the 10,000-ppm group. A NOAEL of 1000 ppm was selected for the 4-week study on the basis that the mild increase in T4 observed at 1000 ppm was considered adaptive, not adverse, because of the absence of frank effects in the thyroid. In the in vitro studies, PFBI showed no evidence of either mutagenic or clastogenic activity. The toxicity profile of PFBI was compared to trifluoroiodomethane. In conclusion, the results of these studies indicate a low order of general toxicity and an absence of genotoxicity

  4. Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida.

    PubMed

    Wang, Yanhua; Cang, Tao; Zhao, Xueping; Yu, Ruixian; Chen, Liping; Wu, Changxing; Wang, Qiang

    2012-05-01

    In this study, we used two different types of bioassay, a contact filter paper toxicity bioassay and a soil toxicity bioassay, to compare the acute toxicity of twenty-four insecticides belonging to six chemical categories on earthworm species, Eisenia fetida. Results of the contact filter paper toxicity bioassay indicated that neonicotinoids were super toxic to E. fetida (48 h-LC(50) value ranged from 0.0088 to 0.45 μg cm(-2)), pyrethroids were very toxic (48 h-LC(50) values ranged from 10.55 to 25.7 μg cm(-2)) and insect growth regulators (IGRs) were moderately toxic (48 h-LC(50) values ranged from 117.6 to 564.6 μg cm(-2)) to the worms. However, antibiotics, carbamates and organophosphates induced variable toxicity responses in E. fetida, and were very to extremely toxic (48 h-LC(50) values ranged from 3.64 to 75.75 μg cm(-2)). Results of the soil toxicity bioassays showed a different pattern of toxicity except that neonicotinoids were the most toxic even under the soil toxicity bioassay system. The acute toxicity of neonicotinoids was higher than those of antibiotics, carbamates, IGRs and organophosphates. In contrast, pyrethroids were the least toxic to the worms under the soil toxicity bioassay system. It was concluded that irrespective of bioassay systems, earthworms were more susceptible to neonicotinoids than other modern synthetic insecticides.

  5. Interlaboratory Evaluation of Hyalella Azteca and Chironomus Tentans Short-term and Long-term Sediment Toxicity Tests

    EPA Science Inventory

    This paper presents the results of interlaboratory toxicity tests on sediment toxicity methods for use in routine testing and this data has been presented in an EPA report and this is a summary of that data.

  6. Field validation of 10-day freshwater sediment toxicity tests using Hyalella azteca and Chironomus tentans

    SciTech Connect

    Becker, D.S.; Bigham, G.N.

    1995-12-31

    Two of the toxicity tests commonly used to evaluate freshwater sediments are the 10-day amphipod (Hyalella azteca) and chironomid (Chironomus tentans) tests. EPA and ASTM have recently developed standardized protocols for these tests. Although both tests are considered sensitive indicators of sediment toxicity, little information exists on how well test results correspond to adverse biological effects in the field. In this study, the lethal and sublethal (i.e., biomass) responses of the two toxicity tests were compared with alterations of benthic macroinvertebrate assemblages (i.e., benthic effects) at 56 stations in Onondaga Lake, New York. The lake has received municipal and industrial discharges for more than 100 years, and sediment chemical concentrations range widely throughout the lake. Toxicity results for Onondaga Lake were compared with reference conditions using the t-test, and benthic effects were determined using classification analysis of log-transformed taxa abundances. In general, a relatively high level of agreement was found between results of the toxicity tests and alterations of benthic assemblages. Significant (P < 0.05) correlations were found between all toxicity test endpoints and taxa richness of benthic assemblages. In addition, significant concordance (P {le} 0.01, binomial test) was found between toxicity designations for the 56 stations based on toxicity tests and toxicity designations based on benthic effects. Despite the general level of agreement among the various biological indicators, chironomid biomass and benthic effects were found to be the most sensitive indicators of toxicity, whereas amphipod survival and biomass were the least sensitive indicators. This study suggests that results of the 10-day amphipod and chironomid toxicity tests are highly predictive of adverse biological effects in the field.

  7. Acute pulmonary toxicity of urban particulate matter and ozone.

    PubMed Central

    Vincent, R.; Bjarnason, S. G.; Adamson, I. Y.; Hedgecock, C.; Kumarathasan, P.; Guénette, J.; Potvin, M.; Goegan, P.; Bouthillier, L.

    1997-01-01

    We have investigated the acute lung toxicity of urban particulate matter in interaction with ozone. Rats were exposed for 4 hours to clean air, ozone (0.8 ppm), the urban dust EHC-93 (5 mg/m3 or 50 mg/m3), or ozone in combination with urban dust. The animals were returned to clean air for 32 hours and then injected (intraperitoneally) with [3H]thymidine to label proliferating cells and killed after 90 minutes. The lungs were fixed by inflation, embedded in glycol methacrylate, and processed for light microscopy autoradiography. Cell labeling was low in bronchioles (0.14 +/- 0.04%) and parenchyma (0.13 +/- 0.02%) of air control animals. Inhalation of EHC-93 alone did not induce cell labeling. Ozone alone increased (P < 0.05) cell labeling (bronchioles, 0.42 +/- 0.16%; parenchyma, 0.57 +/- 0.21%), in line with an acute reparative cell proliferation. The effects of ozone were clearly potentiated by co-exposure with either the low (3.31 +/- 0.31%; 0.99 +/- 0.18%) or the high (4.45 +/- 0.51%; 1.47 +/- 0.18%) concentrations of urban dust (ozone X EHC-93, P < 0.05). Cellular changes were most notable in the epithelia of terminal bronchioles and alveolar ducts and did not distribute to the distal parenchyma. Enhanced DNA synthesis indicates that particulate matter from ambient air can exacerbate epithelial lesions in the lungs. This may extend beyond air pollutant interactions, such as to effects of inhaled particles in the lungs of compromised individuals. Images Figure 1 PMID:9403707

  8. Toxicological evaluation of ferrous N-carbamylglycinate chelate: Acute, Sub-acute toxicity and mutagenicity.

    PubMed

    Wan, Dan; Zhou, Xihong; Xie, Chunyan; Shu, Xugang; Wu, Xin; Yin, Yulong

    2015-11-01

    Iron is an essential trace element that is vital important in various biological process. A deficiency in iron could induce public health problem e.g. anaemia, while an overload could induce ROS production, lipid peroxidation and DNA bases modifications. In the present study, a new iron fortifier was synthesized, and its acute/sub-acute toxicity was investigated. According to the improved Karber's method, the median lethal dose (LD50) of the ferrous N-carbamylglycinate in SD rat was 3.02 g/kg and the 95% confidence intervals were between 2.78 and 3.31 g/kg. No biologically significant or test substance-related differences were observed in body weights, feed consumption, clinical signs, organ weights, histopathology, ophthalmology, hematology, and clinical chemistry parameters in any of the treatment groups of ferrous N-carbamylglycinate at target concentrations corresponding to 150, 300, and 600 mg/kg/day for 28 days. The no observed adverse effect level (NOAEL) for ferrous N-carbamylglycinate was at least 600 mg/kg b.w. day in rats. In addition, no evidence of mutagenicity was found, either in vitro in bacterial reverse mutation assay or in vivo in mice bone marrow micronucleus assay and sperm shape abnormality assay. On the basis of our findings, we conclude that ferrous N-carbamylglycinate is a low-toxic substance with no genotoxicity.

  9. Sediment toxicity identification evaluation (TIE) studies at marine sites suspected of ordnance contamination

    USGS Publications Warehouse

    Carr, R.S.; Nipper, M.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.; Saepoff, S.

    2001-01-01

    A sediment quality assessment survey and subsequent toxicity identification evaluation (TIE) study was conducted at several sites in Puget Sound, Washington. The sites were previously suspected of contamination with ordnance compounds. The initial survey employed sea urchin porewater toxicity tests to locate the most toxic stations. Sediments from the most toxic stations were selected for comprehensive chemical analyses. Based on the combined information from the toxicity and chemical data, three adjacent stations in Ostrich Bay were selected for the TIE study. The results of the phase I TIE suggested that organics and metals were primarily responsible for the observed toxicity in the sea urchin fertilization test. In addition to these contaminants, ammonia was also contributing to the toxicity for the sea urchin embryological development test. The phase II TIE study isolated the majority of the toxicity in the fraction containing nonpolar organics with high log Kow, but chemical analyses failed to identify a compound present at a concentration high enough to be responsible for the observed toxicity. The data suggest that some organic or organometallic contaminant(s) that were not included in the comprehensive suite of chemical analyses caused the observed toxicological responses.

  10. Sediment toxicity in mid-continent great rivers (USA)

    EPA Science Inventory

    In this study, 530 sediment samples were collected from 447 sites between 2004 and 2006 at randomly selected shoreline sites along the main channel of the Ohio, Missouri and Upper Mississippi Rivers as part of the Environmental Monitoring and Assessment Program for Great Rivers E...

  11. Toxicity in semiarid sediments influenced by tailings of an abandoned gold mine.

    PubMed

    Sobrino-Figueroa, A S; Becerra-Rueda, O F; Magallanes-Ordóñez, V R; Sánchez-González, A; Marmolejo-Rodríguez, A J

    2015-01-01

    The mining district of El Triunfo (ET-MD) has an estimated 800,000 t of mine wastes scattered in the environment, contaminating the sediment with potentially toxic elements such as As, Cd, Pb, and Zn. In order to estimate the toxicity of the sediment to the adjacent biota, the aims of our study are to calculate the mortality and inhibition through bioassays, using sediment, and test organisms such as Daphnia magna and Selenastrum capricornutum (Pseudokirchneriella subcapitata), respectively. The D. magna mortality was 31 ± 12% and the S. capricornutum growth inhibition was 53 ± 24%. The contamination of the sediment determines the high mortality of D. magna and the high inhibition of S. capricornutum in the system, indicating risk for the biota in the contaminated system.

  12. Selective removal of organic contaminants from sediments: A methodology for toxicity identification evaluations (TIEs)

    USGS Publications Warehouse

    Lebo, J.A.; Huckins, J.N.; Petty, J.D.; Ho, K.T.; Stern, E.A.

    2000-01-01

    Aqueous slurries of a test sediment spiked with dibenz[a,h]anthracene, 2,4,5,2',4',5'-hexachlorobiphenyl, p,p'-DDE, or phenanthrene were subjected to decontamination experimentation. The spiked sediments were agitated at elevated temperatures for at least 96 h in the presence of either of the two contaminant-absorbing media: clusters of polyethylene membrane or lipid- containing semipermeable membrane devices (SPMDs). The effects of treatment temperature and surface area of media on the removal of contaminants were explored. This work is part of a larger methodology for whole-sediment toxicity identification evaluation (TIE). A method is being sought that is capable of detoxifying sediments with respect to organic contaminants while leaving toxicity attributable to inorganic contaminants unaffected. (C) 2000 Elsevier Science Ltd.

  13. Sediment and water toxicity evaluations for the Clinch River ecological risk assessment

    SciTech Connect

    Gonzalez, A.M.; Phipps, T.L.; Kszos, L.A.

    1995-12-31

    The sediment and surface water at three sites in the Clinch River and six sites in Poplar Creek were evaluated by means of toxicity tests with aquatic organisms. The results of these tests were used as one of the lines of evidence in an assessment of ecological risk due to contaminants, transported from the Oak Ridge Reservation, to the off-site sediment and water environment. Results from a suite of six whole sediment, elutriate and pore water toxicity tests were summarized in terms of survival (Hyalella azteca, Daphnia magna, Anodonta imbecillis, Ceriodaphnia dubia), fecundity (Daphnia magna) or light output reduction (Microtox{reg_sign}). Results from the water toxicity tests were summarized in terms of reduction in survival or fecundity of C. dubia, and survival or growth of Pimephales promelas. Toxicity test results (covering a period of about 1 6 months) showed little difference between reference site media and media from sites of concern. They also showed no strong spatial or temporal response pattern. These results are further supported by the presence of indigenous Chironomus and Hexagenia spp. in the sediment samples. Toxicity results will be discussed with respect to three issues. Two criteria were used to define significant differences between reference sites and sites of concern: a difference of 20%, and statistical significance at a = 0.05. Secondly, the relevance of comparing mean responses to control vs. reference site will be discussed. Lastly, toxicity results are consistent with site characterization information which suggest that contaminants of concern in sediment are buried under clean sediment, effectively isolating the material from potential human or ecological exposure.

  14. Interlaboratory study of precision: Hyalella azteca and Chironomus tentans freshwater sediment toxicity assays

    USGS Publications Warehouse

    Burton, G.A.; Norberg-King, T. J.; Ingersoll, C.G.; Benoit, D.A.; Ankley, G.T.; Winger, P.V.; Kubitz, J.; Lazorchak, J.M.; Smith, M.E.; Greer, E.; Dwyer, F.J.; Call, D.J.; Day, K.E.; Kennedy, P.; Stinson, M.

    1996-01-01

    Standard 10-d whole-sediment toxicity test methods have recently been developed by the U.S. Environmental Protection Agency (EPA) for the amphipod Hyalella azteca and the midge Chironomus tentans. An interlaboratory evaluation of method precision was performed using a group of seven to 10 laboratories, representing government, academia, and environmental consulting firms. The test methods followed the EPA protocols for 4-d water-only reference toxicant (KCl) testing (static exposure) and for 10-d whole-sediment testing. Test sediments included control sediment, two copper-containing sediments, and a sediment contaminated primarily with polycyclic aromatic hydrocarbons. Reference toxicant tests resulted in H. azteca and C. tentans median lethal concentration (LC50) values with coefficents of variation (CVs) of 15.8 and 19.6%, respectively. Whole sediments which were moderately contaminated provided the best estimates of precision using CVs. Hyalella azteca and C. tentans tests in moderately contaminated sediments exhibited LC50 CVs of 38.9 and 13.5%, respectively. The CV for C. tentans growth was 31.9%. Only 3% (1 of 28) of samples exceeded acceptable interlaboratory precision limits for the H. azteca survival tests. No samples exceeded the intralaboratory precision limit for H. azteca or C. tentans survival tests. However, intralaboratory variability limits for C. tentans growth were exceeded by 80 and 100% of the laboratories for a moderately toxic and control sample, respectively. Interlaboratory variability limits for C. tentans survival were not exceeded by any laboratory. The results showed these test methods to have relatively low variance and acceptable levels of precision in interlaboratory comparisons.

  15. Photoactivation and toxicity of mixtures of polycyclic aromatic hydrocarbon compounds in marine sediment

    SciTech Connect

    Swartz, R.C.; Ferraro, S.P.; Lamberson, J.O.; Cole, F.A.; Ozretich, R.J.; Boese, B.L.; Schults, D.W.; Behrenfeld, M.; Ankley, G.T.

    1997-10-01

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration series of either single compounds or as approximately equitoxic mixtures of all four compounds. Standard 10-d sediment toxicity tests were conducted under fluorescent lighting. After 10 d, survivors were exposed for 1 h to ultraviolet (UV) radiation in the absence of sediment and then tested for their ability to bury in uncontaminated sediment. The 10-d median lethal concentrations (LC50s) were 2.31 mg acenaphthene/g organic carbon (OC), 2.22 mg phenanthrene/g OC, 3.31 mg fluoranthene/g OC, and 2.81 mg pyrene/g OC. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the approximately equitoxic mixtures. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicologic interaction of a mixture of contaminants is additive, {Sigma}TU LC50 = 1.0. The observed LC50 (1.55 {Sigma}TU) was slightly, but significantly, greater than unity, indicating that the interaction of PAHs in the mixture was less than additive. Exposure to UV radiation enhanced the toxic effects of fluoranthene and pyrene, but did not affect the toxicity of acenaphthene and phenanthrene. Effects of UV radiation on the toxicity of the mixture of four PAHs could be explained by the photoactivation of fluoranthene and pyrene alone. These results are consistent with predictions based on photophysical properties of PAH compounds.

  16. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    PubMed

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results. PMID:25694074

  17. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    PubMed

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results.

  18. Influence of ultraviolet light on the toxicity of sediments contaminated with polycyclic aromatic hydrocarbons

    SciTech Connect

    Ankley, G.T.; Collyard, S.A. ); Monson, P.D. ); Kosian, P.A. )

    1994-11-01

    Standard 10-d toxicity tests were conducted with freshwater benthic invertebrates using sediments containing a range of concentrations of polycyclic aromatic hydrocarbons (PAHs). The assays were performed both under normal laboratory fluorescent light and ultraviolet (UV) light, which mimicked wavelengths present in sunlight, at about 10% of ambient solar intensity. In sediments with elevated PAH concentrations, tests conducted with UV light resulted in significantly greater mortality of Hyalella azteca (amphipods) and Lumbriculus variegatus (oligochaetes) than tests performed under otherwise comparable conditions with fluorescent light. There also was increased mortality of these two species, relative to controls, when surviving organisms from the 10-d exposures to the PAH-contaminated sediments were placed in clean water under UV light for 2 h. These results suggest that the organisms accumulated PAHs from the test sediments, which were subsequently photoactivated by UV light to excited states more toxic than the ground-state molecules. The phenomenon of photoactivation has been examined for pelagic species exposed to PAHs, but not for benthic organisms exposed to sediment-associated PAHs. The results suggest that failure to consider photoactivation of PAHs by sunlight could result in sediment toxicity test methods or criteria that are underprotective of benthic organisms.

  19. Contamination and correlation with toxicity of sediment samples from the Skagerrak and Kattegat

    NASA Astrophysics Data System (ADS)

    Magnusson, K.; Ekelund, R.; Dave, G.; Granmo, Å.; Förlin, L.; Wennberg, L.; Samuelsson, M.-O.; Berggren, M.; Brorström-Lundén, E.

    1996-02-01

    The pollution state in the Skagerrak and Kattegat was investigated by determination of pollutant concentrations and toxicity of sediment samples from 11 stations in the area. A comparison was made with the sediment from a reference site near the Faroe Islands. Polycyclic aromatic hydrocarbons (PAH) and organochlorines were determined in whole sediment and heavy metals and ammonia were analysed in filtered pore water. Toxicity was bioassayed in whole sediment with Nitocra spinipes and Daphnia magna, in pore water with Mytilus edulis larvae and in solvent extracts from sediment with tests measuring etoxyresorufin-O-deethylase (EROD) activity in Oncorhyncus mykiss and rate of denitrification. Sites close to Göteborg and in an area from the Oslo fjord to the Norwegian Trench were most polluted. Sediment from the Faroe Islands was least polluted and also least toxic. Multivariate statistical analysis indicates that the different tests were sensitive to different kinds of pollutants. Effects on mussel larvae correlated strongest with the occurrence of ammonia, manganese, cadmium and PAHs, Nitocra with α-hexachlorocyclohexane (HCH) and p,p'-DDD, Daphnia with arsenic and γ-HCH, fish EROD activity with benzo[ghi]perylene and unknown compounds associated with organic carbon, and denitrification with chlordanes, dieldrin and a few PAHs. The results indicate that sampling sites close to Göteborg are so polluted that harmful effects on the ecosystem probably occur.

  20. Estimated sediment thickness, quality, and toxicity to benthic organisms in selected impoundments in Massachusetts

    USGS Publications Warehouse

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2013-01-01

    The U.S. Geological Survey and the Massachusetts Department of Fish and Game, Division of Ecological Restoration, collaborated to collect baseline information on the quantity and quality of sediment impounded behind selected dams in Massachusetts, including sediment thickness and the occurrence of contaminants potentially toxic to benthic organisms. The thicknesses of impounded sediments were measured, and cores of sediment were collected from 32 impoundments in 2004 and 2005. Cores were chemically analyzed, and concentrations of 32 inorganic elements and 108 organic compounds were quantified. Sediment thicknesses varied considerably among the 32 impoundments, with an average thickness of 3.7 feet. Estimated volumes also varied greatly, ranging from 100,000 cubic feet to 81 million cubic feet. Concentrations of toxic contaminants as well as the number of contaminants detected above analytical quantification levels (also known as laboratory reporting levels) varied greatly among sampling locations. Based on measured contaminant concentrations and comparison to published screening thresholds, bottom sediments were predicted to be toxic to bottom-dwelling (benthic) organisms in slightly under 30 percent of the impoundments sampled. Statistically significant relations were found between several of the contaminants and individual indicators of urban land use and industrial activity in the upstream drainage areas of the impoundments. However, models developed to estimate contaminant concentrations at unsampled sites from upstream landscape characteristics had low predictive power, consistent with the long and complex land-use history that is typical of many drainage areas in Massachusetts.

  1. Effect of nitrate-based bioremediation on contaminant distribution and sediment toxicity-column study

    SciTech Connect

    Hutchins, S.R.; Bantle, J.A.; Schrock, E.J.

