Sample records for acute skin inflammation

  1. Chronic, not acute, skin-specific inflammation promotes thrombosis in psoriasis murine models.

    PubMed

    Golden, Jackelyn B; Wang, Yunmei; Fritz, Yi; Diaconu, Doina; Zhang, Xiufen; Debanne, Sara M; Simon, Daniel I; McCormick, Thomas S; Ward, Nicole L

    2015-12-16

    Psoriasis patients exhibit an increased risk of atherothrombotic events, including myocardial infarction and stroke. Clinical evidence suggests that psoriasis patients with early onset and more severe disease have the highest risk for these co-morbidities, perhaps due to the extent of body surface involvement, subsequent levels of systemic inflammation, or chronicity of disease. We sought to determine whether acute or chronic skin-specific inflammation was sufficient to promote thrombosis. We used two experimental mouse models of skin-specific inflammation generated in either an acute (topical Aldara application onto wild-type C57Bl/6 mice for 5 days) or chronic (a genetically engineered K5-IL-17C mouse model of psoriasiform skin inflammation) manner. Arterial thrombosis was induced using carotid artery photochemical injury (Rose Bengal-green light laser) and carotid artery diameters were measured post-clot formation. We also examined measures of clot formation including prothrombin (PT) and activated partial thromboplastin time (aPTT). Skin inflammation was examined histologically and we profiled plasma-derived lipids. The number of skin-draining lymph-node (SDLN) and splenic derived CD11b(+)Ly6C(high) pro-inflammatory monocytes and CD11b(+)Ly6G(+) neutrophils was quantified using multi-color flow cytometry. Mice treated with topical Aldara for 5 days had similar carotid artery thrombotic occlusion times to mice treated with vehicle cream (32.2 ± 3.0 vs. 31.4 ± 2.5 min, p = 0.97); in contrast, K5-IL-17C mice had accelerated occlusion times compared to littermate controls (15.7 ± 2.1 vs. 26.5 ± 3.5 min, p < 0.01) while carotid artery diameters were similar between all mice. Acanthosis, a surrogate measure of inflammation, was increased in both Aldara-treated and K5-IL-17C mice compared to their respective controls. Monocytosis, defined as elevated SDLN and/or splenic CD11b(+)Ly6C(high) cells, was significantly increased in both Aldara-treated (SDLN: 3.8-fold, p

  2. Suppression of skin inflammation in keratinocytes and acute/chronic disease models by caffeic acid phenethyl ester.

    PubMed

    Lim, Kyung-Min; Bae, SeungJin; Koo, Jung Eun; Kim, Eun-Sun; Bae, Ok-Nam; Lee, Joo Young

    2015-04-01

    Skin inflammation plays a central role in the pathophysiology and symptoms of diverse chronic skin diseases including atopic dermatitis (AD). In this study, we examined if caffeic acid phenethyl ester (CAPE), a skin-permeable bioactive compound from propolis, was protective against skin inflammation using in vitro cell system and in vivo animal disease models. CAPE suppressed TNF-α-induced NF-κB activation and expression of inflammatory cytokines in human keratinocytes (HaCaT). The potency and efficacy of CAPE were superior to those of a non-phenethyl derivative, caffeic acid. Consistently, topical treatment of CAPE (0.5 %) attenuated 12-O-tetradecanoylphorbol-13-acetate(TPA)-induced skin inflammation on mouse ear as CAPE reduced ear swelling and histologic inflammation scores. CAPE suppressed increased expression of pro-inflammatory molecules such as TNF-α, cyclooxygenase-2 and inducible NO synthase in TPA-stimulated skin. TPA-induced phosphorylation of IκB and ERK was blocked by CAPE suggesting that protective effects of CAPE on skin inflammation is attributed to inhibition of NF-κB activation. Most importantly, in an oxazolone-induced chronic dermatitis model, topical application of CAPE (0.5 and 1 %) was effective in alleviating AD-like symptoms such as increases of trans-epidermal water loss, skin thickening and serum IgE as well as histologic inflammation assessment. Collectively, our results propose CAPE as a promising candidate for a novel topical drug for skin inflammatory diseases.

  3. Chronic skin-specific inflammation promotes vascular inflammation and thrombosis.

    PubMed

    Wang, Yunmei; Gao, Huiyun; Loyd, Candace M; Fu, Wen; Diaconu, Doina; Liu, Shijian; Cooper, Kevin D; McCormick, Thomas S; Simon, Daniel I; Ward, Nicole L

    2012-08-01

    Patients with psoriasis have systemic and vascular inflammation and are at increased risk for myocardial infarction, stroke, and cardiovascular death. However, the underlying mechanism(s) mediating the link between psoriasis and vascular disease is incompletely defined. This study sought to determine whether chronic skin-specific inflammation has the capacity to promote vascular inflammation and thrombosis. Using the KC-Tie2 doxycycline-repressible (Dox-off) murine model of psoriasiform skin disease, spontaneous aortic root inflammation was observed in 33% of KC-Tie2 compared with 0% of control mice by 12 months of age (P=0.04) and was characterized by the accumulation of macrophages, T lymphocytes, and B lymphocytes, as well as by reduced collagen content and increased elastin breaks. Importantly, aortic inflammation was preceded by increases in serum tumor necrosis factor-α, IL-17A, vascular endothelial growth factor, IL-12, monocyte chemotactic protein-1, and S100A8/A9, as well as splenic and circulating CD11b(+)Ly-6C(hi) pro-inflammatory monocytes. Doxycycline treatment of old mice with severe skin disease eliminated skin inflammation and the presence of aortic root lesion in 1-year-old KC-Tie2 animals. Given the bidirectional link between inflammation and thrombosis, arterial thrombosis was assessed in KC-Tie2 and control mice; mean time to occlusive thrombus formation was shortened by 64% (P=0.002) in KC-Tie2 animals; and doxycycline treatment returned thrombosis clotting times to that of control mice (P=0.69). These findings demonstrate that sustained skin-specific inflammation promotes aortic root inflammation and thrombosis and suggest that aggressive treatment of skin inflammation may attenuate pro-inflammatory and pro-thrombotic pathways that produce cardiovascular disease in psoriasis patients.

  4. A newly synthesized macakurzin C-derivative attenuates acute and chronic skin inflammation: The Nrf2/heme oxygenase signaling as a potential target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akram, Muhammad

    Impaired immune responses in skin play a pivotal role in the development and progression of chemical-associated inflammatory skin disorders. In this study, we synthesized new flavonoid derivatives from macakurzin C, and identified in vitro and in vivo efficacy of a potent anti-inflammatory flavonoid, Compound 14 (CPD 14), with its underlying mechanisms. In lipopolysaccharide (LPS)-stimulated murine macrophages and IFN-γ/TNF-α-stimulated human keratinocytes, CPD 14 significantly inhibited the release of inflammatory mediators including nitric oxide (NO), prostaglandins, and cytokines (IC{sub 50} for NO inhibition in macrophages: 4.61 μM). Attenuated NF-κB signaling and activated Nrf2/HO-1 pathway were responsible for the anti-inflammatory effects of CPDmore » 14. The in vivo relevance was examined in phorbol 12-myristate 13-acetate (TPA)-induced acute skin inflammation and oxazolone-induced atopic dermatitis models. Topically applied CPD 14 significantly protected both irritation- and sensitization-associated skin inflammation by suppressing the expression of inflammatory mediators. In summary, we demonstrated that a newly synthesized flavonoid, CPD 14, has potent inhibitory effects on skin inflammation, suggesting it is a potential therapeutic candidate to treat skin disorders associated with excessive inflammation. - Highlights: • An anti-inflammatory flavonoid CPD 14 was newly synthesized from macakurzin C. • CPD 14 potently inhibited inflammatory reaction in keratinocytes and macrophages. • Dermal toxicity by irritation or sensitization in rats was protected by CPD 14. • Attenuated NF-κB and activated Nrf2/HO-1 were main mechanisms of CPD 14 action.« less

  5. Topical atorvastatin ameliorates 12-O-tetradecanoylphorbol-13-acetate induced skin inflammation by reducing cutaneous cytokine levels and NF-κB activation.

    PubMed

    Kulkarni, Nagaraj M; Muley, Milind M; Jaji, Mallikarjun S; Vijaykanth, G; Raghul, J; Reddy, Neetin Kumar D; Vishwakarma, Santosh L; Rajesh, Navin B; Mookkan, Jeyamurugan; Krishnan, Uma Maheswari; Narayanan, Shridhar

    2015-06-01

    Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor used in the treatment of atherosclerosis and dyslipidemia. Studies have evaluated the utility of statins in the treatment of skin inflammation but with varied results. In the present study, we investigated the effect of atorvastatin on TNF-α release and keratinocyte proliferation in vitro and in acute and chronic 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin inflammation in vivo. Atorvastatin significantly inhibited lipopolysacharide induced TNF-α release in THP-1 cells and keratinocyte proliferation in HaCaT cells. In an acute study, topical atorvastatin showed dose dependent reduction in TPA induced skin inflammation with highest efficacy observed at 500 µg/ear dose. In chronic study, topical atorvastatin significantly reduced TPA induced ear thickness, ear weight, cutaneous cytokines, MPO activity and improved histopathological features comparable to that of dexamethasone. Atorvastatin also inhibited TPA stimulated NF-κB activation in mouse ear. In conclusion, our results suggest that atorvastatin ameliorates TPA induced skin inflammation in mice at least in part, due to inhibition of cytokine release and NF-κB activation and may be beneficial for the treatment skin inflammation like psoriasis.

  6. Nanomedicine strategies for targeting skin inflammation.

    PubMed

    Abdel-Mottaleb, Mona Ma; Try, Celine; Pellequer, Yann; Lamprecht, Alf

    2014-08-01

    Topical treatment of skin diseases is an attractive strategy as it receives high acceptance from patients, resulting in higher compliance and therapeutic outcomes. Recently, the use of variable nanocarriers for dermal application has been widely explored, as they offer several advantages compared with conventional topical preparations, including higher skin penetration, controlled and targeted drug delivery and the achievement of higher therapeutic effects. This article will focus on skin inflammation or dermatitis as it is one of the most common skin problems, describing the different types and causes of dermatitis, as well as the typical treatment regimens. The potential use of nanocarriers for targeting skin inflammation and the achievement of higher therapeutic effects using nanotechnology will be explored.

  7. Esculetin from Fraxinus rhynchophylla attenuates atopic skin inflammation by inhibiting the expression of inflammatory cytokines.

    PubMed

    Jeong, Na-Hee; Yang, Eun-Ju; Jin, Meiling; Lee, Jong Yeong; Choi, Young-Ae; Park, Pil-Hoon; Lee, Sang-Rae; Kim, Sun-Uk; Shin, Tae-Yong; Kwon, Taeg Kyu; Jang, Yong Hyun; Song, Kyung-Sik; Kim, Sang-Hyun

    2018-06-01

    Atopic dermatitis (AD) is a common chronic inflammatory skin disorder afflicting from infancy to adults with itching, scratching, and lichenification. We aimed to investigate the effects of esculetin from Fraxinus rhynchophylla on atopic skin inflammation. For induction of atopic skin inflammation, we exposed the ears of female BALB/c mice to house dust mite (Dermatophagoides farinae extract, DFE) and 2,4-dinitrochlorobenzene (DNCB) for 4 weeks. Oral administration of esculetin reduced the symptoms of DFE/DNCB-induced atopic skin inflammation, which were evaluated based on ear swelling and number of scratch bouts. The immunoglobulin (Ig) E, IgG2a, and histamine levels in serum were decreased and inflammatory cell infiltration in skin tissue was reduced by the esculetin. It suppressed production of Th1, Th2 and Th17-related cytokines such as tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-4, IL-13, IL-31 and IL-17 in the ear tissue. Furthermore, we investigated the effects of esculetin on activated keratinocytes, which are representative cells used for studying the pathogenesis of acute and chronic atopic skin inflammation. As results, esculetin suppressed gene expression of Th1, Th2 and Th17 cytokines and the activation of nuclear factor-κB and signal transducer and activator of transcription 1 in TNF-α/IFN-γ-stimulated keratinocytes. Taken together, these results imply that esculetin attenuated atopic skin inflammation, suggesting that esculetin could be a potential therapeutic candidate for the treatment of AD. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Local injections of corticotropin releasing factor reduce doxorubicin-induced acute inflammation in the eyelid.

    PubMed

    McLoon, L K; Wirtschafter, J

    1997-04-01

    Doxorubicin chemomyectomy is an effective alternative treatment option for patients with blepharospasm and hemifacial spasm. One side effect of the use of doxorubicin in localized injections is the development of acute inflammation and skin injury at the injection site. Corticotropin releasing factor (CRF) was reported to reduce inflammation after acute inflammatory injuries due to other causes and at other sites. This study was performed to assess the potential of CRF to prevent the development of skin injury and eyelid soreness after local doxorubicin injection. Rabbits received lower eyelid injections of either 75 or 150 micrograms CRF followed by injection of either 0.5, 1, or 2 mg doxorubicin or doxorubicin alone. Eyelids were assessed for changes in acute inflammation by immunohistochemical localization of macrophages and monocytes using anti-CD11, an antibody specific for these cell types. Short-term alterations in vascular permeability were assessed using an Evans blue assay. Additional eyelids were followed daily for changes in the skin over the injection site to determine day of onset of skin injury and the total duration of skin injury. After 1 month, the eyelids were processed histologically for morphometric analysis of muscle fiber loss. Monkey eyelids also were examined for the effect of CRF and doxorubicin injections. Doxorubicin alone produced an acute inflammatory reaction in the treated eyelids, with a large influx of macrophages and monocytes throughout the connective tissue at 1 and 2 days. Corticotropin releasing factor pretreatment significantly reduced this influx of inflammatory cells into the connective tissue. Doxorubicin produced a large increase in vascular permeability in the treated eyelids, with resultant edema. Corticotropin releasing factor did not alter this change in vascular permeability, indicating that CRF appears to have a specific effect on migration of inflammatory cells rather than just a generalized effect on vascular

  9. Interleukin-17 receptor A maintains and protects the skin barrier to prevent allergic skin inflammation1

    PubMed Central

    Floudas, Achilleas; Saunders, Sean P.; Moran, Tara; Schwartz, Christian; Hams, Emily; Fitzgerald, Denise C.; Johnston, James A.; Ogg, Graham S.; McKenzie, Andrew N.; Walsh, Patrick T.; Fallon, Padraic G.

    2017-01-01

    Atopic dermatitis (AD) is a common inflammatory skin disease affecting up to 20% of children and 3% of adults worldwide and is associated with dysregulation of the skin barrier. While type 2 responses are implicated in AD, emerging evidence indicates potential role for the IL-17A signalling axis in AD pathogenesis. In this study we show that in the filaggrin mutant mouse model of spontaneous AD, IL-17RA deficiency (Il17ra-/-) resulted in severe exacerbation of skin inflammation. Interestingly, Il17ra-/- mice without the filaggrin mutation also developed spontaneous progressive skin inflammation with eosinophilia, increased levels of thymic stromal lymphopoietin (TSLP) and IL-5 in the skin. Il17ra-/- mice have a defective skin barrier with altered filaggrin expression. The barrier dysregulation and spontaneous skin inflammation in Il17ra-/- mice was dependent on TSLP, but not the other alarmins IL-25 and IL-33. The associated skin inflammation was mediated by IL-5 expressing pathogenic effector (pe) Th2 cells and was independent of TCRγδ T cells and IL-22. An absence of IL-17RA in non-hematopoietic cells, but not in the hematopoietic cells, was required for the development of spontaneous skin inflammation. Skin microbiome dysbiosis developed in the absence of IL-17RA, with antibiotic intervention resulting in significant amelioration of skin inflammation and reductions in skin infiltrating peTh2 cells and TSLP. This study describes a previously unappreciated protective role for IL-17RA signalling in regulation of the skin barrier and maintenance of skin immune homeostasis. PMID:28615416

  10. BP180 dysfunction triggers spontaneous skin inflammation in mice.

    PubMed

    Zhang, Yang; Hwang, Bin-Jin; Liu, Zhen; Li, Ning; Lough, Kendall; Williams, Scott E; Chen, Jinbo; Burette, Susan W; Diaz, Luis A; Su, Maureen A; Xiao, Shengxiang; Liu, Zhi

    2018-06-04

    BP180, also known as collagen XVII, is a hemidesmosomal component and plays a key role in maintaining skin dermal/epidermal adhesion. Dysfunction of BP180, either through genetic mutations in junctional epidermolysis bullosa (JEB) or autoantibody insult in bullous pemphigoid (BP), leads to subepidermal blistering accompanied by skin inflammation. However, whether BP180 is involved in skin inflammation remains unknown. To address this question, we generated a BP180-dysfunctional mouse strain and found that mice lacking functional BP180 (termed Δ NC16A ) developed spontaneous skin inflammatory disease, characterized by severe itch, defective skin barrier, infiltrating immune cells, elevated serum IgE levels, and increased expression of thymic stromal lymphopoietin (TSLP). Severe itch is independent of adaptive immunity and histamine, but dependent on increased expression of TSLP by keratinocytes. In addition, a high TSLP expression is detected in BP patients. Our data provide direct evidence showing that BP180 regulates skin inflammation independently of adaptive immunity, and BP180 dysfunction leads to a TSLP-mediated itch. The newly developed mouse strain could be a model for elucidation of disease mechanisms and development of novel therapeutic strategies for skin inflammation and BP180-related skin conditions.

  11. Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation.

    PubMed

    Huggenberger, Reto; Ullmann, Stefan; Proulx, Steven T; Pytowski, Bronislaw; Alitalo, Kari; Detmar, Michael

    2010-09-27

    The role of lymphangiogenesis in inflammation has remained unclear. To investigate the role of lymphatic versus blood vasculature in chronic skin inflammation, we inhibited vascular endothelial growth factor (VEGF) receptor (VEGFR) signaling by function-blocking antibodies in the established keratin 14 (K14)-VEGF-A transgenic (Tg) mouse model of chronic cutaneous inflammation. Although treatment with an anti-VEGFR-2 antibody inhibited skin inflammation, epidermal hyperplasia, inflammatory infiltration, and angiogenesis, systemic inhibition of VEGFR-3, surprisingly, increased inflammatory edema formation and inflammatory cell accumulation despite inhibition of lymphangiogenesis. Importantly, chronic Tg delivery of the lymphangiogenic factor VEGF-C to the skin of K14-VEGF-A mice completely inhibited development of chronic skin inflammation, epidermal hyperplasia and abnormal differentiation, and accumulation of CD8 T cells. Similar results were found after Tg delivery of mouse VEGF-D that only activates VEGFR-3 but not VEGFR-2. Moreover, intracutaneous injection of recombinant VEGF-C156S, which only activates VEGFR-3, significantly reduced inflammation. Although lymphatic drainage was inhibited in chronic skin inflammation, it was enhanced by Tg VEGF-C delivery. Together, these results reveal an unanticipated active role of lymphatic vessels in controlling chronic inflammation. Stimulation of functional lymphangiogenesis via VEGFR-3, in addition to antiangiogenic therapy, might therefore serve as a novel strategy to treat chronic inflammatory disorders of the skin and possibly also other organs.

  12. Mechanisms regulating skin immunity and inflammation.

    PubMed

    Pasparakis, Manolis; Haase, Ingo; Nestle, Frank O

    2014-05-01

    Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.

  13. Involvements of γδT Lymphocytes in Acute and Chronic Skin Wound Repair.

    PubMed

    Xu, Peng; Fu, Xiujun; Xiao, Nin; Guo, Yuanyuan; Pei, Qing; Peng, Yinbo; Zhang, Yifan; Yao, Min

    2017-08-01

    Wound healing involves three stages including inflammation, proliferation, and tissue remodeling. The underlying mechanisms remain to be further elucidated. The inflammation is characterized by spatially and temporally changing patterns of various leukocyte subsets. It is regarded as the most crucial stage since the inflammatory response is instrumental to supplying various factors and cytokines that orchestrate healing events. As a subtype of T lymphocytes, γδ T cells play an important role in skin homeostasis, tumor immunosurveillance, and wound repair. However, either the dynamics of γδ T cells in healing process or the anticipated association of γδ T cells with chronic or refractory wounds were not well understood. In this study, we determine the dynamics of γδ T cells and γδ T cell-produced effectors during acute and chronic wound repair by establishing a third-degree burn model in mice skin or human skin from diabetic patients. Our data show that the involvement of γδ T cells in acute and chronic skin wound healing. The protein levels and mRNA expressions of γδ T cell-produced effectors were increased in acute healing model, whereas those effectors were decreased in chronic repair, suggesting γδ T cells are essential for wound repair. This study probes into the significant relevance of γδ T cells with effective wound repair and provides new enlightenments for the mechanisms of the formation of chronic and/or refractory wounds.

  14. Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos

    PubMed Central

    Briso, Eva M.; Guinea-Viniegra, Juan; Bakiri, Latifa; Rogon, Zbigniew; Petzelbauer, Peter; Eils, Roland; Wolf, Ronald; Rincón, Mercedes; Angel, Peter; Wagner, Erwin F.

    2013-01-01

    Skin squamous cell carcinomas (SCCs) are the second most prevalent skin cancers. Chronic skin inflammation has been associated with the development of SCCs, but the contribution of skin inflammation to SCC development remains largely unknown. In this study, we demonstrate that inducible expression of c-fos in the epidermis of adult mice is sufficient to promote inflammation-mediated epidermal hyperplasia, leading to the development of preneoplastic lesions. Interestingly, c-Fos transcriptionally controls mmp10 and s100a7a15 expression in keratinocytes, subsequently leading to CD4 T-cell recruitment to the skin, thereby promoting epidermal hyperplasia that is likely induced by CD4 T-cell-derived IL-22. Combining inducible c-fos expression in the epidermis with a single dose of the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) leads to the development of highly invasive SCCs, which are prevented by using the anti-inflammatory drug sulindac. Moreover, human SCCs display a correlation between c-FOS expression and elevated levels of MMP10 and S100A15 proteins as well as CD4 T-cell infiltration. Our studies demonstrate a bidirectional cross-talk between premalignant keratinocytes and infiltrating CD4 T cells in SCC development. Therefore, targeting inflammation along with the newly identified targets, such as MMP10 and S100A15, represents promising therapeutic strategies to treat SCCs. PMID:24029918

  15. Acute coronary disease Athero-Inflammation: Therapeutic approach

    PubMed Central

    Altman, Raul

    2003-01-01

    Antithrombotic therapy is the cornerstone of the treatment of acute coronary syndromes, but there is now evidence which indicates that by blocking inflammation, thrombosis and thus, acute coronary events, could be lowered. The concept of athero-inflammation emerges as the meeting point of different morbidities; dyslipemia, diabetes, hypertension, obesity, immunity, infection, hyperhomocyteinemia, smoking, etc. usual named as risk factors. Thus, beside specific drugs, earliest treatment, in the stage of inflammation, using anti-inflammatory drugs, should be considered since in patients with increased risk of acute coronary process are likely to have many point of origen throughout the coronary arteries. There are a body of evidences for supporting the potential of anti-inflammatory therapy to the prevention of inflammation and atherosclerosis. COX-2 inhibition may decrease endothelial inflammation reducing monocytes infiltration improving vascular cells function, plaque stability and probably resulting in a decrease of coronary atherothrombotic events. Trials including large numbers of patients in prospective double-blind randomized studies worthwhile to confirm the efficacy of NSAID, mainly, COX-2 inhibitors, together with aspirin in the prevention of coronary events in patients with acute coronary disease. PMID:12904261

  16. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis

    PubMed Central

    Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.

    2018-01-01

    Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372

  17. Increased Skin Inflammation and Blood Vessel Density in Human and Experimental Diabetes

    PubMed Central

    Tellechea, Ana; Kafanas, Antonios; Leal, Ermelindo C; Tecilazich, Francesco; Kuchibhotla, Sarada; Auster, Michael E; Kontoes, Iraklis; Paolino, Jacqueline; Carvalho, Eugenia; Nabzdyk, Leena Pradhan; Veves, Aristidis

    2013-01-01

    Systemic inflammation is associated with impaired wound healing in diabetic patients. Using immunohistochemistry techniques, the authors investigated changes in skin inflammation and skin blood vessels in human and experimental diabetes. Comparing to the non-DM human subjects, the total number of inflammatory cells per biopsy and the number of inflammatory cells around blood vessels, a strong indication of inflammation, were higher in DM subjects irrespective of their risk for developing diabetic foot ulcer. Inflammatory cell infiltration was robustly increased in all diabetic animal models compared to their non-diabetic controls. The number and density of blood vessels and CD31 positive proliferating endothelial cells around pre-existing skin vessels was also higher in the DM patients. However, there were no differences in the skin blood flow between the non-DM and DM subjects. The number of skin blood vessels was also increased in the DM animals; however, these differences were less obvious than the ones observed for inflammatory cells. We conclude that skin inflammation and skin blood vessel density is increased in diabetic human subjects and in rodent and rabbit models of diabetes. PMID:23446362

  18. Deciphering the complexity of acute inflammation using mathematical models.

    PubMed

    Vodovotz, Yoram

    2006-01-01

    Various stresses elicit an acute, complex inflammatory response, leading to healing but sometimes also to organ dysfunction and death. We constructed both equation-based models (EBM) and agent-based models (ABM) of various degrees of granularity--which encompass the dynamics of relevant cells, cytokines, and the resulting global tissue dysfunction--in order to begin to unravel these inflammatory interactions. The EBMs describe and predict various features of septic shock and trauma/hemorrhage (including the response to anthrax, preconditioning phenomena, and irreversible hemorrhage) and were used to simulate anti-inflammatory strategies in clinical trials. The ABMs that describe the interrelationship between inflammation and wound healing yielded insights into intestinal healing in necrotizing enterocolitis, vocal fold healing during phonotrauma, and skin healing in the setting of diabetic foot ulcers. Modeling may help in understanding the complex interactions among the components of inflammation and response to stress, and therefore aid in the development of novel therapies and diagnostics.

  19. The Roles of Autophagy and the Inflammasome during Environmental Stress-Triggered Skin Inflammation

    PubMed Central

    Chen, Rong-Jane; Lee, Yu-Hsuan; Yeh, Ya-Ling; Wang, Ying-Jan; Wang, Bour-Jr

    2016-01-01

    Inflammatory skin diseases are the most common problem in dermatology. The induction of skin inflammation by environmental stressors such as ultraviolet radiation (UVR), hexavalent chromium (Cr(VI)) and TiO2/ZnO/Ag nanoparticles (NPs) has been demonstrated previously. Recent studies have indicated that the inflammasome is often wrongly activated by these environmental irritants, thus inducing massive inflammation and resulting in the development of inflammatory diseases. The regulation of the inflammasome with respect to skin inflammation is complex and is still not completely understood. Autophagy, an intracellular degradation system that is associated with the maintenance of cellular homeostasis, plays a key role in inflammasome inactivation. As a housekeeping pathway, cells utilize autophagy to maintain the homeostasis of the organ structure and function when exposed to environmental stressors. However, only a few studies have examined the effect of autophagy and/or the inflammasome on skin pathogenesis. Here we review recent findings regarding the involvement of autophagy and inflammasome activation during skin inflammation. We posit that autophagy induction is a novel mechanism inter-modulating environmental stressor-induced skin inflammation. We also attempt to highlight the role of the inflammasome and the possible underlying mechanisms and pathways reflecting the pathogenesis of skin inflammation induced by UVR, Cr(VI) and TiO2/ZnO/Ag NPs. A more profound understanding about the crosstalk between autophagy and the inflammasome will contribute to the development of prevention and intervention strategies against human skin disease. PMID:27941683

  20. The Snowballing Literature on Imiquimod-Induced Skin Inflammation in Mice: A Critical Appraisal

    PubMed Central

    Hawkes, Jason E.; Gudjonsson, Johann E.; Ward, Nicole L.

    2016-01-01

    Since 2009, the imiquimod- or Aldara-induced (3M Pharmaceuticals, St. Paul, MN) model of acute skin inflammation has become the most widely used mouse model in preclinical psoriasis studies. Although this model offers researchers numerous benefits, there are important limitations and possible confounding variables to consider. The imiquimod model requires careful consideration and warrants scrutiny of the data generated by its use. In this perspective, we provide an overview of the advantages and disadvantages of this mouse model and offer suggestions for its use in psoriasis research. PMID:27955901

  1. Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2.

    PubMed

    Wu, Dan; Yuan, Ping; Ke, Changshu; Xiong, Hua; Chen, Jingwen; Guo, Jinguang; Lu, Mingmin; Ding, Yanyan; Fan, Xiaoming; Duan, Qiuhong; Shi, Fei; Zhu, Feng

    2016-05-03

    Solar ultraviolet (SUV) irradiation causes skin disorders such as inflammation, photoaging, and carcinogenesis. Cyclooxygenase-2 (COX-2) plays a key role in SUV-induced skin inflammation, and targeting COX-2 may be a strategy to prevent skin disorders. In this study, we found that the expression of COX-2, phosphorylation of p38 or JNKs were increased in human solar dermatitis tissues and SUV-irradiated human skin keratinocyte HaCaT cells and mouse epidermal JB6 Cl41 cells. Knocking down COX-2 inhibited the production of prostaglandin E2 (PGE2), the phosphorylation of p38 or JNKs in SUV-irradiated cells, which indicated that COX-2 is not only the key enzyme for PGs synthesis, but also an upstream regulator of p38 or JNKs after SUV irradiation. The virtual ligand screening assay was used to search for natural drugs in the Chinese Medicine Database, and indicated that salidroside might be a COX-2 inhibitor. Molecule modeling indicated that salidroside can directly bind with COX-2, which was proved by in vitro pull-down binding assay. Ex vivo studies showed that salidroside has no toxicity to cells, and inhibits the production of PGE2, phosphorylation of p38 or JNKs, and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) caused by SUV irradiation. In vivo studies demonstrated that salidroside attenuates the skin inflammation induced by SUV. In brief, our data provided the evidences for the protective role of salidroside against SUV-induced inflammation by targeting COX-2, and salidroside might be a promising drug for the treatment of SUV-induced skin inflammation.

  2. Aging, not age-associated inflammation, determines blood pressure and endothelial responses to acute inflammation.

    PubMed

    Lane-Cordova, Abbi D; Ranadive, Sushant M; Kappus, Rebecca M; Cook, Marc D; Phillips, Shane A; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Fernhall, Bo

    2016-12-01

    Aging is characterized by a state of chronic, low-grade inflammation that impairs vascular function. Acute inflammation causes additional decrements in vascular function, but these responses are not uniform in older compared with younger adults. We sought to determine if older adults with low levels of baseline inflammation respond to acute inflammation in a manner similar to younger adults. We hypothesized age-related differences in the vascular responses to acute inflammation, but that older adults with low baseline inflammation would respond similarly to younger adults. Inflammation was induced with an influenza vaccine in 96 participants [older = 67 total, 38 with baseline C-reactive protein (CRP) > 1.5 mg/l and 29 with CRP < 1.5 mg/l; younger = 29]; serum inflammatory markers IL-6 and CRP, blood pressure and flow-mediated dilation (FMD) were measured 24 and 48 h later. Younger adults increased IL-6 and CRP more than the collective older adult group and increased pulse pressure, whereas older adults decreased SBP and reduced pulse pressure. The entire cohort decreased FMD from 11.3 ± 0.8 to 8.3 ± 0.7 to 8.7 ± 0.7% in younger and from 5.8 ± 0.3 to 5.0 ± 0.4 to 4.7 ± 0.4% in older adults, P less than 0.05 for main effect. Older adult groups with differing baseline CRP had the same IL-6, blood pressure, and FMD response to acute inflammation, P less than 0.05 for all interactions, but the low-CRP group increased CRP at 24 and 48 h (from 0.5 ± 0.1 to 1.4 ± 0.2 to 1.7 ± 0.3 mg/l), whereas the high-CRP group did not (from 4.8 ± 0.5 to 5.4 ± 0.5 to 5.4 ± 0.6 mg/l), P less than 0.001 for interaction. Aging, not age-related chronic, low-grade inflammation, determines the vascular responses to acute inflammation.

  3. 75 FR 52755 - Draft Guidance for Industry on Acute Bacterial Skin and Skin Structure Infections: Developing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ...] Draft Guidance for Industry on Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for... ``Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for Treatment.'' The purpose of... antimicrobial drugs for the treatment of acute bacterial skin and skin structure infections (ABSSSI), impetigo...

  4. Cutaneous Leishmaniasis Induces a Transmissible Dysbiotic Skin Microbiota that Promotes Skin Inflammation.

    PubMed

    Gimblet, Ciara; Meisel, Jacquelyn S; Loesche, Michael A; Cole, Stephen D; Horwinski, Joseph; Novais, Fernanda O; Misic, Ana M; Bradley, Charles W; Beiting, Daniel P; Rankin, Shelley C; Carvalho, Lucas P; Carvalho, Edgar M; Scott, Phillip; Grice, Elizabeth A

    2017-07-12

    Skin microbiota can impact allergic and autoimmune responses, wound healing, and anti-microbial defense. We investigated the role of skin microbiota in cutaneous leishmaniasis and found that human patients infected with Leishmania braziliensis develop dysbiotic skin microbiota, characterized by increases in the abundance of Staphylococcus and/or Streptococcus. Mice infected with L. major exhibit similar changes depending upon disease severity. Importantly, this dysbiosis is not limited to the lesion site, but is transmissible to normal skin distant from the infection site and to skin from co-housed naive mice. This observation allowed us to test whether a pre-existing dysbiotic skin microbiota influences disease, and we found that challenging dysbiotic naive mice with L. major or testing for contact hypersensitivity results in exacerbated skin inflammatory responses. These findings demonstrate that a dysbiotic skin microbiota is not only a consequence of tissue stress, but also enhances inflammation, which has implications for many inflammatory cutaneous diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. TSLP elicits IL-33–independent innate lymphoid cell responses to promote skin inflammation

    PubMed Central

    Kim, Brian S.; Siracusa, Mark C.; Saenz, Steven A.; Noti, Mario; Monticelli, Laurel A.; Sonnenberg, Gregory F.; Hepworth, Matthew R.; Van Voorhees, Abby S.; Comeau, Michael R.

    2013-01-01

    Innate lymphoid cells (ILCs) are a recently identified family of heterogeneous immune cells that can be divided into three groups based on their differential developmental requirements and expression of effector cytokines. Among these, group 2 ILCs produce the type 2 cytokines IL-5 and IL-13 and promote type 2 inflammation in the lung and intestine. However, whether group 2 ILCs reside in the skin and contribute to skin inflammation has not been characterized. Here, we identify for the first time a population of skin-resident group 2 ILCs present in healthy human skin that are enriched in lesional human skin from atopic dermatitis (AD) patients. Group 2 ILCs were also found in normal murine skin and were critical for the development of inflammation in a murine model of AD-like disease. Remarkably, in contrast to group 2 ILC responses in the intestine and lung, which are critically regulated by IL-33 and IL-25, ILC responses in the skin and skin-draining lymph nodes were independent of these canonical cytokines but were critically dependent on thymic stromal lymphopoietin (TSLP). Collectively, these results demonstrate an essential role for IL-33– and IL-25–independent group 2 ILCs in promoting skin inflammation. PMID:23363980

  6. Dexpanthenol enhances skin barrier repair and reduces inflammation after sodium lauryl sulphate-induced irritation.

    PubMed

    Proksch, E; Nissen, H P

    2002-12-01

    Dexpanthenol-containing creams have been widely used for treatment of lesions (superficial wounds) of the skin and mucous membranes. Dexpanthenol is converted in tissues to pantothenic acid, a component of coenzyme A. Coenzyme A catalyses early steps in the synthesis of fatty acids and sphingolipids which are of crucial importance for stratum corneum lipid bilayers and cell membrane integrity. In the present study, the effects were examined of a dexpanthenol-containing cream on skin barrier repair, stratum corneum hydration, skin roughness, and inflammation after sodium lauryl sulphate (SLS)-induced irritation. Irritation was induced by application of SLS in patch test chambers. The dexpanthenol-contaming cream or the vehicle were applied twice daily and barrier repair, hydration, roughness, and inflammation of the skin were determined by using biophysical methods. Significantly accelerated skin barrier repair was found in treatments with the dexpanthenol-containing cream (verum) compared with vehicle-treated (placebo) or untreated skin. Both verum and placebo showed an increase in stratum corneum hydration, but significantly more so with the dexpanthenol-containing cream. Both creams reduced skin roughness, but again the verum was superior. The dexpanthenol-containing cream significantly reduced skin redness as a sign of inflammation in contrast to the vehicle, which produced no effect. Treatment with a dexpanthenol-containing cream showed significantly enhanced skin barrier repair and stratum corneum hydration, while reducing skin roughness and inflammation.

  7. Non-invasive monitoring of skin inflammation using an oxygen-sensing paint-on bandage

    PubMed Central

    Li, Zongxi; Navarro-Alvarez, Nalu; Keeley, Emily J.; Nowell, Nicholas H.; Goncalves, Beatriz M. M.; Huang, Christene A.; Evans, Conor L.

    2017-01-01

    Inflammation involves a cascade of cellular and molecular mediators that ultimately lead to the infiltration of immune cells into the affected area. This inflammatory process in skin is common to many diseases including acne, infection, and psoriasis, with the presence or absence of immune cells a potential diagnostic marker. Here we show that skin inflammation can be non-invasively measured and mapped using a paint-on oxygen sensing bandage in an in vivo porcine inflammation model. After injection of a known inflammatory agent, the bandage could track the increase, plateau, and decrease in oxygen consumption at the injury site over 7 weeks, as well as discern inflammation resultant from injection at various depths beneath the surface of the skin. Both the initial rate of pO2 change and the change in bandage pO2 at equilibration (CBP20) were found to be directly related to the metabolic oxygen consumption rate of the tissue in contact. Healthy skin demonstrated an initial pO2 decrease rate of 6.5 mmHg⋅min−1, and CBP20 of 84 mmHg. Inflamed skin had a significantly higher initial consumption rate of 55 mmHg⋅min−1, and a larger CBP20 of 140 mmHg. The change in the bandage pO2 before and after equilibration with tissue was found to correlate well with histological evidence of skin inflammation in the animals. PMID:29082091

  8. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Akihito; Lee, Sungwon; Cooray, Nawalage Florence; Lee, Sunghoon; Mori, Mami; Matsuhisa, Naoji; Jin, Hanbit; Yoda, Leona; Yokota, Tomoyuki; Itoh, Akira; Sekino, Masaki; Kawasaki, Hiroshi; Ebihara, Tamotsu; Amagai, Masayuki; Someya, Takao

    2017-09-01

    Thin-film electronic devices can be integrated with skin for health monitoring and/or for interfacing with machines. Minimal invasiveness is highly desirable when applying wearable electronics directly onto human skin. However, manufacturing such on-skin electronics on planar substrates results in limited gas permeability. Therefore, it is necessary to systematically investigate their long-term physiological and psychological effects. As a demonstration of substrate-free electronics, here we show the successful fabrication of inflammation-free, highly gas-permeable, ultrathin, lightweight and stretchable sensors that can be directly laminated onto human skin for long periods of time, realized with a conductive nanomesh structure. A one-week skin patch test revealed that the risk of inflammation caused by on-skin sensors can be significantly suppressed by using the nanomesh sensors. Furthermore, a wireless system that can detect touch, temperature and pressure is successfully demonstrated using a nanomesh with excellent mechanical durability. In addition, electromyogram recordings were successfully taken with minimal discomfort to the user.

  9. Skin condition and its relationship to systemic inflammation in chronic obstructive pulmonary disease.

    PubMed

    Majewski, Sebastian; Pietrzak, Anna; Tworek, Damian; Szewczyk, Karolina; Kumor-Kisielewska, Anna; Kurmanowska, Zofia; Górski, Paweł; Zalewska-Janowska, Anna; Piotrowski, Wojciech Jerzy

    2017-01-01

    The systemic (extrapulmonary) effects and comorbidities of chronic obstructive pulmonary disease (COPD) contribute substantially to its burden. The supposed link between COPD and its systemic effects on distal organs could be due to the low-grade systemic inflammation. The aim of this study was to investigate whether the systemic inflammation may influence the skin condition in COPD patients. Forty patients with confirmed diagnosis of COPD and a control group consisting of 30 healthy smokers and 20 healthy never-smokers were studied. Transepidermal water loss, stratum corneum hydration, skin sebum content, melanin index, erythema index, and skin temperature were measured with worldwide-acknowledged biophysical measuring methods at the volar forearm of all participants using a multifunctional skin physiology monitor. Biomarkers of systemic inflammation, including high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), were measured in serum using commercially available enzyme-linked immunosorbent assays. There were significant differences between COPD patients and healthy never-smokers in skin temperature, melanin index, sebum content, and hydration level ( P <0.05), but not for transepidermal water loss and erythema index. No significant difference was noted between COPD patients and smokers in any of the biophysical properties of the skin measured. The mean levels of hsCRP and IL-6 in serum were significantly higher in COPD patients and healthy smokers in comparison with healthy never-smokers. There were significant correlations between skin temperature and serum hsCRP ( R =0.40; P =0.02) as well as skin temperature and serum IL-6 ( R =0.49; P =0.005) in smokers. Stratum corneum hydration correlated significantly with serum TNF-α ( R =0.37; P =0.01) in COPD patients. Differences noted in several skin biophysical properties and biomarkers of systemic inflammation between COPD patients, smokers, and healthy never

  10. Development and characterization of novel 1-(1-Naphthyl)piperazine-loaded lipid vesicles for prevention of UV-induced skin inflammation.

    PubMed

    Menezes, Ana Catarina; Campos, Patrícia Mazureki; Euletério, Carla; Simões, Sandra; Praça, Fabíola Silva Garcia; Bentley, Maria Vitória Lopes Badra; Ascenso, Andreia

    2016-07-01

    1-(1-Naphthyl)piperazine (1-NPZ) has shown promising effects by inhibiting UV radiation-induced immunosuppression. Ultradeformable vesicles are recent advantageous systems capable of improving the (trans)dermal drug delivery. The aim of this study was to investigate 1-NPZ-loaded transethosomes (NPZ-TE) and 1-NPZ-loaded vesicles containing dimethyl sulfoxide (NPZ-DM) as novel delivery nanosystems, and to uncover their chemopreventive effect against UV-induced acute inflammation. Their physicochemical properties were evaluated as follows: vesicles size and zeta potential by dynamic and electrophoretic light scattering, respectively; vesicle deformability by pressure driven transport; rheological behavior by measuring viscosity and I-NPZ entrapment yield by HPLC. In vitro topical delivery studies were performed in order to evaluate the permeation profile of both formulations, whereas in vivo studies sought to assess the photoprotective effect of the selected formulation on irradiated hairless mice by measuring myeloperoxidase activity and the secretion of proinflammatory cytokines. Either NPZ-TE or NPZ-DM exhibited positive results in terms of physicochemical properties. In vitro data revealed an improved permeation of 1-NPZ across pig ear skin, especially by NPZ-DM. In vivo studies demonstrated that NPZ-DM exposure was capable of preventing UVB-induced inflammation and blocking mediators of inflammation in mouse skin. The successful results here obtained encourage us to continue these studies for the management of inflammatory skin conditions that may lead to the development of skin cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Modified skin window technique for the extended characterisation of acute inflammation in humans

    PubMed Central

    Marks, D. J. B.; Radulovic, M.; McCartney, S.; Bloom, S.; Segal, A. W.

    2009-01-01

    Objective To modify the skin window technique for extended analysis of acute inflammatory responses in humans, and demonstrate its applicability for investigating disease. Subjects 15 healthy subjects and 5 Crohn’s patients. Treatment Skin windows, created by dermal abrasion, were overlaid for various durations with filter papers saturated in saline, 100 ng/ml muramyl dipeptide (MDP) or 10 μg/ml interleukin-8 (IL-8). Methods Exuded leukocytes were analyzed by microscopy, immunoblot, DNA-bound transcription factor arrays and RT-PCR. Inflammatory mediators were quantified by ELISA. Results Infiltrating leukocytes were predominantly neutrophils. Numerous secreted mediators were detectable. MDP and IL-8 enhanced responses. Many signalling proteins were phosphorylated with differential patterns in Crohn’s patients, notably PKC α/β hyperphosphorylation (11.3 ± 3.1 vs 1.2 ± 0.9 units, P < 0.02). Activities of 44 transcription factors were detectable, and sufficient RNA isolated for expression analysis of over 400 genes. Conclusions The modifications enable broad characterisation of inflammatory responses and administration of exogenous immunomodulators. PMID:17522815

  12. Skin breakdown in acute care pediatrics.

    PubMed

    Suddaby, Elizabeth C; Barnett, Scott D; Facteau, Lorna

    2006-04-01

    The purpose of this study was to develop a simple, single-page measurement tool that evaluates risk of skin breakdown in the peadiatric population and apply it to the acutely hospitalized child. Data were collected over a 15-month period from 347 patients on four in-patient units (PICU, medical-surgical, oncology, and adolescents) on skin breakdown using the AHCPR staging guidelines and compared to the total score on the Starkid SkinScale in order to determine its ability to predict skin breakdown. The inter-rater reliability of the Starkid Skin Scale was r2 = 0.85 with an internal reliablity of 0.71. The sensitivity of the total score was low (17.5%) but highly specific (98.5%). The prevalence of skin breakdown in the acutely hospitalized child was 23%, the majority (77.5%) occurring as erythema of the skin. Buttocks, perineum, and occiput were the most common locations of breakdown. Occiput breakdown was more common in critically ill (PICU) patients while diaper dermatitis was more common in the general medical-surgical population.

  13. Pre-clinical efficacy assessment of Malva sylvestris on chronic skin inflammation.

    PubMed

    Prudente, Arthur S; Sponchiado, Graziela; Mendes, Daniel A G B; Soley, Bruna S; Cabrini, Daniela A; Otuki, Michel F

    2017-09-01

    In the search for improved quality of life, the treatment of skin diseases like psoriasis (hyperproliferative disease) is valid, since it causes huge social discomfort to the patient. In this context, earlier studies showed that Malva sylvestris L. has anti-inflammatory activity demonstrated by acute animal models of skin inflammation, becoming a promising target for further studies. The present investigation aimed to verify the effect of hydroalcoholic extract of M. sylvestris (HEMS) on the chronic inflammatory and hyperproliferative response caused by multiple applications of 12-O-tetradecanoylphorbol-13-acetate (TPA) on mouse ears. Topical application of HEMS reduced oedema, leukocyte migration (mono- and polymorphonuclear cells) and keratinocyte hyperproliferation, confirmed by histology and proliferating cell nuclear antigen (PCNA) immunostaining. It was found that the anti-inflammatory effects of the extract did not involve the glucocorticoid system, and its incubation with HaCaT keratinocytes caused low toxicity and reduced cell proliferation by apoptosis. Thus, HEMS proved to be effective as an anti-psoriatic therapy, with the ability to prevent keratinocyte hyperproliferation and with low toxicity by topical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. IL-17A promotes neutrophilic inflammation and disturbs acute wound healing in skin.

    PubMed

    Takagi, Naoyuki; Kawakami, Kazuyoshi; Kanno, Emi; Tanno, Hiromasa; Takeda, Atsushi; Ishii, Keiko; Imai, Yoshimichi; Iwakura, Yoichiro; Tachi, Masahiro

    2017-02-01

    In the wound healing process, neutrophils are the first inflammatory cells to move to the wound tissues. They sterilize wounds by killing microbes, and they stimulate other immune cells to protect the host from infection. In contrast, neutrophil-derived proteases cause damage to host tissues, so neutrophils play dual opposite roles in wound healing. Interleukin-17A (IL-17A) is a proinflammatory cytokine that promotes the recruitment of these cells. The role of this cytokine in the wound healing process is not fully clarified. In the present study, therefore, we examined how defect in IL-17A production affected the wound healing in skin. IL-17A-knockout (KO) mice showed promoted wound closure, myofibroblast differentiation and collagen deposition and decreased the neutrophil accumulation compared with wild-type (WT) mice. In contrast, the administration of recombinant IL-17A led to delayed wound closure, low collagen deposition and accelerated neutrophilic accumulation. In addition, the treatment of IL-17A-administered mice with a neutrophil elastase inhibitor improved the wound repair to the same level as that of WT mice. These results indicated that IL-17A hampered the wound healing process and suggested that neutrophilic inflammation caused by IL-17A may be associated with impaired wound healing in skin. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Oncostatin M overexpression induces skin inflammation but is not required in the mouse model of imiquimod-induced psoriasis-like inflammation.

    PubMed

    Pohin, Mathilde; Guesdon, William; Mekouo, Adela Andrine Tagne; Rabeony, Hanitriniaina; Paris, Isabelle; Atanassov, Hristo; Favot, Laure; Mcheik, Jiad; Bernard, François-Xavier; Richards, Carl D; Amiaud, Jérôme; Blanchard, Frédéric; Lecron, Jean-Claude; Morel, Franck; Jégou, Jean-François

    2016-07-01

    Oncostatin M (OSM) has been reported to be overexpressed in psoriasis skin lesions and to exert proinflammatory effects in vitro on human keratinocytes. Here, we report the proinflammatory role of OSM in vivo in a mouse model of skin inflammation induced by intradermal injection of murine OSM-encoding adenovirus (AdOSM) and compare with that induced by IL-6 injection. Here, we show that OSM potently regulates the expression of genes involved in skin inflammation and epidermal differentiation in murine primary keratinocytes. In vivo, intradermal injection of AdOSM in mouse ears provoked robust skin inflammation with epidermal thickening and keratinocyte proliferation, while minimal effect was observed after AdIL-6 injection. OSM overexpression in the skin increased the expression of the S100A8/9 antimicrobial peptides, CXCL3, CCL2, CCL5, CCL20, and Th1/Th2 cytokines, in correlation with neutrophil and macrophage infiltration. In contrast, OSM downregulated the expression of epidermal differentiation genes, such as cytokeratin-10 or filaggrin. Collectively, these results support the proinflammatory role of OSM when it is overexpressed in the skin. However, OSM expression was not required in the murine model of psoriasis induced by topical application of imiquimod, as demonstrated by the inflammatory phenotype of OSM-deficient mice or wild-type mice treated with anti-OSM antibodies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Water-soluble phenol TS-13 combats acute but not chronic inflammation.

    PubMed

    Menshchikova, Elena; Tkachev, Victor; Lemza, Anna; Sharkova, Tatyana; Kandalintseva, Natalya; Vavilin, Valentin; Safronova, Olga; Zenkov, Nikolay

    2014-09-01

    This study was conducted to evaluate the effect of the synthetic water-soluble phenolic antioxidant TS-13 (sodium 3-(4'-methoxyphenyl)propyl thiosulfonate), an inducer of the redox-dependent Keap1/Nrf2/ARE signaling system, in experimental models of acute and chronic inflammation. Acute local inflammation was induced by intraplantar carrageenan injection into rat hind paws, and acute systemic inflammation was modeled by intravenous zymosan injection (in rats) or LPS-induced endotoxic shock (in mice). Chronic inflammation was investigated in rat models of air pouch and collagen-induced arthritis. The effects of TS-13 treatment were estimated by changes in the intensity of inflammation (paw edema, liver infiltration, animal survival, exudation, and clinical score of arthritis) and by the effects on reactive oxygen species (ROS) generation by leukocytes from peripheral blood and inflammatory exudates. We found the significant increase in expression of mRNA, content of protein and activity of a well-characterized Nrf2 target enzyme glutathione S-transferase P1, as well as nuclear extract protein binding to the ARE consensus sequence in liver of mice fed with diet containing TS-13. TS-13 markedly attenuated carrageenan-induced paw edema, reduced blood granulocyte number and volume density of liver infiltrates in the systemic zymosan-induced inflammation model, and increased mice survival after lipopolysaccharide-induced septic shock. However, TS-13 administration did not influence cell and protein exudation into air pouches and suppressed clinical manifestation of collagen-induced polyarthritis only at early stages. Nevertheless, TS-13 inhibited the generation of ROS by leukocytes in all inflammation models. The data suggest that the anti-inflammatory effects of Keap1/Nrf2/ARE system are more prominent against acute innate-mediated inflammation than chronic immune inflammation. This narrows the potential therapeutic efficacy of ARE inducers in inflammation treatment.

  17. 78 FR 63220 - Guidance for Industry on Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ...] Guidance for Industry on Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for Treatment... Administration (FDA) is announcing the availability of a guidance for industry entitled ``Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for Treatment.'' The purpose of this guidance is to...

  18. Effect of acute moderate exercise on induced inflammation and arterial function in older adults.

    PubMed

    Ranadive, Sushant Mohan; Kappus, Rebecca Marie; Cook, Marc D; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffrey A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo

    2014-04-01

    Acute inflammation reduces flow-mediated vasodilatation and increases arterial stiffness in young healthy individuals. However, this response has not been studied in older adults. The aim of this study, therefore, was to evaluate the effect of acute induced systemic inflammation on endothelial function and wave reflection in older adults. Furthermore, an acute bout of moderate-intensity aerobic exercise can be anti-inflammatory. Taken together, we tested the hypothesis that acute moderate-intensity endurance exercise, immediately preceding induced inflammation, would be protective against the negative effects of acute systemic inflammation on vascular function. Fifty-nine healthy volunteers between 55 and 75 years of age were randomized to an exercise or a control group. Both groups received a vaccine (induced inflammation) and sham (saline) injection in a counterbalanced crossover design. Inflammatory markers, endothelial function (flow-mediated vasodilatation) and measures of wave reflection and arterial stiffness were evaluated at baseline and at 24 and 48 h after injections. There were no significant differences in endothelial function and arterial stiffness between the exercise and control group after induced inflammation. The groups were then analysed together, and we found significant differences in the inflammatory markers 24 and 48 h after induction of acute inflammation compared with sham injection. However, flow-mediated vasodilatation, augmentation index normalized for heart rate (AIx75) and β-stiffness did not change significantly. Our results suggest that acute inflammation induced by influenza vaccination did not affect endothelial function in older adults.

  19. Regulation of alveolar macrophage death in acute lung inflammation.

    PubMed

    Fan, Erica K Y; Fan, Jie

    2018-03-27

    Acute lung injury (ALI) and its severe form, known as acute respiratory distress syndrome (ARDS), are caused by direct pulmonary insults and indirect systemic inflammatory responses that result from conditions such as sepsis, trauma, and major surgery. The reciprocal influences between pulmonary and systemic inflammation augments the inflammatory process in the lung and promotes the development of ALI. Emerging evidence has revealed that alveolar macrophage (AM) death plays important roles in the progression of lung inflammation through its influence on other immune cell populations in the lung. Cell death and tissue inflammation form a positive feedback cycle, ultimately leading to exaggerated inflammation and development of disease. Pharmacological manipulation of AM death signals may serve as a logical therapeutic strategy for ALI/ARDS. This review will focus on recent advances in the regulation and underlying mechanisms of AM death as well as the influence of AM death on the development of ALI.

  20. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling

    PubMed Central

    Dick, Thomas E.; Molkov, Yaroslav I.; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J.; Doyle, John; Scheff, Jeremy D.; Calvano, Steve E.; Androulakis, Ioannis P.; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma

  1. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling.

    PubMed

    Dick, Thomas E; Molkov, Yaroslav I; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J; Doyle, John; Scheff, Jeremy D; Calvano, Steve E; Androulakis, Ioannis P; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.

  2. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Sakshi; Department of Biochemistry, Banaras Hindu University; Tripathi, Anurag

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [{sup 3}H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposuremore » also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and

  3. Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane.

    PubMed

    Saw, Constance L; Huang, Mou-Tuan; Liu, Yue; Khor, Tin Oo; Conney, Allan H; Kong, Ah-Ng

    2011-06-01

    Ultraviolet (UV) of sunlight is a complete carcinogen that can burn skin, enhance inflammation, and drive skin carcinogenesis. Previously, we have shown that sulforaphane (SFN) inhibited chemically induced skin carcinogenesis via nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and others have shown that broccoli sprout extracts containing high SFN protected against UV-induced skin carcinogenesis in SKH-1 hairless mice. A recent study showed that there was no difference between Nrf2 knockout (Nrf2 KO) and Nrf2 wild-type (WT) BALB/C mice after exposing to high dose of UVB. Since Nrf2 plays critical roles in the anti-oxidative stress/anti-inflammatory responses, it is relevant to assess the role of Nrf2 for photoprotection against UV. In this context, the role of Nrf2 in UVB-induced skin inflammation in Nrf2 WT and Nrf2 KO C57BL/6 mice was studied. A single dose of UVB (300 mJ/cm(2)) resulted in skin inflammation in both WT and Nrf2 KO (-/-) mice (KO mice) at 8 h and 8 d following UVB irradiation. In the WT mice inflammation returned to the basal level to a greater extent when compared to the KO mice. SFN treatment of Nrf2 WT but not Nrf2 KO mice restored the number of sunburn cells back to their basal level by 8 d after UVB irradiation. Additionally, UVB-induced short-term inflammatory biomarkers (interleukin-1β and interleukin-6) were increased in the KO mice and UVB-induced apoptotic cells in the KO mice were significantly higher as compared to that in the WT. Taken together, our results show that functional Nrf2 confers a protective effect against UVB-induced inflammation, sunburn reaction, and SFN-mediated photoprotective effects in the skin. Copyright © 2010 Wiley-Liss, Inc.

  4. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling

    PubMed Central

    Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.

    2016-01-01

    Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153

  5. Epidermal ablation of Dlx3 is linked to IL-17–associated skin inflammation

    PubMed Central

    Hwang, Joonsung; Kita, Ryosuke; Kwon, Hyouk-Soo; Choi, Eung Ho; Lee, Seung Hun; Udey, Mark C.; Morasso, Maria I.

    2011-01-01

    In an effort to understand the role of Distal-less 3 (Dlx3) in cutaneous biology and pathophysiology, we generated and characterized a mouse model with epidermal ablation of Dlx3. K14cre;Dlx3Kin/f mice exhibited epidermal hyperproliferation and abnormal differentiation of keratinocytes. Results from subsequent analyses revealed cutaneous inflammation that featured accumulation of IL-17–producing CD4+ T, CD8+ T, and γδ T cells in the skin and lymph nodes of K14cre;Dlx3Kin/f mice. The gene expression signature of K14cre;Dlx3Kin/f skin shared features with lesional psoriatic skin, and Dlx3 expression was markedly and selectively decreased in psoriatic skin. Interestingly, cultured Dlx3 null keratinocytes triggered cytokine production that is potentially linked to inflammatory responses in K14cre;Dlx3Kin/f mice. Thus, Dlx3 ablation in epidermis is linked to altered epidermal differentiation, barrier development, and IL-17–associated skin inflammation. This model provides a platform that will allow the systematic exploration of the contributions of keratinocytes to cutaneous inflammation. PMID:21709238

  6. Calycophyllum spruceanum BENTH ameliorates acute inflammation in mice.

    PubMed

    da Silva, Ana Paula Azevedo Barros; Amorim, Renata Morais Ferreira; de Freitas Lopes, Roberta; Mota, Mário Rogério Lima; da Silva, Felipe Moura Araújo; Koolen, Hector Henrique Ferreira; Lima, Emerson Silva; Assreuy, Ana Maria S; da Cunha, Renildo Moura

    2018-06-12

    Calycophyllum spruceanum (Benth.) Hook. F. ex K. Schum. is widely distributed in the Amazonian region of Brazil, where it is popularly known as "mulateiro", "pau-mulato", "pau-mulato-de-várzea", "escorrega-macaco" or "pau-marfim". Preparations of C. spruceanum barks are used in the form of tea, poultice or skin patches to treat stomach diseases, skin inflammation and uterus tumors. To investigate in vivo the antinociceptive and anti-inflammatory activities of the hydroalcoholic extract of Calycophyllum spruceanum barks (HECSb) in order to validate its popular usage in inflammatory conditions. Chemical analysis of HECSb was performed using the UHPLC-MS system. Mice were treated per oral with HECSb (5-5000 mg/kg) and evaluated for acute toxicity (during 15 days); motor activity (Rota rod test); body weight (up to 72 h); antinociceptive activity: writhes induced by 0.8% acetic acid; paw licking induced by 2.5% formalin; paw withdrawal (von Frey test) induced by carrageenan (300 μg) or PGE2 (100 ng); anti-inflammatory (paw edema model). For histopathological analysis subplantar tissue fragments were collected 1 h after paw edema induction. HECSb chemical analysis revealed the presence of caffeoylquinic derivatives, small organic acids, and phenolic compounds. HECSb showed antinociceptive effect, reducing the number of acetic acid-induced writhes by 72% at 120 mg/kg, paw licking (phase 2- Formalin test) by 33% at 60 mg/kg and 49% at 120 mg/kg; and paw withdrawal elicited by carrageenan (53% at 120 mg/kg) and PGE2 (120 mg/kg) at 0.5 h (48%) and 1 h (45%). HECSb (120 mg/kg) also inhibited the paw edema elicited both by carrageenan (48%) and PGE2 (92%). Histopathological analysis (leukocyte infiltration, edema, focal areas of hemorrhage, vascular congestion) of HECSb treatment at 120 mg/kg demonstrated normal morphology [median 0 (0,1)] compared to PGE2, showing severe alterations [median 3 (2,3); p = 0,0035]. HECSb did not induce acute

  7. Effect of botanicals on inflammation and skin aging: analyzing the evidence.

    PubMed

    Suggs, Amanda; Oyetakin-White, Patricia; Baron, Elma D

    2014-01-01

    The skin and its immune system manifest a decline in physiologic function as it undergoes aging. External insults such as ultraviolet light exposure cause inflammation, which may enhance skin aging even further leading to cancer and signs of photoaging. There is a potential role for botanicals as an adjunct modality in the prevention of skin aging. Numerous over-the-counter anti-aging products are commercially available, many of which boast unverified claims to reduce stress, inflammation and correct signs of aging. In this article we reviewed the scientific literature for data on frequently published "anti-inflammaging" additives such as vitamins A, C and E and green tea. We also analyzed the evidence available on five promising ingredients commonly found in anti-aging products, namely, argan oil, rosemary, pomegranate, Coenzyme Q10, and Coffeeberry. Though there may be an increasing amount of scientific data on a few of these novel botanicals, in general, there remains a lack of clinical data to support the anti-aging claims made.

  8. Contextual control of skin immunity and inflammation by Corynebacterium.

    PubMed

    Ridaura, Vanessa K; Bouladoux, Nicolas; Claesen, Jan; Chen, Y Erin; Byrd, Allyson L; Constantinides, Michael G; Merrill, Eric D; Tamoutounour, Samira; Fischbach, Michael A; Belkaid, Yasmine

    2018-03-05

    How defined microbes influence the skin immune system remains poorly understood. Here we demonstrate that Corynebacteria , dominant members of the skin microbiota, promote a dramatic increase in the number and activation of a defined subset of γδ T cells. This effect is long-lasting, occurs independently of other microbes, and is, in part, mediated by interleukin (IL)-23. Under steady-state conditions, the impact of Corynebacterium is discrete and noninflammatory. However, when applied to the skin of a host fed a high-fat diet, Corynebacterium accolens alone promotes inflammation in an IL-23-dependent manner. Such effect is highly conserved among species of Corynebacterium and dependent on the expression of a dominant component of the cell envelope, mycolic acid. Our data uncover a mode of communication between the immune system and a dominant genus of the skin microbiota and reveal that the functional impact of canonical skin microbial determinants is contextually controlled by the inflammatory and metabolic state of the host. © 2018 Ridaura et al.

  9. Pitavastatin is a potent anti-inflammatory agent in the rat paw model of acute inflammation.

    PubMed

    Qadir, Farida; Alam, Syed Mahboob; Siddiqi, Abeer Qamar; Kamran, Afshan

    2014-11-01

    Statins are used extensively as anti-hyperlipidemic agents. In addition to curtailing cholesterol synthesis they have been found to have multiple actions unrelated to cholesterol lowering "the pleiotropic effects," which includes inhibition of inflammation. We aimed at investigating the effect of pitavastatin a 3rd generation statin, in suppressing acute inflammation in rat paw edema model. Male Sprague-Dawley rats were randomly assigned to one of five groups (n=8): Control, indomethacin and pitavastatin (0.2mg/kg, 0.4mg/kg, 0.8mg/kg) treated. 1hour following treatment, inflammation was induced by sub-planter injection of egg albumin into the hind paw. Anti-inflammatory effect was evaluated by measurement of edema formation every half hour for three hours, assessment of polymorphonuclear leukocyte (PMNL) infiltration and measurement of tissue damage in skin biopsies. Ascending doses of pitavastatin were found to attenuate these parameters. The lowest dose of pitavastatin (0.2mg/kg) was found to significantly reduce edema volume, PMNL infiltration and tissue damage. The efficacy of the smallest dose was found comparable to indomethacin.

  10. Comprehensive, multi-modal characterization of an imiquimod-induced human skin inflammation model for drug development.

    PubMed

    van der Kolk, Tessa; Assil, Salma; Rijneveld, Rianne; Klaassen, Erica S; Feiss, Gary; Florencia, Edwin; Prens, Errol P; Burggraaf, Jacobus; Moerland, Matthijs; Rissmann, Robert; van Doorn, Martijn B A

    2018-05-16

    Imiquimod (IMQ) is often used as topical challenge agent to provoke local skin inflammation. The objective of this study was to develop and refine a rapid, temporary and reversible human skin inflammation model with IMQ for application in clinical drug development. A randomized, vehicle-controlled, open-label, dose-ranging study was conducted in 16 healthy male subjects. IMQ (5 mg) was applied once daily for 72h under occlusion to intact skin (n = 8) or tape stripped (TS) skin (n = 8). Although IMQ alone induced limited effects, TS+IMQ treatment showed larger responses in several domains including erythema and perfusion (p<0.0001), mRNA expression of inflammatory markers (p<0.01) and inflammatory cell influx compared to vehicle. In conclusion, a rapid, human IMQ skin inflammation challenge model was successfully developed with a clear benefit of TS prior to IMQ application. Future interaction studies will enable proof-of-pharmacology of novel compounds targeting the innate immune system. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Topical ivermectin improves allergic skin inflammation.

    PubMed

    Ventre, E; Rozières, A; Lenief, V; Albert, F; Rossio, P; Laoubi, L; Dombrowicz, D; Staels, B; Ulmann, L; Julia, V; Vial, E; Jomard, A; Hacini-Rachinel, F; Nicolas, J-F; Vocanson, M

    2017-08-01

    Ivermectin (IVM) is widely used in both human and veterinary medicine to treat parasitic infections. Recent reports have suggested that IVM could also have anti-inflammatory properties. Here, we investigated the activity of IVM in a murine model of atopic dermatitis (AD) induced by repeated exposure to the allergen Dermatophagoides farinae, and in standard cellular immunological assays. Our results show that topical IVM improved allergic skin inflammation by reducing the priming and activation of allergen-specific T cells, as well as the production of inflammatory cytokines. While IVM had no major impact on the functions of dendritic cells in vivo and in vitro, IVM impaired T-cell activation, proliferation, and cytokine production following polyclonal and antigen-specific stimulation. Altogether, our results show that IVM is endowed with topical anti-inflammatory properties that could have important applications for the treatment of T-cell-mediated skin inflammatory diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Skin temperature reveals the intensity of acute stress

    PubMed Central

    Herborn, Katherine A.; Graves, James L.; Jerem, Paul; Evans, Neil P.; Nager, Ruedi; McCafferty, Dominic J.; McKeegan, Dorothy E.F.

    2015-01-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  13. Tnfa signaling through tnfr2 protects skin against oxidative stress-induced inflammation.

    PubMed

    Candel, Sergio; de Oliveira, Sofía; López-Muñoz, Azucena; García-Moreno, Diana; Espín-Palazón, Raquel; Tyrkalska, Sylwia D; Cayuela, María L; Renshaw, Stephen A; Corbalán-Vélez, Raúl; Vidal-Abarca, Inmaculada; Tsai, Huai-Jen; Meseguer, José; Sepulcre, María P; Mulero, Victoriano

    2014-05-01

    TNFα overexpression has been associated with several chronic inflammatory diseases, including psoriasis, lichen planus, rheumatoid arthritis, and inflammatory bowel disease. Paradoxically, numerous studies have reported new-onset psoriasis and lichen planus following TNFα antagonist therapy. Here, we show that genetic inhibition of Tnfa and Tnfr2 in zebrafish results in the mobilization of neutrophils to the skin. Using combinations of fluorescent reporter transgenes, fluorescence microscopy, and flow cytometry, we identified the local production of dual oxidase 1 (Duox1)-derived H₂O₂ by Tnfa- and Tnfr2-deficient keratinocytes as a trigger for the activation of the master inflammation transcription factor NF-κB, which then promotes the induction of genes encoding pro-inflammatory molecules. In addition, pharmacological inhibition of Duox1 completely abrogated skin inflammation, placing Duox1-derived H₂O₂ upstream of this positive feedback inflammatory loop. Strikingly, DUOX1 was drastically induced in the skin lesions of psoriasis and lichen planus patients. These results reveal a crucial role for TNFα/TNFR2 axis in the protection of the skin against DUOX1-mediated oxidative stress and could establish new therapeutic targets for skin inflammatory disorders.

  14. Tnfa Signaling Through Tnfr2 Protects Skin Against Oxidative Stress–Induced Inflammation

    PubMed Central

    López-Muñoz, Azucena; García-Moreno, Diana; Espín-Palazón, Raquel; Tyrkalska, Sylwia D.; Cayuela, María L.; Renshaw, Stephen A.; Corbalán-Vélez, Raúl; Vidal-Abarca, Inmaculada; Tsai, Huai-Jen; Meseguer, José; Sepulcre, María P.; Mulero, Victoriano

    2014-01-01

    TNFα overexpression has been associated with several chronic inflammatory diseases, including psoriasis, lichen planus, rheumatoid arthritis, and inflammatory bowel disease. Paradoxically, numerous studies have reported new-onset psoriasis and lichen planus following TNFα antagonist therapy. Here, we show that genetic inhibition of Tnfa and Tnfr2 in zebrafish results in the mobilization of neutrophils to the skin. Using combinations of fluorescent reporter transgenes, fluorescence microscopy, and flow cytometry, we identified the local production of dual oxidase 1 (Duox1)-derived H2O2 by Tnfa- and Tnfr2-deficient keratinocytes as a trigger for the activation of the master inflammation transcription factor NF-κB, which then promotes the induction of genes encoding pro-inflammatory molecules. In addition, pharmacological inhibition of Duox1 completely abrogated skin inflammation, placing Duox1-derived H2O2 upstream of this positive feedback inflammatory loop. Strikingly, DUOX1 was drastically induced in the skin lesions of psoriasis and lichen planus patients. These results reveal a crucial role for TNFα/TNFR2 axis in the protection of the skin against DUOX1-mediated oxidative stress and could establish new therapeutic targets for skin inflammatory disorders. PMID:24802997

  15. Psoriasis Skin Inflammation-Induced microRNA-26b Targets NCEH1 in Underlying Subcutaneous Adipose Tissue.

    PubMed

    Cheung, Louisa; Fisher, Rachel M; Kuzmina, Natalia; Li, Dongqing; Li, Xi; Werngren, Olivera; Blomqvist, Lennart; Ståhle, Mona; Landén, Ning Xu

    2016-03-01

    Psoriasis is an immune-mediated inflammatory disease, which is associated with a high risk of developing systemic comorbidities, such as obesity, cardiovascular disease, and diabetes mellitus. However, the mechanistic links between psoriatic skin inflammation and systemic comorbidities remain largely unknown. MicroRNAs (miRNAs) are recently discovered gene regulators that play important roles in psoriasis skin inflammation. In this study we aimed to explore whether the skin inflammation in psoriasis affects miRNA expression of the underlying subcutaneous adipose tissue and whether this may be a link between psoriasis and comorbidities. To this end, we compared the miRNA expression profile of subcutaneous adipose tissue underneath lesional and nonlesional psoriatic skin. We further validated the differential expression of several miRNAs and characterized their expression patterns in different cell types present in subcutaneous adipose tissue. We focused on miR-26b-5p, which was highly up-regulated in subcutaneous adipose tissue underneath lesional psoriasis skin. We showed that it targets and down-regulates neutral cholesterol ester hydrolase 1, an enzyme essential for cholesterol efflux, in monocytes/macrophages, adipocytes, vascular endothelial cells, and fibroblasts. We conclude that this miRNA may serve as a mechanistic link between psoriatic skin inflammation and its systemic comorbidities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Lipoxin A4 inhibits UV radiation-induced skin inflammation and oxidative stress in mice.

    PubMed

    Martinez, R M; Fattori, V; Saito, P; Melo, C B P; Borghi, S M; Pinto, I C; Bussmann, A J C; Baracat, M M; Georgetti, S R; Verri, W A; Casagrande, R

    2018-04-27

    Lipoxin A4 (LXA 4 ) is a metabolic product of arachidonic acid. Despite potent anti-inflammatory and pro-resolution activities, it remains to be determined if LXA 4 has effect on ultraviolet (UV) radiation-induced skin inflammation. To investigate the effects of systemic administration with LXA 4 on UV radiation-induced inflammation and oxidative damage in the skin of mice. Varied parameters of inflammation and oxidative stress in the skin of mice were evaluated after UV radiation (4.14 J/cm 2 ). Pretreatment with LXA 4 significantly inhibited UV radiation-induced skin edema and myeloperoxidase activity. LXA 4 efficacy was enhanced by increasing the time of pre-treatment to up to 72 h. LXA 4 reduced UV radiation-induced skin edema, neutrophil recruitment (myeloperoxidase activity and LysM-eGFP + cells), MMP-9 activity, deposition of collagen fibers, epidermal thickness, sunburn cell counts, and production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-33). Depending on the time point, LXA 4 increased the levels of anti-inflammatory cytokines (TGF-β and IL-10). LXA 4 significantly attenuated UV radiation-induced oxidative damage returning the oxidative status to baseline levels in parameters such as ferric reducing ability, scavenging of free radicals, GSH levels, catalase activity and superoxide anion production. LXA 4 also reduced UV radiation-induced gp91 phox [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) subunit] mRNA expression and enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target enzyme nicotinamide adenine dinucleotide (phosphate) quinone oxidoreductase (Nqo1) mRNA expression. LXA 4 inhibited UV radiation-induced skin inflammation by diminishing pro-inflammatory cytokine production and oxidative stress as well as inducing anti-inflammatory cytokines and Nrf2. Copyright © 2018. Published by Elsevier B.V.

  17. Peptide-modified chitosan hydrogels promote skin wound healing by enhancing wound angiogenesis and inhibiting inflammation

    PubMed Central

    Chen, Xionglin; Zhang, Min; Wang, Xueer; Chen, Yinghua; Yan, Yuan; Zhang, Lu; Zhang, Lin

    2017-01-01

    Cutaneous wound healing following trauma is a complex and dynamic process involving multiple overlapping events following trauma. Two critical elements affecting skin wound healing are neovascularization and inflammation. A nascent vessel can provide nutrition and oxygen to a healing wound. Therefore, treatments strategies that enhance angiogenesis and inhibit inflammation can promote skin wound healing. Previous studies have shown that the SIKVAV peptide (Ser-Ile-Lys-Val-Ala-Val) from laminin can promote angiogenesis in vitro. This study evaluated the effects of peptide SIKVAV-modified chitosan hydrogels on skin wound healing. We established skin wounds established in mice and treated them with SIKVAV-modified chitosan hydrogels. H&E staining showed that peptide-modified chitosan hydrogels accelerated the reepithelialization of wounds compared with the negative and positive controls. Immunohistochemistry analysis demonstrated that more myofibroblasts were deposited at wounds treated with peptide-modified chitosan hydrogels that at those treated with negative and positive controls. In addition, peptide-modified chitosan hydrogels promoted angiogenesis as well as keratinocyte proliferation and differentiation, but inhibited inflammation in skin wounds. Taken together, these results suggest that SIKVAV-modified chitosan hydrogels are a promising treatment component for healing-impaired wounds. PMID:28559985

  18. Skin temperature reveals the intensity of acute stress.

    PubMed

    Herborn, Katherine A; Graves, James L; Jerem, Paul; Evans, Neil P; Nager, Ruedi; McCafferty, Dominic J; McKeegan, Dorothy E F

    2015-12-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Imiquimod-induced psoriasis-like skin inflammation is suppressed by BET bromodomain inhibitor in mice through RORC/IL-17A pathway modulation.

    PubMed

    Nadeem, Ahmed; Al-Harbi, Naif O; Al-Harbi, Mohamed M; El-Sherbeeny, Ahmed M; Ahmad, Sheikh F; Siddiqui, Nahid; Ansari, Mushtaq A; Zoheir, Khairy M A; Attia, Sabry M; Al-Hosaini, Khaled A; Al-Sharary, Shakir D

    2015-09-01

    Psoriasis is one of the most common skin disorders characterized by erythematous plaques that result from hyperproliferative keratinocytes and infiltration of inflammatory leukocytes into dermis and epidermis. Recent studies suggest that IL-23/IL-17A/IL-22 cytokine axis plays an important role in the pathogenesis of psoriasis. The small molecule bromodomain and extraterminal domain (BET) inhibitors, that disrupt interaction of BET proteins with acetylated histones have recently demonstrated efficacy in various models of inflammation through suppression of several pathways, one of them being synthesis of IL-17A/IL-22 which primarily depends on transcription factor, retinoic acid receptor-related orphan receptor C (RORC). However, the efficacy and mechanistic aspect of a BET inhibitor in mouse model of skin inflammation has not been explored previously. Therefore, this study investigated the role of BET inhibitor, JQ-1 in mouse model of psoriasis-like inflammation. Mice were topically applied imiquimod (IMQ) to develop psoriasis-like inflammation on the shaved back and ear followed by assessment of skin inflammation (myeloperoxidase activity, ear thickness, and histopathology), RORC and its signature cytokines (IL-17A/IL-22). JQ-1 suppressed IMQ-induced skin inflammation as reflected by a decrease in ear thickness/myeloperoxidase activity, and RORC/IL-17A/IL-22 expression. Additionally, a RORα/γ agonist SR1078 was utilized to investigate the role of RORC in BET-mediated skin inflammation. SR1078 reversed the protective effect of JQ-1 on skin inflammation at both histological and molecular levels in the IMQ model. The current study suggests that BET bromodomains are involved in psoriasis-like inflammation through induction of RORC/IL-17A pathway. Therefore, inhibition of BET bromodomains may provide a new therapy against skin inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation.

    PubMed

    Li, Hui; Yao, Qi; Mariscal, Alberto Garcia; Wu, Xudong; Hülse, Justus; Pedersen, Esben; Helin, Kristian; Waisman, Ari; Vinkel, Caroline; Thomsen, Simon Francis; Avgustinova, Alexandra; Benitah, Salvador Aznar; Lovato, Paola; Norsgaard, Hanne; Mortensen, Mette Sidsel; Veng, Lone; Rozell, Björn; Brakebusch, Cord

    2018-04-12

    The chronic skin inflammation psoriasis is crucially dependent on the IL-23/IL-17 cytokine axis. Although IL-23 is expressed by psoriatic keratinocytes and immune cells, only the immune cell-derived IL-23 is believed to be disease relevant. Here we use a genetic mouse model to show that keratinocyte-produced IL-23 is sufficient to cause a chronic skin inflammation with an IL-17 profile. Furthermore, we reveal a cell-autonomous nuclear function for the actin polymerizing molecule N-WASP, which controls IL-23 expression in keratinocytes by regulating the degradation of the histone methyltransferases G9a and GLP, and H3K9 dimethylation of the IL-23 promoter. This mechanism mediates the induction of IL-23 by TNF, a known inducer of IL-23 in psoriasis. Finally, in keratinocytes of psoriatic lesions a decrease in H3K9 dimethylation correlates with increased IL-23 expression, suggesting relevance for disease. Taken together, our data describe a molecular pathway where epigenetic regulation of keratinocytes can contribute to chronic skin inflammation.

  1. National Athletic Trainers' Association Position Statement: Management of Acute Skin Trauma

    PubMed Central

    Beam, Joel W.; Buckley, Bernadette; Holcomb, William R.; Ciocca, Mario

    2016-01-01

    Objective: To present recommendations for the cleansing, debridement, dressing, and monitoring of acute skin trauma in patients. Background: Acute skin trauma is common during participation in athletic and recreational activities. Clinical decisions and intervention protocols after injury vary among athletic trainers and are often based on ritualistic practices. An understanding of cleansing, debridement, and dressing techniques; clinical features of infection and adverse reactions; and monitoring of acute skin trauma is critical for certified athletic trainers and other allied health and medical professionals to create a local wound environment that promotes healing and lessens the risk of complications. Recommendations: These guidelines are intended to provide the certified athletic trainer and others participating in athletic health care with specific knowledge about and recommendations for the management of acute skin trauma. PMID:28092169

  2. National Athletic Trainers' Association Position Statement: Management of Acute Skin Trauma.

    PubMed

    Beam, Joel W; Buckley, Bernadette; Holcomb, William R; Ciocca, Mario

    2016-12-01

      To present recommendations for the cleansing, debridement, dressing, and monitoring of acute skin trauma in patients.   Acute skin trauma is common during participation in athletic and recreational activities. Clinical decisions and intervention protocols after injury vary among athletic trainers and are often based on ritualistic practices. An understanding of cleansing, debridement, and dressing techniques; clinical features of infection and adverse reactions; and monitoring of acute skin trauma is critical for certified athletic trainers and other allied health and medical professionals to create a local wound environment that promotes healing and lessens the risk of complications.   These guidelines are intended to provide the certified athletic trainer and others participating in athletic health care with specific knowledge about and recommendations for the management of acute skin trauma.

  3. Monitoring inflammation (including fever) in acute brain injury.

    PubMed

    Provencio, J Javier; Badjatia, Neeraj

    2014-12-01

    Inflammation is an important part of the normal physiologic response to acute brain injury (ABI). How inflammation is manifest determines if it augments or hinders the resolution of ABI. Monitoring body temperature, the cellular arm of the inflammatory cascade, and inflammatory proteins may help guide therapy. This summary will address the utility of inflammation monitoring in brain-injured adults. An electronic literature search was conducted for English language articles describing the testing, utility, and optimal methods to measure inflammation in ABI. Ninety-four articles were included in this review. Current evidence suggests that control of inflammation after ABI may hold promise for advances in good outcomes. However, our understanding of how much inflammation is good and how much is deleterious is not yet clear. Several important concepts emerge form our review. First, while continuous temperature monitoring of core body temperature is recommended, temperature pattern alone is not useful in distinguishing infectious from noninfectious fever. Second, when targeted temperature management is used, shivering should be monitored at least hourly. Finally, white blood cell levels and protein markers of inflammation may have a limited role in distinguishing infectious from noninfectious fever. Our understanding of optimal use of inflammation monitoring after ABI is limited currently but is an area of active investigation.

  4. Vinpocetine Inhibits NF-κB-Dependent Inflammation in Acute Ischemic Stroke Patients.

    PubMed

    Zhang, Fang; Yan, Chen; Wei, Changjuan; Yao, Yang; Ma, Xiaofeng; Gong, Zhongying; Liu, Shoufeng; Zang, Dawei; Chen, Jieli; Shi, Fu-Dong; Hao, Junwei

    2018-04-01

    Immunity and inflammation play critical roles in the pathogenesis of acute ischemic stroke. Therefore, immune intervention, as a new therapeutic strategy, is worthy of exploration. Here, we tested the inflammation modulator, vinpocetine, for its effect on the outcomes of stroke. For this multi-center study, we recruited 60 patients with anterior cerebral circulation occlusion and onset of stroke that had exceeded 4.5 h but lasted less than 48 h. These patients, after random division into two groups, received either standard management alone (controls) or standard management plus vinpocetine (30 mg per day intravenously for 14 consecutive days, Gedeon Richter Plc., Hungary). Vinpocetine treatment did not change the lymphocyte count; however, nuclear factor kappa-light-chain-enhancer of activated B cell activation was inhibited as seen not only by the increased transcription of IκBα mRNA but also by the impeded phosphorylation and degradation of IκBα and subsequent induction of pro-inflammatory mediators. These effects led to significantly reduced secondary lesion enlargement and an attenuated inflammation reaction. Compared to controls, patients treated with vinpocetine had a better recovery of neurological function and improved clinical outcomes during the acute phase and at 3-month follow-up. These findings identify vinpocetine as an inflammation modulator that could improve clinical outcomes after acute ischemic stroke. This study also indicated the important role of immunity and inflammation in the pathogenesis of acute ischemic stroke and the significance of immunomodulatory treatment. www.clinicaltrials.gov . Identifier: NCT02878772.

  5. Age-related ventricular-vascular coupling during acute inflammation in humans: Effect of physical activity.

    PubMed

    Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Ranadive, Sushant M; Yan, Huimin; Phillips, Shane; Baynard, Tracy; Woods, Jeffrey A; Motl, Robert; Fernhall, Bo

    2015-07-01

    Aging is commonly accompanied by increased arterial and ventricular stiffness (determined by arterial elastance (Ea) and ventricular elastance (Elv)), augmented ventricular-vascular coupling ratios (Ea/Elv) and systemic inflammation. Acute inflammation may impact ventricular-vascular coupling and predispose older adults to cardiovascular events. However, physically active older adults have more compliant large arteries and left ventricles and lower inflammation than sedentary older adults. We hypothesized that acute inflammation would alter Ea, Elv, and Ea/Elv more in older versus younger adults but that higher levels of physical activity would attenuate inflammation-induced changes. End-systolic and central blood pressures were obtained using applanation tonometry before and at 24 and 48 h post-influenza vaccination in 24 older and 38 younger adults. Ultrasonography was used to measure ventricular volumes and other indices of cardiac performance. Physical activity was measured with accelerometry. Ea and Ea/Elv were maintained (p > 0.05), but Elv was reduced (p < 0.05) 24 h post-inflammation. Other indices of systolic performance were reduced in older but not younger adults; diastolic performance was attenuated in both groups 24 h post-inflammation (p < 0.05 for all). Older, but not younger, adults decreased central pressure during inflammation (p < 0.05). When controlled for age, physical activity was not related to the inflammation-induced changes in elastance (p > 0.05) except in the most active group of seniors (p < 0.05). Aging did not affect the elastance responses but did affect central blood pressure and other ventricular systolic responses to acute inflammation. Aging, not physical activity, appears to modulate cardiovascular responses to acute inflammation, except in the most active older adults. © The European Society of Cardiology 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Influence of fitness and age on the endothelial response to acute inflammation.

    PubMed

    Schroeder, Elizabeth C; Lane-Cordova, Abbi D; Ranadive, Sushant M; Baynard, Tracy; Fernhall, Bo

    2018-06-01

    What is the central question of the study? What are the effects of age and fitness on the vascular response to acute inflammation in younger and older adults? What is the main finding and its importance? In older adults, cardiorespiratory fitness level has a differential impact on endothelial function after acute inflammation. Compared with older adults with low fitness, older, moderately fit adults have a greater decrease in endothelial function, similar to that of younger adults. These findings have important implications in support of the beneficial effects of higher cardiorespiratory fitness in maintaining vascular reactivity and the ability to respond to stressors. Inflammation is associated with greater risk of cardiovascular events and reduced vascular function with ageing. Higher cardiorespiratory fitness is associated with lower risk of cardiovascular events and better vascular function. We evaluated the role of fitness in the vascular response to acute inflammation in 26 younger adults (YA) and 62 older adults (OA). We used an influenza vaccine to induce acute inflammation. Blood pressure, flow-mediated dilatation (FMD), augmentation index, carotid elastic modulus and inflammatory markers were measured before and 24 h after vaccination. Peak oxygen uptake was measured via a treadmill test. 'Fit' was defined as a peak oxygen uptake greater than the age- and sex-determined 50th percentile according to the American College of Sports Medicine. An interaction effect existed for the FMD response during acute inflammation (P < 0.05). The YA (low fit, from 11.5 ± 1.8 to 9.2 ± 1.3%; moderately fit, from 11.9 ± 0.8 to 9.0 ± 0.8%) and moderately fit OA (from 7.5 ± 1.0 to 3.9 ± 0.8%) had similar reductions in FMD at 24 h (P < 0.05). Low-fit OA did not reduce FMD at 24 h (from 5.5 ± 0.4 to 5.2 ± 0.5%, P > 0.05). The reduction in FMD in YA was similar between fitness groups (P > 0.05). All groups had similar reductions in mean

  7. Smoking Is Associated with Acute and Chronic Prostatic Inflammation: Results from the REDUCE Study.

    PubMed

    Moreira, Daniel M; Nickel, J Curtis; Gerber, Leah; Muller, Roberto L; Andriole, Gerald L; Castro-Santamaria, Ramiro; Freedland, Stephen J

    2015-04-01

    Both anti- and proinflammatory effects of cigarette smoking have been described. As prostate inflammation is common, we hypothesized smoking could contribute to prostate inflammation. Thus, we evaluated the association of smoking status with acute and chronic inflammation within the prostate of men undergoing prostate biopsy. We retrospectively analyzed 8,190 men ages 50 to 75 years with PSA levels between 2.5 and 10 ng/mL enrolled in the Reduction by Dutasteride of Prostate Cancer Events study. Smoking status was self-defined as never, former, or current. Prostate inflammation was assessed by systematic central review blinded to smoking status. The association of smoking with inflammation in the baseline, 2-year, and 4-year biopsies was evaluated with univariable and multivariable logistic regressions. At study enrollment, 1,233 (15%), 3,203 (39%), and 3,754 (46%) men were current, former, and never smokers, respectively. Current smokers were significantly younger and had smaller prostates than former and never smokers (all P < 0.05). Former smokers were significantly heavier than current and never smokers (P < 0.001). Acute and chronic prostate inflammations were identified in 1,261 (15%) and 6,352 (78%) baseline biopsies, respectively. In univariable analysis, current smokers were more likely to have acute inflammation than former (OR, 1.35; P, 0.001) and never smokers (OR, 1.36; P, 0.001). The results were unchanged at 2- and 4-year biopsies. In contrast, current smoking was linked with chronic inflammation in the baseline biopsy, but not at 2- and 4-year biopsies. In conclusion, among men undergoing prostate biopsy, current smoking was independently associated with acute and possibly chronic prostate inflammations. ©2015 American Association for Cancer Research.

  8. The Association Between Low Grade Systemic Inflammation and Skin Diseases: A Cross-sectional Survey in the Northern Finland Birth Cohort 1966.

    PubMed

    Sinikumpu, Suvi-Päivikki; Huilaja, Laura; Auvinen, Juha; Jokelainen, Jari; Puukka, Katri; Ruokonen, Aimo; Timonen, Markku; Tasanen, Kaisa

    2018-01-12

    Low grade inflammation is associated with many noncommunicable diseases. The association between skin diseases in general and systemic inflammation has not previously been studied at the population level. A whole-body investigation on 1,930 adults belonging to Northern Finland Birth Cohort 1966 was performed and high sensitive C-reactive protein (CRP) level was measured as a marker of low grade inflammation in order to determine the association between low grade inflammation and skin diseases in an unselected adult population. After adjustment for confounding factors the following skin disorders were associated with low grade inflammation in multinomial logistic regression analysis: atopic eczema (OR 2.2, 95% CI 1.2-3.9), onychomycosis (OR 2.0, 1.2-3.2) and rosacea (OR 1.7, 1.1-2.5). After additionally adjusting for body mass index and systemic diseases, the risks for atopic eczema (OR 2.4, 1.3-4.6) and onychomycosis (OR 1.9, 1.1-3.1) remained statistically significant. In conclusion, low grade inflammation is present in several skin diseases.

  9. Leptin deficiency in mice counteracts imiquimod (IMQ)-induced psoriasis-like skin inflammation while leptin stimulation induces inflammation in human keratinocytes.

    PubMed

    Stjernholm, Theresa; Ommen, Pernille; Langkilde, Ane; Johansen, Claus; Iversen, Lars; Rosada, Cecilia; Stenderup, Karin

    2017-04-01

    Leptin is an adipocyte-derived cytokine secreted mostly by adipose tissue. Serum leptin levels are elevated in obese individuals and correlate positively with body mass index (BMI). Interestingly, serum leptin levels are also elevated in patients with psoriasis and correlate positively with disease severity. Psoriasis is associated with obesity; patients with psoriasis have a higher incidence of obesity, and obese individuals have a higher risk of developing psoriasis. Additionally, obese patients with psoriasis experience a more severe degree of psoriasis. In this study, we hypothesised that leptin may link psoriasis and obesity and plays an aggravating role in psoriasis. To investigate leptin's role in psoriasis, we applied the widely accepted imiquimod (IMQ)-induced psoriasis-like skin inflammation mouse model on leptin-deficient (ob/ob) mice and evaluated psoriasis severity. Moreover, we stimulated human keratinocytes with leptin and investigated the effect on proliferation and expression of pro-inflammatory proteins. In ob/ob mice, clinical signs of erythema, infiltration and scales in dorsal skin and inflammation in ear skin, as measured by ear thickness, were attenuated and compared with wt mice. Moreover, IL-17A and IL-22 mRNA expression levels, as well as increased epidermal thickness, were significantly less induced. In vitro, the effect of leptin stimulation on human keratinocytes demonstrated increased proliferation and induced secretion of several pro-inflammatory proteins; two hallmarks of psoriasis. In conclusion, leptin deficiency attenuated IMQ-induced psoriasis-like skin inflammation in a mouse model, and leptin stimulation induced a pro-inflammatory phenotype in human keratinocytes, thus, supporting an aggravating role of leptin in psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. UV light B-mediated inhibition of skin catalase activity promotes Gr-1+ CD11b+ myeloid cell expansion.

    PubMed

    Sullivan, Nicholas J; Tober, Kathleen L; Burns, Erin M; Schick, Jonathan S; Riggenbach, Judith A; Mace, Thomas A; Bill, Matthew A; Young, Gregory S; Oberyszyn, Tatiana M; Lesinski, Gregory B

    2012-03-01

    Skin cancer incidence and mortality are higher in men compared with women, but the causes of this sex discrepancy remain largely unknown. UV light exposure induces cutaneous inflammation and neutralizes cutaneous antioxidants. Gr-1(+)CD11b(+) myeloid cells are heterogeneous bone marrow-derived cells that promote inflammation-associated carcinogenesis. Reduced activity of catalase, an antioxidant present in the skin, has been associated with skin carcinogenesis. We used the outbred, immune-competent Skh-1 hairless mouse model of UVB-induced inflammation and non-melanoma skin cancer to further define sex discrepancies in UVB-induced inflammation. Our results demonstrated that male skin had relatively lower baseline catalase activity, which was inhibited following acute UVB exposure in both sexes. Further analysis revealed that skin catalase activity inversely correlated with splenic Gr-1(+)CD11b(+) myeloid cell percentage. Acute UVB exposure induced Gr-1(+)CD11b(+) myeloid cell skin infiltration, which was inhibited to a greater extent in male mice by topical catalase treatment. In chronic UVB studies, we demonstrated that the percentage of splenic Gr-1(+)CD11b(+) myeloid cells was 55% higher in male tumor-bearing mice compared with their female counterparts. Together, our findings indicate that lower skin catalase activity in male mice may at least in part contribute to increased UVB-induced generation of Gr-1(+)CD11b(+) myeloid cells and subsequent skin carcinogenesis.

  11. Dioscin relieves endotoxemia induced acute neuro-inflammation and protect neurogenesis via improving 5-HT metabolism

    PubMed Central

    Yang, Rui; Chen, Wei; Lu, Ye; Li, Yingke; Du, Hongli; Gao, Songyan; Dong, Xin; Yuan, Hongbin

    2017-01-01

    Sepsis, in addition to causing fatality, is an independent risk factor for cognitive impairment among sepsis survivors. The pathologic mechanism of endotoxemia induced acute neuro-inflammation still has not been fully understood. For the first time, we found the disruption of neurotransmitters 5-HT, impaired neurogenesis and activation of astrocytes coupled with concomitant neuro-inflammation were the potential pathogenesis of endotoxemia induced acute neuro-inflammation in sepsis survivors. In addition, dioscin a natural steroidal saponin isolated from Chinese medicinal herbs, enhanced the serotonergic system and produced anti-depressant effect by enhancing 5-HT levels in hippocampus. What is more, this finding was verified by metabolic analyses of hippocampus, indicating 5-HT related metabolic pathway was involved in the pathogenesis of endotoxemia induced acute neuro-inflammation. Moreover, neuro-inflammation and neurogenesis within hippocampus were indexed using quantitative immunofluorescence analysis of GFAP DCX and Ki67, as well as real-time RT-PCR analysis of some gene expression levels in hippocampus. Our in vivo and in vitro studies show dioscin protects hippocampus from endotoxemia induced cascade neuro-inflammation through neurotransmitter 5-HT and HMGB-1/TLR4 signaling pathway, which accounts for the dioscin therapeutic effect in behavioral tests. Therefore, the current findings suggest that dioscin could be a potential approach for the therapy of endotoxemia induced acute neuro-inflammation. PMID:28059131

  12. Vocal exercise may attenuate acute vocal fold inflammation

    PubMed Central

    Abbott, Katherine Verdolini; Li, Nicole Y.K.; Branski, Ryan C.; Rosen, Clark A.; Grillo, Elizabeth; Steinhauer, Kimberly; Hebda, Patricia A.

    2012-01-01

    Objectives/Hypotheses The objective was to assess the utility of selected “resonant voice” exercises for the reduction of acute vocal fold inflammation. The hypothesis was that relatively large-amplitude, low-impact exercises associated with resonant voice would reduce inflammation more than spontaneous speech and possibly more than voice rest. Study Design The study design was prospective, randomized, double-blind. Methods Nine vocally healthy adults underwent a 1-hr vocal loading procedure, followed by randomization to (a) a spontaneous speech condition, (b) a vocal rest condition, or (c) a resonant voice exercise condition. Treatments were monitored in clinic for 4 hr, and continued extra-clinically until the next morning. At baseline, immediately following loading, after the 4-hr in-clinic treatment, and 24 hr post baseline, secretions were suctioned from the vocal folds bilaterally and submitted to enzyme-linked immunosorbent assay (ELISA) to estimate concentrations of key markers of tissue injury and inflammation: IL-1β, IL-6, IL-8, TNF-α, MMP-8, and IL-10. Results Complete data sets were obtained for 3 markers -- IL-1β, IL-6, and MMP-8 -- for one subject in each treatment condition. For those markers, results were poorest at 24-hr follow-up in the spontaneous speech condition, sharply improved in the voice rest condition, and best in the resonant voice condition. Average results for all markers, for all responsive subjects with normal baseline mediator concentrations, revealed an almost identical pattern. Conclusions Some forms of tissue mobilization may be useful to attenuate acute vocal fold inflammation. PMID:23177745

  13. A distinct bacterial dysbiosis associated skin inflammation in ovine footrot

    NASA Astrophysics Data System (ADS)

    Maboni, Grazieli; Blanchard, Adam; Frosth, Sara; Stewart, Ceri; Emes, Richard; Tötemeyer, Sabine

    2017-03-01

    Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression.

  14. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms.

    PubMed

    Skelly, Donal T; Griffin, Éadaoin W; Murray, Carol L; Harney, Sarah; O'Boyle, Conor; Hennessy, Edel; Dansereau, Marc-Andre; Nazmi, Arshed; Tortorelli, Lucas; Rawlins, J Nicholas; Bannerman, David M; Cunningham, Colm

    2018-06-06

    Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consoliodation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irrevesible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI -/- -dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.

  15. Lactobacillus salivarius LA307 and Lactobacillus rhamnosus LA305 attenuate skin inflammation in mice.

    PubMed

    Holowacz, S; Blondeau, C; Guinobert, I; Guilbot, A; Hidalgo, S; Bisson, J F

    2018-02-27

    Oral probiotics potential for the management of dermatological diseases is vast. However, results of available studies in skin diseases, such as atopic dermatitis (AD), are inconsistent, partly because probiotic effects are strain specific. Careful selection of probiotic strains is therefore indispensable to ensure efficacy of treatment. In this study, Lactobacillus salivarius LA307, Lactobacillus rhamnosus LA305 and Bifidobacterium bifidum PI22, three strains that were previously identified for their interesting immunomodulatory properties in allergy and/or colitis models, were assessed in the prevention of chronic skin inflammation induced by repeated applications of 12-O-tetradecanoylphorbol-13-acetate in hairless SKH-1 mice. Macroscopic and microscopic evaluation of skin lesions was performed together with measurements of serum levels of interleukin (IL)-1β, IL-6, tumour necrosis factor alpha (TNF-α), IL-17, IL-22, IL-10 and IL-4. Daily oral treatment with the three strains at the dose of 1×10 9 cfu/day for 3 weeks limited the development of chronic skin inflammation, the effects being strain dependent. Indeed the two Lactobacillus strains significantly limited the intensity of skin inflammation both at the macroscopic and microscopic levels. Macroscopic observations were correlated to the histological observations and the resulting microscopic score. This limitation of the development of AD-like skin lesions involved the modulation of cytokine production. Treatment with the two Lactobacillus strains induced a decrease in the serum levels of pro-inflammatory cytokines IL-1β, IL-6, TNF-α, IL-17, IL-22 and at the opposite an increase in the production of the anti-inflammatory cytokine IL-10 and also of IL-4. Globally, B. bifidum PI22 had lower benefits. These results obtained in mice suggest that L. salivarius LA307 and L. rhamnosus LA305 could be good candidates for preserving skin integrity and homeostasis via the modulation of the gut microbiota and that

  16. Metabolic Cost of the Activation of Immune Response in the Fish-Eating Myotis (Myotis vivesi): The Effects of Inflammation and the Acute Phase Response

    PubMed Central

    Otálora-Ardila, Aída; Herrera M., L. Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C.

    2016-01-01

    Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140–185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform. PMID:27792729

  17. Metabolic Cost of the Activation of Immune Response in the Fish-Eating Myotis (Myotis vivesi): The Effects of Inflammation and the Acute Phase Response.

    PubMed

    Otálora-Ardila, Aída; Herrera M, L Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C

    2016-01-01

    Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140-185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform.

  18. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment

    PubMed Central

    Wufuer, Maierdanjiang; Lee, GeonHui; Hur, Woojune; Jeon, Byoungjun; Kim, Byung Jun; Choi, Tae Hyun; Lee, SangHoon

    2016-01-01

    Recent advances in microfluidic cell cultures enable the construction of in vitro human skin models that can be used for drug toxicity testing, disease study. However, current in vitro skin model have limitations to emulate real human skin due to the simplicity of model. In this paper, we describe the development of ‘skin-on-a-chip’ to mimic the structures and functional responses of the human skin. The proposed model consists of 3 layers, on which epidermal, dermal and endothelial components originated from human, were cultured. The microfluidic device was designed for co-culture of human skin cells and each layer was separated by using porous membranes to allow interlayer communication. Skin inflammation and edema were induced by applying tumor necrosis factor alpha on dermal layer to demonstrate the functionality of the system. The expression levels of proinflammatory cytokines were analyzed to illustrate the feasibility. In addition, we evaluated the efficacy of therapeutic drug testing model using our skin chip. The function of skin barrier was evaluated by staining tight junctions and measuring a permeability of endothelium. Our results suggest that the skin-on-a-chip model can potentially be used for constructing in vitro skin disease models or for testing the toxicity of cosmetics or drugs. PMID:27869150

  19. The VEGF-C/VEGFR3 signaling pathway contributes to resolving chronic skin inflammation by activating lymphatic vessel function.

    PubMed

    Hagura, Asami; Asai, Jun; Maruyama, Kazuichi; Takenaka, Hideya; Kinoshita, Shigeru; Katoh, Norito

    2014-02-01

    The functions of lymphatic vessels are to drain the protein-rich lymph from the extracellular space, to maintain normal tissue pressure, and to mediate the immune response, particularly in inflammatory conditions. To evaluate the function of the vascular endothelial growth factor (VEGF)-C/VEGF receptor (VEGFR)-3 signaling pathway in chronic skin inflammation. We used adenovirus-mediated VEGF-C or VEGFR3-immunoglobulin (Ig) production and investigated the effects of VEGF-C/VEGFR3 signaling on the resolution of inflammation using the experimental chronic contact hypersensitivity (CHS) reaction mouse model. VEGF-C gene transfer promoted significant reduction of ear swelling and ear weight in CHS reaction-induced skin inflammation. Although, there was no significant difference in the number of lymphatic vessels, the number of infiltrating CD11b-positive inflammatory cells was significantly reduced in the VEGF-C group, which suggested that VEGF-C upregulated the drainage of interstitial fluid and inflammatory cells via lymphatic vessels. Furthermore, blockade of VEGFR3 expression resulted in a significant delay in the recovery from CHS reaction-induced skin inflammation. Lymphatic vessel size was enlarged and a significant increase of infiltrating CD11b inflammatory cells was observed in mice with VEGFR3-Ig gene transfer compared to control mice. These results suggested that blockade of VEGFR3 inhibited the drainage function of the lymphatic system. This study provides evidence that VEGF-C/VEGFR3 signaling plays an important role in the resolution of skin inflammation; the regulation of lymphatic function may have a great therapeutic potential in inflammatory skin diseases. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. TRPA1 and CGRP antagonists counteract vesicant-induced skin injury and inflammation.

    PubMed

    Achanta, Satyanarayana; Chintagari, Narendranath Reddy; Brackmann, Marian; Balakrishna, Shrilatha; Jordt, Sven-Eric

    2018-09-01

    The skin is highly sensitive to the chemical warfare agent in mustard gas, sulfur mustard (SM) that initiates a delayed injury response characterized by erythema, inflammation and severe vesication (blistering). Although SM poses a continuing threat, used as recently as in the Syrian conflict, no mechanism-based antidotes against SM are available. Recent studies demonstrated that Transient Receptor Potential Ankyrin 1 (TRPA1), a chemosensory cation channel in sensory nerves innervating the skin, is activated by SM and 2-chloroethyl ethyl sulfide (CEES), an SM analog, in vitro, suggesting it may promote vesicant injury. Here, we investigated the effects of TRPA1 inhibitors, and an inhibitor of Calcitonin Gene Related Peptide (CGRP), a neurogenic inflammatory peptide released upon TRPA1 activation, in a CEES-induced mouse ear vesicant model (CEES-MEVM). TRPA1 inhibitors (HC-030031 and A-967079) and a CGRP inhibitor (MK-8825) reduced skin edema, pro-inflammatory cytokines (IL-1β, CXCL1/KC), MMP-9, a protease implicated in skin damage, and improved histopathological outcomes. These findings suggest that TRPA1 and neurogenic inflammation contribute to the deleterious effects of vesicants in vivo, activated either directly by alkylation, or indirectly, by reactive intermediates or pro-inflammatory mediators. TRPA1 and CGRP inhibitors represent new leads that could be considered for validation and further development in other vesicant injury models. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. [Acute skin infections and their imitators in children : A photo quiz].

    PubMed

    Theiler, M; Schwieger-Briel, A; Weibel, L

    2017-10-01

    Skin infections account for 40% of emergency visits in pediatric dermatology. It is important to promptly recognize skin infections with potential complications and initiate treatment. However some characteristic skin findings may imitate skin infections and are often misdiagnosed. To illustrate frequent pediatric skin infections and pitfalls in view of imitators and differential diagnoses. A photo quiz is presented with the discussion of a selection of acute pediatric skin infections in comparison to their infectious or noninfectious differential diagnoses. The following infectious skin conditions and imitators are described and clinical clues for differentiation highlighted: eczema herpeticum and bacterial superinfection of atopic dermatitis; exanthematous hand, foot and mouth disease and varicella infection; erythema chronicum multilocularis and anular urticaria; Gianotti-Crosti syndrome and Gianotti-Crosti-like reaction; bacterial folliculitis of the scalp and kerion celsi and eosinophilic pustular folliculitis of the scalp; cutaneous Leishmaniasis and idiopathic facial aseptic granuloma; allergic and bacterial lymphangitis; bullous impetigo contagiosa and nonaccidental scalding. Careful anamnesis and skin examination with attention to the here illustrated differential diagnoses are essential to avoid pitfalls in the evaluation of acute pediatric skin infections.

  2. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles.

    PubMed

    Nemmar, Abderrahim; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Kazzam, Elsadig E; Ali, Badreldin H

    2016-01-01

    The use of amorphous silica (SiO2) in biopharmaceutical and industrial fields can lead to human exposure by injection, skin penetration, ingestion, or inhalation. However, the in vivo acute toxicity of amorphous SiO2 nanoparticles (SiNPs) on multiple organs and the mechanisms underlying these effects are not well understood. Presently, we investigated the acute (24 hours) effects of intraperitoneally administered 50 nm SiNPs (0.25 mg/kg) on systemic toxicity, oxidative stress, inflammation, and DNA damage in the lung, heart, liver, kidney, and brain of mice. Lipid peroxidation was significantly increased by SiNPs in the lung, liver, kidney, and brain, but was not changed in the heart. Similarly, superoxide dismutase and catalase activities were significantly affected by SiNPs in all organs studied. While the concentration of tumor necrosis factor α was insignificantly increased in the liver and brain, its increase was statistically significant in the lung, heart, and kidney. SiNPs induced a significant elevation in pulmonary and renal interleukin 6 and interleukin-1 beta in the lung, liver, and brain. Moreover, SiNPs caused a significant increase in DNA damage, assessed by comet assay, in all the organs studied. SiNPs caused leukocytosis and increased the plasma activities of lactate dehydrogenase, creatine kinase, alanine aminotranferase, and aspartate aminotransferase. These results indicate that acute systemic exposure to SiNPs causes oxidative stress, inflammation, and DNA damage in several major organs, and highlight the need for thorough evaluation of SiNPs before they can be safely used in human beings.

  3. Contributions of transferrin to acute inflammation in the goldfish, C. auratus.

    PubMed

    Trites, M J; Barreda, D R

    2017-02-01

    Transferrin is an evolutionary conserved protein that in addition to having a critical role in iron transport also has been shown to have a crucial role in host defence, by depriving iron from invading pathogens. Recently cleaved transferrin products was shown to activate macrophages in vitro. We now use an in vivo model of self-resolving peritonitis in goldfish, coupled with gene expression and protein analysis to evaluate the contributions of cleaved transferrin to acute inflammation. We show, for the first time, that cleaved transferrin products are produced in vivo early during an acute inflammatory response. These cleaved transferrin fragments were produced during pathogen-induced, but not sterile, inflammation. Both macrophages and neutrophils were able to contribute to transferrin cleavage. However, only macrophages contributed to this innate process through inducible expression of transferrin. The appearance of transferrin cleavage products in vivo correlated with the influx of leukocytes but did not necessarily correlate the induction of robust respiratory burst and nitric oxide responses. Overall, this study adds to a growing body of work highlighting the role of transferrin as an immune regulator during acute inflammation. Given the significant conservation of this and related molecules, these findings have potentially broad implications for host defences and inflammation control across evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of an acute bout of moderate-intensity exercise on postprandial lipemia and airway inflammation.

    PubMed

    Johnson, Ariel M; Kurti, Stephanie P; Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A

    2016-03-01

    A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men.

  5. Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins

    PubMed Central

    Spite, Matthew; Serhan, Charles N.

    2010-01-01

    The resolution of acute inflammation is a process that allows for inflamed tissues to return to homeostasis. Resolution was held to be a passive process, a concept now overturned with new evidence demonstrating that resolution is actively orchestrated by distinct cellular events and endogenous chemical mediators. Among these, lipid mediators, such as the lipoxins, resolvins, protectins and newly identified maresins, have emerged as a novel genus of potent and stereoselective players that counter-regulate excessive acute inflammation and stimulate molecular and cellular events that define resolution. Given that uncontrolled, chronic inflammation is associated with many cardiovascular pathologies, an appreciation of the endogenous pathways and mediators that control timely resolution can open new terrain for therapeutic approaches targeted at stimulating resolution of local inflammation, as well as correcting the impact of chronic inflammation in cardiovascular disorders. Here, we overview and update the biosynthesis and actions of pro-resolving lipid mediators, highlighting their diverse protective roles relevant to vascular systems and their relation to aspirin and statin therapies. PMID:21071715

  6. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice

    PubMed Central

    Bagchi, Sreya; He, Ying; Zhang, Hong; Cao, Liang; Van Rhijn, Ildiko; Moody, D. Branch; Gudjonsson, Johann E.

    2017-01-01

    A large proportion of human T cells are autoreactive to group 1 CD1 proteins, which include CD1a, CD1b, and CD1c. However, the physiological role of the CD1 proteins remains poorly defined. Here, we have generated a double-transgenic mouse model that expresses human CD1b and CD1c molecules (hCD1Tg) as well as a CD1b-autoreactive TCR (HJ1Tg) in the ApoE-deficient background (hCD1Tg HJ1Tg Apoe–/– mice) to determine the role of CD1-autoreactive T cells in hyperlipidemia-associated inflammatory diseases. We found that hCD1Tg HJ1Tg Apoe–/– mice spontaneously developed psoriasiform skin inflammation characterized by T cell and neutrophil infiltration and a Th17-biased cytokine response. Anti–IL-17A treatment ameliorated skin inflammation in vivo. Additionally, phospholipids and cholesterol preferentially accumulated in diseased skin and these autoantigens directly activated CD1b-autoreactive HJ1 T cells. Furthermore, hyperlipidemic serum enhanced IL-6 secretion by CD1b+ DCs and increased IL-17A production by HJ1 T cells. In psoriatic patients, the frequency of CD1b-autoreactive T cells was increased compared with that in healthy controls. Thus, this study has demonstrated the pathogenic role of CD1b-autoreactive T cells under hyperlipidemic conditions in a mouse model of spontaneous skin inflammation. As a large proportion of psoriatic patients are dyslipidemic, this finding is of clinical significance and indicates that self-lipid–reactive T cells might serve as a possible link between hyperlipidemia and psoriasis. PMID:28463230

  7. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation

    PubMed Central

    Tohyama, Takeshi; Kawada, Toru; Kishi, Takuya; Yoshida, Keimei; Nishikawa, Takuya; Mannoji, Hiroshi; Kamada, Kazuhiro; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2018-01-01

    Background Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Methods Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. Results In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. Conclusions LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the

  8. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    PubMed

    Tohyama, Takeshi; Saku, Keita; Kawada, Toru; Kishi, Takuya; Yoshida, Keimei; Nishikawa, Takuya; Mannoji, Hiroshi; Kamada, Kazuhiro; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2018-01-01

    Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and suppressed

  9. [Clinical features and management of acute myositis in idiopathic orbital inflammation].

    PubMed

    Halimi, E; Rosenberg, R; Wavreille, O; Bouckehove, S; Franquet, N; Labalette, P

    2013-09-01

    Acute myositis is the second most common component of non-specific orbital inflammation. We will describe its clinical features and natural history. This is a retrospective study of 10 cases. The diagnosis of acute myositis was based on clinical and imaging criteria. Our study includes five men and five women. The average age was 35.8 years (17-59 years). Clinical symptoms were: pain increased on eye movement (10/10), diplopia (4/10), proptosis (6/10), visual loss (3/10), lid edema (6/10), conjunctival hyperemia (7/10), anterior scleritis (2/10), episcleritis (2/10), chemosis (4/10), upper lid retraction (1/10), limitation of eye movement (3/10), fundus abnormalities (2/10). Imaging showed thickening of one or more extraocular muscles (10/10). Recovery was complete with anti-inflammatory therapy in six patients. Three patients experienced recurrence, and one patient had a clinical rebound upon tapering the treatment. Acute myositis can be defined by pain on eye movement, signs of inflammation, and extraocular muscle thickening on imaging. If the clinical presentation is typical, histopathological analysis can be deferred but remains necessary in cases of poor response to treatment, chronic duration or suspicion of tumor infiltration. The diagnosis of acute myositis may be suspected in the presence of consistent, well-defined clinical signs. Contiguous inflammation is often associated. Treatment is based on steroids or non-steroidal treatment anti-inflammatory therapy, administered alone or consecutively. Recurrences are frequent but do not alter the final prognosis. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Anti-inflammatory activity effect of 2-substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole on TPA-induced skin inflammation in mice.

    PubMed

    Xu, Xue-Tao; Mou, Xue-Qing; Xi, Qin-Mei; Liu, Wei-Ting; Liu, Wen-Feng; Sheng, Zhao-Jun; Zheng, Xi; Zhang, Kun; Du, Zhi-Yun; Zhao, Su-Qing; Wang, Shao-Hua

    2016-11-01

    2-Substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole, a key structural moiety exiting in many bioactive molecules, has been shown to have excellent selective activity on COX-2. In the present study, the anti-inflammatory activity and the underlying molecular mechanism of 2-substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole on skin inflammation were assessed by 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice. Most of the compounds showed anti-inflammatory activity on TPA-induced skin inflammation. The anti-inflammatory activity of compound 4 showed higher anti-inflammatory activity than celecoxib (3.2-fold). Compound 4 pretreatment resulted in markedly suppression of TPA-induced IL-1β, IL-6, TNF-α, and COX-2, respectively. Furthermore, the mechanical study indicated that the anti-inflammatory activity of compound 4 was associated with its ability to inhibit activation of factor kappa-κB (NF-κB) by blocking IκB kinase (IKK) activities. Accordingly, compound 4 could be used as a potential anti-inflammatory agent for skin inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Potent inhibitory effect of silibinin from milk thistle on skin inflammation stimuli by 12-O-tetradecanoylphorbol-13-acetate.

    PubMed

    Liu, Wenfeng; Li, Yonglian; Zheng, Xi; Zhang, Kun; Du, Zhiyun

    2015-12-01

    Silibinin, a major polyphenol in milk thistle, has been reported to have multiple pharmacological activities; therefore, there is an urgent need to well understand how silibinin works on inflammation-associated skin diseases. We herein designed silibinin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated skin inflammation to test its inhibitory effects. It was demonstrated that silibinin, applied topically onto mouse ears following TPA stimulation, effectively down-regulated the expressions of TPA-induced interleukin-1β (IL-1β), interleukin-6 (IL-6), necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Further mechanistic investigations indicated that silibinin suppressed the expression of IκB kinase (IKK) by inhibiting the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, and thereby suppressing TPA-stimulated nuclear factor-κB (NF-κB) activation. Promisingly, silibinin, used for transdermal application, may be a potent naturally occurring anti-inflammatory agent for the prevention of inflammation-associated skin diseases.

  12. Inflammation in CRPS: role of the sympathetic supply.

    PubMed

    Schlereth, Tanja; Drummond, Peter D; Birklein, Frank

    2014-05-01

    Acute Complex Regional Pain Syndrome (CRPS) is associated with signs of inflammation such as increased skin temperature, oedema, skin colour changes and pain. Pro-inflammatory cytokines (tumour necrosis factor-α (TNF-α), interleukin-2 (IL-2), IL-1beta, IL-6) are up-regulated, whereas anti-inflammatory cytokines (IL-4, IL-10) are diminished. Adaptive immunity seems to be involved in CRPS pathophysiology as many patients have autoantibodies directed against β2 adrenergic and muscarinic-2 receptors. In an animal tibial fracture model changes in the innate immune response such as up-regulation of keratinocytes are also found. Additionally, CRPS is accompanied by increased neurogenic inflammation which depends mainly on neuropeptides such as CGRP and Substance P. Besides inflammatory signs, sympathetic nervous system involvement in CRPS results in cool skin, increased sweating and sympathetically-maintained pain. The norepinephrine level is lower in the CRPS-affected than contralateral limb, but sympathetic sprouting and up-regulation of alpha-adrenoceptors may result in an adrenergic supersensitivity. The sympathetic nervous system and inflammation interact: norepinephrine influences the immune system and the production of cytokines. There is substantial evidence that this interaction contributes to the pathophysiology and clinical presentation of CRPS, but this interaction is not straightforward. How inflammation in CRPS might be exaggerated by sympathetic transmitters requires further elucidation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Systemic metabolic signaling in acute and chronic gastrointestinal inflammation of inflammatory bowel diseases.

    PubMed

    Karrasch, T; Obermeier, F; Straub, R H

    2014-06-01

    Acute and chronic intestinal inflammation stimulates innate and adaptive immune systems, thereby increasing energy demand of activated immune cells. Energy regulation by systemically released mediators is of critical importance for homeostasis. We wanted to find out how systemic metabolic mediators are affected during intestinal inflammation. A total of 123 patients suffering from Crohn's disease (CD), 76 patients with ulcerative colitis (UC), and 21 healthy controls were recruited. Patients receiving systemic steroids or therapy regimens including biologicals (anti-TNF) were excluded from the study. Serum levels of IL-6, CRP, insulin, glucose, free fatty acid, and RBP-4 were measured by ELISA and RIA. Intestinal inflammation was accompanied by elevated systemic inflammatory para-meters such as IL-6 and CRP in UC and CD and, concomitantly, with elevated insulin levels and increased insulin/glucose ratio in patients with UC. This indicates insulin resistance in liver, muscle, and fat. In addition, intestinal inflammation was associated with elevated levels of circulating free fatty acids in UC and CD, indicating an activation of the organism's appeal for energy-rich substrates (energy appeal reaction). RBP-4 serum levels were also high in acute and chronic intestinal inflammation in UC and CD, which can support insulin resistance. The organism's "energy appeal reaction" in response to acute and chronic inflammation provides free energy in the circulation, which is needed by inflammatory cells. A major mechanism of the redirection program is insulin resistance. New therapeutic strategies might be developed in the future, directly impacting on the storage and utilization of energy-rich fuels. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Cefradine blocks solar-ultraviolet induced skin inflammation through direct inhibition of T-LAK cell-originated protein kinase

    PubMed Central

    Ke, Changshu; Zhang, Guiping; Xiao, Juanjuan; Wu, Dan; Zeng, Xiaoyu; Chen, Jingwen; Guo, Jinguang; Zhou, Jie; Shi, Fei; Zhu, Feng

    2016-01-01

    Skin inflammation, and skin cancer induced by excessive solar ultraviolet (SUV) is a great threat to human health. SUV induced skin inflammation through activating p38 mitogen-activated protein kinase (p38) and c-Jun N-termeinal kinases (JNKs). T-LAK cell-originated protein kinase (TOPK) plays an important role in this process. Herein, the clinical data showed TOPK, phospho-p38, phospho-JNKs were highly expressed in human solar dermatitis. Ex vivo studies showed that SUV induced the phosphorylation of p38 and JNKs in HaCat and JB6 cells in a dose and time dependent manner. Molecule docking model indicated cefradine, an FDA-approved cephalosporin antibiotic, directly binds with TOPK. The result of in vitro binding assay verified cefradine can directly bind with TOPK. In vitro kinase results showed cefradine can inhibit TOPK activity. Ex vivo studies further showed cefradine inhibited SUV-induced the phosphorylation level of p38, JNKs and H2AX through inhibiting TOPK activity in a dose and time dependent manner, and cefradine inhibited the secretion of IL6 and TNF-α in HaCat and JB6 cells. In vivo studies showed that cefradine down-regulated SUV-induced the phosphorylation of p38, JNKs and H2AX and inhibited the secretion of IL6 and TNF-α in Babl/c mice. These results indicated that cefradine can inhibit SUV-induced skin inflammation by blocking TOPK signaling pathway, and TOPK is an effective target for suppressing inflammation induced by SUV irradiation. PMID:27016423

  15. Regulatory cells induced by acute toxoplasmosis prevent the development of allergic lung inflammation.

    PubMed

    Fenoy, Ignacio M; Sanchez, Vanesa R; Soto, Ariadna S; Picchio, Mariano S; Maglioco, Andrea; Corigliano, Mariana G; Dran, Graciela I; Martin, Valentina; Goldman, Alejandra

    2015-05-01

    The increased prevalence of allergies in developed countries has been attributed to a reduction of some infections. Supporting epidemiological studies, we previously showed that both acute and chronic Toxoplasma gondii infection can diminish allergic airway inflammation in BALB/c mice. The mechanisms involved when sensitization occurs during acute phase would be related to the strong Th1 response induced by the parasite. Here, we further investigated the mechanisms involved in T. gondii allergy protection in mice sensitized during acute T. gondii infection. Adoptive transference assays and ex vivo co-cultures experiments showed that not only thoracic lymph node cells from infected and sensitized mice but also from non-sensitized infected animals diminished both allergic lung inflammation and the proliferation of effector T cells from allergic mice. This ability was found to be contact-independent and correlated with high levels of CD4(+)FoxP3(+) cells. IL-10 would not be involved in allergy suppression since IL-10-deficient mice behaved similar to wild type mice. Our results extend earlier work and show that, in addition to immune deviation, acute T. gondii infection can suppress allergic airway inflammation through immune suppression. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. The effect of vitamin E on acute skin reaction caused by radiotherapy.

    PubMed

    Dirier, A; Akmansu, M; Bora, H; Gurer, M

    2007-09-01

    Ionizing radiation affects healthy organs and tissues as well as diseased tissues during radiation therapy. Skin reactions varying from acute erythema to necrosis can be seen. It has been found that vitamin E can prevent mutagenic and/or carcinogenic effects of ionizing radiation in both animals and cell cultures. This study investigated the preventative effect of antioxidant vitamin E on irradiation-induced acute skin reactions. No protective effect of vitamin E was demonstrated. It is possible that the vehicle induced free radical exposure in the irradiated skin.

  17. Role of inflammation and its mediators in acute ischemic stroke

    PubMed Central

    Jin, Rong; Liu, Lin; Zhang, Shihao; Nanda, Anil; Li, Guohong

    2013-01-01

    Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Increasing evidence suggests that inflammatory response is a double-edged sword, as it not only exacerbates secondary brain injury in the acute stage of stroke but also beneficially contributes to brain recovery after stroke. In this article, we provide an overview on the role of inflammation and its mediators in acute ischemic stroke. We discuss various pro-inflammatory and anti-inflammatory responses in different phases after ischemic stroke and the possible reasons for their failures in clinical trials. Undoubtedly, there is still much to be done in order to translate promising pre-clinical findings into clinical practice. A better understanding of the dynamic balance between pro- and anti-inflammatory responses and identifying the discrepancies between pre-clinical studies and clinical trials may serve as a basis for designing effective therapies. PMID:24006091

  18. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes.

    PubMed

    Rebane, Ana; Runnel, Toomas; Aab, Alar; Maslovskaja, Julia; Rückert, Beate; Zimmermann, Maya; Plaas, Mario; Kärner, Jaanika; Treis, Angela; Pihlap, Maire; Haljasorg, Uku; Hermann, Helen; Nagy, Nikoletta; Kemeny, Lajos; Erm, Triin; Kingo, Külli; Li, Mei; Boldin, Mark P; Akdis, Cezmi A

    2014-10-01

    Chronic skin inflammation in atopic dermatitis (AD) is associated with elevated expression of proinflammatory genes and activation of innate immune responses in keratinocytes. microRNAs (miRNAs) are short, single-stranded RNA molecules that silence genes via the degradation of target mRNAs or inhibition of translation. The aim of this study was to investigate the role of miR-146a in skin inflammation in AD. RNA and protein expression was analyzed using miRNA and mRNA arrays, RT-quantitative PCR, Western blotting, and immunonohistochemistry. Transfection of miR-146a precursors and inhibitors into human primary keratinocytes, luciferase assays, and MC903-dependent mouse model of AD were used to study miR-146a function. We show that miR-146a expression is increased in keratinocytes and chronic lesional skin of patients with AD. miR-146a inhibited the expression of numerous proinflammatory factors, including IFN-γ-inducible and AD-associated genes CCL5, CCL8, and ubiquitin D (UBD) in human primary keratinocytes stimulated with IFN-γ, TNF-α, or IL-1β. In a mouse model of AD, miR-146a-deficient mice developed stronger inflammation characterized by increased accumulation of infiltrating cells in the dermis, elevated expression of IFN-γ, CCL5, CCL8, and UBD in the skin, and IFN-γ, IL-1β, and UBD in draining lymph nodes. Both tissue culture and in vivo experiments in mice demonstrated that miR-146a-mediated suppression in allergic skin inflammation partially occurs through direct targeting of upstream nuclear factor kappa B signal transducers caspase recruitment domain-containing protein 10 and IL-1 receptor-associated kinase 1. In addition, human CCL5 was determined as a novel, direct target of miR-146a. Our data demonstrate that miR-146a controls nuclear factor kappa B-dependent inflammatory responses in keratinocytes and chronic skin inflammation in AD. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights

  19. Cancer-promoting effect of capsaicin on DMBA/TPA-induced skin tumorigenesis by modulating inflammation, Erk and p38 in mice.

    PubMed

    Liu, Zhaoguo; Zhu, Pingting; Tao, Yu; Shen, Cunsi; Wang, Siliang; Zhao, Lingang; Wu, Hongyan; Fan, Fangtian; Lin, Chao; Chen, Chen; Zhu, Zhijie; Wei, Zhonghong; Sun, Lihua; Liu, Yuping; Wang, Aiyun; Lu, Yin

    2015-07-01

    Epidemiologic and animal studies revealed that capsaicin (8-methyl-N-vanillyl-6-noneamide) can act as a carcinogen or cocarcinogen. However, the influence of consumption of capsaicin-containing foods or vegetables on skin cancer patients remains largely unknown. In the present study, we demonstrated that capsaicin has a cocarcinogenic effect on 9, 10-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis. Our results showed that topical application of capsaicin on the dorsal skin of DMBA-initiated and TPA-promoted mice could significantly accelerate tumor formation and growth and induce more and larger skin tumors than the model group (DMBA + TPA). Moreover, capsaicin could promote TPA-induced skin hyperplasia and tumor proliferation. Mechanistic study found that inflammation-related factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were highly elevated by pretreatment with capsaicin, suggesting an inflammation-dependent mechanism. Furthermore, mice that were administered capsaicin exhibited significant up-regulation of phosphorylation of nuclear factor kappaB (NF-κB), Erk and p38 but had no effect on JNK. Thus, our results indicated that inflammation, Erk and P38 collectively played a crucial role in cancer-promoting effect of capsaicin on carcinogen-induced skin cancer in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Dysregulation of Suppressor of Cytokine Signaling 3 in Keratinocytes Causes Skin Inflammation Mediated by Interleukin-20 Receptor-Related Cytokines

    PubMed Central

    Uto-Konomi, Ayako; Miyauchi, Kosuke; Ozaki, Naoko; Motomura, Yasutaka; Suzuki, Yoshie; Yoshimura, Akihiko; Suzuki, Shinobu; Cua, Daniel; Kubo, Masato

    2012-01-01

    Homeostatic regulation of epidermal keratinocytes is controlled by the local cytokine milieu. However, a role for suppressor of cytokine signaling (SOCS), a negative feedback regulator of cytokine networks, in skin homeostasis remains unclear. Keratinocyte specific deletion of Socs3 (Socs3 cKO) caused severe skin inflammation with hyper-production of IgE, epidermal hyperplasia, and S100A8/9 expression, although Socs1 deletion caused no inflammation. The inflamed skin showed constitutive STAT3 activation and up-regulation of IL-6 and IL-20 receptor (IL-20R) related cytokines, IL-19, IL-20 and IL-24. Disease development was rescued by deletion of the Il6 gene, but not by the deletion of Il23, Il4r, or Rag1 genes. The expression of IL-6 in Socs3 cKO keratinocytes increased expression of IL-20R-related cytokines that further facilitated STAT3 hyperactivation, epidermal hyperplasia and neutrophilia. These results demonstrate that skin homeostasis is strictly regulated by the IL-6-STAT3-SOCS3 axis. Moreover, the SOCS3-mediated negative feedback loop in keratinocytes has a critical mechanistic role in the prevention of skin inflammation caused by hyperactivation of STAT3. PMID:22792286

  1. Protective effect of Clerodendrum colebrookianum Walp., on acute and chronic inflammation in rats

    PubMed Central

    Deb, Lokesh; Dey, Amitabha; Sakthivel, G.; Bhattamishra, Subrat Kumar; Dutta, Amitsankar

    2013-01-01

    Aim: To evaluate antioxidant, anti-inflammatory potential of the aqueous extracts and its aqueous, n-butanol, ethyl-acetate, and chloroform fractions of Clerodendrum colebrookianum Walp. leaves. Materials and Methods: In this present study, all the test samples were evaluated on in-vivo inflammatory model such as carrageenan and histamine-induced acute-inflammation and cotton pellet induced granuloma formation in albino male rats. Test samples were also employed in in-vitro assays like DPPH* free radical scavenging activity and COX inhibition assay. Results: The test samples at the dose of 200mg/kg/p.o. were found to cause significant inhibition of carrageenan and histamine-induced inflammation and cotton pallet-induced granuloma formation on acute and chronic inflammation in rats. The test samples, except n-butanol fraction, exhibited inhibitory effect for both COX-1 and COX-2, in in-vitro assay but their percentage of inhibition values differs from each other. The test samples (aqueous extracts, aqueous, n-butanol, ethyl-acetate, and chloroform fractions) at 100 μg concentration exhibits 54.37%, 33.88%, 62.85%, 56.28%, and 57.48% DPPH* radical-scavenging effect respectively in in-vitro antioxidant study. Conclusion: These observations established the anti-inflammatory effect of C. colebrookianum leaves in acute and chronic stages of inflammation by free radical scavenging and inhibition of COX-1 and COX-2. PMID:24014914

  2. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts.

    PubMed

    Uluçkan, Özge; Jimenez, Maria; Karbach, Susanne; Jeschke, Anke; Graña, Osvaldo; Keller, Johannes; Busse, Björn; Croxford, Andrew L; Finzel, Stephanie; Koenders, Marije; van den Berg, Wim; Schinke, Thorsten; Amling, Michael; Waisman, Ari; Schett, Georg; Wagner, Erwin F

    2016-03-16

    Inflammation has important roles in tissue regeneration, autoimmunity, and cancer. Different inflammatory stimuli can lead to bone loss by mechanisms that are not well understood. We show that skin inflammation induces bone loss in mice and humans. In psoriasis, one of the prototypic IL-17A-mediated inflammatory human skin diseases, low bone formation and bone loss correlated with increased serum IL-17A levels. Similarly, in two mouse models with chronic IL-17A-mediated skin inflammation,K14-IL17A(ind)andJunB(Δep), strong inhibition of bone formation was observed, different from classical inflammatory bone loss where osteoclast activation leads to bone degradation. We show that under inflammatory conditions, skin-resident cells such as keratinocytes, γδ T cells, and innate lymphoid cells were able to express IL-17A, which acted systemically to inhibit osteoblast and osteocyte function by a mechanism involving Wnt signaling. IL-17A led to decreased Wnt signaling in vitro, and importantly, pharmacological blockade of IL-17A rescued Wnt target gene expression and bone formation in vivo. These data provide a mechanism where IL-17A affects bone formation by regulating Wnt signaling in osteoblasts and osteocytes. This study suggests that using IL-17A blocking agents in psoriasis could be beneficial against bone loss in these patients. Copyright © 2016, American Association for the Advancement of Science.

  3. Effect of Ergothioneine on Acute Lung Injury and Inflammation in Cytokine Insufflated Rats

    PubMed Central

    Repine, John E.; Elkins, Nancy D.