    1998-03-01

    A laboratory column study was set up to evaluate changes in contaminant distribution and sediment toxicity following nitrate-based bioremediation and to correlate toxicity reduction with loss of fuel components. Glass columns were packed with sediment from an aquifer that had been contaminated with JP-4 jet fuel and were remediated using feed solution containing 20 mg/L NO{sub 3}-N. Column influents and effluents were monitored for BTEXTMB (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes), electron acceptors, nutrients, and dissolved gases. Duplicate columns were sacrificed after 1, 4, and 7 months, and core material was analyzed for chemical constituents. In addition, core material was evaluated for toxicity using FETAX, a developmental toxicity test employing frog embryos.

  2. Toxicity of oiled sediments treated with bioremediation agents: A shoreline experiment in Delaware, USA

    SciTech Connect

    Mearna, A.; Doe, K.; Fisher, W.; Lee, K.; Mueller, C.

    1995-12-31

    Using a randomized complete block design, a battery of five pore water and sediment bioassays were used to monitor and compare toxicity among un-oiled, oiled (light Nigerian crude) and nutrient and bacteria-treated shoreline plots on a sandy beach. Tests included sea urchin fertilization, water and modified-solid phase microtox, 10-day amphipod survival and grass shrimp embryo bioassays. During the 13-week study, bioremediation treatment with nutrients and/or bacteria did not decrease toxicity relative to that in untreated plots. Results from at least one bioassay suggested that, relative to no treatment, treatment may have increased toxicity for several weeks. The least and most sensitive tests were sea urchin fertilization (pore water) and 10-day amphipod test, respectively. Coupled with chemical monitoring, the study produced a large data-base for evaluating toxic concentrations of petroleum hydrocarbons in sandy sediments.

  3. Geochemistry and toxicity of sediment porewater in a salt-impacted urban stormwater detention pond.

    PubMed

    Mayer, T; Rochfort, Q; Borgmann, U; Snodgrass, W

    2008-11-01

    A comprehensive study was carried out to investigate the impacts of road salts on the benthic compartment of a small urban detention facility, Rouge River Pond. Although the pond is an engineered water body, it is representative of many small urban lakes, ponds and wetlands, which receive road runoff and are probable high impact areas. Specific objectives of the study were to document the porewater chemistry of an aquatic system affected by elevated salt concentrations and to carry out a toxicological assessment of sediment porewater to determine what factors may cause porewater toxicity. The results indicate that the sediment porewater may itself attain high salt concentrations. The computations show that increased chloride levels have important implications on the Cd complexation, augmenting its concentration in porewater. The toxicity tests suggest that the toxicity in porewater is caused by metals or other toxic chemicals, rather than high levels of chloride. PMID:18242807

  4. Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor.

    PubMed

    Cong, Yi; Banta, Gary T; Selck, Henriette; Berhanu, Deborah; Valsami-Jones, Eugenia; Forbes, Valery E

    2014-11-01

    In this study, the toxicities of sediment-associated silver added to sediment as commercially available silver nanoparticles (Ag NPs, 20 and 80 nm) and aqueous Ag (AgNO3) to the estuarine polychaete, Nereis (Hediste) diversicolor, were investigated for both individual and subcellular endpoints after 10 d of exposure. Both Ag NP types were characterized in parallel to the toxicity studies and found to be polydispersed and overlapping in size. Burrowing activity decreased (marginally) with increasing Ag concentration and depended on the form of Ag added to sediment. All worms accumulated Ag regardless of the form in which it was added to the sediment, and worm size (expressed as dry weight) was found to significantly affect bioaccumulation such that smaller worms accumulated more Ag per body weight than larger worms. Lysosomal membrane permeability (neutral red retention time, NRRT) and DNA damage (comet assay tail moment and tail DNA intensity %) of Nereis coelomocytes increased in a concentration-dependent manner in all three Ag treatments. Ag NP treatments were more toxic than aqueous Ag for all toxicity endpoints, even though bioaccumulation did not differ significantly among Ag forms. No significant difference in toxicity was observed between the two Ag NP treatments which was attributed to their overlap in particle size.

  5. Toxicity of sediments surrounding the Gunpowder Neck Superfund Site at Aberdeen Proving Ground, Maryland. Final report, August 1992-December 1993

    SciTech Connect

    Haley, M.V.; Anthony, J.S.; Chester, N.A.; Kurnas, C.W.

    1995-07-01

    From the late 1940s through the 1960s, the standard practice for disposing of toxic chemicals at Aberdeen Proving Ground, MD, was open burning. This disposal site has since been placed on the National Priority List (NPt) by U.S. Environmental Protection Agency. In the spring 1992, sediment samples were taken from waterways that surround that disposal area. Chemical analysis and sediment toxicity assays (Ampelisca abdita) were conducted. Toxicity comparison, with sediment leachate from an Adapted Toxicity Characteristic teaching Procedure (ATCLP), were made using Daphnia magna and a fluorescent bacterium Photobacterium phosphoreum in MICROTOX assays. Amphipods showed a wide range of mortality in mud as well as coarser sediments indicating substrate preference is not critical to the outcome of the assay. Toxicity results from the leachates showed the sediments were not toxic to daphnia and MICROTOX assays.

  6. Contribution of ammonia, metals, and nonpolar organic compounds to the toxicity of sediment interstitial water from an Illinois River tributary

    SciTech Connect

    Schubauer-Berigan, M.K.; Ankley, G.T.

    1991-01-01

    Toxicity of Illinois River bulk sediment, sediment interstitial (pore) water and elutriates to the oligochaete Lumbriculus variegatus, fathead minnow (Pimephales promelas) and the amphipod Hyalella azteca was compared to determine the most representative aqueous fraction for toxicity identification evaluation (TIE) studies. Toxicity of pore water corresponded better than elutriates to bulk sediment toxicity. Subsequent TIE procedures conducted with the cladoceran Ceriodaphnia dubia indicated that ammonia, metals and nonpolar organic compounds (nonylphenols, polycyclic aromatic hydrocarbons, benzenes, long-chain hydrocarbons) were responsible for toxicity of the sediment pore water. Results of TIE manipulations also suggested that methods for recovering pore water that include filtration may eliminate, a priori, a major component of the sediment contaminants responsible for toxicity.

  7. Acute toxicity of biodiesel to freshwater and marine organisms

    SciTech Connect

    Reece, D.; Peterson, C.

    1995-11-01

    Biodiesel fuels are reported to be nontoxic resulting in less potential hazard to fish and other aquatic life in case of accidental spills. This paper reports on static tests with rapeseed methyl ester (RME) and rapeseed ethyl ester (REE) performed according to EPA/600/4-90/027. The acute aquatic toxicity tests were conducted with both rainbow trout and daphnia magna by CH2M Hill in Corvallis, Oregon under contract to the University of Idaho. The LC50 (the point at which 50% have died and 50% are still alive determined by interpolation) values for each of the substrates tested with daphnia magna in parts per million were as follows: control(table salt (NaCl)) = 3.7, D2 = 1.43, RME = 23, REE = 99, and Methyl Soyate = 332. Duplicate tests with rainbow trout were run with 10 organisms per replicate. LC50 numbers were not reported because of the failure to kill a sufficient number of fish at the concentrations tested, even with the diesel control fuel. The 20 percent and 50 percent blends had scattered losses of fish but none of the tests had less than 85 percent survival at any concentrations after 96 hours.

  8. A simple control for sediment-toxicity exposures using the amphipod, Hyalella azteca

    USGS Publications Warehouse

    Lasier, Pete; Urich, Matthew L.

    2014-01-01

    Sediment-toxicity exposures comparing survival and growth of the freshwater amphipod, Hyalella azteca, are often components of aquatic-habitat assessments. Standardized exposure methods have been established and require evaluations for quality assurance. Test acceptability using performance-based criteria can be determined from exposures to control sediments, which are collected from the environment or formulated from commercially available components. Amending sand with leached alfalfa solids provided a simple formulated sediment that elicited consistently acceptable survival and growth in 28-day exposures with and without a daily feeding regime. A procedure is described for preparing the sediment along with results from comparisons among sand, amended sand, and field-collected sediments that incorporated three feeding regimes.

  9. A simple control for sediment-toxicity exposures using the amphipod, Hyalella azteca.

    PubMed

    Lasier, Peter J; Urich, Matthew L

    2014-09-01

    Sediment-toxicity exposures comparing survival and growth of the freshwater amphipod, Hyalella azteca, are often components of aquatic-habitat assessments. Standardized exposure methods have been established and require evaluations for quality assurance. Test acceptability using performance-based criteria can be determined from exposures to control sediments, which are collected from the environment or formulated from commercially available components. Amending sand with leached alfalfa solids provided a simple formulated sediment that elicited consistently acceptable survival and growth in 28-day exposures with and without a daily feeding regime. A procedure is described for preparing the sediment along with results from comparisons among sand, amended sand, and field-collected sediments that incorporated three feeding regimes. PMID:25015186

  10. Effects of storage on the toxicity of sediments spiked with fluoranthene to the amphipod, Rhepoxynius abronius

    SciTech Connect

    Cole, F.A.; Boese, B.L.; Swartz, R.C.; Lamberson, J.O.; DeWitt, T.H.

    2000-03-01

    To determine the effect of storage on contaminant bioavailability and toxicity, two sediment types, a fine sand and a silty sand, were spiked with nine concentrations of fluoranthene, then stored at 4 C for up to 170 d. Toxicity of the stored sediment was determined eight times during this storage interval using standard 10-d toxicity tests with the marine infaunal amphipod Rhepoxynius abronius. The concentrations of fluoranthene in the sediment and interstitial water were determined on samples taken on each test date. The toxicity of fluoranthene in the silty sand was similar for all storage times with LC50s ranging from 5.3 to 6.6 mg/g organic carbon (OC). The LC50 in the fine sand was 7.4 mg/g OC after 13 d of storage, ranged from 10.2 to 11.8 mg/g OC during 27 to 83 d of storage, and increased to 24.2 and 27.6 mg/g OC after 121 and 170 d of storage, respectively. These data indicate that the toxicity of both the fine and the silty sand remained essentially constant during storage from days 27 to 83. Toxicity tests conducted before or after that period may give misleading results because of disequilibrium or unknown storage effects.

  11. Developmental toxicity of Louisiana crude oil-spiked sediment to zebrafish.

    PubMed

    Raimondo, Sandy; Jackson, Crystal R; Krzykwa, Julie; Hemmer, Becky L; Awkerman, Jill A; Barron, Mace G

    2014-10-01

    Embryonic exposures to the components of petroleum, including polycyclic aromatic hydrocarbons (PAHs), cause a characteristic suite of developmental defects and cardiotoxicity in a variety of fish species. We exposed zebrafish embryos to reference sediment mixed with laboratory weathered South Louisiana crude oil and to sediment collected from an oiled site in Barataria Bay, Louisiana in December 2010. Laboratory oiled sediment exposures caused a reproducible set of developmental malformations in zebrafish embryos including yolk sac and pericardial edema, craniofacial and spinal defects, and tissue degeneration. Dose-response studies with spiked sediment showed that total polycyclic aromatic hydrocarbons (tPAH) concentrations of 27mg tPAH/kg (dry weight normalized to 1 percent organic carbon [1 percent OC]) caused a significant increase in defects, and concentrations above 78mg tPAH/kg 1 percent OC caused nearly complete embryo mortality. No toxicity was observed in Barataria sediment with 2mg tPAH/kg 1 percent OC. Laboratory aging of spiked sediment at 4°C resulted in a nearly 10-fold decrease in sensitivity over a 40-day period. This study demonstrates oiled sediment as an exposure pathway to fish with dose-dependent effects on embryogenesis that are consistent with PAH mechanisms of developmental toxicity. The results have implications for effects on estuarine fish from oiled coastal areas during the Deepwater Horizon spill. PMID:25105486

  12. Adjuvant chemotherapy and acute toxicity in hypofractionated radiotherapy for early breast cancer

    PubMed Central

    Kouloulias, Vassilis; Zygogianni, Anna; Kypraiou, Efrosini; Georgakopoulos, John; Thrapsanioti, Zoi; Beli, Ivelina; Mosa, Eftychia; Psyrri, Amanta; Antypas, Christos; Armbilia, Christina; Tolia, Maria; Platoni, Kalliopi; Papadimitriou, Christos; Arkadopoulos, Nikolaos; Gennatas, Costas; Zografos, George; Kyrgias, George; Dilvoi, Maria; Patatoucas, George; Kelekis, Nikolaos; Kouvaris, John

    2014-01-01

    AIM: To evaluate the effect of chemotherapy to the acute toxicity of a hypofractionated radiotherapy (HFRT) schedule for breast cancer. METHODS: We retrospectively analyzed 116 breast cancer patients with T1, 2N0Mx. The patients received 3-D conformal radiotherapy with a total physical dose of 50.54 Gy or 53.2 Gy in 19 or 20 fractions according to stage, over 23-24 d. The last three to four fractions were delivered as a sequential tumor boost. All patients were monitored for acute skin toxicity according to the European Organization for Research and Treatment of Cancer/Radiation Therapy Oncology Group criteria. The maximum monitored value was taken as the final grading score. Multivariate analysis was performed for the contribution of age, chemotherapy and 19 vs 20 fractions to the radiation acute skin toxicity. RESULTS: The acute radiation induced skin toxicity was as following: grade I 27.6%, grade II 7.8% and grade III 2.6%. No significant correlation was noted between toxicity grading and chemotherapy (P = 0.154, χ2 test). The mean values of acute toxicity score in terms of chemotherapy or not, were 0.64 and 0.46 respectively (P = 0.109, Mann Whitney test). No significant correlation was also noted between acute skin toxicity and radiotherapy fractions (P = 0.47, χ2 test). According to univariate analysis, only chemotherapy contributed significantly to the development of acute skin toxicity but with a critical value of P = 0.05. However, in multivariate analysis, chemotherapy lost its statistical significance. None of the patients during the 2-years of follow-up presented any locoregional relapse. CONCLUSION: There is no clear evidence that chemotherapy has an impact to acute skin toxicity after an HFRT schedule. A randomized trial is needed for definite conclusions. PMID:25405195

  13. Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons.

    PubMed

    Jonker, Michiel T O; Brils, Jos M; Sinke, Anja J C; Murk, Albertinka J; Koelmans, Albert A

    2006-05-01

    Many sediments are contaminated with mixtures of oil residues and polycyclic aromatic hydrocarbons (PAHs), but little is known about the toxicity of such mixtures to sediment-dwelling organisms and the change in toxicity on weathering. In the present study, we investigated the effects of a seminatural, two-year weathering period on PAH/oil chemistry and toxicity in a marine sediment that had been spiked with three different oils (a gas oil, a lubricating oil, and a crude oil; all tested at five concentrations). Toxicity of bioavailable, pore water-accommodated oil/PAH fractions was quantified using a bacterial (Vibrio fischeri) assay and the in vitro chemical-activated luciferase expression assay (DR-CALUX; using conditions to detect PAHs). Results of chemical analyses pointed to (microbial) degradation of all three oils: Sediment oxygen demand during weathering increased with increasing oil concentration, total oil concentrations decreased to between 17 and 29% of initial levels, and resolved n-alkanes were depleted in weathered oil fractions. Furthermore, a shift in the relative importance of different boiling-point fraction ranges of the oils was observed on weathering. Generally, the lowest fraction range (C10-C16) disappeared, whereas the relative proportion of the highest (C28-C40) fraction range increased considerably. Remarkably, for the gas oil, this fraction shift was dependent on the oil concentration in sediment. Similarly, degradation of PAHs was strongly affected by the sedimentary oil content, indicating that the presence of oil stimulated PAH degradation. This phenomenon applied to both low- and high-molecular-weight PAHs, although the first group (3- and 4-ring PAHs) was degraded most. Results from the V. fischeri and DR-CALUX assay showed that in most cases, pore-water toxicity decreased on weathering. Combining the assay responses with chemical data indicated that the observed toxicity probably was not caused by the analyzed PAHs but, rather, by

  14. Results of acute and chronic toxicity tests conducted at SRS NPDES outfalls, July--October 1991

    SciTech Connect

    Specht, W.L.

    1992-01-01

    Acute (48 hour LC50) and chronic (7-day reproductive impairment) toxicity tests were conducted on Ceriodaphnia dubia in water collected from 53 NPDES outfalls. All tests were conducted at the in-stream waste concentration. only 12 of the 53 outfalls showed no evidence of toxicity. Twenty-eight of the outfalls were acutely toxic, often producing 100% mortality during the first day of exposure. Fourteen outfalls had no discharge at the time of sampling and could not be tested. Three outfalls were not tested because their toxicity has been adequately characterized in other investigations. Elevated concentrations of total residual chlorine are suspected to be responsible for the observed toxicity of many NPDES outfalls, particularly the sanitary wastewater treatment plants. Chemical data from previous studies indicate that metals may also be present in toxic concentrations at many outfalls. Toxicity identification and reduction options are discussed.

  15. Acute and sub-acute oral toxicity assessment of the hydroalcoholic extract of Withania somnifera roots in Wistar rats.

    PubMed

    Prabu, P C; Panchapakesan, S; Raj, C David

    2013-08-01

    Withania somnifera is a widely used medicinal plant for several disorders. Toxicity studies on Withania somnifera are not available. Acute and sub-acute oral toxicities of Withania somnifera root extract in Wistar rats were evaluated in the present study. In the acute toxicity study, WSR extract was administered to five rats at 2000 mg/kg, once orally and were observed for 14 days. No toxic signs/mortality were observed. In the sub-acute study, WSR extract was administered once daily for 28 days to rats at 500, 1000 and 2000 mg/kg, orally. No toxic signs/mortality were observed. There were no significant changes (P < 0.05) in the body weights, organ weights and haemato-biochemical parameters in any of the dose levels. No treatment related gross/histopathological lesions were observed. The present investigation demonstrated that the no observed adverse effect level was 2000 mg/kg body weight per day of hydroalcoholic extract of W. somnifera in rats and hence may be considered as non-toxic.

  16. Results of toxicity tests and chemical analyses conducted on sediments collected from the TNX Outfall Delta Operable Unit, July 1999

    SciTech Connect

    Specht, W.L.

    2000-02-11

    In order to provide unit specific toxicity data that will be used to address critical uncertainty in the ecological risk assessment (ERA) for the TNX Outfall Delta Operable Unit (TNXOD OU), sediments were collected from eight locations in the Inner Swamp portion of the operable unit and two unit specific background locations. These samples were analyzed for total mercury, total uranium, and sediment toxicity.

  17. Assessing Contaminant Sensitivity of Endangered and Threatened Aquatic Species: Part I. Acute Toxicity of Five Chemicals

    EPA Science Inventory

    This paper reports on the results of acute toxicity tests conducted with common surrogate species, and several species of threatened and endangered species for which there were excess artificially propagated stock to allow direct testing.

  18. Acute toxicity of selected crude and refined shale oil derived and petroleum-derived substances

    SciTech Connect

    Smith, L.H.; Haschek, W.M.; Witschi, H.

    1980-01-01

    General information was obtained on the toxicity of selected samples of crude Paraho shale oil and some of its derivatives, some crude petroleums, and 3 refined petroleum products. Five tests were used to determine the acute toxicity of these substances: acute lethality in mice following oral or intraperitoneal administration of a single dose; acute dermal toxicity of a single dose in rats; delayed-type allergic contact hypersensitivity in guinea pigs; primary eye irritation and primary skin irritation of a single dose in rabbits. Histopathologic changes induced in mice following intraperitoneal injection of a single large dose of crude shale oil and two of its hydrotreated derivatives were examined. Studies also have been initiated to examine the tumor inducing potential of selected samples. The test system used was the mouse lung adenoma bioassay. The present report describes our findings and shows that all compounds tested have very low or no acute toxic effects in laboratory animals.

  19. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  20. Cross-Sector Review of Drivers and Available 3Rs Approaches for Acute Systemic Toxicity Testing

    PubMed Central

    Seidle, Troy; Robinson, Sally; Holmes, Tom; Creton, Stuart; Prieto, Pilar; Scheel, Julia; Chlebus, Magda

    2010-01-01

    Acute systemic toxicity studies are carried out in many sectors in which synthetic chemicals are manufactured or used and are among the most criticized of all toxicology tests on both scientific and ethical grounds. A review of the drivers for acute toxicity testing within the pharmaceutical industry led to a paradigm shift whereby in vivo acute toxicity data are no longer routinely required in advance of human clinical trials. Based on this experience, the following review was undertaken to identify (1) regulatory and scientific drivers for acute toxicity testing in other industrial sectors, (2) activities aimed at replacing, reducing, or refining the use of animals, and (3) recommendations for future work in this area. PMID:20484382

  1. Fish embryo toxicity test: identification of compounds with weak toxicity and analysis of behavioral effects to improve prediction of acute toxicity for neurotoxic compounds.