    2012-01-01

    Objective The Acute Respiratory Distress Syndrome (ARDS), the most severe form of Acute Lung Injury (ALI), is a highly-fatal, diffuse non-cardiogenic edematous lung disorder. The pathogenesis of ARDS is unknown but lung inflammation and lung oxidative stress are likely contributing factors. Since no specific pharmacologic intervention exists for ARDS, our objective was to determine the effect of treatment with ergothioneine---a safe agent with multiple anti-inflammatory and antioxidant properties on the development of lung injury and inflammation in rats insufflated with cytokines found in lung lavages of ARDS patients. Method Sprague-Dawley rats (3-10/group) were given 15 mg/kg or 150 mg/kg L-ergothioneine intravenously 1 hour before or 18 hours after cytokine (IL-1 and IFNγ) insufflation. Lung injury (lavage LDH levels) and lung inflammation (lavage neutrophil numbers) were measured 24 hours after cytokine insufflation. Results Ergothioneine pre- and post- treatment generally decreased lung injury and lung inflammation in cytokine insufflated rats. Conclusion Ergothioneine should be considered for additional testing as a potential therapy for treating and preventing ARDS. PMID:22197759

  4. Pyrrolidine dithiocarbamate attenuates the development of acute and chronic inflammation

    PubMed Central

    Cuzzocrea, Salvatore; Chatterjee, Prabal K; Mazzon, Emanuela; Dugo, Laura; Serraino, Ivana; Britti, Domenico; Mazzullo, Giuseppe; Caputi, Achille P; Thiemermann, Christoph

    2002-01-01

    The nuclear factor-κB (NF-κB) is a transcription factor which plays a pivotal role in the induction of genes involved in physiological processes as well as in the response to injury and inflammation. Dithiocarbamates are antioxidants which are potent inhibitors of NF-κB. We postulated that pyrrolidine dithiocarbamate (PDTC) would attenuate inflammation. In the present study we investigate the effects of PDTC in animal models of acute and chronic inflammation (carrageenan-induced pleurisy and collagen-induced arthritis). We report here for the first time that PDTC (given at 100, 30 or 10 mg kg−1 i.p. in the pleurisy model or at 10 mg kg−1 i.p. every 48 h in the arthritis model) exerts potent anti-inflammatory effects (e.g. significant reduction of (A) pleural exudate formation, (B) polymorphonuclear cell infiltration, (C) lipid peroxidation, (D) inducible nitric oxide synthase (iNOS) activity and nitric oxide production (E) plasma and pleural exudates levels of interleukin-1β and tumour necrosis factor-α, (F) histological injury and (G) delayed development of clinical indicators). Furthermore, PDTC reduced immunohistochemical evidence of (A) formation of nitrotyrosine, (B) activation of poly (ADP-ribose) polymerase (PARP), (C) expression of iNOS and (D) expression of cyclo-oxygenase-2 (COX-2) in the lungs of carrageenan-treated mice and in the joints from collagen-treated mice. Additionally, Western blotting and immunohistochemical analysis of lung tissue revealed that PDTC prevented degradation of IKB-α and translocation of NF-κB from the cytoplasm into the nucleus. Taken together, our results clearly demonstrate that prevention of the activation of NF-κB by PDTC reduces the development of acute and chronic inflammation. Therefore, inhibition of NF-κB may represent a novel approach for the therapy of inflammation. PMID:11815386

  5. Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin.

    PubMed

    Kiss, Alexi; Koppel, Aaron C; Anders, Joanna; Cataisson, Christophe; Yuspa, Stuart H; Blumenberg, Miroslav; Efimova, Tatiana

    2016-05-01

    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment. © 2015 Wiley

  6. Blocking fatty acid-fueled mROS production within macrophages alleviates acute gouty inflammation.

    PubMed

    Hall, Christopher J; Sanderson, Leslie E; Lawrence, Lisa M; Pool, Bregina; van der Kroef, Maarten; Ashimbayeva, Elina; Britto, Denver; Harper, Jacquie L; Lieschke, Graham J; Astin, Jonathan W; Crosier, Kathryn E; Dalbeth, Nicola; Crosier, Philip S

    2018-05-01

    Gout is the most common inflammatory arthritis affecting men. Acute gouty inflammation is triggered by monosodium urate (MSU) crystal deposition in and around joints that activates macrophages into a proinflammatory state, resulting in neutrophil recruitment. A complete understanding of how MSU crystals activate macrophages in vivo has been difficult because of limitations of live imaging this process in traditional animal models. By live imaging the macrophage and neutrophil response to MSU crystals within an intact host (larval zebrafish), we reveal that macrophage activation requires mitochondrial ROS (mROS) generated through fatty acid oxidation. This mitochondrial source of ROS contributes to NF-κB-driven production of IL-1β and TNF-α, which promote neutrophil recruitment. We demonstrate the therapeutic utility of this discovery by showing that this mechanism is conserved in human macrophages and, via pharmacologic blockade, that it contributes to neutrophil recruitment in a mouse model of acute gouty inflammation. To our knowledge, this study is the first to uncover an immunometabolic mechanism of macrophage activation that operates during acute gouty inflammation. Targeting this pathway holds promise in the management of gout and, potentially, other macrophage-driven diseases.

  7. Low-Grade Inflammation and Ambulatory Cortisol in Adolescents: Interaction Between Interviewer-Rated Versus Self-Rated Acute Stress and Chronic Stress.

    PubMed

    Schreier, Hannah M C; Chen, Edith

    To determine whether the association between self-rated or interviewer-rated recent acute stress exposures and low-grade inflammation and daily cortisol production in adolescents is moderated by chronic stress ratings. Acute and chronic stress exposures were assessed in 261 adolescents aged 13 to 16 years using a semistructured life stress interview. The negative impact of acute stressors was independently rated by both adolescents (self-rated) and interviewers (interviewer-rated). Markers of inflammation (interleukin (IL)-6, IL-1ra, C-reactive protein) were measured from peripheral blood samples obtained via antecubital venipuncture. Participants collected 4 saliva samples at home on each of 6 consecutive days for the analysis of diurnal salivary cortisol profiles. There were no main effects of acute stressors (self- and interviewer-rated) and chronic family or peer stress on adolescent inflammation markers and cortisol (p values > .10). However, the interaction between interviewer-rated acute stress and chronic family stress was significantly associated with adolescent inflammation markers (IL-6, IL-1ra). Specifically, as chronic family stress increased, the association between acute stressor impact (interviewer-rated) and inflammation markers became more positive (IL-6 (B = .054, SE = .023, p = .022); IL-1ra (B = .030, SE = .014, p = .034)). Interactions between self-rated acute stress and chronic family stress were not associated with any biological measures (p values > .10). Interactions between acute stressor impact (both self- and interviewer-rated) and chronic peer stress were also not significantly associated with any biological measures (p values > .05). Among adolescents, interviewer-based ratings of acute stressor impact may allow for better prediction of health-relevant inflammation markers than adolescents' own ratings.

  8. Low-Grade Inflammation and Ambulatory Cortisol in Adolescents: Interaction between Interviewer-rated versus Self-rated Acute Stress and Chronic Stress

    PubMed Central

    Schreier, Hannah M. C.; Chen, Edith

    2016-01-01

    Objective To determine whether the association between self-rated or interviewer-rated recent acute stress exposures and low-grade inflammation and daily cortisol production in adolescents is moderated by chronic stress ratings. Methods Acute and chronic stress exposures were assessed in 261 adolescents aged 13-16 using a semi-structured life stress interview. The negative impact of acute stressors was independently rated by both adolescents (self-rated) and interviewers (interviewer-rated). Markers of inflammation (IL-6, IL-1ra, CRP) were measured from peripheral blood samples obtained via antecubital venipuncture. Participants collected 4 saliva samples at home on each of six consecutive days for the analysis of diurnal salivary cortisol profiles. Results There were no main effects of acute stressors (self- and interviewer-rated) and chronic family or peer stress on adolescent inflammation markers and cortisol (ps > .10). However, the interaction between interviewer-rated acute stress and chronic family stress was significantly associated with adolescent inflammation markers (IL-6, IL-1ra). Specifically, as chronic family stress increased, the association between acute stressor impact (interviewer-rated) and inflammation markers became more positive (IL-6 (B = .054, SE = .023, p = .022); IL-1ra (B = .030, SE = .014, p = .034)). Interactions between self-rated acute stress and chronic family stress were not associated with any biological measures (ps > .10). Interactions between acute stressor impact (both self- and interviewer-rated) and chronic peer stress were also not significantly associated with any biological measures (ps > .05). Conclusions Among adolescents, interviewer-based ratings of acute stressor impact may allow for better prediction of health-relevant inflammation markers than adolescents’ own ratings. PMID:27490853

  9. Effects of acute systemic inflammation on the interplay between sad mood and affective cognition.

    PubMed

    Benson, Sven; Brinkhoff, Alexandra; Lueg, Larissa; Roderigo, Till; Kribben, Andreas; Wilde, Benjamin; Witzke, Oliver; Engler, Harald; Schedlowski, Manfred; Elsenbruch, Sigrid

    2017-12-11

    Experimental endotoxemia is a translational model to study inflammatory mechanisms involved in the pathophysiology of mood disorders including depression. Disturbed affective cognition constitutes a core aspect in depression, but has never been studied in the context of inflammation. We combined experimental endotoxemia with an established experimental mood induction procedure to assess the interaction between acute inflammation and sad mood and their effects on affective cognition. In this randomized cross-over study, N = 15 healthy males received endotoxin (0.8 ng/kg lipopolysaccharide iv) on one study day and placebo an otherwise identical study day. The affective Go/Nogo task was conducted after experimental induction of neutral and sad mood. Inflammatory markers were assessed hourly. Endotoxin application induced a transient systemic inflammation, characterized by increased leukocyte counts, TNF-alpha and interleukin-6 plasma concentrations (all p < 0.01, interaction effects). Mood induction led to greater sadness ratings, with highest ratings when sad mood was induced during inflammation (p < 0.05, interaction effect). Based on a 2 (endotoxin vs. placebo) × 2 (sad vs. neutral mood) × 2 (sad vs. happy Go/Nogo target words) factorial design, we observed a significant target × endotoxin condition interaction (p < 0.01) reflecting slower responses to sad targets during endotoxemia. Additionally, we found a valence × mood interaction (p < 0.05), reflecting slower reaction times to sad targets in sad mood. In summary, acute inflammation and sad mood are risk factors for disturbed affective cognition. The results may reflect a mood-congruency effect, with prolonged and sustained processing of mood-congruent information during acute inflammation, which may contribute to depression risk.

  10. Counterregulation between thymic stromal lymphopoietin- and IL-23-driven immune axes shapes skin inflammation in mice with epidermal barrier defects.

    PubMed

    Li, Jiagui; Leyva-Castillo, Juan Manuel; Hener, Pierre; Eisenmann, Aurelie; Zaafouri, Sarra; Jonca, Nathalie; Serre, Guy; Birling, Marie-Christine; Li, Mei

    2016-07-01

    Epidermal barrier dysfunction has been recognized as a critical factor in the initiation and exacerbation of skin inflammation, particularly in patients with atopic dermatitis (AD) and AD-like congenital disorders, including peeling skin syndrome type B. However, inflammatory responses developed in barrier-defective skin, as well as the underlying mechanisms, remained incompletely understood. We aimed to decipher inflammatory axes and the cytokine network in mouse skin on breakdown of epidermal stratum corneum barrier. We generated Cdsn(iep-/-) mice with corneodesmosin ablation in keratinocytes selectively in an inducible manner. We characterized inflammatory responses and cytokine expression by using histology, immunohistochemistry, ELISA, and quantitative PCR. We combined mouse genetic tools, antibody-mediated neutralization, signal-blocking reagents, and topical antibiotic treatment to explore the inflammatory axes. We show that on breakdown of the epidermal stratum corneum barrier, type 2 and type 17 inflammatory responses are developed simultaneously, driven by thymic stromal lymphopoietin (TSLP) and IL-23, respectively. Importantly, we reveal a counterregulation between these 2 inflammatory axes. Furthermore, we show that protease-activated receptor 2 signaling is involved in mediating the TSLP/type 2 axis, whereas skin bacteria are engaged in induction of the IL-23/type 17 axis. Moreover, we find that IL-1β is induced in skin of Cdsn(iep-/-) mice and that blockade of IL-1 signaling suppresses both TSLP and IL-23 expression and ameliorates skin inflammation. The inflammatory phenotype in barrier-defective skin is shaped by counterregulation between the TSLP/type 2 and IL-23/type 17 axes. Targeting IL-1 signaling could be a promising therapeutic option for controlling skin inflammation in patients with peeling skin syndrome type B and other diseases related to epidermal barrier dysfunction, including AD. Copyright © 2016 American Academy of Allergy, Asthma

  11. Stress-Induced Neurogenic Inflammation in Murine Skin Skews Dendritic Cells Towards Maturation and Migration

    PubMed Central

    Joachim, Ricarda Alcira; Handjiski, Bori; Blois, Sandra Maria; Hagen, Evelin; Paus, Ralf; Arck, Petra Clara

    2008-01-01

    The skin continuously serves as a biosensor of multiple exogenous stressors and integrates the resulting responses with an individual’s central and peripheral endogenous response systems to perceived stress; it also acts to protect against external challenges such as wounding and infection. We have previously shown in mice that stress induces nerve growth factor- and substance P-dependent neurogenic inflammation, which includes the prominent clustering of MHC class II+ cells. Because the contribution of dendritic cells (DCs) in response to stress is not well understood, we examined the role of DCs in neurogenic inflammation in murine skin using a well-established murine stress model. We show that sound stress increases the number of intradermal langerin+ and CD11c+ DCs and induces DC maturation, as indicated by the up-regulated expression of CD11c, MHC class II, and intercellular adhesion molecule-1 (ICAM-1). Blocking of ICAM-1/leukocyte function-associated antigen-1 interactions significantly abrogated the stress-induced numeric increase, maturation, and migration of dermal DCs in vivo and also reduced stress-induced keratinocyte apoptosis and endothelial cell expression of ICAM-1. In conclusion, stress exposure causes a state of immune alertness in the skin. Such adaptation processes may ensure protection from possible infections on wounding by stressors, such as attack by predators. However, present-day stressors have changed and such adaptations appear redundant and may overrun skin homeostasis by inducing immune dermatoses. PMID:18832583

  12. Evaluation of the role of the cyclooxygenase signaling pathway during inflammation in skin and muscle tissues of ball pythons (Python regius).

    PubMed

    Sadler, Ryan A; Schumacher, Juergen P; Rathore, Kusum; Newkirk, Kim M; Cole, Grayson; Seibert, Rachel; Cekanova, Maria

    2016-05-01

    OBJECTIVE To determine degrees of production of cyclooxygenase (COX)-1 and -2 and other mediators of inflammation in noninflamed and inflamed skin and muscle tissues in ball pythons (Python regius). ANIMALS 6 healthy adult male ball pythons. PROCEDURES Biopsy specimens of noninflamed skin and muscle tissue were collected from anesthetized snakes on day 0. A 2-cm skin and muscle incision was then made 5 cm distal to the biopsy sites with a CO2 laser to induce inflammation. On day 7, biopsy specimens of skin and muscle tissues were collected from the incision sites. Inflamed and noninflamed tissue specimens were evaluated for production of COX-1, COX-2, phosphorylated protein kinase B (AKT), total AKT, nuclear factor κ-light-chain-enhancer of activated B cells, phosphorylated extracellular receptor kinases (ERKs) 1 and 2, and total ERK proteins by western blot analysis. Histologic evaluation was performed on H&E-stained tissue sections. RESULTS All biopsy specimens of inflamed skin and muscle tissues had higher histologic inflammation scores than did specimens of noninflamed tissue. Inflamed skin specimens had significantly greater production of COX-1 and phosphorylated ERK than did noninflamed skin specimens. Inflamed muscle specimens had significantly greater production of phosphorylated ERK and phosphorylated AKT, significantly lower production of COX-1, and no difference in production of COX-2, compared with production in noninflamed muscle specimens. CONCLUSIONS AND CLINICAL RELEVANCE Production of COX-1, but not COX-2, was significantly greater in inflamed versus noninflamed skin specimens from ball pythons. Additional research into the reptilian COX signaling pathway is warranted.

  13. Epidermal Expression and Regulation of Interleukin-33 during Homeostasis and Inflammation: Strong Species Differences.

    PubMed

    Sundnes, Olav; Pietka, Wojciech; Loos, Tamara; Sponheim, Jon; Rankin, Andrew L; Pflanz, Stefan; Bertelsen, Vibeke; Sitek, Jan C; Hol, Johanna; Haraldsen, Guttorm; Khnykin, Denis

    2015-07-01

    IL-33 is a novel IL-1 family member with a putative role in inflammatory skin disorders and a complex biology. Therefore, recent conflicting data regarding its function in experimental models justify a close assessment of its tissue expression and regulation. Indeed, we report here that there are strong species differences in the expression and regulation of epidermal IL-33. In murine epidermis, IL-33 behaved similar to an alarmin, being constitutively expressed in keratinocyte nuclei and rapidly lost during acute inflammation. By contrast, human and porcine IL-33 were weakly expressed or absent in keratinocytes of noninflamed skin but induced during acute inflammation. To this end, we observed that expression of IL-33 in human keratinocytes but not murine keratinocytes was strongly induced by IFN-γ, and this upregulation completely depended on the presence of EGFR ligands. Accordingly, IFN-γ increased the expression of IL-33 in the basal layers of the epidermis in human ex vivo skin cultures only, despite good evidence of IFN-γ activity in cultures from both species. Together these findings demonstrate that a full understanding of IL-33 function in clinical settings must take species-specific differences into account.

  14. Malondialdehyde-Derived Epitopes In Human Skin Result From Acute Exposure To Solar UV And Occur In Nonmelanoma Skin Cancer Tissue

    PubMed Central

    Williams, Joshua D.; Bermudez, Yira; Park, Sophia L.; Stratton, Steven P.; Uchida, Koji; Hurst, Craig A.; Wondrak, Georg T.

    2014-01-01

    Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than three-fold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored. PMID:24584085

  15. Malondialdehyde-derived epitopes in human skin result from acute exposure to solar UV and occur in nonmelanoma skin cancer tissue.

    PubMed

    Williams, Joshua D; Bermudez, Yira; Park, Sophia L; Stratton, Steven P; Uchida, Koji; Hurst, Craig A; Wondrak, Georg T

    2014-03-05

    Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than threefold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Pathogenesis and treatment of skin lesions caused by sulfur mustard.

    PubMed

    Poursaleh, Zohreh; Ghanei, Mostafa; Babamahmoodi, Farhang; Izadi, Morteza; Harandi, Ali Amini; Emadi, Seyed Emad; Taghavi, Nez'hat-o-Sadat; Sayad-Nouri, Seyede Somaye; Emadi, Seyed Naser

    2012-09-01

    Sulfur mustard (SM) exposure intensely causes lesions that range in severity from mild erythema to blister formation and necrosis. This review will discuss acute and long-term skin consequences due to exposure to SM and different kinds of medical prophylaxis and therapeutics against SM-induced skin lesions. Literature survey of medical case reports, clinical studies, and original articles was performed using PubMed, Medline, and the Cochrane Database (1917-2011 March). Key words included sulfur mustard, skin, toxicity, pathogenesis, cancer, treatment. SM-induced damage to the skin is characterized by edema, inflammation, and cell death mainly of the basal keratinocyte layer, with varying immunological and pathological changes in the acute phase. Also, xerosis, hypo or hyper pigmentation, scars, and rarely, skin cancers are long-term cutaneous effects. So far,the combination therapy of topical drugs and oral antihistamines, also iodine and antitumor necrosis factor alpha antibodies, are effective remedies in the treatment of skin lesions. The requirement for preparedness in the dermatological community concerning SM exposure is underlined. Novel treatments for prevention and therapeutics against SM toxicity and carcinogenicity are reviewed.

  17. Bovine Intestinal Alkaline Phosphatase Reduces Inflammation After Induction of Acute Myocardial Infarction in Mice.

    PubMed

    Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem

    2011-10-01

    There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction.

  18. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation.

    PubMed

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15ml/kg). In CCl 4 +OCA group, mice were orally with OCA (5mg/kg) 48, 24 and 1h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Extraction, characterization and evaluation of Kaempferia galanga L. (Zingiberaceae) rhizome extracts against acute and chronic inflammation in rats.

    PubMed

    Jagadish, Puralae Channabasavaiah; Latha, Kotehal Parameshwarappa; Mudgal, Jayesh; Nampurath, Gopalan Kutty

    2016-12-24

    The rhizomes of an acaulescent perennial herb, Kaempferia galanga Linn (Family: Zingiberaceae), used as traditional ayurvedic herb to get relief from indigestion, swelling, pain, high blood pressure and dyslipidemia. To prepare and characterize various extracts of Kaempferia galanga (K. galanga) for their comparative evaluation for the identification of the most efficacious extract and its possible pharmacological implication in acute and chronic inflammatory paradigm. Dried and powdered rhizome of K. galanga was subjected to alcoholic extraction as well as successive extractions with various solvents. After phytochemical characterization, all the extracts were standardized for the presence of ethyl-p-methoxycinnamate. The extracts, and the isolated compound, were tested against carrageenan-induced acute inflammation in rats. The most promising extract was tested against adjuvant-induced chronic inflammation in rats. Further, local myeloperoxidase (MPO) levels were investigated to establish the possible mechanism of action. Among the extracts, petroleum ether extract (SKG-1) and crude alcoholic extract (KG) had the maximum quantity of ethyl-p-methoxycinnamate. SKG-1 (300mg/kg) was found effective against acute inflammation in rats. Further, SKG-1 (100mg/kg) reversed the inflammation and elevated MPO levels found in the chronic model. The results suggest that among all the extracts of K. galanga, SKG-1 effectively suppresses the progression of acute and chronic inflammation in rats by inhibition of neutrophil infiltration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis

    PubMed Central

    Liu, Boyi; Escalera, Jasmine; Balakrishna, Shrilatha; Fan, Lu; Caceres, Ana I.; Robinson, Eve; Sui, Aiwei; McKay, M. Craig; McAlexander, M. Allen; Herrick, Christina A.; Jordt, Sven E.

    2013-01-01

    Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten-challenged skin of TRPA1-deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1-deficient sensory neurons were defective in SP signaling, and SP-induced scratching behavior was abolished in Trpa1−/− mice. SP receptor antagonists, such as aprepitant inhibited both hapten-induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis.—Liu, B., Escalera, J., Balakrishna, S., Fan, L., Caceres, A. I., Robinson, E., Sui, A., McKay, M. C., McAlexander, M. A., Herrick, C. A., Jordt, S. E. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. PMID:23722916

  1. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation

    PubMed Central

    Johnston, Andrew; Fritz, Yi; Dawes, Sean M.; Diaconu, Doina; Al-Attar, Paul M.; Guzman, Andrew M.; Chen, Cynthia S.; Fu, Wen; Gudjonsson, Johann E.; McCormick, Thomas S.; Ward, Nicole L.

    2013-01-01

    IL-17C is a functionally distinct member of the IL-17 family that binds IL-17RE/A to promote innate defense in epithelial cells and regulate Th17 cell differentiation. We demonstrate that IL-17C (not IL-17A) is the most abundant IL-17 isoform in lesional psoriasis skin (1058pg/ml vs. 8pg/ml; p<0.006) and localizes to keratinocytes (KCs), endothelial cells (ECs) and leukocytes. ECs stimulated with IL-17C produce increased TNFα and KCs stimulated with IL-17C/TNFα produce similar inflammatory gene response patterns as those elicited by IL-17A/TNFα, including increases in IL-17C, TNFα, IL-8, IL-1α/β, IL-1F5, IL-1F9, IL-6, IL-19, CCL20, S100A7/A8/A9, DEFB4, LCN2 and PI3 (p<0.05); indicating a positive pro-inflammatory feedback loop between the epidermis and ECs. Psoriasis patients treated with etanercept rapidly decrease cutaneous IL-17C levels, suggesting IL-17C/TNFα-mediated inflammatory signaling is critical for psoriasis pathogenesis. Mice genetically engineered to overexpress IL-17C in KCs develop well-demarcated areas of erythematous, flakey “involved” skin adjacent to areas of normal appearing “uninvolved” skin despite increased IL-17C expression in both areas (p<0.05). Uninvolved skin displays increased angiogenesis and elevated S100A8/A9expression (p<0.05) but no epidermal hyperplasia; whereas involved skin exhibits robust epidermal hyperplasia, increased angiogenesis and leukocyte infiltration and upregulated TNFα, IL-1α/β, IL-17A/F, IL-23p19, VEGF, IL-6 and CCL20 (p<0.05) suggesting that IL-17C, when coupled with other pro-inflammatory signals, initiates the development of psoriasiform dermatitis. This skin phenotype was significantly improved following 8 weeks of TNFα inhibition. These findings identify a role for IL-17C in skin inflammation and suggest a pathogenic function for the elevated IL-17C observed in lesional psoriasis skin. PMID:23359500

  2. Reevaluation of the non-lesional dry skin in atopic dermatitis by acute barrier disruption: an abnormal permeability barrier homeostasis with defective processing to generate ceramide.

    PubMed

    Sugiura, Ayumi; Nomura, Tsuyoshi; Mizuno, Atsuko; Imokawa, Genji

    2014-07-01

    Atopic dermatitis is characterized by disruption of the cutaneous barrier due to reduced ceramide levels even in non-lesional dry skin. Following further acute barrier disruption by repeated tape strippings, we re-characterized the non-lesional dry skin of subjects with atopic dermatitis, which shows significantly reduced levels of barrier function and ceramide but not of beta-glucocerebrosidase activity. For the first time, we report an abnormal trans-epidermal water loss homeostasis in which delayed recovery kinetics of trans-epidermal water loss occurred on the first day during the 4 days after acute barrier disruption compared with healthy control skin. Interestingly, whereas the higher ceramide level in the stratum corneum of healthy control skin was further significantly up-regulated at 4 days post-tape stripping, the lower ceramide level in the stratum corneum of subjects with atopic dermatitis was not significantly changed. In a parallel study, whereas beta-glucocerebrosidase activity at 4 days post-tape stripping was significantly up-regulated in healthy control skin compared with before tape stripping, the level of that activity remained substantially unchanged in atopic dermatitis. These findings indicate that subjects with atopic dermatitis have a defect in sphingolipid-metabolic processing that generates ceramide in the interface between the stratum corneum and the epidermis. The results also support the notion that the continued disruption of barrier function in atopic dermatitis non-lesional skin is associated with the impaired homeostasis of a ceramide-generating process, which underscores an atopy-specific inflammation-triggered ceramide deficiency that is distinct from other types of dermatitis.

  3. trans-Chalcone, a flavonoid precursor, inhibits UV-induced skin inflammation and oxidative stress in mice by targeting NADPH oxidase and cytokine production.

    PubMed

    Martinez, Renata M; Pinho-Ribeiro, Felipe A; Steffen, Vinicius S; Caviglione, Carla V; Fattori, Victor; Bussmann, Allan J C; Bottura, Carolina; Fonseca, Maria J V; Vignoli, Josiane A; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rubia

    2017-07-01

    trans-Chalcone is a plant flavonoid precursor, which lacks broad investigation on its biological activity in inflammatory processes. In the present study, anti-inflammatory and antioxidant mechanisms of systemic administration with trans-chalcone, a flavonoid precursor, on ultraviolet (UV) irradiation-induced skin inflammation and oxidative stress in hairless mice were investigated by the following parameters: skin edema, myeloperoxidase activity (neutrophil marker), matrix metalloproteinase-9 activity, reduced glutathione levels, catalase activity, lipid peroxidation products, superoxide anion production, gp 91phox (NADPH oxidase subunit) mRNA expression by quantitative PCR and cytokine production by ELISA. Systemic treatment with trans-chalcone inhibited skin inflammation by reducing skin edema and neutrophil recruitment, and also inhibited matrix metalloproteinase-9 activity. trans-Chalcone also inhibited oxidative stress, gp 91phox mRNA expression, and the production of a wide range of pro-inflammatory cytokines, while it did not affect anti-inflammatory cytokines induced by UV irradiation. However, trans-chalcone did not prevent oxidative stress in vitro, suggesting that its in vivo effect is more related to anti-inflammatory properties rather than a direct antioxidant effect. In conclusion, treatment with trans-chalcone inhibited UV-induced skin inflammation resulting in oxidative stress inhibition in vivo. Therefore, systemic supplementation with this compound may represent an important therapeutic approach in inflammatory skin diseases induced by UV irradiation.

  4. The essential oil from Citrus limetta Risso peels alleviates skin inflammation: In-vitro and in-vivo study.

    PubMed

    Maurya, Anil Kumar; Mohanty, Shilpa; Pal, Anirban; Chanotiya, Chandan Singh; Bawankule, Dnyaneshawar Umrao

    2018-02-15

    Citrus fruit peels are traditionally used in folk medicine for the treatment of skin disorders but it lacks proper pharmacological intervention. Citrus limetta Risso (Rutaceae) is an important commercial fruit crops used by juice processing industries in all continents. Ethnopharmacological validation of an essential oil isolated from its peels may play a key role in converting the fruit waste materials into therapeutic value added products. To evaluate the chemical and pharmacological (in-vitro and in-vivo) profile of essential oil isolated from Citrus limetta peels (Clp-EO) against skin inflammation for its ethnopharmacological validation. Hydro-distilled essential oil extracted from Citrus limetta peels (Clp-EO) was subjected to gas chromatography (GC) analysis for identification of essential oil constituents and its anti-inflammatory evaluation through in vitro and in vivo models. Chemical fingerprint of Clp-EO revealed the presence of monoterpene hydrocarbon and limonene is the major component. Pre-treatment of Clp-EO to the macrophages was able to inhibit the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in LPS-induced inflammation as well as the production of reactive oxygen species (ROS) in H 2 O 2 -induced oxidative stress. In in-vivo study, topical application of Clp-EO was also able to reduce the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear thickness, ear weight, lipid peroxidation, pro-inflammatory cytokines production and ameliorate the histological damage in the ear tissue. In-vitro and in-vivo toxicity study indicate that it is safe for topical application on skin. These findings suggested the preventive potential of Clp-EO for the treatment of inflammation linked skin diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Da-Gang

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatmentmore » inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.« less

  6. Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice

    PubMed Central

    Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Arguiri, Evguenia; Menges, Craig W.; Testa, Joseph R.; Hwang, Wei-Ting; Albelda, Steven M.

    2016-01-01

    Malignant mesothelioma (MM), linked to asbestos exposure, is a highly lethal form of thoracic cancer with a long latency period, high mortality and poor treatment options. Chronic inflammation and oxidative tissue damage caused by asbestos fibers are linked to MM development. Flaxseed lignans, enriched in secoisolariciresinol diglucoside (SDG), have antioxidant, anti-inflammatory and cancer chemopreventive properties. As a prelude to chronic chemoprevention studies for MM development, we tested the ability of flaxseed lignan component (FLC) to prevent acute asbestos-induced inflammation in MM-prone Nf2+/mu mice. Mice (n = 16–17 per group) were placed on control (CTL) or FLC-supplemented diets initiated 7 days prior to a single intraperitoneal bolus of 400 µg of crocidolite asbestos. Three days post asbestos exposure, mice were evaluated for abdominal inflammation, proinflammatory/profibrogenic cytokine release, WBC gene expression changes and oxidative and nitrosative stress in peritoneal lavage fluid (PLF). Asbestos-exposed mice fed CTL diet developed acute inflammation, with significant (P < 0.0001) elevations in WBCs and proinflammatory/profibrogenic cytokines (IL-1ß, IL-6, TNFα, HMGB1 and active TGFß1) relative to baseline (BL) levels. Alternatively, asbestos-exposed FLC-fed mice had a significant (P < 0.0001) decrease in PLF WBCs and proinflammatory/profibrogenic cytokine levels relative to CTL-fed mice. Importantly, PLF WBC gene expression of cytokines (IL-1ß, IL-6, TNFα, HMGB1 and TGFß1) and cytokine receptors (TNFαR1 and TGFßR1) were also downregulated by FLC. FLC also significantly (P < 0.0001) blunted asbestos-induced nitrosative and oxidative stress. FLC reduces acute asbestos-induced peritoneal inflammation, nitrosative and oxidative stress and may thus prove to be a promising agent in the chemoprevention of MM. PMID:26678224

  7. A "multi-hit" model of neonatal white matter injury: cumulative contributions of chronic placental inflammation, acute fetal inflammation and postnatal inflammatory events.

    PubMed

    Korzeniewski, Steven J; Romero, Roberto; Cortez, Josepf; Pappas, Athina; Schwartz, Alyse G; Kim, Chong Jai; Kim, Jung-Sun; Kim, Yeon Mee; Yoon, Bo Hyun; Chaiworapongsa, Tinnakorn; Hassan, Sonia S

    2014-11-01

    We sought to determine whether cumulative evidence of perinatal inflammation was associated with increased risk in a "multi-hit" model of neonatal white matter injury (WMI). This retrospective cohort study included very preterm (gestational ages at delivery <32 weeks) live-born singleton neonates delivered at Hutzel Women's Hospital, Detroit, MI, from 2006 to 2011. Four pathologists blinded to clinical diagnoses and outcomes performed histological examinations according to standardized protocols. Neurosonography was obtained per routine clinical care. The primary indicator of WMI was ventriculomegaly (VE). Neonatal inflammation-initiating illnesses included bacteremia, surgical necrotizing enterocolitis, other infections, and those requiring mechanical ventilation. A total of 425 live-born singleton neonates delivered before the 32nd week of gestation were included. Newborns delivered of pregnancies affected by chronic chorioamnionitis who had histologic evidence of an acute fetal inflammatory response were at increased risk of VE, unlike those without funisitis, relative to referent newborns without either condition, adjusting for gestational age [odds ratio (OR) 4.7; 95% confidence interval (CI) 1.4-15.8 vs. OR 1.3; 95% CI 0.7-2.6]. Similarly, newborns with funisitis who developed neonatal inflammation-initiating illness were at increased risk of VE, unlike those who did not develop such illness, compared to the referent group without either condition [OR 3.6 (95% CI 1.5-8.3) vs. OR 1.7 (95% CI 0.5-5.5)]. The greater the number of these three types of inflammation documented, the higher the risk of VE (P<0.0001). Chronic placental inflammation, acute fetal inflammation, and neonatal inflammation-initiating illness seem to interact in contributing risk information and/or directly damaging the developing brain of newborns delivered very preterm.

  8. Bovine Intestinal Alkaline Phosphatase Reduces Inflammation After Induction of Acute Myocardial Infarction in Mice

    PubMed Central

    Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem

    2011-01-01

    Background There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Methods Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Results Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. Conclusion In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction. PMID:28357012

  9. The central role of hypothalamic inflammation in the acute illness response and cachexia.

    PubMed

    Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L

    2016-06-01

    When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Impact of daily cooling treatment on skin inflammation in patients with chronic venous disease.

    PubMed

    Kelechi, Teresa J; Mueller, Martina; King, Dana E; Madisetti, Mohan; Prentice, Margie

    2015-05-01

    People with chronic venous disease are at high risk for developing venous leg ulcers. Inflammation is posited as a pathological factor for this chronic condition as evidenced by persistently elevated skin temperature. As part of a larger trial to test the effects of a cooling regimen on leg ulcer prevention, the objective of this preliminary study was to evaluate the first 30 days of intense daily cooling. Compared to a placebo control cuff, a gel cuff applied to the most severely affected lower leg skin for 30 min daily showed no statistically significant differences between temperatures taken in the home at baseline compared to those measured at the 1 month follow up visit. There were also no differences in temperatures noted between the two groups, although the temperatures in the treatment group were lower 30 min after treatment, an indication of adherence. There was no discernable decrease or increase in temperature at a given time point during the 30 day treatment period compared to the control group. It may be better to have patients monitor skin temperature on a daily basis and then apply the cuff as necessary, rather than requiring daily cooling based on baseline measurement. This "prn" approach may provide a sufficient cooling milieu to prevent escalation of inflammation and thwart ulcer occurrence or recurrence. Clinical trials registration #NCT01509599. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  11. The effects of acute inflammation on cognitive functioning and emotional processing in humans: A systematic review of experimental studies.

    PubMed

    Bollen, Jessica; Trick, Leanne; Llewellyn, David; Dickens, Chris

    2017-03-01

    The cognitive neuropsychological model of depression proposes that negative biases in the processing of emotionally salient information have a central role in the development and maintenance of depression. We have conducted a systematic review to determine whether acute experimental inflammation is associated with changes to cognitive and emotional processing that are thought to cause and maintain depression. We identified experimental studies in which healthy individuals were administered an acute inflammatory challenge (bacterial endotoxin/vaccination) and standardised tests of cognitive function were performed. Fourteen references were identified, reporting findings from 12 independent studies on 345 participants. Methodological quality was rated strong or moderate for 11 studies. Acute experimental inflammation was triggered using a variety of agents (including endotoxin from E. coli, S. typhi, S. abortus Equi and Hepatitis B vaccine) and cognition was assessed over hours to months, using cognitive tests of i) attention/executive functioning, ii) memory and iii) social/emotional processing. Studies found mixed evidence that acute experimental inflammation caused changes to attention/executive functioning (2 of 6 studies showed improvements in attention executive function compared to control), changes in memory (3 of 5 studies; improved reaction time: reduced memory for object proximity: poorer immediate and delayed memory) and changes to social/emotional processing (4 of 5 studies; reduced perception of emotions, increased avoidance of punishment/loss experiences, and increased social disconnectedness). Acute experimental inflammation causes negative biases in social and emotional processing that could explain observed associations between inflammation and depression. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Acute exhaustive rowing exercise reduces skin microvascular dilator function in young adult rowing athletes.

    PubMed

    Stupin, Marko; Stupin, Ana; Rasic, Lidija; Cosic, Anita; Kolar, Luka; Seric, Vatroslav; Lenasi, Helena; Izakovic, Kresimir; Drenjancevic, Ines

    2018-02-01

    The effect of acute exhaustive exercise session on skin microvascular reactivity was assessed in professional rowers and sedentary subjects. A potential involvement of altered hemodynamic parameters and/or oxidative stress level in the regulation of skin microvascular blood flow by acute exercise were determined. Anthropometric, biochemical, and hemodynamic parameters were measured in 18 young healthy sedentary men and 20 professional rowers who underwent a single acute exercise session. Post-occlusive reactive hyperemia (PORH), endothelium-dependent acetylcholine (ACh), and endothelium-independent sodium nitroprusside (SNP) microvascular responses were assessed by laser Doppler flowmetry in skin microcirculation before and after acute exercise. Serum lipid peroxidation products and plasma antioxidant capacity were measured using spectrophotometry. At baseline, rowers had significantly lower diastolic blood pressure (DBP) and heart rate (HR), and higher stroke volume (SV), PORH, and endothelium-dependent vasodilation than sedentary. Acute exercise caused a significant increase in systolic blood pressure, DBP, HR, and SV and a decrease in total peripheral resistance in both groups. Acute exercise induced a significant impairment in PORH and ACh-induced response in rowers, but not in sedentary, whereas the SNP-induced vasodilation was not affected by acute exercise in any group. Antioxidant capacity significantly increased only in sedentary after acute exercise. Single acute exercise session impaired microvascular reactivity and endothelial function in rowers but not in sedentary, possibly due to (1) more rowing grades and higher exercise intensity achieved by rowers; (2) a higher increase in arterial pressure in rowers than in sedentary men; and (3) a lower antioxidant capacity in rowers.

  13. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer | Office of Cancer Genomics

    Cancer.gov

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways.

  14. A ‘Multi-Hit’ Model of Neonatal White Matter Injury: Cumulative Contributions of Chronic Placental Inflammation, Acute Fetal Inflammation and Postnatal Inflammatory Events

    PubMed Central

    Korzeniewski, SJ; Romero, R; Cortez, J; Pappas, A; Schwartz, AG; Kim, CJ; Kim, JS; Kim, YM; Yoon, BH; Chaiworapongsa, T; Hassan, SS

    2018-01-01

    Objective We sought to determine whether cumulative evidence of perinatal inflammation was associated with increased risk in a ‘multi-hit’ model of neonatal white matter injury. Methods This retrospective cohort study included very preterm (gestational ages at delivery <32 weeks) liveborn singleton neonates delivered at Hutzel Women’s Hospital, Detroit, MI, from 2006–2011. Four pathologists blinded to clinical diagnoses and outcomes performed histological examinations according to standardized protocols. Neurosonography was obtained per routine clinical care. The primary indicator of WMI was ventriculomegaly (VE). Neonatal inflammation-initiating illnesses included bacteremia, surgical necrotizing enterocolitis, other infections, and those requiring mechanical ventilation. Results A total of 425 liveborn singleton neonates delivered before the 32nd week of gestation were included. Newborns delivered of pregnancies affected by chronic chorioamnionitis who had histologic evidence of an acute fetal inflammatory response were at increased risk of VE, unlike those without funisitis, relative to referent newborns without either condition, adjusting for gestational age [OR 4.7; 95%CI 1.4–15.8 vs. OR 1.3; 95%CI 0.7–2.6]. Similarly, newborns with funisitis who developed neonatal inflammation initiating illness were at increased risk of VE, unlike those who did not develop such illness, compared to the referent group without either condition [OR 3.6; 95%CI 1.5–8.3 vs. OR 1.7; 95%CI 0.5–5.5]. The greater the number of these three types of inflammation documented, the higher the risk of VE (p<0.0001). Conclusion Chronic placental inflammation, acute fetal inflammation and neonatal inflammation-initiating illness seem to interact in contributing risk information and/or directly damaging the developing brain of newborns delivered very preterm. PMID:25205706

  15. Development of Transgenic Cloned Pig Models of Skin Inflammation by DNA Transposon-Directed Ectopic Expression of Human β1 and α2 Integrin

    PubMed Central

    Staunstrup, Nicklas Heine; Madsen, Johannes; Primo, Maria Nascimento; Li, Juan; Liu, Ying; Kragh, Peter M.; Li, Rong; Schmidt, Mette; Purup, Stig; Dagnæs-Hansen, Frederik; Svensson, Lars; Petersen, Thomas K.; Callesen, Henrik; Bolund, Lars; Mikkelsen, Jacob Giehm

    2012-01-01

    Integrins constitute a superfamily of transmembrane signaling receptors that play pivotal roles in cutaneous homeostasis by modulating cell growth and differentiation as well as inflammatory responses in the skin. Subrabasal expression of integrins α2 and/or β1 entails hyperproliferation and aberrant differentiation of keratinocytes and leads to dermal and epidermal influx of activated T-cells. The anatomical and physiological similarities between porcine and human skin make the pig a suitable model for human skin diseases. In efforts to generate a porcine model of cutaneous inflammation, we employed the Sleeping Beauty DNA transposon system for production of transgenic cloned Göttingen minipigs expressing human β1 or α2 integrin under the control of a promoter specific for subrabasal keratinocytes. Using pools of transgenic donor fibroblasts, cloning by somatic cell nuclear transfer was utilized to produce reconstructed embryos that were subsequently transferred to surrogate sows. The resulting pigs were all transgenic and harbored from one to six transgene integrants. Molecular analyses on skin biopsies and cultured keratinocytes showed ectopic expression of the human integrins and localization within the keratinocyte plasma membrane. Markers of perturbed skin homeostasis, including activation of the MAPK pathway, increased expression of the pro-inflammatory cytokine IL-1α, and enhanced expression of the transcription factor c-Fos, were identified in keratinocytes from β1 and α2 integrin-transgenic minipigs, suggesting the induction of a chronic inflammatory phenotype in the skin. Notably, cellular dysregulation obtained by overexpression of either β1 or α2 integrin occurred through different cellular signaling pathways. Our findings mark the creation of the first cloned pig models with molecular markers of skin inflammation. Despite the absence of an overt psoriatic phenotype, these animals may possess increased susceptibility to severe skin damage

  16. Fingerprint of Lung Fluid Ultrafine Particles, a Novel Marker of Acute Lung Inflammation.

    PubMed

    Bar-Shai, Amir; Alcalay, Yifat; Sagiv, Adi; Rotem, Michal; Feigelson, Sara W; Alon, Ronen; Fireman, Elizabeth

    2015-01-01

    Acute lung inflammation can be monitored by various biochemical readouts of bronchoalveolar lavage fluid (BALF). To analyze the BALF content of ultrafine particles (UFP; <100 nm) as an inflammatory biomarker in early diagnosis of acute and chronic lung diseases. Mice were exposed to different stress conditions and inflammatory insults (acute lipopolysaccharide inhalation, tobacco smoke and lethal dose of total body irradiation, i.e. 950 rad). After centrifugation, the cellular pellet was assessed while cytokines and ultrafine particles were measured in the soluble fraction of the BALF. A characteristic UFP distribution with a D50 (i.e. the dimension of the 50th UFP percentile) was shared by all tested mouse strains in the BALF of resting lungs. All tested inflammatory insults similarly shifted this size distribution, resulting in a unique UFP fingerprint with an averaged D50 of 58.6 nm, compared with the mean UFP D50 of 23.7 nm for resting BALF (p < 0.0001). This UFP profile was highly reproducible and independent of the intensity or duration of the inflammatory trigger. It returned to baseline after resolution of the inflammation. Neither total body irradiation nor induction of acute cough induced this fingerprint. The UFP fingerprint in the BALF of resting and inflamed lungs can serve as a binary biomarker of healthy and acutely inflamed lungs. This marker can be used as a novel readout for the onset of inflammatory lung diseases and for complete lung recovery from different insults.

  17. Small RNA-seq during acute maximal exercise reveal RNAs involved in vascular inflammation and cardiometabolic health: brief report.

    PubMed

    Shah, Ravi; Yeri, Ashish; Das, Avash; Courtright-Lim, Amanda; Ziegler, Olivia; Gervino, Ernest; Ocel, Jeffrey; Quintero-Pinzon, Pablo; Wooster, Luke; Bailey, Cole Shields; Tanriverdi, Kahraman; Beaulieu, Lea M; Freedman, Jane E; Ghiran, Ionita; Lewis, Gregory D; Van Keuren-Jensen, Kendall; Das, Saumya

    2017-12-01

    Exercise improves cardiometabolic and vascular function, although the mechanisms remain unclear. Our objective was to demonstrate the diversity of circulating extracellular RNA (ex-RNA) release during acute exercise in humans and its relevance to exercise-mediated benefits on vascular inflammation. We performed plasma small RNA sequencing in 26 individuals undergoing symptom-limited maximal treadmill exercise, with replication of our top candidate miRNA in a separate cohort of 59 individuals undergoing bicycle ergometry. We found changes in miRNAs and other ex-RNAs with exercise (e.g., Y RNAs and tRNAs) implicated in cardiovascular disease. In two independent cohorts of acute maximal exercise, we identified miR-181b-5p as a key ex-RNA increased in plasma after exercise, with validation in a separate cohort. In a mouse model of acute exercise, we found significant increases in miR-181b-5p expression in skeletal muscle after acute exercise in young (but not older) mice. Previous work revealed a strong role for miR-181b-5p in vascular inflammation in obesity, insulin resistance, sepsis, and cardiovascular disease. We conclude that circulating ex-RNAs were altered in plasma after acute exercise target pathways involved in inflammation, including miR-181b-5p. Further investigation into the role of known (e.g., miRNA) and novel (e.g., Y RNAs) RNAs is warranted to uncover new mechanisms of vascular inflammation on exercise-mediated benefits on health. NEW & NOTEWORTHY How exercise provides benefits to cardiometabolic health remains unclear. We performed RNA sequencing in plasma during exercise to identify the landscape of small noncoding circulating transcriptional changes. Our results suggest a link between inflammation and exercise, providing rich data on circulating noncoding RNAs for future studies by the scientific community. Copyright © 2017 the American Physiological Society.

  18. Chronic Toll-like receptor 4 stimulation in skin induces inflammation, macrophage activation, transforming growth factor beta signature gene expression, and fibrosis

    PubMed Central

    2014-01-01

    Introduction The crucial role of innate immunity in the pathogenesis of systemic sclerosis (SSc) is well established, and in the past few years the hypothesis that Toll-like receptor 4 (TLR4) activation induced by endogenous ligands is involved in fibrogenesis has been supported by several studies on skin, liver, and kidney fibrosis. These findings suggest that TLR4 activation can enhance transforming growth factor beta (TGF-β) signaling, providing a potential mechanism for TLR4/Myeloid differentiation factor 88 (MyD88)-dependent fibrosis. Methods The expression of TLR4, CD14 and MD2 genes was analyzed by real-time polymerase chain reaction from skin biopsies of 24 patients with diffuse cutaneous SSc. In order to investigate the effects of the chronic skin exposure to endotoxin (Lipopolysaccharide (LPS)) in vivo we examined the expression of inflammation, TGF-β signaling and cellular markers genes by nanostring. We also identified cellular subsets by immunohistochemistry and flow cytometry. Results We found that TLR4 and its co-receptors, MD2 and CD14, are over-expressed in lesional skin from patients with diffuse cutaneous SSc, and correlate significantly with progressive or regressive skin disease as assessed by the Delta Modified Rodnan Skin Score. In vivo, a model of chronic dermal LPS exposure showed overexpression of proinflammatory chemokines, recruitment and activation of macrophages, and upregulation of TGF-β signature genes. Conclusions We delineated the role of MyD88 as necessary for the induction not only for the early phase of inflammation, but also for pro-fibrotic gene expression via activation of macrophages. Chronic LPS exposure might be a model of early stage of SSc when inflammation and macrophage activation are important pathological features of the disease, supporting a role for innate immune activation in SSc skin fibrosis. PMID:24984848

  19. Chronic Toll-like receptor 4 stimulation in skin induces inflammation, macrophage activation, transforming growth factor beta signature gene expression, and fibrosis.

    PubMed

    Stifano, Giuseppina; Affandi, Alsya J; Mathes, Allison L; Rice, Lisa M; Nakerakanti, Sashidhar; Nazari, Banafsheh; Lee, Jungeun; Christmann, Romy B; Lafyatis, Robert

    2014-07-01

    The crucial role of innate immunity in the pathogenesis of systemic sclerosis (SSc) is well established, and in the past few years the hypothesis that Toll-like receptor 4 (TLR4) activation induced by endogenous ligands is involved in fibrogenesis has been supported by several studies on skin, liver, and kidney fibrosis. These findings suggest that TLR4 activation can enhance transforming growth factor beta (TGF-β) signaling, providing a potential mechanism for TLR4/Myeloid differentiation factor 88 (MyD88)-dependent fibrosis. The expression of TLR4, CD14 and MD2 genes was analyzed by real-time polymerase chain reaction from skin biopsies of 24 patients with diffuse cutaneous SSc. In order to investigate the effects of the chronic skin exposure to endotoxin (Lipopolysaccharide (LPS)) in vivo we examined the expression of inflammation, TGF-β signaling and cellular markers genes by nanostring. We also identified cellular subsets by immunohistochemistry and flow cytometry. We found that TLR4 and its co-receptors, MD2 and CD14, are over-expressed in lesional skin from patients with diffuse cutaneous SSc, and correlate significantly with progressive or regressive skin disease as assessed by the Delta Modified Rodnan Skin Score. In vivo, a model of chronic dermal LPS exposure showed overexpression of proinflammatory chemokines, recruitment and activation of macrophages, and upregulation of TGF-β signature genes. We delineated the role of MyD88 as necessary for the induction not only for the early phase of inflammation, but also for pro-fibrotic gene expression via activation of macrophages. Chronic LPS exposure might be a model of early stage of SSc when inflammation and macrophage activation are important pathological features of the disease, supporting a role for innate immune activation in SSc skin fibrosis.

  20. Impact of inflammation on iron stores in involved and non-involved psoriatic skin

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Ynsa, M. D.; Alves, L. C.; Teixeira, P.; Ferreira, J.; Filipe, P.

    2015-04-01

    Accumulating evidence supports a role for cellular Fe in cell proliferation, inflammation, and disease tolerance. Psoriasis is a severe inflammatory and hyper proliferative condition of human skin whose aetiology remains poorly understood. Herein, we performed nuclear microscopy techniques to quantify with cellular resolution and high sensitivity the concentration of Fe in lesional (psoriatic plaques) and non-lesional adjacent skin of psoriatic patients. Fe contents were measured across skin depth and along epidermal strata either by quantitatively imaging Fe distribution in regions of interest, or by determining Fe profiles through analysis of sequential points along selected transepts. Both procedures require deconvolution of spectra to project quantitative elemental data through the application of different software codes. Using these approaches a detailed quantitative distribution of Fe was resolved. We show that in both lesional and non-lesional skin, the epidermal profiles of Fe contents showed a peak at the basal layer and that Fe concentration along the basal layer was not uniformly distributed. Typically, Fe levels were significantly higher in epidermal ridges relative to regions above dermal papillae. Lesional skin displayed excess Fe over extended regions above basal layer. In conclusion, we found significantly increased Fe deposits in the epidermis of psoriatic patients, particularly in areas of epidermal hyper proliferation. These findings suggest an important role for Fe in the pathogenesis of psoriasis. They also raise the possibility that manipulation of Fe levels in the skin may become relevant for the clinical management of psoriasis.

  1. Adelmidrol, a palmitoylethanolamide analogue, as a new pharmacological treatment for the management of acute and chronic inflammation.

    PubMed

    Impellizzeri, Daniela; Di Paola, Rosanna; Cordaro, Marika; Gugliandolo, Enrico; Casili, Giovanna; Morittu, Valeria Maria; Britti, Domenico; Esposito, Emanuela; Cuzzocrea, Salvatore

    2016-11-01

    The aim of study was to examine the anti-inflammatory and analgesic effects of adelmidrol, an analogue of palmitoylethanolamide (PEA), in animal models of acute and chronic inflammation [carrageenan-induced paw edema (CAR) and collagen-induced arthritis (CIA)]. In order to elucidate whether the action of adelmidrol is related to activation of peroxisome proliferator-activated receptors (PPAR-α or PPAR-γ), we investigated the effects of PPAR-γ antagonist, GW9662 on adelmidrol mechanism. CAR induced paw edema, hyperalgesia and the activation of pro-inflammatory NF-κB pathway were markedly reduced by treatment with adelmidrol. GW9662, (administered prior to adelmidrol treatment), antagonized the effect of adelmidrol abolishing its positive action. On the contrary, the genetic absence of PPAR-α receptor did not modify the beneficial results of adelmidrol treatment in the acute model of inflammation. In addition, for the first time, we demonstrated that adelmidrol was able to ameliorate both the clinical signs and the histopathology of the joint and the hind paw during chronic inflammation. In particular, the degree of oxidative damage and proinflammatory cytokines and chemokines production were significantly reduced in adelmidrol-treated mice. Moreover, in CIA model, the effect of GW9662 pre-treatment on adelmidrol mechanism was also confirmed. Thus, in this study, we report that adelmidrol reduces the development of acute and chronic inflammation and could represent a novel therapeutic approach for inflammation and pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Dose-surface analysis for prediction of severe acute radio-induced skin toxicity in breast cancer patients.

    PubMed

    Pastore, Francesco; Conson, Manuel; D'Avino, Vittoria; Palma, Giuseppe; Liuzzi, Raffaele; Solla, Raffaele; Farella, Antonio; Salvatore, Marco; Cella, Laura; Pacelli, Roberto

    2016-01-01

    Severe acute radiation-induced skin toxicity (RIST) after breast irradiation is a side effect impacting the quality of life in breast cancer (BC) patients. The aim of the present study was to develop normal tissue complication probability (NTCP) models of severe acute RIST in BC patients. We evaluated 140 consecutive BC patients undergoing conventional three-dimensional conformal radiotherapy (3D-CRT) after breast conserving surgery in a prospective study assessing acute RIST. The acute RIST was classified according to the RTOG scoring system. Dose-surface histograms (DSHs) of the body structure in the breast region were extracted as representative of skin irradiation. Patient, disease, and treatment-related characteristics were analyzed along with DSHs. NTCP modeling by Lyman-Kutcher-Burman (LKB) and by multivariate logistic regression using bootstrap resampling techniques was performed. Models were evaluated by Spearman's Rs coefficient and ROC area. By the end of radiotherapy, 139 (99%) patients developed any degree of acute RIST. G3 RIST was found in 11 of 140 (8%) patients. Mild-moderate (G1-G2) RIST was still present at 40 days after treatment in six (4%) patients. Using DSHs for LKB modeling of acute RIST severity (RTOG G3 vs. G0-2), parameter estimates were TD50=39 Gy, n=0.38 and m=0.14 [Rs = 0.25, area under the curve (AUC) = 0.77, p = 0.003]. On multivariate analysis, the most predictive model of acute RIST severity was a two-variable model including the skin receiving ≥30 Gy (S30) and psoriasis [Rs = 0.32, AUC = 0.84, p < 0.001]. Using body DSH as representative of skin dose, the LKB n parameter was consistent with a surface effect for the skin. A good prediction performance was obtained using a data-driven multivariate model including S30 and a pre-existing skin disease (psoriasis) as a clinical factor.

  3. 2-Chloroethyl ethyl sulfide causes microvesication and inflammation-related histopathological changes in male hairless mouse skin

    PubMed Central

    Jain, Anil K.; Tewari-Singh, Neera; Orlicky, David J.; White, Carl W; Agarwal, Rajesh

    2011-01-01

    Sulfur mustard (HD) is a vesicating agent that has been used as a chemical warfare agent in a number of conflicts, posing a major threat in both military conflict and chemical terrorism situations. Currently, we lack effective therapies to rescue skin injuries by HD, in part, due to the lack of appropriate animal models, which are required for conducting laboratory studies to evaluate the therapeutic efficacy of promising agents that could potentially be translated in to real HD-caused skin injury. To address this challenge, the present study was designed to assess whether microvesication could be achieved in mouse skin by an HD analog 2-chloroethyl ethyl sulfide (CEES) exposure; notably, microvesication is a key component of HD skin injury in humans. We found that skin exposure of male SKH-1 hairless mice to CEES caused epidermal-dermal separation indicating microvesication. In other studies, CEES exposure also caused an increase in skin bi-fold thickness, wet/dry weight ratio, epidermal thickness, apoptotic cell death, cell proliferation, and infiltration of macrophages, mast cells and neutrophils in male SKH-1 hairless mouse skin. Taken together, these results establish CEES-induced microvesication and inflammation-related histopathological changes in mouse skin, providing a potentially relevant laboratory model for developing effective countermeasures against HD skin injury in humans. PMID:21295104

  4. Human herpesvirus-6 infection-associated acute encephalopathy without skin rash.

    PubMed

    Yamamoto, Shiho; Takahashi, Satoru; Tanaka, Ryosuke; Okayama, Akie; Araki, Akiko; Katano, Harutaka; Tanaka-Taya, Keiko; Azuma, Hiroshi

    2015-09-01

    Human herpesvirus-6 (HHV-6) is the etiological agent of exanthema subitum-associated encephalopathy, which usually occurs in children younger than 3 years. Brain imaging shows various abnormalities. A previously healthy 4-year-old girl developed acute encephalopathy with clinical features consisting of fever, repetitive seizures, and a disturbance of consciousness. The patient did not show skin rash suggestive of exanthema subitum during the course of her illness. The primary HHV-6 infection was diagnosed based on the absence of IgG against HHV-6 and identification of the virus DNA in the acute phase serum and a significant increase of the anti-HHV-6 IgG titers in the convalescent phase sera. Diffusion-weighted images showed transient high signal intensity in the bilateral periventricular white matter and splenium of the corpus callosum and in the gray matter structures such as the bilateral basal ganglia and thalami. Upon therapy with steroid and γ-globulin, the patient recovered without any neurological deficits. Primary HHV-6 infection can cause acute encephalopathy without exanthema subitum. The etiological diagnosis is possible only by examining the blood and cerebrospinal fluid, when the patient shows no skin rash. This condition should be included in the differential diagnosis of acute encephalopathy even in patients older than 3 years. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  5. Fetal inflammation associated with minimal acute morbidity in moderate/late preterm infants.

    PubMed

    Gisslen, Tate; Alvarez, Manuel; Wells, Casey; Soo, Man-Ting; Lambers, Donna S; Knox, Christine L; Meinzen-Derr, Jareen K; Chougnet, Claire A; Jobe, Alan H; Kallapur, Suhas G

    2016-03-23

    To determine whether exposure to acute chorioamnionitis and fetal inflammation caused short-term adverse outcomes. This is a prospective observational study: subjects were mothers delivering at 32-36 weeks gestation and their preterm infants at a large urban tertiary level III perinatal unit (N=477 infants). Placentae and fetal membranes were scored for acute histological chorioamnionitis based on the Redline criteria. Fetal inflammation was characterised by histological diagnosis of funisitis (umbilical cord inflammation), increased cord blood cytokines measured by ELISA, and activation of the inflammatory cells infiltrating the placenta and fetal membranes measured by immunohistology. Maternal and infant data were collected. Twenty-four per cent of 32-36-week infants were exposed to histological chorioamnionitis and 6.9% had funisitis. Immunostaining for leucocyte subsets showed selective infiltration of the placenta and fetal membranes with activated neutrophils and macrophages with chorioamnionitis. Interleukin (IL) 6, IL-8 and granulocyte colony-stimulating factor were selectively increased in the cord blood of preterm infants with funisitis. Compared with infants without chorioamnionitis, funisitis was associated with increased ventilation support during resuscitation (43.8% vs 15.4%) and more respiratory distress syndrome postnatally (27.3% vs 10.2%) in univariate analysis. However, these associations disappeared after adjusting for prematurity. Despite fetal exposure to funisitis, increased cord blood cytokines and activated placental inflammatory cells, we could not demonstrate neonatal morbidity specifically attributable to fetal inflammation after adjusting for gestational age in moderate and late preterm infants. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Acute effects of coffee on skin blood flow and microvascular function.

    PubMed

    Tesselaar, Erik; Nezirevic Dernroth, Dzeneta; Farnebo, Simon

    2017-11-01

    Studies on the acute effects of coffee on the microcirculation have shown contradicting results. This study aimed to investigate if intake of caffeine-containing coffee changes blood flow and microvascular reactivity in the skin. We measured acute changes in cutaneous vascular conductance (CVC) in the forearm and the tip of the finger, the microvascular response to transdermal iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) and post-occlusive reactive hyperemia (PORH) in the skin, after intake of caffeinated or decaffeinated coffee. Vasodilatation during iontophoresis of ACh was significantly stronger after intake of caffeinated coffee compared to after intake of decaffeinated coffee (1.26±0.20PU/mmHg vs. 1.13±0.38PU/mmHg, P<0.001). Forearm CVC before and after PORH were not affected by caffeinated and decaffeinated coffee. After intake of caffeinated coffee, a more pronounced decrease in CVC in the fingertip was observed compared to after intake of decaffeinated coffee (-1.36PU/mmHg vs. -0.52PU/mmHg, P=0.002). Caffeine, as ingested by drinking caffeinated coffee acutely improves endothelium-dependent microvascular responses in the forearm skin, while endothelium-independent responses to PORH and SNP iontophoresis are not affected. Blood flow in the fingertip decreases markedly during the first hour after drinking caffeinated coffee compared to decaffeinated coffee. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    PubMed Central

    Zhan, Janis Ya-Xian; Wang, Xiu-Fen; Liu, Yu-Hong; Zhang, Zhen-Biao; Wang, Lan; Chen, Jian-Nan; Huang, Song; Zeng, Hui-Fang; Lai, Xiao-Ping

    2016-01-01

    Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent. PMID:26903706

  8. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation.

    PubMed

    Zhan, Janis Ya-Xian; Wang, Xiu-Fen; Liu, Yu-Hong; Zhang, Zhen-Biao; Wang, Lan; Chen, Jian-Nan; Huang, Song; Zeng, Hui-Fang; Lai, Xiao-Ping

    2016-01-01

    Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent.

  9. Chronic inflammation is etiology of extrinsic aging.

    PubMed

    Thornfeldt, Carl R

    2008-03-01

    Skin care regimens using active ingredients that are recommended by physicians who treat mucocutaneous conditions including aging should become more focused on reversing and preventing chronic inflammation. This adjustment of therapeutic and preventive strategies is necessary because chronic inflammation appears strongly linked to many preventable and treatable skin diseases and conditions such as visible skin aging. Mucocutaneous inflammation as the final common pathway of many systemic and mucocutaneous diseases including extrinsic aging has been established at the molecular and cellular levels. The corollary to this strategy includes inhibition of primary activators of mucocutaneous inflammation such as stratum corneum permeability barrier disruption, blocking any pro-inflammatory environmental insult such as ultraviolet radiation, and quenching tissue responses to these insults. This review will present the scientific rationale substantiating the conclusion that chronic inflammation is the common denominator in many mucocutaneous pathophysiologic processes including extrinsic skin aging.

  10. Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS.

    PubMed

    Oliveira, Manoel Carneiro; Greiffo, Flávia Regina; Rigonato-Oliveira, Nicole Cristine; Custódio, Ricardo Wesley Alberca; Silva, Vanessa Roza; Damaceno-Rodrigues, Nilsa Regina; Almeida, Francine Maria; Albertini, Regiane; Lopes-Martins, Rodrigo Álvaro B; de Oliveira, Luis Vicente Franco; de Carvalho, Paulo de Tarso Camillo; Ligeiro de Oliveira, Ana Paula; Leal, Ernesto César P; Vieira, Rodolfo P

    2014-05-05

    The present study aimed to investigate the effects low level laser therapy (LLLT) in a LPS-induced pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) in BALB/c mice. Laser (830nm laser, 9J/cm(2), 35mW, 80s per point, 3 points per application) was applied in direct contact with skin, 1h after LPS administration. Mice were distributed in control (n=6; PBS), ARDS IT (n=7; LPS orotracheally 10μg/mouse), ARDS IP (n=7; LPS intra-peritoneally 100μg/mouse), ARDS IT+Laser (n=9; LPS intra-tracheally 10μg/mouse), ARDS IP+Laser (n=9; LPS intra-peritoneally 100μg/mouse). Twenty-four hours after last LPS administration, mice were studied for pulmonary inflammation by total and differential cell count in bronchoalveolar lavage (BAL), cytokines (IL-1beta, IL-6, KC and TNF-alpha) levels in BAL fluid and also by quantitative analysis of neutrophils number in the lung parenchyma. LLLT significantly reduced pulmonary and extrapulmonary inflammation in LPS-induced ARDS, as demonstrated by reduced number of total cells (p<0.001) and neutrophils (p<0.001) in BAL, reduced levels of IL-1beta, IL-6, KC and TNF-alpha in BAL fluid and in serum (p<0.001), as well as the number of neutrophils in lung parenchyma (p<0.001). LLLT is effective to reduce pulmonary inflammation in both pulmonary and extrapulmonary model of LPS-induced ARDS. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The dynamics of acute inflammation

    NASA Astrophysics Data System (ADS)

    Kumar, Rukmini

    The acute inflammatory response is the non-specific and immediate reaction of the body to pathogenic organisms, tissue trauma and unregulated cell growth. An imbalance in this response could lead to a condition commonly known as "shock" or "sepsis". This thesis is an attempt to elucidate the dynamics of acute inflammatory response to infection and contribute to its systemic understanding through mathematical modeling and analysis. The models of immunity discussed use Ordinary Differential Equations (ODEs) to model the variation of concentration in time of the various interacting species. Chapter 2 discusses three such models of increasing complexity. Sections 2.1 and 2.2 discuss smaller models that capture the core features of inflammation and offer general predictions concerning the design of the system. Phase-space and bifurcation analyses have been used to examine the behavior at various parameter regimes. Section 2.3 discusses a global physiological model that includes several equations modeling the concentration (or numbers) of cells, cytokines and other mediators. The conclusions drawn from the reduced and detailed models about the qualitative effects of the parameters are very similar and these similarities have also been discussed. In Chapter 3, the specific applications of the biologically detailed model are discussed in greater detail. These include a simulation of anthrax infection and an in silico simulation of a clinical trial. Such simulations are very useful to biologists and could prove to be invaluable tools in drug design. Finally, Chapter 4 discusses the general problem of extinction of populations modeled as continuous variables in ODES is discussed. The average time to extinction and threshold are estimated based on analyzing the equivalent stochastic processes.