    PubMed

    Klüver, Nils; König, Maria; Ortmann, Julia; Massei, Riccardo; Paschke, Albrecht; Kühne, Ralph; Scholz, Stefan

    2015-06-01

    The fish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, but concerns have been raised for its predictivity given that a few compounds have been shown to exhibit a weak acute toxicity in the fish embryo. In order to better define the applicability domain and improve the predictive capacity of the fish embryo test, we performed a systematic analysis of existing fish embryo and acute fish toxicity data. A correlation analysis of a total of 153 compounds identified 28 compounds with a weaker or no toxicity in the fish embryo test. Eleven of these compounds exhibited a neurotoxic mode of action. We selected a subset of eight compounds with weaker or no embryo toxicity (cyanazine, picloram, aldicarb, azinphos-methyl, dieldrin, diquat dibromide, endosulfan, and esfenvalerate) to study toxicokinetics and a neurotoxic mode of action as potential reasons for the deviating fish embryo toxicity. Published fish embryo LC50 values were confirmed by experimental analysis of zebrafish embryo LC50 according to OECD guideline 236. Except for diquat dibromide, internal concentration analysis did not indicate a potential relation of the low sensitivity of fish embryos to a limited uptake of the compounds. Analysis of locomotor activity of diquat dibromide and the neurotoxic compounds in 98 hpf embryos (exposed for 96 h) indicated a specific effect on behavior (embryonic movement) for the neurotoxic compounds. The EC50s of behavior for neurotoxic compounds were close to the acute fish toxicity LC50. Our data provided the first evidence that the applicability domain of the fish embryo test (LC50s determination) may exclude neurotoxic compounds. However, neurotoxic compounds could be identified by changes in embryonic locomotion. Although a quantitative prediction of acute fish toxicity LC50 using behavioral assays in fish embryos may not yet be possible, the identification of neurotoxicity could trigger the conduction of a conventional fish

  2. Effects of Low Dissolved Oxygen on Organisms Used in Freshwater Sediment Toxicity Tests

    EPA Science Inventory

    This manuscript describes the results of tests to determine the tolerance of three benthic organisms to reduced dissolved oxygen (DO). These three organisms are those recommended by EPA for use in toxicity testing of contaminated sediments. The results of the exposures indicate ...

  3. A REGIONAL SCALE TOXICITY ASSESSMENT OF SEDIMENT IN THE MID-ATLANTIC AND SOUTHERN ROCKIES, USA

    EPA Science Inventory

    As part of the Environmental Monitoring and Assessment Program (EMAP), sediment samples were collected to assess toxicity on a regional scale in streams and rivers in the Mid-Atlantic U.S. in 1994, 1997 and 1998, and in the Colorado Rocky Mountains in 1994 and 1995. Sample sites...

  4. Sediment toxicity and deformities of chironomid larvae in Lake Piediluco (Central Italy).

    PubMed

    Di Veroli, Alessandra; Selvaggi, Roberta; Pellegrino, Roberto Maria; Goretti, Enzo

    2010-03-01

    The chemical analysis of the bottom sediments of the Lake Piediluco (Central Italy) has been carried out in order to individuate the potential correlation between the sediment toxicity and the high incidence of mouthpart deformities in chironomid larvae (biological indicators) found in this lake. The environmental contamination has been analyzed by determining the concentrations of the main heavy metals (lead, copper, cadmium, chromium, zinc and nickel), and the concentrations of organic compounds of anthropic source: PAHs, NPPs and OCPs. Heavy metals concentrations have pointed out a non-elevated contamination grade for the Lake Piediluco. The highest level of metals has been detected in the western area that feels the effect of the continuous tributaries incoming load. Also, concerning PAHs, NPPs and OCPs the lake does not present high values of pollution. The highest concentrations of the organic toxicants has been observed in the eastern sector of the lake, which presents typical lentic characteristics. A clear relationship has not found between the toxic substances present in the lacustrine sediments and the deformities incidence for chironomid larvae, which represent an index of environmental alteration. Probably, the mouthpart deformities found in the chironomid larvae of Chironomus plumosus are affected by a synergic action due to the whole toxic mixture present in the sediments of the Lake Piediluco. PMID:20172586

  5. SEDIMENT CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX.

    EPA Science Inventory

    The increasing density of golf courses represents a potential source of sediment contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to determine the concentrations of contaminants and toxicities...

  6. Chemical contamination and toxicity of sediment from a coastal area receiving industrial effluents in Kuwait.

    PubMed

    Beg, M U; Al-Muzaini, S; Saeed, T; Jacob, P G; Beg, K R; Al-Bahloul, M; Al-Matrouk, K; Al-Obaid, T; Kurian, A

    2001-10-01

    The Shuaiba coastal area (12.5 x 1.5 km) was examined for contamination with total organic carbon, volatile organic matter, total petroleum hydrocarbons, polycyclic aromatic hydrocarbons, cadmium, chromium, copper, lead, nickel, vanadium, and zinc in sediment; their desorption by aqueous elution; and toxicity to aquatic biota. The pollutants were mainly accumulated in the upstream area facing Mina Al-Ahmadi refinery to Shuaiba harbour. Solid-phase Microtox assays showed severe toxicity, and the LC(50) was negatively correlated with most of the chemical parameters, suggesting that toxicity was the function of collective effects of the pollutants present in sediment. Sea water elutriation showed poor desorption of pollutants from sediment, and the elutriates were not found toxic to Microtox and brine shrimp larvae. Whole sediment suspension in sea water reduced the survival of fingerlings in fish bioassays. Action from Shuaiba Area Authority is required to reduce pollutant accumulation in identified depositional area on the Shuaiba coast by facilitating unrestricted water flow in the area and restricting pollutant discharge at source. PMID:11503065

  7. What Food and Feeding Rates are Optimum for the Chironomus dilutus Sediment Toxicity Test Method?

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates are commonly used to assess the toxicity of both contaminated sediments and individual chemicals. Among the standard procedures for benthic macroinvertebrates are 10-d, 20-d, and life cycle exposures using the midge, Chironomus ...

  8. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia.

    PubMed

    Tejeda-Benitez, Lesly; Flegal, Russell; Odigie, Kingsley; Olivero-Verbel, Jesus

    2016-05-01

    The Magdalena River is the most important river in Colombia, supplying over 70% of the population of fish and drinking water, and it also is the main river transportation way of the country. It receives effluents from multiple sources along its course such as contaminant agricultural and industrial discharges. To evaluate the toxicity profile of Magdalena River sediments through endpoints such as survival, locomotion, and growth, wild type strains of Caenorhabditis elegans were exposed to aqueous extracts of the sediments. To identify changes in gene expression, GFP transgenic strains were used as reporter genes. Physiological and biochemical data were correlated with metal concentration in the sediments, identifying patterns of toxicity along the course of the river. Levels of some metals such as Cd, Cu, and Ni were above TEC and PEC limits. Effects in survival, growth, and locomotion were observed in most of the samples, and changes in gene expression were evident in the genes mtl-2, sod-4, and gst-1 using fluorescence expression. Cadmium and lead were the metals which were primarily associated with sediment toxicity, and the sampling sites with the highest increased expression of stress response genes were Barrancabermeja and Girardot. However, the diverse nature of toxic profiles observed in C. elegans in the study area showed the pervasiveness of different types of discharges throughout the river system. PMID:26851980

  9. IDENTIFICATION AND EVALUATION OF STRESSORS IN TOXIC SEDIMENTS AND DREDGED MATERIALS

    EPA Science Inventory

    Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways for a number of reasons. Identification of specific classes of toxicants (or stressors) can be useful in designing effective sediment remediation methods and re...

  10. Saving two birds with one stone: using active substance avian acute toxicity data to predict formulated plant protection product toxicity.

    PubMed

    Maynard, Samuel K; Edwards, Peter; Wheeler, James R

    2014-07-01

    Environmental safety assessments for exposure of birds require the provision of acute avian toxicity data for both the pesticidal active substance and formulated products. As an example, testing on the formulated product is waived in Europe using an assessment of data for the constituent active substance(s). This is often not the case globally, because some countries require acute toxicity tests with every formulated product, thereby triggering animal welfare concerns through unnecessary testing. A database of 383 formulated products was compiled from acute toxicity studies conducted with northern bobwhite (Colinus virginianus) or Japanese quail (Coturnix japonica) (unpublished regulatory literature). Of the 383 formulated products studied, 159 contained only active substances considered functionally nontoxic (median lethal dose [LD50] > highest dose tested). Of these, 97% had formulated product LD50 values of >2000 mg formulated product/kg (limit dose), indicating that no new information was obtained in the formulated product study. Furthermore, defined (point estimated) LD50 values for formulated products were compared with LD50 values predicted from toxicity of the active substance(s). This demonstrated that predicted LD50 values were within 2-fold and 5-fold of the measured formulated product LD50 values in 90% and 98% of cases, respectively. This analysis demonstrates that avian acute toxicity testing of formulated products is largely unnecessary and should not be routinely required to assess avian acute toxicity. In particular, when active substances are known to be functionally nontoxic, further formulated product testing adds no further information and unnecessarily increases bird usage in testing. A further analysis highlights the fact that significant reductions (61% in this dataset) could be achieved by using a sequential testing design (Organisation for Economic Co-operation and Development test guideline 223), as opposed to established single

  11. Understanding how data triangulation identifies acute toxicity of novel psychoactive drugs.

    PubMed

    Wood, D M; Dargan, P I

    2012-09-01

    Over the last decade, there has been an increase in the availability and use of novel psychoactive substances (also known as "legal highs"). There is limited information available on the potential acute toxicity (harms) associated with the use of these novel psychoactive substances. Gold standard evidence, such as animal studies or human clinical trials, is rarely available to users or healthcare professionals. However, it is possible to use triangulation of data on the acute toxicity from multiple sources to describe the overall pattern of toxicity associated with a novel psychoactive substance. In this review, we will describe these potential data sources, which include self-reported toxicity on internet discussion fora, data from sub-population user surveys, data from regional and national poisons information services and published case reports and case series. We will then describe how pattern of acute toxicity associated with the use of the cathinone mephedrone (4-methylmethcathinone) was established using triangulation of these different data sources.

  12. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  13. Magnitude and extent of sediment toxicity in selected estuaries of South Carolina and Georgia. Technical memo

    SciTech Connect

    Long, E.R.; Scott, G.I.; Kucklick, J.; Fulton, M.; Thompson, B.

    1998-04-01

    Surficial sediment samples were collected from 162 locations within five estuaries -- Charleston Harbor, Winyah Bay, Leadenwah Creek, Savannah River, and St. Simons Sound -- in coastal South Carolina and Georgia in a survey of sediment toxicity performed in 1993 and 1994. All samples were tested for toxicity with a battery of complimentary laboratory bioassays. The laboratory bioassays consisted of amphipod survival tests in solid-phase sediments, microbial bioluminescence (Microtox{trademark}) tests of organic solvent extracts, and sea urchin fertilization and embryo development tests of porewaters. Some samples also were tested in copepod reproduction and cytochrome P-450 RGS bioassays. Chemical analyses for a suite of trace metals, organic compounds, and sedimentological factors were performed with portions of most samples.

  14. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus.

    PubMed

    Schmiegelow, Kjeld; Attarbaschi, Andishe; Barzilai, Shlomit; Escherich, Gabriele; Frandsen, Thomas Leth; Halsey, Christina; Hough, Rachael; Jeha, Sima; Kato, Motohiro; Liang, Der-Cherng; Mikkelsen, Torben Stamm; Möricke, Anja; Niinimäki, Riitta; Piette, Caroline; Putti, Maria Caterina; Raetz, Elizabeth; Silverman, Lewis B; Skinner, Roderick; Tuckuviene, Ruta; van der Sluis, Inge; Zapotocka, Ester

    2016-06-01

    Although there are high survival rates for children with acute lymphoblastic leukaemia, their outcome is often counterbalanced by the burden of toxic effects. This is because reported frequencies vary widely across studies, partly because of diverse definitions of toxic effects. Using the Delphi method, 15 international childhood acute lymphoblastic leukaemia study groups assessed acute lymphoblastic leukaemia protocols to address toxic effects that were to be considered by the Ponte di Legno working group. 14 acute toxic effects (hypersensitivity to asparaginase, hyperlipidaemia, osteonecrosis, asparaginase-associated pancreatitis, arterial hypertension, posterior reversible encephalopathy syndrome, seizures, depressed level of consciousness, methotrexate-related stroke-like syndrome, peripheral neuropathy, high-dose methotrexate-related nephrotoxicity, sinusoidal obstructive syndrome, thromboembolism, and Pneumocystis jirovecii pneumonia) that are serious but too rare to be addressed comprehensively within any single group, or are deemed to need consensus definitions for reliable incidence comparisons, were selected for assessment. Our results showed that none of the protocols addressed all 14 toxic effects, that no two protocols shared identical definitions of all toxic effects, and that no toxic effect definition was shared by all protocols. Using the Delphi method over three face-to-face plenary meetings, consensus definitions were obtained for all 14 toxic effects. In the overall assessment of outcome of acute lymphoblastic leukaemia treatment, these expert opinion-based definitions will allow reliable comparisons of frequencies and severities of acute toxic effects across treatment protocols, and facilitate international research on cause, guidelines for treatment adaptation, preventive strategies, and development of consensus algorithms for reporting on acute lymphoblastic leukaemia treatment. PMID:27299279

  15. Temporal and spatial trends in sediment contaminants associated with toxicity in California watersheds.

    PubMed

    Siegler, Katie; Phillips, Bryn M; Anderson, Brian S; Voorhees, Jennifer P; Tjeerdema, Ron S

    2015-11-01

    California's Stream Pollution Trends program (SPoT) assesses long-term water quality trends, using 100 base-of-the-watershed sampling sites. Annual statewide sediment surveys from 2008 to 2012 identified consistent levels of statewide toxicity (19%), using the freshwater amphipod Hyalella azteca. Significant contaminant trends included a decrease in PCBs, stable concentrations of metals and PAHs, and a statewide increase in detections and concentrations of pyrethroid pesticides. The pyrethroid pesticide bifenthrin was detected in 69% of samples (n = 410). Detection of toxicity increased in a subset of samples tested at a more environmentally relevant test temperature (15 °C), and the magnitude of toxicity was much greater, indicating pyrethroid pesticides as a probable cause. Pyrethroid toxicity thresholds (LC50) were exceeded in 83% of samples with high toxicity. Principal components analysis related pyrethroids, metals and total organic carbon to urban land use. PMID:26141126

  16. Developmental toxicity, acute toxicity and mutagenicity testing in freshwater snails Biomphalaria glabrata (Mollusca: Gastropoda) exposed to chromium and water samples.

    PubMed

    Tallarico, Lenita de Freitas; Borrely, Sueli Ivone; Hamada, Natália; Grazeffe, Vanessa Siqueira; Ohlweiler, Fernanda Pires; Okazaki, Kayo; Granatelli, Amanda Tosatte; Pereira, Ivana Wuo; Pereira, Carlos Alberto de Bragança; Nakano, Eliana

    2014-12-01

    A protocol combining acute toxicity, developmental toxicity and mutagenicity analysis in freshwater snail Biomphalaria glabrata for application in ecotoxicological studies is described. For acute toxicity testing, LC50 and EC50 values were determined; dominant lethal mutations induction was the endpoint for mutagenicity analysis. Reference toxicant potassium dichromate (K2Cr2O7) was used to characterize B. glabrata sensitivity for toxicity and cyclophosphamide to mutagenicity testing purposes. Compared to other relevant freshwater species, B. glabrata showed high sensitivity: the lowest EC50 value was obtained with embryos at veliger stage (5.76mg/L). To assess the model applicability for environmental studies, influent and effluent water samples from a wastewater treatment plant were evaluated. Gastropod sensitivity was assessed in comparison to the standardized bioassay with Daphnia similis exposed to the same water samples. Sampling sites identified as toxic to daphnids were also detected by snails, showing a qualitatively similar sensitivity suggesting that B. glabrata is a suitable test species for freshwater monitoring. Holding procedures and protocols implemented for toxicity and developmental bioassays showed to be in compliance with international standards for intra-laboratory precision. Thereby, we are proposing this system for application in ecotoxicological studies.

  17. Comparative study of three oligochaete species as indicators of metals in a sediment toxicity bioassay

    SciTech Connect

    Chapman, K.; Scheuerman, P.; Lanza, G.; Nelson, D.; Brinkhurst, R.

    1995-12-31

    Three oligochaete species, Tubifex tubifex, Branchiura sowerbyi and Lumbriculus variegatus, were analyzed for bioaccumulation and reproductive effects from reference sediment spiked with Cd or Cu. Sediment was spiked using the Sediment Suspension method to achieve concentrations of 4.0, 8.0 and 16.0 mg Cd/kg sediment (dry weight) and 25.0, 36.0, 50.0, 100.0 mg Cu/kg sediment (dry weight) . The bioassay was conducted under aerated, static conditions for 28 d at 22.5 C. Reproductive effects consisting of number of cocoons and eggs produced a negative linear regression with increasing Cd concentration. Cocoon volume remained consistent. Cu was more toxic to T. tubifex in this bioassay than results reported by the USEPA using similar concentrations. Lower concentrations of Cu also showed a negative linear regression with reproductive effects showing that oligochaetes could be a feasible indicator organism for sediment toxicity in a standardized ecological impact assay using reproduction as an endpoint.

  18. Toxicity of fullerene (C60) to sediment-dwelling invertebrate Chironomus riparius larvae.

    PubMed

    Waissi-Leinonen, Greta C; Petersen, Elijah J; Pakarinen, Kukka; Akkanen, Jarkko; Leppänen, Matti T; Kukkonen, Jussi V K

    2012-09-01

    An environmentally realistic method to test fullerene (C(60) ) toxicity to the benthic organism Chironomus riparius was created by allowing suspended fullerenes to settle down, making a layer on top of the sediment. To test the hypothesis that higher food concentrations will reduce toxic responses, two food concentrations were tested (0.5 and 0.8% Urtica sp.) in sediment containing fullerene masses of 0.36 to 0.55 mg/cm(2) using a 10-d chronic test. In the 0.5% food level treatments, there were significant differences in all growth-related endpoints compared with controls. Fewer effects were observed for the higher food treatment. Fullerene agglomerates were observed by electron microscopy in the gut, but no absorption into the gut epithelial cells was detected. In the organisms exposed to fullerenes, microvilli were damaged and were significantly shorter. The potential toxicity of fullerene to C. riparius appears to be caused by morphological changes, inhibiting larval growth.

  19. Toxicity of Anacostia River, Washington, D.C., USA, sediment fed to mute swans (Cygnus olor)

    USGS Publications Warehouse

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-01-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for 6 weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, USA, to estimate the sediment's toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets, but none of 22 organochlorine compounds included in the analyses was detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg, and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies. However, the lack of accumulation in the livers of the treated swans suggested that these elements were not readily available from the ingested sediment. We did not study all potential toxic effects, but, on the basis of those that we did consider, we concluded that the treated swans were basically healthy after a chronic exposure to the sediment.

  20. Evaluation and use of sediment toxicity reference sites for statistical comparisons in regional assessments.

    PubMed

    Hunt, J W; Anderson, B S; Phillips, B M; Newman, J; Tjeerdema, R S; Fairey, R; Puckett, H M; Stephenson, M; Smith, R W; Wilson, C J; Taberski, K M

    2001-06-01

    Sediment reference sites were used to establish toxicity standards against which to compare results from sites investigated in San Francisco Bay (California, USA) monitoring programs. The reference sites were selected on the basis of low concentrations of anthropogenic chemicals, distance from active contaminant sources, location in representative hydrographic areas of the Bay, and physical features characteristic of depositional areas (e.g., fine grain size and medium total organic carbon [TOC]). Five field-replicated sites in San Francisco Bay were evaluated over three seasons. Samples from each site were tested with nine toxicity test protocols and were analyzed for sediment grain size and concentrations of trace metals, trace organics, ammonia, hydrogen sulfide, and TOC. The candidate sites were found to have relatively low concentrations of measured chemicals and generally exhibited low toxicity. Toxicity data from the reference sites were then used to calculate numerical tolerance limits to be used as threshold values to determine which test sites had significantly higher toxicity than reference sites. Tolerance limits are presented for four standard test protocols, including solid-phase sediment tests with the amphipods Ampelisca abdita and Eohaustorius estuarius and sea urchin Strongylocentrotus purpuratus embryo/larval development tests in pore water and at the sediment-water interface (SWI). Tolerance limits delineating the lowest 10th percentile (0.10 quantile) of the reference site data distribution were 71% of the control response for Ampelisca, 70% for Eohaustorius, 94% for sea urchin embryos in pore water, and 87% for sea urchins embryos exposed at the SWI. The tolerance limits are discussed in terms of the critical values governing their calculation and the management implications arising from their use in determining elevated toxicity relative to reference conditions.

  1. Copper Speciation in Variably Toxic Sediments at the Ely Copper Mine, Vermont, United States.

    PubMed

    Kimball, Bryn E; Foster, Andrea L; Seal, Robert R; Piatak, Nadine M; Webb, Samuel M; Hammarstrom, Jane M

    2016-02-01

    At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160-1200 times) and sediments (15-79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80-95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.