  12. Mind-body interactions in the regulation of airway inflammation in asthma: A PET study of acute and chronic stress

    PubMed Central

    Rosenkranz, Melissa A.; Esnault, Stephane; Christian, Bradley T.; Crisafi, Gina; Gresham, Lauren K.; Higgins, Andrew T.; Moore, Mollie N.; Moore, Sarah M.; Weng, Helen Y.; Salk, Rachel H.; Busse, William W.; Davidson, Richard J.

    2016-01-01

    Background Psychological stress has long been recognized as a contributing factor to asthma symptom expression and disease progression. Yet, the neural mechanisms that underlie this relationship have been largely unexplored in research addressing the pathophysiology and management of asthma. Studies that have examined the mechanisms of this relationship in the periphery suggest that it is the superimposition of acute stress on top of chronic stress that is of greatest concern for airway inflammation. Methods We compared asthmatic individuals with high and low levels of chronic life stress in their neural and peripheral physiological responses to the Trier Social Stress Test and a matched control task. We used FDG-PET to measure neural activity during performance of the two tasks. We used both circulating and airway-specific markers of asthma-related inflammation to assess the impact of acute stress in these two groups. Results Asthmatics under chronic stress had a larger HPA-axis response to an acute stressor, which failed to show the suppressive effects on inflammatory markers observed in those with low chronic stress. Moreover, our PET data suggest that greater activity in the anterior insula during acute stress may reflect regulation of the effect of stress on inflammation. In contrast, greater activity in the mid-insula and perigenual anterior cingulate seems to reflect greater reactivity and was associated with greater airway inflammation, a more robust alpha amylase response, and a greater stress-induced increase in proinflammatory cytokine mRNA expression in airway cells. Conclusions Acute stress is associated with increases in markers of airway inflammation in asthmatics under chronic stress. This relationship may be mediated by interactions between the insula and anterior cingulate cortex, that determine the salience of environmental cues, as well as descending regulatory influence of inflammatory pathways in the periphery. PMID:27039241

  13. Mind-body interactions in the regulation of airway inflammation in asthma: A PET study of acute and chronic stress.

    PubMed

    Rosenkranz, Melissa A; Esnault, Stephane; Christian, Bradley T; Crisafi, Gina; Gresham, Lauren K; Higgins, Andrew T; Moore, Mollie N; Moore, Sarah M; Weng, Helen Y; Salk, Rachel H; Busse, William W; Davidson, Richard J

    2016-11-01

    Psychological stress has long been recognized as a contributing factor to asthma symptom expression and disease progression. Yet, the neural mechanisms that underlie this relationship have been largely unexplored in research addressing the pathophysiology and management of asthma. Studies that have examined the mechanisms of this relationship in the periphery suggest that it is the superimposition of acute stress on top of chronic stress that is of greatest concern for airway inflammation. We compared asthmatic individuals with high and low levels of chronic life stress in their neural and peripheral physiological responses to the Trier Social Stress Test and a matched control task. We used FDG-PET to measure neural activity during performance of the two tasks. We used both circulating and airway-specific markers of asthma-related inflammation to assess the impact of acute stress in these two groups. Asthmatics under chronic stress had a larger HPA-axis response to an acute stressor, which failed to show the suppressive effects on inflammatory markers observed in those with low chronic stress. Moreover, our PET data suggest that greater activity in the anterior insula during acute stress may reflect regulation of the effect of stress on inflammation. In contrast, greater activity in the mid-insula and perigenual anterior cingulate seems to reflect greater reactivity and was associated with greater airway inflammation, a more robust alpha amylase response, and a greater stress-induced increase in proinflammatory cytokine mRNA expression in airway cells. Acute stress is associated with increases in markers of airway inflammation in asthmatics under chronic stress. This relationship may be mediated by interactions between the insula and anterior cingulate cortex, that determine the salience of environmental cues, as well as descending regulatory influence of inflammatory pathways in the periphery. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Chemoattractant receptors and lymphocyte egress from extralymphoid tissue: changing requirements during the course of inflammation1

    PubMed Central

    Brown, Meghan N.; Fintushel, Sarah R.; Lee, Michael H.; Jennrich, Silke; Geherin, Skye A.; Hay, John B.; Butcher, Eugene C.; Debes, Gudrun F.

    2012-01-01

    Memory/effector T cells traffic efficiently through extralymphoid tissues, entering from the blood and leaving via the afferent lymph. During inflammation, T cell traffic into the affected tissue dramatically increases; however, the dynamics and mechanisms of T cell exit from inflamed tissues are poorly characterized. Here we show, using both a mouse and a sheep model, that large numbers of lymphocytes leave the chronically inflamed skin. Many T cells capable of producing IFN-γ and IL-17 also entered the draining afferent lymph, demonstrating that memory/effector T cells egress from sites of inflammation. Whereas efficient egress from acutely inflamed skin required lymphocyte-expressed CCR7, chronic inflammation promoted significant CCR7-independent exit as well. Lymphocyte exit at late time points of inflammation was sensitive to pertussis toxin but only partially affected by the drug FTY720, implying the contribution of alternative chemoattractant receptors other than S1P1. Our data show that CCR7 is an important receptor for lymphocyte egress from both resting and inflamed extralymphoid tissues, but that alternative exit receptors come into play during chronic inflammation. PMID:20833836

  15. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage.

    PubMed

    Naik, Shruti; Larsen, Samantha B; Gomez, Nicholas C; Alaverdyan, Kirill; Sendoel, Ataman; Yuan, Shaopeng; Polak, Lisa; Kulukian, Anita; Chai, Sophia; Fuchs, Elaine

    2017-10-26

    The skin barrier is the body's first line of defence against environmental assaults, and is maintained by epithelial stem cells (EpSCs). Despite the vulnerability of EpSCs to inflammatory pressures, neither the primary response to inflammation nor its enduring consequences are well understood. Here we report a prolonged memory to acute inflammation that enables mouse EpSCs to hasten barrier restoration after subsequent tissue damage. This functional adaptation does not require skin-resident macrophages or T cells. Instead, EpSCs maintain chromosomal accessibility at key stress response genes that are activated by the primary stimulus. Upon a secondary challenge, genes governed by these domains are transcribed rapidly. Fuelling this memory is Aim2, which encodes an activator of the inflammasome. The absence of AIM2 or its downstream effectors, caspase-1 and interleukin-1β, erases the ability of EpSCs to recollect inflammation. Although EpSCs benefit from inflammatory tuning by heightening their responsiveness to subsequent stressors, this enhanced sensitivity probably increases their susceptibility to autoimmune and hyperproliferative disorders, including cancer.

  16. Baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat

    PubMed Central

    Chen, Huaguo; Xu, Yongfu; Wang, Jianzhong; Zhao, Wei; Ruan, Huihui

    2015-01-01

    Baicalin belongs to glucuronic acid glycosides and after hydrolysisbaicalein and glucuronic acid come into being. It has such effects as clearing heat and removing toxicity, anti-inflammation, choleresis, bringing high blood pressure down, diuresis, anti-allergic reaction and so on. In this study, we investigated whether baicalin ameliorates isoproterenol-induced acute myocardial infarction and its mechanism. Rat model of acute myocardial infarction was induced by isoproterenol. Casein kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH), cardiac troponin T (cTnT) and infarct size measurement were used to measure the protective effect of baicalin on isoproterenol-induced acute myocardial infarction. iNOS protein expression in rat was analyzed using western blot analysis. Tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), malondialdehyde (MDA) and superoxide dismutase (SOD) and caspase-3 activation levels were explored using commercial ELISA kits. In the acute myocardial infarction experiment, baicalin effectively ameliorates the level of CK, CK-MB, LDH and cTnT, reduced infarct size in acute myocardial infarction rat model. Meanwhile, treatment with baicalin effectively decreased the iNOS protein expression, inflammatory factors and oxidative stresses in a rat model of acute myocardial infarction. However, baicalin emerged that anti-apoptosis activity and suppressed the activation of caspase-3 in a rat model of acute myocardial infarction. The data suggest that the protective effect of baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat. PMID:26617721

  17. Evaluating the consistency of location of the most severe acute skin reaction and highest skin dose measured by thermoluminescent dosimeter during radiotherapy for breast cancer.

    PubMed

    Sun, Li-Min; Huang, Chih-Jen; Chen, Hsiao-Yun; Chang, Gia-Hsin; Tsao, Min-Jen

    2016-01-01

    We conducted this prospective study to evaluate whether the location of the most severe acute skin reaction matches the highest skin dose measured by thermoluminescent dosimeter (TLD) during adjuvant radiotherapy (RT) for patients with breast cancer after breast conservative surgery. To determine whether TLD measurement can reflect the location of the most severe acute skin reaction, 80 consecutive patients were enrolled in this prospective study. We divided the irradiated field into breast, axillary, inframammary fold, and areola/nipple areas. In 1 treatment session when obvious skin reaction occurred, we placed the TLD chips onto the 4 areas and measured the skin dose. We determined whether the highest measured skin dose area is consistent with the location of the most severe skin reaction. The McNemar test revealed that the clinical skin reaction and TLD measurement are more consistent when the most severe skin reaction occurred at the axillary area, and the p = 0.0108. On the contrary, TLD measurement of skin dose is less likely consistent with clinical observation when the most severe skin reaction occurred at the inframammary fold, breast, and areola/nipple areas (all the p > 0.05). Considering the common site of severe skin reaction over the axillary area, TLD measurement may be an appropriate way to predict skin reaction during RT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  18. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

    PubMed

    Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan

    2016-07-26

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. High-fat diet exacerbates inflammation and cell survival signals in the skin of ultraviolet B-irradiated C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeran, Syed M.; Singh, Tripti; Nagy, Tim R.

    Inflammation induced by chronic exposure to ultraviolet (UV) radiation has been implicated in various skin diseases. We formulated the hypothesis that a high-fat diet may influence the UV-induced inflammatory responses in the skin. C57BL/6 mice were fed a high-fat diet or control diet and exposed to UVB radiation (120 mJ/cm{sup 2}) three times/week for 10 weeks. The mice were then sacrificed and skin and plasma samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. We found that the levels of inflammatory biomarkers were increased in the UVB-exposed skin of the mice fedmore » the high-fat diet than the UVB-exposed skin of the mice fed the control diet. The levels of inflammatory biomarkers of early responses to UVB exposure (e.g., myeloperoxidase, cyclooxygenase-2, prostaglandin-E{sub 2}), proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in high-fat-diet-fed mouse skin than control-diet-fed mouse skin. The plasma levels of insulin growth factor-1 were greater in the UVB-irradiated mice fed the high-fat diet than the UVB-irradiated mice fed the control diet, whereas the levels of plasma adiponectin were significantly lower. This pronounced exacerbation of the UVB-induced inflammatory responses in the skin of mice fed a high-fat diet suggests that high-fat diet may increase susceptibility to inflammation-associated skin diseases, including the risk of skin cancer.« less

  20. Pro-Resolving lipid mediators and Mechanisms in the resolution of acute inflammation

    PubMed Central

    Buckley, Christopher D.; Gilroy, Derek W.; Serhan, Charles N.

    2014-01-01

    SUMMARY Inflammatory responses, like all biological cascades, are shaped by a delicate balance between positive and negative feedback loops. It is now clear that in addition to positive and negative checkpoints, the inflammatory cascade rather unexpectedly boasts an additional checkpoint, a family of chemicals that actively promote resolution and tissue repair without compromising host defence. Indeed the resolution phase of inflammation is just as actively orchestrated and carefully choreographed as its induction and inhibition. In this review we explore the immunological consequences of these omega-3-derived specialized pro-resolving mediators (SPMs) and discuss their place within what is currently understood of the role of the arachidonic acid-derived prostaglandins, lipoxins and their natural C15-epimers. We propose that treatment of inflammation should not be restricted to the use of inhibitors of the acute cascade (antagonism) but broadened to take account of the enormous therapeutic potential of inducers (agonists) of the resolution phase of inflammation. PMID:24656045

  1. Evaluating the consistency of location of the most severe acute skin reaction and highest skin dose measured by thermoluminescent dosimeter during radiotherapy for breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Li-Min, E-mail: limin.sun@yahoo.com; Huang, Chih-Jen; Department of Faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan

    We conducted this prospective study to evaluate whether the location of the most severe acute skin reaction matches the highest skin dose measured by thermoluminescent dosimeter (TLD) during adjuvant radiotherapy (RT) for patients with breast cancer after breast conservative surgery. To determine whether TLD measurement can reflect the location of the most severe acute skin reaction, 80 consecutive patients were enrolled in this prospective study. We divided the irradiated field into breast, axillary, inframammary fold, and areola/nipple areas. In 1 treatment session when obvious skin reaction occurred, we placed the TLD chips onto the 4 areas and measured the skinmore » dose. We determined whether the highest measured skin dose area is consistent with the location of the most severe skin reaction. The McNemar test revealed that the clinical skin reaction and TLD measurement are more consistent when the most severe skin reaction occurred at the axillary area, and the p = 0.0108. On the contrary, TLD measurement of skin dose is less likely consistent with clinical observation when the most severe skin reaction occurred at the inframammary fold, breast, and areola/nipple areas (all the p > 0.05). Considering the common site of severe skin reaction over the axillary area, TLD measurement may be an appropriate way to predict skin reaction during RT.« less

  2. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation.

    PubMed

    Chu, Chung-Ching; Ali, Niwa; Karagiannis, Panagiotis; Di Meglio, Paola; Skowera, Ania; Napolitano, Luca; Barinaga, Guillermo; Grys, Katarzyna; Sharif-Paghaleh, Ehsan; Karagiannis, Sophia N; Peakman, Mark; Lombardi, Giovanna; Nestle, Frank O

    2012-05-07

    Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141(+) DDCs). CD141(+) DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D(3) (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141(+) DDCs from human blood DCs. These CD141(+) DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141(+) DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141(+) DDC-like cells have potential clinical use for their capacity to induce immune tolerance.

  3. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation

    PubMed Central

    Chu, Chung-Ching; Ali, Niwa; Karagiannis, Panagiotis; Di Meglio, Paola; Skowera, Ania; Napolitano, Luca; Barinaga, Guillermo; Grys, Katarzyna; Sharif-Paghaleh, Ehsan; Karagiannis, Sophia N.; Peakman, Mark; Lombardi, Giovanna

    2012-01-01

    Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141+ DDCs). CD141+ DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D3 (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141+ DDCs from human blood DCs. These CD141+ DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141+ DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141+ DDC-like cells have potential clinical use for their capacity to induce immune tolerance. PMID:22547651

  4. Cyanidin-3-Glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signalling pathways in SKH-1 hairless mice skin

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2015-01-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-Glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. PMID:25062774

  5. Quantification of structural changes in acute inflammation by fractal dimension, angular second moment and correlation.

    PubMed

    Stankovic, Marija; Pantic, Igor; De Luka, Silvio R; Puskas, Nela; Zaletel, Ivan; Milutinovic-Smiljanic, Sanja; Pantic, Senka; Trbovich, Alexander M

    2016-03-01

    The aim of the study was to examine alteration and possible application of fractal dimension, angular second moment, and correlation for quantification of structural changes in acutely inflamed tissue. Acute inflammation was induced by injection of turpentine oil into the right and left hind limb muscles of mice, whereas control animals received intramuscular saline injection. After 12 h, animals were anesthetised and treated muscles collected. The tissue was stained by hematoxylin and eosin, digital micrographs produced, enabling determination of fractal dimension of the cells, angular second moment and correlation of studied tissue. Histopathological analysis showed presence of inflammatory infiltrate and tissue damage in inflammatory group, whereas tissue structure in control group was preserved, devoid of inflammatory infiltrate. Fractal dimension of the cells, angular second moment and correlation of treated tissue in inflammatory group decreased in comparison to the control group. In this study, we were first to observe and report that fractal dimension of the cells, angular second moment, and correlation were reduced in acutely inflamed tissue, indicating loss of overall complexity of the cells in the tissue, the tissue uniformity and structure regularity. Fractal dimension, angular second moment and correlation could be useful methods for quantification of structural changes in acute inflammation. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. Xenobiotic metabolism in human skin and 3D human skin reconstructs: a review.

    PubMed

    Gibbs, Sue; van de Sandt, Johannes J M; Merk, Hans F; Lockley, David J; Pendlington, Ruth U; Pease, Camilla K

    2007-12-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental chemical exposure, it is also a potential target organ for adverse health effects. Occupational, accidental or intended-use exposure to toxic chemicals could result in acute or delayed injury to the skin (e.g. inflammation, allergy, cancer). Skin metabolism may play a role in the manifestation or amelioration of adverse effects via the topical route. Today, we have robust testing strategies to assess the potential for local skin toxicity of chemical exposure. Such methods (e.g. the local lymph node assay for assessing skin sensitisation; skin painting carcinogenicity studies) incorporate skin metabolism implicitly in the in vivo model system used. In light of recent European legislation (i.e. 7(th) Amendment to the Cosmetics Directive and Registration Evaluation and Authorisation of existing Chemicals (REACH)), non-animal approaches will be required to reduce and replace animal experiments for chemical risk assessment. It is expected that new models and approaches will need to account for skin metabolism explicitly, as the mechanisms of adverse effects in the skin are deconvoluted. 3D skin models have been proposed as a tool to use in new in vitro alternative approaches. In order to be able to use 3D skin models in this context, we need to understand their metabolic competency in relation to xenobiotic biotransformation and whether functional activity is representative of that seen in human skin.

  7. Acute bacterial skin and skin structure infections in internal medicine wards: old and new drugs.

    PubMed

    Falcone, Marco; Concia, Ercole; Giusti, Massimo; Mazzone, Antonino; Santini, Claudio; Stefani, Stefania; Violi, Francesco

    2016-08-01

    Skin and soft tissue infections (SSTIs) are a common cause of hospital admission among elderly patients, and traditionally have been divided into complicated and uncomplicated SSTIs. In 2010, the FDA provided a new classification of these infections, and a new category of disease, named acute bacterial skin and skin structure infections (ABSSSIs), has been proposed as an independent clinical entity. ABSSSIs include three entities: cellulitis and erysipelas, wound infections, and major cutaneous abscesses This paper revises the epidemiology of SSTIs and ABSSSIs with regard to etiologies, diagnostic techniques, and clinical presentation in the hospital settings. Particular attention is owed to frail patients with multiple comorbidities and underlying significant disease states, hospitalized on internal medicine wards or residing in nursing homes, who appear to be at increased risk of infection due to multi-drug resistant pathogens and treatment failures. Management of ABSSSIs and SSTIs, including evaluation of the hemodynamic state, surgical intervention and treatment with appropriate antibiotic therapy are extensively discussed.

  8. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages

    PubMed Central

    Kim, Seung-Jae; Cha, Ji-Young; Kang, Hye Suk; Lee, Jae-Ho; Lee, Ji Yoon; Park, Jae-Hyung; Bae, Jae-Hoon; Song, Dae-Kyu; Im, Seung-Soon

    2016-01-01

    Corosolic acid (CA), a triterpenoid compound isolated from Lagerstroemia speciosa L. (Banaba) leaves, exerts anti-inflammatory effects by regulating phosphorylation of interleukin receptor- associated kinase (IRAK)-2 via the NF-κB cascade. However, the protective effect of CA against endotoxic shock has not been reported. LPS (200 ng/mL, 30 min) induced phosphorylation of IRAK-1 and treatment with CA (10 μM) significantly attenuated this effect. In addition, CA also reduced protein levels of NLRP3 and ASC which are the main components of the inflammasome in BMDMs. LPS-induced inflammasome assembly through activation of IRAK-1 was down-regulated by CA challenge. Treatment with Bay11-7082, an inhibitor of IκB-α, had no effect on CA-mediated inhibition of IRAK-1 activation, indicating that CA-mediated attenuation of IRAK-1 phosphorylation was independent of NF-κB signaling. These results demonstrate that CA ameliorates acute inflammation in mouse BMDMs and CA may be useful as a pharmacological agent to prevent acute inflammation. [BMB Reports 2016; 49(5): 276-281] PMID:26615974

  9. Low triiodothyronine: A new facet of inflammation in acute ischemic stroke.

    PubMed

    Ma, Lili; Zhu, Dongliang; Jiang, Ying; Liu, Yingying; Ma, Xiaomeng; Liu, Mei; Chen, Xiaohong

    2016-07-01

    Patients with acute ischemic stroke (AIS) frequently experience low free triiodothyronine (fT3) concentrations. Inflammation is recognized as a key contributor to the pathophysiology of stroke. Previous studies, however, did not simultaneously evaluate fT3 and inflammation biomarkers in AIS patients. Markers of inflammation, including serum concentrations of C-reactive protein (CRP) and albumin, and fT3 were assessed retrospectively in 117 patients. Stroke severity was measured on the National Institutes of Health Stroke Scale (NIHSS). Regression analyses were performed to adjust for confounders. Serum fT3 concentrations were significantly lower in moderate AIS patients than those in mild AIS patients (P<0.001). fT3 concentration also positively correlated with serum albumin concentration (r=0.358, P<0.001) and negatively correlated with log10CRP concentration (r=-0.341, P<0.001), NIHSS score (r=-0.384, P<0.001). Multiple regression analysis showed that CRP, albumin concentrations and NIHSS score were independently correlated with fT3 concentration. Binary logistic regression analysis showed that fT3 concentration was an independent factor correlated with NIHSS score, the area under the receiver operating characteristic curve was 0.712 (95% CI, 0.618-0.805). Low fT3 concentrations may be involved in the pathogenic pathway linking inflammation to stroke severity in AIS patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of water-filtered infrared-A and of heat on cell death, inflammation, antioxidative potential and of free radical formation in viable skin--first results.

    PubMed

    Piazena, Helmut; Pittermann, Wolfgang; Müller, Werner; Jung, Katinka; Kelleher, Debra K; Herrling, Thomas; Meffert, Peter; Uebelhack, Ralf; Kietzmann, Manfred

    2014-09-05

    The effects of water-filtered infrared-A (wIRA) and of convective heat on viability, inflammation, inducible free radicals and antioxidative power were investigated in natural and viable skin using the ex vivo Bovine Udder System (BUS) model. Therefore, skin samples from differently treated parts of the udder of a healthy cow were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, by prostaglandin E2 (PGE2) measurement and by electron spin resonance (ESR) spectroscopy. Neither cell viability, the inflammation status, the radical status or the antioxidative defence systems of the skin were significantly affected by wIRA applied within 30 min by using an irradiance of 1900 W m(-2) which is of relevance for clinical use, but which exceeded the maximum solar IR-A irradiance at the Earth's surface more than 5 times and which resulted in a skin surface temperature of about 45 °C without cooling and of about 37 °C with convective cooling by air ventilation. No significant effects on viability and on inflammation were detected when convective heat was applied alone under equivalent conditions in terms of the resulting skin surface temperatures and exposure time. As compared with untreated skin, free radical formation was almost doubled, whereas the antioxidative power was reduced to about 50% after convective heating to about 45 °C. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Matrix Metalloproteinase-8 Inactivates Macrophage Inflammatory Protein-1α to Reduce Acute Lung Inflammation and Injury in Mice

    PubMed Central

    Quintero, Pablo A.; Knolle, Martin D.; Cala, Luisa F.; Zhuang, Yuehong; Owen, Caroline A.

    2010-01-01

    To determine the role of matrix metalloproteinase-8 (MMP-8) in acute lung injury (ALI), we delivered LPS or bleomycin by the intratracheal route to MMP-8−/− mice versus WT mice or subjected the mice to hyperoxia (95% O2) and measured lung inflammation and injury at intervals. MMP-8−/− mice with ALI had greater increases in lung PMN and macrophage counts, measures of alveolar capillary barrier injury, lung elastance, and mortality than WT mice with ALI. Bronchoalveolar lavage fluid (BALF) from LPS-treated MMP-8−/− mice had more macrophage inflammatory protein-1α (MIP-1α) than BALF from LPS-treated WT mice, but similar levels of other pro- and anti-inflammatory mediators. MIP-1α−/− mice with ALI had less acute lung inflammation and injury than WT mice with ALI, confirming that MIP-1α promotes acute lung inflammation and injury in mice. Genetically deleting MIP-1α in MMP-8−/− mice abrogated the increased lung inflammation and injury and mortality in MMP-8−/− mice with ALI. Soluble MMP-8 cleaved and inactivated MIP-1α in vitro, but membrane-bound MMP-8 on activated PMNs had greater MIP-1α-degrading activity than soluble MMP-8. High levels of membrane-bound MMP-8 were detected on lung PMNs from LPS-treated WT mice, but soluble, active MMP-8 was not detected in BALF samples. Thus, MMP-8 has novel roles in restraining lung inflammation and in limiting alveolar capillary barrier injury during ALI in mice by inactivating MIP-1α. In addition, membrane-bound MMP-8 on activated lung PMNs is likely to be the key bioactive form of the enzyme that limits lung inflammation and alveolar capillary barrier injury during ALI. PMID:20042585

  12. Topical Formulation Containing Naringenin: Efficacy against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice

    PubMed Central

    Martinez, Renata M.; Pinho-Ribeiro, Felipe A.; Steffen, Vinicius S.; Silva, Thais C. C.; Caviglione, Carla V.; Bottura, Carolina; Fonseca, Maria J. V.; Vicentini, Fabiana T. M. C.; Vignoli, Josiane A.; Baracat, Marcela M.; Georgetti, Sandra R.; Verri, Waldiceu A.; Casagrande, Rubia

    2016-01-01

    Naringenin (NGN) exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB)-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2′-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10). Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation. PMID:26741806

  13. Involvement of prostaglandins and histamine in nickel wire-induced acute inflammation in mice.

    PubMed

    Hirasawa, Noriyasu; Goi, Yoshiaki; Tanaka, Rina; Ishihara, Kenji; Ohtsu, Hiroshi; Ohuchi, Kazuo

    2010-06-15

    The irritancy of Nickel (Ni) ions has been well documented clinically. However, the chemical mediators involved in the acute inflammation induced by solid Ni are not fully understood. We used the Ni wire-implantation model in mice and examined roles of prostaglandins and histamine in plasma leakage in the acute phase. The subcutaneous implantation of a Ni wire into the back of mice induced plasma leakage from 8 to 24 h and tissue necrosis around the wire at 3 days, whereas the implantation of an aluminum wire induced no such inflammatory responses. An increase in the mRNA for cyclooxygenase (COX)-2 and HDC in cells around the Ni wire was detected 4 h after the implantation. The leakage of plasma at 8 h was inhibited by indomethacin in a dose-dependent manner. Dexamethasone and the p38 MAP kinase inhibitor SB203580 also inhibited the exudation of plasma consistent with the inhibition of the expression of COX-2 mRNA. Furthermore, plasma leakage was partially but siginificantly reduced in histamine H1 receptor knockout mice and histidine decarboxylase (HDC) knockout mice but not in H2 receptor knockout mice. These results suggested that the Ni ions released from the wire induced the expression of COX-2 and HDC, resulting in an increase in vascular permeability during the acute phase of inflammation. (c) 2009 Wiley Periodicals, Inc.

  14. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles.

    PubMed

    Kim, Jin Sik; Song, Kyung Seuk; Sung, Jae Hyuck; Ryu, Hyun Ryol; Choi, Byung Gil; Cho, Hyun Sun; Lee, Jin Kyu; Yu, Il Je

    2013-08-01

    To clarify the health risks related to silver nanoparticles (Ag-NPs), we evaluated the genotoxicity, acute oral and dermal toxicity, eye irritation, dermal irritation and corrosion and skin sensitisation of commercially manufactured Ag-NPs according to the OECD test guidelines and GLP. The Ag-NPs were not found to induce genotoxicity in a bacterial reverse mutation test and chromosomal aberration test, although some cytotoxicity was observed. In acute oral and dermal toxicity tests using rats, none of the rats showed any abnormal signs or mortality at a dose level of ∼ 2000 mg/kg. Similarly, acute eye and dermal irritation and corrosion tests using rabbits revealed no significant clinical signs or mortality and no acute irritation or corrosion reaction for the eyes and skin. In a skin sensitisation test using guinea pigs, one animal (1/20) showed discrete or patchy erythema, thus Ag-NPs can be classified as a weak skin sensitiser.

  15. Effects of hydrogen sulfide on inflammation in caerulein-induced acute pancreatitis

    PubMed Central

    2009-01-01

    Background Hydrogen sulfide (H2S), a gaseous mediator plays an important role in a wide range of physiological and pathological processes. H2S has been extensively studied for its various roles in cardiovascular and neurological disorders. However, the role of H2S in inflammation is still controversial. The current study was aimed to investigate the therapeutic potential of sodium hydrosulfide (NaHS), an H2S donor in in vivo model of acute pancreatitis in mice. Methods Acute pancreatitis was induced in mice by hourly caerulein injections (50 μg/kg) for 10 hours. Mice were treated with different dosages of NaHS (5 mg/kg, 10 mg/kg or 15 mg/kg) or with vehicle, distilled water (DW). NaHS or DW was administered 1 h before induction of pancreatitis. Mice were sacrificed 1 h after the last caerulein injection. Blood, pancreas and lung tissues were collected and were processed to measure the plasma amylase, myeloperoxidase (MPO) activities in pancreas and lung and chemokines and adhesion molecules in pancreas and lung. Results It was revealed that significant reduction of inflammation, both in pancreas and lung was associated with NaHS 10 mg/kg. Further the anti-inflammatory effects of NaHS 10 mg/kg were associated with reduction of pancreatic and pulmonary inflammatory chemokines and adhesion molecules. NaHS 5 mg/kg did not cause significant improvement on inflammation in pancreas and associated lung injury and NaHS 15 mg/kg did not further enhance the beneficial effects seen with NaHS 10 mg/kg. Conclusion In conclusion, these data provide evidence for anti-inflammatory effects of H2S based on its dosage used. PMID:20040116

  16. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicatemore » that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE{sub 2} and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. - Highlights: • C3G inhibited UVB-induced oxidative damage and inflammation. • C3G inhibited UVB-induced COX-2, iNOS and PGE{sub 2} production.

  17. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model

    PubMed Central

    2014-01-01

    Background Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. Methods Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). Results Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. Conclusions These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin. PMID:25123235

  18. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases inmore » α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins

  19. Anti-Inflammatory Effects of Licorice and Roasted Licorice Extracts on TPA-Induced Acute Inflammation and Collagen-Induced Arthritis in Mice

    PubMed Central

    Kim, Ki Rim; Jeong, Chan-Kwon; Park, Kwang-Kyun; Choi, Jong-Hoon; Park, Jung Han Yoon; Lim, Soon Sung; Chung, Won-Yoon

    2010-01-01

    The anti-inflammatory activity of licorice (LE) and roated licorice (rLE) extracts determined in the murine phorbol ester-induced acute inflammation model and collagen-induced arthritis (CIA) model of human rheumatoid arthritis. rLE possessed greater activity than LE in inhibiting phorbol ester-induced ear edema. Oral administration of LE or rLE reduced clinical arthritis score, paw swelling, and histopathological changes in a murine CIA. LE and rLE decreased the levels of proinflammatory cytokines in serum and matrix metalloproteinase-3 expression in the joints. Cell proliferation and cytokine secretion in response to type II collagen or lipopolysaccharide stimulation were suppressed in spleen cells from LE or rLE-treated CIA mice. Furthermore, LE and rLE treatment prevented oxidative damages in liver and kidney tissues of CIA mice. Taken together, LE and rLE have benefits in protecting against both acute inflammation and chronic inflammatory conditions including rheumatoid arthritis. rLE may inhibit the acute inflammation more potently than LE. PMID:20300198

  20. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasiamore » and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione

  1. Vesicular LL-37 Contributes to Inflammation of the Lesional Skin of Palmoplantar Pustulosis

    PubMed Central

    Murakami, Masamoto; Kaneko, Takaaki; Nakatsuji, Teruaki; Kameda, Kenji; Okazaki, Hidenori; Dai, Xiuju; Hanakawa, Yasushi; Tohyama, Mikiko; Ishida-Yamamoto, Akemi; Sayama, Koji

    2014-01-01

    “Pustulosis palmaris et plantaris”, or palmoplantar pustulosis (PPP), is a chronic pustular dermatitis characterized by intraepidermal palmoplantar pustules. Although early stage vesicles (preceding the pustular phase) formed in the acrosyringium contain the antimicrobial peptides cathelicidin (hCAP-18/LL-37) and dermcidin, the details of hCAP-18/LL-37 expression in such vesicles remain unclear. The principal aim of the present study was to clarify the manner of hCAP-18/LL-37 expression in PPP vesicles and to determine whether this material contributed to subsequent inflammation of lesional skin. PPP vesicle fluid (PPP-VF) induced the expression of mRNAs encoding IL-17C, IL-8, IL-1α, and IL-1β in living skin equivalents, but the level of only IL-8 mRNA decreased significantly upon stimulation of PPP vesicle with depletion of endogenous hCAP-18/LL-37 by affinity chromatography (dep-PPP-VF). Semi-quantitative dot-blot analysis revealed higher concentrations of hCAP-18/LL-37 in PPP-VF compared to healthy sweat (2.87±0.93 µM vs. 0.09±0.09 µM). This concentration of hCAP-18/LL-37 in PPP-VF could upregulate expression of IL-17C, IL-8, IL-1α, and IL-1β at both the mRNA and protein levels. Recombinant hCAP-18 was incubated with dep-PPP-VF. Proteinase 3, which converts hCAP-18 to the active form (LL-37), was present in PPP-VF. Histopathological and immunohistochemical examination revealed that early stage vesicles contained many mononuclear cells but no polymorphonuclear cells, and the mononuclear cells were CD68-positive. The epidermis surrounding the vesicle expresses monocyte chemotactic chemokine, CCL2. In conclusion, PPP-VF contains the proteinase required for LL-37 processing and also may directly upregulate IL-8 in lesional keratinocytes, in turn contributing to the subsequent inflammation of PPP lesional skin. PMID:25330301

  2. Intrauterine Candida albicans infection elicits severe inflammation in fetal sheep

    PubMed Central

    Payne, Matthew S.; Kemp, Matthew W.; Kallapur, Suhas G.; Kannan, Paranthaman Senthamarai; Saito, Masatoshi; Miura, Yuichiro; Newnham, John P.; Stock, Sarah; Ireland, Demelza J.; Kramer, Boris W.; Jobe, Alan H.

    2014-01-01

    Background Preventing preterm birth and subsequent adverse neonatal sequelae is among the greatest clinical challenges of our time. Recent studies suggest a role for Candida spp. in preterm birth and fetal injury, as a result of their colonization of either the vagina and/or the amniotic cavity. We hypothesised that intraamniotic C. albicans would cause a vigorous, acute fetal inflammatory response. Methods Sheep carrying singleton pregnancies received single intraamniotic (IA) injections of either saline (control) or 107 CFU C. albicans 1 or 2 d prior to surgical delivery and euthanasia at 124 ± 2 d gestation. Results Colonization of the amniotic cavity by C. albicans resulted in a modest inflammatory response at 1 d and florid inflammation at 2 d, characterised by fetal thrombocytopenia, lymphopenia and significant increases of inflammatory cytokines/chemokines in the fetal membranes skin, lung and the amniotic fluid. Conclusion Acute colonization of the amniotic cavity by C. albicans causes severe intrauterine inflammation and fetal injury. C. albicans is a potent fetal pathogen which can contribute to adverse pregnancy outcomes. PMID:24632681

  3. Essential oil from waste leaves of Curcuma longa L. alleviates skin inflammation.

    PubMed

    Kumar, Anant; Agarwal, Karishma; Singh, Monika; Saxena, Archana; Yadav, Pankaj; Maurya, Anil Kumar; Yadav, Anju; Tandon, Sudeep; Chanda, Debabrata; Bawankule, Dnyaneshwar U

    2018-02-10

    Curcuma longa L. is an important industrial crop used by medicinal and cosmetic industries in the world. Its leaves are a waste material after harvesting rhizomes. The aim of the study was to evaluate the chemical and pharmacological profile of essential oil from waste leaves of Curcuma longa (EOCl) against skin inflammation. EOCl was subjected to gas chromatography (GC) analysis for identification of essential oil constituents and its anti-inflammatory evaluation through in vitro and in vivo models. Chemical fingerprinting using GC and GC-MS analysis of EOCl revealed the presence of 11 compounds, representing 90.29% of the oil, in which terpinolene (52.88%) and α-phellandrene (21.13%) are the major components. In the in vitro testing EOCl inhibited the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in lipopolysaccharide (LPS) and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in the human keratinocyte cell line (HaCaT). Topical application of EOCl produced anti-inflammatory effects by reducing ear thickness, ear weight and ameliorating the level of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) at protein and mRNA levels as well as regulating the overproduction of oxidative markers and restoring the histopathological damage in a TPA-induced mouse model of inflammation. These findings of topical anti-inflammatory properties of EOCl provide a scientific basis for medicinal use of this plant material against inflammatory disorders.

  4. Mast Cells Regulate Epidermal Barrier Function and the Development of Allergic Skin Inflammation.

    PubMed

    Sehra, Sarita; Serezani, Ana P M; Ocaña, Jesus A; Travers, Jeffrey B; Kaplan, Mark H

    2016-07-01

    Atopic dermatitis is a chronic inflammatory skin disease characterized by infiltration of eosinophils, T helper cells, and mast cells. The role of mast cells in atopic dermatitis is not completely understood. To define the effects of mast cells on skin biology, we observed that mast cells regulate the homeostatic expression of epidermal differentiation complex and other skin genes. Decreased epidermal differentiation complex gene expression in mice that genetically lack mast cells (Kit(W-sh/W-sh) mice) is associated with increased uptake of protein antigens painted on the skin by dendritic cells (DCs) compared with similarly treated wild-type mice, suggesting a protective role for mast cells in exposure to nominal environmental allergens. To test this further, we crossed Kit(W-sh/W-sh) mice with signal transducer and activator of transcription 6 (i.e., Stat6) VT transgenic mice that develop spontaneous atopic dermatitis-like disease that is dependent on T helper cell 2 cytokines and is associated with high serum concentrations of IgE. We observed that Stat6VT × Kit(W-sh/W-sh) mice developed more frequent and more severe allergic skin inflammation than Stat6VT transgenic mice that had mast cells. Together, these studies suggest that mast cells regulate epidermal barrier function and have a potential protective role in the development of atopic dermatitis-like disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. UP-REGULATION OF IL-6, IL-8 AND CCL2 GENE EXPRESSION AFTER ACUTE INFLAMMATION: CORRELATION TO CLINICAL PAIN

    PubMed Central

    Wang, Xiao-Min; Hamza, May; Wu, Tai-Xia; Dionne, Raymond A.

    2012-01-01

    Tissue injury initiates a cascade of inflammatory mediators and hyperalgesic substances including prostaglandins, cytokines and chemokines. Using microarray and qRT-PCR gene expression analyses, the present study evaluated changes in gene expression of a cascade of cytokines following acute inflammation and the correlation between the changes in the gene expression level and pain intensity in the oral surgery clinical model of acute inflammation. Tissue injury resulted in a significant up-regulation in the gene expression of Interleukin-6 (IL-6; 63.3-fold), IL-8 (8.1-fold), chemokine (C-C motif) ligand 2 (CCL2; 8.9-fold), chemokine (C-X-C motif) ligand 1 (CXCL1; 30.5-fold), chemokine (C-X-C motif) ligand 2 (CXCL2; 26-fold) and annexin A1 (ANXA1; 12-fold). The up-regulation of IL-6 gene expression was significantly correlated to the up-regulation on the gene expression of IL-8, CCL2, CXCL1 and CXCL2. Interestingly, the tissue injury induced up-regulation of IL-6 gene expression, IL-8 and CCL2 were positively correlated to pain intensity at 3 hours post-surgery, the onset of acute inflammatory pain. However, ketorolac treatment did not have a significant effect on the gene expression of IL-6, IL-8, CCL2, CXCL2 and ANXA1 at the same time point of acute inflammation. These results demonstrate that up-regulation of IL-6, IL-8 and CCL2 gene expression contributes to the development of acute inflammation and inflammatory pain. The lack of effect for ketorolac on the expression of these gene products may be related to the ceiling analgesic effects of non-steroidal anti-inflammatory drugs. PMID:19233564

  6. Acute hyperglycaemia and inflammation in patients with ST segment elevation myocardial infarction.

    PubMed

    Terlecki, Michał; Bednarek, Agnieszka; Kawecka-Jaszcz, Kalina; Czarnecka, Danuta; Bryniarski, Leszek

    2013-01-01

    Acute hyperglycaemia in patients with acute coronary syndromes (ACS) is associated with increased cardiovascular (CV) risk among both diabetic and non-diabetic patients although the mechanisms underlying this association are not clearly understood. Acute hyperglycaemia in patients with ACS may be associated with increased systemic inflammation. Leukocytes are the major cellular mediators of inflammation and their elevated count is associated with higher CV event rate in ACS patients. Thus, it is possible that there is a relationship between acute hyperglycaemia and high leukocyte count and concomitant presence of these two conditions may contribute to increased CV risk among patients with ST segment elevation myocardial infarction (STEMI). To investigate the relationship between acute hyperglycaemia and high leukocyte count and to evaluate its association with outcomes in patients with STEMI. Glucose level and leukocyte count on admission were measured in 246 patients with STEMI admitted in 2004- -2007 to the First Department of Cardiology and Hypertension at the University Hospital in Cracow who were treated with an early invasive management strategy. Patients were divided into two groups, with acute hyperglycaemia (glycaemia on admission ≥ 7.8 mmol/L) and with normoglycaemia (glycaemia on admission < 7.8 mmol/L). Leukocyte count was defined as high when it was greater than or equal to the median in the overall study group. Acute hyperglycaemia was noted in 136 (55.3%) patients. Median leukocyte count on admission in the overall study group was 10.8 × 103/mm3 (interquartile range: 8.5-13.0). Significantly higher in-hospital mortality (11.8% vs. 1.8%, p = 0.0029) and higher rates of cardiogenic shock (10.3% vs. 0.9%, p = 0.0022), Killip class > 1 heart failure (HF; 44.1% vs. 20.0%, p < 0.0001), atrial fibrillation (11.0% vs. 3.6%, p = 0.0308), ventricular fibrillation (5.9% vs. 0.9%, p = 0.0389), repeated percutaneous coronary angioplasty (5.2% vs. 0.0%, p = 0

  7. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin.

    PubMed

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-10-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2'-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Humanized Mouse Model of Skin Inflammation Is Characterized by Disturbed Keratinocyte Differentiation and Influx of IL-17A Producing T Cells

    PubMed Central

    de Oliveira, Vivian L.; Keijsers, Romy R. M. C.; van de Kerkhof, Peter C. M.; Seyger, Marieke M. B.; Fasse, Esther; Svensson, Lars; Latta, Markus; Norsgaard, Hanne; Labuda, Tord; Hupkens, Pieter; van Erp, Piet E. J.; Joosten, Irma; Koenen, Hans J. P. M.

    2012-01-01

    Humanized mouse models offer a challenging possibility to study human cell function in vivo. In the huPBL-SCID-huSkin allograft model human skin is transplanted onto immunodeficient mice and allowed to heal. Thereafter allogeneic human peripheral blood mononuclear cells are infused intra peritoneally to induce T cell mediated inflammation and microvessel destruction of the human skin. This model has great potential for in vivo study of human immune cells in (skin) inflammatory processes and for preclinical screening of systemically administered immunomodulating agents. Here we studied the inflammatory skin response of human keratinocytes and human T cells and the concomitant systemic human T cell response. As new findings in the inflamed human skin of the huPBL-SCID-huSkin model we here identified: 1. Parameters of dermal pathology that enable precise quantification of the local skin inflammatory response exemplified by acanthosis, increased expression of human β-defensin-2, Elafin, K16, Ki67 and reduced expression of K10 by microscopy and immunohistochemistry. 2. Induction of human cytokines and chemokines using quantitative real-time PCR. 3. Influx of inflammation associated IL-17A-producing human CD4+ and CD8+ T cells as well as immunoregulatory CD4+Foxp3+ cells using immunohistochemistry and -fluorescence, suggesting that active immune regulation is taking place locally in the inflamed skin. 4. Systemic responses that revealed activated and proliferating human CD4+ and CD8+ T cells that acquired homing marker expression of CD62L and CLA. Finally, we demonstrated the value of the newly identified parameters by showing significant changes upon systemic treatment with the T cell inhibitory agents cyclosporine-A and rapamycin. In summary, here we equipped the huPBL-SCID-huSkin humanized mouse model with relevant tools not only to quantify the inflammatory dermal response, but also to monitor the peripheral immune status. This combined approach will gain our

  9. Conserved gene regulation during acute inflammation between zebrafish and mammals

    PubMed Central

    Forn-Cuní, G.; Varela, M.; Pereiro, P.; Novoa, B.; Figueras, A.

    2017-01-01

    Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential. PMID:28157230

  10. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide

    PubMed Central

    Bengtson, Stefan; Knudsen, Kristina B.; Kyjovska, Zdenka O.; Berthing, Trine; Skaug, Vidar; Levin, Marcus; Koponen, Ismo K.; Shivayogimath, Abhay; Booth, Timothy J.; Alonso, Beatriz; Pesquera, Amaia; Zurutuza, Amaia; Thomsen, Birthe L.; Troelsen, Jesper T.; Jacobsen, Nicklas R.

    2017-01-01

    We investigated toxicity of 2–3 layered >1 μm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 μg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis. PMID:28570647

  11. Attenuation of acute lung inflammation induced by cigarette smoke in CXCR3 knockout mice.

    PubMed

    Nie, Li; Xiang, Ruolan; Zhou, Weixun; Lu, Bao; Cheng, Deyun; Gao, Jinming

    2008-12-16

    CD8+ T cells may participate in cigarette smoke (CS) induced-lung inflammation in mice. CXCL10/IP-10 (IFNgamma-inducible protein 10) and CXCL9/Mig (monokine induced by IFN-gamma) are up-regulated in CS-induced lung injury and may attract T-cell recruitment to the lung. These chemokines together with CXCL11/ITAC (IFN-inducible T-cell alpha chemoattractant) are ligands for the chemokine receptor CXCR3 which is preferentially expressed chiefly in activated CD8+ T cells. The purpose of this investigation was to study the contribution of CXCR3 to acute lung inflammation induced by CS using CXCR3 knockout (KO) mice. Mice (n = 8 per group) were placed in a closed plastic box connected to a smoke generator and were exposed whole body to the tobacco smoke of five cigarettes four times a day for three days. Lung pathological changes, expression of inflammatory mediators in bronchoalveolar lavage (BAL) fluid and lungs at mRNA and protein levels, and lung infiltration of CD8+ T cells were compared between CXCR3-/- mice and wild type (WT) mice. Compared with the WT littermates, CXCR3 KO mice showed less CS-induced lung inflammation as evidenced by less infiltration of inflammatory cells in airways and lung tissue, particularly fewer CD8+ T cells, lower levels of IFNgamma and CXCR3 ligands (particularly CXCL10). Our findings show that CXCR3 is important in promoting CD8+ T cell recruitment and in initiating IFNgamma and CXCL10 release following CS exposure. CXCR3 may represent a promising therapeutic target for acute lung inflammation induced by CS.

  12. Attenuation of acute lung inflammation induced by cigarette smoke in CXCR3 knockout mice

    PubMed Central

    Nie, Li; Xiang, Ruolan; Zhou, Weixun; Lu, Bao; Cheng, Deyun; Gao, Jinming

    2008-01-01

    Background CD8+ T cells may participate in cigarette smoke (CS) induced-lung inflammation in mice. CXCL10/IP-10 (IFNγ-inducible protein 10) and CXCL9/Mig (monokine induced by IFN-γ) are up-regulated in CS-induced lung injury and may attract T-cell recruitment to the lung. These chemokines together with CXCL11/ITAC (IFN-inducible T-cell alpha chemoattractant) are ligands for the chemokine receptor CXCR3 which is preferentially expressed chiefly in activated CD8+ T cells. The purpose of this investigation was to study the contribution of CXCR3 to acute lung inflammation induced by CS using CXCR3 knockout (KO) mice. Methods Mice (n = 8 per group) were placed in a closed plastic box connected to a smoke generator and were exposed whole body to the tobacco smoke of five cigarettes four times a day for three days. Lung pathological changes, expression of inflammatory mediators in bronchoalveolar lavage (BAL) fluid and lungs at mRNA and protein levels, and lung infiltration of CD8+ T cells were compared between CXCR3-/- mice and wild type (WT) mice. Results Compared with the WT littermates, CXCR3 KO mice showed less CS-induced lung inflammation as evidenced by less infiltration of inflammatory cells in airways and lung tissue, particularly fewer CD8+ T cells, lower levels of IFNγ and CXCR3 ligands (particularly CXCL10). Conclusion Our findings show that CXCR3 is important in promoting CD8+ T cell recruitment and in initiating IFNγ and CXCL10 release following CS exposure. CXCR3 may represent a promising therapeutic target for acute lung inflammation induced by CS. PMID:19087279

  13. Tannic acid modulates NFκB signaling pathway and skin inflammation in NC/Nga mice through PPARγ expression.

    PubMed

    Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Thandavarayan, Rajarajan Amirthalingam; Pitchaimani, Vigneshwaran; Sreedhar, Remya; Afrin, Rejina; Harima, Meilei; Suzuki, Hiroshi; Nomoto, Mayumi; Miyashita, Shizuka; Suzuki, Kenji; Nakamura, Masahiko; Ueno, Kazuyuki; Watanabe, Kenichi

    2015-12-01

    Polyphenolic compound tannic acid, which is mainly found in grapes and green tea, is a potent antioxidant with anticarcinogenic activities. In this present study, we hypothesized that tannic acid could inhibit nuclear factor (NF)κB signaling and inflammation in atopic dermatitis (AD) NC/Nga mice. We have analyzed the effects of tannic acid on dermatitis severity, histopathology and expression of inflammatory signaling proteins in house dust mite extract induced AD mouse skin. In addition, serum levels of T helper (Th) cytokines (interferon (IFN)γ, interleukin (IL)-4) were measured by enzyme-linked immunosorbent assay. Treatment with tannic acid ameliorated the development of AD-like clinical symptoms and effectively inhibited hyperkeratosis, parakeratosis, acanthosis, mast cells and infiltration of inflammatory cells in the AD mouse skin. Serum levels of IFNγ and IL-4 were significantly down-regulated by tannic acid. Furthermore, tannic acid treatment inhibited DfE induced tumor necrosis factor (TNF)α, high mobility group protein (HMG)B1, receptor for advanced glycation end products (RAGE), extracellular signal-regulated kinase (ERK)1/2, NFκB, cyclooxygenase (COX)2, IL-1β and increased the protein expression of peroxisome proliferator-activated receptor (PPAR)γ. Taken together, our results demonstrate that, DfE induced skin inflammation might be mediated through NFκB signaling and tannic acid may be a potential therapeutic agent for AD, which may possibly act via induction of PPARγ protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Absence of stearoyl-CoA desaturase-1 does not promote DSS-induced acute colitis.

    PubMed

    Macdonald, Marcia L E; Bissada, Nagat; Vallance, Bruce A; Hayden, Michael R

    2009-12-01

    Absence of stearoyl-CoA desaturase-1 (SCD1) in mice leads to chronic inflammation of the skin and increased susceptibility to atherosclerosis, while also increasing plasma inflammatory markers. A recent report suggested that SCD1 deficiency also increases disease severity in a mouse model of inflammatory bowel disease, induced by dextran sulfate sodium (DSS). However, SCD1-deficient mice are known to consume increased amounts of water, which would also be expected to increase the intake of DSS-treated water. The aim of this study was to determine the effect of SCD1 deficiency on DSS-induced acute colitis with DSS dosing adjusted to account for genotype differences in fluid consumption. Wild-type controls were treated with 3.5% DSS for 5 days to induce moderately severe colitis, while the concentration of DSS given to SCD1-deficient mice was lowered to 2.5% to control for increased fluid consumption. Colonic inflammation was assessed by clinical and histological scoring. Although SCD1-deficient mice consumed a total intake of DSS that was greater than that of wild-type controls, colonic inflammation, colon length and fecal blood were not altered by SCD1-deficiency in DSS-induced colitis, while diarrhea and total weight loss were modestly improved. Despite SCD1 deficiency leading to chronic inflammation of the skin and increased susceptibility to atherosclerosis, it does not accelerate inflammation in the DSS-induced model of acute colitis when DSS intake is controlled. These observations suggest that SCD1 deficiency does not play a significant role in colonic inflammation in this model.

  15. Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation.

    PubMed

    Degueurce, Gwendoline; D'Errico, Ilenia; Pich, Christine; Ibberson, Mark; Schütz, Frédéric; Montagner, Alexandra; Sgandurra, Marie; Mury, Lionel; Jafari, Paris; Boda, Akash; Meunier, Julien; Rezzonico, Roger; Brembilla, Nicolò Costantino; Hohl, Daniel; Kolios, Antonios; Hofbauer, Günther; Xenarios, Ioannis; Michalik, Liliane

    2016-08-01

    Although excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPARβ/δ is known to control mouse cutaneous repair and UV-induced skin cancer development. Here, we describe a novel PPARβ/δ-dependent molecular cascade involving TGFβ1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta.

    PubMed

    Wahl, S M; Allen, J B; Costa, G L; Wong, H L; Dasch, J R

    1993-01-01

    Transforming growth factor beta (TGF-beta) induces leukocyte recruitment and activation, events central to an inflammatory response. In this study, we demonstrate that antagonism of TGF-beta with a neutralizing antibody not only blocks inflammatory cell accumulation, but also tissue pathology in an experimental model of chronic erosive polyarthritis. Intraarticular injection of monoclonal antibody 1D11.16, which inhibits both TGF-beta 1 and TGF-beta 2 bioactivity, into animals receiving an arthropathic dose of bacterial cell walls significantly inhibits arthritis. Inhibition was observed with a single injection of 50 micrograms antibody, and a 1-mg injection blocked acute inflammation > 75% compared with the contralateral joints injected with an irrelevant isotype control antibody (MOPC21) as quantitated by an articular index (AI = 0.93 +/- 0.23 for 1D11.16, and AI = 4.0 +/- 0 on day 4; p < 0.001). Moreover, suppression of the acute arthritis achieved with a single injection of antibody was sustained into the chronic, destructive phase of the disease (on day 18, AI = 0.93 +/- 0.07 vs. AI = 2.6 +/- 0.5; p < 0.01). The decreased inflammatory index associated with anti-TGF-beta treatment was consistent with histopathologic and radiologic evidence of a therapeutic response. These data implicate TGF-beta as a profound agonist not only in the early events responsible for synovial inflammation, but also in the chronicity of streptococcal cell wall fragment-induced inflammation culminating in destructive pathology. Interrupting the cycle of leukocyte recruitment and activation with TGF-beta antagonists may provide a mechanism for resolution of chronic destructive lesions.

  17. Reversal of acute and chronic synovial inflammation by anti- transforming growth factor beta

    PubMed Central

    1993-01-01

    Transforming growth factor beta (TGF-beta) induces leukocyte recruitment and activation, events central to an inflammatory response. In this study, we demonstrate that antagonism of TGF-beta with a neutralizing antibody not only blocks inflammatory cell accumulation, but also tissue pathology in an experimental model of chronic erosive polyarthritis. Intraarticular injection of monoclonal antibody 1D11.16, which inhibits both TGF-beta 1 and TGF-beta 2 bioactivity, into animals receiving an arthropathic dose of bacterial cell walls significantly inhibits arthritis. Inhibition was observed with a single injection of 50 micrograms antibody, and a 1-mg injection blocked acute inflammation > 75% compared with the contralateral joints injected with an irrelevant isotype control antibody (MOPC21) as quantitated by an articular index (AI = 0.93 +/- 0.23 for 1D11.16, and AI = 4.0 +/- 0 on day 4; p < 0.001). Moreover, suppression of the acute arthritis achieved with a single injection of antibody was sustained into the chronic, destructive phase of the disease (on day 18, AI = 0.93 +/- 0.07 vs. AI = 2.6 +/- 0.5; p < 0.01). The decreased inflammatory index associated with anti-TGF-beta treatment was consistent with histopathologic and radiologic evidence of a therapeutic response. These data implicate TGF-beta as a profound agonist not only in the early events responsible for synovial inflammation, but also in the chronicity of streptococcal cell wall fragment-induced inflammation culminating in destructive pathology. Interrupting the cycle of leukocyte recruitment and activation with TGF-beta antagonists may provide a mechanism for resolution of chronic destructive lesions. PMID:8418203

  18. Ultraviolet light protection by a sunscreen prevents interferon-driven skin inflammation in cutaneous lupus erythematosus.

    PubMed

    Zahn, Sabine; Graef, Medina; Patsinakidis, Nikolaos; Landmann, Aysche; Surber, Christian; Wenzel, Joerg; Kuhn, Annegret

    2014-07-01

    Irradiation with ultraviolet (UV) light is an important exacerbating factor in cutaneous lupus erythematosus (CLE) and induces various effects in the skin of patients with the disease, such as cell death and inflammation. Recently, we demonstrated the ability of a broad-spectrum sunscreen to prevent UV-induced damage both in patients with CLE and healthy controls (HCs). The aim of this study was to evaluate whether the UV-dependent activation of interferon (IFN)-driven inflammation in CLE can also be prevented by application of the sunscreen. In 20 patients with different subtypes of CLE and 10 HCs, defined areas on the upper back were treated with a broad-spectrum liposomal sunscreen 20 min prior to a combined standardized UVA/UVB irradiation. Immunohistological analyses using antibodies directed against MxA, CD11c, CD123 and CD68 were performed from skin biopsies taken from areas before UV irradiation as well as from sunscreen-treated and sunscreen-untreated areas 24 and 72 h after UV irradiation. The expression of MxA was completely prevented by the sunscreen applied prior to UV irradiation in CLE patients and HCs. Additionally, sunscreen protection significantly diminished the number of the CD11c- and CD123-positive dendritic cells, which are suggested to be a major source of type I/III IFNs, in UV-irradiated skin of patients with CLE. Moreover, the application of the sunscreen prevented the increase in CD68-positive macrophages in both groups 72 h after UV irradiation. The data of this study demonstrate that UV protection reduces lesional tissue damage and inhibits the typical IFN-driven inflammatory response in CLE. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Acute UV irradiation increases heparan sulfate proteoglycan levels in human skin.

    PubMed

    Jung, Ji-Yong; Oh, Jang-Hee; Kim, Yeon Kyung; Shin, Mi Hee; Lee, Dayae; Chung, Jin Ho

    2012-03-01

    Glycosaminoglycans are important structural components in the skin and exist as various proteoglycan forms, except hyaluronic acid. Heparan sulfate (HS), one of the glycosaminoglycans, is composed of repeated disaccharide units, which are glucuronic acids linked to an N-acetyl-glucosamine or its sulfated forms. To investigate acute ultraviolet (UV)-induced changes of HS and HS proteoglycans (HSPGs), changes in levels of HS and several HSPGs in male human buttock skin were examined by immunohistochemistry and real-time quantitative polymerase chain reaction (qPCR) after 2 minimal erythema doses (MED) of UV irradiation (each n = 4-7). HS staining revealed that 2 MED of UV irradiation increased its expression, and staining for perlecan, syndecan-1, syndecan-4, CD44v3, and CD44 showed that UV irradiation increased their protein levels. However, analysis by real-time qPCR showed that UV irradiation did not change mRNA levels of CD44 and agrin, and decreased perlecan and syndecan-4 mRNA levels, while increased syndecan-1 mRNA level. As HS-synthesizing or -degrading enzymes, exostosin-1 and heparanase mRNA levels were increased, but exostosin-2 was decreased by UV irradiation. UV-induced matrix metalloproteinase-1 expression was confirmed for proper experimental conditions. Acute UV irradiation increases HS and HSPG levels in human skin, but their increase may not be mediated through their transcriptional regulation.

  20. Invasive Aspergillosis with Disseminated Skin Involvement in a Patient with Acute Myeloid Leukemia: A Rare Case

    PubMed Central

    Mert, Duygu; Iskender, Gülşen; Duygu, Fazilet; Merdin, Alparslan; Dal Mehmet, Sinan; Dogan, Mehmet; Tekgündüz, Emre; Ertek, Mustafa; Altuntaş, Fevzi

    2017-01-01

    Invasive pulmonary aspergillosis is most commonly seen in immunocompromised patients. Besides, skin lesions may also develop due to invasive aspergillosis in those patients. A 49-year-old male patient was diagnosed with acute myeloid leukemia. The patient developed bullous and zosteriform lesions on the skin after the 21st day of hospitalization. The skin biopsy showed hyphae. Disseminated skin aspergillosis was diagnosed to the patient. Voricanazole treatment was initiated. The patient was discharged once the lesions started to disappear. PMID:28626542

  1. Antibody-mediated delivery of interleukin 4 to the neo-vasculature reduces chronic skin inflammation.

    PubMed

    Hemmerle, Teresa; Zgraggen, Silvana; Matasci, Mattia; Halin, Cornelia; Detmar, Michael; Neri, Dario

    2014-11-01

    The antibody-mediated delivery of cytokines ("immunocytokines") to sites of pathological angiogenesis represents an attractive strategy for the development of innovative biopharmaceuticals, capable of modulating the activity of the immune system in cancer and in chronic inflammatory conditions. Recombinant IL4 has previously been shown to be therapeutically active in patients with psoriasis. The antibody-mediated delivery of this cytokine to sites of chronic skin inflammatory conditions should lead to an improved potency and selectivity, compared to non-targeted IL4. The therapeutic activity of F8-IL4, a fusion protein of the F8 antibody (specific to the alternatively-spliced EDA domain of fibronectin) with murine IL4, was investigated in three immunocompetent mouse models of skin inflammation: two induced by the TLR7/8 ligand imiquimod (in Balb/c and C57BL/6) and one mediated by the over-expression of VEGF-A. The EDA domain of fibronectin, a marker for angiogenesis, is expressed in the inflamed skin in all three models and F8-IL4 selectively localized to inflamed skin lesions following intravenous administration. The F8-IL4 fusion protein mediated a therapeutic benefit, which was superior to the one of a non-targeted version of IL4 and led to increased levels of key regulatory cytokines (including IL5, IL10, IL13, and IL27) in the inflamed skin, while IL2 levels were not affected in all treatment groups. A murine version of etanercept and a murine anti-IL17 antibody were used as positive control in the therapy experiments. Skin inflammatory lesions can be selectively targeted using anti-EDA antibody-cytokine fusion proteins and the pharmacodelivery of IL4 confers a therapeutic benefit by shifting the cytokine balance. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. ASEPTIC INFLAMMATION IN THE LUNGS IN ACUTE RADIATION SICKNESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, A.E.

    1963-09-01

    Inflammation in the lungs of irradiated rabbits at the site of turpentine injection has much in common with the inflammatory changes arising in other tissues and organs during local irradiation or acute radiation sickness. The fact that the inflammatory changes under different conditions of irradiation are similar in type regardless of the character of the inflammatory agent suggests that the phenomenon has a common mechanism. The absence of polymorphonuclear (eosinophtlic) leukocytes from inflammatory foci in irradiated rabbits is due not only to the developing leukopenia, but also to a disturbance of the leukocyte emigration process into the inflammatory focus. Inmore » irradiated rabbits in cortrast to the controls, the normal arrangement of the fibrous structures is preserved in the necrotic lung tissue at the site of turpentine injection. In animals with severe acute radiation sickness induced by external irradiation in sublethal doses, the ability of the organism to respond to introduction of an inflammatory agent by an increase in the number of leukocytes in the blood and by a rise of the body temperature is to some extent preserved. (auth)« less

  3. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice

    PubMed Central

    Suidan, Georgette L.; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M.; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph

    2013-01-01

    The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1−/− mice. The velocity of rolling leukocytes was higher in Tph1−/− mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1−/− mice. Diminished rolling in Tph1−/− mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1−/− mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1−/− mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271

  4. Mast cells and histamine are triggering the NF-κB-mediated reactions of adult and aged perilymphatic mesenteric tissues to acute inflammation

    PubMed Central

    Nizamutdinova, Irina Tsoy; Dusio, Giuseppina F.; Gasheva, Olga Yu.; Skoog, Hunter; Tobin, Richard; Peddaboina, Chander; Meininger, Cynthia J.; Zawieja, David C.; Newell-Rogers, M. Karen; Gashev, Anatoliy A.

    2016-01-01

    This study aimed to establish mechanistic links between the aging-associated changes in the functional status of mast cells and the altered responses of mesenteric tissue and mesenteric lymphatic vessels (MLVs) to acute inflammation. We used an in vivo model of acute peritoneal inflammation induced by lipopolysaccharide treatment of adult (9-month) and aged (24-month) F-344 rats. We analyzed contractility of isolated MLVs, mast cell activation, activation of nuclear factor-κB (NF-κB) without and with stabilization of mast cells by cromolyn or blockade of all types of histamine receptors and production of 27 major pro-inflammatory cytokines in adult and aged perilymphatic mesenteric tissues and blood. We found that the reactivity of aged contracting lymphatic vessels to LPS-induced acute inflammation was abolished and that activated mast cells trigger NF-κB signaling in the mesentery through release of histamine. The aging-associated basal activation of mesenteric mast cells limits acute inflammatory NF-κB activation in aged mesentery. We conclude that proper functioning of the mast cell/histamine/NF-κB axis is necessary for reactions of the lymphatic vessels to acute inflammatory stimuli as well as for interaction and trafficking of immune cells near and within the collecting lymphatics. PMID:27875806

  5. Low-dose radiation modifies skin response to acute gamma-rays and protons.

    PubMed

    Mao, Xiao Wen; Pecaut, Michael J; Cao, Jeffrey D; Moldovan, Maria; Gridley, Daila S

    2013-01-01

    The goal of the present study was to obtain pilot data on the effects of protracted low-dose/low-dose-rate (LDR) γ-rays on the skin, both with and without acute gamma or proton irradiation (IR). Six groups of C57BL/6 mice were examined: a) 0 Gy control, b) LDR, c) Gamma, d) LDR+Gamma, e) Proton, and f) LDR+Proton. LDR radiation was delivered to a total dose of 0.01 Gy (0.03 cGy/h), whereas the Gamma and Proton groups received 2 Gy (0.9 Gy/min and 1.0 Gy/min, respectively). Assays were performed 56 days after exposure. Skin samples from all irradiated groups had activated caspase-3, indicative of apoptosis. The significant (p<0.05) increases in immunoreactivity in the Gamma and Proton groups were not present when LDR pre-exposure was included. However, the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay for DNA fragmentation and histological examination of hematoxylin and eosin-stained sections revealed no significant differences among groups, regardless of radiation regimen. The data demonstrate that caspase-3 activation initially triggered by both forms of acute radiation was greatly elevated in the skin nearly two months after whole-body exposure. In addition, LDR γ-ray priming ameliorated this response.

  6. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury

    PubMed Central

    Li, Ji-Guo; Lin, Jia-Ji; Wang, Zhao-Ling; Cai, Wen-Ke; Wang, Pei-Na; Jia, Qian; Zhang, An-Sheng; Wu, Gao-Yi; Zhu, Guo-Xiong; Ni, Long-Xing

    2015-01-01

    Acute pulpitis (AP), one of the most common diseases in the endodontics, usually causes severe pain to the patients, which makes the search for therapeutic target of AP essential in clinic. Toll-like receptor 4 (TLR4) signaling is widely involved in the mechanism of pulp inflammation, while melatonin has been reported to have an inhibition for a various kinds of inflammation. We hereby studied whether melatonin can regulate the expression of TLR4/NF-ĸB signaling in the pulp tissue of AP and in human dental pulp cells (HDPCs). Two left dental pulps of the adult rat were drilled open to establish the AP model, and the serum levels of melatonin and pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α), were assessed at 1, 3 and 5 d post injury. At the same time points, the expression of TLR4 signaling in the pulp was explored by quantitative real-time PCR and immunohistochemistry. The AP rats were administered an abdominal injection of melatonin to assess whether melatonin rescued AP and TLR4/NF-ĸB signaling. Dental pulp injury led to an approximately five-day period acute pulp inflammation and necrosis in the pulp and a significant up-regulation of IL-1β, IL-18 and TNF-α in the serum. ELISA results showed that the level of melatonin in the serum decreased due to AP, while an abdominal injection of melatonin suppressed the increase in serum cytokines and the percentage of necrosis at the 5 d of the injured pulp. Consistent with the inflammation in AP rats, TLR4, NF-ĸB, TNF-α and IL-1β in the pulp were increased post AP compared with the baseline expression. And melatonin showed an inhibition on TLR4/NF-ĸB signaling as well as IL-1β and TNF-α production in the pulp of AP rats. Furthermore, melatonin could also regulate the expression of TLR4/NF-ĸB signaling in LPS-stimulated HDPCs. These data suggested that dental pulp injury induced AP and reduced the serum level of melatonin and that

  7. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  8. Substance P Promotes Wound Healing in Diabetes by Modulating Inflammation and Macrophage Phenotype

    PubMed Central

    Leal, Ermelindo C.; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E.; Kokkotou, Efi; Mooney, David J.; LoGerfo, Frank W.; Pradhan-Nabzdyk, Leena; Veves, Aristidis

    2016-01-01

    Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. PMID:25871534

  9. The skin, a novel niche for recirculating B cells1

    PubMed Central

    Geherin, Skye A.; Fintushel, Sarah R.; Lee, Michael H.; Wilson, R. Paul; Patel, Reema T.; Alt, Carsten; Young, Alan J.; Hay, John B.; Debes, Gudrun F.

    2012-01-01

    B cells infiltrate the skin in many chronic inflammatory diseases caused by autoimmunity or infection. Despite potential contribution to disease, skin-associated B cells remain poorly characterized. Using an ovine model of granulomatous skin inflammation, we demonstrate that B cells increase in the skin and skin-draining afferent lymph during inflammation. Surprisingly, skin B cells are a heterogeneous population that is distinct from lymph node B cells, with more large lymphocytes as well as B-1-like B cells that co-express high levels IgM and CD11b. Skin B cells have increased MHCII, CD1, and CD80/86 expression compared with lymph node B cells, suggesting that they are well-suited for T cell activation at the site of inflammation. Furthermore, we show that skin accumulation of B cells and antibody-secreting cells during inflammation increases local antibody titers, which could augment host defense and autoimmunity. While skin B cells express typical skin homing receptors such as E-selectin ligand and alpha-4 and beta-1 integrins, they are unresponsive to ligands for chemokine receptors associated with T cell homing into skin. Instead, skin B cells migrate toward the cutaneously expressed CCR6 ligand CCL20. Our data support a model in which B cells use CCR6-CCL20 to recirculate through the skin, fulfilling a novel role in skin immunity and inflammation. PMID:22561151

  10. Fecal markers of inflammation, protein loss, and microbial changes in dogs with the acute hemorrhagic diarrhea syndrome (AHDS).

    PubMed

    Heilmann, Romy M; Guard, Melissa M; Steiner, Jörg M; Suchodolski, Jan S; Unterer, Stefan

    2017-09-01

    Idiopathic acute hemorrhagic diarrhea syndrome (AHDS) is characterized by acute onset of bloody diarrhea, severe dehydration, and increased vascular and intestinal mucosal permeability. Markers of gastrointestinal inflammation, protein loss, and changes in the intestinal microbiota have not been studied extensively in dogs with AHDS. For 3 consecutive days, feces were collected from dogs with AHDS, and assayed for calprotectin and S100A12 (both markers of inflammation), α 1 -proteinase inhibitor (a marker of gastrointestinal protein loss), and the presence of selected species of bacteria. Concentrations of all assayed markers were significantly greater than the institutional reference intervals at the time of presentation, and all decreased significantly by Day 3 of treatment. Abundances of selected bacterial groups (Ruminococcaceae, Faecalibacterium spp., Bifidobacterium spp., and Proteobacteria) at the time of diagnosis were consistent with an intestinal bacterial dysbiosis. No differences in the abundance of bacterial groups over time was seen, except for a mild but significant decrease in Ruminococcaceae at Day 3. These results suggest that canine AHDS is associated with a significant but transient gastrointestinal loss of protein and intestinal inflammation. The intestinal bacterial dysbiosis appears to outlast the protein loss and inflammation. © Veterinary Emergency and Critical Care Society 2017.

  11. [Acute asthma in children--anaphylaxis].

    PubMed

    Carlsen, K H

    1993-05-30

    Acute asthma is a manifestation of chronic inflammation of airways, and may be due to inadequate control. Assessment of acute asthma is based upon respiratory rate and pattern, thoracic respiratory recessions, auscultatory rales and rhonchi, skin colour (cyanosis/pallor) and heart rate. Acute asthma in children is best treated with inhaled nebulised drugs, especially beta 2-agonists and adrenaline. Acute severe asthma should be treated with systemic steroids (by injection or orally), and it is important that this treatment is not started too late. Symptomatic treatment with intravenous theophyllamine may also be relevant. Anaphylactic shock occurs most often after injection of drugs or after bites by a wasp or a bee. Food allergy may be the cause in some patients. Speed is necessary in the treatment of anaphylactic shock, and intramuscular injection of adrenaline is the treatment of choice. Systemic steroids or antihistaminics may be used to stabilize the state of the patient.

  12. Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by μ-opioid receptor internalization

    PubMed Central

    Chen, Wenling; Marvizón, Juan Carlos G.

    2009-01-01

    The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using μ-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hindpaw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hindpaw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected Complete Freund's Adjuvant (CFA) in the hindpaw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hindpaw. These results show that acute inflammation, but not chronic inflammation, induce segmental opioid release in the spinal cord that involves supraspinal signals. PMID:19298846

  13. Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by mu-opioid receptor internalization.

    PubMed

    Chen, W; Marvizón, J C G

    2009-06-16

    The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using mu-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hind paw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hind paw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected complete Freund's adjuvant (CFA) in the hind paw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hind paw. These results show that acute inflammation, but not chronic inflammation, induces segmental opioid release in the spinal cord that involves supraspinal signals.

  14. Effects of Human Mesenchymal Stem Cells Transduced with Superoxide Dismutase on Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice.

    PubMed

    Sah, Shyam Kishor; Park, Kyung Ho; Yun, Chae-Ok; Kang, Kyung-Sun; Kim, Tae-Yoon

    2016-02-10

    The immunomodulatory and anti-inflammatory properties of mesenchymal stem cells (MSCs) have been proposed in several autoimmune diseases and successfully tested in animal models, but their contribution to psoriasis and underlying pathways remains elusive. Likewise, an increased or prolonged presence of reactive oxygen species and aberrant antioxidant systems in skin are known to contribute to the development of psoriasis and therefore effective antioxidant therapy is highly required. We explored the feasibility of using extracellular superoxide dismutase (SOD3)-transduced allogeneic MSCs as a novel therapeutic approach in a mouse model of imiquimod (IMQ)-induced psoriasis-like inflammation and investigated the poorly understood underlying mechanism. In addition, the chronicity and late-phase response of inflammation were evaluated during continued activation of antigen receptors by applying a booster dose of IMQ. Subcutaneous injection of allogeneic SOD3-transduced MSCs significantly prevented psoriasis development in our IMQ-induced mouse model, likely through a suppression of proliferation and infiltration of various effector cells into skin with a concomitant modulated cytokine and chemokine expression and inhibition of signaling pathways such as toll-like receptor-7, nuclear factor-kappa B, p38 mitogen-activated kinase, and Janus kinase-signal transducer and activator of transcription, as well as adenosine receptor activation. Our data offer a novel therapeutic approach to chronic inflammatory skin diseases such as psoriasis by leveraging immunomodulatory effects of MSCs as well as SOD3 expression.

  15. Safety Evaluation of Silk Protein Film (A Novel Wound Healing Agent) in Terms of Acute Dermal Toxicity, Acute Dermal Irritation and Skin Sensitization

    PubMed Central

    Padol, Amol R.; Jayakumar, K.; Shridhar, N. B.; Narayana Swamy, H. D.; Narayana Swamy, M.; Mohan, K.

    2011-01-01

    Acute dermal toxicity study was conducted in rats. The parameters studied were body weight, serum biochemistry and gross pathology. The animals were also observed for clinical signs and mortality after the application of test film. The dermal irritation potential of silk protein film was examined using Draize test. In the initial test, three test patches were applied sequentially for 3 min, 1 and 4 hours, respectively, and skin reaction was graded. The irritant or negative response was confirmed using two additional animals, each with one patch, for an exposure period of 4 hours. The responses were scored at 1, 24, 48 and 72 hours after the patch removal. Skin sensitization study was conducted according to Buehler test in guinea pigs, in which on day 0, 7 and 14, the animals were exposed to test material for 6 hours (Induction phase) and on day 28, the animals were exposed for a period of 24 hours (Challenge phase). The skin was observed and recorded at 24 and 48 hours after the patch removal. In acute dermal toxicity study, the rats dermally treated with silk film did not show any abnormal clinical signs and the body weight, biochemical parameters and gross pathological observations were not significantly different from the control group. In acute dermal irritation study, the treated rabbits showed no signs of erythema, edema and eschar, and the scoring was given as “0” for all time points of observations according to Draize scoring system. In skin sensitization study, there were no skin reactions 24 and 48 hours after the removal of challenge patch, which was scored “0” based on Magnusson/Kligman grading scale. PMID:21430915

  16. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin.

    PubMed

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Hitron, John Andrew; Wang, Lei; Asha, Padmaja; Shi, Xianglin; Zhang, Zhuo

    2015-04-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm(2)) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice.

    PubMed

    Lee, Hyun Gyu; Cho, Nam-Chul; Jeong, Ae Jin; Li, Yu-Chen; Rhie, Sung-Ja; Choi, Jung Sook; Lee, Kwang-Ho; Kim, Youngsoo; Kim, Yong-Nyun; Kim, Myoung-Hwan; Pae, Ae Nim; Ye, Sang-Kyu; Kim, Byung-Hak

    2016-01-01

    T-cell-mediated immune responses play an important role in body protection. However, aberrantly activated immune responses are responsible for inflammatory and autoimmune diseases. The regulation of pathologic immune responses may be a potential therapeutic strategy for the treatment of these diseases. Despite that multiple pharmacologic properties of benzoxathiole derivatives have been defined, the molecular mechanisms underlying these properties remain to be clarified. Here, we demonstrated the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) regulated immune responses and ameliorated experimentally induced inflammatory skin diseases both in vitro and in vivo. BOT-4-one inhibited the differentiation of CD4(+) T-cell subsets by regulating the expression and production of T-cell lineage-specific master transcription factors and cytokines and activating the signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited TCR-mediated Akt and NF-κB signaling. Topical application of BOT-4-one ameliorated experimentally induced inflammatory skin diseases in mice models such as 2,4,6-trinitrochlorobenzene-induced contact and atopic dermatitis and IL-23-induced psoriasis-like skin inflammation. Our study demonstrated that BOT-4-one ameliorates inflammatory skin diseases by suppressing the pathogenic CD4(+) T cell differentiation and overall immune responses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Salivary Markers of Inflammation in Response to Acute Stress

    PubMed Central

    Slavish, Danica C.; Graham-Engeland, Jennifer E.; Smyth, Joshua M.; Engeland, Christopher G.

    2014-01-01

    There is burgeoning interest in the ability to detect inflammatory markers in response to stress within naturally occurring social contexts and/or across multiple time points per day within individuals. Salivary collection is a less invasive process than current methods of blood collection and enables intensive naturalistic methodologies, such as those involving extensive repeated measures per day over time. Yet the reliability and validity of saliva-based to blood-based inflammatory biomarkers in response to stress remains unclear. We review and synthesize the published studies that have examined salivary markers of inflammation following exposure to an acute laboratory stressor. Results from each study are reviewed by analyte (IL-1β, TNF-α, IL-6, IL-2, IL-4, IL-10, IL-12, CRP) and stress type (social-cognitive and exercise-physical), after which methodological issues and limitations are addressed. Although the literature is limited, several inflammatory markers (including IL-1β, TNF-α, and IL-6) have been reliably determined from saliva and have increased significantly in response to stress across multiple studies, with effect sizes ranging from very small to very large. Although CRP from saliva has been associated with CRP in circulating blood more consistently than other biomarkers have been associated with their counterparts in blood, evidence demonstrating it reliably responds to acute stress is absent. Although the current literature is presently too limited to allow broad assertion that inflammatory biomarkers determined from saliva are valuable for examining acute stress responses, this review suggests that specific targets may be valid and highlights specific areas of need for future research. PMID:25205395

  19. Metabolism of Skin-Absorbed Resveratrol into Its Glucuronized Form in Mouse Skin

    PubMed Central

    Pluskal, Tomáš; Ito, Ken; Hori, Kousuke; Ebe, Masahiro; Yanagida, Mitsuhiro; Kondoh, Hiroshi

    2014-01-01

    Resveratrol (RESV) is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV. PMID:25506824

  20. Dalbavancin for the treatment of acute bacterial skin and skin structure infections

    PubMed Central

    Ramdeen, Sheena; Boucher, Helen W

    2015-01-01

    Introduction Acute bacterial skin and skin structure infections (ABSSSI) have increased in incidence and severity. The involvement of resistant organisms, particularly methicillin-resistant Staphylococcus aureus, presents additional challenges. The lipoglycopeptide dalbavancin has a prolonged half-life, high protein binding, and excellent tissue levels which led to its development as a once-weekly treatment for ABSSSI. In the pivotal DISCOVER 1 and DISCOVER 2 trials, dalbavancin proved non-inferior to vancomycin followed by linezolid when used sequentially for ABSSSI, forming the basis for its recent approval in the US and Europe for ABSSSI. Areas covered A literature search of published pharmacologic and clinical data was conducted to review the chemistry, pharmacodynamics, and pharmacokinetics of dalbavancin. We also discuss its development process, highlighting efficacy and safety data from pertinent clinical trials and the role it could play in the current clinical landscape. Expert opinion DISCOVER 1 and DISCOVER 2 demonstrated dalbavancin’s non-inferiority to vancomycin followed by linezolid for ABSSSI and confirmed its safety and tolerability. They were among the first trials to use new, early primary efficacy endpoints, and dalbavancin was among the first agents designated a Qualified Infectious Disease Product for expedited review. Dalbavancin may prove to be a valuable option for ABSSSI patients in whom conventional therapy is limited. PMID:26239321

  1. Modified immunoglobulin G glycosylation pattern during turpentine-induced acute inflammation in rats.

    PubMed

    Canellada, Andrea; Margni, Ricardo A

    2002-01-01

    Alterations in the pattern of protein glycosylation have been described during inflammation. In chronic parasitic and tumoral diseases we have reported an increase in the proportion of serum Immunoglobulin G (IgG) molecules possessing an altered Fab glycosylation pattern designated asymmetric antibodies. The alteration results in augmented concanavalin A affinity and functional univalence of the antibody. In addition, Fc agalactosylation has been described as occurring in chronically autoimmune diseases. Therefore, the aim of this paper was to evaluate by analyzing sera whether during an acute inflammatory response in rats produced by subcutaneous inoculation of turpentine oil, there was an alteration in the synthesis and glycosylation of IgG (as revealed by concanavalin A binding). We found that during acute inflammation there was a decrease in the synthesis of IgG which was not affected by prior oral administration of dexamethasone; however, the turpentine-induced increase in IgG binding to concanavalin A was found to be inhibited upon prior administration of the anti-inflammatory agent. As with turpentine, the corticoid used induced an increase in the interleukin-6 levels detected in sera by ELISA. Although we have described an improvement in asymmetric antibody synthesis by low dose of interleukin-6 previously, here we found no correlation between the observed glycosylation pattern of IgG and interleukin-6 concentration assessed in sera of treated rats, probably due to a different dexamethasone mediated pathway.

  2. Circuit resistance training attenuates acute exertion-induced reductions in arterial function but not inflammation in obese women.

    PubMed

    Franklin, Nina C; Robinson, Austin T; Bian, Jing-Tan; Ali, Mohamed M; Norkeviciute, Edita; McGinty, Patrick; Phillips, Shane A

    2015-06-01

    Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Eighteen obese [body mass index (BMI) 30.0-40.0 kg · m(-2)] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation.

  3. Acute cardiovascular toxicity of sterilizers, PHMG, and PGH: severe inflammation in human cells and heart failure in zebrafish.

    PubMed

    Kim, Jae-Yong; Kim, Hak Hyeon; Cho, Kyung-Hyun

    2013-06-01

    In 2011, dozens of children and pregnant women in Korea died by exposure to sterilizer for household humidifier, such as Oxy(®) and Cefu(®). Until now, however, it remains unknown how the sterilizer affect the human health to cause the acute deaths. To find its toxicity for organ, we investigated the putative toxicity of the sterilizer in the cardiovascular system. The sterilizers, polyhexamethylene guanidine phosphate (PHMG, Cefu(®)), and oligo-[2-(2-ethoxy)-ethoxyethyl)-guanidinium-chloride (PGH, Oxy(®)) were treated to human lipoproteins, macrophages, and dermal fibroblast cells. The PGH and PHMG at normal dosages caused severe atherogenic process in human macrophages, cytotoxic effect, and aging in human dermal cell. Zebrafish embryos, which were exposed to the sterilizer, showed early death with acute inflammation and attenuated developmental speed. All zebrafish exposed to the working concentration of PHMG (final 0.3 %) and PGH (final 10 mM) died within 70 min and displayed acute increases in serum triacylglycerol level and fatty liver induction. The dead zebrafish showed severe accumulation of fibrous collagen in the bulbous artery of the heart with elevation of reactive oxygen species. In conclusion, the sterilizers showed acute toxic effect in blood circulation system, causing by severe inflammation, atherogenesis, and aging, with embryo toxicity.

  4. Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice.

    PubMed

    Lee, Hyun Gyu; Cho, Nam-Chul; Jeong, Ae Jin; Li, Yu-Chen; Rhie, Sung-Ja; Choi, Jung Sook; Lee, Kwang-Ho; Kim, Youngsoo; Kim, Yong-Nyun; Kim, Myoung-Hwan; Pae, Ae Nim; Ye, Sang-Kyu; Kim, Byung-Hak

    2015-09-30

    T cell-mediated immune responses play an important role in body protection. However, aberrantly activated immune responses are responsible for inflammatory and autoimmune diseases. The regulation of pathological immune responses may be a potential therapeutic strategy for the treatment of these diseases. Despite multiple pharmacological properties of benzoxathiole derivatives have been defined, the molecular mechanisms underlying these properties remain to be clarified. Here, we demonstrated the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) regulated immune responses and ameliorated experimentally induced inflammatory skin diseases both in vitro and in vivo. BOT-4-one inhibited the differentiation of CD4 + T-cell subsets by regulating the expression and production of T cell lineage-specific master transcription factors and cytokines and activating the signal transducer and activator of transcription (STAT) proteins. In addition, BOT-4-one inhibited T-cell receptor (TCR)-mediated Akt and nuclear factor-kappaB (NF-κB) signaling. Topical application of BOT-4-one ameliorated experimentally induced inflammatory skin diseases in mice models such as TNCB-induced contact and atopic dermatitis and IL-23-induced psoriasis-like skin inflammation. Our study demonstrated that BOT-4-one ameliorates inflammatory skin diseases by suppressing the pathogenic CD4 + T cell differentiation and the overall immune responses.Journal of Investigative Dermatology accepted article preview online, 30 September 2015. doi:10.1038/jid.2015.384.

  5. The Role of Neurogenic Inflammation in Blood-Brain Barrier Disruption and Development of Cerebral Oedema Following Acute Central Nervous System (CNS) Injury

    PubMed Central

    Sorby-Adams, Annabel J.; Marcoionni, Amanda M.; Dempsey, Eden R.; Woenig, Joshua A.; Turner, Renée J.

    2017-01-01

    Acute central nervous system (CNS) injury, encompassing traumatic brain injury (TBI) and stroke, accounts for a significant burden of morbidity and mortality worldwide, largely attributable to the development of cerebral oedema and elevated intracranial pressure (ICP). Despite this, clinical treatments are limited and new therapies are urgently required to improve patient outcomes and survival. Originally characterised in peripheral tissues, such as the skin and lungs as a neurally-elicited inflammatory process that contributes to increased microvascular permeability and tissue swelling, neurogenic inflammation has now been described in acute injury to the brain where it may play a key role in the secondary injury cascades that evolve following both TBI and stroke. In particular, release of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) appear to be critically involved. In particular, increased SP expression is observed in perivascular tissue following acute CNS injury, with the magnitude of SP release being related to both the frequency and degree of the insult. SP release is associated with profound blood-brain barrier disruption and the subsequent development of vasogenic oedema, as well as neuronal injury and poor functional outcomes. Inhibition of SP through use of a neurokinin 1 (NK1) antagonist is highly beneficial following both TBI and ischaemic stroke in pre-clinical models. The role of CGRP is more unclear, especially with respect to TBI, with both elevations and reductions in CGRP levels reported following trauma. However, a beneficial role has been delineated in stroke, given its potent vasodilatory effects. Thus, modulating neuropeptides represents a novel therapeutic target in the treatment of cerebral oedema following acute CNS injury. PMID:28817088

  6. Dynamic skin changes of acute radiation dermatitis revealed by in vivo reflectance confocal microscopy.

    PubMed

    Vano-Galvan, S; Fernandez-Lizarbe, E; Truchuelo, M; Diaz-Ley, B; Grillo, E; Sanchez, V; Ríos-Buceta, L; Paoli, J; Sancho, S; Montero, A; Hernanz, R; Ramos, A; Jaen, P; Gonzalez, S

    2013-09-01

    A better knowledge of the dynamic biological changes that the skin undergoes in response to ionizing radiation is advisable to improve the management of radiation dermatitis, allowing selection of patients needing treatment or close monitoring. To describe the evolution of the skin in response to ionizing radiation through the reflectance confocal microscopy (RCM) features of acute radiation dermatitis. In this prospective descriptive study, six women (median age, 55 years; range, 45-80 years) diagnosed with breast cancer in stages IA-IB undergoing adjuvant radiotherapy were included in the study through consecutive sampling. Clinical, dermoscopic and RCM evaluation of the skin were performed prior to treatment and on days 1, 15, 30 and 45 after radiotherapy. While clinical features of radiation dermatitis emerged after 30 days on average, histopathological changes were detectable by RCM after a mean time of 15 days. The main RCM features included initial appearance of spongiosis, exocytosis and inflammatory cells followed by the presence of dendritic-shaped cells, 'streaming-like figures', 'broken geographic papillae', epidermal architectural disarray, effacement of rete ridges, melanophages and, finally, hyperpigmentation of the basal layer. RCM may safely detect the dynamic biological changes that the skin undergoes in response to ionizing radiation, even before than clinical onset of acute radiation dermatitis. Therefore, RCM may be useful to make an early and non-invasive diagnosis of radiation dermatitis during radiotherapy, allowing an early selection of patients needing treatment or close monitoring and avoiding skin biopsies. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  7. Scabies in a bilateral hand allograft recipient: An additional mimicker of acute skin rejection in vascularized composite allotransplantation.

    PubMed

    Kanitakis, Jean; Morelon, Emmanuel

    2017-06-01

    Vascularized composite tissue allografts include skin, which frequently undergoes, in the early post-graft period, acute rejections. The diagnosis of acute rejection may be difficult as it can be mimicked by several dermatoses. We present a bilateral hand allograft recipient who developed, 16.5 years post-graft, cutaneous lesions raising suspicion about rejection. Physical examination and skin biopsy were diagnostic of scabies. This ectoparasitosis should be added in the list of dermatoses that can mimic allograft rejection in vascular composite allografts. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Elevated VEGF-D Modulates Tumor Inflammation and Reduces the Growth of Carcinogen-Induced Skin Tumors.

    PubMed

    Honkanen, Hanne-Kaisa; Izzi, Valerio; Petäistö, Tiina; Holopainen, Tanja; Harjunen, Vanessa; Pihlajaniemi, Taina; Alitalo, Kari; Heljasvaara, Ritva

    2016-07-01

    Vascular endothelial growth factor D (VEGF-D) promotes the lymph node metastasis of cancer by inducing the growth of lymphatic vasculature, but its specific roles in tumorigenesis have not been elucidated. We monitored the effects of VEGF-D in cutaneous squamous cell carcinoma (cSCC) by subjecting transgenic mice overexpressing VEGF-D in the skin (K14-mVEGF-D) and VEGF-D knockout mice to a chemical skin carcinogenesis protocol involving 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate treatments. In K14-mVEGF-D mice, tumor lymphangiogenesis was significantly increased and the frequency of lymph node metastasis was elevated in comparison with controls. Most notably, the papillomas regressed more often in K14-mVEGF-D mice than in littermate controls, resulting in a delay in tumor incidence and a remarkable reduction in the total tumor number. Skin tumor growth and metastasis were not obviously affected in the absence of VEGF-D; however, the knockout mice showed a trend for reduced lymphangiogenesis in skin tumors and in the untreated skin. Interestingly, K14-mVEGF-D mice showed an altered immune response in skin tumors. This consisted of the reduced accumulation of macrophages, mast cells, and CD4(+) T-cells and an increase of cytotoxic CD8(+) T-cells. Cytokine profiling by flow cytometry and quantitative real time PCR revealed that elevated VEGF-D expression results in an attenuated Th2 response and promotes M1/Th1 and Th17 polarization in the early stage of skin carcinogenesis, leading to an anti-tumoral immune environment and the regression of primary tumors. Our data suggest that VEGF-D may be beneficial in early-stage tumors since it suppresses the pro-tumorigenic inflammation, while at later stages VEGF-D-induced tumor lymphatics provide a route for metastasis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype.

    PubMed

    Leal, Ermelindo C; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E; Kokkotou, Efi; Mooney, David J; LoGerfo, Frank W; Pradhan-Nabzdyk, Leena; Veves, Aristidis

    2015-06-01

    Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Central autonomic network mediates cardiovascular responses to acute inflammation: Relevance to increased cardiovascular risk in depression?

    PubMed Central

    Harrison, Neil A.; Cooper, Ella; Voon, Valerie; Miles, Ken; Critchley, Hugo D.

    2013-01-01

    Inflammation is a risk factor for both depression and cardiovascular disease. Depressed mood is also a cardiovascular risk factor. To date, research into mechanisms through which inflammation impacts cardiovascular health rarely takes into account central effects on autonomic cardiovascular control, instead emphasizing direct effects of peripheral inflammatory responses on endothelial reactivity and myocardial function. However, brain responses to inflammation engage neural systems for motivational and homeostatic control and are expressed through depressed mood state and changes in autonomic cardiovascular regulation. Here we combined an inflammatory challenge, known to evoke an acute reduction in mood, with neuroimaging to identify the functional brain substrates underlying potentially detrimental changes in autonomic cardiovascular control. We first demonstrated that alterations in the balance of low to high frequency (LF/HF) changes in heart rate variability (a measure of baroreflex sensitivity) could account for some of the inflammation-evoked changes in diastolic blood pressure, indicating a central (rather than solely local endothelial) origin. Accompanying alterations in regional brain metabolism (measured using 18FDG-PET) were analysed to localise central mechanisms of inflammation-induced changes in cardiovascular state: three discrete regions previously implicated in stressor-evoked blood pressure reactivity, the dorsal anterior and posterior cingulate and pons, strongly mediated the relationship between inflammation and blood pressure. Moreover, activity changes within each region predicted the inflammation-induced shift in LF/HF balance. These data are consistent with a centrally-driven component originating within brain areas supporting stressor evoked blood pressure reactivity. Together our findings highlight mechanisms binding psychological and physiological well-being and their perturbation by peripheral inflammation. PMID:23416033

  11. Circulating Cell-Free DNA Differentiates Severity of Inflammation.

    PubMed

    Frank, Mayu O

    2016-10-01

    As the U.S. population ages, the incidence of chronic disease will rise. Chronic diseases have been linked to chronic inflammation. The purpose of this review is to summarize the literature on cell-free DNA (cfDNA) in relation to inflammation. PubMed, EMBASE, and Web of Science were searched. Inclusion criteria were noninterventional studies on acute and chronic inflammation, autoimmunity, and infection published in English after 2000, conducted in humans using the fluorescence method of quantifying DNA. Of the 442 articles retrieved, 83 were identified for full-text review and 13 remained after application of inclusion criteria. Of the reviewed studies, three involved acute inflammation, six involved chronic inflammation, and four involved infection. Healthy controls with interpretable results were included in six studies, three of which used the Quant-iT high-sensitivity DNA kit and found cfDNA quantities near 800 ng/ml, while the other three used other fluorescence methods and found quantities below 100 ng/ml. All 13 studies compared groups, and all but 1 found statistically significant differences between them. Among studies using the Quant-iT reagent, levels were higher in infection than in chronic inflammation. Among studies that used other reagents, levels increased from chronic to acute inflammation to severe infection. CfDNA levels were associated with mortality and with clinical outcomes in acute inflammation and infection. Most studies assessed cfDNA's correlation with other inflammation biomarkers and found inconclusive results. There appears to be an association between inflammation and cfDNA. Further research is necessary before cfDNA can be used clinically as a measure of inflammation. © The Author(s) 2016.

  12. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.

    PubMed

    Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme

    2017-02-01

    The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.

  13. A Qualitative Analysis of Acute Skin Toxicity among Breast Cancer Radiotherapy Patients

    PubMed Central

    Schnur, Julie B.; Ouellette, Suzanne C.; DiLorenzo, Terry A.; Green, Sheryl; Montgomery, Guy H.

    2013-01-01

    Objectives One of the most common acute side effects of breast cancer radiotherapy is treatment induced skin changes, referred to as skin toxicity. Yet no research to date has focused expressly on skin toxicity-related quality of life in breast cancer radiotherapy patients. Therefore, our aim was to use qualitative approaches to better understand the impact of skin toxicity on quality of life. Methods Semi-structured interviews were conducted with 20 women (Stage 0-III breast cancer), during their last week of external beam radiotherapy. Each interview was transcribed verbatim, and thematic analysis was performed. Results Three themes were identified based on the interview responses: First, skin changes affect multiple dimensions of quality of life. They cause physical discomfort, body image disturbance, emotional distress, and impair both day-to-day functioning and satisfaction with radiation treatment. Second, individual differences affect women’s experiences. Generally African-American women, younger women, women who are not currently in a relationship, women who are being treated during the summer, and women who are more invested in their appearance are more distressed by skin toxicity. Third, women use a variety of symptom management strategies including self-medication, complementary/alternative medicine approaches, and psychological strategies. Conclusions Implications of results are: 1) Skin toxicity affects numerous dimensions of quality of life, and assessment approaches and psychosocial interventions should address this; 2) individual differences may affect the experience of skin toxicity, and should be considered in treatment and education approaches; and 3) participants’ own creativity and problem-solving should be used to improve the treatment experience. PMID:20238306

  14. Circuit Resistance Training Attenuates Acute Exertion-Induced Reductions in Arterial Function but Not Inflammation in Obese Women

    PubMed Central

    Franklin, Nina C.; Robinson, Austin T.; Bian, Jing-Tan; Ali, Mohamed M.; Norkeviciute, Edita; McGinty, Patrick

    2015-01-01

    Abstract Background: Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Methods: Eighteen obese [body mass index (BMI) 30.0–40.0 kg·m−2] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Results: Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. Conclusions: This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation. PMID:25844686

  15. DO ACUTE PHASE PROTEINS REFLECT SEVERITY OF INFLAMMATION IN RAT MODELS OF POLLUTANT-INDUCED LUNG INJURY?

    EPA Science Inventory

    Title: DO ACUTE PHASE PROTEINS REFLECT THE SEVERITY OF INFLAMMATION IN RAT MODELS OF POLLUTANT-INDUCED LUNG INJURY?

    M. C. Schladweiler, BS 1, P. S. Gilmour, PhD 2, D. L. Andrews, BS 1, D. L. Costa, ScD 1, A. D. Ledbetter, BS 1, K. E. Pinkerton, PhD 3 and U. P. Kodavanti, ...

  16. Acute fish liver intoxication induced blisters formation and generalized skin peeling.

    PubMed

    Chang, Chih-Hao; Lu, Chun-Wei; Chung, Wen-Hung; Ho, Hsin-Chun

    2018-02-01

    Acute fish liver intoxication, including hypervitaminosis A and hypervitaminosis D, may result from the ingestion of certain fish livers. The typical symptoms of hypervitaminosis A include nausea, headache, blurred vision, and cutaneous manifestations, such as flushing, vesicles formation, and desquamation. Hypervitaminosis D may result in hypercalcemia. We report a case of acute fish liver intoxication with systemic and cutaneous manifestations. A 63-year-old male presented to the clinic with generalized desquamation and multiple clear-fluid filled flaccid vesicles after eating approximately two fist-sized portions (about 300-400 g) of cooked seerfish (Scomberomorus spp.) liver. Laboratory examination showed a high serum level of vitamin A and D, and hypercalcemia. Fish liver consumption from particular fish may result in acute hypervitaminosis A and D. In patients with skin detachment or blister formation, headache, drowsiness, and other symptoms and signs consistent with hypervitaminosis A and/or hypercalcemia, a history of fish intake should be sought, and a serum level of vitamin A and D should be measured.

  17. Cutaneous exposure to vesicant phosgene oxime: Acute effects on the skin and systemic toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewari-Singh, Neera, E-mail: Neera.tewari-singh@uc

    Phosgene Oxime (CX), an urticant or nettle agent categorized as a vesicant, is a potential chemical warfare and terrorist weapon. Its exposure can result in widespread and devastating effects including high mortality due to its fast penetration and ability to cause immediate severe cutaneous injury. It is one of the least studied chemical warfare agents with no effective therapy available. Thus, our goal was to examine the acute effects of CX following its cutaneous exposure in SKH-1 hairless mice to help establish a relevant injury model. Results from our study show that topical cutaneous exposure to CX vapor causes blanchingmore » of exposed skin with an erythematous ring, necrosis, edema, mild urticaria and erythema within minutes after exposure out to 8 h post-exposure. These clinical skin manifestations were accompanied with increases in skin thickness, apoptotic cell death, mast cell degranulation, myeloperoxidase activity indicating neutrophil infiltration, p53 phosphorylation and accumulation, and an increase in COX-2 and TNFα levels. Topical CX-exposure also resulted in the dilatation of the peripheral vessels with a robust increase in RBCs in vessels of the liver, spleen, kidney, lungs and heart tissues. These events could cause a drop in blood pressure leading to shock, hypoxia and death. Together, this is the first report on effects of CX cutaneous exposure, which could help design further comprehensive studies evaluating the acute and chronic skin injuries from CX topical exposure and elucidate the related mechanism of action to aid in the identification of therapeutic targets and mitigation of injury. - Highlights: • Phosgene oxime cutaneous exposure causes skin blanching, edema and urticaria. • Penetration of phosgene oxime causes dilation of vasculature in internal organs. • Mast cells could play an important role in phosgene oxime-induced skin injury. • Phosgene oxime could induce low blood pressure and hypoxia leading to mortality.

  18. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice.

    PubMed

    Murakami, A; Nakamura, Y; Torikai, K; Tanaka, T; Koshiba, T; Koshimizu, K; Kuwahara, S; Takahashi, Y; Ogawa, K; Yano, M; Tokuda, H; Nishino, H; Mimaki, Y; Sashida, Y; Kitanaka, S; Ohigashi, H

    2000-09-15

    The intake of citrus fruits has been suggested as a way to prevent the development of some types of human cancer. Nitric oxide (NO) is closely associated with the processes of epithelial carcinogenesis. We attempted a search for NO generation inhibitors in Citrus unshiu. The active constituent was traced by an activity-guiding separation. NO and superoxide (O2-) generation was induced by a combination of lipopolysaccharide and IFN-gamma in mouse macrophage RAW 264.7 cells, and by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated human promyelocyte HL-60, respectively. Expression of inducible NO synthase and cyclooxygenase 2 proteins were detected by Western blotting. The in vivo anti-inflammatory and antitumor promoting activities were evaluated by topical TPA application to ICR mouse skin with measurement of edema formation, epidermal thickness, leukocyte infiltration, hydrogen peroxide production, and the rate of proliferating cell nuclear antigen-stained cells. As a result, nobiletin, a polymethoxyflavonoid, was identified as an inhibitor of both NO and O2- generation. Nobiletin significantly inhibited two distinct stages of skin inflammation induced by double TPA application [first stage priming (leukocyte infiltration) and second stage activation (oxidative insult by leukocytes)] by decreasing the inflammatory parameters. It also suppressed the expression of cyclooxygenase-2 and inducible NO synthase proteins and prostaglandin E2 release. Nobiletin inhibited dimethylbenz[a]anthracene (0.19 micromol)/TPA (1.6 nmol)-induced skin tumor formation at doses of 160 and 320 nmol by reducing the number of tumors per mouse by 61.2% (P < 0.001) and 75.7% (P < 0.001), respectively. The present study suggests that nobiletin is a functionally novel and possible chemopreventive agent in inflammation-associated tumorigenesis.

  19. Emerging treatment options for acute bacterial skin and skin structure infections: focus on intravenous delafloxacin

    PubMed Central

    Righi, Elda; Carnelutti, Alessia; Vena, Antonio; Bassetti, Matteo

    2018-01-01

    The increase in hospitalization due to acute bacterial skin and skin structure infections (ABSSSI) caused by resistant pathogens supports the need for new treatment options. Antimicrobial options for ABSSSI that provide broad-spectrum coverage, including gram-negative pathogens and multidrug-resistant gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), are limited. Delafloxacin is a novel fluoroquinolone available as intravenous and oral formulations and is characterized by an increased efficacy in acidic environments and activity on bacterial biofilm. Delafloxacin displays enhanced in vitro activity against MRSA, and enterococci, while maintaining efficacy against gram-negative pathogens and anaerobes. Delafloxacin has been studied for the treatment of ABSSSI and respiratory infections. Phase III studies have demonstrated noninferiority of delafloxacin compared to vancomycin, linezolid, tigecycline, and the combination of vancomycin plus aztreonam in the treatment of ABSSSI. Due to its favorable pharmacokinetic characteristics, the wide spectrum of action, and the potential for sequential therapy, delafloxacin represents a promising option in the empirical and targeted treatment of ABSSSI, both in hospital- and in community-based care. PMID:29670380

  20. Emerging treatment options for acute bacterial skin and skin structure infections: focus on intravenous delafloxacin.

    PubMed

    Righi, Elda; Carnelutti, Alessia; Vena, Antonio; Bassetti, Matteo

    2018-01-01

    The increase in hospitalization due to acute bacterial skin and skin structure infections (ABSSSI) caused by resistant pathogens supports the need for new treatment options. Antimicrobial options for ABSSSI that provide broad-spectrum coverage, including gram-negative pathogens and multidrug-resistant gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), are limited. Delafloxacin is a novel fluoroquinolone available as intravenous and oral formulations and is characterized by an increased efficacy in acidic environments and activity on bacterial biofilm. Delafloxacin displays enhanced in vitro activity against MRSA, and enterococci, while maintaining efficacy against gram-negative pathogens and anaerobes. Delafloxacin has been studied for the treatment of ABSSSI and respiratory infections. Phase III studies have demonstrated noninferiority of delafloxacin compared to vancomycin, linezolid, tigecycline, and the combination of vancomycin plus aztreonam in the treatment of ABSSSI. Due to its favorable pharmacokinetic characteristics, the wide spectrum of action, and the potential for sequential therapy, delafloxacin represents a promising option in the empirical and targeted treatment of ABSSSI, both in hospital- and in community-based care.

  1. Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs) in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity

    PubMed Central

    Suh, Sung-Suk; Hwang, Jinik; Park, Mirye; Seo, Hyo Hyun; Kim, Hyoung-Shik; Lee, Jeong Hun; Moh, Sang Hyun; Lee, Taek-Kyun

    2014-01-01

    Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells. PMID:25317535

  2. Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity.

    PubMed

    Suh, Sung-Suk; Hwang, Jinik; Park, Mirye; Seo, Hyo Hyun; Kim, Hyoung-Shik; Lee, Jeong Hun; Moh, Sang Hyun; Lee, Taek-Kyun

    2014-10-14

    Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells.

  3. Involvement of activation-induced cytidine deaminase in skin cancer development.

    PubMed

    Nonaka, Taichiro; Toda, Yoshinobu; Hiai, Hiroshi; Uemura, Munehiro; Nakamura, Motonobu; Yamamoto, Norio; Asato, Ryo; Hattori, Yukari; Bessho, Kazuhisa; Minato, Nagahiro; Kinoshita, Kazuo

    2016-04-01

    Most skin cancers develop as the result of UV light-induced DNA damage; however, a substantial number of cases appear to occur independently of UV damage. A causal link between UV-independent skin cancers and chronic inflammation has been suspected, although the precise mechanism underlying this association is unclear. Here, we have proposed that activation-induced cytidine deaminase (AID, encoded by AICDA) links chronic inflammation and skin cancer. We demonstrated that Tg mice expressing AID in the skin spontaneously developed skin squamous cell carcinoma with Hras and Trp53 mutations. Furthermore, genetic deletion of Aicda reduced tumor incidence in a murine model of chemical-induced skin carcinogenesis. AID was expressed in human primary keratinocytes in an inflammatory stimulus-dependent manner and was detectable in human skin cancers. Together, the results of this study indicate that inflammation-induced AID expression promotes skin cancer development independently of UV damage and suggest AID as a potential target for skin cancer therapeutics.

  4. Involvement of activation-induced cytidine deaminase in skin cancer development

    PubMed Central

    Toda, Yoshinobu; Hiai, Hiroshi; Uemura, Munehiro; Nakamura, Motonobu; Hattori, Yukari; Bessho, Kazuhisa; Minato, Nagahiro

    2016-01-01

    Most skin cancers develop as the result of UV light–induced DNA damage; however, a substantial number of cases appear to occur independently of UV damage. A causal link between UV-independent skin cancers and chronic inflammation has been suspected, although the precise mechanism underlying this association is unclear. Here, we have proposed that activation-induced cytidine deaminase (AID, encoded by AICDA) links chronic inflammation and skin cancer. We demonstrated that Tg mice expressing AID in the skin spontaneously developed skin squamous cell carcinoma with Hras and Trp53 mutations. Furthermore, genetic deletion of Aicda reduced tumor incidence in a murine model of chemical-induced skin carcinogenesis. AID was expressed in human primary keratinocytes in an inflammatory stimulus–dependent manner and was detectable in human skin cancers. Together, the results of this study indicate that inflammation-induced AID expression promotes skin cancer development independently of UV damage and suggest AID as a potential target for skin cancer therapeutics. PMID:26974156

  5. Inflammation and Rupture of a Congenital Pericardial Cyst Manifesting Itself as an Acute Chest Pain Syndrome.

    PubMed

    Aertker, Robert A; Cheong, Benjamin Y C; Lufschanowski, Roberto

    2016-12-01

    We present the case of a 63-year-old woman with a remote history of supraventricular tachycardia and hyperlipidemia, who presented with recurrent episodes of acute-onset chest pain. An electrocardiogram showed no evidence of acute coronary syndrome. A chest radiograph revealed a prominent right-sided heart border. A suspected congenital pericardial cyst was identified on a computed tomographic chest scan, and stranding was noted around the cyst. The patient was treated with nonsteroidal anti-inflammatory drugs, and the pain initially abated. Another flare-up was treated similarly. Cardiac magnetic resonance imaging was then performed after symptoms had resolved, and no evidence of the cyst was seen. The suspected cause of the patient's chest pain was acute inflammation of a congenital pericardial cyst with subsequent rupture and resolution of symptoms.

  6. Evaluation of orally administered robenacoxib versus ketoprofen for treatment of acute pain and inflammation associated with musculoskeletal disorders in cats.

    PubMed

    Giraudel, Jerome M; Gruet, Philippe; Alexander, Debbie G; Seewald, Wolfgang; King, Jonathan N

    2010-07-01

    To evaluate the efficacy and tolerability of oral administration of robenacoxib for treatment of acute pain and inflammation associated with musculoskeletal disorders in cats. 155 cats requiring relief of signs of pain and inflammation associated with acute musculoskeletal disorders. The study was a multicenter, prospective, randomized, masked, noninferiority field trial. Cats were allocated randomly to 1 of 3 treatment groups: group 1 (1.0 to 2.4 mg of robenacoxib/kg, q 24 h), group 2 (1.0 to 2.4 mg of robenacoxib/kg, q 12 h [daily dosage, 2.0 to 4.8 mg/kg]), and group 3 (ketoprofen [mean dosage, 1 mg/kg, q 24 h]). All cats were administered tablets PO for 5 or 6 days. The primary efficacy endpoint was the investigator global assessment score, which was the sum of scores of signs of pain, inflammation, and mobility assessed in a masked manner by veterinary investigators at baseline, day 2, and day 4 or 5. Cat owners monitored in a nonmasked manner secondary responses by observation of cats' activity, behavior, appetite, and interactions. Safety was assessed by monitoring adverse events, clinical signs, and hematologic and plasma biochemical variables (before and after treatment). No significant differences were detected among the 3 treatment groups for any primary or secondary efficacy endpoints or for tolerability variables. Robenacoxib tablets administered once daily were significantly more palatable than ketoprofen tablets. Robenacoxib tablets administered once daily had noninferior efficacy and tolerability, and superior palatability, compared with the active control drug, ketoprofen, for the treatment of signs of acute pain and inflammation associated with musculoskeletal disorders in cats.

  7. Management of acute skin toxicity with Hypericum perforatum and neem oil during platinum-based concurrent chemo-radiation in head and neck cancer patients.

    PubMed

    Franco, Pierfrancesco; Rampino, Monica; Ostellino, Oliviero; Schena, Marina; Pecorari, Giancarlo; Garzino Demo, Paolo; Fasolis, Massimo; Arcadipane, Francesca; Martini, Stefania; Cavallin, Chiara; Airoldi, Mario; Ricardi, Umberto

    2017-02-01

    Acute skin toxicity is a frequent finding during combined radiotherapy and chemotherapy in head and neck cancer patients. Its timely and appropriate management is crucial for both oncological results and patient's global quality of life. We herein report clinical data on the use of Hypericum perforatum and neem oil in the treatment of acute skin toxicity during concurrent chemo-radiation for head and neck cancer. A consecutive series of 50 head and neck cancer patients undergoing concomitant radio-chemotherapy with weekly cisplatin was analyzed. Treatment with Hypericum perforatum and neem oil was started in case of G2 acute skin toxicity according to the RTOG/EORTC scoring scale and continued during the whole treatment course and thereafter until complete recovery. The maximum detected acute skin toxicity included Grade 2 events in 62% of cases and G3 in 32% during treatment and G2 and G3 scores in 52 and 8%, respectively, at the end of chemo-radiation. Grade 2 toxicity was mainly observed during weeks 4-5, while G3 during weeks 5-6. Median times spent with G2 or G3 toxicity were 23.5 and 14 days. Patients with G3 toxicity were reconverted to a G2 profile in 80% of cases, while those with a G2 score had a decrease to G1 in 58% of cases. Time between maximum acute skin toxicity and complete skin recovery was 30 days. Mean worst pain score evaluated with the Numerical Rating Scale-11 was 6.9 during treatment and 4.5 at the end of chemo-radiotherapy. Hypericum perforatum and neem oil proved to be a safe and effective option in the management of acute skin toxicity in head and neck cancer patients submitted to chemo-radiation with weekly cisplatin. Further studies with a control group and patient-reported outcomes are needed to confirm this hypothesis.

  8. Changing glucocorticoid action: 11β-Hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation

    PubMed Central

    Chapman, Karen E.; Coutinho, Agnes E.; Zhang, Zhenguang; Kipari, Tiina; Savill, John S.; Seckl, Jonathan R.

    2013-01-01

    Since the discovery of cortisone in the 1940s and its early success in treatment of rheumatoid arthritis, glucocorticoids have remained the mainstay of anti-inflammatory therapies. However, cortisone itself is intrinsically inert. To be effective, it requires conversion to cortisol, the active glucocorticoid, by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Despite the identification of 11β-HSD in liver in 1953 (which we now know to be 11β-HSD1), its physiological role has been little explored until recently. Over the past decade, however, it has become apparent that 11β-HSD1 plays an important role in shaping endogenous glucocorticoid action. Acute inflammation is more severe with 11β-HSD1-deficiency or inhibition, yet in some inflammatory settings such as obesity or diabetes, 11β-HSD1-deficiency/inhibition is beneficial, reducing inflammation. Current evidence suggests both beneficial and detrimental effects may result from 11β-HSD1 inhibition in chronic inflammatory disease. Here we review recent evidence pertaining to the role of 11β-HSD1 in inflammation. This article is part of a Special Issue entitled ‘CSR 2013’. PMID:23435016

  9. Genome-Wide Transcriptional Profiling of Skin and Dorsal Root Ganglia after Ultraviolet-B-Induced Inflammation

    PubMed Central

    Paterson, Kathryn J.; Sisignano, Marco; Schmid, Ramona; Rust, Werner; Hildebrandt, Tobias; Geisslinger, Gerd; Orengo, Christine; Bennett, David L.; McMahon, Stephen B.

    2014-01-01

    Ultraviolet-B (UVB)-induced inflammation produces a dose-dependent mechanical and thermal hyperalgesia in both humans and rats, most likely via inflammatory mediators acting at the site of injury. Previous work has shown that the gene expression of cytokines and chemokines is positively correlated between species and that these factors can contribute to UVB-induced pain. In order to investigate other potential pain mediators in this model we used RNA-seq to perform genome-wide transcriptional profiling in both human and rat skin at the peak of hyperalgesia. In addition we have also measured transcriptional changes in the L4 and L5 DRG of the rat model. Our data show that UVB irradiation produces a large number of transcriptional changes in the skin: 2186 and 3888 genes are significantly dysregulated in human and rat skin, respectively. The most highly up-regulated genes in human skin feature those encoding cytokines (IL6 and IL24), chemokines (CCL3, CCL20, CXCL1, CXCL2, CXCL3 and CXCL5), the prostanoid synthesising enzyme COX-2 and members of the keratin gene family. Overall there was a strong positive and significant correlation in gene expression between the human and rat (R = 0.8022). In contrast to the skin, only 39 genes were significantly dysregulated in the rat L4 and L5 DRGs, the majority of which had small fold change values. Amongst the most up-regulated genes in DRG were REG3B, CCL2 and VGF. Overall, our data shows that numerous genes were up-regulated in UVB irradiated skin at the peak of hyperalgesia in both human and rats. Many of the top up-regulated genes were cytokines and chemokines, highlighting again their potential as pain mediators. However many other genes were also up-regulated and might play a role in UVB-induced hyperalgesia. In addition, the strong gene expression correlation between species re-emphasises the value of the UVB model as translational tool to study inflammatory pain. PMID:24732968

  10. The expression and activation of the AIM2 inflammasome correlates with inflammation and disease severity in patients with acute pancreatitis.

    PubMed

    Algaba-Chueca, Francisco; de-Madaria, Enrique; Lozano-Ruiz, Beatriz; Martínez-Cardona, Claudia; Quesada-Vázquez, Noé; Bachiller, Victoria; Tarín, Fabián; Such, José; Francés, Rubén; Zapater, Pedro; González-Navajas, José M

    Acute pancreatitis is an inflammatory disorder of the pancreas that is responsible for significant morbidity and mortality. The inflammasome pathway has acquired significant relevance in the pathogenesis of many inflammatory disorders, but its role in patients with acute pancreatitis still awaits clarification. We performed a prospective study in which 27 patients with acute pancreatitis and 16 healthy controls were included. We isolated peripheral blood mononuclear cells (PBMCs) and we assessed the expression and activation of different inflammasomes as well as their association with the clinical course of the disease. Our results show that PBMCs from patients with acute pancreatitis have elevated expression of several components of the inflammasome complex, including the inflammasome-forming receptor absent in melanoma 2 (AIM2), early during the onset of the disease. Activation of the AIM2 or NLRP3 inflammasomes in PBMCs from patients with acute pancreatitis results in exacerbated IL-1β and IL-18 production compared with PBMCs from healthy controls. Furthermore, both AIM2 mRNA expression and AIM2-mediated production of IL-1β by PBMCs correlated with increased systemic inflammation in these patients. Last, AIM2 expression was further increased in those patients that developed transient or persistent organ failure (moderate or severe acute pancreatitis). Our data demonstrates that AIM2 inflammasome expression and activation is increased early during the course of acute pancreatitis, and suggests that AIM2 activation may affect systemic inflammation and organ failure in these patients. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  11. Rapid onset of squamous cell carcinoma in a thin skin graft donor site.

    PubMed

    Herard, C; Arnaud, D; Goga, D; Rousseau, P; Potier, B

    2016-01-01

    Squamous cell carcinomas are malignant tumours of epithelial origin that can appear on sites subjected to chronic inflammation after a period of several years. The rapid development of squamous cell carcinoma at the donor site for a thin skin graft is a rare and poorly understood situation. We report the case of a patient undergoing thin skin grafting to cover the area of removal of a vertex squamous cell carcinoma and in whom squamous cell carcinoma appeared at the donor site within 9 weeks. In our case, we ruled out intraoperative contamination because two sets of surgical instruments were used. Given the number of cases reported in the literature, a chance event seems unlikely. The hypothesis of an acute inflammatory process caused by scarring of the thin skin graft site appears to us the most convincing. Development of cancer at the graft donor site may thus be added to the list of complications of thin skin grafting. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

    PubMed Central

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  13. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice.

    PubMed

    Bhargava, Rhea; Janssen, William; Altmann, Christopher; Andrés-Hernando, Ana; Okamura, Kayo; Vandivier, R William; Ahuja, Nilesh; Faubel, Sarah

    2013-01-01

    Serum and bronchoalveolar fluid IL-6 are increased in patients with acute respiratory distress syndrome (ARDS) and predict prolonged mechanical ventilation and poor outcomes, although the role of intra-alveolar IL-6 in indirect lung injury is unknown. We investigated the role of endogenous and exogenous intra-alveolar IL-6 in AKI-mediated lung injury (indirect lung injury), intraperitoneal (IP) endotoxin administration (indirect lung injury) and, for comparison, intratracheal (IT) endotoxin administration (direct lung injury) with the hypothesis that IL-6 would exert a pro-inflammatory effect in these causes of acute lung inflammation. Bronchoalveolar cytokines (IL-6, CXCL1, TNF-α, IL-1β, and IL-10), BAL fluid neutrophils, lung inflammation (lung cytokines, MPO activity [a biochemical marker of neutrophil infiltration]), and serum cytokines were determined in adult male C57Bl/6 mice with no intervention or 4 hours after ischemic AKI (22 minutes of renal pedicle clamping), IP endotoxin (10 µg), or IT endotoxin (80 µg) with and without intratracheal (IT) IL-6 (25 ng or 200 ng) treatment. Lung inflammation was similar after AKI, IP endotoxin, and IT endotoxin. BAL fluid IL-6 was markedly increased after IT endotoxin, and not increased after AKI or IP endotoxin. Unexpectedly, IT IL-6 exerted an anti-inflammatory effect in healthy mice characterized by reduced BAL fluid cytokines. IT IL-6 also exerted an anti-inflammatory effect in IT endotoxin characterized by reduced BAL fluid cytokines and lung inflammation; IT IL-6 had no effect on lung inflammation in AKI or IP endotoxin. IL-6 exerts an anti-inflammatory effect in direct lung injury from IT endotoxin, yet has no role in the pathogenesis or treatment of indirect lung injury from AKI or IP endotoxin. Since intra-alveolar inflammation is important in the pathogenesis of direct, but not indirect, causes of lung inflammation, IT anti-inflammatory treatments may have a role in direct, but not indirect, causes of ARDS.

  14. Cardiovascular and Metabolic Diseases Comorbid with Psoriasis: Beyond the Skin

    PubMed Central

    Furue, Masutaka; Tsuji, Gaku; Chiba, Takahito; Kadono, Takafumi

    2017-01-01

    A close association of systemic inflammation with cardiovascular diseases and metabolic syndrome is recently a popular topic in medicine. Psoriasis is a chronic inflammatory skin disease with a prevalence of approximately 0.1-0.5% in Asians. It is characterized by widespread scaly erythematous macules that cause significant physical and psychological burdens for the affected individuals. The accelerated inflammation driven by the TNF-α/IL-23/IL-17A axis is now known to be the major mechanism in the development of psoriasis. Psoriasis is not a mere skin disease; it is significantly associated with cardiovascular diseases and metabolic syndrome, which suggests that the chronic skin inflammation extends the systemic inflammation beyond the skin. In this article, we review the epidemiological and pathological aspects of psoriasis and its comorbidities. PMID:28674347

  15. CD10-bearing fibroblasts may inhibit skin inflammation by down-modulating substance P.

    PubMed

    Xie, Lining; Takahara, Masakazu; Nakahara, Takeshi; Oba, Junna; Uchi, Hiroshi; Takeuchi, Satoshi; Moroi, Yoichi; Furue, Masutaka

    2011-01-01

    Substance P (SP) is a multipotent neuropeptide that affects the proliferation, activation and motility of keratinocytes and fibroblasts (Fbs). SP in pulmonary and synovial cells is degraded by CD10, a 90- to 110-kDa cell surface zinc-dependent metalloprotease. However, the expression and function of CD10 in human dermal Fbs have not yet been investigated in vivo and in vitro specifically with reference to SP. Our immunohistologic study revealed moderate to strong fibroblastic CD10 expression in the majority of psoriasis vulgaris (16/16), chronic eczema (15/16), lichen planus (18/20) and atopic dermatitis (4/5). Keratinocytes showed no CD10 expression in vivo and in vitro. Cultured Fbs constitutively expressed CD10 and SP. CD10 expression was augmented by external interleukin (IL)-1β and IL-22, but not by IL-8 and IL-17A in Fbs. SP production was enhanced in CD10 knockdown-Fbs (CD10ND-Fbs) compared with control-Fbs. In the presence of IL-1β or IL-22, the enhancement of SP production was more prominent in CD10ND-Fbs than in control-Fbs, suggesting the down-modulating activity of CD10 on SP in cytokine-mediated inflammation. In conclusion, fibroblastic CD10 expression may down-regulate skin inflammation by degrading SP or reducing its level in the dermal microenvironment.

  16. Th17 cells and IL-17 promote the skin and lung inflammation and fibrosis process in a bleomycin-induced murine model of systemic sclerosis.

    PubMed

    Lei, Ling; Zhao, Cheng; Qin, Fang; He, Zhi-Yi; Wang, Xu; Zhong, Xiao-Ning

    2016-01-01

    Systemic sclerosis (SSc) is characterised by fibrosis of the skin and internal organs, such as the lungs. Enhanced Th17 responses are associated with skin fibrosis in patients with SSc, however, whether they are associated with lung fibrosis has not been clarified. This study aimed to investigate the potential association of Th17 responses with the skin and pulmonary fibrosis as well as the potential mechanisms in a mouse bleomycin (BLM) model of SSc. BALB/c mice were injected subcutaneously with phosphate buffered saline (PBS) (control) or BLM for 28 days and the skin and pulmonary inflammation and fibrosis were characterized by histology. The percentages of circulating, skin and pulmonary infiltrating Th17 cells and the contents of collagen in mice were analysed. The levels of RORγt, IL-17A, IL-6 and TGF-β1 mRNA transcripts in the skin and lungs were determined by quantitative RTPCR and the levels of serum IL-17A, IL-6 and TGF-β1 were determined by ELISA. Furthermore, the effect of rIL-17A on the proliferation of pulmonary fibroblasts and their cytokine expression was analysed. The potential association of Th17 responses with the severity of skin and lung fibrosis was analysed. In comparison with the control mice, significantly increased skin and pulmonary inflammation and fibrosis and higher levels of hydroxyproline were detected in the BLM mice. Significantly higher frequency of circulating, skin and lung infiltrating Th17 cells and higher levels of serum, skin and lung IL-17A, TGF-β1, IL-6 and RORγt were detected in the BLM mice. The concentrations of serum IL-17A were correlated positively with the percentages of Th17 cells and the contents of skin hydroxyproline in the BLM mice. The levels of IL-17A expression were positively correlated with the skin and lung inflammatory scores as well as the skin fibrosis in the BLM mice. In addition, IL-17A significantly enhanced pulmonary fibroblast proliferation and their type I collagen, TGF-β and IL-6 expression

  17. Tapinarof Is a Natural AhR Agonist that Resolves Skin Inflammation in Mice and Humans.

    PubMed

    Smith, Susan H; Jayawickreme, Channa; Rickard, David J; Nicodeme, Edwige; Bui, Thi; Simmons, Cathy; Coquery, Christine M; Neil, Jessica; Pryor, William M; Mayhew, David; Rajpal, Deepak K; Creech, Katrina; Furst, Sylvia; Lee, James; Wu, Dalei; Rastinejad, Fraydoon; Willson, Timothy M; Viviani, Fabrice; Morris, David C; Moore, John T; Cote-Sierra, Javier

    2017-10-01

    Tapinarof (GSK2894512) is a naturally derived topical treatment with demonstrated efficacy for patients with psoriasis and atopic dermatitis, although the biologic target and mechanism of action had been unknown. We demonstrate that the anti-inflammatory properties of tapinarof are mediated through activation of the aryl hydrocarbon receptor (AhR). We show that tapinarof binds and activates AhR in multiple cell types, including cells of the target tissue-human skin. In addition, tapinarof moderates proinflammatory cytokine expression in stimulated peripheral blood CD4+ T cells and ex vivo human skin, and impacts barrier gene expression in primary human keratinocytes; both of these processes are likely to be downstream of AhR activation based on current evidence. That the anti-inflammatory properties of tapinarof derive from AhR agonism is conclusively demonstrated using the mouse model of imiquimod-induced psoriasiform skin lesions. Topical treatment of AhR-sufficient mice with tapinarof leads to compound-driven reductions in erythema, epidermal thickening, and tissue cytokine levels. In contrast, tapinarof has no impact on imiquimod-induced skin inflammation in AhR-deficient mice. In summary, these studies identify tapinarof as an AhR agonist and confirm that its efficacy is dependent on AhR. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation.

    PubMed

    Ma, Hak-Ling; Liang, Spencer; Li, Jing; Napierata, Lee; Brown, Tom; Benoit, Stephen; Senices, Mayra; Gill, Davinder; Dunussi-Joannopoulos, Kyriaki; Collins, Mary; Nickerson-Nutter, Cheryl; Fouser, Lynette A; Young, Deborah A

    2008-02-01

    Psoriasis is a chronic skin disease resulting from the dysregulated interplay between keratinocytes and infiltrating immune cells. We report on a psoriasis-like disease model, which is induced by the transfer of CD4(+)CD45RB(hi)CD25(-) cells to pathogen-free scid/scid mice. Psoriasis-like lesions had elevated levels of antimicrobial peptide and proinflammatory cytokine mRNA. Also, similar to psoriasis, disease progression in this model was dependent on the p40 common to IL-12 and IL-23. To investigate the role of IL-22, a Th17 cytokine, in disease progression, mice were treated with IL-22-neutralizing antibodies. Neutralization of IL-22 prevented the development of disease, reducing acanthosis (thickening of the skin), inflammatory infiltrates, and expression of Th17 cytokines. Direct administration of IL-22 into the skin of normal mice induced both antimicrobial peptide and proinflammatory cytokine gene expression. Our data suggest that IL-22, which acts on keratinocytes and other nonhematopoietic cells, is required for development of the autoreactive Th17 cell-dependent disease in this model of skin inflammation. We propose that IL-22 antagonism might be a promising therapy for the treatment of human psoriasis.

  19. Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation.

    PubMed

    Tsang, Miranda S M; Jiao, Delong; Chan, Ben C L; Hon, Kam-Lun; Leung, Ping C; Lau, Clara B S; Wong, Eric C W; Cheng, Ling; Chan, Carmen K M; Lam, Christopher W K; Wong, Chun K

    2016-04-20

    Atopic dermatitis (AD) is a common allergic skin disease, characterized by dryness, itchiness, thickening and inflammation of the skin. Infiltration of eosinophils into the dermal layer and presence of edema are typical characteristics in the skin biopsy of AD patients. Previous in vitro and clinical studies showed that the Pentaherbs formula (PHF) consisting of five traditional Chinese herbal medicines, Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis at w/w ratio of 2:1:2:2:2 exhibited therapeutic potential in treating AD. In this study, an in vivo murine model with oxazolone (OXA)-mediated dermatitis was used to elucidate the efficacy of PHF. Active ingredients of PHF water extract were also identified and quantified, and their in vitro anti-inflammatory activities on pruritogenic cytokine IL-31- and alarmin IL-33-activated human eosinophils and dermal fibroblasts were evaluated. Ear swelling, epidermis thickening and eosinophils infiltration in epidermal and dermal layers, and the release of serum IL-12 of the murine OXA-mediated dermatitis were significantly reduced upon oral or topical treatment with PHF (all p < 0.05). Gallic acid, chlorogenic acid and berberine contents (w/w) in PHF were found to be 0.479%, 1.201% and 0.022%, respectively. Gallic acid and chlorogenic acid could suppress the release of pro-inflammatory cytokine IL-6 and chemokine CCL7 and CXCL8, respectively, in IL-31- and IL-33-treated eosinophils-dermal fibroblasts co-culture; while berberine could suppress the release of IL-6, CXCL8, CCL2 and CCL7 in the eosinophil culture and eosinophils-dermal fibroblasts co-culture (all p < 0.05). These findings suggest that PHF can ameliorate allergic inflammation and attenuate the activation of eosinophils.