  2. Copper Speciation in Variably Toxic Sediments at the Ely Copper Mine, Vermont, United States.

    PubMed

    Kimball, Bryn E; Foster, Andrea L; Seal, Robert R; Piatak, Nadine M; Webb, Samuel M; Hammarstrom, Jane M

    2016-02-01

    At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160-1200 times) and sediments (15-79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80-95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu. PMID:26734712

  3. Copper speciation in variably toxic sediments at the Ely Copper Mine, Vermont, United States

    USGS Publications Warehouse

    Kimball, Bryn E.; Foster, Andrea L.; Seal, Robert; Piatak, Nadine; Webb, Samuel M.; Hammarstrom, Jane M.

    2016-01-01

    At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160–1200 times) and sediments (15–79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80–95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.

  4. Qsars for photoinduced toxicity: 1. acute lethality of polycyclic aromatic hydrocarbons to daphnia magna'

    SciTech Connect

    Mekenyan, O.G.; Ankley, G.T.; Veith, G.D.; Call, D.J.

    1994-01-01

    Research with a variety of aquatic species has shown that while polycyclic aromatic hydrocarbons (PAHs) are generally not acutely toxic in conventional laboratory tests, many are extremely toxic in the presence of sunlight. In an effort to develop a model for predicting which PAHs may exhibit photo-induced toxicity, Newsted and Giesy (1987) reported a parabolic relationship between the toxicity and the energy of the triplet state of a variety of PAHs. The authors have reexamined these data and propose a more mechanistic explanation for the prediction of photo-induced PAH toxicity. They sought a molecular descriptor which could be computed from structure rather than measured empirically.

  5. Standardization of a chronic sediment toxicity test with Chironomus riparius -- An EU collaboration

    SciTech Connect

    Fleming, R.; Grootelaar, L.; Guchte, C. van de |

    1995-12-31

    Because of the need for sensitive measures of low level contaminants in European sediments, a chronic sediment toxicity test method, using Chironomus riparius has been developed as part of a collaborative program for the European Commission. The protocol is a partial life cycle test exposing the animals from egg stage to pre-emergence in sediment-water systems. In 1995 the protocol was ring tested in several laboratories in Europe, the US and Canada using the moth-proofer permethrin as a model substance. This was spiked into a natural sediment using a spiking protocol also developed in this program. Results of the ring test and details of the protocols will be presented.

  6. {Sigma}PAH: A model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments

    SciTech Connect

    Swartz, R.C.; Schults, D.W.; Ozretich, R.J.; Lamberson, J.O.; Cole, F.A.; Ferraro, S.P.; DeWitt, T.H.; Redmond, M.S.

    1995-11-01

    The {Sigma}PAH model estimates the probability of toxicity of PAH-contaminated sediments using a combination of equilibrium partitioning, WSAR, toxic unit, additivity, and concentration-response models. The sediment concentration of organic carbon and 13 PAH (polynuclear aromatic hydrocarbon) compounds were measured. Interstitial water concentrations (PAH{sub iw}) of the 13 compounds were predicted by equilibrium partitioning. The 10-d LC50 of each compound in interstitial water (10-d LC50{sub iw}) was predicted by a QSAR regression of 10-d LC50{sub iw} (From spiked sediment tests) to K{sub ow}. Toxic unit concentrations of individual compounds (TU{sub i}) were predicted as PAH{sub iw}/10-d LC50{sub iw}. The total number of toxic units of the 13 compounds ({Sigma}TU{sub i}) was calculated assuming the additivity of toxic effects of PAHs. {Sigma}TU{sub i} was used to predict the probability of toxicity to marine and estuarine amphipods using a concentration-response model derived from spiked sediment toxicity tests. The {Sigma}PAH model was verified by comparing predicted and observed toxicity in field-collected sediment samples. There was 86.6% correspondence and no significant difference between predicted and observed toxicity at PAH-contaminated sites. Ecological-effect levels predicted by the {Sigma}PAH model correspond with several sediment-quality guidelines.

  7. Study of acute toxicity of Ukrain in rats after intravenous injection.

    PubMed

    Kulik, G I; Deneka, E R; Todor, I N; Karmozina, L G

    1998-01-01

    The acute toxicity of i.v. Ukrain injection in rats was studied. The interrelation between toxicity (death of animals) and dosage was determined by nonlinear regression method. White blood count (WBC) in peripheral blood, weight of animals, and weight of major organs were determined in animals during all stages of investigation. Morphological studies of toxic changes in 40 different organs of rats were performed on macro- and microscopic levels.

  8. Acute toxicity of furazolidone on Artemia salina, Daphnia magna, and Culex pipiens molestus larvae

    SciTech Connect

    Macri, A.; Stazi, A.V.; Dojmi di Delupis, G.

    1988-10-01

    As a result of evidence of the ecotoxicity of nitrofurans, the acute toxicity of furazolidone was tested in vivo on two aquatic organisms, Artemia salina and Daphnia magna, which are both crustaceans. Toxicity studies were also performed on larvae of Culex pipiens molestus. Results indicated a significant toxicity of the compound on Culex pipiens and Daphnia magna, while Artemia salina proved to be the least sensitive.

  9. Calculating background levels for ecological risk parameters in toxic harbor sediment

    USGS Publications Warehouse

    Leadon, C.J.; McDonnell, T.R.; Lear, J.; Barclift, D.

    2007-01-01

    Establishing background levels for biological parameters is necessary in assessing the ecological risks from harbor sediment contaminated with toxic chemicals. For chemicals in sediment, the term contaminated is defined as having concentrations above background and significant human health or ecological risk levels. For biological parameters, a site could be considered contaminated if levels of the parameter are either more or less than the background level, depending on the specific parameter. Biological parameters can include tissue chemical concentrations in ecological receptors, bioassay responses, bioaccumulation levels, and benthic community metrics. Chemical parameters can include sediment concentrations of a variety of potentially toxic chemicals. Indirectly, contaminated harbor sediment can impact shellfish, fish, birds, and marine mammals, and human populations. This paper summarizes the methods used to define background levels for chemical and biological parameters from a survey of ecological risk investigations of marine harbor sediment at California Navy bases. Background levels for regional biological indices used to quantify ecological risks for benthic communities are also described. Generally, background stations are positioned in relatively clean areas exhibiting the same physical and general chemical characteristics as nearby areas with contaminated harbor sediment. The number of background stations and the number of sample replicates per background station depend on the statistical design of the sediment ecological risk investigation, developed through the data quality objective (DQO) process. Biological data from the background stations can be compared to data from a contaminated site by using minimum or maximum background levels or comparative statistics. In Navy ecological risk assessments (ERA's), calculated background levels and appropriate ecological risk screening criteria are used to identify sampling stations and sites with contaminated

  10. Comparison of four chronic sediment toxicity tests using selected marine/estuarine tests species

    SciTech Connect

    Sims, I.; Fleming, R.

    1995-12-31

    Several draft standard guidelines exist for acute marine/estuarine sediment bioassays which measure lethality over a 4 to 14 day exposure period. Although these are very useful tools for certain applications, such tests may not be useful for discriminating between sediments with the low levels of contaminants most likely to be found in UK estuaries. For this application, chronic sediment bioassays are required which allow the measurement of both lethal and sublethal effects (growth, development and reproduction). Some chronic bioassays are currently being developed for estuarine sediments by workers in Europe, America and Canada. The objectives of the study presented here were to compare four bioassays, currently in development, in terms of their sensitivity to sediment-bound lindane and to differences in particle size. The test species selected for the study were Corophium volutator, Arenicola marina, Macoma Balthica and Neanthes arenaceodentata. Three sediment types were used: high, medium and low percentage of fine material, These were achieved using mixtures of silica sand and a fine, natural, estuarine sediment, and spiked with lindane using a spiking protocol developed at WRc. The results of the study will be presented.

  11. Toxicity of sediments from lead-zinc mining areas to juvenile freshwater mussels (Lampsilis siliquoidea) compared to standard test organisms.

    PubMed

    Besser, John M; Ingersoll, Christopher G; Brumbaugh, William G; Kemble, Nile E; May, Thomas W; Wang, Ning; MacDonald, Donald D; Roberts, Andrew D

    2015-03-01

    Sediment toxicity tests compared chronic effects on survival, growth, and biomass of juvenile freshwater mussels (28-d exposures with Lampsilis siliquoidea) to the responses of standard test organisms-amphipods (28-d exposures with Hyalella azteca) and midges (10-d exposures with Chironomus dilutus)-in sediments from 2 lead-zinc mining areas: the Tri-State Mining District and Southeast Missouri Mining District. Mussel tests were conducted in sediments sieved to <0.25 mm to facilitate recovery of juvenile mussels (2-4 mo old). Sediments were contaminated primarily with lead, zinc, and cadmium, with greater zinc and cadmium concentrations in Tri-State sediments and greater lead concentrations in southeast Missouri sediments. The frequency of highly toxic responses (reduced 10% or more relative to reference sites) in Tri-State sediments was greatest for amphipod survival (25% of samples), midge biomass (20%), and mussel survival (14%). In southeast Missouri sediments, the frequency of highly toxic samples was greatest for mussel biomass (25%) and amphipod biomass (13%). Thresholds for metal toxicity to mussels, expressed as hazard quotients based on probable effect concentrations, were lower for southeast Missouri sediments than for Tri-State sediments. Southeast Missouri sites with toxic sediments had 2 or fewer live mussel taxa in a concurrent mussel population survey, compared with 7 to 26 taxa at reference sites. These results demonstrate that sediment toxicity tests with juvenile mussels can be conducted reliably by modifying existing standard methods; that the sensitivity of mussels to metals can be similar to or greater than standard test organisms; and that responses of mussels in laboratory toxicity tests are consistent with effects on wild mussel populations.

  12. Toxicity of sediments from lead-zinc mining areas to juvenile freshwater mussels (Lampsilis siliquoidea) compared to standard test organisms

    USGS Publications Warehouse

    Besser, John M.; Ingersoll, Christopher G.; Brumbaugh, William G.; Kemble, Nile E.; May, Thomas W.; Wang, Ning; MacDonald, Donald D.; Roberts, Andrew D.

    2015-01-01

    Sediment toxicity tests compared chronic effects on survival, growth, and biomass of juvenile freshwater mussels (28-d exposures with Lampsilis siliquoidea) to the responses of standard test organisms—amphipods (28-d exposures with Hyalella azteca) and midges (10-d exposures with Chironomus dilutus)—in sediments from 2 lead–zinc mining areas: the Tri-State Mining District and Southeast Missouri Mining District. Mussel tests were conducted in sediments sieved to <0.25 mm to facilitate recovery of juvenile mussels (2–4 mo old). Sediments were contaminated primarily with lead, zinc, and cadmium, with greater zinc and cadmium concentrations in Tri-State sediments and greater lead concentrations in southeast Missouri sediments. The frequency of highly toxic responses (reduced 10% or more relative to reference sites) in Tri-State sediments was greatest for amphipod survival (25% of samples), midge biomass (20%), and mussel survival (14%). In southeast Missouri sediments, the frequency of highly toxic samples was greatest for mussel biomass (25%) and amphipod biomass (13%). Thresholds for metal toxicity to mussels, expressed as hazard quotients based on probable effect concentrations, were lower for southeast Missouri sediments than for Tri-State sediments. Southeast Missouri sites with toxic sediments had 2 or fewer live mussel taxa in a concurrent mussel population survey, compared with 7 to 26 taxa at reference sites. These results demonstrate that sediment toxicity tests with juvenile mussels can be conducted reliably by modifying existing standard methods; that the sensitivity of mussels to metals can be similar to or greater than standard test organisms; and that responses of mussels in laboratory toxicity tests are consistent with effects on wild mussel populations.

  13. Contaminants in stream sediments from seven United States metropolitan areas: part II—sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutus

    USGS Publications Warehouse

    Kemble, Nile E.; Hardesty, Douglas K.; Ingersoll, Christopher G.; Kunz, James L.; Sibley, Paul K.; Calhoun, Daniel L.; Gilliom, Robert J.; Kuivila, Kathryn M.; Nowell, Lisa H.; Moran, Patrick W.

    2013-01-01

    Pyrethroids are hydrophobic compounds that have been observed to accumulate in sediments (Laskowski 2002). Toxicity of pyrethroids in field-collected sediment from small urban streams (Weston et al. 2005; Holmes et al. 2008; Ding et al. 2010; Domagalski et al. 2010) or with pyrethroids spiked into sediment (Amweg et al. 2006; Hintzen et al. 2009) have been evaluated primarily in 10 day lethality tests conducted with the amphipod Hyalella azteca. However, the sublethal effects in long-term exposures to pyrethroids in sediment have not been evaluated, and the distribution of pyrethroids sediments has not typically been evaluated in wadeable streams (Gilliom et al. 2006). This article is the second in a series that describe the results of a study of the distribution and toxicity of pyrethroids and other co-occurring trace elements and organic contaminants (PCBs, PAHs, OC pesticides) in stream sediments from 7 metropolitan areas across the United States (Moran et al. 2012). The study evaluated 98 sediment samples collected from streams ranging from undeveloped to highly urban and differs from previous studies by sampling larger wadeable streams and avoiding point sources (such as storm drains) and other inflows (Gilliom et al. 2006). Part 1 of the series characterizes sediment contaminants in relation to urbanization and other factors in the 7 metropolitan study areas (Nowell et al. 2012). Part 2 (this article) evaluates relationships between sediment chemistry and sediment toxicity in 28 day whole-sediment exposures conducted with the amphipod H. azteca and in 10 day whole-sediment exposure conducted with the midge Chironomus dilutus (USEPA United States Environmental Protection Agency 2000; ASTM American Society for Testing and Materials International 2012). Toxicity end points evaluated in the amphipod and midge exposures included the effects of these field-collected sediments on survival, weight, or biomass of the test organisms.

  14. SEDIMENT TOXICITY EVALUATION OF EXTRACTS OF ORGANIC CHEMICALS FROM CONTAMINATED SEDIMENTS: EVALUATION OF AN EXPERIMENTAL APPROACH

    EPA Science Inventory

    Most solid-phase sediment TIE techniques for organic chemicals have been focused on the addition of sorbents, such as the carbonaceous resin, Ambersorb 1500. While these sorbents have shown some promise for indicating when non-polar organic chemicals may be contributing to toxici...

  15. Toxicity of 8-Hydroxyquinoline in Cryprinus carpio Using the Acute Toxicity Test, Hepatase Activity Analysis and the Comet Assay.

    PubMed

    Yan, Shuaiguo; Chen, Lili; Dou, Xiaofei; Qi, Meng; Du, Qiyan; He, Qiaoqiao; Nan, Mingge; Chang, Zhongjie; Nan, Ping

    2015-08-01

    To evaluate the environmental toxicity of 8-hydroxyquinoline (8-HOQ), an important industrial raw material found in China's major ornamental fish, Cryprinus carpio, using the acute toxicity test, hepatase activity analysis and the comet assay. The results indicated that 8-HOQ had significant acute toxicity in adult C. carpio with a 96 h-LC50 of 1.15 and 0.22 mg L(-1) hepatic quinoline residues as assessed by HPLC. 8-HOQ also induced genotoxicity in the form of strand breaks in the DNA of hepatic cells as shown by the comet assay. With regard to physiological toxicity, 8-HOQ induced a decrease in the activities of hepatic GOT and GPT with increased exposure concentration and time. These data suggest that 8-HOQ may be toxic to the health of aquatic organisms when accidentally released into aquatic ecosystems. The data also suggest that the comet assay may be used in biomonitoring to determine 8-HOQ genotoxicity and hepatic GPT and GOT activities may be potential biomarkers of physiological toxicity.

  16. Toxicity of 8-Hydroxyquinoline in Cryprinus carpio Using the Acute Toxicity Test, Hepatase Activity Analysis and the Comet Assay.

    PubMed

    Yan, Shuaiguo; Chen, Lili; Dou, Xiaofei; Qi, Meng; Du, Qiyan; He, Qiaoqiao; Nan, Mingge; Chang, Zhongjie; Nan, Ping

    2015-08-01

    To evaluate the environmental toxicity of 8-hydroxyquinoline (8-HOQ), an important industrial raw material found in China's major ornamental fish, Cryprinus carpio, using the acute toxicity test, hepatase activity analysis and the comet assay. The results indicated that 8-HOQ had significant acute toxicity in adult C. carpio with a 96 h-LC50 of 1.15 and 0.22 mg L(-1) hepatic quinoline residues as assessed by HPLC. 8-HOQ also induced genotoxicity in the form of strand breaks in the DNA of hepatic cells as shown by the comet assay. With regard to physiological toxicity, 8-HOQ induced a decrease in the activities of hepatic GOT and GPT with increased exposure concentration and time. These data suggest that 8-HOQ may be toxic to the health of aquatic organisms when accidentally released into aquatic ecosystems. The data also suggest that the comet assay may be used in biomonitoring to determine 8-HOQ genotoxicity and hepatic GPT and GOT activities may be potential biomarkers of physiological toxicity. PMID:26067700

  17. Prostate Hypofractionated Radiation Therapy With Injection of Hyaluronic Acid: Acute Toxicities in a Phase 2 Study

    SciTech Connect

    Chapet, Olivier; Decullier, Evelyne; Bin, Sylvie; Faix, Antoine; Ruffion, Alain; Jalade, Patrice; Fenoglietto, Pascal; Udrescu, Corina; Enachescu, Ciprian; Azria, David

    2015-03-15

    Purpose: Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. Methods and Materials: The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Events version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. Results: From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. Conclusions: The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity.

  18. Systemic Lupus Erythematosus, Radiotherapy, and the Risk of Acute and Chronic Toxicity: The Mayo Clinic Experience

    SciTech Connect

    Pinn, Melva E.; Gold, Douglas G. M.; Petersen, Ivy A.; Osborn, Thomas G.; Brown, Paul D.; Miller, Robert C.

    2008-06-01

    Purpose: To determine the acute and chronic toxic effects of radiotherapy in patients with systemic lupus erythematosus (SLE). Methods and Materials: Medical records of 21 consecutive patients with SLE, who had received 34 courses of external beam radiotherapy and one low-dose-rate prostate implant, were retrospectively reviewed. Patients with discoid lupus erythematosus were excluded. Results: Median survival was 2.3 years and median follow-up 5.6 years. Eight (42%) of 19 patients evaluable for acute toxicity during radiotherapy experienced acute toxicity of Grade 1 or greater, and 4 (21%) had acute toxicity of Grade 3 or greater. The 5- and 10-year incidence of chronic toxicity of Grade 1 or greater was 45% (95% confidence interval [CI], 22-72%) and 56% (95% CI, 28-81%), respectively. The 5- and 10-year incidence of chronic toxicity of Grade 3 or greater was 28% (95% CI, 18-60%) and 40% (95% CI, 16-72%), respectively. Univariate analysis showed that chronic toxicity of Grade 1 or greater correlated with SLE renal involvement (p < 0.006) and possibly with the presence of five or more American Rheumatism Association criteria (p < 0.053). Chronic toxicity of Grade 3 or greater correlated with an absence of photosensitivity (p < 0.02), absence of arthritis (p < 0.03), and presence of a malar rash (p < 0.04). Conclusions: The risk of acute and chronic toxicity in patients with SLE who received radiotherapy was moderate but was not prohibitive of the use of radiotherapy. Patients with more advanced SLE may be at increased risk for chronic toxicity.

  19. Spatial distribution and potential toxicity of polycyclic aromatic hydrocarbons in sediments from Liaohe River Basin, China.

    PubMed

    He, Yan; Meng, Wei; Xu, Jian; Zhang, Yuan; Guo, Changsheng

    2016-03-01

    The distribution and potential toxicity of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Liaohe River Basin were investigated in this study. Total concentrations of 16 PAHs (∑PAH16) ranged from 82.5 to 25374.4 μg/kg averaging 3149.2 μg/kg. Three predominant PAHs were fluoranthene, phenanthrene, and pyrene. In Liao River, two-to-three-ring PAHs were dominant taking up 67.2-92.5% of ∑PAH16, whereas sediments in Daliao River system mainly contained four-to-six-ring PAHs ranging from 47.8 to 83.7%. Both petrogenic and pyrogenic sources contributed to the PAH pollution based on diagnostic ratios. The empirical and mechanistic sediment quality guidelines were used to estimate the toxicity risk of PAHs to benthic organisms. The ∑PAH16 in all sediments were significantly lower than probable effect concentrations (PEC), while ∑PAH16 at nine sites of the Daliao River system were between threshold effect concentrations (TEC) and PEC, suggesting that adverse effects were possible at the nine sites. The only individual PAH was acenaphthene whose concentrations were above PEC at some sites, indicating its potential toxicity. Based upon equilibrium partitioning theory and narcosis model, the obtained toxic units for PAH mixtures at all sites were far less than one, implying that the levels of PAH mixtures were acceptable for the protection of benthic fauna. The two evaluation methods lead to the consistent results that benthic organisms inhabiting in the sediments of Liaohe River Basin have no or low risk of adverse effects resulting from exposure to PAHs. PMID:26915741

  20. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.