  20. N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1

    PubMed Central

    Lawton, Samira K.; Xu, Fengyun; Tran, Alphonso; Wong, Erika; Schumacher, Mark; Wilhelmsen, Kevin

    2017-01-01

    N-Arachidonoyl dopamine (NADA) is an endogenous lipid that potently activates the transient receptor potential vanilloid 1 (TRPV1), which mediates pain and thermosensation. NADA is also an agonist of cannabinoid receptors 1 and 2. We have reported that NADA reduces the activation of cultured human endothelial cells by LPS and TNF-α. Thus far, in vivo studies using NADA have focused on its neurologic and behavioral roles. In this article, we show that NADA potently decreases in vivo systemic inflammatory responses and levels of the coagulation intermediary plasminogen activator inhibitor 1 in three mouse models of inflammation: LPS, bacterial lipopeptide, and polymicrobial intra-abdominal sepsis. We also found that the administration of NADA increases survival in endotoxemic mice. Additionally, NADA reduces blood levels of the neuropeptide calcitonin gene-related peptide but increases the neuropeptide substance P in LPS-treated mice. We demonstrate that the anti-inflammatory effects of NADA are mediated by TRPV1 expressed by nonhematopoietic cells and provide data suggesting that neuronal TRPV1 may mediate NADA’s anti-inflammatory effects. These results indicate that NADA has novel TRPV1-dependent anti-inflammatory properties and suggest that the endovanilloid system might be targeted therapeutically in acute inflammation. PMID:28701511

  1. Elevated numbers of SCART1+ gammadelta T cells in skin inflammation and inflammatory bowel disease.

    PubMed

    Fink, Dorte Rosenbek; Holm, Dorte; Schlosser, Anders; Nielsen, Ole; Latta, Markus; Lozano, Francisco; Holmskov, Uffe

    2010-05-01

    The members of the scavenger receptor cysteine-rich (SRCR) superfamily group B have diverse functions, including roles in the immune system. For years it has been known that the WC1 protein is expressed on the surface of bovine gammadelta T cells, and more recent studies indicate that WC1(+) gammadelta T cells respond to stimulation with bacterial antigens by producing interferon-gamma. The SRCR proteins CD5, CD6, Sp alpha, CD163, and DMBT1/gp-340 are also involved in the immune response, since they are pattern recognition receptors capable of binding directly to bacterial and/or fungal components. Here, we investigate a novel murine SRCR protein named SCART1. The ectodomain and the full-length SCART1 were expressed in mammalian cells and used to raise monoclonal antibodies against the ectodomain for immunohistochemical and FACS analysis. Immunohistochemical analysis shows that SCART1 is expressed in a range of lymphoid organs and epithelial-rich tissues by a subset of T cells identified as being gammadelta T cells by FACS analysis. SCART1 was present in 86% of the gammadelta T cells and was not found in CD4(+) or CD8(+) T cells. The numbers of SCART1(+) cells were elevated in two mouse models of human diseases: skin inflammation and inflammatory bowel disease. In the skin inflammation model, an 8.6-fold increase in SCART1(+) cells was observed. Finally, recombinant SCART1 protein was found not to bind to selected bacterial or fungal components or to whole bacteria. Our results show that SCART1 is a novel gammadelta T cell marker and it is therefore likely that SCART1 plays a role in the immune response. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Serotonin signaling is crucial in the induction of PUVA-induced systemic suppression of delayed type hypersensitivity but not local apoptosis or inflammation of the skin

    PubMed Central

    Wolf, Peter; Byrne, Scott N.; Limon-Flores, Alberto Y.; Hoefler, Gerald; Ullrich, Stephen E.

    2016-01-01

    Psoralen and UVA (PUVA) has immunosuppressive and proapoptotic effects, which are thought to be responsible alone or in combination for its therapeutic efficacy. However, the molecular mechanism by which PUVA mediates its effects are not well understood. Activation of the serotonin (5-hydroxytryptamine, 5-HT) pathway has been suggested to be involved in the modulation of T cell responses and found to mediate UVB-induced immune suppression. In particular, the activation of the 5-HT2A receptor has been proposed as one mechanism responsible for UV-induced immune suppression. We therefore hypothesized that 5-HT may play a role in PUVA-induced effects. The model of systemic suppression of delayed-type hypersensitivity (DTH) to Candida albicans was used to study immune function after exposure of C3H and KITW-Sh/W-Sh mice to a minimal inflammatory dose of topical PUVA. The intraperitoneal injection of the 5-HT2 receptor antagonist ketanserin or cyproheptadine or an anti-5-HT antibody immediately before PUVA exposure entirely abrogated suppression of DTH but had no significant effect on inflammation, as measured by swelling and cellular infiltration of the skin, and apoptosis as determined by the number of sunburn cells in C3H mice. Importantly, the systemic injection of 5-HT recapitulated PUVA immune suppression of DTH but did not induce inflammation or apoptosis in the skin. KITW-Sh/W-Sh mice (exhibiting myelopoietic abnormalities, including lack of 5-HT-containing mast cells) were resistant to PUVA-induced suppression of DTH but not local skin swelling. Thus, this points towards a crucial role of 5-HT signaling in PUVA-induced immune suppression but not inflammation or apoptosis in situ in the skin. PMID:26914366

  3. Medicinal plants used in treatment of inflammatory skin diseases

    PubMed Central

    2013-01-01

    Skin is an organ providing contact with the environment and protecting the human body from unfavourable external factors. Skin inflammation, reflected adversely in its functioning and appearance, also unfavourably affects the psyche, the condition of which is important during treatment of chronic skin diseases. The use of plants in treatment of inflammatory skin diseases results from their influence on different stages of inflammation. The paper presents results of the study regarding the anti-inflammatory activity of the plant raw material related to its influence on skin. The mechanism of action, therapeutic indications and side effects of medicinal plants used for treatment of inflammatory diseases of the skin are described. PMID:24278070

  4. Induction of alternative proinflammatory cytokines accounts for sustained psoriasiform skin inflammation in IL-17C+IL-6KO mice

    PubMed Central

    Fritz, Yi; Klenotic, Philip A.; Swindell, William R.; Yin, ZhiQiang; Groft, Sarah G.; Zhang, Li; Baliwag, Jaymie; Camhi, Maya I.; Diaconu, Doina; Young, Andrew B.; Foster, Alexander M.; Johnston, Andrew; Gudjonsson, Johann E.; McCormick, Thomas S.; Ward, Nicole L.

    2016-01-01

    IL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. Additionally, de novo psoriasis onset has been reported following IL-6 blockade in rheumatoid arthritis patients. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6 deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation, however this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36α/β/γ, Il24, Epgn and S100a8/a9 to levels higher than those found in IL-17C+ mice. Comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin, revealed significant correlation among transcripts of psoriasis patient skin and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why arthritis patients being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective. PMID:27984037

  5. Neutrophil-derived JAML Inhibits Repair of Intestinal Epithelial Injury During Acute Inflammation

    PubMed Central

    Weber, Dominique A.; Sumagin, Ronen; McCall, Ingrid C.; Leoni, Giovanna; Neumann, Philipp A.; Andargachew, Rakieb; Brazil, Jennifer C.; Medina-Contreras, Oscar; Denning, Timothy L.; Nusrat, Asma; Parkos, Charles A.

    2014-01-01

    Neutrophil transepithelial migration (TEM) during acute inflammation is associated with mucosal injury. Using models of acute mucosal injury in-vitro and in-vivo, we describe a new mechanism by which neutrophils infiltrating the intestinal mucosa disrupt epithelial homeostasis. We report that junctional adhesion molecule-like protein (JAML) is cleaved from neutrophil surface by zinc-metalloproteases during TEM. Neutrophil-derived soluble JAML bound to the epithelial tight junction protein coxsackie-adenovirus receptor (CAR) resulting in compromised barrier and inhibition of wound repair, through decreased epithelial proliferation. The deleterious effects of JAML on barrier and wound repair were reversed with an anti-JAML mAb that inhibits JAML-CAR binding. Thus, JAML released from transmigrating neutrophils across inflamed epithelia can promote recruitment of leukocytes and aid in clearance of invading microorganisms. However, sustained release of JAML under pathologic conditions associated with persistence of large numbers of infiltrated neutrophil would compromise intestinal barrier and inhibit mucosal healing. Targeting JAML-CAR interactions may thus improve mucosal healing responses under conditions of dysregulated neutrophil recruitment. PMID:24621992

  6. Single-dose oritavancin in the treatment of acute bacterial skin infections.

    PubMed

    Corey, G Ralph; Kabler, Heidi; Mehra, Purvi; Gupta, Sandeep; Overcash, J Scott; Porwal, Ashwin; Giordano, Philip; Lucasti, Christopher; Perez, Antonio; Good, Samantha; Jiang, Hai; Moeck, Greg; O'Riordan, William

    2014-06-05

    Oritavancin is a lipoglycopeptide with bactericidal activity against gram-positive bacteria. Its concentration-dependent activity and prolonged half-life allow for single-dose treatment. We conducted a randomized, double-blind trial in which adults with acute bacterial skin and skin-structure infections received either a single intravenous dose of 1200 mg of oritavancin or a regimen of intravenous vancomycin twice daily for 7 to 10 days. Three efficacy end points were tested for noninferiority. The primary composite end point was defined as cessation of spreading or reduction in lesion size, absence of fever, and no need for administration of a rescue antibiotic 48 to 72 hours after administration of oritavancin. Secondary end points were clinical cure 7 to 14 days after the end of treatment, as determined by a study investigator, and a reduction in lesion size of 20% or more 48 to 72 hours after administration of oritavancin. The modified intention-to-treat population comprised 475 patients who received oritavancin and 479 patients who received vancomycin. All three efficacy end points met the prespecified noninferiority margin of 10 percentage points for oritavancin versus vancomycin: primary end point, 82.3% versus 78.9% (95% confidence interval [CI] for the difference, -1.6 to 8.4 percentage points); investigator-assessed clinical cure, 79.6% versus 80.0% (95% CI for the difference, -5.5 to 4.7 percentage points); and proportion of patients with a reduction in lesion area of 20% or more, 86.9% versus 82.9% (95% CI for the difference, -0.5 to 8.6 percentage points). Efficacy outcomes measured according to type of pathogen, including methicillin-resistant Staphylococcus aureus, were similar in the two treatment groups. The overall frequency of adverse events was also similar, although nausea was more common among those treated with oritavancin. A single dose of oritavancin was noninferior to twice-daily vancomycin administered for 7 to 10 days for the treatment

  7. STRETCHING IMPACTS INFLAMMATION RESOLUTION IN CONNECTIVE TISSUE

    PubMed Central

    Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J.; Colas, Romain A.; Spite, Matthew; Serhan, Charles N.; Langevin, Helene M.

    2016-01-01

    Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 minutes twice daily reduced inflammation and improved pain, two weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch vs. no stretch for 48 hours, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184

  8. [Empirical therapeutic approach to infection by resistant gram positive (acute bacterial skin and skin structure infections and health care pneumonia). Value of risk factors].

    PubMed

    González-DelCastillo, J; Núñez-Orantos, M J; Candel, F J; Martín-Sánchez, F J

    2016-09-01

    Antibiotic treatment inadequacy is common in these sites of infection and may have implications for the patient's prognosis. In acute bacterial skin and skin structure infections, the document states that for the establishment of an adequate treatment it must be assessed the severity, the patient comorbidity and the risk factors for multidrug-resistant microorganism. The concept of health care-associated pneumonia is discussed and leads to errors in the etiologic diagnosis and therefore in the selection of antibiotic treatment. This paper discusses how to perform this approach to the possible etiology to guide empirical treatment.

  9. Where Does Inflammation Fit?

    PubMed

    Biasucci, Luigi M; La Rosa, Giulio; Pedicino, Daniela; D'Aiello, Alessia; Galli, Mattia; Liuzzo, Giovanna

    2017-09-01

    This review focuses on the complex relationship between inflammation and the onset of acute coronary syndrome and heart failure. In the last few years, two important lines of research brought new and essential information to light in the pathogenesis of acute coronary syndrome: a) the understanding of the immune mediate mechanisms of inflammation in Ischemic Heart Disease (IHD) and b) evidence that the inflammatory mechanisms associated with atherosclerosis and its complications can be modulated by anti-inflammatory molecules. A large amount of data also suggests that inflammation is a major component in the development and exacerbation of heart failure (HF), in a symbiotic relationship. In particular, recent evidence underlies peculiar aspects of the phenomenon: oxidative stress and autophagy; DAMPS and TLR-4 signaling activation; different macrophages lineage and the contribution of NLRP-3 inflammasome; adaptive immune system. A possible explanation that could unify the pathogenic mechanism of these different conditions is the rising evidence that increased bowel permeability may allow translation of gut microbioma product into the circulation. These findings clearly establish the role of inflammation as the great trigger for two of the major cardiovascular causes of death and morbidity. Further studies are needed, to better clarify the issue and to define more targeted approaches to reduce pathological inflammation while preserving the physiological one.

  10. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation.

    PubMed

    Lin, Juan; Kumari, Snehlata; Kim, Chun; Van, Trieu-My; Wachsmuth, Laurens; Polykratis, Apostolos; Pasparakis, Manolis

    2016-12-01

    Receptor-interacting protein kinase 1 (RIPK1) regulates cell death and inflammation through kinase-dependent and -independent functions. RIPK1 kinase activity induces caspase-8-dependent apoptosis and RIPK3 and mixed lineage kinase like (MLKL)-dependent necroptosis. In addition, RIPK1 inhibits apoptosis and necroptosis through kinase-independent functions, which are important for late embryonic development and the prevention of inflammation in epithelial barriers. The mechanism by which RIPK1 counteracts RIPK3-MLKL-mediated necroptosis has remained unknown. Here we show that RIPK1 prevents skin inflammation by inhibiting activation of RIPK3-MLKL-dependent necroptosis mediated by Z-DNA binding protein 1 (ZBP1, also known as DAI or DLM1). ZBP1 deficiency inhibited keratinocyte necroptosis and skin inflammation in mice with epidermis-specific RIPK1 knockout. Moreover, mutation of the conserved RIP homotypic interaction motif (RHIM) of endogenous mouse RIPK1 (RIPK1 mRHIM ) caused perinatal lethality that was prevented by RIPK3, MLKL or ZBP1 deficiency. Furthermore, mice expressing only RIPK1 mRHIM in keratinocytes developed skin inflammation that was abrogated by MLKL or ZBP1 deficiency. Mechanistically, ZBP1 interacted strongly with phosphorylated RIPK3 in cells expressing RIPK1 mRHIM , suggesting that the RIPK1 RHIM prevents ZBP1 from binding and activating RIPK3. Collectively, these results show that RIPK1 prevents perinatal death as well as skin inflammation in adult mice by inhibiting ZBP1-induced necroptosis. Furthermore, these findings identify ZBP1 as a critical mediator of inflammation beyond its previously known role in antiviral defence and suggest that ZBP1 might be implicated in the pathogenesis of necroptosis-associated inflammatory diseases.

  11. Beryllium metal I. experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity.

    PubMed

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  12. Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study.

    PubMed

    Retamal, Jaime; Hurtado, Daniel; Villarroel, Nicolás; Bruhn, Alejandro; Bugedo, Guillermo; Amato, Marcelo Britto Passos; Costa, Eduardo Leite Vieira; Hedenstierna, Göran; Larsson, Anders; Borges, João Batista

    2018-06-01

    It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome. Retrospective analysis of CT images and positron emission tomography images using [F]fluoro-2-deoxy-D-glucose. University animal research laboratory. Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls. Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4 cm H2O) and high inspiratory pressures (mean plateau pressure, 45 cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal. The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.3 ± 3.4 to 14.0 ± 4.9 mL/cm H2O; p < 0.05) and oxygenation (PaO2/FIO2, 489 ± 80 to 92 ± 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [F]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals

  13. Treatment of Skin Inflammation with Benzoxaborole Phosphodiesterase Inhibitors: Selectivity, Cellular Activity, and Effect on Cytokines Associated with Skin Inflammation and Skin Architecture Changes.

    PubMed

    Dong, Chen; Virtucio, Charlotte; Zemska, Olga; Baltazar, Grober; Zhou, Yasheen; Baia, Diogo; Jones-Iatauro, Shannon; Sexton, Holly; Martin, Shamra; Dee, Joshua; Mak, Yvonne; Meewan, Maliwan; Rock, Fernando; Akama, Tsutomu; Jarnagin, Kurt

    2016-09-01

    Psoriasis and atopic dermatitis are skin diseases affecting millions of patients. Here, we characterize benzoxaborole phosphodiesterase (PDE)-4 inhibitors, a new topical class that has demonstrated therapeutic benefit for psoriasis and atopic dermatitis in phase 2 or phase 3 studies. Crisaborole [AN2728, 4-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)benzonitrile], compd2 [2-ethoxy-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)nicotinonitrile], compd3 [6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-(2-isopropoxyethoxy)nicotinonitrile], and compd4 [5-chloro-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-((4-oxopentyl)oxy)nicotinonitrile] are potent PDE4 inhibitors with similar affinity for PDE4 isoforms and equivalent inhibition on the catalytic domain and the full-length enzyme. These benzoxaboroles are less active on other PDE isozymes. Compd4 binds to the catalytic domain of PDE4B2 with the oxaborole group chelating the catalytic bimetal and overlapping with the phosphate in cAMP during substrate hydrolysis, and the interaction extends into the adenine pocket. In cell culture, benzoxaborole PDE4 inhibitors suppress the release of tumor necrosis factor-α, interleukin (IL)-23, IL-17, interferon-γ, IL-4, IL-5, IL-13, and IL-22, and these cytokines contribute to the pathologic changes in skin structure and barrier functions as well as immune dysregulation in atopic dermatitis and psoriasis. Treatment with compd3 or N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate increases cAMP response element binding protein phosphorylation in human monocytes and decreases extracellular signal-regulated kinase phosphorylation in human T cells; these changes lead to reduced cytokine production and are among the mechanisms by which compd3 blocks cytokine release. Topical compd3 penetrates the skin and suppresses phorbol myristate acetate-induced IL-13, IL-22, IL-17F, and IL-23 transcription and calcipotriol-induced thymic stromal

  14. Inhibiting glycogen synthase kinase-3 reduces endotoxaemic acute renal failure by down-regulating inflammation and renal cell apoptosis

    PubMed Central

    Wang, Y; Huang, WC; Wang, CY; Tsai, CC; Chen, CL; Chang, YT; Kai, JI; Lin, CF

    2009-01-01

    Background and purpose: Excessive inflammation and apoptosis are pathological features of endotoxaemic acute renal failure. Activation of glycogen synthase kinase-3 (GSK-3) is involved in inflammation and apoptosis. We investigated the effects of inhibiting GSK-3 on lipopolysaccharide (LPS)-induced acute renal failure, nuclear factor-κB (NF-κB), inflammation and apoptosis. Experimental approach: The effects of inhibiting GSK-3 with inhibitors, including lithium chloride (LiCl) and 6-bromo-indirubin-3′-oxime (BIO), on LPS-treated (15 mg·kg−1) C3H/HeN mice (LiCl, 40 mg·kg−1 and BIO, 2 mg·kg−1) and LPS-treated (1 µg·mL−1) renal epithelial cells (LiCl, 20 mM and BIO, 5 µM) were studied. Mouse survival was monitored and renal function was analysed by histological and serological examination. Cytokine and chemokine production, and cell apoptosis were measured by enzyme-linked immunosorbent assay and terminal deoxynucleotidyl transferase-mediated dUTP–biotin nick-end labelling staining, respectively. Activation of NF-κB and GSK-3 was determined by immunostaining and Western blotting, respectively. Key results: Mice treated with GSK-3 inhibitors showed decreased mortality, renal tubular dilatation, vacuolization and sloughing, blood urea nitrogen, creatinine and renal cell apoptosis in response to endotoxaemia. Inhibiting GSK-3 reduced LPS-induced tumour necrosis factor-α (TNF-α) and CCL5/RANTES (released upon activation of normal T-cells) in vivo in mice and in vitro in murine kidney cortical collecting duct epithelial M1 cells. Inhibiting GSK-3 did not block TNF-α-induced cytotoxicity in rat kidney proximal tubular epithelial NRK52E or in M1 cells. Conclusions and implications: These results suggest that GSK-3 inhibition protects against endotoxaemic acute renal failure mainly by down-regulating pro-inflammatory TNF-α and RANTES. PMID:19508392

  15. Effects of Liver × receptor agonist treatment on signal transduction pathways in acute lung inflammation

    PubMed Central

    2010-01-01

    Background Liver × receptor α (LXRα) and β (LXRβ) are members of the nuclear receptor super family of ligand-activated transcription factors, a super family which includes the perhaps better known glucocorticoid receptor, estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptors. There is limited evidence that LXL activation may reduces acute lung inflammation. The aim of this study was to investigate the effects of T0901317, a potent LXR receptor ligand, in a mouse model of carrageenan-induced pleurisy. Methods Injection of carrageenan into the pleural cavity of mice elicited an acute inflammatory response characterized by: accumulation of fluid containing a large number of neutrophils (PMNs) in the pleural cavity, infiltration of PMNs in lung tissues and subsequent lipid peroxidation, and increased production of nitrite/nitrate (NOx), tumor necrosis factor-α, (TNF-α) and interleukin-1β (IL-1β). Furthermore, carrageenan induced the expression of iNOS, nitrotyrosine and PARP, as well as induced apoptosis (TUNEL staining and Bax and Bcl-2 expression) in the lung tissues. Results Administration of T0901317, 30 min after the challenge with carrageenan, caused a significant reduction in a dose dependent manner of all the parameters of inflammation measured. Conclusions Thus, based on these findings we propose that LXR ligand such as T0901317, may be useful in the treatment of various inflammatory diseases. PMID:20175894

  16. New agents approved for treatment of acute staphylococcal skin infections

    PubMed Central

    Tatarkiewicz, Jan; Staniszewska, Anna

    2016-01-01

    Vancomycin has been a predominant treatment for methicillin-resistant Staphylococcus aureus (MRSA) infections for decades. However, growing reservations about its efficacy led to an urgent need for new antibiotics effective against MRSA and other drug-resistant Staphylococcus aureus strains. This review covers three new anti-MRSA antibiotics that have been recently approved by the FDA: dalbavancin, oritavancin, and tedizolid. The mechanism of action, indications, antibacterial activity profile, microbial resistance, pharmacokinetics, clinical efficacy, adverse effects, interactions as well as available formulations and administration of each of these new antibiotics are described. Dalbavancin is a once-a-week, two-dose, long-acting intravenous bactericidal lipoglycopeptide antibiotic. Oritavancin, a lipoglycopeptide with bactericidal activity, was developed as a single-dose intravenous treatment for acute bacterial skin and skin-structure infections (ABSSSI), which offers simplifying treatment of infections. Tedizolid is an oxazolidinone-class bacteriostatic once-daily agent, available for intravenous as well as oral use. Increased ability to overcome bacterial resistance is the main therapeutic advantage of the novel agents over existing antibiotics. PMID:27904526

  17. New agents approved for treatment of acute staphylococcal skin infections.

    PubMed

    Tatarkiewicz, Jan; Staniszewska, Anna; Bujalska-Zadrożny, Magdalena

    2016-12-01

    Vancomycin has been a predominant treatment for methicillin-resistant Staphylococcus aureus (MRSA) infections for decades. However, growing reservations about its efficacy led to an urgent need for new antibiotics effective against MRSA and other drug-resistant Staphylococcus aureus strains. This review covers three new anti-MRSA antibiotics that have been recently approved by the FDA: dalbavancin, oritavancin, and tedizolid. The mechanism of action, indications, antibacterial activity profile, microbial resistance, pharmacokinetics, clinical efficacy, adverse effects, interactions as well as available formulations and administration of each of these new antibiotics are described. Dalbavancin is a once-a-week, two-dose, long-acting intravenous bactericidal lipoglycopeptide antibiotic. Oritavancin, a lipoglycopeptide with bactericidal activity, was developed as a single-dose intravenous treatment for acute bacterial skin and skin-structure infections (ABSSSI), which offers simplifying treatment of infections. Tedizolid is an oxazolidinone-class bacteriostatic once-daily agent, available for intravenous as well as oral use. Increased ability to overcome bacterial resistance is the main therapeutic advantage of the novel agents over existing antibiotics.

  18. Gamisasangja-tang suppresses pruritus and atopic skin inflammation in the NC/Nga murine model of atopic dermatitis.

    PubMed

    Park, Bo-Kyung; Park, Yang-Chun; Jung, In Chul; Kim, Seung-Hyung; Choi, Jeong June; Do, Moonho; Kim, Sun Yeou; Jin, Mirim

    2015-05-13

    Gamisasangja-tang (GST) is a traditional herbal formula prescribed for patients with intractable pruritus in association with various inflammatory skin diseases. To evaluate the effects of GST on pruritic skin inflammation and investigate its cellular and molecular mechanisms. We orally administered GST to NC/Nga (NC) mice, an animal model of atopic dermatitis. Scratching frequency and the dermatitis index were evaluated, and histological examination was performed using hematoxylin and eosin and toluidine blue staining. The levels of interleukin (IL)-31 and T-helper cell type 2 (TH2) cytokines were determined in both the dorsal skin and cultured splenocytes by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The serum levels of chemokines and immunoglobulin E (IgE) were determined by ELISA. Changes in the inflammatory cell population were analyzed by a hemocytometer. GST significantly lowered scratching frequency and inhibited increases in dermatitis index, thickness of epidermis/dermis and infiltration of chemokine (C-C motif) receptor 3 (CCR3)(+) and cluster of differentiation (CD)117(+)/FcεRIα (Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide)(+) cells in atopic skin. Both IL-31 mRNA expression and production were significantly reduced by GST, which was accomrease in the levels of IL-4, IL-5, and IL-13. Further, GST treatment suppressed the secretion of eotaxin, TARC (thymus and activation-regulated chemokine), IgE, and increases in the number of basophils and eosinophils in the blood. GST may have potential as an effective treatment for pruritic skin disease such as atopic dermatitis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. In utero and postnatal exposure to a phytoestrogen-enriched diet increases parameters of acute inflammation in a rat model of TNBS-induced colitis.

    PubMed

    Seibel, Jan; Molzberger, Almut F; Hertrampf, Torsten; Laudenbach-Leschowski, Ute; Degen, Gisela H; Diel, Patrick

    2008-12-01

    Inflammatory bowel disease (IBD) is very common in Europe and USA. Its incidence in East Asia has been traditionally low, albeit the risk of IBD increases in Asian immigrants adopting western lifestyles, suggesting a strong role of environmental/dietary factors in IBD. A lifelong exposure to phytoestrogen-rich diets has been associated with a decreased risk of developing breast cancer and might also be protective against IBD. We studied the influence of in utero and postnatal exposure to a phytoestrogen (PE)-rich diet on acute inflammation in an animal model of TNBS-induced colitis. Wistar rats were exposed in utero and postnatally to high (genistein: 240 microg/g feed; daidzein: 232 microg/g feed) or very low levels (genistein and daidzein <10 microg/g feed) of phytoestrogen isoflavones fed to pregnant dams with the diet and throughout nursing. After weaning, the offspring had free access to these diets. At the age of 11 weeks, colitis was induced with an enema of TNBS. After 3 days, animals were sacrificed and tissues were collected for histological evaluation and analysis of molecular markers of inflammation. Animals kept on a PE-rich diet (PRD) had higher colon weights than animals on low PE-levels (PDD), suggesting enhanced acute inflammation by phytoestrogens. This result was supported by histological findings and by analysis of myeloperoxidase activity. Interestingly, relative mRNA and protein expression of cyclooxygenase-2 (COX-2) were modulated in rats on PRD, providing evidence that COX-2, the inducible isoform of the enzyme, is involved in the management of colonic inflammation. Our results suggest that early-in-life exposure to PE might not protect against the development of IBD but enhances the extent of acute inflammation.

  20. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer

    PubMed Central

    Damiani, Elisabetta; Ullrich, Stephen E.

    2016-01-01

    Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome. PMID:27073146

  1. IL-22 is required for Th17 cell–mediated pathology in a mouse model of psoriasis-like skin inflammation

    PubMed Central

    Ma, Hak-Ling; Liang, Spencer; Li, Jing; Napierata, Lee; Brown, Tom; Benoit, Stephen; Senices, Mayra; Gill, Davinder; Dunussi-Joannopoulos, Kyriaki; Collins, Mary; Nickerson-Nutter, Cheryl; Fouser, Lynette A.; Young, Deborah A.

    2008-01-01

    Psoriasis is a chronic skin disease resulting from the dysregulated interplay between keratinocytes and infiltrating immune cells. We report on a psoriasis-like disease model, which is induced by the transfer of CD4+CD45RBhiCD25– cells to pathogen-free scid/scid mice. Psoriasis-like lesions had elevated levels of antimicrobial peptide and proinflammatory cytokine mRNA. Also, similar to psoriasis, disease progression in this model was dependent on the p40 common to IL-12 and IL-23. To investigate the role of IL-22, a Th17 cytokine, in disease progression, mice were treated with IL-22–neutralizing antibodies. Neutralization of IL-22 prevented the development of disease, reducing acanthosis (thickening of the skin), inflammatory infiltrates, and expression of Th17 cytokines. Direct administration of IL-22 into the skin of normal mice induced both antimicrobial peptide and proinflammatory cytokine gene expression. Our data suggest that IL-22, which acts on keratinocytes and other nonhematopoietic cells, is required for development of the autoreactive Th17 cell–dependent disease in this model of skin inflammation. We propose that IL-22 antagonism might be a promising therapy for the treatment of human psoriasis. PMID:18202747

  2. HDL cholesterol transport during inflammation.

    PubMed

    van der Westhuyzen, Deneys R; de Beer, Frederick C; Webb, Nancy R

    2007-04-01

    The aim of this article is to review recent advances made towards understanding how inflammation and acute phase proteins, particularly serum amyloid A and group IIa secretory phospholipase A2, may alter reverse cholesterol transport by HDL during inflammation and the acute phase response. Findings suggest that the decreased apoA-I content and markedly increased serum amyloid A content in HDL during the acute phase response result from reciprocal and coordinate transcriptional regulation of these proteins as well as HDL remodeling by group IIa secretory phospholipase A2. Serum amyloid A functions efficiently in a lipid-free or lipid-poor form to promote cholesterol efflux by ATP binding cassette protein ABCA1, evidently by functioning directly as an acceptor for cholesterol efflux as well as by increasing the availability of cellular free cholesterol. Serum amyloid A increases the ability of acute phase HDL to serve as an acceptor for SR-BI-dependent cellular cholesterol efflux. Altered remodeling of HDL by group IIa secretory phospholipase A2 in concert with cholesterol ester transfer protein may contribute to the generation of lipid-poor apoA-I and serum amyloid A acceptors for cholesterol efflux. Current data support a model for the acute phase response in which serum amyloid A and sPLA2-IIa, present at sites of inflammation and tissue damage, play a protective role by enhancing cellular cholesterol efflux, thereby promoting the removal of excess cholesterol from macrophages.

  3. Induction of Alternative Proinflammatory Cytokines Accounts for Sustained Psoriasiform Skin Inflammation in IL-17C+IL-6KO Mice.

    PubMed

    Fritz, Yi; Klenotic, Philip A; Swindell, William R; Yin, Zhi Qiang; Groft, Sarah G; Zhang, Li; Baliwag, Jaymie; Camhi, Maya I; Diaconu, Doina; Young, Andrew B; Foster, Alexander M; Johnston, Andrew; Gudjonsson, Johann E; McCormick, Thomas S; Ward, Nicole L

    2017-03-01

    IL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. In addition, de novo psoriasis onset has been reported after IL-6 blockade in patients with rheumatoid arthritis. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6-deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation; however, this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36α/β/γ, Il24, Epgn, and S100a8/a9 to levels higher than those found in IL-17C+ mice. A comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin revealed significant correlation among transcripts of skin of patients with psoriasis and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why patients with arthritis being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Autophagy and kidney inflammation.

    PubMed

    Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2017-06-03

    Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases.

  5. Underlying chronic inflammation alters the profile and mechanisms of acute neutrophil recruitment.

    PubMed

    Ma, Bin; Whiteford, James R; Nourshargh, Sussan; Woodfin, Abigail

    2016-11-01

    Chronically inflamed tissues show altered characteristics that include persistent populations of inflammatory leukocytes and remodelling of the vascular network. As the majority of studies on leukocyte recruitment have been carried out in normal healthy tissues, the impact of underlying chronic inflammation on ongoing leukocyte recruitment is largely unknown. Here, we investigate the profile and mechanisms of acute inflammatory responses in chronically inflamed and angiogenic tissues, and consider the implications for chronic inflammatory disorders. We have developed a novel model of chronic ischaemia of the mouse cremaster muscle that is characterized by a persistent population of monocyte-derived cells (MDCs), and capillary angiogenesis. These tissues also show elevated acute neutrophil recruitment in response to locally administered inflammatory stimuli. We determined that Gr1 low MDCs, which are widely considered to have anti-inflammatory and reparative functions, amplified acute inflammatory reactions via the generation of additional proinflammatory signals, changing both the profile and magnitude of the tissue response. Similar vascular and inflammatory responses, including activation of MDCs by transient ischaemia-reperfusion, were observed in mouse hindlimbs subjected to chronic ischaemia. This response demonstrates the relevance of the findings to peripheral arterial disease, in which patients experience transient exercise-induced ischaemia known as claudication.These findings demonstrate that chronically inflamed tissues show an altered profile and altered mechanisms of acute inflammatory responses, and identify tissue-resident MDCs as potential therapeutic targets. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  6. In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy.

    PubMed

    Hwang, Yoonha; Ahn, Jinhyo; Mun, Jungho; Bae, Sangyoon; Jeong, Young Uk; Vinokurov, Nikolay A; Kim, Pilhan

    2014-05-19

    The recent development of THz sources in a wide range of THz frequencies and power levels has led to greatly increased interest in potential biomedical applications such as cancer and burn wound diagnosis. However, despite its importance in realizing THz wave based applications, our knowledge of how THz wave irradiation can affect a live tissue at the cellular level is very limited. In this study, an acute inflammatory response caused by pulsed THz wave irradiation on the skin of a live mouse was analyzed at the cellular level using intravital laser-scanning confocal microscopy. Pulsed THz wave (2.7 THz, 4 μs pulsewidth, 61.4 μJ per pulse, 3Hz repetition), generated using compact FEL, was used to irradiate an anesthetized mouse's ear skin with an average power of 260 mW/cm(2) for 30 minutes using a high-precision focused THz wave irradiation setup. In contrast to in vitro analysis using cultured cells at similar power levels of CW THz wave irradiation, no temperature change at the surface of the ear skin was observed when skin was examined with an IR camera. To monitor any potential inflammatory response, resident neutrophils in the same area of ear skin were repeatedly visualized before and after THz wave irradiation using a custom-built laser-scanning confocal microscopy system optimized for in vivo visualization. While non-irradiated control skin area showed no changes in the number of resident neutrophils, a massive recruitment of newly infiltrated neutrophils was observed in the THz wave irradiated skin area after 6 hours, which suggests an induction of acute inflammatory response by the pulsed THz wave irradiation on the skin via a non-thermal process.

  7. Predictors of Inflammation in a Cohort of Bolivian Infants and Toddlers.

    PubMed

    Burke, Rachel M; Suchdev, Parminder S; Rebolledo, Paulina A; de Aceituno, Anna M Fabiszewski; Revollo, Rita; Iñiguez, Volga; Klein, Mitchel; Drews-Botsch, Carolyn; Leon, Juan S

    2016-10-05

    Inflammation has been associated with cardiovascular disease and other health outcomes in children and adults, yet few longitudinal data are available on prevalence and predictors of inflammation in infants. We aimed to identify the prevalence of inflammation in a cohort of Bolivian infants and estimate its association with acute (recent illnesses) and chronic (overweight, stunting) morbidities and potential pathogen exposure (represented by water, sanitation, and hygiene [WASH] resources). We measured plasma concentrations of two acute phase proteins (C-reactive protein [CRP], marking acute inflammation, and alpha(1)-acid-glycoprotein [AGP], marking chronic inflammation) at three time points (target 2, 6-8, and 12-18 months). Of 451 singleton infants enrolled in the parent study, 272 had the first blood draw and complete data. Anthropometry and sociodemographic and recent illness data (2-week recall of cough, diarrhea, and fever) were collected at each visit. Inflammation was defined as CRP > 5 mg/L or AGP > 1 g/L. The prevalence of inflammation increased from early infancy (3% at first blood draw) to later infancy (15-22% at later blood draws). Recent cough, recent fever, and age in months were significantly associated with relative increases in CRP (7-44%) and AGP (5-23%), whereas recent diarrhea was only significantly associated with an increase in CRP (48%). Neither anthropometry nor WASH was significantly associated with inflammation. Results confirm the role of recent acute illness in inflammation in infants, and indicate that adiposity and WASH are not as important to inflammation in this age category. © The American Society of Tropical Medicine and Hygiene.

  8. Inflammation, Fracture and Bone Repair

    PubMed Central

    Loi, Florence; Córdova, Luis A.; Pajarinen, Jukka; Lin, Tzu-hua; Yao, Zhenyu; Goodman, Stuart B.

    2016-01-01

    The reconstitution of lost bone is a subject that is germane to many orthopaedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral role. Acute inflammation is initiated by endogenous or exogenous adverse stimuli, and can become chronic in nature if not resolved by normal homeostatic mechanisms. Dysregulated inflammation leads to increased bone resorption and suppressed bone formation. Crosstalk amongst inflammatory cells (polymorphonuclear leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing (cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) is essential to the formation, repair and remodeling of bone. In this review, the authors provide a comprehensive summary of the literature related to inflammation and bone repair. Special emphasis is placed on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair. PMID:26946132

  9. Autophagy and kidney inflammation

    PubMed Central

    Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2017-01-01

    ABSTRACT Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases. PMID:28441075

  10. NOD2 and TLR2 ligands trigger the activation of basophils and eosinophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation

    PubMed Central

    Jiao, Delong; Wong, Chun-Kwok; Qiu, Huai-Na; Dong, Jie; Cai, Zhe; Chu, Man; Hon, Kam-Lun; Tsang, Miranda Sin-Man; Lam, Christopher Wai-Kei

    2016-01-01

    The skin of patients with atopic dermatitis (AD) has a unique predisposition for colonization by Staphylococcus aureus (S. aureus), which contributes to the inflammation and grim prognosis of AD. Although the mechanism underlying the S. aureus-induced exacerbation of AD remains unclear, recent studies have found a pivotal role for pattern recognition receptors in regulating the inflammatory responses in S. aureus infection. In the present study, we used a typical mouse model of AD-like skin inflammation and found that S. aureus-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and toll-like receptor 2 (TLR2) ligands exacerbated AD-like symptoms, which were further deteriorated by the in vivo expansion of basophils and eosinophils. Subsequent histological analyses revealed that dermal fibroblasts were pervasive in the AD-like skin lesions. Co-culture of human dermal fibroblasts with basophils and eosinophils resulted in a vigorous cytokine/chemokine response to the NOD2/TLR2 ligands and the enhanced expression of intercellular adhesion molecule-1 on the dermal fibroblasts. Basophils and eosinophils were primarily responsible for the AD-related cytokine/chemokine expression in the co-cultures. Direct intercellular contact was necessary for the crosstalk between basophils and dermal fibroblasts, while soluble mediators were sufficient to mediate the eosinophil–fibroblast interactions. Moreover, the intracellular p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and nuclear factor-kappa B signaling pathways were essential for NOD2/TLR2 ligand-mediated activation of basophils, eosinophils, and dermal fibroblasts in AD-related inflammation. This study provides the evidence of NOD2/TLR2-mediated exacerbation of AD through activation of innate immune cells and therefore sheds light on a novel mechanistic pathway by which S. aureus contributes to the pathophysiology of AD. PMID:26388234

  11. Monocyte and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice

    PubMed Central

    Grimm, Melissa J.; Vethanayagam, R. Robert; Almyroudis, Nikolaos G.; Dennis, Carly G.; Khan, A. Nazmul H.; D’Auria, Anthony; Singel, Kelly L.; Davidson, Bruce A.; Knight, Paul R.; Blackwell, Timothy S.; Hohl, Tobias M.; Mansour, Michael K.; Vyas, Jatin M.; Röhm, Marc; Urban, Constantin F.; Kelkka, Tiina; Holmdahl, Rikard; Segal, Brahm H.

    2013-01-01

    Chronic granulomatous disease, an inherited disorder of the NADPH oxidase in which phagocytes are defective in the generation of superoxide anion and downstream reactive oxidant species, is characterized by severe bacterial and fungal infections and excessive inflammation. Although NADPH oxidase isoforms exist in several lineages, reactive oxidant generation is greatest in neutrophils, where NADPH oxidase has been deemed vital for pathogen killing. In contrast, the function and importance of NADPH oxidase in macrophages are less clear. Therefore, we evaluated susceptibility to pulmonary aspergillosis in globally NADPH oxidase-deficient mice versus transgenic mice with monocyte/macrophage-targeted NADPH oxidase activity. We found that the lethal inoculum was more than 100-fold greater in transgenic versus globally NADPH oxidase-deficient mice. Consistent with these in vivo results, NADPH oxidase in mouse alveolar macrophages limited germination of phagocytosed Aspergillus fumigatus spores. Finally, globally NADPH oxidase-deficient mice developed exuberant neutrophilic lung inflammation and pro-inflammatory cytokine responses to zymosan, a fungal cell wall-derived product composed principally of particulate beta-glucans, whereas inflammation in transgenic and wildtype mice was mild and transient. Together, our studies identify a central role for monocyte/macrophage NADPH oxidase in controlling fungal infection and in limiting acute lung inflammation. PMID:23509361

  12. The effect of Mepitel Film on acute radiation-induced skin reactions in head and neck cancer patients: a feasibility study.

    PubMed

    Wooding, Hayley; Yan, Jing; Yuan, Ling; Chyou, Te-Yu; Gao, Shanbao; Ward, Iain; Herst, Patries M

    2018-01-01

    Mepitel Film significantly decreases acute radiation-induced skin reactions in breast cancer patients. Here we investigated the feasibility of using Mepitel Film in head and neck cancer patients (ACTRN12614000932662). Out of a total of 36 head and neck cancer patients from New Zealand (NZ) (n = 24) and China (n = 12) recruited between June 2015 and December 2016, 33 patients complied with protocol. Of these, 11 NZ patients followed a management protocol; 11 NZ patients and 11 Chinese patients followed a prophylactic protocol. An area of the neck receiving a homogenous radiation dose of > 35 Gy was divided into two equal halves; one half was randomized to Film and the other to either Sorbolene cream (NZ) or Biafine cream (China). Skin reaction severity was measured by Radiation Induced Skin Reaction Assessment Scale and expanded Radiation Therapy Oncology Group toxicity criteria. Skin dose was measured by thermoluminescent dosimeters or gafchromic film. Film decreased overall skin reaction severity (combined Radiation Induced Skin Reaction Assessment Scale score) by 29% and moist desquamation rates by 37% in the Chinese cohort and by 27 and 28%, respectively in the NZ cohort. Mepitel Film did not affect head movements but did not adhere well to the skin, particularly in males with heavy beard stubble, and caused itchiness, particularly in Chinese patients. Mepitel Film reduced acute radiation-induced skin reactions in our head and neck cancer patients, particularly in patients without heavy stubble. Advances in knowledge: This is the first study to confirm the feasibility of using Mepitel Film in head and neck cancer patients.

  13. Protocatechuic Aldehyde Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Nox-Mediated Oxidative Stress and Renal Inflammation

    PubMed Central

    Gao, Li; Wu, Wei-Feng; Dong, Lei; Ren, Gui-Ling; Li, Hai-Di; Yang, Qin; Li, Xiao-Feng; Xu, Tao; Li, Zeng; Wu, Bao-Ming; Ma, Tao-Tao; Huang, Cheng; Huang, Yan; Zhang, Lei; Lv, Xiongwen; Li, Jun; Meng, Xiao-Ming

    2016-01-01

    Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress, and programmed cell death of renal tubular epithelial cells, all of which lead to high mortality rates in patients. In this study, we examined the protective effect of protocatechuic aldehyde (PA) in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza (Lamiaceae). Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA blocks cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients receiving cisplatin treatment. PMID:27999546

  14. Plasmacytoid Dendritic Cells Die by the CD8 T Cell-Dependent Perforin Pathway during Acute Nonviral Inflammation.

    PubMed

    Mossu, Adrien; Daoui, Anna; Bonnefoy, Francis; Aubergeon, Lucie; Saas, Philippe; Perruche, Sylvain

    2016-09-01

    Regulation of the inflammatory response involves the control of dendritic cell survival. To our knowledge, nothing is known about the survival of plasmacytoid dendritic cells (pDC) in such situation. pDC are specialized in type I IFN (IFN-I) secretion to control viral infections, and IFN-I also negatively regulate pDC survival during the course of viral infections. In this study, we asked about pDC behavior in the setting of virus-free inflammation. We report that pDC survival was profoundly reduced during different nonviral inflammatory situations in the mouse, through a mechanism independent of IFN-I and TLR signaling. Indeed, we demonstrated that during inflammation, CD8(+) T cells induced pDC apoptosis through the perforin pathway. The data suggest, therefore, that pDC have to be turned down during ongoing acute inflammation to not initiate autoimmunity. Manipulating CD8(+) T cell response may therefore represent a new therapeutic opportunity for the treatment of pDC-associated autoimmune diseases, such as lupus or psoriasis. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Oral Vitamin D Rapidly Attenuates Inflammation from Sunburn: An Interventional Study.

    PubMed

    Scott, Jeffrey F; Das, Lopa M; Ahsanuddin, Sayeeda; Qiu, Yuqi; Binko, Amy M; Traylor, Zachary P; Debanne, Sara M; Cooper, Kevin D; Boxer, Rebecca; Lu, Kurt Q

    2017-10-01

    The diverse immunomodulatory effects of vitamin D are increasingly being recognized. However, the ability of oral vitamin D to modulate acute inflammation in vivo has not been established in humans. In a double-blinded, placebo-controlled interventional trial, 20 healthy adults were randomized to receive either placebo or a high dose of vitamin D 3 (cholecalciferol) one hour after experimental sunburn induced by an erythemogenic dose of UVR. Compared with placebo, participants receiving vitamin D 3 (200,000 international units) demonstrated reduced expression of proinflammatory mediators tumor necrosis factor-α (P = 0.04) and inducible nitric oxide synthase (P = 0.02) in skin biopsy specimens 48 hours after experimental sunburn. A blinded, unsupervised hierarchical clustering of participants based on global gene expression profiles revealed that participants with significantly higher serum vitamin D 3 levels after treatment (P = 0.007) demonstrated increased skin expression of the anti-inflammatory mediator arginase-1 (P = 0.005), and a sustained reduction in skin redness (P = 0.02), correlating with significant expression of genes related to skin barrier repair. In contrast, participants with lower serum vitamin D 3 levels had significant expression of proinflammatory genes. Together the data may have broad implications for the immunotherapeutic properties of vitamin D in skin homeostasis, and implicate arginase-1 upregulation as a previously unreported mechanism by which vitamin D exerts anti-inflammatory effects in humans. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer.

    PubMed

    Damiani, Elisabetta; Ullrich, Stephen E

    2016-07-01

    Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Identification of proteins from 4200-year-old skin and muscle tissue biopsies from ancient Egyptian mummies of the first intermediate period shows evidence of acute inflammation and severe immune response.

    PubMed

    Jones, Jana; Mirzaei, Mehdi; Ravishankar, Prathiba; Xavier, Dylan; Lim, Do Seon; Shin, Dong Hoon; Bianucci, Raffaella; Haynes, Paul A

    2016-10-28

    We performed proteomics analysis on four skin and one muscle tissue samples taken from three ancient Egyptian mummies of the first intermediate period, approximately 4200 years old. The mummies were first dated by radiocarbon dating of the accompany-\\break ing textiles, and morphologically examined by scanning electron microscopy of additional skin samples. Proteins were extracted, separated on SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) gels, and in-gel digested with trypsin. The resulting peptides were analysed using nanoflow high-performance liquid chromatography-mass spectrometry. We identified a total of 230 unique proteins from the five samples, which consisted of 132 unique protein identifications. We found a large number of collagens, which was confirmed by our microscopy data, and is in agreement with previous studies showing that collagens are very long-lived. As expected, we also found a large number of keratins. We identified numerous proteins that provide evidence of activation of the innate immunity system in two of the mummies, one of which also contained proteins indicating severe tissue inflammation, possibly indicative of an infection that we can speculate may have been related to the cause of death.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).

  18. Identification of proteins from 4200-year-old skin and muscle tissue biopsies from ancient Egyptian mummies of the first intermediate period shows evidence of acute inflammation and severe immune response

    PubMed Central

    Jones, Jana; Mirzaei, Mehdi; Ravishankar, Prathiba; Xavier, Dylan; Lim, Do Seon; Shin, Dong Hoon; Bianucci, Raffaella

    2016-01-01

    We performed proteomics analysis on four skin and one muscle tissue samples taken from three ancient Egyptian mummies of the first intermediate period, approximately 4200 years old. The mummies were first dated by radiocarbon dating of the accompany-\\break ing textiles, and morphologically examined by scanning electron microscopy of additional skin samples. Proteins were extracted, separated on SDS–PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) gels, and in-gel digested with trypsin. The resulting peptides were analysed using nanoflow high-performance liquid chromatography–mass spectrometry. We identified a total of 230 unique proteins from the five samples, which consisted of 132 unique protein identifications. We found a large number of collagens, which was confirmed by our microscopy data, and is in agreement with previous studies showing that collagens are very long-lived. As expected, we also found a large number of keratins. We identified numerous proteins that provide evidence of activation of the innate immunity system in two of the mummies, one of which also contained proteins indicating severe tissue inflammation, possibly indicative of an infection that we can speculate may have been related to the cause of death. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644972

  19. Hypericum perforatum and neem oil for the management of acute skin toxicity in head and neck cancer patients undergoing radiation or chemo-radiation: a single-arm prospective observational study.

    PubMed

    Franco, Pierfrancesco; Potenza, Ilenia; Moretto, Francesco; Segantin, Mattia; Grosso, Mario; Lombardo, Antonello; Taricco, Daniela; Vallario, Patrizia; Filippi, Andrea Riccardo; Rampino, Monica; Ricardi, Umberto

    2014-12-29

    Radiation dermatitis is common in patients treated with combined radiotherapy and chemotherapy for head and neck malignancies. Its timely and adequate management is of uttermost importance for both oncological outcomes and global quality of life. We prospectively evaluated the role of hypericum perforatum and neem oil (Holoil®; RIMOS srl, Mirandola, Italy) in the treatment of acute skin toxicity for patients undergoing radiotherapy or chemo-radiotherapy for head and neck cancer. A consecutive series of 28 head and neck cancer patients submitted to radiotherapy (RT) was enrolled onto this mono-institutional single-arm prospective observational study. Patients undergoing both definitive or post-operative radiotherapy were allowed, either as exclusive modality or combined with (concomitant or induction) chemotherapy. We started Holoil treatment whenever bright erythema, moderate oedema or patchy moist desquamation were observed. Holoil® was used during all RT course and during follow up time, until acute skin toxicity recovery. The maximum detected acute skin toxicity was Grade 1 in 7% of patients, Grade 2 in 68%, Grade 3 in 25%, while at the end of RT was Grade 0 in 3.5%, Grade 1 in 32%, Grade 2 in 61%, Grade 3 in 3.5%. For patients having G2 acute skin toxicity, it mainly started at weeks 4-5; for those having G3, it began during weeks 5-6. Median times spent with G2 or G3 toxicity were 17.5 and 11 days. Patients having G2 acute skin toxicity had a dermatitis worsening in 27% of case (median occurrence time: 7 days). G3 events were reconverted to a G2 profile in all patients (median time: 7 days). Those experiencing a G2 skin event were converted to a G1 score in 23% of cases (median time: 14 days). Time between maximum acute skin toxicity and complete skin recovery after RT was 27 days. Holoil® proved to be a safe and active option in the management of acute skin toxicity in head and neck cancer patients submitted to RT or chemo-radiotherapy. A prophylactic

  20. H₂S and substance P in inflammation.

    PubMed

    Bhatia, Madhav

    2015-01-01

    Hydrogen sulfide (H2S) and substance P play a key role in inflammation. Using animal models of inflammation of different etiologies such as acute pancreatitis, sepsis, burns, and joint inflammation, studies have recently shown an important role of the proinflammatory action of H2S and substance P. Also, H2S contributes to inflammation in different conditions via substance P. This chapter reviews methods and key data that have led to our current understanding of the role of H2S and substance P in inflammation. © 2015 Elsevier Inc. All rights reserved.

  1. Acute effects of cigarette smoke exposure on experimental skin flaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, J.; Jenkins, R.A.; Kurihara, K.

    1985-04-01

    Random vascular patterned caudally based McFarlane-type skin flaps were elevated in groups of Fischer 344 rats. Groups of rats were then acutely exposed on an intermittent basis to smoke generated from well-characterized research filter cigarettes. Previously developed smoke inhalation exposure protocols were employed using a Maddox-ORNL inhalation exposure system. Rats that continued smoke exposure following surgery showed a significantly greater mean percent area of flap necrosis compared with sham-exposed groups or control groups not exposed. The possible pathogenesis of this observation as well as considerations and correlations with chronic human smokers are discussed. Increased risks of flap necrosis by smokingmore » in the perioperative period are suggested by this study.« less

  2. Acute Respiratory Inflammation in Children and Black Carbon in Ambient Air before and during the 2008 Beijing Olympics

    PubMed Central

    Lin, Weiwei; Huang, Wei; Hu, Min; Brunekreef, Bert; Zhang, Yuanhang; Liu, Xingang; Cheng, Hong; Gehring, Ulrike; Li, Chengcai; Tang, Xiaoyan

    2011-01-01

    Background: Epidemiologic evidence for a causative association between black carbon (BC) and health outcomes is limited. Objectives: We estimated associations and exposure–response relationships between acute respiratory inflammation in schoolchildren and concentrations of BC and particulate matter with an aerodynamic diameter of ≤ 2.5 μm (PM2.5) in ambient air before and during the air pollution intervention for the 2008 Beijing Olympics. Methods: We measured exhaled nitric oxide (eNO) as an acute respiratory inflammation biomarker and hourly mean air pollutant concentrations to estimate BC and PM2.5 exposure. We used 1,581 valid observations of 36 subjects over five visits in 2 years to estimate associations of eNO with BC and PM2.5 according to generalized estimating equations with polynomial distributed-lag models, controlling for body mass index, asthma, temperature, and relative humidity. We also assessed the relative importance of BC and PM2.5 with two-pollutant models. Results: Air pollution concentrations and eNO were clearly lower during the 2008 Olympics. BC and PM2.5 concentrations averaged over 0–24 hr were strongly associated with eNO, which increased by 16.6% [95% confidence interval (CI), 14.1–19.2%] and 18.7% (95% CI, 15.0–22.5%) per interquartile range (IQR) increase in BC (4.0 μg/m3) and PM2.5 (149 μg/m3), respectively. In the two-pollutant model, estimated effects of BC were robust, but associations between PM2.5 and eNO decreased with adjustment for BC. We found that eNO was associated with IQR increases in hourly BC concentrations up to 10 hr after exposure, consistent with effects primarily in the first hours after exposure. Conclusions: Recent exposure to BC was associated with acute respiratory inflammation in schoolchildren in Beijing. Lower air pollution levels during the 2008 Olympics also were associated with reduced eNO. PMID:21642045

  3. Acute respiratory changes and pulmonary inflammation involving a pathway of TGF-β1 induction in a rat model of chlorine-induced lung injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo

    We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl{sub 2}) with the aim to understand the pathogenesis of the long-term sequelae of Cl{sub 2}-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5 h up to 90 days after a single inhalation of Cl{sub 2}. A single dose of dexamethasone (10 mg/kg) was administered 1 h following Cl{sub 2}-exposure. A 15-min inhalation of 200 ppm Cl{sub 2} was non-lethal in Sprague-Dawley rats.more » At 24 h post exposure, Cl{sub 2}-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24 h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24 h but did not influence the AHR. Inhalation of Cl{sub 2} in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl{sub 2}-induced respiratory dysfunction. - Highlights: • Inhalation of Cl{sub 2} leads to acute lung inflammation and airway hyperreactivity. • Cl{sub 2} activates an inflammasome pathway of TGF-β induction. • Cl{sub 2} leads to a fibrotic respiratory disease.

  4. Grape seed and skin extract reduces pancreas lipotoxicity, oxidative stress and inflammation in high fat diet fed rats.

    PubMed

    Aloui, Faten; Charradi, Kamel; Hichami, Aziz; Subramaniam, Selvakumar; Khan, Naim Akhtar; Limam, Ferid; Aouani, Ezzedine

    2016-12-01

    Obesity is related to an elevated risk of diabetes and the mechanisms whereby fat adversely affects the pancreas are poorly understood. We studied the effect of a high fat diet (HFD) on pancreas steatosis, oxidative stress and inflammation as well as the putative protection afforded by grape seed and skin extract (GSSE). HFD induced body weight gain, without affecting insulinemia, nor glycemia and dropped adiponectemia. HFD also provoked the ectopic deposition of cholesterol and triglyceride, and an oxidative stress characterized by increased lipoperoxidation and carbonylation, inhibition of antioxidant enzyme activities such as CAT, GPx and SOD, depletion of zinc and a concomitant increase in calcium and H 2 O 2 . HFD induced pro-inflammatory chemokines mRNA as RANTES and MCP1 as well as cytokines expression as TNFα, IL6 and IL1β. Importantly GSSE counteracted all the deleterious effects of HFD on pancreas in vivo i-e lipotoxicity, oxidative stress and inflammation. In conclusion, GSSE could find potential applications in fat-induced pancreas lipotoxicity and dysfunction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Effect of tumour necrosis factor-α receptor 1 genetic deletion on carrageenan-induced acute inflammation: a comparison with etanercept

    PubMed Central

    Mazzon, E; Esposito, E; Di Paola, R; Muià, C; Crisafulli, C; Genovese, T; Caminiti, R; Meli, R; Bramanti, P; Cuzzocrea, S

    2008-01-01

    In the present study, we used tumour necrosis factor-α receptor 1 knock-out mice (TNF-αR1KO) to evaluate an in vivo role of TNF-αR1 on the pathogenesis of inflammatory diseases. We used a murine model of carrageenan-induced acute inflammation (pleurisy), a preclinical model of airway inflammation. The data proved that TNF-αR1KO were resistant to carrageenan-induced acute inflammation compared with TNF-α wild-type mice. TNF-αR1KO showed a significant reduction in accumulation of pleural exudate and in the number of inflammatory cells, in lung infiltration of polymorphonuclear leucocytes and lipid peroxidation and showed a decreased production of nitrite/nitrate in pleural exudates. Furthermore, the intensity and degree of the adhesion molecule intercellular adhesion molecule-1 and P-selectin, Fas ligand (FasL), inducible nitric oxide sythase and nitrotyrosine determined by immunohistochemical analysis were reduced markedly in lung tissues from TNF-αR1KO at 4 h and 24 h after carrageenan injection. Moreover, TNF-α and interleukin-1β concentrations were reduced in inflamed areas and in pleural exudates from TNF-αR1KO. To support the results generated using pleural inflammation, carrageenan-induced paw oedema models were also performed. In order to elucidate whether the observed anti-inflammatory effects were related to the inhibition of TNF-α, we also investigated the effect of etanercept, a TNF-α soluble receptor construct, on carrageenan-induced pleurisy. The treatment with etanercept (5 mg/kg subcutaneously 2 h before the carrageenan injection) reduces markedly both laboratory and histological signs of carrageenan-induced pleurisy. Our results showed that administration of etanercept resulted in the same outcome as that of deletion of the TNF-αR1 receptor, adding a new insight to TNF-α as an excellent target by therapeutic applications. PMID:18505433

  6. Measurement and comparison of skin dose using OneDose MOSFET and Mobile MOSFET for patients with acute lymphoblastic leukemia.

    PubMed

    Mattar, Essam H; Hammad, Lina F; Al-Mohammed, Huda I

    2011-07-01

    Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to bone marrow transplant. It is involved in the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore measuring and monitoring the skin dose during the treatment is important. Two kinds of metal oxide semiconductor field effect transistor (OneDose MOSFET and mobile MOSEFT) dosimeter are used during the treatment delivery to measure the skin dose to specific points and compare it with the target prescribed dose. The objective of this study was to compare the variation of skin dose in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using OneDose MOSFET detectors and Mobile MOSFET, and then compare both results with the target prescribed dose. The measurements involved 32 patient's (16 males, 16 females), aged between 14-30 years, with an average age of 22.41 years. One-Dose MOSFET and Mobile MOSFET dosimetry were performed at 10 different anatomical sites on every patient. The results showed there was no variation between skin dose measured with OneDose MOSFET and Mobile MOSFET in all patients. Furthermore, the results showed for every anatomical site selected there was no significant difference in the dose delivered using either OneDose MOSFET detector or Mobile MOSFET as compared to the prescribed dose. The study concludes that One-Dose MOSFET detectors and Mobile MOSFET both give a direct read-out immediately after the treatment; therefore both detectors are suitable options when measuring skin dose for total body irradiation treatment.

  7. Cryoglobulin-induced inflammation.

    PubMed

    Denko, C W

    1985-10-01

    Inflammation of the rat footpad followed injection of cryoglobulin in crystalline form (Type I) and injection of cryoglobulin in solution (Type II). Rats deficient in essential fatty acids responded with diminished swelling which corrected to normal levels by addition of prostaglandin E1 suggesting that this reaction is prostaglandin mediated. Addition of bradykinin produced no effect. Aggregated cryoglobulin proved more inflammogenic than non-aggregated cryoglobulin. Pre-treatment with choline salicylate and colchicine reduced swelling while pre-treatment with dipyridamole increased edema following cryoglobulin inoculation. Cryoglobulin is considered to be an acute phase reactant in inflammation.

  8. Inhibition by local bupivacaine-releasing microspheres of acute postoperative pain from hairy skin incision.

    PubMed

    Ohri, Rachit; Wang, Jeffrey Chi-Fei; Blaskovich, Phillip D; Pham, Lan N; Costa, Daniel S; Nichols, Gary A; Hildebrand, William P; Scarborough, Nelson L; Herman, Clifford J; Strichartz, Gary R

    2013-09-01

    Acute postoperative pain causes physiological deficits and slows recovery. Reduction of such pain by local anesthetics that are delivered for several days postoperatively is a desirable clinical objective, which is approached by a new formulation and applied in animal studies reported here. We subcutaneously injected a new formulation of poly-lactic-co-glycolic acid polymer microspheres, which provides steady drug release for 96+ hours into rats at the dorsal region 2 hours before surgery. A single 1.2-cm-long skin incision was followed by blunt dissection of skin away from the underlying fascia, and closed by 2 sutures, followed by 14 days of testing. Microspheres containing 5, 10, 20, and 40 mg bupivacaine were injected locally 2 hours before surgery; bupivacaine-free microspheres were the vehicle control, and bupivacaine HCl solution (0.5%), the positive control. Mechanical sensitivity was determined by the frequency of local muscle contractions to repeated pokes with nylon monofilaments (von Frey hairs) exerting 4 and 15 g forces, testing, respectively, allodynia and hyperalgesia, and by pinprick. Injection of bupivacaine microspheres (40 mg drug) into intact skin reduced responses to 15 g von Frey hairs for 6 hours and to pinprick for 36 hours. Respective reductions from bupivacaine HCl lasted for 3 and 2 hours. Skin incision and dissection alone caused mechanical allodynia and hyperalgesia for 14 days. Microspheres containing 20 or 40 mg bupivacaine suppressed postoperative hypersensitivity for up to 3 days, reduced integrated allodynia (area under curve of response versus time) over postoperative days 1 to 5 by 51% ± 20% (mean ± SE) and 78% ± 12%, and reduced integrated hyperalgesia by 55% ± 13% and 64% ± 11%, for the respective doses. Five and ten milligrams bupivacaine in microspheres and the 0.5% bupivacaine solution were ineffective in reducing postoperative hypersensitivity, as were 40 mg bupivacaine microspheres injected contralateral to the

  9. The pathology of acute appendicitis.

    PubMed

    Carr, N J

    2000-02-01

    Although acute appendicitis is frequent, it is subject to common misconceptions. Furthermore, there is little good evidence to support some of our beliefs. This report reviews the role of the anatomic pathologist in diagnosis when acute appendicitis is suspected clinically and discusses what is known of its pathology. The conclusions that can be legitimately drawn from the literature are emphasized. A classification is proposed that incorporates intraluminal inflammation, acute mucosal inflammation, acute mucosal and submucosal inflammation, suppurative (phlegmonous) appendicitis, gangrenous appendicitis, and periappendicitis, and the significance of each of these diagnoses is discussed. The etiology and pathogenesis of acute appendicitis is reviewed. Contrary to popular belief, the best evidence indicates that obstruction is unlikely to be the primary cause, at least in the majority of cases. Ancillary techniques in the diagnosis of appendicitis, including laparoscopy and peritoneal aspiration cytology, are discussed.

  10. [Partsch's chronic granulomatous inflammation, the cutaneous manifestation of a dental cause].

    PubMed

    Buch, R S R; Fischer, B; Kleis, W K G; Reichert, T E

    2003-08-01

    Dentogenous inflammatory diseases can lead to typical dermatological facial symptoms with formation of cutaneous sinuses. Partsch's chronic granulomatous inflammation can result from conducted inflammation of a nonvital tooth via a chronic apical inflammation. In this rare disease, the granulomatous tissue perforates the bone, channels through the overlying skin, and drains via cutaneous or oral sinuses. A frequent localization of the cutaneous sinus is the skin inferior to the body of the mandible, and it is caused by an inflammation of the lower molars. Treatment consists of identifying the responsible teeth and eliminating the focus of infection. Chronically progressive periradicular granuloma and/or radicular cysts can be present with impressive dermatological symptoms. Therefore, X-ray examinations are necessary to exclude possible dentogenic causes in cases of badly healing processes of the face or neck.

  11. Low level laser therapy reduces acute lung inflammation without impairing lung function.

    PubMed

    Cury, Vivian; de Lima, Thais Martins; Prado, Carla Maximo; Pinheiro, Nathalia; Ariga, Suely K K; Barbeiro, Denise F; Moretti, Ana I; Souza, Heraldo P

    2016-12-01

    Acute lung injury is a condition characterized by exacerbate inflammatory reaction in distal airways and lung dysfunction. Here we investigate the treatment of acute lung injury (ALI) by low level laser therapy (LLLT), an effective therapy used for the treatment of patients with inflammatory disorders or traumatic injuries, due to its ability to reduce inflammation and promote tissue regeneration. However, studies in internal viscera remains unclear. C57BL/6 mice were treated with intratracheal lipopolysaccharide (LPS) (5 mg/kg) or phosphate buffer saline (PBS). Six hours after instillation, two groups were irradiated with laser at 660 nm and radiant exposure of 10 J/cm 2 . Intratracheal LPS inoculation induced a marked increase in the number of inflammatory cells in perivascular and alveolar spaces. There was also an increase in the expression and secretion of cytokines (TNF-α, IL-1β, IL-6,) and chemokine (MCP-1). The LLLT application induced a significant decrease in both inflammatory cells influx and inflammatory mediators secretion. These effects did not affect lung mechanical properties, since no change was observed in tissue resistance or elastance. In conclusion LLLT is able to reduce inflammatory reaction in lungs exposed to LPS without affecting the pulmonary function and recovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. GABA and GABA-Alanine from the Red Microalgae Rhodosorus marinus Exhibit a Significant Neuro-Soothing Activity through Inhibition of Neuro-Inflammation Mediators and Positive Regulation of TRPV1-Related Skin Sensitization

    PubMed Central

    Scandolera, Amandine; Hubert, Jane; Humeau, Anne; Lambert, Carole; De Bizemont, Audrey; Winkel, Chris; Kaouas, Abdelmajid; Renault, Jean-Hugues; Reynaud, Romain

    2018-01-01

    The aim of the present study was to investigate the neuro-soothing activity of a water-soluble hydrolysate obtained from the red microalgae Rhodosorus marinus Geitler (Stylonemataceae). Transcriptomic analysis performed on ≈100 genes related to skin biological functions firstly revealed that the crude Rhodosorus marinus extract was able to significantly negatively modulate specific genes involved in pro-inflammation (interleukin 1α encoding gene, IL1A) and pain detection related to tissue inflammation (nerve growth factor NGF and its receptor NGFR). An in vitro model of normal human keratinocytes was then used to evaluate the ability of the Rhodosorus marinus extract to control the release of neuro-inflammation mediators under phorbol myristate acetate (PMA)-induced inflammatory conditions. The extract incorporated at 1% and 3% significantly inhibited the release of IL-1α and NGF secretion. These results were confirmed in a co-culture system of reconstructed human epithelium and normal human epidermal keratinocytes on which a cream formulated with the Rhodosorus marinus extract at 1% and 3% was topically applied after systemic induction of neuro-inflammation. Finally, an in vitro model of normal human astrocytes was developed for the evaluation of transient receptor potential vanilloid 1 (TRPV1) receptor modulation, mimicking pain sensing related to neuro-inflammation as observed in sensitive skins. Treatment with the Rhodosorus marinus extract at 1% and 3% significantly decreased PMA-mediated TRPV1 over-expression. In parallel with these biological experiments, the crude Rhodosorus marinus extract was fractionated by centrifugal partition chromatography (CPC) and chemically profiled by a recently developed 13C NMR-based dereplication method. The CPC-generated fractions as well as pure metabolites were tested again in vitro in an attempt to identify the biologically active constituents involved in the neuro-soothing activity of the Rhodosorus marinus extract

  13. Evolutionary medicine and bone loss in chronic inflammatory diseases--A theory of inflammation-related osteopenia.

    PubMed

    Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto

    2015-10-01

    Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Label-free monitoring of inflammatory tissue conditions using a carrageenan-induced acute inflammation rat model.

    PubMed

    Lee, Seung Ho; Lee, Sang Hwa; Shin, Jae-Ho; Choi, Samjin

    2018-06-01

    Although the confirmation of inflammatory changes within tissues at the onset of various diseases is critical for the early detection of disease and selection of appropriate treatment, most therapies are based on complex and time-consuming diagnostic procedures. Raman spectroscopy has the ability to provide non-invasive, real-time, chemical bonding analysis through the inelastic scattering of photons. In this study, we evaluate the feasibility of Raman spectroscopy as a new, easy, fast, and accurate diagnostic method to support diagnostic decisions. The molecular changes in carrageenan-induced acute inflammation rat tissues were assessed by Raman spectroscopy. Volumes of 0 (control), 100, 150, and 200 µL of 1% carrageenan were administered to rat hind paws to control the degree of inflammation. The prominent peaks at [1,062, 1,131] cm -1 and [2,847, 2,881] cm -1 were selected as characteristic measurements corresponding to the C-C stretching vibrational modes and the symmetric and asymmetric C-H (CH 2 ) stretching vibrational modes, respectively. Principal component analysis of the inflammatory Raman spectra enabled graphical representation of the degree of inflammation through principal component loading profiles of inflammatory tissues on a two-dimensional plot. Therefore, Raman spectroscopy with multivariate statistical analysis represents a promising method for detecting biomolecular responses based on different types of inflammatory tissues. © 2018 Wiley Periodicals, Inc.

  15. Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters.

    PubMed

    Sarnat, Jeremy A; Golan, Rachel; Greenwald, Roby; Raysoni, Amit U; Kewada, Priya; Winquist, Andrea; Sarnat, Stefanie E; Dana Flanders, W; Mirabelli, Maria C; Zora, Jennifer E; Bergin, Michael H; Yip, Fuyuen

    2014-08-01

    Exposure to traffic pollution has been linked to numerous adverse health endpoints. Despite this, limited data examining traffic exposures during realistic commutes and acute response exists. We conducted the Atlanta Commuters Exposures (ACE-1) Study, an extensive panel-based exposure and health study, to measure chemically-resolved in-vehicle exposures and corresponding changes in acute oxidative stress, lipid peroxidation, pulmonary and systemic inflammation and autonomic response. We recruited 42 adults (21 with and 21 without asthma) to conduct two 2-h scripted highway commutes during morning rush hour in the metropolitan Atlanta area. A suite of in-vehicle particulate components were measured in the subjects' private vehicles. Biomarker measurements were conducted before, during, and immediately after the commutes and in 3 hourly intervals after commutes. At measurement time points within 3h after the commute, we observed mild to pronounced elevations relative to baseline in exhaled nitric oxide, C-reactive-protein, and exhaled malondialdehyde, indicative of pulmonary and systemic inflammation and oxidative stress initiation, as well as decreases relative to baseline levels in the time-domain heart-rate variability parameters, SDNN and rMSSD, indicative of autonomic dysfunction. We did not observe any detectable changes in lung function measurements (FEV1, FVC), the frequency-domain heart-rate variability parameter or other systemic biomarkers of vascular injury. Water soluble organic carbon was associated with changes in eNO at all post-commute time-points (p<0.0001). Our results point to measureable changes in pulmonary and autonomic biomarkers following a scripted 2-h highway commute. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters

    PubMed Central

    Sarnat, Jeremy A.; Golan, Rachel; Greenwald, Roby; Raysoni, Amit U.; Kewada, Priya; Winquist, Andrea; Sarnat, Stefanie E.; Flanders, W. Dana; Mirabelli, Maria C.; Zora, Jennifer E.; Bergin, Michael H.; Yip, Fuyuen

    2015-01-01

    Background Exposure to traffic pollution has been linked to numerous adverse health endpoints. Despite this, limited data examining traffic exposures during realistic commutes and acute response exists. Objectives: We conducted the Atlanta Commuters Exposures (ACE-1) Study, an extensive panel-based exposure and health study, to measure chemically-resolved in-vehicle exposures and corresponding changes in acute oxidative stress, lipid peroxidation, pulmonary and systemic inflammation and autonomic response. Methods We recruited 42 adults (21 with and 21 without asthma) to conduct two 2-h scripted highway commutes during morning rush hour in the metropolitan Atlanta area. A suite of in-vehicle particulate components were measured in the subjects’ private vehicles. Biomarker measurements were conducted before, during, and immediately after the commutes and in 3 hourly intervals after commutes. Results At measurement time points within 3 h after the commute, we observed mild to pronounced elevations relative to baseline in exhaled nitric oxide, C-reactive-protein, and exhaled malondialdehyde, indicative of pulmonary and systemic inflammation and oxidative stress initiation, as well as decreases relative to baseline levels in the time-domain heart-rate variability parameters, SDNN and rMSSD, indicative of autonomic dysfunction. We did not observe any detectable changes in lung function measurements (FEV1, FVC), the frequency-domain heart-rate variability parameter or other systemic biomarkers of vascular injury. Water soluble organic carbon was associated with changes in eNO at all post-commute time-points (p < 0.0001). Conclusions Our results point to measureable changes in pulmonary and autonomic biomarkers following a scripted 2-h highway commute. PMID:24906070

  17. [Changes of nitric oxide after trichloroethylene irritation in hairless mice skin and protection of ginkgo biloba extract and vitamin E].

    PubMed

    Wang, Liang; Shen, Tong; Zhou, Cheng-fan; Yu, Jun-feng; Zhu, Qi-xing

    2009-04-01

    To study the changes of nitric oxide (NO) in the BALB/c hairless mice skin after trichloroethylene (TCE) irritation and the protection of ginkgo biloba extract (GbE) and vitamin E (VE). 132 BALB/c hairless mice were randomly divided into blank control group, solvent group (olive oil), TCE groups (20%TCE, 40%TCE, 80%TCE and 100%TCE), GbE groups (0.1%GbE, 1%GbE and 10%GbE) and VE groups (5%VE, 10% VE and 20% VE), with 11 animals in each group, 5 for acute irritation test and 6 for the cumulative irritation test. The skin irritation was observed, and the levels of NO in the dorsal skin of BALB/C hairless mice were detected. The kit of NO was used to detect the levels of NO in the dorsal skin of BALB/c hairless mice. (1) The skin presented erythema and edema after TCE irritation both in acute irritation and cumulative irritation test and the skin inflammation showed time-dose effect relationship; the mice skin was protected in GbE or VE groups. (2) In the acute stimulation test, the levels of NO in 80%TCE group (69.895 +/- 9.605 micromol/mg pro) and 100%TCE group (77.273 +/- 9.290 micromol/mg pro) were significantly different compared with blank control group and solvent control group (P < 0.05 or P < 0.01). In the protection group, the NO level were reduced, with the statistically significant differences. (3) In acute irritation test, the levels of NO in 80%TCE group (60.362 +/- 9.817 micromol/mg pro) and 100%TCE group (68.027 +/- 9.354 micromol/mg pro) were significantly different compared with blank control group and solvent control group, (P < 0.05 or P < 0.01); In the protection group, 1% GbE, 10% GbE, 10% VE and 20%VE could reduce the levels of NO, with statistically significant differences. TCE can produce the irritation on the dorsal skin of BALB/c hairless mice and induce the significant increase of the NO levels. GbE and VE can protect the skin from TCE irritation damage.

  18. Evaluation of acute toxicity, genotoxicity and inhibitory effect on acute inflammation of an ethanol extract of Morus alba L. (Moraceae) in mice.

    PubMed

    Oliveira, Alisson Macário de; Nascimento, Matheus Ferreira do; Ferreira, Magda Rhayanny Assunção; Moura, Danielle Feijó de; Souza, Talita Giselly Dos Santos; Silva, Gabriela Cavalcante da; Ramos, Eduardo Henrique da Silva; Paiva, Patrícia Maria Guedes; Medeiros, Paloma Lys de; Silva, Teresinha Gonçalves da; Soares, Luiz Alberto Lira; Chagas, Cristiano Aparecido; Souza, Ivone Antônia de; Napoleão, Thiago Henrique

    2016-12-24

    Morus alba L. (white mulberry) is used in traditional medicine worldwide, including Brazil. The leaves of this plant are used to treat inflammatory disorders. Universal interest in this plant necessitates studies on the toxicological safety and scientific substantiation of the medicinal properties of M. alba. In previous work, we investigated the acute toxicity of orally administered M. alba ethanol extract in mice. This work was designed to investigate the ethanol extract obtained from M. alba leaves for acute toxicity when intraperitoneally administered, in vivo genotoxicity, and potential to reduce acute inflammation. In order to further investigate the constituents of the extract, we also obtained the high-performance liquid chromatography (HPLC) fingerprint of the extract. Phytochemical analysis by thin layer chromatography (TLC) was performed and the results were used to obtain the HPLC fingerprint. Acute toxicity of 300 and 2000mg/kg b.w. i.p. doses administered to mice for 14 days was evaluated. Genotoxicity was evaluated by counting the number of micronucleated polychromatic erythrocytes in the blood of mice that either received or did not receive the extract at 75, 150 and 300mg/kg b.w. per os. The anti-inflammatory effect of the same doses administered per os was investigated using the carrageenan air pouch model. The TLC analysis of the extract revealed the presence of a remarkable amount of flavonoids and cinnamic acids. The HPLC fingerprint showed the presence of one major peak corresponding to chlorogenic acid and two smaller peaks corresponding to flavonoids. In the toxicity assays, there were no deaths or deviations in behavior of treated mice as compared to the control at any dose. However, biochemical, hematological, and histological analyses showed that intraperitoneal injection caused several forms of damage to the mice, which were not observed in case of oral administration, studied in our previous work. Oral administration of the extract did

  19. Fisetin Regulates Nrf2 Expression and the Inflammation-Related Signaling Pathway to Prevent UVB-Induced Skin Damage in Hairless Mice.

    PubMed

    Wu, Po-Yuan; Lyu, Jia-Ling; Liu, Yi-Jung; Chien, Ting-Yi; Hsu, Hao-Cheng; Wen, Kuo-Ching; Chiang, Hsiu-Mei

    2017-10-10

    Chronic ultraviolet (UV) exposure may cause skin damage, disrupt skin barrier function, and promote wrinkle formation. UV induces oxidative stress and inflammation, which results in extracellular matrix degradation in the dermis and epidermal hyperplasia. Our previous study demonstrated that fisetin exerts photoprotective activity by inhibiting mitogen-activated protein kinase/activator protein-1/matrix metalloproteinases (MMPs) activation. In this study, fisetin was applied topically to investigate its antiphotodamage effects in hairless mice. The erythema index (a* values) and transepidermal water loss were evaluated to assess skin damage, and immunohistochemical staining was conducted to elucidate the photoprotective mechanism of fisetin. The results revealed that the topical application of fisetin reduced UVB-induced increase in the a* value and wrinkle formation. In addition, fisetin inhibited epidermal hyperplasia and increased the collagen content in the dermis. Fisetin exerted photoprotective activity by inhibiting the expression of MMP-1, MMP-2, and cyclooxygenase-2 and increasing the expression of nuclear factor erythroid 2-related factor. Furthermore, fisetin increased the expression of filaggrin to prevent UVB-induced barrier function disruption. Altogether, the present results provide evidence of the effects and mechanisms of fisetin's antiphotodamage and antiphotoinflammation activities.

  20. Fisetin Regulates Nrf2 Expression and the Inflammation-Related Signaling Pathway to Prevent UVB-Induced Skin Damage in Hairless Mice

    PubMed Central

    Wu, Po-Yuan; Lyu, Jia-Ling; Chien, Ting-Yi; Hsu, Hao-Cheng; Wen, Kuo-Ching

    2017-01-01

    Chronic ultraviolet (UV) exposure may cause skin damage, disrupt skin barrier function, and promote wrinkle formation. UV induces oxidative stress and inflammation, which results in extracellular matrix degradation in the dermis and epidermal hyperplasia. Our previous study demonstrated that fisetin exerts photoprotective activity by inhibiting mitogen-activated protein kinase/activator protein-1/matrix metalloproteinases (MMPs) activation. In this study, fisetin was applied topically to investigate its antiphotodamage effects in hairless mice. The erythema index (a* values) and transepidermal water loss were evaluated to assess skin damage, and immunohistochemical staining was conducted to elucidate the photoprotective mechanism of fisetin. The results revealed that the topical application of fisetin reduced UVB-induced increase in the a* value and wrinkle formation. In addition, fisetin inhibited epidermal hyperplasia and increased the collagen content in the dermis. Fisetin exerted photoprotective activity by inhibiting the expression of MMP-1, MMP-2, and cyclooxygenase-2 and increasing the expression of nuclear factor erythroid 2-related factor. Furthermore, fisetin increased the expression of filaggrin to prevent UVB-induced barrier function disruption. Altogether, the present results provide evidence of the effects and mechanisms of fisetin’s antiphotodamage and antiphotoinflammation activities. PMID:28994699

  1. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms.

    PubMed

    Nichols, Joi A; Katiyar, Santosh K

    2010-03-01

    Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including, premature aging of the skin and melanoma and non-melanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage.

  2. Suppression of NLRP3 inflammasome by oral treatment with sulforaphane alleviates acute gouty inflammation.

    PubMed

    Yang, Gabsik; Yeon, Sang Hyeon; Lee, Hye Eun; Kang, Han Chang; Cho, Yong Yeon; Lee, Hye Suk; Lee, Joo Young

    2018-04-01

    The aetiology of gout is closely linked to the deposition of monosodium uric acid (MSU) crystals and the consequent activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. In this study, we investigated whether oral administration of an NLRP3 inhibitor would be effective to attenuate the symptoms of gout. The effects of oral administration with sulforaphane (SFN) were examined in two mouse models of acute gout induced by injection of MSU crystals into footpads or air pouch. The production of caspase-1 (p10) and IL-1β was examined by immunoblotting and ELISA as hallmarks of NLRP3 inflammasome activation. Oral administration of SFN attenuated MSU crystal-induced swelling and neutrophil recruitment in a mouse foot acute gout model, correlating with the suppression of the NLRP3 inflammasome activation in foot tissues. Consistently, oral administration of SFN blocked MSU-crystal-induced activation of the NLRP3 inflammasome in a mouse air pouch gout model. SFN suppressed NLRP3 inflammasome activation induced by MSU crystals, adenosine triphosphate and nigericin but not by poly(dA:dT) in primary mouse macrophages, independent of the reactive oxygen species pathway. SFN inhibited ligand-independent activation of the NLRP3 inflammasome, suggesting that SFN may act directly on the NLRP3 inflammasome complex. Oral administration of SFN effectively alleviated acute gouty inflammation by suppression of the NLRP3 inflammasome. Our results provide a novel strategy in which oral treatment with SFN may be beneficial in preventing acute attacks of gout.

  3. Inflammation in acute and chronic pancreatitis.

    PubMed

    Habtezion, Aida

    2015-09-01

    This report reviews recent animal model and human studies associated with inflammatory responses in acute and chronic pancreatitis. Animal model and limited human acute and chronic pancreatitis studies unravel the dynamic nature of the inflammatory processes and the ability of the immune cells to sense danger and environmental signals. In acute pancreatitis, such molecules include pathogen-associated molecular pattern recognition receptors such as toll-like receptors, and the more recently appreciated damage-associated molecular pattern molecules or 'alarmin' high mobility group box 1 and IL-33. In chronic pancreatitis, a recent understanding of a critical role for macrophage-pancreatic stellate cell interaction offers a potential targetable pathway that can alter fibrogenesis. Microbiome research in pancreatitis is a new field gaining interest but will require further investigation. Immune cell contribution to the pathogenesis of acute and chronic pancreatitis is gaining more appreciation and further understanding in immune signaling presents potential therapeutic targets that can alter disease progression.

  4. Measurement and comparison of skin dose using OneDose MOSFET and Mobile MOSFET for patients with acute lymphoblastic leukemia

    PubMed Central

    Mattar, Essam H.; Hammad, Lina F.; Al-Mohammed, Huda I.

    2011-01-01

    Summary Background Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to bone marrow transplant. It is involved in the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore measuring and monitoring the skin dose during the treatment is important. Two kinds of metal oxide semiconductor field effect transistor (OneDose MOSFET and mobile MOSEFT) dosimeter are used during the treatment delivery to measure the skin dose to specific points and compare it with the target prescribed dose. The objective of this study was to compare the variation of skin dose in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using OneDose MOSFET detectors and Mobile MOSFET, and then compare both results with the target prescribed dose. Material/Methods The measurements involved 32 patient’s (16 males, 16 females), aged between 14–30 years, with an average age of 22.41 years. One-Dose MOSFET and Mobile MOSFET dosimetry were performed at 10 different anatomical sites on every patient. Results The results showed there was no variation between skin dose measured with OneDose MOSFET and Mobile MOSFET in all patients. Furthermore, the results showed for every anatomical site selected there was no significant difference in the dose delivered using either OneDose MOSFET detector or Mobile MOSFET as compared to the prescribed dose. Conclusions The study concludes that One-Dose MOSFET detectors and Mobile MOSFET both give a direct read-out immediately after the treatment; therefore both detectors are suitable options when measuring skin dose for total body irradiation treatment. PMID:21709641

  5. SP600125 promotes resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model.

    PubMed

    Wu, Hui-Mei; Fang, Lei; Shen, Qi-Ying; Liu, Rong-Yu

    2015-10-01

    c-Jun N-terminal kinase (JNK) relays extracellular stimuli through phosphorylation cascades that lead to various cell responses. In the present study, we aimed to investigate the effect of the JNK inhibitor SP600125 on the resolution of airway inflammation, and the underlying mechanism using a murine acute asthma model. Female C57BL/6 mice were sensitized with saline or ovalbumin (OVA) on day 0, and challenged with OVA on day 14-20. Meanwhile, some of the mice were treated with SP600125 (30 mg/kg) intraperitoneally 2 h before each challenge. The airway inflammation was evaluated by counting the numbers of various types of inflammatory cells in bronchoalveolar lavage fluid (BALF), histopathology, cytokines production and mucus secretion in individual mouse. In addition, we analyzed the protein levels of phosphorylated JNK and TLR9 in the lung tissues. SP600125 markedly reduced the invasion of inflammatory cells into the peribronchial regions, and decreased the numbers of eosinophils, monocytes, neutrophils and lymphocytes in BALF. SP600125 also reduced the level of plasma OVA-specific IgE, lowered the production of pro-inflammatory cytokines in BALF and alleviated mucus secretion. Meanwhile, SP600125 inhibited OVA-induced, increased expression of p-JNK and TLR9 in the lung tissues. Collectively, our data demonstrated that SP600125 promoted resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model. The JNK-TLR9 pathway may be a new therapeutic target in the treatment for the allergic asthma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury

    PubMed Central

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100–300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF-α and IL-1β expression in comparison with vehicle controls (p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100 μg/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI. PMID:29675437

  7. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo

    PubMed Central

    Desai, Pinaki R.; Marepally, Srujan; Patel, Apurva R.; Voshavar, Chandrashekhar; Chaudhuri, Arabinda; Singh, Mandip

    2013-01-01

    The barrier properties of the skin pose a significant but not insurmountable obstacle for development of new effective anti-inflammatory therapies. The objective of this study was to design and evaluate therapeutic efficacy of anti-nociception agent Capsaicin (Cap) and anti-TNFα siRNA (siTNFα) encapsulated cyclic cationic head Lipid-Polymer hybrid Nanocarriers (CyLiPns) against chronic skin inflammatory diseases. Physico-chemical characterizations including hydrodynamic size, surface potential and entrapment efficacies of CyLiPns were found to be 163 ± 9 nm, 35.14 ± 8.23 mV and 92% for Cap, respectively. In vitro skin distribution studies revealed that CyLiPns could effectively deliver FITC-siRNA upto 360 µm skin depth. Further, enhanced (p<0.001) Cap permeation from CyLiPns was observed compared to Capsaicin-Solution and Capzasin-HP. Therapeutic efficacies of CyLiPns were assessed using imiquamod induced psoriatic plaque like model. CyLiPns carrying both Cap and siTNFα showed significant reduced expression of TNFα, NF-κB, IL-17, IL-23 and Ki-67 genes compare to either drugs alone (p<0.05) and was in close comparison with Topgraf®;. Collectively these findings support our notion that novel cationic lipid-polymer hybrid nanoparticles can efficiently carry siTNFα and Cap into deeper dermal milieu and Cap with combination of siTNFα show synergism in treating skin inflammation. PMID:23643662

  8. Changes in Bacteria Induce Inflammatory Skin Diseases | Center for Cancer Research

    Cancer.gov

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that manifests as dry skin with a relentless itch and eczema. AD is considered an allergic disease in which the skin inflammation manifests in response to chronic exposure to contact allergens. However, identification of a responsible allergen is uncommon. Meanwhile, analyses have demonstrated that the surface of the human body is colonized by large numbers of diverse bacteria. This observation has led researchers to examine the roles these bacteria play in healthy and diseased skin. In a variety of genetic and chronic inflammatory skin diseases, including in patients with AD or with cancer who receive epidermal growth factor receptor (EGFR) inhibitors, Staphylococcus aureus and Corynebacterium species are the predominant bacteria isolated from the skin. However, the cause-and-effect relationship between this microbial imbalance and skin inflammation has not been determined.

  9. Systemic anti-TNFalpha treatment restores diabetes-impaired skin repair in ob/ob mice by inactivation of macrophages.

    PubMed

    Goren, Itamar; Müller, Elke; Schiefelbein, Dana; Christen, Urs; Pfeilschifter, Josef; Mühl, Heiko; Frank, Stefan

    2007-09-01

    To date, diabetes-associated skin ulcerations represent a therapeutic problem of clinical importance. The insulin-resistant type II diabetic phenotype is functionally connected to obesity in rodent models of metabolic syndrome through the release of inflammatory mediators from adipose tissue. Here, we used the impaired wound-healing process in obese/obese (ob/ob) mice to investigate the impact of obesity-mediated systemic inflammation on cutaneous wound-healing processes. Systemic administration of neutralizing monoclonal antibodies against tumor necrosis factor (TNF)alpha (V1q) or monocyte/macrophage-expressed EGF-like module-containing mucin-like hormone receptor-like (Emr)-1 (F4/80) into wounded ob/ob mice at the end of acute wound inflammation initiated a rapid and complete neo-epidermal coverage of impaired wound tissue in the presence of a persisting diabetic phenotype. Wound closure in antibody-treated mice was paralleled by a marked attenuation of wound inflammation. Remarkably, anti-TNFalpha- and anti-F4/80-treated mice exhibited a strong reduction in circulating monocytic cells and reduced numbers of viable macrophages at the wound site. Our data provide strong evidence that anti-TNFalpha therapy, widely used in chronic inflammatory diseases in humans, might also exert effects by targeting "activated" TNFalpha-expressing macrophage subsets, and that inactivation or depletion of misbehaving macrophages from impaired wounds might be a novel therapeutic clue to improve healing of skin ulcers.

  10. Clinical and histologic features of acute-onset erythroderma in dogs with gastrointestinal disease: 18 cases (2005-2015).

    PubMed

    Cain, Christine L; Bradley, Charles W; Mauldin, Elizabeth A

    2017-12-15

    OBJECTIVE To describe the clinical and histologic features of acute erythroderma in dogs with gastrointestinal disease. DESIGN Retrospective case series. ANIMALS 18 dogs with erythroderma and gastrointestinal disease. PROCEDURES Medical records and biopsy specimens were reviewed. Information collected from medical records included signalment, clinical signs, physical examination and diagnostic test results, treatment, and outcome. The Naranjo algorithm was used to estimate the probability of an adverse drug reaction for each dog. RESULTS All dogs had an acute onset of erythematous macules or generalized erythroderma. Histologic features of skin biopsy specimens had 3 patterns representing a progressive spectrum of inflammation. Most dogs had vomiting (n = 17) and hematochezia (10). Signs of gastrointestinal disease became evident before, after, or concurrent with the onset of skin lesions in 10, 3, and 5 dogs, respectively. Inflammatory bowel disease, pancreatitis, and adverse food reaction were diagnosed in 5, 3, and 3 dogs, respectively. The cause of the gastrointestinal signs was not identified for 8 dogs. Eight dogs had a Naranjo score consistent with a possible adverse drug reaction. Treatment of skin lesions included drug withdrawal (n = 15), antihistamines (16), and corticosteroids (14). Signs of gastrointestinal disease and skin lesions resolved at a mean of 4.6 days and 20.8 days, respectively, after onset. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated acute erythroderma may be associated with > 1 gastrointestinal disease or an adverse drug reaction in some dogs. Recognition of the clinical and histologic features of this syndrome is essential for accurate diagnosis.

  11. Immunomodulatory effects of high-protein diet with resveratrol supplementation on radiation-induced acute-phase inflammation in rats.

    PubMed

    Kim, Kyoung-Ok; Park, HyunJin; Chun, Mison; Kim, Hyun-Sook

    2014-09-01

    We hypothesized that a high-protein diet and/or resveratrol supplementation will improve acute inflammatory responses in rats after receiving experimental abdominal radiation treatment (ART). Based on our previous study, the period of 10 days after ART was used as an acute inflammation model. Rats were exposed to a radiation dose of 17.5 Gy and were supplied with a control (C), 30% high-protein diet (HP), resveratrol supplementation (RES), or HP with RES diet ([HP+RES]). At day 10 after ART, we measured profiles of lipids, proteins, and immune cells in blood. The levels of clusters of differentiating 4(+) (CD4(+)) cells and regulatory T cells, serum proinflammatory cytokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were also measured. ART caused significant disturbances of lipid profiles by increasing triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), and decreasing high-density lipoprotein cholesterol. The proinflammatroy cytokine levels were also increased by ART. All the experimental diets (HP, RES, and [HP+RES]) significantly decreased levels of TG, monocytes, proinflammatory cytokines, and 8-OHdG, whereas the platelet counts were increased. In addition, the HP and [HP+RES] diets decreased the concentrations of plasma LDL-C and total cholesterol. Also, the HP and RES diets decreased regulatory T cells compared with those of the control diet in ART group. Further, the HP diet led to a significant recovery of white blood cell counts, as well as increased percentages of lymphocyte and decreased percentages of neutrophils. In summary, RES appeared to be significantly effective in minimizing radiation-induced damage to lipid metabolism and immune responses. Our study also demonstrated the importance of dietary protein intake in recovering from acute inflammation by radiation.

  12. Loss of cellular FLICE-inhibitory protein promotes acute cholestatic liver injury and inflammation from bile duct ligation.

    PubMed

    Gehrke, Nadine; Nagel, Michael; Straub, Beate K; Wörns, Marcus A; Schuchmann, Marcus; Galle, Peter R; Schattenberg, Jörn M

    2018-03-01

    Cholestatic liver injury results from impaired bile flow or metabolism and promotes hepatic inflammation and fibrogenesis. Toxic bile acids that accumulate in cholestasis induce apoptosis and contribute to early cholestatic liver injury, which is amplified by accompanying inflammation. The aim of the current study was to evaluate the role of the antiapoptotic caspase 8-homolog cellular FLICE-inhibitory (cFLIP) protein during acute cholestatic liver injury. Transgenic mice exhibiting hepatocyte-specific deletion of cFLIP (cFLIP -/- ) were used for in vivo and in vitro analysis of cholestatic liver injury using bile duct ligation (BDL) and the addition of bile acids ex vivo. Loss of cFLIP in hepatocytes promoted acute cholestatic liver injury early after BDL, which was characterized by a rapid release of proinflammatory and chemotactic cytokines (TNF, IL-6, IL-1β, CCL2, CXCL1, and CXCL2), an increased presence of CD68 + macrophages and an influx of neutrophils in the liver, and resulting apoptotic and necrotic hepatocyte cell death. Mechanistically, liver injury in cFLIP -/- mice was aggravated by reactive oxygen species, and sustained activation of the JNK signaling pathway. In parallel, cytoprotective NF-κB p65, A20, and the MAPK p38 were inhibited. Increased injury in cFLIP -/- mice was accompanied by activation of hepatic stellate cells and profibrogenic regulators. The antagonistic caspase 8-homolog cFLIP is a critical regulator of acute, cholestatic liver injury. NEW & NOTEWORTHY The current paper explores the role of a classical modulator of hepatocellular apoptosis in early, cholestatic liver injury. These include activation of NF-κB and MAPK signaling, production of inflammatory cytokines, and recruitment of neutrophils in response to cholestasis. Because these signaling pathways are currently exploited in clinical trials for the treatment of nonalcoholic steatohepatitis and cirrhosis, the current data will help in the development of novel pharmacological

  13. Local Inflammation Exacerbates the Severity of Staphylococcus aureus Skin Infection

    PubMed Central

    Montgomery, Christopher P.; Daniels, Melvin D.; Zhao, Fan; Spellberg, Brad; Chong, Anita S.; Daum, Robert S.

    2013-01-01

    Staphylococcus aureus is the leading cause of skin infections. In a mouse model of S. aureus skin infection, we found that lesion size did not correlate with bacterial burden. Athymic nude mice had smaller skin lesions that contained lower levels of myeloperoxidase, IL-17A, and CXCL1, compared with wild type mice, although there was no difference in bacterial burden. T cell deficiency did not explain the difference in lesion size, because TCR βδ (-/-) mice did not have smaller lesions, and adoptive transfer of congenic T cells into athymic nude mice prior to infection did not alter lesion size. The differences observed were specific to the skin, because mortality in a pneumonia model was not different between wild type and athymic nude mice. Thus, the clinical severity of S. aureus skin infection is driven by the inflammatory response to the bacteria, rather than bacterial burden, in a T cell independent manner. PMID:23861974

  14. Use of axillary deodorant and effect on acute skin toxicity during radiotherapy for breast cancer: a prospective randomized noninferiority trial.

    PubMed

    Théberge, Valérie; Harel, François; Dagnault, Anne

    2009-11-15

    To prospectively determine the effect of deodorant use on acute skin toxicity and quality of life during breast radiotherapy (RT). Before breast RT, 84 patients were randomly assigned to the deodorant group (n = 40) or the no-deodorant group (n = 44). The patients were stratified by axillary RT and previous chemotherapy. Toxicity evaluations were always performed by the principal investigator, who was unaware of the group assignment, at the end of RT and 2 weeks after completion using the Radiation Therapy Oncology Group acute skin toxicity criteria. Symptoms of acute skin toxicity (i.e., discomfort, pain, pruritus, sweating) and quality of life were self-evaluated. For each criterion, the point estimate of rate difference with the 95% one-sided upper confidence limit was computed. To claim noninferiority owing to deodorant use, the 95% one-sided upper confidence limit had to be lower than the noninferiority margin, fixed to 12.8%. In the deodorant vs. no-deodorant groups, Grade 2 axillary radiodermatitis occurred in 23% vs. 30%, respectively, satisfying the statistical criteria for noninferiority (p = .019). Grade 2 breast radiodermatitis occurred in 30% vs. 34% of the deodorant vs. no-deodorant groups, respectively, also satisfying the statistical criteria for noninferiority (p = .049). Similar results were observed for the self-reported evaluations. The deodorant group reported less sweating (18% vs. 39%, p = .032). No Grade 3 or 4 radiodermatitis was observed. According to our noninferiority margin definition, the occurrence of skin toxicity and its related symptoms were statistically equivalent in both groups. No evidence was found to prohibit deodorant use (notwithstanding the use of an antiperspirant with aluminum) during RT for breast cancer.

  15. Role of Quzhou Fructus Aurantii Extract in Preventing and Treating Acute Lung Injury and Inflammation.

    PubMed

    Li, Lili; Zhang, Sheng; Xin, Yanfei; Sun, Junying; Xie, Feng; Yang, Lin; Chen, Zhiqin; Chen, Hao; Liu, Fang; Xuan, Yaoxian; You, Zhenqiang

    2018-01-26

    Quzhou Fructus Aurantii (QFA) is an authentic herb of local varieties in Zhejiang, China, which is usually used to treat gastrointestinal illnesses, but its effects on respiratory inflammation have not been reported yet. In our study, the anti-inflammatory activity of QFA extract (QFAE) was evaluated on copper sulfate pentahydrate (CuSO 4 ·5H 2 O)-induced transgenic neutrophil fluorescent zebrafish model. QFAE showed a significant effect of anti-inflammation in CuSO 4 ·5H 2 O-induced zebrafish by reducing the neutrophil number in the inflammatory site. We investigated the anti-inflammatory activity of QFAE on lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice models and RAW 264.7 cells. QFAE had an anti-inflammatory effect on reducing total cells, neutrophils, and macrophages in BALF and attenuated alveolus collapse, neutrophils infiltration, lung W/D ratio, myeloperoxidase (MPO) protein expression and other pulmonary histological changes in lung tissues, as well as hematological changes. Levels of pro-inflammatory cytokines, including TNF, IL-6, IFN-γ, MCP-1, and IL-12p70, were decreased, whereas anti-inflammatory cytokine IL-10 was increased after treatment with QFAE both in vivo and in vitro. In summary, our results suggested that QFAE had apparent anti-inflammatory effects on CuSO 4 ·5H 2 O-induced zebrafish, LPS-induced ALI mice, and RAW 264.7 cells. Furthermore, QFAE may be a therapeutic drug to treat ALI/ARDS and other respiratory inflammations.

  16. Growth hormone regulates the sensitization of developing peripheral nociceptors during cutaneous inflammation.

    PubMed

    Liu, Xiaohua; Green, Kathryn J; Ford, Zachary K; Queme, Luis F; Lu, Peilin; Ross, Jessica L; Lee, Frank B; Shank, Aaron T; Hudgins, Renita C; Jankowski, Michael P

    2017-02-01

    Cutaneous inflammation alters the function of primary afferents and gene expression in the affected dorsal root ganglia (DRG). However, specific mechanisms of injury-induced peripheral afferent sensitization and behavioral hypersensitivity during development are not fully understood. Recent studies in children suggest a potential role for growth hormone (GH) in pain modulation. Growth hormone modulates homeostasis and tissue repair after injury, but how GH affects nociception in neonates is not known. To determine whether GH played a role in modulating sensory neuron function and hyperresponsiveness during skin inflammation in young mice, we examined behavioral hypersensitivity and the response properties of cutaneous afferents using an ex vivo hairy skin-saphenous nerve-DRG-spinal cord preparation. Results show that inflammation of the hairy hind paw skin initiated at either postnatal day 7 (P7) or P14 reduced GH levels specifically in the affected skin. Furthermore, pretreatment of inflamed mice with exogenous GH reversed mechanical and thermal hypersensitivity in addition to altering nociceptor function. These effects may be mediated through an upregulation of insulin-like growth factor 1 receptor (IGFr1) as GH modulated the transcriptional output of IGFr1 in DRG neurons in vitro and in vivo. Afferent-selective knockdown of IGFr1 during inflammation also prevented the observed injury-induced alterations in cutaneous afferents and behavioral hypersensitivity similar to that after GH pretreatment. These results suggest that GH can block inflammation-induced nociceptor sensitization during postnatal development leading to reduced pain-like behaviors, possibly by suppressing the upregulation of IGFr1 within DRG.

  17. Growth hormone regulates the sensitization of developing peripheral nociceptors during cutaneous inflammation

    PubMed Central

    Liu, Xiaohua; Green, Kathryn J.; Ford, Zachary K.; Queme, Luis F.; Lu, Peilin; Ross, Jessica L.; Lee, Frank B.; Shank, Aaron T.; Hudgins, Renita C.; Jankowski, Michael P.

    2016-01-01

    Cutaneous inflammation alters the function of primary afferents and gene expression in the affected dorsal root ganglia (DRGs). However specific mechanisms of injury-induced peripheral afferent sensitization and behavioral hypersensitivity during development are not fully understood. Recent studies in children suggest a potential role for growth hormone (GH) in pain modulation. GH modulates homeostasis and tissue repair after injury, but how GH effects nociception in neonates is not known. To determine if GH played a role in modulating sensory neuron function and hyper-responsiveness during skin inflammation in young mice, we examined behavioral hypersensitivity and the response properties of cutaneous afferents using an ex vivo hairy skin-saphenous nerve-dorsal root ganglion (DRG)-spinal cord preparation. Results show that inflammation of the hairy hindpaw skin initiated at either postnatal day 7 (P7) or P14 reduced GH levels specifically in the affected skin. Furthermore, pretreatment of inflamed mice with exogenous GH reversed mechanical and thermal hypersensitivity in addition to altering nociceptor function. These effects may be mediated via an upregulation of insulin-like growth factor 1 receptor (IGFr1) as GH modulated the transcriptional output of IGFr1 in DRG neurons in vitro and in vivo. Afferent-selective knockdown of IGFr1 during inflammation also prevented the observed injury-induced alterations in cutaneous afferents and behavioral hypersensitivity similar to that following GH pretreatment. These results suggest that GH can block inflammation-induced nociceptor sensitization during postnatal development leading to reduced pain-like behaviors, possibly by suppressing the upregulation of IGFr1 within DRGs. PMID:27898492

  18. Reg3β is associated with cardiac inflammation and provides prognostic information in patients with acute coronary syndrome.

    PubMed

    Lörchner, Holger; Widera, Christian; Hou, Yunlong; Elsässer, Albrecht; Warnecke, Henning; Giannitsis, Evangelos; Hulot, Jean-Sebastien; Braun, Thomas; Wollert, Kai C; Pöling, Jochen

    2018-05-01

    Regenerating islet-derived protein 3 beta (Reg3β) is a cardiomyocyte-derived chemokine for macrophages that is upregulated after myocardial infarction (MI) in mice. Here, we hypothesized that monitoring Reg3β expression might provide specific information on the degree of cardiac inflammation, which is a key determinant in disease progression and prognosis of patients with acute coronary syndrome (ACS). The expression of Reg3β and other inflammatory markers including C-reactive protein (CRP) and myeloperoxidase (MPO) was measured by immunoblotting at serial time points in the hearts and serum of mice with acute MI. We identified a rapid increase of Reg3β, CRP and MPO expression in cardiac tissue and serum within the first 24 h after MI. The expression of Reg3β peaked at day 4 and thereby paralleled the kinetic profile of the early immune-inflammatory response at sites of cardiac injury, which has been characterized by multicolor flow cytometry. In a retrospective analysis including 322 ACS patients and 117 apparently healthy individuals, we detected increased Reg3β serum concentrations in ACS patients on admission by ELISA. Multiple regression analysis revealed significant relationships between Reg3β and hs-CRP, age, diabetes and NT-proBNP in ACS. Moreover, elevated Reg3β levels on admission were associated with an increased risk of death independent of cardiovascular risk factors and hs-CRP. Reg3β is a prognostic biomarker for ACS and is strongly associated with the intensity of cardiac inflammation. Accordingly, Reg3β may complement established strategies of acute risk assessment in the management of ACS. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Role of p53 in silibinin-mediated inhibition of ultraviolet B radiation-induced DNA damage, inflammation and skin carcinogenesis.

    PubMed

    Rigby, Cynthia M; Roy, Srirupa; Deep, Gagan; Guillermo-Lagae, Ruth; Jain, Anil K; Dhar, Deepanshi; Orlicky, David J; Agarwal, Chapla; Agarwal, Rajesh

    2017-01-01

    Non-melanoma skin cancers (NMSC) are a growing problem given that solar ultraviolet B (UVB) radiation exposure is increasing most likely due to depletion of the atmospheric ozone layer and lack of adequate sun protection. Better preventive methods are urgently required to reduce UV-caused photodamage and NMSC incidence. Earlier, we have reported that silibinin treatment activates p53 and reduces photodamage and NMSC, both in vitro and in vivo; but whether silibinin exerts its protective effects primarily through p53 remains unknown. To address this question, we generated p53 heterozygous (p53 +/- ) and p53 knockout (p53 -/- ) mice on SKH-1 hairless mouse background, and assessed silibinin efficacy in both short- and long-term UVB exposure experiments. In the chronic UVB-exposed skin tumorigenesis study, compared to p53 +/+ mice, p53 +/- mice developed skin tumors earlier and had higher tumor number, multiplicity and volume. Silibinin topical treatment significantly reduced the tumor number, multiplicity and volume in p53 +/+ mice but silibinin' protective efficacy was significantly compromised in p53 +/- mice. Additionally, silibinin treatment failed to inhibit precursor skin cancer lesions in p53 -/- mice but improved the survival of the mice. In short-term studies, silibinin application accelerated the removal of UVB-induced DNA damage in p53 +/+ mice while its efficacy was partially compromised in p53 -/- mice. Interestingly, silibinin treatment also inhibited the UVB-induced inflammatory markers in skin tissue. These results further confirmed that absence of the p53 allele predisposes mice to photodamage and photocarcinogenesis, and established that silibinin mediates its protection against UVB-induced photodamage, inflammation and photocarcinogenesis partly through p53 activation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Role of p53 in silibinin-mediated inhibition of ultraviolet B radiation-induced DNA damage, inflammation and skin carcinogenesis

    PubMed Central

    Rigby, Cynthia M.; Roy, Srirupa; Deep, Gagan; Guillermo-Lagae, Ruth; Jain, Anil K.; Dhar, Deepanshi; Orlicky, David J.; Agarwal, Chapla; Agarwal, Rajesh

    2017-01-01

    Non-melanoma skin cancers (NMSC) are a growing problem given that solar ultraviolet B (UVB) radiation exposure is increasing most likely due to depletion of the atmospheric ozone layer and lack of adequate sun protection. Better preventive methods are urgently required to reduce UV-caused photodamage and NMSC incidence. Earlier, we have reported that silibinin treatment activates p53 and reduces photodamage and NMSC, both in vitro and in vivo; but whether silibinin exerts its protective effects primarily through p53 remains unknown. To address this question, we generated p53 heterozygous (p53+/−) and p53 knockout (p53−/−) mice on SKH-1 hairless mouse background, and assessed silibinin efficacy in both short- and long-term UVB exposure experiments. In the chronic UVB-exposed skin tumorigenesis study, compared to p53+/+ mice, p53+/− mice developed skin tumors earlier and had higher tumor number, multiplicity and volume. Silibinin topical treatment significantly reduced the tumor number, multiplicity and volume in p53+/+ mice but silibinin’ protective efficacy was significantly compromised in p53+/− mice. Additionally, silibinin treatment failed to inhibit precursor skin cancer lesions in p53−/− mice but improved the survival of the mice. In short-term studies, silibinin application accelerated the removal of UVB-induced DNA damage in p53+/+ mice while its efficacy was partially compromised in p53−/− mice. Interestingly, silibinin treatment also inhibited the UVB-induced inflammatory markers in skin tissue. These results further confirmed that absence of the p53 allele predisposes mice to photodamage and photocarcinogenesis, and established that silibinin mediates its protection against UVB-induced photodamage, inflammation and photocarcinogenesis partly through p53 activation. PMID:27729375

  1. Effects of budesonide on the lung functions, inflammation and apoptosis in a saline-lavage model of acute lung injury.

    PubMed

    Mokra, D; Kosutova, P; Balentova, S; Adamkov, M; Mikolka, P; Mokry, J; Antosova, M; Calkovska, A

    2016-12-01

    Diffuse alveolar injury, edema, and inflammation are fundamental signs of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Whereas the systemic administration of corticosteroids previously led to controversial results, this study evaluated if corticosteroids given intratracheally may improve lung functions and reduce edema formation, migration of cells into the lung and their activation in experimentally-induced ALI. In oxygen-ventilated rabbits, ALI was induced by repetitive saline lung lavage, until PaO2 decreased to < 26.7 kPa in FiO 2 1.0. Then, one group of animals was treated with corticosteroid budesonide (Pulmicort susp inh, AstraZeneca; 0.25 mg/kg) given intratracheally by means of inpulsion regime of high-frequency jet ventilation, while another group was non-treated, and both groups were oxygen-ventilated for following 5 hours. Another group of animals served as healthy controls. After sacrifice of animals, left lung was saline-lavaged and protein content was measured and cells in the lavage fluid were determined microscopically. Right lung tissue was used for estimation of edema formation (expressed as wet/dry weight ratio), for histomorphological investigation, immunohistochemical determination of apoptosis of lung cells, and for determination of markers of inflammation and lung injury (IL-1β, IL-6, IL-8, TNF-α, IFNγ, esRAGE, caspase-3) by ELISA methods. Levels of several cytokines were estimated also in plasma. Repetitive lung lavage worsened gas exchange, induced lung injury, inflammation and lung edema and increased apoptosis of lung epithelial cells. Budesonide reduced lung edema, cell infiltration into the lung and apoptosis of epithelial cells and decreased concentrations of proinflammatory markers in the lung and blood. These changes resulted in improved ventilation. Concluding, curative intratracheal treatment with budesonide alleviated lung injury, inflammation, apoptosis of lung epithelial cells and lung edema and

  2. Anemia Due to Inflammation in an Anti-Coagulated Patient with Blue Rubber Bleb Nevus Syndrome.

    PubMed

    Bonaventura, Aldo; Liberale, Luca; Hussein El-Dib, Nadia; Montecucco, Fabrizio; Dallegri, Franco

    2016-01-01

    Blue rubber bleb nevus syndrome (BRBNS) is a rare disease characterized by vascular malformations mostly involving skin and gastrointestinal tract. This disease is often associated with sideropenic anemia and occult bleeding. We report the case of chronic severe anemia in an old patient under oral anticoagulation treatment for chronic atrial fibrillation. At admission, the patient also presented fever and increased laboratory parameters of systemic inflammation (ferritin 308 mcg/L, C-reactive protein (CRP) 244 mg/L). A small bluish-colored lesion over the left ear lobe was observed. Fecal occult blood test was negative as well as other signs of active bleeding. Lower gastrointestinal endoscopy revealed internal hemorrhoids and multiple teleangiectasias that were treated with argon plasma coagulation. Videocapsule endoscopy demonstrated multiple bluish nodular lesions in the small intestine. Unexpectedly, chronic severe anemia due to systemic inflammation was diagnosed in an old anticoagulated patient with BRNBS. The patient was treated with blood transfusions, hydration, antibiotic treatment, and long-acting octreotide acetate, without stopping warfarin. Fever and inflammation disappeared without any acute gastrointestinal bleeding and improvement of hemoglobin levels at three-month follow up. This is the oldest patient presenting with chronic anemia, in which BRNBS was also diagnosed. Surprisingly, anemia was mainly caused by systemic inflammation instead of chronic gastrointestinal bleeding. However, we would recommend investigating this disease also in old subjects with mild signs and symptoms.

  3. The Interplay between Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications

    PubMed Central

    Dumnicka, Paulina; Maduzia, Dawid; Ceranowicz, Piotr; Olszanecki, Rafał; Drożdż, Ryszard; Kuśnierz-Cabala, Beata

    2017-01-01

    Acute pancreatitis (AP) is an inflammatory disease with varied severity, ranging from mild local inflammation to severe systemic involvement resulting in substantial mortality. Early pathologic events in AP, both local and systemic, are associated with vascular derangements, including endothelial activation and injury, dysregulation of vasomotor tone, increased vascular permeability, increased leukocyte migration to tissues, and activation of coagulation. The purpose of the review was to summarize current evidence regarding the interplay between inflammation, coagulation and endothelial dysfunction in the early phase of AP. Practical aspects were emphasized: (1) we summarized available data on diagnostic usefulness of the markers of endothelial dysfunction and activated coagulation in early prediction of severe AP; (2) we reviewed in detail the results of experimental studies and clinical trials targeting coagulation-inflammation interactions in severe AP. Among laboratory tests, d-dimer and angiopoietin-2 measurements seem the most useful in early prediction of severe AP. Although most clinical trials evaluating anticoagulants in treatment of severe AP did not show benefits, they also did not show significantly increased bleeding risk. Promising results of human trials were published for low molecular weight heparin treatment. Several anticoagulants that proved beneficial in animal experiments are thus worth testing in patients. PMID:28208708

  4. Acute and chronic effects of sulfur mustard on the skin: a comprehensive review.

    PubMed

    Ghanei, Mostafa; Poursaleh, Zohreh; Harandi, Ali Amini; Emadi, Seyed Emad; Emadi, Seyed Naser

    2010-12-01

    Sulfur mustard (2,2-dichlorodiethyl sulfide, SM) is one of the vesicant classes of chemical warfare agents that causes blistering in the skin and mucous membranes, where it can have lingering long-term effects for up to ten years (1). SM was employed extensively by the Iraqi army against not only Iranian soldiers but also civilians between 1983 and 1988, resulting in over 100,000 chemical casualties. Approximately 45,000 victims are still suffering from long-term effects of exposure (2,3). More than 90% of the patients exposed to SM exhibit various cutaneous lesions in the affected area. The human skin can absorb approximately 20% of the SM through exposure. Up to 70% of the chemical is concentrated in the epidermis and the remainder in the basement membrane and in the dermis (4).Sulfur mustard exists in different physical states. The liquid form of SM evaporates slowly in cold weather and can penetrate through the clothing, thereby increasing exposure. However, the gas form readily diffuses in the air and it can be inhaled, leading to systemic absorption. In addition, warm temperatures are ideal conditions that liquid SM present in the clothing of the exposed individual could be converted to gas form. SM-induced clinical cutaneous symptoms include itching and burning. Other clinical findings include erythema or painless sunburn, bulla, hypo- and hyper pigmentation in both exposed and unexposed areas (5,6) The mechanism and biochemical cascade of SM-induced cutaneous manifestations are not completely understood but several published pathways support many of the know facts. Our current understanding fails to explain the time interval between the acute chemical exposure and the late-onset and delayed tissue damage (7,8). The aim of this article is to review the acute and long-term cutaneous findings resulting from SM exposure. Also, cellular and molecular mechanism involved in SM-induced skin pathology have been discussed.

  5. Hesperetin derivative-14 alleviates inflammation by activating PPAR-γ in mice with CCl4-induced acute liver injury and LPS-treated RAW264.7 cells.

    PubMed

    Chen, Xin; Ding, Hai-Wen; Li, Hai-Di; Huang, Hui-Min; Li, Xiao-Feng; Yang, Yang; Zhang, Yi-Long; Pan, Xue-Yin; Huang, Cheng; Meng, Xiao-Ming; Li, Jun

    2017-05-15

    Hesperetin is a flavanone glycoside compound naturally occurring in the fruit peel of Citrusaurantium L. (Rutaceae). Previous studies revealed that hesperetin possesses various pharmacological effects, including anti-inflammation, anti-tumor, anti-oxidant and neuroprotective properties. Hesperetin derivative-14 (HD-14) is a derivative of hesperetin improved in water solubility and bioavailability. In this study, we indicated that HD-14 (2μM) significantly attenuated inflammation in LPS-treated RAW264.7 cells, besides, HD-14 (100mg/kg) exhibited hepato-protective effects and anti-inflammatory effects on C57BL/6J mice with CCl 4 -induced acute liver injury. In addition, it was demonstrated that HD-14 dramatically up-regulated the expression of PPAR-γ in vivo and in vitro. Interestingly, over-expression of PPAR-γ had anti-inflammatory effects on the expressions of TNF-α, IL-6, and IL-1β, whereas, knockdown of PPAR-γ with small interfering RNA had pro-inflammatory effects in LPS-treated RAW264.7 cells. Thus, our findings demonstrated that HD-14 alleviated inflammation by activating PPAR-γ expression at least in part. Further studies founded that HD-14 remarkably inhibited the expression of p-JAK1 and p-STAT1 through up-regulating PPAR-γ. Together, these results suggested that HD-14 served as an activator of PPAR-γ and the JAK1/STAT1 signaling pathway may be involved in the progress of inflammation. Collectively, HD-14 may be utilized as a potential anti-inflammation monomeric compound in the treatment of acute liver injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Curcumin alone and in combination with augmentin protects against pulmonary inflammation and acute lung injury generated during Klebsiella pneumoniae B5055-induced lung infection in BALB/c mice.

    PubMed

    Bansal, Shruti; Chhibber, Sanjay

    2010-04-01

    Acute lung injuries due to acute lung infections remain a major cause of mortality. Thus a combination of an antibiotic and a compound with immunomodulatory and anti-inflammatory activities can help to overcome acute lung infection-induced injuries. Curcumin derived from the rhizome of turmeric has been used for decades and it exhibits anti-inflammatory, anti-carcinogenic, immunomodulatory properties by downregulation of various inflammatory mediators. Keeping these properties in mind, we investigated the anti-inflammatory properties of curcumin in a mouse model of acute inflammation by introducing Klebsiella pneumoniae B5055 into BALB/c mice via the intranasal route. Intranasal instillation of bacteria in this mouse model of acute pneumonia-induced inflammation resulted in a significant increase in neutrophil infiltration in the lungs along with increased production of various inflammatory mediators [i.e. malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), tumour necrosis factor (TNF)-alpha] in the lung tissue. The animals that received curcumin alone orally or in combination with augmentin, 15 days prior to bacterial instillation into the lungs via the intranasal route, showed a significant (P <0.05) decrease in neutrophil influx into the lungs and a significant (P <0.05) decrease in the production of MDA, NO, MPO activity and TNF-alpha levels. Augmentin treatment alone did not decrease the MDA, MPO, NO and TNF-alpha levels significantly (P >0.05) as compared to the control group. We therefore conclude that curcumin ameliorates lung inflammation induced by K. pneumoniae B5055 without significantly (P <0.05) decreasing the bacterial load in the lung tissue whereas augmentin takes care of bacterial proliferation. Hence, curcumin can be used as an adjunct therapy along with antibiotics as an anti-inflammatory or an immunomodulatory agent in the case of acute lung infection.

  7. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury

    PubMed Central

    Thangavel, Jayakumar; Samanta, Saheli; Rajasingh, Sheeja; Barani, Bahar; Xuan, Yu-Ting; Dawn, Buddhadeb; Rajasingh, Johnson

    2015-01-01

    ABSTRACT Acute lung injury (ALI) during sepsis is characterized by bilateral alveolar infiltrates, lung edema and respiratory failure. Here, we examined the efficacy the DNA methyl transferase (DNMT) inhibitor 5-Aza 2-deoxycytidine (Aza), the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), as well as the combination therapy of Aza and TSA (Aza+TSA) provides in the protection of ALI. In LPS-induced mouse ALI, post-treatment with a single dose of Aza+TSA showed substantial attenuation of adverse lung histopathological changes and inflammation. Importantly, these protective effects were due to substantial macrophage phenotypic changes observed in LPS-stimulated macrophages treated with Aza+TSA as compared with untreated LPS-induced macrophages or LPS-stimulated macrophages treated with either drug alone. Further, we observed significantly lower levels of pro-inflammatory molecules and higher levels of anti-inflammatory molecules in LPS-induced macrophages treated with Aza+TSA than in LPS-induced macrophages treated with either drug alone. The protection was ascribed to dual effects by an inhibition of MAPK–HuR–TNF and activation of STAT3–Bcl2 pathways. Combinatorial treatment with Aza+TSA reduces inflammation and promotes an anti-inflammatory M2 macrophage phenotype in ALI, and has a therapeutic potential for patients with sepsis. PMID:26116574

  8. Effects of the Fruit Extract of Tribulus terrestris on Skin Inflammation in Mice with Oxazolone-Induced Atopic Dermatitis through Regulation of Calcium Channels, Orai-1 and TRPV3, and Mast Cell Activation

    PubMed Central

    Kang, Seok Yong; Jung, Hyo Won; Nam, Joo Hyun; Kim, Woo Kyung; Kang, Jong-Seong; Kim, Young-Ho; Cho, Cheong-Weon; Cho, Chong Woon

    2017-01-01

    Ethnopharmacological Relevance In this study, we investigated the effects of Tribulus terrestris fruit (Leguminosae, Tribuli Fructus, TF) extract on oxazolone-induced atopic dermatitis in mice. Materials and Methods TF extract was prepared with 30% ethanol as solvent. The 1% TF extract with or without 0.1% HC was applied to the back skin daily for 24 days. Results 1% TF extract with 0.1% HC improved AD symptoms and reduced TEWL and symptom scores in AD mice. 1% TF extract with 0.1% HC inhibited skin inflammation through decrease in inflammatory cells infiltration as well as inhibition of Orai-1 expression in skin tissues. TF extract inhibited Orai-1 activity in Orai-1-STIM1 cooverexpressing HEK293T cells but increased TRPV3 activity in TRPV3-overexpressing HEK293T cells. TF extract decreased β-hexosaminidase release in RBL-2H3 cells. Conclusions The present study demonstrates that the topical application of TF extract improves skin inflammation in AD mice, and the mechanism for this effect appears to be related to the modulation of calcium channels and mast cell activation. This outcome suggests that the combination of TF and steroids could be a more effective and safe approach for AD treatment. PMID:29348776

  9. Biodosimetric quantification of short-term synchrotron microbeam versus broad-beam radiation damage to mouse skin using a dermatopathological scoring system

    PubMed Central

    Priyadarshika, R C U; Crosbie, J C; Kumar, B; Rogers, P A W

    2011-01-01

    Objectives Microbeam radiotherapy (MRT) with wafers of microscopically narrow, synchrotron generated X-rays is being used for pre-clinical cancer trials in animal models. It has been shown that high dose MRT can be effective at destroying tumours in animal models, while causing unexpectedly little damage to normal tissue. The aim of this study was to use a dermatopathological scoring system to quantify and compare the acute biological response of normal mouse skin with microplanar and broad-beam (BB) radiation as a basis for biological dosimetry. Method The skin flaps of three groups of mice were irradiated with high entrance doses (200 Gy, 400 Gy and 800 Gy) of MRT and BB and low dose BB (11 Gy, 22 Gy and 44 Gy). The mice were culled at different time-points post-irradiation. Skin sections were evaluated histologically using the following parameters: epidermal cell death, nuclear enlargement, spongiosis, hair follicle damage and dermal inflammation. The fields of irradiation were identified by γH2AX-positive immunostaining. Results The acute radiation damage in skin from high dose MRT was significantly lower than from high dose BB and, importantly, similar to low dose BB. Conclusion The integrated MRT dose was more relevant than the peak or valley dose when comparing with BB fields. In MRT-treated skin, the apoptotic cells of epidermis and hair follicles were not confined to the microbeam paths. PMID:21849367

  10. Innate sensing of microbial products promotes wound-induced skin cancer.

    PubMed

    Hoste, Esther; Arwert, Esther N; Lal, Rohit; South, Andrew P; Salas-Alanis, Julio C; Murrell, Dedee F; Donati, Giacomo; Watt, Fiona M

    2015-01-09

    The association between tissue damage, chronic inflammation and cancer is well known. However, the underlying mechanisms are unclear. Here we characterize a mouse model in which constitutive epidermal extracellular-signal-regulated kinase-MAP-kinase signalling results in epidermal inflammation, and skin wounding induces tumours. We show that tumour incidence correlates with wound size and inflammatory infiltrate. Ablation of tumour necrosis factor receptor (TNFR)-1/-2, Myeloid Differentiation primary response gene 88 or Toll-like receptor (TLR)-5, the bacterial flagellin receptor, but not other innate immune sensors, in radiosensitive leukocytes protects against tumour formation. Antibiotic treatment inhibits, whereas injection of flagellin induces, tumours in a TLR-5-dependent manner. TLR-5 is also involved in chemical-induced skin carcinogenesis in wild-type mice. Leukocytic TLR-5 signalling mediates upregulation of the alarmin HMGB1 (High Mobility Group Box 1) in wound-induced papillomas. HMGB1 is elevated in tumours of patients with Recessive Dystrophic Epidermolysis Bullosa, a disease characterized by chronic skin damage. We conclude that in our experimental model the combination of bacteria, chronic inflammation and wounding cooperate to trigger skin cancer.

  11. Gentle cleansing and moisturizing for patients with atopic dermatitis and sensitive skin.

    PubMed

    Cheong, Wai Kwong

    2009-01-01

    Atopic dermatitis is a common condition characterized by pruritus, inflammation, and dryness of the skin. Inflammation disrupts the barrier function of the stratum corneum, predisposing the skin to be dry, and increases susceptibility to irritants and secondary bacterial infection. Sensitive skin is common, reported by 40-50% of women and 30% of men in the US, Europe, and Japan. Basic requirements in managing eczema and sensitive skin include effective cleansers that do not compromise skin barrier integrity, alleviation of skin dryness, and restoration of skin barrier function through the use of therapeutic moisturizers. The selection of a skin cleanser is therefore an important part of managing these conditions. Studies have reported clinical improvement with the use of soap-free cleansers in combination with topical treatments. While topical corticosteroids and immunosuppressive agents are mainstays of treatment for atopic dermatitis, therapeutic moisturizers are important adjuncts. Moisturizers improve skin hydration, reduce susceptibility to irritation, restore the integrity of the stratum corneum, and enhance the efficacy of topical corticosteroids.

  12. Characterization of acute and long-term pathologies of superficial and deep dermal sulfur mustard skin lesions in the hairless guinea pig model.

    PubMed

    Dachir, Shlomit; Cohen, Maayan; Kamus-Elimeleh, Dikla; Fishbine, Eliezer; Sahar, Rita; Gez, Rellie; Brandeis, Rachel; Horwitz, Vered; Kadar, Tamar

    2012-01-01

    Sulfur mustard induces severe acute and prolonged damage to the skin and only partially effective treatments are available. We have previously validated the use of hairless guinea pigs as an experimental model for skin lesions. The present study aimed to characterize a model of a deep dermal lesion and to compare it with the previously described superficial lesion. Clinical evaluation of the lesions was conducted using reflectance colorimetry, trans-epidermal water loss and wound area measurements. Prostaglandin E(2) content, matrix metalloproteinase-2 and 9 activity, and histopathology were conducted up to 4 weeks post-exposure. Sulfur mustard skin injury, including erythema and edema, impairment of skin barrier and wounds developed in a dose-dependent manner. Prostaglandin E(2) content and matrix metalloproteinase-2 and 9 activities were elevated during the wound development and the healing process. Histological evaluation revealed severe damage to the epidermis and deep dermis and vesications. At 4 weeks postexposure, healing was not completed: significantly impaired stratum corneum, absence of hair follicles, and epidermal hyperplasia were observed. These results confirm the use of the superficial and deep dermal skin injuries in the hairless guinea pigs as suitable models that can be utilized for the investigation of the pathological processes of acute as well as long-term injuries. These models will be further used to develop treatments to improve the healing process and prevent skin damage and long-term effects. © 2012 by the Wound Healing Society.

  13. Psoriatic inflammation enhances allergic airway inflammation through IL-23/STAT3 signaling in a murine model.

    PubMed

    Nadeem, Ahmed; Al-Harbi, Naif O; Ansari, Mushtaq A; Al-Harbi, Mohammed M; El-Sherbeeny, Ahmed M; Zoheir, Khairy M A; Attia, Sabry M; Hafez, Mohamed M; Al-Shabanah, Othman A; Ahmad, Sheikh F

    2017-01-15

    Psoriasis is an autoimmune inflammatory skin disease characterized by activated IL-23/STAT3/Th17 axis. Recently psoriatic inflammation has been shown to be associated with asthma. However, no study has previously explored how psoriatic inflammation affects airway inflammation. Therefore, this study investigated the effect of imiquimod (IMQ)-induced psoriatic inflammation on cockroach extract (CE)-induced airway inflammation in murine models. Mice were subjected to topical and intranasal administration of IMQ and CE to develop psoriatic and airway inflammation respectively. Various analyses in lung/spleen related to inflammation, Th17/Th2/Th1 cell immune responses, and their signature cytokines/transcription factors were carried out. Psoriatic inflammation in allergic mice was associated with increased airway inflammation with concurrent increase in Th2/Th17 cells/signature cytokines/transcription factors. Splenic CD4+ T and CD11c+ dendritic cells in psoriatic mice had increased STAT3/RORC and IL-23 mRNA expression respectively. This led us to explore the effect of systemic IL-23/STAT3 signaling on airway inflammation. Topical application of STA-21, a small molecule STAT3 inhibitor significantly reduced airway inflammation in allergic mice having psoriatic inflammation. On the other hand, adoptive transfer of IL-23-treated splenic CD4+ T cells from allergic mice into naive recipient mice produced mixed neutrophilic/eosinophilic airway inflammation similar to allergic mice with psoriatic inflammation. Our data suggest that systemic IL-23/STAT3 axis is responsible for enhanced airway inflammation during psoriasis. The current study also suggests that only anti-asthma therapy may not be sufficient to alleviate airway inflammatory burden in asthmatics with psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Topical application of glycolic acid suppresses the UVB induced IL-6, IL-8, MCP-1 and COX-2 inflammation by modulating NF-κB signaling pathway in keratinocytes and mice skin.

    PubMed

    Tang, Sheau-Chung; Liao, Pei-Yun; Hung, Sung-Jen; Ge, Jheng-Siang; Chen, Shiou-Mei; Lai, Ji-Ching; Hsiao, Yu-Ping; Yang, Jen-Hung

    2017-06-01

    Glycolic acid (GA), commonly present in fruits, has been used to treat dermatological diseases. Extensive exposure to solar ultraviolet B (UVB) irradiation plays a crucial role in the induction of skin inflammation. The development of photo prevention from natural materials represents an effective strategy for skin keratinocytes. The aim of this study was to investigate the molecular mechanisms underlying the glycolic acid (GA)-induced reduction of UVB-mediated inflammatory responses. We determined the effects of different concentrations of GA on the inflammatory response of human keratinocytes HaCaT cells and C57BL/6J mice dorsal skin. After GA was topically applied, HaCaT and mice skin were exposed to UVB irradiation. GA reduced the production of UVB-induced nuclear factor kappa B (NF-κB)-dependent inflammatory mediators [interleukin (IL)-1β, IL-6, IL-8, cyclooxygenase (COX)-2, tumor necrosis factor-α, and monocyte chemoattractant protein (MCP-1)] at both mRNA and protein levels. GA inhibited the UVB-induced promoter activity of NF-κB in HaCaT cells. GA attenuated the elevation of senescence associated with β-galactosidase activity but did not affect the wound migration ability. The topical application of GA inhibited the genes expression of IL-1β, IL-6, IL-8, COX-2, and MCP-1 in UVB-exposed mouse skin. The mice to UVB irradiation after GA was topically applied for 9 consecutive days and reported that 1-1.5% of GA exerted anti-inflammatory effects on mouse skin. We clarified the molecular mechanism of GA protection against UVB-induced inflammation by modulating NF-κB signaling pathways and determined the optimal concentration of GA in mice skin exposed to UVB irradiation. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  15. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlman, Irene M.; Composto, Gabriella M.