    PubMed

    Rosado, Daniel; Usero, José; Morillo, José

    2016-06-01

    Relationship between toxicity and bioavailable metals in sediments from the Huelva estuary and its littoral of influence was analyzed. Toxicity was assessed with Microtox® bioassay using a marine luminescent bacterium: Vibrio fischeri. Bioavailable metals were considered as both, acid extractable fraction of BCR procedure and the sum of exchangeable and bound to carbonates fractions of Tessier sequential extraction. A bioavailable metals index was calculated to integrate results in a single figure. Toxicity and bioavailable metals showed a similar pattern. Higher levels were found in the estuary than in the littoral (140 TU/g). In Huelva estuary, highest levels were found in the Tinto estuary (5725 TU/g), followed by the Odiel estuary (5100 TU/g) and the Padre Santo Canal (2500 TU/g). Results in this area were well over than those in nearby estuaries. Furthermore, they are similar to or even higher than those in other polluted sediments around the world. Bioavailable metal index showed a stronger correlation with acid extractable fraction of BCR (R(2) = 0.704) than that for the sum of exchangeable and bound to carbonates fractions of Tessier (R(2) = 0.661). These results suggest that bioavailable metals are an important source of sediment toxicity in the Huelva estuary and its littoral of influence, an area with one of the highest mortality risks of Spain. PMID:27002282

  1. Metal and pharmaceutical mixtures: is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    PubMed

    Alsop, Derek; Wood, Chris M

    2013-09-15

    The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4-8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC50, one third of the LC01) to all copper treatments decreased the copper 96 h LC50 by 58%, while sublethal copper exposure (6% of the copper LC50, 13% of the LC01) decreased the cadmium 96 h LC50 by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na(+) followed by K(+) (as high as 19% and 9%, respectively, in 24h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na(+) and K(+). Overall, whole body Na(+) loss showed the greatest correlation with mortality across a variety of toxicants. We theorize that a disruption of ion homeostasis may be a common mechanism underlying the acute additive toxicity of many contaminants in fish.

  2. Relative sensitivity of five benthic invertebrate species to reference toxicants and resin-acid contaminated sediments

    SciTech Connect

    Hickey, C.W.; Martin, M.L.

    1995-08-01

    Five sediment-dwelling native New Zealand freshwater invertebrate species (amphipod, Chaetocorophium c.f. lucasi; clam, Sphaerium novaezelandiae; oligochaete, Lumbriculus variegatus; tanaid, Tanais standfordi; and the burrowing mayfly, Ichthybotus hudsoni) were assessed for their suitability for sediment toxicity testing by comparison of sensitivity to reference toxicants [phenol and pentachlorophenol (PCP)] and contaminated sediments. The 96-h EC50 values at 20 C showed a greater range in test sensitivity for phenol (30-fold range) from the most sensitive test, amphipod (8.1 mg/L), to the least sensitive one, clam (243 mg/L), compared with PCP (14-fold range), with amphipod the most sensitive test species (0.13 mg/L) and tanaid the least sensitive (1.8 mg/L). Clam reburial was a more sensitive end point than was lethality for phenol (by 20-fold) and PCP (by 2.4-fold). Four of the test species, excluding the tanaid, showed good 10-d survival in reference muds ({ge}87%) but lower survival in sand sediments ({ge}79%). Bleached kraft mill sediment containing high resin-acid concentrations (total 1,900 mg/kg dry weight) showed significant reductions in amphipod survival (15%), clam reburial (30%), and oligochaete survival (17%), and reproduction (49%). Amphipods, clams, and oligochaetes were the most promising species for sublethal test development.

  3. Salinity tolerance of Daphnia magna and potential use for estuarine sediment toxicity tests.

    PubMed

    Schuytema, G S; Nebeker, A V; Stutzman, T W

    1997-08-01

    Daphnia magna Straus, a common organism used for freshwater sediment toxicity tests, was evaluated to determine its tolerance to salinity and suitability for tests with estuarine water and sediments. Daphnids were exposed for 2 to 21 days to salinity in a variety of water-only tests, in tests with freshwater sediment overlain by salt water, and in tests with estuarine sediments overlain by freshwater. Daphnid age, test length, and temperature seemed to have little effect upon the range of LC50, NOAEL, and LOAEL values. LC50s for all tests ranged from 5.10 to 7.81 g/L, with a mean of 6.6 g/L salinity (measured conductivity 10.0 mS/cm) [corrected]. The mean NOAEL and LOAEL values based on production of young were 4.6 and 6.9 g/L salinity (measured conductivity 7.1 and 10.5 mS/cm) [corrected], respectively. The results indicate that D. magna will survive and reproduce well in water with salinities below 4 g/L and demonstrate the potential usefulness of this organism in monitoring sediment toxicity from both freshwater and estuarine wetland sites. PMID:9294248

  4. 40 CFR 799.9120 - TSCA acute dermal toxicity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fixed rigidly. It should be determined by the toxic reactions, rate of onset, and length of recovery... substances are discussed in 40 CFR Part 792—Good Laboratory Practice Standards. (3) Test procedures—(i... to produce test groups with a range of toxic effects and mortality rates. The data must be...

  5. Sediment toxicity test results for the Urban Waters Study 2010, Bellingham Bay, Washington

    USGS Publications Warehouse

    Biedenbach, James M.

    2011-01-01

    The Washington Department of Ecology annually determines the quality of recently deposited sediments in Puget Sound as a part of Ecology's Urban Waters Initiative. The annual sediment quality studies use the Sediment Quality Triad (SQT) approach, thus relying on measures of chemical contamination, toxicity, and benthic in-faunal effects (Chapman, 1990). Since 2002, the studies followed a rotating sampling scheme, each year sampling a different region of the greater Puget Sound Basin. During the annual studies, samples are collected in locations selected with a stratified-random design, patterned after the designs previously used in baseline surveys completed during 1997-1999 (Long and others, 2003; Wilson and Partridge, 2007). Sediment samples were collected by personnel from the Washington Department of Ecology, in June of 2010 and shipped to the U. S. Geological Survey (USGS) laboratory in Corpus Christi, Texas (not shown), where the tests were performed. Sediment pore water was extracted with a pneumatic apparatus and was stored frozen. Just before testing, water-quality measurements were made and salinity adjusted, if necessary. Tests were performed on a dilution series of each sample consisting of 100-, 50-, and 25-percent pore-water concentrations. The specific objectives of this study were to: * Extract sediment pore water from a total of 30 sediment samples from the Bellingham Bay, Washington area within a day of receipt of the samples. * Measure water-quality parameters (salinity, dissolved oxygen, pH, sulfide, and ammonia) of thawed pore-water samples before testing and adjust salinity, temperature and dissolved oxygen, if necessary, to obtain optimal ranges for the test species. * Conduct the fertilization toxicity test with pore water using sea urchin (Stronylocentrotus purpuratus) (S. purpuratus) gametes. * Perform quality control assays with reference pore water, dilution blanks and a positive control dilution series with sodium dodecyl sulfate (SDS

  6. Effects of sediment characteristics on the toxicity of chromium(III) and chromium(VI) to the amphipod, Hyalella azteca

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Kemble, N.E.; May, T.W.; Ingersoll, C.G.

    2004-01-01

    We evaluated the influence of sediment characteristics, acid-volatile sulfide (AVS) and organic matter (OM), on the toxicity of chromium (Cr) in freshwater sediments. We conducted chronic (28-42-d) toxicity tests with the amphipod Hyalella azteca exposed to Cr(VI) and Cr(III) in water and in spiked sediments. Waterborne Cr(VI) caused reduced survival of amphipods with a median lethal concentration (LC50) of 40 ??g/L. Cr(VI) spiked into test sediments with differing levels of AVS resulted in graded decreases in AVS and sediment OM. Only Cr(VI)-spiked sediments with low AVS concentrations (<1 ??mol/g) caused significant amphipod mortality. Waterborne Cr(III) concentrations near solubility limits caused decreased survival of amphipods at pH 7 and pH 8 but not at pH 6. Sediments spiked with high levels of Cr(III) did not affect amphipod survival but had minor effects on growth and inconsistent effects on reproduction. Pore waters of some Cr(III)-spiked sediments contained measurable concentrations of Cr(VI), but observed toxic effects did not correspond closely to Cr concentrations in sediment or pore waters. Our results indicate that risks of Cr toxicity are low in freshwater sediments containing substantial concentrations of AVS.

  7. Toxic effects of zinc from trout farm sediments on ATP, protein, and hemoglobin concentrations of Limnodrilus hoffmeisteri.

    PubMed

    Martinez-Tabche, L; Gutiérrez Cabrera, I; Gómez Oliván, L; Galar Martinez, M; Germán Faz, C

    2000-04-14

    Zinc (Zn) is a nutritionally essential metal, and deficiency results in severe health consequences to aquatic organisms. In this study toxicity data for Limnodrilus hoffmeisteri produced by Zn in systems using three natural sediments (trout farms: El Oyamel, El Truchón, and El Potrero) are presented. Hemoglobin, adenosine triphosphate (ATP), and protein concentrations were measured in L. hoffmeisteri exposed to spiked sediments, as indicators of exposure. Physicochemical characteristics of water and sediments were also considered. Zn concentrations were measured in water and sediment. El Oyamel, El Truchón, and El Potrero pond sediments did not have similar physicochemical characteristics. Zn concentrations of water obtained from the rustic ponds were near 0.4575 mg/L; however, this metal was always found to be higher in the sediments (0.0271-0.9754 mg/kg). The bioassay with worms demonstrated that pond sediments from El Oyamel, El Potrero, and El Truchón produced toxicity since ATP and protein concentrations were low compared to controls (organisms without metal). All spiked sediments had a significant reduction effect on ATP, protein, and hemoglobin concentrations. This investigation clearly shows that sediments of El Truchón, El Oyamel, and El Potrero possess toxicity potential. These results suggest the usefulness of these bioassays to evaluate the toxicity of sediments polluted with heavy metals. PMID:10777248

  8. Impact of dredged urban river sediment on a Saronikos Gulf dumping site (Eastern Mediterranean): sediment toxicity, contaminant levels, and biomarkers in caged mussels.

    PubMed

    Tsangaris, Catherine; Strogyloudi, Evangelia; Hatzianestis, Ioannis; Catsiki, Vassiliki-Angelique; Panagiotopoulos, Ioannis; Kapsimalis, Vasilios

    2014-05-01

    Impacts of chemical contaminants associated with dumping of dredged urban river sediments at a coastal disposal area in Saronikos Gulf (Eastern Mediterranean) were investigated through a combined approach of sediment toxicity testing and active biomonitoring with caged mussels. Chemical analyses of aliphatic hydrocarbons (AHs), polycyclic aromatic hydrocarbons (PAHs), Cu, and Zn in combination with the solid phase Microtox® test were performed on sediments. Concentrations of PAHs, AHs, Cu, and Zn as well as multiple biomarkers of contaminant exposure and/or effects were measured in caged mussels. Sediments in the disposal and neighboring area showed elevated PAHs and AHs concentrations and were characterized as toxic by the solid-phase Microtox® test during and after dumping operations. Biomarker results in the caged mussels indicated sublethal effects mainly during dumping operations, concomitantly with high concentrations of PAHs and AHs in the caged mussel tissues. Cu and Zn concentrations in sediments and caged mussels were generally not elevated except for sediments at the site in the disposal area that received the major amount of dredges. High PAHs and AHs levels as well as sublethal effects in the caged mussels were not persistent after termination of operations. The combined bioassay-biomarker approach proved useful for detecting toxicological impacts of dredged river sediment disposal in sediments and the water column. Nevertheless, further research is needed to evaluate whether sediment toxicity will have long-term effects on benthic communities of the disposal area.

  9. A case of life-threatening acute kidney injury with toxic encephalopathy caused by Dioscorea quinqueloba.

    PubMed

    Kang, Kyung-Sik; Heo, Sang Taek

    2015-01-01

    Some herbal medications induce acute kidney injury. The acute kidney injuries caused by herbal medications are mild and commonly treated by palliative care. A 51-years-old man who drank the juice squeezed from the raw tubers of Dioscorea quinqueloba (D. quinqueloba) was admitted with nausea, vomiting and chilling. He developed a seizure with decreased level of consciousness. He was diagnosed with acute kidney injury, which was cured by continuous venovenous hemodialfiltration. Non-detoxified D. quinqueloba can cause severe acute kidney injury with toxic encephalopathy. It is critical to inform possible adverse effects of the medicinal herbs and to implement more strict regulation of these products.

  10. Three dimensional quantitative structure-toxicity relationship modeling and prediction of acute toxicity for organic contaminants to algae.

    PubMed

    Jin, Xiangqin; Jin, Minghao; Sheng, Lianxi

    2014-08-01

    Although numerous chemicals have been identified to have significant toxicological effect on aquatic organisms, there is still lack of a reliable, high-throughput approach to evaluate, screen and monitor the presence of organic contaminants in aquatic system. In the current study, we proposed a synthetic pipeline to automatically model and predict the acute toxicity of chemicals to algae. In the procedure, a new alignment-free three dimensional (3D) structure characterization method was described and, with this method, several 3D-quantitative structure-toxicity relationship (3D-QSTR) models were developed, from which two were found to exhibit strong internal fitting ability and high external predictive power. The best model was established by Gaussian process (GP), which was further employed to perform extrapolation on a random compound library consisting of 1014 virtually generated substituted benzenes. It was found that (i) substitution number can only exert slight influence on chemical׳s toxicity, but low-substituted benzenes seem to have higher toxicity than those of high-substituted entities, and (ii) benzenes substituted by nitro group and halogens exhibit high acute toxicity as compared to other substituents such as methyl and carboxyl groups. Subsequently, several promising candidates suggested by computational prediction were assayed by using a standard algal growth inhibition test. Consequently, four substituted benzenes, namely 2,3-dinitrophenol, 2-chloro-4-nitroaniline, 1,2,3-trinitrobenzene and 3-bromophenol, were determined to have high acute toxicity to Scenedesmus obliquus, with their EC50 values of 2.5±0.8, 10.5±2.1, 1.4±0.2 and 42.7±5.4μmol/L, respectively. PMID:24960624

  11. Sediment Chemistry and Toxicity in Barnegat Bay, New Jersey: Pre- and Post- Hurricane Sandy, 2012-2013.

    USGS Publications Warehouse

    Romanok, Kristin; Szabo, Zoltan; Reilly, Timothy J.; Defne, Zafer; Ganju, Neil K.

    2016-01-01

    Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality.

  12. Sediment chemistry and toxicity in Barnegat Bay, New Jersey: Pre- and post-Hurricane Sandy, 2012-13.

    PubMed

    Romanok, Kristin M; Szabo, Zoltan; Reilly, Timothy J; Defne, Zafer; Ganju, Neil K

    2016-06-30

    Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality. PMID:27158047

  13. Sediment chemistry and toxicity in Barnegat Bay, New Jersey: Pre- and post-Hurricane Sandy, 2012-13.

    PubMed

    Romanok, Kristin M; Szabo, Zoltan; Reilly, Timothy J; Defne, Zafer; Ganju, Neil K

    2016-06-30

    Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality.

  14. Comprehensive sediment toxicity assessment of Hessian surface waters using Lumbriculus variegatus and Chironomus riparius.

    PubMed

    Galluba, Simone; Oetken, Matthias; Oehlmann, Jörg

    2012-01-01

    The objective of this study was a sediment assessment of predominantly small rivers in the German federal state of Hesse. For this purpose, sediment samples were taken at 50 study sites with different contamination levels. The benthic invertebrates Chironomus riparius (Diptera) and Lumbriculus variegatus (Oligochaeta) were used as test species and exposed to whole sediments in chronic laboratory experiments. The bioassays were carried out on the basis of OECD guidelines 218 and 225 for the testing of chemicals. For about 50 % of the study sites chemical analytical data for pollutants from environmentally important substance classes like metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organotin compounds were available. These data were used to analyze correlations between effects in the bioassays and measured chemical contaminations at sampling sites. For 22 % of the sediments ecologically relevant adverse effects were observed. In the majority of these cases effects occurred in only one of the biotests, and only one sediment sample exerted a negative effect on both test organisms. There was no significant correlation between biological responses and chemical data considering substance classes. However, there was a weak positive correlation between arsenic concentration and both worm number and worm biomass as well as a weak positive correlation between single PAHs and worm biomass. In some sediment tests elevated ammonia concentrations occurred in the overlying water so that an influence of these partially toxic concentrations on the test results cannot be ruled out. PMID:22375534

  15. Endpoints for sediment toxicity tests with the freshwater bivalve Sphaerium corneum

    SciTech Connect

    Looise, B.A.S.; Holwerda, D.A.; Foekema, E.M.

    1994-12-31

    Being a participant in the EU project `Sediment toxicity tests for poorly water soluble substances` the authors examined toxicological endpoints with the freshwater bivalve Sphaerium corneum. These included induction of two biotransformation enzymes, glutathione S-transferase and catalase, and survival time under anoxic stress. Animals were taken from the field and exposed to sediments spiked with contaminants or to contaminants in a water-only system. Also a field sediment from a contaminated area was included. Spiking substances were lindane, dieldrin, benzo[a]pyrene, and PCB. After 1--5 weeks of exposure to contaminated sediments or water, animals were examined for induction of the biotransformation enzymes glutathione S-transferase (GST) and catalase. GST activity in whole body soft tissue was measured spectrophotometrically by the amount of conjugate formed, using 1-chloro-2,4-dinitrobenzene as a substrate and glutathione as a co-substrate. Catalase activity was also measured spectrophotometrically by the transformation rate of the substrate, hydrogen peroxide. None of the treatments resulted in a significant increase of GST or catalase activities. After 2--5 weeks of exposure to contaminated sediment, the animals were transferred to individual 10-mL bottles. Results show significant decrease of survival times of animals exposed to contaminated sediments.

  16. Toxicity of phenanthrene in freshwater sediments to the rooted submersed macrophyte, Vallisneria spiralis.

    PubMed

    Yan, Zai S; Hu, Ying; Jiang, He L

    2011-08-01

    A study was conducted to determine the response of the rooted submersed macrophyte, Vallisneria spiralis to phenanthrene in freshwater sediments with initial phenanthrene concentrations from 0 to 80 mg kg(-1) dry sediment. The sensitivity of various morphological endpoints was evaluated after 90 days of exposure. The most sensitive toxicity test endpoints were those that reflected root growth. Toxicological sensitivity of the endpoints changed with the effect level selected. The toxicity threshold from a plot of the EC(10) values was 1-2 orders of magnitude lower than those calculated for the threshold from plots of the EC(25) or EC(50) values. In addition, stimulatory responses (hormesis) on root growth were observed at subtoxic concentrations of phenanthrene, and a hormetic model should thus be incorporated for ecological risk assessment. PMID:21643831

  17. Results of Water and Sediment Toxicity Tests and Chemical Analyses Conducted at the Central Shops Burning Rubble Pit Waste Unit, January 1999

    SciTech Connect

    Specht, W.L.

    1999-06-02

    , iron, lead and vanadium were below the TRVs. Metal concentrations in the sediment exceeded the TRVs for arsenic, chromium, copper, and mercury but not for antimony and lead. The results of the water toxicity tests indicated no evidence of acute toxicity in any of the samples. The results of the chronic toxicity tests indicated possible reproductive impairment at two locations. However, the results appear to be anomalous, since the toxicity was unrelated to concentration, and because the concentrations of pCOCs were similar in the toxic and the non-toxic samples. The results of the sediment toxicity tests indicated significant mortality in all but one sample, including the background reference sediment. When the results of the CSBRP sediment toxicity tests were statistically compared to the result from the background reference sediment, there was no significant mortality. These results suggest that the surface water and sediment at the CSBRP Operable Unit are not toxic to the biota that inhabit the wetland and the settling basin.

  18. Impacts of toxic thresholds of sediment-associated contaminants to robust redhorse (Moxostoma robustum) in the Lower Oconee River

    USGS Publications Warehouse

    Lasier, P.; Winger, P.; Bogenrieder, K.; Shelton, J.

    2000-01-01

    The robust redhorse is a ?Species-at-Risk? in the lower Oconee River, GA. The population is composed of aging adults with little natural recruitment. Factors contributing to the loss of early-life stages are unknown, but contaminants associated with fine sediments may play a role. The objectives of this study were to determine toxicities of sediments and pore waters from the Oconee River to early-life stages of robust redhorse and to establish toxic thresholds of metals (Cd, Cu, Mn, Zn) and ammonia, elements potentially threatening this species. Depositional sediments were collected from the only known spawning site and three sites downstream of major tributaries. Sediment pore waters were extracted in the laboratory from all sites and in situ at two sites. Toxicity tests with sediments, pore waters and metal solutions were initiated with eggs, yolk-sac fry and swim-up fry to determine effects on the life stage initially exposed as well as effects manifested in later developmental stages. Survival and growth were test endpoints, and toxicity was observed in both sediments and pore waters. Although the yolk- sac stage was the most sensitive across all tests, sediment toxicity was elicited only in tests initiated with eggs that developed through the yolk-sac stage. Toxicity appeared to be due to Mn in sediment and pore water exposures, but was more prevalent in pore waters. Sediment handling and the associated effects on redox potential contributed to the elevated concentrations of Mn in pore waters. Pore waters extracted in situ had significantly less Mn and were less toxic than laboratory-extracted pore waters. These data suggest that sediment-associated Mn may impact early-life stages of robust redhorse in the Oconee River.

  19. 40 CFR 797.1400 - Fish acute toxicity test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... test. If the toxicity of the test substance is not already known, a range finding test should be... analyzed. (F) If the measured concentrations of dissolved test substance are considerably lower (e.g., of the test substance.......

  20. 40 CFR 797.1400 - Fish acute toxicity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... test. If the toxicity of the test substance is not already known, a range finding test should be... analyzed. (F) If the measured concentrations of dissolved test substance are considerably lower (e.g., of the test substance.......

  1. Acute toxicity of commonly used forestry herbicide mixtures to Ceriodaphnia dubia and Pimephales promelas.

    PubMed

    Tatum, Vickie L; Borton, Dennis L; Streblow, William R; Louch, Jeffrey; Shepard, James P

    2012-12-01

    Because many herbicides selectively control specific species or types of vegetation, they are often applied as mixtures to achieve better control over undesirable vegetation. When herbicides are applied in forest ecosystems, streams, ponds, and other bodies of water are typically protected by buffer zones in which no herbicide is applied. However, in some landscapes, small wetlands and streams are difficult to see and avoid, thus the potential acute toxicity of herbicide mixtures to aquatic organisms is of interest, yet it has not been well-studied. We examined the acute toxicity of 23 different herbicide mixtures to Ceriodaphnia dubia and fathead minnows (Pimephales promelas) at environmentally relevant concentrations, and, where possible, characterized mixture interactions using Marking's Additive Index. Maximum exposure concentrations were equivalent to applying the maximum allowable rate for each component directly to the surface of a 6-in. deep pond with no dissipation following application. Under the conditions of this study, herbicide formulations containing Accord Concentrate (glyphosate), Arsenal AC (imazapyr), Chopper (imazapyr), Escort (metsulfuron methyl), Oust XP (sulfometuron methyl), and Velpar L (hexazinone) were not associated with appreciable acute toxicity to fathead minnows or C. dubia when used alone or in mixtures with each other and various surfactants and adjuvants. Herbicide mixtures for which Additive Indexes could be calculated exhibited primarily antagonistic or simple additive toxicity. In the few cases where synergistic toxicity was observed, the degree of synergism was slight, never exceeding approximately twice the effect estimated based on additive toxicity. Based on the results of this study, neither acute toxicity nor enhanced acute aquatic toxicity due to synergistic mixture effects appears to be a significant concern for applications of the herbicide mixtures most commonly used in forestry.

  2. Comparison of the 10-day freshwater sediment toxicity tests using Hyalella azteca and Chironomus tentans

    SciTech Connect

    Becker, D.S.; Bigham, G.N.; Rose, C.D.

    1995-12-01

    Comparisons were made of the performance of the 10-d freshwater sediment toxicity tests using the amphipod Hyalella azteca and midge Chironomus tentans. Sediments were collected from eight stations in Onondaga Lake, New York, and represented a wide range of toxicity. The biological end points were survival, biomass, and body length. The two tests were compared on the basis of correspondence among relative values of the end points and ability to statistically discriminate adverse effects relative to control responses (i.e., discriminatory ability). Minimum detectable differences (MDDs) and adverse response ranges of the end points were used to further evaluate the discriminatory ability of the end points. Relative responses and discriminatory abilities of the end points of both tests were similar, despite numerous differences that exist among characteristics of the test species and end points. Significant concordance was found among all end points with respect to relative toxicity of sediments from the eight stations. Although MDDs and adverse response ranges of the various end points differed substantially, the observed positive correlation between those two variables resulted in all end points having similar discriminatory ability. Although amphipod biomass and body length have rarely been used as end points in 10-d tests, both end points provided results comparable to those of the other end points evaluated in the present study.

  3. Joint toxicity of sediment-associated DDT and copper to a polychaete, Nereis succinea.

    PubMed

    Wang, Fei; Qi, Hong-Xue; You, Jing

    2015-03-01

    As major components in antifouling paints, both dichlorodiphenyltrichloroethane (DDT) and copper are ubiquitous in estuarine sediment and have been detected at high concentrations in the harbors in South China. In the present study joint toxicity between DDT and copper to an estuarine polychaete, Nereis succinea, was examined using bioaccumulation potential, growth impairment and change in lipid peroxidation contents as sub-lethal endpoints. In general, the toxicity of DDXs (DDT and its metabolites) and copper acted independently and copper was more toxic to the lugworms at environmentally relevant concentrations. Nevertheless, co-exposure to copper led to a significant reduction in the bioaccumulation of DDXs when the concentrations of DDXs in sediment were high. The inhibition of DDX bioaccumulation by copper may be partially explained by the decrease in the bioavailability of sediment-associated DDXs which were estimated by biomimetic gut fluid extraction. The saturation of the solubilization agents or the inhibition of protease activity in gut fluid of N. succinea by copper limited the DDX bioavailability and the subsequent bioaccumulation.

  4. Influence of ultraviolet light in the toxicity of sediments contaminated with polycyclic aromatic hydrocarbons

    SciTech Connect

    Ankley, G.T.; Monson, P.D.; Kosian, P.A.; Collyard, S.A.

    1994-12-31

    Standard 10-d toxicity tests were conducted with freshwater benthic invertebrates using sediments containing a range of concentrations of polycyclic aromatic hydrocarbons (PAHs). The assays were performed both under normal laboratory fluorescent light and ultraviolet (UV) light which mimicked wavelengths present in sunlight at about 10% of ambient solar intensity. Additionally, field experiments used an in situ apparatus to evaluate the phototoxic response of the aquatic oligochaete Lumbriculus variegatus to sediments contaminated with PAHs. Those experiments were conducted using both sunlight exposed and shaded test chambers. In addition to a PAH contaminated site, a reference site lacking in PAHs also was tested as a control. Laboratory tests conducted with PAH contaminated sediments exposed to UV light resulted in significantly greater mortality of Hyalella azteca and Lumbriculus variegatus than tests performed under otherwise comparable conditions with fluorescent light. Results from field experiments corroborated this trend. The results suggest that failure to consider photoactivation of PAHs by sunlight could result in sediment toxicity test methods or criteria which are underprotective of benthic organisms.

  5. Application of ecological risk indicators for the assessment of Greek surficial sediments contaminated by toxic metals.

    PubMed

    Hahladakis, John Ν; Vasilaki, Georgia; Smaragdaki, Eleftheria; Gidarakos, Evangelos

    2016-05-01

    Τhe present research investigates the partitioning of six selected toxic metals (Ni, Cr, Pb, Zn, Cu, and As) in eight sediment samples; half of them were collected from Elefsis Gulf, and the other half were taken from Koumoundourou Lake, Athens, Greece. Each one of them was treated by applying Tessier's five-step sequential extraction procedure. Regarding gulf sediments, the results indicated that Cu exhibits a strong affinity to the organic matter with percentages ranging from 65 to 78 %. Considerable amount of Zn (32-40 %) is bound to the Fe-Mn fraction and the non-residual fraction, while Cr and Ni are bound to the organic fraction, an observation that suits all toxic metals examined. Regarding lake sediments, Pb is the predominant metal bound to Fe-Mn (48-51 %). It is also noteworthy that the percentage of Zn bound to carbonated fraction (5-15 %), indicating biological availability. In conclusion, the application of several ecological risk indicators demonstrated that Elefsis Gulf sediments correspond to a moderate pollution level, with Pb and Ni being less bioavailable than in the lake's samples, in contrast to Zn which is more bioavailable. Finally, Koumoundourou Lakes' basin is characterized of "low risk."

  6. Toxicity of sediments from a mangrove forest patch in an urban area in Pernambuco (Brazil).

    PubMed

    Oliveira, D D; Souza-Santos, L P; Silva, H K P; Macedo, S J

    2014-06-01

    Industrial and urban residues are discharged every day to the rivers and may arrive at the mangrove forest and prejudice the quality of the environment and the organisms present there. The mangrove forest patch studied is encircled by an urban area of the city of Recife (Brazil) that has approximate 1.5 million inhabitants and is one of the most industrialized centers in Northeast Brazil. The aim of this study was to assess the quality of the sediments of this mangrove patch in terms of metal contamination and ecotoxicology. Samples of surface sediment were collected in six stations for toxicological tests and trace metal determination (Cr, Zn, Mn, Fe, Cu, Pb, Co and Ni), in July and August, 2006 (rainy season); and in January and February 2007 (dry season). Toxicity tests with solid-phase sediments were carried out with the copepod Tisbe biminiensis in order to observe lethal and sub-lethal endpoints and correlate them with chemical data. In June, there were no observed lethal effect, but two stations presented sub-lethal effects. In January, lethal effect occurred in three stations and sub-lethal in one station. The levels for Zn and Cr were at higher levels than international proposed guidelines (NOAA). There was a negative significant correlation between the copepods׳ fecundity, and Zn and Cr concentrations. Therefore, the studied sediments can be considered to have potential toxic to benthos due to the high content of Zn and Cr.

  7. Sediment contamination of residential streams in the metropolitan kansas city area, USA: Part II. whole-sediment toxicity to the amphipod hyalella azteca

    USGS Publications Warehouse

    Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.

    2010-01-01

    This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of

  8. Preparation and characterization of nickel-spiked freshwater sediments for toxicity tests: toward more environmentally realistic nickel partitioning.

    PubMed

    Brumbaugh, William G; Besser, John M; Ingersoll, Christopher G; May, Thomas W; Ivey, Chris D; Schlekat, Christian E; Garman, Emily Rogevich

    2013-11-01

    Two spiking methods were compared and nickel (Ni) partitioning was evaluated during a series of toxicity tests with 8 different freshwater sediments having a range of physicochemical characteristics. A 2-step spiking approach with immediate pH adjustment by addition of NaOH at a 2:1 molar ratio to the spiked Ni was effective in producing consistent pH and other chemical characteristics across a range of Ni spiking levels. When Ni was spiked into sediment having a high acid-volatile sulfide and organic matter content, a total equilibration period of at least 10 wk was needed to stabilize Ni partitioning. However, highest spiking levels evidently exceeded sediment binding capacities; therefore, a 7-d equilibration in toxicity test chambers and 8 volume-additions/d of aerobic overlying water were used to avoid unrealistic Ni partitioning during toxicity testing. The 7-d pretest equilibration allowed excess spiked Ni and other ions from pH adjustment to diffuse from sediment porewater and promoted development of an environmentally relevant, 0.5- to 1-cm oxic/suboxic sediment layer in the test chambers. Among the 8 different spiked sediments, the logarithm of sediment/porewater distribution coefficient values (log Kd ) for Ni during the toxicity tests ranged from 3.5 to 4.5. These Kd values closely match the range of values reported for various field Ni-contaminated sediments, indicating that testing conditions with our spiked sediments were environmentally realistic.

  9. Acute toxicity of Headline® fungicide to Blanchard's cricket frogs (Acris blanchardi).

    PubMed

    Cusaac, J Patrick W; Morrison, Shane A; Belden, Jason B; Smith, Loren M; McMurry, Scott T

    2016-04-01

    Previous laboratory studies have suggested that pyraclostrobin-containing fungicide formulations are toxic to amphibians at environmentally relevant concentrations. However, it is unknown if all pyraclostrobin formulations have similar toxicity and if toxicity occurs in different amphibian species. We investigated the acute toxicity of two formulations, Headline(®) fungicide and Headline AMP(®) fungicide, to Blanchard's cricket frogs (Acris blanchardi) based on a direct overspray scenario. In addition, we examined body residues of fungicide active ingredients in A. blanchardi following direct exposure to Headline AMP fungicide. Headline fungicide and Headline AMP fungicide had similar toxicity to A. blanchardi with calculated median lethal doses of 2.1 and 1.7 µg pyraclostrobin/cm(2), respectively, which are similar to the suggested maximum label rate in North American corn (2.2 and 1.52 µg pyraclostrobin/cm(2), respectively). Tissue concentrations of pyraclostrobin were lower than predicted based on full uptake of a direct dose, and did not drop during the first 24 h after exposure. Headline fungicides at corn application rates are acutely toxic to cricket frogs, but acute toxicity in the field will depend on worst-case exposure.

  10. A comparison of acute toxicity of biodiesel, biodiesel blends, and diesel on aquatic organisms.

    PubMed

    Khan, Nalissa; Warith, Mostafa A; Luk, Grace

    2007-03-01

    The increased demand of alternative energy sources has created interest in biodiesel and biodiesel blends; biodiesel is promoted as a diesel substitute that is safer, produces less harmful combustion emissions, and biodegrades more easily. Like diesel spills, biodiesel can have deleterious effects on the aquatic environments. The effect of neat biodiesel, biodiesel blends, and diesel on Oncorhynchus mykiss and Daphnia magna was evaluated using acute toxicity testing. Static nonrenewal bioassays of freshwater organisms containing B100, B50, B20, B5, and conventional diesel fuel were used to compare the acute effects of biodiesel to diesel. Mortality was the significant end point measured in this study; percent mortality and lethal concentration (LC50) at different exposure times were determined from the acute toxicity tests performed. Trials were considered valid if the controls exhibited > 90% survival. Based on percentage of mortality and LC50 values, a toxicity ranking of fuels was developed.

  11. COMPARATIVE TOXICITY TESTING OF SELECTED BENTHIC AND EPIBENTHIC ORGANISMS FOR THE DEVELOPMENT OF SEDIMENT QUALITY TEST PROTOCOLS

    EPA Science Inventory

    Sediment contamination has resulted in the need to develop an appropriate suite of toxicity tests to assess ecotoxicological impacts on estuarine ecosystems. Existing Environmental Protection Agency (EPA) protocols recommend a number of test organisms, including amphipods, polych...

  12. WHAT IS CAUSING THE ACUTE AMPHIPOD TOXICITY OBSERVED IN FELD COLLECTED SAMPLES: AN INVESTIGATION USING EQUILIBRIUM PARTITIONING

    EPA Science Inventory

    Equilibrium partitioning (EqP) provides an independent method of deriving chemical concentrations in sediments that should be causally related to sediment toxicity. In this study, EqP was applied using a toxic unit model to determine whether concentrations of chemicals commonly m...

  13. Toxicity of sediment cores collected from the ashtabula river in northeastern Ohio, USA, to the amphipod hyalella azteca

    USGS Publications Warehouse

    Ingersoll, C.G.; Kemble, N.E.; Kunz, J.L.; Brumbaugh, W.G.; MacDonald, D.D.; Smorong, D.

    2009-01-01

    This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to

  14. Toxicity assessment of polycyclic aromatic hydrocarbons in sediments from European high mountain lakes.

    PubMed

    Quiroz, Roberto; Grimalt, Joan O; Fernández, Pilar

    2010-05-01

    Sediment quality guidelines and toxic equivalent factors have been used for assessment of the toxicity of sedimentary long-range atmospherically transported polycyclic aromatic hydrocarbons (PAHs) to the organisms living in high mountain European lakes. This method has provided indices that are consistent with experimental studies evaluating in situ sedimentary estrogenic activity or physiological response to AhR binding in fish from the same lakes. All examined lakes in north, central, west, northeast and southeast European mountains have shown sedimentary PAH concentrations that are above thresholds of no effect but only those situated in the southeast lakes district exhibited concentrations above the indices of probable effects. These mountains, Tatras, are also those having PAH concentrations of highest activity for AhR binding. Chrysene+triphenylene, dibenz[a]anthracene, benzo[k]fluoranthene and indeno[1,2,3-cd]pyrene are the main compounds responsible for the observed toxic effects.

  15. Ratios between acute aquatic toxicity and effects on population growth rates in relation to toxicant mode of action

    SciTech Connect

    Roex, E.W.M.; Gestel, C.A.M. Van; Wezel, A.P. Van; Straalen, N.M. Van

    2000-03-01

    Environmental risk assessment of chemicals is mostly based on the results of standardized toxicity tests. To obtain environmental quality criteria, extrapolation factors are used that depend on the amount and quality of available data. These extrapolation factors do not, however, take into account the mode of action of the compound tested or the life history of the test organism. In this study, the authors analyzed the variability in acute-to-chronic ratios (ACRs) for various chemicals in relation to their mode of action. Chemicals were classified as nonpolar narcotics, polar narcotics, specifically acting compounds, and heavy metals. As an acute endpoint, the LC50 was used; as a chronic endpoint, the lowest test concentration at which the natural rate of population increase (r) is affected, or LOEC(r), was used. Data were derived from the on-line literature. Nonpolar narcotic chemicals demonstrate the smallest variation in ACRs, and acute tests can be used to derive chronic endpoints for this class. For the other classes, the variation in ACRs is larger. Fish species especially show a relatively large ACR. For heavy metals, differences in the mode of action may play an important role in explaining differences in ACRs. For the other three classes, however, it is less reliable to predict chronic toxicity using the results of acute tests. In general, differences in species sensitivity rather than in mode of action for the chemical seem to determine differences in ACRs.

  16. Influence of sediment composition on PAH toxicity using zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) embryo-larval assays.

    PubMed

    Perrichon, Prescilla; Le Bihanic, Florane; Bustamante, Paco; Le Menach, Karyn; Budzinski, Hélène; Cachot, Jérôme; Cousin, Xavier

    2014-12-01

    Due to hydrophobic and persistent properties, polycyclic aromatic hydrocarbons (PAHs) have a high capacity to accumulate in sediment. Sediment quality criteria, for the assessment of habitat quality and risk for aquatic life, include understanding the fate and effects of PAHs. In the context of European regulation (REACH and Water Framework Directive), the first objective was to assess the influence of sediment composition on the toxicity of two model PAHs, benzo[a]pyrene and fluoranthene using 10-day zebrafish embryo-larval assay. This procedure was undertaken with an artificial sediment in order to limit natural sediment variability. A suitable sediment composition might be then validated for zebrafish and proposed in a new OECD guideline for chemicals testing. Second, a comparative study of toxicity responses from this exposure protocol was then performed using another OECD species, the Japanese medaka. The potential toxicity of both PAHs was assessed through lethal (e.g., survival, hatching success) and sublethal endpoints (e.g., abnormalities, PMR, and EROD) measured at different developmental stages, adapted to the embryonic development time of both species. Regarding effects observed for both species, a suitable artificial sediment composition for PAH toxicity testing was set at 92.5 % dry weight (dw) silica of 0.2-0.5-mm grain size, 5 % dw kaolin clay without organic matter for zebrafish, and 2.5 % dw blond peat in more only for Japanese medaka. PAH bioavailability and toxicity were highly dependent on the fraction of organic matter in sediment and of the K ow coefficients of the tested compounds. The biological responses observed were also dependent of the species under consideration. Japanese medaka embryos appeared more robust than zebrafish embryos for understanding the toxicity of PAHs following a sediment contact test, due to the longer exposure duration and lower sensitivity of sediment physical properties.

  17. Inhibition effect of glyphosate on the acute and subacute toxicity of cadmium to earthworm Eisenia fetida.

    PubMed

    Zhou, Chui-Fan; Wang, Yu-Jun; Sun, Rui-Juan; Liu, Cun; Fan, Guang-Ping; Qin, Wen-Xiu; Li, Cheng-Cheng; Zhou, Dong-Mei

    2014-10-01

    The acute and subacute toxicities of cadmium (Cd) to earthworm Eisenia fetida in the presence and absence of glyphosate were studied. Although Cd is highly toxic to E. fetida, the presence of glyphosate markedly reduced the acute toxicity of Cd to earthworm; both the mortality rate of the earthworms and the accumulation of Cd decreased with the increase of the glyphosate/Cd molar ratio. The subcellular distribution of Cd in E. fetida tissues showed that internal Cd was dominant in the intact cells fraction and the heat-stable proteins fraction. The presence of glyphosate reduced the concentration of Cd in all fractions, especially the intact cells. During a longer period of exposure, the weight loss of earthworm and the total Cd absorption was alleviated by glyphosate. Thus, the herbicide glyphosate can reduce the toxicity and bioavailability of Cd in the soil ecosystems at both short- and long-term exposures.

  18. Acute Toxicity and Environmental Risks of Five Veterinary Pharmaceuticals for Aquatic Macroinvertebrates.

    PubMed

    Bundschuh, Mirco; Hahn, Torsten; Ehrlich, Bert; Höltge, Sibylla; Kreuzig, Robert; Schulz, Ralf

    2016-02-01

    Due to the high use of antibiotics and antiparasitics for the treatment of livestock, there is concern about the potential impacts of the release of these compounds into freshwater ecosystems. In this context, the present study quantified the acute toxicity of two antibiotics (sulfadiazine and sulfadimidine), and three antiparasitic agents (flubendazole, fenbendazole, ivermectin) for nine freshwater invertebrate species. These experiments revealed a low degree of toxicity for the sulfonamide antibiotics, with limited implications in the survival of all test species at the highest test concentrations (50 and 100 mg/L). In contrast, all three antiparasitic agents indicated on the basis of their acute toxicity risks for the aquatic environment. Moreover, chronic toxicity data from the literature for antiparasitics, including effects on reproduction in daphnids, support the concern about the integrity of aquatic ecosystems posed by releases of these compounds. Thus, these pharmaceuticals warrant further careful consideration by environmental risk managers. PMID:26408031

  19. Acute Toxicity and Environmental Risks of Five Veterinary Pharmaceuticals for Aquatic Macroinvertebrates.

    PubMed

    Bundschuh, Mirco; Hahn, Torsten; Ehrlich, Bert; Höltge, Sibylla; Kreuzig, Robert; Schulz, Ralf

    2016-02-01

    Due to the high use of antibiotics and antiparasitics for the treatment of livestock, there is concern about the potential impacts of the release of these compounds into freshwater ecosystems. In this context, the present study quantified the acute toxicity of two antibiotics (sulfadiazine and sulfadimidine), and three antiparasitic agents (flubendazole, fenbendazole, ivermectin) for nine freshwater invertebrate species. These experiments revealed a low degree of toxicity for the sulfonamide antibiotics, with limited implications in the survival of all test species at the highest test concentrations (50 and 100 mg/L). In contrast, all three antiparasitic agents indicated on the basis of their acute toxicity risks for the aquatic environment. Moreover, chronic toxicity data from the literature for antiparasitics, including effects on reproduction in daphnids, support the concern about the integrity of aquatic ecosystems posed by releases of these compounds. Thus, these pharmaceuticals warrant further careful consideration by environmental risk managers.

  20. A review of concurrent ambient water column and sediment toxicity testing in the Chesapeake Bay watershed: 1990--1994

    SciTech Connect

    Hall, L.W. Jr.; Alden, R.W. III

    1997-08-01

    The objectives of this study were to identify toxic ambient areas in the Chesapeake Bay watershed by using a battery of water column and sediment toxicity tests. Twenty-five ambient stations in nine river/harbors were tested during 1990 through 1994. Seasonal and annual comparisons were conducted at selected stations. Inorganic and organic contaminants were evaluated in ambient water and sediment concurrently with water column and sediment tests to access possible causes of toxicity, although absolute causality cannot be established. Multivariate statistical analysis was used to develop a TOX-INDEX at each station for both water column and sediment toxicity data. Water column tests from the 5-year testing period showed that 43% of the time, some degree of toxicity was reported. The most toxic sites based on water column results were located in urbanized areas such as the Elizabeth River, Baltimore Harbor, and the Middle River. Water quality criteria for copper, lead, mercury, nickel, and zinc were exceeded at one or more of these sites. Some degree of sediment toxicity was reported from 70% of the tests conducted during the 5-year period. The Elizabeth River and Baltimore Harbor stations were reported as the most toxic areas based on sediment results. Sediment toxicity guidelines (Long and Morgan effects range median [ER-M] values) were exceeded for one or more of the following metals at these two locations: arsenic, cadmium, chromium, copper, lead, nickel, and zinc. At the Elizabeth River stations 9 of 16 semivolatile organics and 2 of 7 pesticides measured exceeded the ER-M values. Various semivolatile organics exceeded the ER-M values at a number of Baltimore Harbor sites; pyrene and dibenzo (a,h) anthracene were particularly high at one of the stations (Northwest Harbor).

  1. Acute toxicity and accumulation of zinc in the crayfish, Orconectes virilis (Hagen)

    SciTech Connect

    Not Available

    1986-09-01

    Zinc produces acute toxicity to freshwater organisms over a range of concentrations from 90 to 58, 100..mu..g Zn/L; with the range of acute median effect concentrations being similar for freshwater fish and invertebrates. The capacity to regulate internal zinc concentrations in decapod crustaceans has been described. Studies with the crayfish Austropotambius pallipes suggested a relatively high degree of tolerance to zinc by this animal. The present study is designed to describe the toxicity of zinc to the crayfish Orconectes virilis over a 2-wk exposure period. In addition, whole animal and tissue analyses were performed on the test organisms and compared to previous results.

  2. External validation of a QSAR for the acute toxicity of halogenated aliphatic hydrocarbons

    SciTech Connect

    Eriksson, L.; Jonsson, J. . Dept. of Organic Chemistry); Berglind, R. . NBC-Defense Research)

    1993-07-01

    The validation of the predictive capability of a quantitative structure-activity relationship (QSAR) is a significant step toward the construction of a reliable model. This point is discussed and illustrated with data for a class of halogenated aliphatic hydrocarbons. For this class of compounds, a QSAR concerning their acute toxicity toward rate was recently published. This QSAR is verified in this by selecting and testing an external validation set comprising six compounds. The QSAR is also used for predicting the acute toxicity of 28 nontested members of this class.

  3. Acute and subchronic oral toxicities of Calendula officinalis extract in Wistar rats.

    PubMed

    Lagarto, Alicia; Bueno, Viviana; Guerra, Isbel; Valdés, Odalys; Vega, Yamile; Torres, Leonid

    2011-05-01

    We have studied the acute and subchronic oral toxicities of Calendula officinalis extract in male and female Wistar rats. A single acute C. officinalis extract dose of 2000 mg/kg dissolved in distilled water was administered by oral gavage for acute toxicity. Subchronic doses of 50, 250 and 1000 mg/kg/day were administered in drinking water. The major toxicological endpoints examined included animal body weight, water and food intake, selected tissue weights, and histopathological examinations. In addition, we examined blood elements: hematocrit, hemoglobin concentration, erythrocyte count, total and differential leukocyte count and blood clotting time and blood chemistry: glucose, total cholesterol, urea, total proteins, alkaline phosphatase, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In the acute study, there were no mortality and signs of toxicity. In the subchronic study, several of the blood elements were significantly affected in males and females after 90 days; hemoglobin, erythrocytes, leukocytes and blood clotting time. For blood chemistry parameters, ALT, AST and alkaline phosphatase were affected. Histopathological examination of tissues showed slight abnormalities in hepatic parenchyma that were consistent with biochemical variations observed. These studies indicate that the acute and subchronic toxicities of C. officinalis extract are low. PMID:20335011

  4. Acute and subchronic oral toxicities of Calendula officinalis extract in Wistar rats.

    PubMed

    Lagarto, Alicia; Bueno, Viviana; Guerra, Isbel; Valdés, Odalys; Vega, Yamile; Torres, Leonid

    2011-05-01

    We have studied the acute and subchronic oral toxicities of Calendula officinalis extract in male and female Wistar rats. A single acute C. officinalis extract dose of 2000 mg/kg dissolved in distilled water was administered by oral gavage for acute toxicity. Subchronic doses of 50, 250 and 1000 mg/kg/day were administered in drinking water. The major toxicological endpoints examined included animal body weight, water and food intake, selected tissue weights, and histopathological examinations. In addition, we examined blood elements: hematocrit, hemoglobin concentration, erythrocyte count, total and differential leukocyte count and blood clotting time and blood chemistry: glucose, total cholesterol, urea, total proteins, alkaline phosphatase, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In the acute study, there were no mortality and signs of toxicity. In the subchronic study, several of the blood elements were significantly affected in males and females after 90 days; hemoglobin, erythrocytes, leukocytes and blood clotting time. For blood chemistry parameters, ALT, AST and alkaline phosphatase were affected. Histopathological examination of tissues showed slight abnormalities in hepatic parenchyma that were consistent with biochemical variations observed. These studies indicate that the acute and subchronic toxicities of C. officinalis extract are low.

  5. Acute fibrinous organising pneumonia: a manifestation of trimethoprim-sulfamethoxazole pulmonary toxicity.

    PubMed

    Jamous, Fady; Ayaz, Syed Zain; Choate, Jacquelyn

    2014-10-29

    A 50-year-old man was treated with trimethoprim-sulfamethoxazole (TMP-SMX) for acute arthritis of his right big toe. Within a few days, he developed dyspnoea, hypoxaemia and diffuse pulmonary infiltrates. Symptoms improved with discontinuation of the antibiotic but worsened again with its reintroduction. An open lung biopsy was performed. We describe the workup performed and the factors that pointed to a final diagnosis of TMP-SMX-related pulmonary toxicity in the form of acute fibrinous organising pneumonia.

  6. Toward a comparative overview of dependence potential and acute toxicity of psychoactive substances used nonmedically.

    PubMed

    Gable, R S

    1993-01-01

    A procedure is outlined for comparing dependence potential and acute toxicity across a broad range of abused psychoactive substances. Tentative results, based on an extensive literature review of 20 substances, suggested that the margin of safety ("therapeutic index") varied dramatically between substances. Intravenous heroin appeared to have the greatest risk of dependence and acute lethality; oral psilocybin appeared to have the least. Hazards due to behavioral deficits, perceptual distortion, or chronic illness were not factored into the assessments.

  7. Hypofractionated IMRT of the Prostate Bed After Radical Prostatectomy: Acute Toxicity in the PRIAMOS-1 Trial

    SciTech Connect

    Katayama, Sonja; Striecker, Thorbjoern; Kessel, Kerstin; Sterzing, Florian; Habl, Gregor; Edler, Lutz; Debus, Juergen; Herfarth, Klaus

    2014-11-15

    Purpose: Hypofractionated radiation therapy as primary treatment for prostate cancer is currently being investigated in large phase 3 trials. However, there are few data on postoperative hypofractionation. The Radiation therapy for the Prostate Bed With or Without the Pelvic Lymph Nodes (PRIAMOS 1) trial was initiated as a prospective phase 2 trial to assess treatment safety and toxicity of a hypofractionated intensity modulated radiation therapy (IMRT) of the prostate bed. Methods and Materials: From February to September 2012, 40 patients with indications for adjuvant or salvage radiation therapy were enrolled. One patient dropped out before treatment. Patients received 54 Gy in 18 fractions to the prostate bed with IMRT and daily image guidance. Gastrointestinal (GI) and genitourinary (GU) toxicities (according to National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0) were recorded weekly during treatment and 10 weeks after radiation therapy. Results: Overall acute toxicity was favorable, with no recorded adverse events grade ≥3. Acute GI toxicity rates were 56.4% (grade 1) and 17.9% (grade 2). Acute GU toxicity was recorded in 35.9% of patients (maximum grade 1). Urinary stress incontinence was not influenced by radiation therapy. The incidence of grade 1 urinary urge incontinence increased from 2.6% before to 23.1% 10 weeks after therapy, but grade 2 urge incontinence remained unchanged. Conclusions: Postoperative hypofractionated IMRT of the prostate bed is tolerated well, with no severe acute side effects.

  8. In vitro toxicity assessment of sediment samples from Huangpu River and Suzhou River, Shanghai, China.

    PubMed

    Lou, Shufang; Lei, Bingli; Feng, Chenglian; Xu, Jie; Peng, Wei; Wang, Yipei

    2016-08-01

    Sediments are the ultimate sink for many toxic organic contaminants released into aquatic environment. The present study evaluated the toxicity effect of 13 surface sediment samples from Huangpu River and Suzhou River, East China using two-hybrid yeast bioassays for estrogenic and thyroidal effects and H4IIE rat hepatoma cell bioassay for ethoxyresorufin O-deethylase (EROD) activity. Toxicity was expressed as 17β-estradiol equivalent (E2-EQ), 3,3',5-triiodothyronine equivalent (T3-EQ), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQ). At the same time, the causality between the observed EROD activity and concentrations of polycyclic aromatic hydrocarbons (PAHs) was examined. The results showed that the total estrogenic effects in sediments ranged from 0.06 to 1.21 μg E2-EQ kg(-1) dry weight (dw), the thyroidal effects ranged from 4.68 to 69.9 μg T3-EQ kg(-1) dw, and significantly positive correlations were found between lgT3-EQs and lgE2-EQs. The AhR agonist effects varied from 26.5 to 148.3 ng TEQ kg(-1) dw. Chemical analysis-derived TEQs contributed by PAHs ranged from 13.8 to 66.0 ng kg(-1) dw accounting for 27.2-109.9 % with mean of 48.9 % of TEQbio, indicating that PAHs made important contributions to the EROD effects of sediment extracts from the two rivers. The present study would provide meaningful information for further analysis and risk evaluation for organic pollutants in Huangpu River and Suzhou River.

  9. Bioavailability of metals and toxicity identification of the sediment pore waters from Plow Shop Pond, Fort Devens, Massachusetts

    SciTech Connect

    Jop, K.; Putt, A.; Shepherd, S.; Askew, A.; Bleiler, J.; Reed, S.; George, C.

    1995-12-31

    Plow Shop Pond is a shallow, 30-acre pond located at Fort Devens, Massachusetts. An ecological risk assessment was conducted at Plow Shop Pond as part of a remedial investigation. Preliminary analysis revealed high concentrations of arsenic, copper, chromium, lead, and mercury in the sediment. Therefore, a laboratory testing program was incorporated into this investigation to assess the toxicity of sediments to aquatic organisms. The screening testing program included short-term chronic exposure of Ceriodaphnia dubia to pore waters, 10-day exposures of Chironomus tentans and Hyalella azteca to bulk sediments and a bioaccumulation study with Lumbriculus variegatus. Survival and reproduction of C. dubia, growth of amphipods and reproduction of oligochaetes appeared to indicate sediment toxicity at some sites within the pond. Although high concentrations of arsenic, copper, mercury and lead were detected in the whole sediments and pore waters, the response could not be correlated to a particular element. Also, relatively low bioaccumulation of methyl mercury and high uptake of inorganic mercury was established for three sediment samples. To characterize and identify the source of toxicity, a toxicity identification evaluation program using sediments collected at several locations was performed. The pore water from these samples was used for fractionation coupled with a 10-day test using H. azteca. Survival and growth were evaluated as endpoints during the exposures. Partitioning of metals and their bioavailability was influenced primarily by organic carbon and AVS concentration. At least two constituents were responsible for the toxicity.

  10. Towards Global QSAR Model Building for Acute Toxicity: Munro Database Case Study

    PubMed Central

    Chavan, Swapnil; Nicholls, Ian A.; Karlsson, Björn C. G.; Rosengren, Annika M.; Ballabio, Davide; Consonni, Viviana; Todeschini, Roberto

    2014-01-01

    A series of 436 Munro database chemicals were studied with respect to their corresponding experimental LD50 values to investigate the possibility of establishing a global QSAR model for acute toxicity. Dragon molecular descriptors were used for the QSAR model development and genetic algorithms were used to select descriptors better correlated with toxicity data. Toxic values were discretized in a qualitative class on the basis of the Globally Harmonized Scheme: the 436 chemicals were divided into 3 classes based on their experimental LD50 values: highly toxic, intermediate toxic and low to non-toxic. The k-nearest neighbor (k-NN) classification method was calibrated on 25 molecular descriptors and gave a non-error rate (NER) equal to 0.66 and 0.57 for internal and external prediction sets, respectively. Even if the classification performances are not optimal, the subsequent analysis of the selected descriptors and their relationship with toxicity levels constitute a step towards the development of a global QSAR model for acute toxicity. PMID:25302621

  11. Predictions of sediment toxicity using a database for Hyalella azteca and Chironomus riparius

    SciTech Connect

    Haverland, P.S.; Dwyer, F.J.; Henke, C.E.; Ingersoll, C.G.; Mount, D.R.; Field, J.; MacDonald, D.D.; Smith, S.L.

    1995-12-31

    A database was developed for calculating sediment effect concentrations (SECS) for various contaminants Associated with field-collected sediment using laboratory toxicity data for the amphipod H. azteca and the midge C. riparius. Three types of SECs were calculated: (1) Effect Range Low (ERL) and Effect Range Median (ERM), (2) Threshold Effect Level (TEL) and Probable Effect Level (PEL), and (3) No Effect Concentration (NEC). The predictive abilities of SECs were evaluated using independent toxicity data sets. For example, the predictive ability of ERMs was evaluated by first calculating ERMs using just the Great Lakes (GL) portion of the database. These GL ERMs were then used to predict responses in independent H. azteca 28-d tests and C. riparius 1 4-d tests with Clark Fork River sediments. About 70 to 90% of the samples were correctly classified at 1 to 2 exceedances of GL ERMS. At 1 to 2 exceedances of GL ERMS, Type 2 error (false negatives) was < 10% and Type 1 error (false positives) was 10 to 30%. Evaluations using GL PELs and GL NECs resulted in similar predictive ability compared to GL ERMS. When SECs are used to conduct a preliminary screening to predict the potential for toxicity in the absence of actual toxicity testing, a low number of SEC exceedances should be used to minimize the potential for false negatives; however, the risk of accepting higher false positives is increased. The authors are currently using SECs calculated from the entire database to predict the response of H. azteca and C. riparius in a variety of independent data sets generated by other laboratories.

  12. 40 CFR 799.9110 - TSCA acute oral toxicity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reactions, rate of onset, and length of recovery period, and may thus be extended when considered necessary... carried out. (2) Substance to be tested. Test, control, and reference substances are described in 40 CFR... produce test groups with a range of toxic effects and mortality rates. The data collected must...

  13. Acute toxicity of organic solvents on Artemia salina

    SciTech Connect

    Barahona-Gomariz, M.V.; Sanz-Barrera, F.; Sanchez-Fortun, S. )

    1994-05-01

    Organic solvents can make their way into the environment as industrial wastes and components of pesticide formulation. In laboratory bioassays, the use of organic formulations. In laboratory bioassays, the use of organic solvents is often unavoidable, since many pesticides and organic pollutants have low water solubility and must be dissolved in organic solvents prior to addition into experimental systems. In the toxicant bioassays, invertebrates with special reference to aquatic arthropod species are of recent interest as test models due to the need for developing nonmammalian test systems. Toxic effects of organic solvents have been tested with a few aquatic species, but information on the comparative toxicity of solvents towards Artemia salina is not available. Artemia salina have, within recent years, gained popularity as test organisms for short-term toxicity testing. Because Artemia salina exhibit rapid development and growth within 48 hr after hatch, their potential as a model organism for toxicology screening has been considered. To do this, synchronous populations of Artemia salina at different development intervals must be available.

  14. Developmental toxicity of lead-contaminated sediment in Canada geese (Branta canadensis)

    USGS Publications Warehouse

    Hoffman, David J.; Heinz, Gary H.; Sileo, Louis; Audet, Daniel J.; Campbell, Juile K.; Obrecht, Holly H.

    2000-01-01

    Sediment ingestion has recently been identified as an important exposure route for toxicants in waterfowl. The effects of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho on posthatching development of Canada geese (Branta canadensis) were examined for 6 wk. Day-old goslings received either untreated control diet, clean sediment (48%) supplemented control diet, or CDARB sediment (3449 mug/g lead) supplemented diets at 12%, 24%, or 48%. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 0.68 ppm (ww), with over 90% depression of red blood cell ALAD activity and over fourfold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 1.61 ppm with decreased hematocrit, hemoglobin, and plasma protein in addition to the effects just described. The 48% CDARB diet resulted in blood lead of 2.52 ppm with 22% mortality, decreased growth, and elevated plasma lactate dehydrogenase-L (LDH-L) activity. In this group the liver lead concentration was 6.57 ppm (ww), with twofold increases in hepatic lipid peroxidation (thiobarbituric acid-reactive substances, TBARS) and in reduced glutathione concentration; associated effects included elevated glutathione reductase activity but lower protein-bound thiols concentration and glucose-6-phosphate dehydrogenase (G-6-PDH) activity. The kidney lead concentration in this group was 14.93 ppm with subacute renal tubular nephrosis in one of the surviving goslings. Three other geese in this treatment group exhibited calcified areas of marrow, and one of these displayed severe chronic fibrosing pancreatitis. Lead from CDARB sediment accumulated less readily in gosling blood and tissues than reported in ducklings but at given concentrations was generally more toxic to goslings. Many of these effects were similar to those reported in wild geese and mallards within the Coeur d'Alene River Basin.

  15. Evaluation of toxicity of polluted marine sediments from Bahia Salina Cruz, Mexico.

    PubMed

    Gonzalez-Lozano, Maria Cristina; Mendez-Rodriguez, Lia C; Maeda-Martinez, Alejandro M; Murugan, Gopal; Vazquez-Botello, Alfonso

    2010-01-01

    Bahia Salina Cruz, Oaxaca, Mexico is a major center of oil and refined product distribution on the Mexican Pacific coast. From the start of oil industry operations in 1979, negative effects from discharges of treated effluents in the bay have been a constant concern for local communities. We analyzed 28 surface sediment samples obtained in June, 2002 to evaluate the level of toxicity in the littoral zone, port-harbor, and La Ventosa estuary in Bahia Salina Cruz. The extractable organic matter concentration was high (1,213 to 7,505 micro g g(-1)) in 5 of 7 stations from the port and harbor, whereas it was low in 12 of 16 stations in the littoral zone (36 to 98 micro g g(-1)). The total aromatic hydrocarbon concentration was highest (57 to 142 micro g g(-1)) in the port and harbor compared to the La Ventosa estuary and the littoral zone. Among the heavy metals analyzed, cadmium exceeded the effects range-low values associated with adverse biological effects. The geo-accumulation index of sediments was moderate to strong contamination at 5 stations in the nonlittoral and 6 stations in the littoral zone. The enrichment of lead, zinc, and cadmium at 5 stations from the littoral, port, and harbor suggest that these metals are of anthropogenic origin. Bioassay tests of elutriates of sediments on nauplii of Artemia franciscana and Artemia sp. showed that the port and harbor were more toxic than the La Ventosa estuary and the coastal zone. The Microtox test (Vibrio fischeri) did not show a similar response with the solid phase of the sediments. The results of this study indicate that the high levels of organic content and metals in the sediments of port-harbor and the La Ventosa estuary are mainly caused by anthropogenic activities.

  16. Usefulness of sediment toxicity tests with estuarine plants and animals to indicate municipal and industrial effluent impact

    SciTech Connect

    Lewis, M.A.; Weber, D.E.

    1994-12-31

    The environmental impact of municipal and industrial effluents has been predicted from results from single species toxicity tests. The goal of these tests is to ensure that water quality criteria and the designated use of the waterbody is not impacted. Recently, the focus of some effluent toxicity evaluation has centered on determining the effluent impact on the sediment in the receiving water. This study evaluated the toxicities of several sediment samples collected above and below six outfalls to the Pensacola Bay system. Toxicities were determined using three macrophytic plants and four animal species. The sediments, with few exceptions, exhibited a low level of toxicity. The mysid shrimp was more sensitive than Ampelisca, Leptocheirus and the sheepshead minnow. The sensitivities of the plants, Echinochloa crusgalli, Scirpus robustus and Sesbania macrocarpa, were comparable to those of the animal species. The toxicity of time sediment, when compared to that of the effluent, determined using standard single species of plants and animals was less. Overall, the sediment toxicity tests were useful in providing insight on the impact of effluents. However, the application and usefulness of this assessment tool is highly dependent upon a variety of factors, including the geomorphological characteristics of the receiving waters.

  17. Evaluation of acute toxicity and teratogenic effects of plant growth regulators by Daphnia magna embryo assay.

    PubMed

    Wang, Kai-Sung; Lu, Chi-Yuan; Chang, Shih-Hsien

    2011-06-15

    This study selected common plant growth regulators (Atonik, Cytokinin, Ethephon, Gibberellic acid and Paclobutrazol) to investigate their biological toxicity to the waters of the important biological indicator Daphnia magna. The methods used in this study included traditional neonate acute toxicity test, new Daphnia embryo toxicity test, and teratogenic embryo test. The study concluded that the acute toxicity of the five PGRs to Daphnia neonate had EC(50) value range of 1.9-130.5 mg l(-1), while acute toxicity of PGRs on Daphnia embryo had EC(50) value range of 0.2-125 mg l(-1); the Daphnia embryos' LOEC values (0.05-48 mg l(-1)) for the five PGRs were lower than embryo EC(50) values. The toxic ratios of 48 h EC(50) (neonate)/48 h LOEC (embryo) for 5 PGRs were 19-512 times. The study found that teratogenic effects of Paclobutrazol and Cytokinin induced in embryo were higher than those of most other PGRs. Microscopic observation of the teratogenic effects showed that all 5 PGRs induced malformations of the second antenna, rostrum, Malpighian tube, sensory bristles, and tail spine as well as function loss and death.

  18. Acute and subchronic toxicity of naturally weathered Exxon Valdez crude oil in mallards and ferrets

    SciTech Connect

    Stubblefield, W.A.; Hancock, G.A.; Ford, W.H.; Ringer, R.K.

    1995-11-01

    The toxic properties of naturally weathered Exxon Valdez crude oil (WEVC) were assessed in a battery of acute and subchronic toxicity tests using mallards, Anas platyrhynchos, and European ferrets, Mustela putorius. Adult mallard acute oral toxicity study results indicated no mortalities or signs o toxicity, i.e., no-observed-adverse-effect level (NOAEL) and median lethal dose (LD50) > 5,000 mg/kg. Acute oral feeding and food avoidance tests with ducklings also indicated no toxicity (NOAEL and LC50 > 50,000 mg/kg diet) with no evidence of food avoidance (FAC50 > 20,000 mg/kg diet). No mortalities or toxic signs were noted in a 14-d feeding study with adult birds at dietary concentrations up to 100,000 mg WEVC/kg diet. Among clinical and physiological end points evaluated, the only significant difference noted was an increase in liver: body weight ratios in the 100,000-mg WEVC/kg diet dose group. No differences in clinical chemistry or hematological parameters were noted, and there were no consistent differences in histological evaluations of organ tissues. Daily oral doses of up to 5,000 mg/kg of WEVC over 5 d resulted in minimal effects on ferrets. Increased serum albumin concentrations were observed in the 5,000-mg/kg dose group females and decreased spleen weights were noted in females of all WEVC treatment groups. No other significant observations were noted.

  19. Acute toxicity of diphacinone in Northern bobwhite: Effects on survival and blood clotting

    USGS Publications Warehouse

    Rattner, Barnett A.; Horak, Katherine E.; Warner, Sarah E.; Johnston, John J.

    2010-01-01

    The anticoagulant rodenticide diphacinone was slightly toxic (acute oral LD50 2014 mg/kg) to Northern bobwhite (Colinus virginianus) in a 14-day acute toxicity trial. Precise and sensitive assays of blood clotting (prothrombin time, Russell?s Viper venom time, and thrombin clotting time) were adapted for use in quail, and this combination of assays is recommended to measure the effects of anticoagulant rodenticides. A single oral sublethal dose of diphacinone (434 mg/kg body weight) prolonged clotting time at 48 h post-dose compared to controls. At 783 mg/kg (approximate LD02), clotting time was prolonged at both 24 and 48 h post-dose. Prolongation of in vitro clotting time reflects impaired coagulation complex activity, and was detected before overt signs of toxicity were apparent at the greatest dosages (2868 and 3666 mg/kg) in the acute toxicity trial. These clotting time assays and toxicity data will assist in the development of a pharmacodynamic model to predict toxicity, and also facilitate rodenticide hazard and risk assessments in avian species.

  20. Dispersant and salinity effects on weathering and acute toxicity of South Louisiana crude oil.

    PubMed

    Kuhl, Adam J; Nyman, J Andrew; Kaller, Michael D; Green, Christopher C

    2013-11-01

    Chemical dispersants are an important technology in the remediation of oil spills in the aquatic environment, facilitating degradation of crude oil and salinity is an important factor in dispersant effectiveness. The aim of the present study was to explore the role of salinity on the degradation chemistry of crude oil polycyclic aromatic hydrocarbons (PAHs) and acute toxicity of the water accommodated fraction (WAF) of the dispersant COREXIT 9500A and chemically dispersed crude oil on a common estuarine fish. Laboratory microcosms were designed at salinities of 4 parts per thousand (ppt), 12 ppt, or 18 ppt and spiked with crude oil, COREXIT 9500A, or a combined exposure to crude oil and COREXIT and allowed to biodegrade for 1 wk, 4 wk, and 16 wk. The WAF was harvested for analytical PAH analysis and acute toxicity testing in juvenile Fundulus grandis. Compared with undispersed oil, COREXIT exponentially increased the PAH concentrations in the WAF for up to 16 wk; hopane-normalized concentrations indicated that biodegradation was slowed for the first 4 wk. Dispersed crude oil and COREXIT were acutely toxic following 1 wk of biodegradation with no correlation between PAH concentrations and crude oil WAF mortality. Both dispersant and dispersant oil mixtures remained toxic for at least 4 wk at the lowest salinity tested, suggesting increased sensitivity or reduced biodegradation of toxic components in low-saline environments. At the lowest salinity, oil dispersed with COREXIT was more toxic than either the COREXIT alone or oil alone, even after 16 wk of biodegradation. PMID:24377102

  1. Dispersant and salinity effects on weathering and acute toxicity of South Louisiana crude oil.

    PubMed

    Kuhl, Adam J; Nyman, J Andrew; Kaller, Michael D; Green, Christopher C

    2013-11-01

    Chemical dispersants are an important technology in the remediation of oil spills in the aquatic environment, facilitating degradation of crude oil and salinity is an important factor in dispersant effectiveness. The aim of the present study was to explore the role of salinity on the degradation chemistry of crude oil polycyclic aromatic hydrocarbons (PAHs) and acute toxicity of the water accommodated fraction (WAF) of the dispersant COREXIT 9500A and chemically dispersed crude oil on a common estuarine fish. Laboratory microcosms were designed at salinities of 4 parts per thousand (ppt), 12 ppt, or 18 ppt and spiked with crude oil, COREXIT 9500A, or a combined exposure to crude oil and COREXIT and allowed to biodegrade for 1 wk, 4 wk, and 16 wk. The WAF was harvested for analytical PAH analysis and acute toxicity testing in juvenile Fundulus grandis. Compared with undispersed oil, COREXIT exponentially increased the PAH concentrations in the WAF for up to 16 wk; hopane-normalized concentrations indicated that biodegradation was slowed for the first 4 wk. Dispersed crude oil and COREXIT were acutely toxic following 1 wk of biodegradation with no correlation between PAH concentrations and crude oil WAF mortality. Both dispersant and dispersant oil mixtures remained toxic for at least 4 wk at the lowest salinity tested, suggesting increased sensitivity or reduced biodegradation of toxic components in low-saline environments. At the lowest salinity, oil dispersed with COREXIT was more toxic than either the COREXIT alone or oil alone, even after 16 wk of biodegradation.

  2. Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols.

    PubMed

    Chen, Min-Yu; Ike, Michihiko; Fujita, Masanori

    2002-02-01

    Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane; BPA), little is known about the toxicities of the structurally similar compounds, namely bisphenols (BPs). A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and estrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly estrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-estradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak estrogenic activity as well as BPA. Some of the BPs showed considerably higher estrogenic activity than BPA, and others exhibited much lower activity. Among the tested BPs, two compounds, i.e., bisphenol-S (bis(4-hydroxydiphenyl)sulfone) and bis(4-hydroxyphenyl)sulfide, have never been reported for their estrogenic activity previously.

  3. Contaminant levels and toxicity of sediments and water of Baltimore Harbor and Back River, Maryland

    SciTech Connect

    Logan, D.T.; Jacobs, F.; Mehrotra, N.

    1995-12-31

    The Patapsco and Back River Watershed drains the Baltimore metropolitan area, Maryland`s most heavily industrialized and urbanized region. Due to the intensive development and industrialization of the Baltimore metropolitan area over the past 250 years, high levels of contaminants have been discharged into Baltimore Harbor on the Patapsco River and into the Back River. Pollutants historically discharged include heavy metals, petroleum hydrocarbons, pesticides, cyanide, sewage, other organic chemicals, and nutrients. Sources have included industrial and municipal discharges, sewerage overflows, urban runoff, and leaks and spills from vessels and on-land facilities. The Maryland Department of the Environment undertook this study of ambient conditions as part of a developing strategy to assess and improve conditions in the Chesapeake Bay and its tributaries. Past studies were compiled, evaluated, and synthesized to identify the areas of degraded conditions and contaminants of possible concern. Sediment contaminant levels were assessed using historical sediment chemistry data, Effects Range Low and Median concentrations (ER-L and ER-M) as toxicological benchmarks, and a sum of toxicity units approach for multiple contaminants. Data on toxicity testing and biological monitoring was compared to sediment and water quality data. Fish tissue data were used to examine bioaccumulated chemicals. A computerized Geographical Information System (GIS) was used to manipulate and display complex geographical data. The final identification of areas and chemicals of potential concern relied on a syntheses of these results as well as information on present and past contaminant loadings.

  4. Assessment of four different test designs for Hyalella azteca 10 days sediment toxicity test

    SciTech Connect

    Ramirez-Romero, P. |; Oris, J.T.; Bailer, J.; DePoy, M.

    1995-12-31

    The purpose of this study was to assess the adequacy of four experimental designs of the Hyalella azteca 10 days sediment toxicity test. The authors conducted a series of sediment toxicity tests using an EPA recommended experimental design (8 chambers with 10 organisms per treatment) and three other designs. These had the same total number of organisms (80) per treatment and the same sediment:water ratio (1:1.5) but different number of chambers (4,2,1). The number of organisms recovered, the time to sort and count the animals, as well as the time to make a water change were compared for these four designs. Logistic regression was used to analyze the recovery data while one-way analysis of variance methods were used to analyze the time responses. The results showed that the four treatments were comparable in terms of proportion of organisms recovered. However, the sorting time and the water change time decreased as the number of chambers decreased, making those designs with less chambers more desirable.

  5. Chemistry and toxicity of sediments from San Diego Bay, including a biomarker (P450 RGS) response

    SciTech Connect

    Anderson, J.W.; Newton, F.C.; Hardin, J.; Tukey, R.H.; Richter, K.E.

    1996-12-31

    Thirty sediment samples were collected from the vicinity of the Naval Docking Facility in San Diego Bay and used to conduct bioassays with amphipods, oyster larvae, Microtox, and a new rapid screening test called the cytochrome P450 Reporter Gene System (RGS). This RGS cell line, from a human liver cancer cell, has been engineered to produce luciferase, when the CYP1A1 gene on the chromosome is induced by toxic and carcinogenic organics (dioxin, coplanar PCBs, PAHs). Elutriates were tested with both Microtox and oyster larvae, and organic extracts of sediments were tested with Microtox and the P450 RGS assay. Chemical analyses included total organic carbon (TOC), and acid volatile sulfides (AVS) along with a wide range of metals and organic chemicals. The simultaneously extracted metals (SEM) to AVS ratio was compared to the toxic response of oyster larvae and amphipods. Along each of the piers sampled, contaminant concentrations decreased with distance from shore. A correlation matrix analysis of all biological and chemical data was conducted. The strongest correlation between a chemical measurement and a biological response was that of total PAH versus the P450 RGS response. The use of P450 RGS as a screening tool to assess the relative risk of contaminants on sediments is biologically meaningful, and is a rapid and inexpensive means of determining which samples require complete chemical characterization.

  6. Relationships among sediment chemistry, toxicity testing, and biology: What can large-scale monitoring teach us?

    SciTech Connect

    Summers, J.K.; Macauley, J.M.; Engle, V.D.; Malaeb, Z.

    1995-12-31

    The Environmental Monitoring and Assessment Program for Estuarine Resources has collected sediments from over 1,000 varying locations in the estuaries of the United States. At each of these sites, sediments are analyzed for bulk chemistry, tested for toxicity to Ampelisca abdita, and enumerated regarding benthic community structure and abundance. In addition, tissue residues have been examined for selected fish and shellfish species and toxicity testing has been completed at selected sites for alternative species. The statistical and ecological relationships among these indicators have been examined with regard to how they can used to identify the overall ecological condition of a site, an estuary, or populations of estuaries. Comparisons of these relationships among different regions of the country show major differences in the modes of exposure and response being prevalent in the Southeast and Gulf Coasts as compared to the Mid-Atlantic and West Coasts. While the extent of sediment contamination in the Southeast and Gulf estuaries appears to be similar to that of the Mid-Atlantic and California Coasts, the degree of contamination at contaminated sites is much greater in Mid-Atlantic estuaries. An examination of the primary contaminants suggests that the primary sources of contamination in the Mid-Atlantic are industrial and urban while the Southeast and Gulf estuaries are dominated by agricultural contaminants.

  7. Toxicity and genotoxicity of water and sediment from streams on dotted duckweed (Landoltia punctata).

    PubMed

    Factori, R; Leles, S M; Novakowski, G C; Rocha, C L S C; Thomaz, S M

    2014-11-01

    Most rivers are used as a source to supply entire cities; the quality of water is directly related to the quality of tributaries. Unfortunately men have neglected the importance of streams, which receive domestic and industrial effluents and transport nutrients and pesticides from rural areas. Given the complexity of the mixtures discharged into these water bodies, this study aimed to evaluate the quality of water and sediment of ten tributaries of Pirapó River, in Maringá, Paraná State, Brazil. To this end, the free-floating macrophyte Landoltia punctata (G. Meyer) Les & D.J.Crawford was used as test organism in microcosm, and the toxicity of water and sediment samples was evaluated by the relative growth rate, dry/fresh biomass ratio, and genotoxic effects (comet assay). Samples of water and sediment of each stream were arranged in microcosms with L. punctata. Seven days later, plants were collected for analysis. Nutrient levels were higher than the reference location, indicating eutrophication, but the results indicated a toxic effect for only three streams, and a genotoxic effect for all streams.

  8. Acute bilateral ureteral obstruction secondary to guaifenesin toxicity.

    PubMed

    Cockerill, Patrick A; de Cógáin, Mitra R; Krambeck, Amy E

    2013-10-01

    Several medications or their metabolites have been associated with urolithiasis, although overall they remain an infrequent cause of urolithiasis. Guaifenesin stones were originally reported as complexed with ephedrine, and subsequent reports have demonstrated pure guaifenesin stones, occurring after long term abuse. We report a case of a 23-year-old male who ingested a large, one time dose of guaifenesin, resulting in acute bilateral ureteral obstruction, which, to our knowledge, is the first such reported case in the literature. PMID:24128843

  9. Are PAHS the Right Metric for Assessing Toxicity Related to Oils, Tars, Creosote and Similar Contaminants in Sediments?

    EPA Science Inventory

    Oils, tars, and other non-aqueous phase hydrocarbon liquids (NAPLs) are common sources of contamination in aquatic sediments, and the toxicity of such contamination has generally been attributed to component chemicals, particularly PAHs. While there is no doubt PAHs can be toxic ...

  10. Correlations of acute toxicity of metal ions and the covalent/ionic character of their bonds

    SciTech Connect

    Turner, J.E.; Williams, M.W.; Jacobson, K.B.; Hingerty, B.E.

    1984-01-01

    We have investigated correlations between physicochemical properties of 24 metal ions and their acute toxicity in mice and Drosophila. A high correlation for a softness parameter suggests that the relative covalent/ionic character of the bonds formed by the metal ions may be important in determining their toxicity. This hypothesis is reinforced by model calculations of metal binding to dinucleotides in water. Since the nature of bonds depends on ligand electronegativity, we searched for correlations involving this parameter. Although electronegativity is useful for interpreting some aspects of metal-ion behavior related to toxicity, it does not yield improved correlations. 8 refs., 3 figs., 1 tab.

  11. Acute tellurium toxicity from ingestion of metal-oxidizing solutions.

    PubMed

    Yarema, Mark C; Curry, Steven C

    2005-08-01

    Tellurium is an element used in the vulcanization of rubber and in metal-oxidizing solutions to blacken or tarnish metals. Descriptions of human toxicity from tellurium ingestion are rare. We report the clinical course of 2 children who ingested metal-oxidizing solutions containing substantial concentrations of tellurium. Clinical features included vomiting, black discoloration of the oral mucosa, and a garlic odor to the breath. One patient developed corrosive injury to the esophagus secondary to the high concentration of hydrochloric acid in the solution. Both patients recovered without serious sequelae, which is typical of tellurium toxicity. An awareness of situations in which children may be exposed to tellurium and its clinical presentation may assist clinicians in the diagnosis of this rare poisoning. PMID:15995006

  12. Determination of acute toxicity of polychlorinated biphenyls to photobactrium phosphoreum

    SciTech Connect

    Chu, S.; Xu, X.; He, Y.

    1997-02-01

    Polychlorinated biphenyls (PCBs) are a highly lipophilic group of global pollutants, consisting of 209 congeners. PCBs were discovered before the turn of the century and their usefulness for industry, because of their physical properties, was recognized early. The distribution of PCBs in the environment was not noticed until Jensen and his colleagues found PCBs in wildlife samples. Since then, investigations in many parts of the world have revealed the widespread distribution of PCBs in environmental samples and PCVs are persistent and accumulate in food webs. Thus, determination of toxicities of commercial PCB mixtures and PCB congeners are required. Toxicity tests using luminous bacteria have shown high correlation to traditional bioassays. This study compared the EC50 values of the commercial mixtures, PCB3 and PCB5, with those of Aroclor 1242 and Aroclor 1254. 12 refs., 2 tabs.

  13. Acute toxicity of mosquitocidal compounds to young mosquitofish, Gambusia affinis.

    PubMed

    Tietze, N S; Hester, P G; Hallmon, C F; Olson, M A; Shaffer, K R

    1991-06-01

    Toxicity of Florida mosquito larvicides and adulticides to 3-5 day old Gambusia affinis was determined in the laboratory. After 24-h exposure, the larvicides, temephos, fenoxycarb and petroleum distillates had LC50 values of 5.60, 1.05 and 593.4 ppm, respectively. After 24 h the adulticides resmethrin, fenthion, naled and malathion had LC50 values of 0.007, 2.94, 3.50 and 12.68 ppm, respectively. The only compound toxic to young mosquitofish at maximum field application rates was resmethrin. However, in the light of earlier tests, aerially applied adulticides generally reach the water surface at reduced concentrations and thus probably pose little or no risk to mosquitofish populations. PMID:1716659

  14. Acute Toxicity of Sodium Fluorescein to Ashy Pebblesnails Fluminicola fuscus

    USGS Publications Warehouse

    Stockton, Kelly A.; Moffitt, Christine M.; Blew, David L