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis andmore » dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.« less

  16. Eupafolin nanoparticles protect HaCaT keratinocytes from particulate matter-induced inflammation and oxidative stress

    PubMed Central

    Lin, Zih-Chan; Lee, Chiang-Wen; Tsai, Ming-Horng; Ko, Horng-Huey; Fang, Jia-You; Chiang, Yao-Chang; Liang, Chan-Jung; Hsu, Lee-Fen; Hu, Stephen Chu-Sung; Yen, Feng-Lin

    2016-01-01

    Exposure to particulate matter (PM), a major form of air pollution, can induce oxidative stress and inflammation and may lead to many diseases in various organ systems including the skin. Eupafolin, a flavonoid compound derived from Phyla nodiflora, has been previously shown to exhibit various pharmacological activities, including antioxidant and anti-inflammatory effects. Unfortunately, eupafolin is characterized by poor water solubility and skin penetration, which limits its clinical applications. To address these issues, we successfully synthesized a eupafolin nanoparticle delivery system (ENDS). Our findings showed that ENDS could overcome the physicochemical drawbacks of raw eupafolin with respect to water solubility and skin penetration, through reduction of particle size and formation of an amorphous state with hydrogen bonding. Moreover, ENDS was superior to raw eupafolin in attenuating PM-induced oxidative stress and inflammation in HaCaT keratinocytes, by mediating the antioxidant pathway (decreased reactive oxygen species production and nicotinamide adenine dinucleotide phosphate oxidase activity) and anti-inflammation pathway (decreased cyclooxygenase-2 expression and prostaglandin E2 production through downregulation of mitogen-activated protein kinase and nuclear factor-κB signaling). In summary, ENDS shows better antioxidant and anti-inflammatory activities than raw eupafolin through improvement of water solubility and skin penetration. Therefore, ENDS may potentially be used as a medicinal drug and/or cosmeceutical product to prevent PM-induced skin inflammation. PMID:27570454

  17. Poly-MVA attenuates 7,12- dimethylbenz[a]anthracene initiated and croton oil promoted skin papilloma formation on mice skin.

    PubMed

    Veena, Ravindran K; Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K; Antonawich, Francis

    2017-09-01

    Chemopreventive agents which exhibit activities such as anti-inflammation, inhibition of carcinogen induced mutagenesis and scavenging of free radical might play a decisive role in the inhibition of chemical carcinogenesis either at the initiation or promotion stage. Many synthesized palladium (Pd) complexes tested experimentally for antitumor activity are found effective. Poly-MVA is a liquid blend preparation containing B complex vitamins, ruthenium with Pd complexed with alpha lipoic acid as the major ingredients. The antitumor effect of Poly-MVA was evaluated against 7,12-dimethylbenz[a] anthracene-initiated croton oil-promoted papilloma formation on mice skin. Skin tumor was initiated with a single application of 390 nmol of DMBA in 20 µl acetone. The effect of Poly-MVA against croton oil- induced inflammation and lipid peroxidation on the mice skin was also evaluated. Topical application of Poly-MVA (100 µl, twice weekly for 18 weeks) 30 minutes prior to each croton oil application, significantly decreased the tumor incidence (11%) and the average number of tumor per animals. Application of Poly-MVA (100 µl) before croton oil significantly (p &#60; 0.05) protected the mouse skin from inflammation (36%) and lipid peroxidation (14%) when compared to the croton oil alone treated group. Experimental results indicate that Poly-MVA attenuate the tumor promoting effects of croton oil and the effect may probably be due to its anti-inflammatory and antioxidant activity.

  18. A Critical Role for Monocytes/Macrophages During Intestinal Inflammation-associated Lymphangiogenesis

    PubMed Central

    Becker, Felix; Kurmaeva, Elvira; Gavins, Felicity N. E.; Stevenson, Emily V.; Navratil, Aaron R.; Jin, Long; Tsunoda, Ikuo; Orr, A. Wayne; Alexander, Jonathan S.; Ostanin, Dmitry V.

    2016-01-01

    Background Inflammation-associated lymphangiogenesis (IAL) is frequently observed in inflammatory bowel diseases. IAL is believed to limit inflammation by enhancing fluid and immune cell clearance. Although monocytes/macrophages (MΦ) are known to contribute to intestinal pathology in inflammatory bowel disease, their role in intestinal IAL has never been studied mechanistically. We investigated contributions of monocytes/MΦ to the development of intestinal inflammation and IAL. Methods Because inflammatory monocytes express CC chemokine receptor 2 (CCR2), we used CCR2 diphtheria toxin receptor transgenic (CCR2.DTR) mice, in which monocytes can be depleted by diphtheria toxin injection, and CCR2−/− mice, which have reduced circulating monocytes. Acute or chronic colitis was induced by dextran sodium sulfate or adoptive transfer of CD4+CD45RBhigh T cells, respectively. Intestinal inflammation was assessed by flow cytometry, immunofluorescence, disease activity, and histopathology, whereas IAL was assessed by lymphatic vessel morphology and density. Results We demonstrated that intestinal MΦ expressed vascular endothelial growth factor-C/D. In acute colitis, monocyte-depleted mice were protected from intestinal injury and showed reduced IAL, which was reversed after transfer of wild-type monocytes into CCR2−/− mice. In chronic colitis, CCR2 deficiency did not attenuate inflammation but reduced IAL. Conclusions We propose a dual role of MΦ in (1) promoting acute inflammation and (2) contributing to IAL. Our data suggest that intestinal inflammation and IAL could occur independently, because IAL was reduced in the absence of monocytes/MΦ, even when inflammation was present. Future inflammatory bowel disease therapies might exploit promotion of IAL and suppression of MΦ independently, to restore lymphatic clearance and reduce inflammation. PMID:26950310

  19. Bioactive Egg Components and Inflammation

    PubMed Central

    Andersen, Catherine J.

    2015-01-01

    Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk. PMID:26389951

  20. Involvement of inflammation in acute coronary syndromes assessed by levels of high-sensitivity C-reactive protein, matrix metalloproteinase-9 and soluble vascular-cell adhesion molecule-1.

    PubMed

    Nomoto, Kazumiki; Oguchi, Sumito; Watanabe, Ikuyoshi; Kushiro, Toshio; Kanmatsuse, Katsuo

    2003-11-01

    Inflammation is important in the development of atherosclerosis. Matrix metalloproteinases (MMPs) and interferon-gamma which participate in collagen degradation are pathological factors in plaque vulnerability as an important mechanism underlying acute coronary syndrome. This study investigated whether inflammation is related to the onset of acute coronary syndrome. This study included 56 patients with acute coronary syndrome (ACS group), 104 patients with chronic coronary artery disease (S group), and 38 control subjects with no evidence of ischemic heart disease (C group). High-sensitivity C-reactive protein (hs-CRP), MMP-9, and interferon-gamma were measured in peripheral blood samples. Soluble adhesion molecules (VCAM-1, ICAM-1) were also measured as inflammatory markers. The hs-CRP level was significantly higher in the ACS group (44.5 mg/l) than in the S group (2.1 mg/l) and the C group (0.6 mg/l) (p < 0.0001). The MMP-9 level was also significantly higher in the ACS group (333.8 ng/ml) than in the S group (110.8 ng/ml) and the C group (72.0 ng/ml) (p < 0.0001). The VCAM-1 level was significantly higher in the ACS group (506.5 ng/ml) than in the C group (448.8 ng/ml) (p < 0.05). The ICAM-1 level and the interferon-gamma level did not differ between the groups. There was a significant positive correlation between the level of hs-CRP and the level of the collagen degradation product MMP-9 (r = 0.52) in all subjects. These results suggest that plaque destabilized by MMP-9 produced in response to inflammation participates in the mechanism of acute coronary syndrome.

  1. Pathogenic and Obesogenic Factors Associated with Inflammation in Chinese Children, Adolescents and Adults

    PubMed Central

    Thompson, Amanda L.; Houck, Kelly M.; Adair, Linda; Gordon-Larsen, Penny; Du, Shufa; Zhang, Bing; Popkin, Barry

    2014-01-01

    Objectives Influenced by pathogen exposure and obesity, inflammation provides a critical biological pathway linking changing environments to the development of cardiometabolic disease. This study tests the relative contribution of obesogenic and pathogenic factors to moderate and acute CRP elevations in Chinese children, adolescents and adults. Methods Data come from 8795 participants in the China Health and Nutrition Study. Age-stratified multinomial logistic models were used to test the association between illness history, pathogenic exposures, adiposity, health behaviors and moderate (1-10 mg/L in children and 3-10 mg/L in adults) and acute (>10mg/L) CRP elevations, controlling for age, sex and clustering by household. Backward model selection was used to assess which pathogenic and obesogenic predictors remained independently associated with moderate and acute CRP levels when accounting for simultaneous exposures. Results Overweight was the only significant independent risk factor for moderate inflammation in children (RRR 2.10, 95%CI 1.13-3.89). History of infectious (RRR 1.28, 95%CI 1.08-1.52) and non-communicable (RRR 1.37, 95%CI 1.12-1.69) disease, overweight (RRR 1.66, 95%CI 1.45-1.89) and high waist circumference (RRR 1.63, 95%CI 1.42-1.87) were independently associated with a greater likelihood of moderate inflammation in adults while history of infectious disease (RRR 1.87, 95%CI 1.35-2.56) and overweight (RRR 1.40, 95%CI 1.04-1.88) were independently associated with acute inflammation. Environmental pathogenicity was associated with a reduced likelihood of moderate inflammation, but a greater likelihood of acute inflammation in adults. Conclusions These results highlight the importance of both obesogenic and pathogenic factors in shaping inflammation risk in societies undergoing nutritional and epidemiological transitions. PMID:24123588

  2. Chikungunya Arthritis: Implications of Acute and Chronic Inflammation Mechanisms on Disease Management.

    PubMed

    Zaid, Ali; Gérardin, Patrick; Taylor, Adam; Mostafavi, Helen; Malvy, Denis; Mahalingam, Suresh

    2018-04-01

    In the past decade, arboviruses-arthropod-borne viruses-have been the focus of public health institutions worldwide following a spate of devastating outbreaks. Chikungunya virus, an arbovirus that belongs to the alphavirus genus, is a reemerging arthritogenic virus that has caused explosive outbreaks since 2006, notably on Réunion Island, and more recently in the Caribbean, South America, India, and Southeast Asia. The severity of arthritic disease caused by chikungunya virus has prompted public health authorities in affected countries to develop specific guidelines to tackle this pathogen. Chikungunya virus disease manifests first as an acute stage of severe joint inflammation and febrile illness, which later progresses to a chronic stage, during which patients may experience debilitating and persisting articular pain for extended periods. This review aims to provide a broad perspective on current knowledge of chikungunya virus pathogenesis by identifying key clinical and experimental studies that have contributed to our understanding of chikungunya virus to date. In addition, the review explores the practical aspects of treatment and management of both acute and chronic chikungunya virus based on clinical experience during chikungunya virus outbreaks. Finally, recent findings on potential therapeutic solutions-from antiviral agents to immunomodulators-are reviewed to provide both viral immunologists and clinical rheumatologists with a balanced perspective on the nature of a reemerging arboviral disease of significant public health concern, and insight into future therapeutic approaches to better address the treatment and management of chikungunya virus. © 2017, American College of Rheumatology.

  3. Baicalin Ameliorates Imiquimod-Induced Psoriasis-Like Inflammation in Mice.

    PubMed

    Hung, Chien-Hui; Wang, Chien-Neng; Cheng, Huei-Hsuan; Liao, Jiunn-Wang; Chen, Yi-Ting; Chao, Ya-Wen; Jiang, Jia Liang; Lee, Chen-Chen

    2018-05-15

    Baicalin is the main flavonoid from the roots of an important medicinal plant, Scutellaria baicalensis , which shows a variety biological activities. Psoriasis is a chronic immune-mediated inflammatory disease that affects the skin. The unmet need of psoriasis is that many patients do not respond adequately to available clinical treatment. In this study, we found that baicalin showed inhibited dermal inflammation in a murine model of psoriasis via topical application of imiquimod. After a 5-day topical imiquimod application, baicalin or the control vehicle cream was to applied to the lesions of BALB/c mice for a further 4 days. The erythema, scaling, and thickness of the epidermal layer significantly improved in the baicalin-treated mice. The levels of interleukin-17A, interleukin-22, interleukin-23, and tumor necrosis factor in the skin significantly decreased after baicalin treatment. Baicalin also inhibited imiquimod-induced interleukin-17A production in skin draining lymph node cells. The infiltration of γδ T cells into the skin lesions induced by imiquimod was also suppressed after baicalin treatment. These results suggest that baicalin inhibited skin inflammation through the inhibition of the interleukin-17/interleukin-23 axis in a murine model of psoriasis. Georg Thieme Verlag KG Stuttgart · New York.

  4. Efficacy and safety of delafloxacin compared with vancomycin plus aztreonam for acute bacterial skin and skin structure infections: a Phase 3, double-blind, randomized study.

    PubMed

    Pullman, J; Gardovskis, J; Farley, B; Sun, E; Quintas, M; Lawrence, L; Ling, R; Cammarata, S

    2017-12-01

    Delafloxacin is an investigational anionic fluoroquinolone in development for oral or intravenous administration for the treatment of infections caused by Gram-positive (including MRSA), Gram-negative, atypical and anaerobic organisms. To establish the non-inferiority of delafloxacin compared with vancomycin plus aztreonam for the treatment of acute bacterial skin and skin structure infections and to compare the safety of the two antimicrobials. A Phase 3, multicentre, randomized, double-blind, active-controlled study with 660 patients compared delafloxacin 300 mg or vancomycin 15 mg/kg plus aztreonam 2 g each administered twice daily intravenously for 5-14 days. Non-inferiority was evaluated by objective response (≥20% erythema reduction) at 48-72 h after initiation of study drug, investigator subjective assessment of outcome and microbiological responses. Clinical Trials Registration: NCT01811732. EudraCT number: 2012-001767-71. In the ITT analysis set, the objective response was 78.2% in the delafloxacin arm and 80.9% in the vancomycin/aztreonam arm (mean treatment difference, -2.6%; 95% CI, -8.78% to 3.57%). Investigator-assessed cure was similar between the two groups at follow-up (52.0% versus 50.5%) and late follow-up (70.4% versus 66.6%). Bacterial eradication of MRSA was 100% and 98.5% in the delafloxacin group and the vancomycin/aztreonam group, respectively. Frequency of treatment-emergent adverse events in the delafloxacin and vancomycin/aztreonam groups was similar. Treatment-emergent adverse events leading to study drug discontinuation were higher in the vancomycin/aztreonam group compared with the delafloxacin group (4.3% versus 0.9%). Delafloxacin, an anionic fluoroquinolone, was statistically non-inferior to vancomycin/aztreonam at 48-72 h following the start of therapy and was well tolerated as monotherapy in the treatment of acute bacterial skin and skin structure infections. © The Author 2017. Published by Oxford University Press

  5. Efficacy and safety of delafloxacin compared with vancomycin plus aztreonam for acute bacterial skin and skin structure infections: a Phase 3, double-blind, randomized study

    PubMed Central

    Pullman, J; Gardovskis, J; Farley, B; Sun, E; Quintas, M; Lawrence, L; Ling, R; Cammarata, S

    2017-01-01

    Abstract Background Delafloxacin is an investigational anionic fluoroquinolone in development for oral or intravenous administration for the treatment of infections caused by Gram-positive (including MRSA), Gram-negative, atypical and anaerobic organisms. Objectives To establish the non-inferiority of delafloxacin compared with vancomycin plus aztreonam for the treatment of acute bacterial skin and skin structure infections and to compare the safety of the two antimicrobials. Patients and methods A Phase 3, multicentre, randomized, double-blind, active-controlled study with 660 patients compared delafloxacin 300 mg or vancomycin 15 mg/kg plus aztreonam 2 g each administered twice daily intravenously for 5–14 days. Non-inferiority was evaluated by objective response (≥20% erythema reduction) at 48–72 h after initiation of study drug, investigator subjective assessment of outcome and microbiological responses. Clinical Trials Registration: NCT01811732. EudraCT number: 2012-001767-71. Results In the ITT analysis set, the objective response was 78.2% in the delafloxacin arm and 80.9% in the vancomycin/aztreonam arm (mean treatment difference, −2.6%; 95% CI, −8.78% to 3.57%). Investigator-assessed cure was similar between the two groups at follow-up (52.0% versus 50.5%) and late follow-up (70.4% versus 66.6%). Bacterial eradication of MRSA was 100% and 98.5% in the delafloxacin group and the vancomycin/aztreonam group, respectively. Frequency of treatment-emergent adverse events in the delafloxacin and vancomycin/aztreonam groups was similar. Treatment-emergent adverse events leading to study drug discontinuation were higher in the vancomycin/aztreonam group compared with the delafloxacin group (4.3% versus 0.9%). Conclusions Delafloxacin, an anionic fluoroquinolone, was statistically non-inferior to vancomycin/aztreonam at 48–72 h following the start of therapy and was well tolerated as monotherapy in the treatment of acute bacterial skin and

  6. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation.

    PubMed

    An, Gary

    2008-05-27

    One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure. ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems. A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents

  7. Irisin-mediated protective effect on LPS-induced acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lei; Jinan Central Hospital Affiliated to Shandong University, Jinan 250012; Meng, Di

    It is considered that the essence of acute lung injury (ALI) is an excessive and uncontrolled inflammatory response in lung, of which mainly is attributed to the release of inflammatory mediators. Recent studies demonstrated that irisin, which is a metabolism associated factor after physical exercise could suppression of inflammation by regulating cellular signaling pathways, however, the underlying molecular mechanism remains to be determined. The present study aimed to reveal the potential mechanism responsible for the anti-inflammatory effects of irisin on LPS-induced acute lung injury in mice and in A549 cells. The results of histopathological changes showed that irisin ameliorated the lungmore » injury that was induced by LPS in time- and dose-dependent manner. QRT-PCR assays demonstrated that irisin suppressed the production of IL-1β, IL-6, MCP-1 and TNF-α, and western blot assays demonstrated that irisin suppressed apoptosis of ALI. The expression of caspase-3 and Bax were decreased and Bcl-2 was increased by irisin administration. Further study was conducted on nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) using pathways using western blots. The results showed that irisin inhibited reduced LPS-induced activation of MAPK and NF-κB signaling. All results indicated that irisin has protective effect on LPS-induced ALI in mice and in A549 cells. Thus, irisn related with physical exercise may be a potential therapy for the treatment of pulmonary inflammation. - Highlights: • Irisin inhibited the inflammation reactivity of cells and pathological changes of LPS-induced lung injury in mice. • Irisin inhibited mRNA expression of inflammatory cytokines induced by LPS in A549 cells. • Irisin inhibited apoptosis induced by LPS in the injured lung. • Irisin reduced LPS-induced activation of MAPK and NF-κB signaling pathways.« less

  8. Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation

    PubMed Central

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734

  9. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation.

    PubMed

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I; Nel, Andre E

    2012-05-22

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles to induce oxygen radicals, oxidative stress, and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single-parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of C57 BL/6 mice. Co(3)O(4), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by E(c) levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. These results demonstrate that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials.

  10. Regulatory T cells in skin.

    PubMed

    Ali, Niwa; Rosenblum, Michael D

    2017-11-01

    Foxp3 + CD4 + regulatory T (Treg) cells are a subset of immune cells that function to regulate tissue inflammation. Skin is one of the largest organs and is home to a large proportion of the body's Treg cells. However, relative to other tissues (such as the spleen and gastrointestinal tract) the function of Treg cells in skin is less well defined. Here, we review our understanding of how Treg cells migrate to skin and the cellular and molecular pathways required for their maintenance in this tissue. In addition, we outline what is known about the specialized functions of Treg cells in skin. Namely, the orchestration of stem cell-mediated hair follicle regeneration, augmentation of wound healing, and promoting adaptive immune tolerance to skin commensal microbes. A comprehensive understanding of the biology of skin Treg cells may lead to novel therapeutic approaches that preferentially target these cells to treat cutaneous autoimmunity, skin cancers and disorders of skin regeneration. © 2017 John Wiley & Sons Ltd.

  11. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring.

    PubMed

    Manca, M L; Castangia, I; Zaru, M; Nácher, A; Valenti, D; Fernàndez-Busquets, X; Fadda, A M; Manconi, M

    2015-12-01

    In the present work new highly biocompatible nanovesicles were developed using polyanion sodium hyaluronate to form polymer immobilized vesicles, so called hyalurosomes. Curcumin, at high concentration was loaded into hyalurosomes and physico-chemical properties and in vitro/in vivo performances of the formulations were compared to those of liposomes having the same lipid and drug content. Vesicles were prepared by direct addition of dispersion containing the polysaccharide sodium hyaluronate and the polyphenol curcumin to a commercial mixture of soy phospholipids, thus avoiding the use of organic solvents. An extensive study was carried out on the physico-chemical features and properties of curcumin-loaded hyalurosomes and liposomes. Cryogenic transmission electron microscopy and small-angle X-ray scattering showed that vesicles were spherical, uni- or oligolamellar and small in size (112-220 nm). The in vitro percutaneous curcumin delivery studies on intact skin showed an improved ability of hyalurosomes to favour a fast drug deposition in the whole skin. Hyalurosomes as well as liposomes were biocompatible, protected in vitro human keratinocytes from oxidative stress damages and promoted tissue remodelling through cellular proliferation and migration. Moreover, in vivo tests underlined a good effectiveness of curcumin-loaded hyalurosomes to counteract 12-O-tetradecanoilphorbol (TPA)-produced inflammation and injuries, diminishing oedema formation, myeloperoxydase activity and providing an extensive skin reepithelization. Thanks to the one-step and environmentally-friendly preparation method, component biocompatibility and safety, good in vitro and in vivo performances, the hyalurosomes appear as promising nanocarriers for cosmetic and pharmaceutical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. [The way of self-defence of the organism: inflammation].

    PubMed

    Jakab, Lajos

    2013-08-11

    The acute and chronic constitutional reactions of the organism elicited by sterile causes and pathogenic structures threatening the soundness of the organism are surveyed by the author. It is emphasized that depending on causes which can be very different, there are various syndromes occurring in the clinical practice. On the basis of multitudiness of pathogenic factors and individual differences, the infammatory reactions are clinically, pathologically and pathobiochemically can be hugely variable. The acute inflammatory response may be sterile. It is often difficult to recognize in these processes whether the inflammation is harmful or beneficial for the organism as a whole. It is possible that the inflammatory response itself is the defending resource of the individual. The non-sterile acute inflammation is evoked by pathogenic microorganisms. The variety of clinical syndromes are explained by the high diversity of pathogenic microbes, the individualities of the defending organisms, and the natural and adaptive immunity of the organism which may be intact or possibly defective. In the latter case the inflammation itself is the disease, as a consequence of a pathological process conducted by the cortico-hypothalamo-adernal axis. The acute inflammation is a defending, preventing and repairing process, constituting an important part of the natural innate immune response. It is inseparable from the natural innate immune response, which is in close cooperation with the adaptive, specific immune response with mutual effects on each of the other. The conductor and the response reactions of the two immune responses are also the same. There are alterations in serum proteins/glycoproteins synthesized mostly by the hepatocytes. Because the concentration of almost all proteins/glycoproteins may change, the use of the discriminative term "acute phase reactant" is hardly relevant. For example, the HDL molecule is a negative "acute phase reactant". On the gound of clinical

  13. Treatment of sulphur mustard skin injury.

    PubMed

    Jenner, John; Graham, Stuart J

    2013-12-05

    Since its first use in 1917, sulphur mustard (SM) has been used virtually exclusively as a weapon of war.SM is a volatile liquid that damages any tissue it contacts as a vapour or liquid. SM primarily damages the skin, eyes and lungs producing massive inflammation culminating in the characteristic blistering of the skin which classifies SM as a vesicant. Several mechanisms of action at the cellular level have been proposed for SM, but none has ever been convincingly linked to the production of blisters or vesication. First aid for those contaminated with liquid SM consists of the rapid removal (within a few minutes) of liquid from the surface of the skin, as once penetrated into the stratum corneum it is very difficult to remove. In the absence of a mechanistically based specific therapy, SM skin injury is normally treated in a similar way to thermal and chemical burns, which it resembles pathologically. Effective therapy consist of treating the inflammation and where necessary removal of the dead eschar to facilitate healing. Post surgical care comprises the use of one of a number of available dressings used in thermal burn care and antibiotic creams should infection be present.

  14. Synergistic interaction between choline and aspirin against acute inflammation induced by carrageenan and lipopolysaccharide.

    PubMed

    Pan, Zhi-Yuan; Wang, Hai

    2014-05-01

    The simultaneous use of drugs with different mechanisms of anti-inflammatory action is a strategy for achieving effective control of inflammation while minimizing dose-related side effects. Choline was described to potentiate the antinociceptive action of aspirin at small doses in several inflammatory pain models. However, these findings are only limited to alleviating pain, more associated data are required to confirm the effectiveness of the combined choline and aspirin therapy against inflammatory disorders. Moreover, no report is available regarding the mechanism responsible for their synergism. Here, we first investigated the anti-inflammatory activity and pharmacological mechanisms of co-administration of choline and aspirin in 2 commonly studied inflammation models, carrageenan-induced paw edema and lipopolysaccharide (LPS)-induced sepsis in mice. Isobolographic analysis revealed that combined choline and aspirin administration exhibited a strong synergistic interaction in reducing carrageenan-mediated edema, and the estimated combination index values at 50%, 75%, and 90% effective dose (ED50, ED75, and ED90) were 0.25, 0.32, and 0.44. Drug co-administration also afforded synergistic protection against LPS-induced sepsis and mortality, since aspirin or choline alone was inadequate to improve survival. The effects of choline-aspirin co-administration were blocked by methyllycaconitine, suggesting that activation of alpha 7 nicotinic acetylcholine receptor participates in the interaction between choline and aspirin. Furthermore, co-administration of choline and aspirin was more likely to inhibit the production of pro-inflammatory mediators induced by LPS. Our results indicated that combined choline and aspirin therapy represented a significant synergistic interaction in attenuating acute inflammatory response. This preclinical relevant evidence provides a promising approach to treat inflammation-based diseases such as arthritis and sepsis. Copyright © 2014

  15. Comparative Effects of Volutrauma and Atelectrauma on Lung Inflammation in Experimental Acute Respiratory Distress Syndrome

    PubMed Central

    Güldner, Andreas; Braune, Anja; Ball, Lorenzo; Silva, Pedro L.; Samary, Cynthia; Insorsi, Angelo; Huhle, Robert; Rentzsch, Ines; Becker, Claudia; Oehme, Liane; Andreeff, Michael; Vidal Melo, Marcos F.; Winkler, Tilo; Pelosi, Paolo; Rocco, Patricia R. M.; Kotzerke, Jörg; de Abreu, Marcelo Gama

    2016-01-01

    Objective Volutrauma and atelectrauma promote ventilator-induced lung injury, but their relative contribution to inflammation in ventilator-induced lung injury is not well established. The aim of this study was to determine the impact of volutrauma and atelectrauma on the distribution of lung inflammation in experimental acute respiratory distress syndrome. Design Laboratory investigation. Setting University-hospital research facility. Subjects Ten pigs (five per group; 34.7–49.9 kg) Interventions Animals were anesthetized and intubated, and saline lung lavage was performed. Lungs were separated with a double-lumen tube. Following lung recruitment and decremental positive end-expiratory pressure trial, animals were randomly assigned to 4 hours of ventilation of the left (ventilator-induced lung injury) lung with tidal volume of approximately 3 mL/kg and 1) high positive end-expiratory pressure set above the level where dynamic compliance increased more than 5% during positive end-expiratory pressure trial (volutrauma); or 2) low positive end-expiratory pressure to achieve driving pressure comparable with volutrauma (atelectrauma). The right (control) lung was kept on continuous positive airway pressure of 20 cm H2O, and Co2 was partially removed extracorporeally. Measurements and Main Results Regional lung aeration, specific [18F]fluorodeoxyglucose uptake rate, and perfusion were assessed using computed and positron emission tomography. Volutrauma yielded higher [18F]fluorodeoxyglucose uptake rate in the ventilated lung compared with atelectrauma (median [interquartile range], 0.017 [0.014–0.025] vs 0.013 min−1 [0.010–0.014min−1]; p < 0.01), mainly in central lung regions. Volutrauma yielded higher [18F]fluorodeoxyglucose uptake rate in ventilator-induced lung injury versus control lung (0.017 [0.014–0.025] vs 0.011 min−1 [0.010–0.016min−1]; p < 0.05), whereas atelectrauma did not. Volutrauma decreased blood fraction at similar perfusion and

  16. Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function

    PubMed Central

    Larcombe, Alexander N.; Foong, Rachel E.; Boylen, Catherine E.; Zosky, Graeme R.

    2012-01-01

    Please cite this paper as: Larcombe et al. (2012) Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function. Influenza and Other Respiratory Viruses DOI:10.1111/irv.12012. Background  Exposure to diesel exhaust particles (DEP) is thought to exacerbate many pre‐existing respiratory diseases, including asthma, bronchitis and chronic obstructive pulmonary disease, however, there is a paucity of data on whether DEP exacerbates illness due to respiratory viral infection. Objectives  To assess the physiological consequences of an acute DEP exposure during the peak of influenza‐induced illness. Methods  We exposed adult female BALB/c mice to 100 μg DEP (or control) 3·75 days after infection with 104·5 plaque forming units of influenza A/Mem71 (or control). Six hours, 24 hours and 7 days after DEP exposure we measured thoracic gas volume and lung function at functional residual capacity. Bronchoalveolar lavage fluid was taken for analyses of cellular inflammation and cytokines, and whole lungs were taken for measurement of viral titre. Results  Influenza infection resulted in significantly increased inflammation, cytokine influx and impairment to lung function. DEP exposure alone resulted in less inflammation and cytokine influx, and no impairment to lung function. Mice infected with influenza and exposed to DEP had higher viral titres and neutrophilia compared with infected mice, yet they did not have more impaired lung mechanics than mice infected with influenza alone. Conclusions  A single dose of DEP is not sufficient to physiologically exacerbate pre‐existing respiratory disease caused by influenza infection in mice. PMID:22994877

  17. Influence of Pneumococcal Conjugate Vaccine on Acute Otitis Media with Severe Middle Ear Inflammation: A Retrospective Multicenter Study.

    PubMed

    Sugino, Hirotoshi; Tsumura, Shigeru; Kunimoto, Masaru; Noda, Masuhiro; Chikuie, Daisuke; Noda, Chieko; Yamashita, Mariko; Watanabe, Hiroshi; Ishii, Hidemasa; Tashiro, Toru; Iwata, Kazuhiro; Kono, Takashi; Tsumura, Kaoru; Sumiya, Takahiro; Takeno, Sachio; Hirakawa, Katsuhiro

    2015-01-01

    The Japanese guidelines for acute otitis media in children recommend classifying acute otitis media by age, manifestations and local findings, and also recommend myringotomy for moderate-grade cases with severe local findings, severe-grade cases, and treatment-resistant cases. The heptavalent pneumococcal conjugate vaccine was released in Japan in February 2010. In Hiroshima City, public funding allowing free inoculation with this vaccine was initiated from January 2011, and the number of vaccinated individuals has since increased dramatically. This study investigated changes in the number of myringotomies performed to treat acute otitis media during the 5-year period from January 2008 to December 2012 at two hospitals and five clinics in the Asa Area of Hiroshima City, Japan. A total of 3,165 myringotomies for acute otitis media were performed. The rate of procedures per child-year performed in <5-year-old children decreased by 29.1% in 2011 and by 25.2% in 2012 compared to the mean rate performed in the 3 years prior to the introduction of public funding. A total of 895 myringotomies were performed for 1-year-old infants. The rate of myringotomies per child-year performed for acute otitis media in 1-year-old infants decreased significantly in the 2 years after the introduction of public funding for heptavalent pneumococcal conjugate vaccine compared to all years before introduction (p<0.000001). Our results suggest a benefit of heptavalent pneumococcal conjugate vaccine for acute otitis media in reducing the financial burden of myringotomy. In addition, this vaccine may help prevent acute otitis media with severe middle ear inflammation in 1-year-old infants.

  18. Innate sensing of microbial products promotes wound-induced skin cancer

    PubMed Central

    Hoste, Esther; Arwert, Esther N.; Lal, Rohit; South, Andrew P.; Salas-Alanis, Julio C.; Murrell, Dedee F.; Donati, Giacomo; Watt, Fiona M.

    2015-01-01

    The association between tissue damage, chronic inflammation and cancer is well known. However, the underlying mechanisms are unclear. Here we characterize a mouse model in which constitutive epidermal extracellular-signal-regulated kinase-MAP-kinase signalling results in epidermal inflammation, and skin wounding induces tumours. We show that tumour incidence correlates with wound size and inflammatory infiltrate. Ablation of tumour necrosis factor receptor (TNFR)-1/-2, Myeloid Differentiation primary response gene 88 or Toll-like receptor (TLR)-5, the bacterial flagellin receptor, but not other innate immune sensors, in radiosensitive leukocytes protects against tumour formation. Antibiotic treatment inhibits, whereas injection of flagellin induces, tumours in a TLR-5-dependent manner. TLR-5 is also involved in chemical-induced skin carcinogenesis in wild-type mice. Leukocytic TLR-5 signalling mediates upregulation of the alarmin HMGB1 (High Mobility Group Box 1) in wound-induced papillomas. HMGB1 is elevated in tumours of patients with Recessive Dystrophic Epidermolysis Bullosa, a disease characterized by chronic skin damage. We conclude that in our experimental model the combination of bacteria, chronic inflammation and wounding cooperate to trigger skin cancer. PMID:25575023

  19. Evolutionary medicine and bone loss in chronic inflammatory diseases – a theory of inflammation-related osteopenia

    PubMed Central

    Straub, Rainer H.; Cutolo, Maurizio; Pacifici, Roberto

    2015-01-01

    Objective Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflammaging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an “accident of inflammation”. Methods Extensive literature search in PubMed central. Results Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. Conclusions The article highlights the complexity of interwoven pathways of osteopenia. PMID:26044543

  20. FABP4 inhibitors suppress inflammation and oxidative stress in murine and cell models of acute lung injury.

    PubMed

    Gong, Yuanqi; Yu, Zhihong; Gao, Yi; Deng, Linlin; Wang, Meng; Chen, Yu; Li, Jingying; Cheng, Bin

    2018-02-19

    Acute lung injury (ALI) is a severe disease with high morbidity and mortality, and is characterized by devastating inflammation of the lung and increased production of reactive oxygen species (ROS). Recent studies have indicated that fatty acid binding protein (FABP4) is important in the regulation of inflammation. However, the role of FABP4 in sepsis-related ALI, and the specific mechanism of action have not been examined. In vitro, the exposure of human alveolar epithelial A549 cells to lipopolysaccharide (LPS) and recombinant FABP4 (hrFABP4) resulted in the production of pro-inflammatory cytokines, inflammatory cytokines, and ROS, while these changes were ameliorated by pretreatment with the FABP4 inhibitor BMS309403 and FABP4 siRNA. Sequentially, treatment of A549 cells with N-acetylcysteine (NAC) significantly attenuated LPS and hrFABP4-induced the generation of ROS and the release of inflammatory cytokines. In vivo, a cecal ligation and puncture (CLP)-induced ALI murine model was successfully established. Then, the mice were treated with FABP4 inhibitor BMS309403. The results showed treatment with BMS309403 improved the survival rate of CLP-induced ALI mice, and prevented lung inflammation, histopathological changes, and increase of FABP4 induced by CLP. These data indicate that FABP4 plays an important role in lung inflammation of sepsis-induced ALI. Blockade of FABP4 signaling exhibits a protective effect in a CLP-induced ALI mouse model, and in A549 cell LPS specifically induces enhanced expression of FABP4, which then causes inflammatory cytokine production by elevating the ROS level. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Peripheral inflammation is associated with remote global gene expression changes in the brain

    PubMed Central

    2014-01-01

    Background Although the central nervous system (CNS) was once considered an immunologically privileged site, in recent years it has become increasingly evident that cross talk between the immune system and the CNS does occur. As a result, patients with chronic inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease or psoriasis, are often further burdened with neuropsychiatric symptoms, such as depression, anxiety and fatigue. Despite the recent advances in our understanding of neuroimmune communication pathways, the precise effect of peripheral immune activation on neural circuitry remains unclear. Utilizing transcriptomics in a well-characterized murine model of systemic inflammation, we have started to investigate the molecular mechanisms by which inflammation originating in the periphery can induce transcriptional modulation in the brain. Methods Several different systemic and tissue-specific models of peripheral toll-like-receptor-(TLR)-driven (lipopolysaccharide (LPS), lipoteichoic acid and Imiquimod) and sterile (tumour necrosis factor (TNF) and 12-O-tetradecanoylphorbol-13-acetate (TPA)) inflammation were induced in C57BL/6 mice. Whole brain transcriptional profiles were assessed and compared 48 hours after intraperitoneal injection of lipopolysaccharide or vehicle, using Affymetrix GeneChip microarrays. Target gene induction, identified by microarray analysis, was validated independently using qPCR. Expression of the same panel of target genes was then investigated in a number of sterile and other TLR-dependent models of peripheral inflammation. Results Microarray analysis of whole brains collected 48 hr after LPS challenge revealed increased transcription of a range of interferon-stimulated genes (ISGs) in the brain. In addition to acute LPS challenge, ISGs were induced in the brain following both chronic LPS-induced systemic inflammation and Imiquimod-induced skin inflammation. Unique to the brain, this transcriptional response is

  2. Characterization of acute and long-term sulfur mustard-induced skin injuries in hairless guinea-pigs using non-invasive methods.

    PubMed

    Dachir, Shlomit; Cohen, Maayan; Fishbeine, Eliezer; Sahar, Rita; Brandies, Rachel; Horwitz, Vered; Kadar, Tamar

    2010-02-01

    Skin exposure to sulfur mustard (HD) results in erythema, edema and severe injury, which take long time to heal and might impose a heavy burden on the health system. Despite many years of research, there is no treatment that prevents the development of the cytotoxic effects of HD causing acute and prolonged damage to the skin. Therefore, it is of great importance to develop treatments that will ameliorate the extent of injury and improve as well as shorten the healing process. The aim of the present study was to establish a small animal model for a long-term HD-induced skin injury using the hairless guinea-pig (HGP) and to further test the efficacy of anti-inflammatories in ameliorating the pathology. HGPs were exposed to HD vapor on four sites for various time durations (1, 5, 10, 15 and 30 min). Clinical evaluation was conducted using reflectance colorimetry, transepidermal water loss and wound-area measurements. Biochemical [prostaglandin (PGE) content and metalloproteinase-9 (MMP-9) activity] and histopathological evaluations were conducted up to 2 weeks post-exposure. Typical symptoms of HD skin injury developed including erythema and edema and the extent of injury was closely related to the exposure duration. Histological evaluation revealed severe edema, infiltration of inflammatory cells, damage to basal cells and vesication. By 2 weeks, healing was not completed, impaired basement membrane and epithelial hyperplasia were observed. PGE content and MMP-9 activity increased at 2 h post-exposure; however, while PGE returned to baseline levels within 24 h, MMP-9 remained elevated at least up to 48 h. Furthermore, a short-term, topical, anti-inflammatory post-exposure treatment was effective in reducing the extent of the acute injury. These results indicate that the effects of HD on HGP skin are similar to previously shown effects in the pig model and in humans and therefore support the use of the HGP as an animal model for long-term effects of HD on skin injury

  3. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march.

    PubMed

    Egawa, Gyohei; Kabashima, Kenji

    2016-08-01

    Atopic dermatitis (AD) is the most common inflammatory skin disease in the industrialized world and has multiple causes. Over the past decade, data from both experimental models and patients have highlighted the primary pathogenic role of skin barrier deficiency in patients with AD. Increased access of environmental agents into the skin results in chronic inflammation and contributes to the systemic "atopic (allergic) march." In addition, persistent skin inflammation further attenuates skin barrier function, resulting in a positive feedback loop between the skin epithelium and the immune system that drives pathology. Understanding the mechanisms of skin barrier maintenance is essential for improving management of AD and limiting downstream atopic manifestations. In this article we review the latest developments in our understanding of the pathomechanisms of skin barrier deficiency, with a particular focus on the formation of the stratum corneum, the outermost layer of the skin, which contributes significantly to skin barrier function. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Harnessing dendritic cells in inflammatory skin diseases

    PubMed Central

    Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O.

    2011-01-01

    The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies. PMID:21295490

  5. Curbing Inflammation in the Ischemic Heart Disease

    PubMed Central

    Evora, Paulo Roberto B.; Nather, Julio; Tubino, Paulo Victor; Albuquerque, Agnes Afrodite S.; Celotto, Andrea Carla; Rodrigues, Alfredo J.

    2013-01-01

    A modern concept considers acute coronary syndrome as an autoinflammatory disorder. From the onset to the healing stage, an endless inflammation has been presented with complex, multiple cross-talk mechanisms at the molecular, cellular, and organ levels. Inflammatory response following acute myocardial infarction has been well documented since the 1940s and 1950s, including increased erythrocyte sedimentation rate, the C-reactive protein analysis, and the determination of serum complement. It is surprising to note, based on a wide literature overview including the following 30 years (decades of 1960, 1970, and 1980), that the inflammatory acute myocardium infarction lost its focus, virtually disappearing from the literature reports. The reversal of this historical process occurs in the 1990s with the explosion of studies involving cytokines. Considering the importance of inflammation in the pathophysiology of ischemic heart disease, the aim of this paper is to present a conceptual overview in order to explore the possibility of curbing this inflammatory process. PMID:23819098

  6. Dermal regulatory T cells display distinct migratory behavior that is modulated during adaptive and innate inflammation.

    PubMed

    Chow, Zachary; Mueller, Scott N; Deane, James A; Hickey, Michael J

    2013-09-15

    Regulatory T cells (Tregs) are important in controlling skin inflammation, an effect dependent on their ability to home to this organ. However, little is known regarding their behavior in the skin. In this study, we used multiphoton imaging in Foxp3-GFP mice to examine the behavior of endogenous Tregs in resting and inflamed skin. Although Tregs were readily detectable in the uninflamed dermis, most were nonmotile. Induction of contact sensitivity increased the proportion of motile Tregs, and also induced Treg recruitment. This response was significantly blunted in mice challenged with an irrelevant hapten, or by inhibition of effector cell recruitment, indicating a role for T cell-dependent inflammation in induction of Treg migration. Moreover, induction of Treg migration was inhibited by local injection of a CCR4 antagonist, indicating a role for CCR4 in this response. Exposure of naive mice to hapten also induced an increase in the proportion of migratory Tregs, demonstrating that innate signals can also induce Treg migration. Simultaneous examination of the migration of CD4⁺ effector cells and Tregs in the same region of uninflamed skin demonstrated that effector cells behaved differently, being uniformly highly migratory. These findings indicate that Treg behavior in skin differs from that of CD4⁺ effector cells, in that only a low proportion of Tregs is migratory under resting conditions. However, in response to both adaptive and innate inflammation, the proportion of migratory Tregs increases, raising the possibility that this response is important in multiple forms of skin inflammation.

  7. Statin Use, Serum Lipids, and Prostate Inflammation in Men with a Negative Prostate Biopsy: Results from the REDUCE Trial.

    PubMed

    Allott, Emma H; Howard, Lauren E; Vidal, Adriana C; Moreira, Daniel M; Castro-Santamaria, Ramiro; Andriole, Gerald L; Freedland, Stephen J

    2017-06-01

    Statin use is associated with lower advanced prostate cancer risk. In addition to cholesterol lowering, statins have systemic anti-inflammatory properties. However, their effect on histologic prostate inflammation is not well understood, particularly among men at increased prostate cancer risk but with a negative prostate biopsy. We examined associations between serum lipid levels, statin use, and histologic prostate inflammation using data from 6,655 men with a negative baseline prostate biopsy in the REduction by DUtasteride of prostate Cancer Events (REDUCE) trial. Statin use and lipid levels [total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides] were assessed at baseline. Inflammation was assessed by central review. Logistic regression was used to examine the effects of lipids and statin use on presence and extent of chronic and acute prostate inflammation [none, moderate (<20%), severe (≥20% biopsy cores)]. Chronic and acute inflammation affected 77% and 15% of men, respectively. Men with high HDL (≥60 vs. <40 mg/dL) had reduced presence of acute inflammation [OR, 0.79; 95% confidence interval (CI), 0.63-0.99] and were less likely to have severe acute inflammation (OR, 0.66; 95% CI, 0.45-0.97), but there were no other associations between lipids and inflammation. Statin users had reduced presence of chronic inflammation (OR, 0.81; 95% CI, 0.69-0.95) and were less likely to have severe chronic (OR, 0.80; 95% CI, 0.68-0.95) and severe acute inflammation (OR, 0.73; 95% CI, 0.53-1.00), relative to non-users. Given the possible role for inflammation in prostate cancer, the inverse association between statins and prostate inflammation suggests a mechanism linking statins with lower advanced prostate cancer risk. Cancer Prev Res; 10(6); 319-26. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Malassezia species and their associated skin diseases.

    PubMed

    Harada, Kazutoshi; Saito, Mami; Sugita, Takashi; Tsuboi, Ryoji

    2015-03-01

    Malassezia spp. are lipophilic fungi that occur on all skin surfaces of humans and animals as commensal and pathogenic organisms. In the 2000s, several new species were added to the Malassezia genus by Japanese researchers. The genus Malassezia now includes 14 species of basidiomycetous yeast. Culture-independent molecular analysis clearly demonstrated that the DNA of Malassezia spp. was predominantly detected in core body and arm sites, suggesting that they are the dominant fungal flora of the human body. Malassezia spp. have been implicated in skin diseases including pityriasis versicolor (PV), Malassezia folliculitis (MF), seborrheic dermatitis (SD) and atopic dermatitis (AD). While Malassezia spp. are directly responsible for the infectious diseases, PV and MF, they act as an exacerbating factor in AD and SD. The fatty acids generated by Malassezia lipase can induce inflammation of the skin, resulting in development of SD. Patch and serum immunoglobulin E tests revealed that AD patients were hypersensitive to Malassezia. However, these findings only partially elucidated the mechanism by which Malassezia spp. induce inflammation in the skin; understanding of the pathogenetic role of Malassezia spp. in SD or AD remains incomplete. In this article, the latest findings of Malassezia research are reviewed with special attention to skin diseases. © 2015 Japanese Dermatological Association.

  9. Comparison of oral robenacoxib and ketoprofen for the treatment of acute pain and inflammation associated with musculoskeletal disorders in cats: a randomised clinical trial.

    PubMed

    Sano, Tadashi; King, Jonathan N; Seewald, Wolfgang; Sakakibara, Nobuhiro; Okumura, Masahiro

    2012-08-01

    The objective of the study was to evaluate the efficacy and tolerability of robenacoxib, a selective cyclooxygenase-2 inhibitor, for the treatment of acute pain and inflammation associated with musculoskeletal disorders in cats. The study was a prospective, multi-centre, randomised, blinded, non-inferiority design clinical trial comparing robenacoxib to ketoprofen. A total of 68 cats presenting with pain and inflammation associated with acute musculoskeletal disorders were recruited and allocated randomly to receive, orally once daily for 5-6 days, either 1.0-2.4 mg/kg robenacoxib (n=47) or 1mg/kg ketoprofen (n=21). The primary efficacy endpoint was the total clinician score, which was the sum of clinician numerical rating scale scores for pain, inflammation and mobility. Assessments were made at baseline, on day 2, and day 4 or 5. For the total clinician score, non-inferior efficacy of robenacoxib was demonstrated with a relative efficacy of 1.151 (95% confidence interval 0.872-1.494). Non-inferior efficacy of robenacoxib was also demonstrated for the secondary endpoint of the total owner score. Robenacoxib was superior (P<0.05) to ketoprofen for the owner's assessment of activity and human/animal relationship. The tolerability of both treatments was good as assessed by monitoring adverse events, clinical signs and haematology and serum biochemistry variables. Copyright © 2012. Published by Elsevier Ltd.

  10. Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: Action on anti- and pro-inflammatory cytokines.

    PubMed

    de Lima, F Mafra; Villaverde, A B; Albertini, R; Corrêa, J C; Carvalho, R L P; Munin, E; Araújo, T; Silva, J A; Aimbire, F

    2011-07-01

    It is unknown if pro- and anti-inflammatory mediators in acute lung inflammation induced by intestinal ischemia and reperfusion (i-I/R) can be modulated by low-level laser therapy (LLLT). A controlled ex vivo study was developed in which rats were irradiated (660 nm, 30 mW, 0.08 cm² of spot size) on the skin over the right upper bronchus 1 hour post-mesenteric artery occlusion and euthanized 4 hours later. For pretreatment with anti-tumor necrosis factor (TNF) or IL-10 antibodies, the rats received either one of the agents 15 minutes before the beginning of reperfusion. Lung edema was measured by the Evans blue extravasation and pulmonary neutrophils influx was determined by myeloperoxidase (MPO) activity. Both TNF and IL-10 expression and protein in lung were evaluated by RT-PCR and ELISA, respectively. LLLT reduced the edema (80.1 ± 41.8 µg g⁻¹  dry weight), neutrophils influx (0.83 ± 0.02 × 10⁶  cells ml⁻¹), MPO activity (2.91 ± 0.60), and TNF (153.0 ± 21.0 pg mg⁻¹  tissue) in lung when compared with respective control groups. Surprisingly, the LLLT increased the IL-10 (0.65 ± 0.13) in lung from animals subjected to i-I/R. Moreover, LLLT (0.32 ± 0.07 pg ml⁻¹) reduced the TNF-α level in RPAECs when compared with i-I/R group. The presence of anti-TNF or IL-10 antibodies did not alter the LLLT effect on IL-10 (465.1 ± 21.0 pg mg⁻¹  tissue) or TNF (223.5 ± 21.0 pg mg⁻¹ tissue) in lung from animals submitted to i-I/R. The results indicate that the LLLT attenuates the i-I/R-induced acute lung inflammation which favor the IL-10 production and reduce TNF generation. Copyright © 2011 Wiley-Liss, Inc.

  11. Resolution of inflammation: state of the art, definitions and terms

    PubMed Central

    Serhan, Charles N.; Brain, Sue D.; Buckley, Christopher D.; Gilroy, Derek W.; Haslett, Christopher; O’Neill, Luke A. J.; Perretti, Mauro; Rossi, Adriano G.; Wallace, John L.

    2011-01-01

    A recent focus meeting on Controlling Acute Inflammation was held in London, April 27-28, 2006, organized by D.W. Gilroy and S.D. Brain for the British Pharmacology Society. We concluded at the meeting that a consensus report was needed that addresses the rapid progress in this emerging field and details how the specific study of resolution of acute inflammation provides leads for novel anti-inflammatory therapeutics, as well as defines the terms and key components of interest in the resolution process within tissues as appreciated today. The inflammatory response protects the body against infection and injury but can itself become dysregulated with deleterious consequences to the host. It is now evident that endogenous biochemical pathways activated during defense reactions can counter-regulate inflammation and promote resolution. Hence, resolution is an active rather than a passive process, as once believed, which now promises novel approaches for the treatment of inflammation-associated diseases based on endogenous agonists of resolution. PMID:17267386

  12. Quercitrin protects skin from UVB-induced oxidative damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yuanqin; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY; Li, Wenqi

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidativemore » damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.« less

  13. Environmental Mycobiome Modifiers of Inflammation and Fibrosis in Systemic Sclerosis

    DTIC Science & Technology

    2015-10-01

    COVER&PAGE& ) ) Award)Number:)W81XWH&14&1&0224) ) ) TITLE:)Environmental Mycobiome Modifiers of Inflammation and Fibrosis in Systemic Sclerosis ...Inflammation and Fibrosis in Systemic Sclerosis 5a.&CONTRACT&NUMBER& ) ) ) ) 5b.&GRANT&NUMBER& W81XWH-14-1-0224) ) 5c.&PROGRAM&ELEMENT&NUMBER& ) 6... Sclerosis )(SSc),)a)progressive)fibrotic)disease)characterized)by)skin)fibrosis)and)damage) to) internal) organs.) ) While) a) wide) range) of

  14. Modeling economic implications of alternative treatment strategies for acute bacterial skin and skin structure infections.

    PubMed

    Revankar, Nikhil; Ward, Alexandra J; Pelligra, Christopher G; Kongnakorn, Thitima; Fan, Weihong; LaPensee, Kenneth T

    2014-10-01

    The economic implications from the US Medicare perspective of adopting alternative treatment strategies for acute bacterial skin and skin structure infections (ABSSSIs) are substantial. The objective of this study is to describe a modeling framework that explores the impact of decisions related to both the location of care and switching to different antibiotics at discharge. A discrete event simulation (DES) was developed to model the treatment pathway of each patient through various locations (emergency department [ED], inpatient, and outpatient) and the treatments prescribed (empiric antibiotic, switching to a different antibiotic at discharge, or a second antibiotic). Costs are reported in 2012 USD. The mean number of days on antibiotic in a cohort assigned to a full course of vancomycin was 11.2 days, with 64% of the treatment course being administered in the outpatient setting. Mean total costs per patient were $8671, with inpatient care accounting for 58% of the costs accrued. The majority of outpatient costs were associated with parenteral administration rather than drug acquisition or monitoring. Scenarios modifying the treatment pathway to increase the proportion of patients receiving the first dose in the ED, and then managing them in the outpatient setting or prescribing an oral antibiotic at discharge to avoid the cost associated with administering parenteral therapy, therefore have a major impact and lower the typical cost per patient by 11-20%. Since vancomycin is commonly used as empiric therapy in clinical practice, based on these analyses, a shift in treatment practice could result in substantial savings from the Medicare perspective. The choice of antibiotic and location of care influence the costs and resource use associated with the management of ABSSSIs. The DES framework presented here can provide insight into the potential economic implications of decisions that modify the treatment pathway.

  15. Harnessing dendritic cells in inflammatory skin diseases.

    PubMed

    Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O

    2011-02-01

    The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Taraxerol, a pentacyclic triterpene from Abroma augusta leaf, attenuates acute inflammation via inhibition of NF-κB signaling.

    PubMed

    Khanra, Ritu; Dewanjee, Saikat; Dua, Tarun K; Bhattacharjee, Niloy

    2017-04-01

    Abroma augusta L. (Malvaceae) leaf is traditionally used to treat inflammatory disorders. In our laboratory, we have scientifically validated the anti-inflammatory effect of A. augusta leaf extract. In this study, it has been aimed to evaluate in vivo anti-inflammatory effect of taraxerol isolated from the methanol extract of A. augusta leaf. It was further intended to find out the probable mechanism of anti-inflammatory effect of taraxerol. The anti-inflammatory effect of taraxerol (5 and 10mg/kg, i.p.) was measured employing carrageenan-induced paw edema model of acute inflammation. The carrageenan injection resulted significant edema formation in the right paw when compared with un-injected left paw. However, taraxerol (10mg/kg) treatment could significantly (p<0.05-0.01) attenuate carrageenan induced paw edema 2h onward. The effect of taraxerol at the dose of 5mg/kg was found to be significant (p<0.05) only after 4h of carrageenan treatment. Taraxerol (10mg/kg) treatment could significantly (p<0.01) attenuate carrageenan mediated up-regulation in the levels of IL 1β, IL 6, IL 12 and TNF α in the right paw tissues. In search of molecular mechanism, taraxerol (10mg/kg) could significantly (p<0.05-0.01) reinstate carrageenan provoked NF-κB signaling and thereby caused significant down-regulation in the expressions of COX-2 (p<0.01) and iNOS (p<0.05). In conclusion, taraxerol would attenuate acute inflammation via inhibition of NF-κB signaling. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Evaluation of a cyanoacrylate dressing to manage peristomal skin alterations under ostomy skin barrier wafers.

    PubMed

    Milne, Catherine T; Saucier, Darlene; Trevellini, Chenel; Smith, Juliet

    2011-01-01

    Peristomal skin alterations under ostomy barrier wafers are a commonly reported problem. While a number of interventions to manage this issue have been reported, the use of a topically applied cyanoacrylate has received little attention. This case series describes the use of a topical cyanoacrylate for the management of peristomal skin alterations in persons living with an ostomy. Using a convenience sample, the topical cyanoacrylate dressing was applied to 11 patients with peristomal skin disruption under ostomy wafers in acute care and outpatient settings. The causes of barrier function interruption were also addressed to enhance outcomes. Patients were assessed for wound discomfort using a Likert Scale, time to healing, and number of appliance changes. Patient satisfaction was also examined. Average reported discomfort levels were 9.5 out of 10 at the initial peristomal irritation assessment visit decreased to 3.5 at the first wafer change and were absent by the second wafer change. Wafers had increasing wear time between changes in both settings with acute care patients responding faster. Epidermal resurfacing occurred within 10.2 days in outpatients and within 7 days in acute care patients. Because of the skin sealant action of this dressing, immediate adherence of the wafer was reported at all pouch changes.

  18. Dietary supplementation of grape skin extract improves glycemia and inflammation in diet-induced obese mice fed a Western high fat diet.

    PubMed

    Hogan, Shelly; Canning, Corene; Sun, Shi; Sun, Xiuxiu; Kadouh, Hoda; Zhou, Kequan

    2011-04-13

    Dietary antioxidants may provide a cost-effective strategy to promote health in obesity by targeting oxidative stress and inflammation. We recently found that the antioxidant-rich grape skin extract (GSE) also exerts a novel anti-hyperglycemic activity. This study investigated whether 3-month GSE supplementation can improve oxidative stress, inflammation, and hyperglycemia associated with a Western diet-induced obesity. Young diet-induced obese (DIO) mice were randomly divided to three treatment groups (n = 12): a standard diet (S group), a Western high fat diet (W group), and the Western diet plus GSE (2.4 g GSE/kg diet, WGSE group). By week 12, DIO mice in the WGSE group gained significantly more weight (24.6 g) than the W (20.2 g) and S groups (11.2 g); the high fat diet groups gained 80% more weight than the standard diet group. Eight of 12 mice in the W group, compared to only 1 of 12 mice in the WGSE group, had fasting blood glucose levels above 140 mg/dL. Mice in the WGSE group also had 21% lower fasting blood glucose and 17.1% lower C-reactive protein levels than mice in the W group (P < 0.05). However, the GSE supplementation did not affect oxidative stress in diet-induced obesity as determined by plasma oxygen radical absorbance capacity, glutathione peroxidase, and liver lipid peroxidation. Collectively, the results indicated a beneficial role of GSE supplementation for improving glycemic control and inflammation in diet-induced obesity.

  19. Phospholipase C-ε signaling mediates endothelial cell inflammation and barrier disruption in acute lung injury

    PubMed Central

    Bijli, Kaiser M.; Fazal, Fabeha; Slavin, Spencer A.; Leonard, Antony; Grose, Valerie; Alexander, William B.; Smrcka, Alan V.

    2016-01-01

    Phospholipase C-ε (PLC-ε) is a unique PLC isoform that can be regulated by multiple signaling inputs from both Ras family GTPases and heterotrimeric G proteins and has primary sites of expression in the heart and lung. Whereas the role of PLC-ε in cardiac function and pathology has been documented, its relevance in acute lung injury (ALI) is unclear. We used PLC-ε−/− mice to address the role of PLC-ε in regulating lung vascular inflammation and injury in an aerosolized bacterial LPS inhalation mouse model of ALI. PLC-ε−/− mice showed a marked decrease in LPS-induced proinflammatory mediators (ICAM-1, VCAM-1, TNF-α, IL-1β, IL-6, macrophage inflammatory protein 2, keratinocyte-derived cytokine, monocyte chemoattractant protein 1, and granulocyte-macrophage colony-stimulating factor), lung neutrophil infiltration and microvascular leakage, and loss of VE-cadherin compared with PLC-ε+/+ mice. These data identify PLC-ε as a critical determinant of proinflammatory and leaky phenotype of the lung. To test the possibility that PLC-ε activity in endothelial cells (EC) could contribute to ALI, we determined its role in EC inflammation and barrier disruption. RNAi knockdown of PLC-ε inhibited NF-κB activity in response to diverse proinflammatory stimuli, thrombin, LPS, TNF-α, and the nonreceptor agonist phorbol 13-myristate 12-acetate (phorbol esters) in EC. Depletion of PLC-ε also inhibited thrombin-induced expression of NF-κB target gene, VCAM-1. Importantly, PLC-ε knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and formation of actin stress fibers. These data identify PLC-ε as a novel regulator of EC inflammation and permeability and show a hitherto unknown role of PLC-ε in the pathogenesis of ALI. PMID:27371732

  20. Phospholipase C-ε signaling mediates endothelial cell inflammation and barrier disruption in acute lung injury.

    PubMed

    Bijli, Kaiser M; Fazal, Fabeha; Slavin, Spencer A; Leonard, Antony; Grose, Valerie; Alexander, William B; Smrcka, Alan V; Rahman, Arshad

    2016-08-01

    Phospholipase C-ε (PLC-ε) is a unique PLC isoform that can be regulated by multiple signaling inputs from both Ras family GTPases and heterotrimeric G proteins and has primary sites of expression in the heart and lung. Whereas the role of PLC-ε in cardiac function and pathology has been documented, its relevance in acute lung injury (ALI) is unclear. We used PLC-ε(-/-) mice to address the role of PLC-ε in regulating lung vascular inflammation and injury in an aerosolized bacterial LPS inhalation mouse model of ALI. PLC-ε(-/-) mice showed a marked decrease in LPS-induced proinflammatory mediators (ICAM-1, VCAM-1, TNF-α, IL-1β, IL-6, macrophage inflammatory protein 2, keratinocyte-derived cytokine, monocyte chemoattractant protein 1, and granulocyte-macrophage colony-stimulating factor), lung neutrophil infiltration and microvascular leakage, and loss of VE-cadherin compared with PLC-ε(+/+) mice. These data identify PLC-ε as a critical determinant of proinflammatory and leaky phenotype of the lung. To test the possibility that PLC-ε activity in endothelial cells (EC) could contribute to ALI, we determined its role in EC inflammation and barrier disruption. RNAi knockdown of PLC-ε inhibited NF-κB activity in response to diverse proinflammatory stimuli, thrombin, LPS, TNF-α, and the nonreceptor agonist phorbol 13-myristate 12-acetate (phorbol esters) in EC. Depletion of PLC-ε also inhibited thrombin-induced expression of NF-κB target gene, VCAM-1. Importantly, PLC-ε knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and formation of actin stress fibers. These data identify PLC-ε as a novel regulator of EC inflammation and permeability and show a hitherto unknown role of PLC-ε in the pathogenesis of ALI. Copyright © 2016 the American Physiological Society.

  1. Dextran sulfate sodium-induced acute colitis impairs dermal lymphatic function in mice.

    PubMed

    Agollah, Germaine D; Wu, Grace; Peng, Ho-Lan; Kwon, Sunkuk

    2015-12-07

    uptake of a lipid tracer within mesenteric lymphatics. Our in vivo NIRF imaging data demonstrated dilated dermal lymphatic vessels, which were confirmed by immunohistochemical staining of lymphatic vessels, and significantly reduced lymphatic contractile function in the skin of mice with DSS-induced acute colitis. Quantification of the fluorescent intensity remaining in the depot as a function of time showed that there was significantly higher Alexa680-BSA fluorescence in mice with DSS-induced acute colitis compared to pre-treatment with DSS, indicative of impaired lymphatic drainage. The lymphatics are locally and systemically altered in acute colitis, and functional NIRF imaging is useful for noninvasively monitoring systemic lymphatic changes during inflammation.

  2. Adenosine-dependent phrenic motor facilitation is inflammation resistant

    PubMed Central

    Agosto-Marlin, Ibis M.; Nichols, Nicole L.

    2016-01-01

    Phrenic motor facilitation (pMF), a form of respiratory plasticity, can be elicited by acute intermittent hypoxia (i.e., phrenic long-term facilitation, pLTF) or direct application of drugs to the cervical spinal cord. Moderate acute intermittent hypoxia (mAIH; 3 × 5-min episodes of 35–50 mmHg arterial Po2, 5-min normoxic intervals) induces pLTF by a serotonin-dependent mechanism; mAIH-induced pLTF is abolished by mild systemic inflammation induced by a low dose of lipopolysaccharide (LPS; 100 μg/kg ip). In contrast, severe acute intermittent hypoxia (sAIH; 3 × 5-min episodes of 25–30 mmHg arterial Po2, 5-min normoxic intervals) elicits pLTF by a distinct, adenosine-dependent mechanism. Since it is not known if systemic LPS blocks the mechanism giving rise to sAIH-induced pLTF, we tested the hypothesis that sAIH-induced pLTF and adenosine 2A (A2A) receptor-induced pMF are insensitive to mild systemic inflammation elicited by the same low dose of LPS. In agreement with our hypothesis, neither sAIH-induced pLTF nor cervical intrathecal A2A receptor agonist (CGS-21680; 200 μM, 10 μl × 3)-induced pMF were affected 24 h post-LPS. Pretreatment with intrathecal A2A receptor antagonist injections (MSX-3; 10 μM, 12 μl) blocked sAIH-induced pLTF 24 h post LPS, confirming that pLTF was adenosine dependent. Our results give insights concerning the differential impact of systemic inflammation and the functional significance of multiple cascades capable of giving rise to phrenic motor plasticity. The relative resistance of adenosine-dependent pMF to inflammation suggests that it provides a “backup” system in animals lacking serotonin-dependent pMF due to ongoing inflammation associated with systemic infections and/or neural injury. NEW & NOTEWORTHY This study gives novel insights concerning how a mild systemic inflammation impacts phrenic motor plasticity (pMF), particularly adenosine-dependent pMF. We suggest that since this adenosine-dependent pathway is

  3. Towards a Genetic Definition of Cancer-Associated Inflammation

    PubMed Central

    Prendergast, George C.; Metz, Richard; Muller, Alexander J.

    2010-01-01

    Chronic inflammation drives the development of many cancers, but a genetic definition of what constitutes ‘cancer-associated’ inflammation has not been determined. Recently, a mouse genetic study revealed a critical role for the immune escape mediator indoleamine 2,3-dioxygenase (IDO) in supporting inflammatory skin carcinogenesis. IDO is generally regarded as being immunosuppressive; however, there was no discernable difference in generalized inflammatory processes in IDO-null mice under conditions where tumor development was significantly suppressed, implicating IDO as key to establishing the pathogenic state of ‘cancer-associated’ inflammation. Here we review recent findings and their potential implications to understanding the relationship between immune escape and inflammation in cancer. Briefly, we propose that genetic pathways of immune escape in cancer are synonymous with pathways that define ‘cancer-associated’ inflammation and that these processes may be identical rather than distinct, as generally presumed, in terms of their genetic definition. PMID:20228228

  4. Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis.

    PubMed

    Ogawa, Rei

    2017-03-10

    Keloids and hypertrophic scars are caused by cutaneous injury and irritation, including trauma, insect bite, burn, surgery, vaccination, skin piercing, acne, folliculitis, chicken pox, and herpes zoster infection. Notably, superficial injuries that do not reach the reticular dermis never cause keloidal and hypertrophic scarring. This suggests that these pathological scars are due to injury to this skin layer and the subsequent aberrant wound healing therein. The latter is characterized by continuous and histologically localized inflammation. As a result, the reticular layer of keloids and hypertrophic scars contains inflammatory cells, increased numbers of fibroblasts, newly formed blood vessels, and collagen deposits. Moreover, proinflammatory factors, such as interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor-α are upregulated in keloid tissues, which suggests that, in patients with keloids, proinflammatory genes in the skin are sensitive to trauma. This may promote chronic inflammation, which in turn may cause the invasive growth of keloids. In addition, the upregulation of proinflammatory factors in pathological scars suggests that, rather than being skin tumors, keloids and hypertrophic scars are inflammatory disorders of skin, specifically inflammatory disorders of the reticular dermis. Various external and internal post-wounding stimuli may promote reticular inflammation. The nature of these stimuli most likely shapes the characteristics, quantity, and course of keloids and hypertrophic scars. Specifically, it is likely that the intensity, frequency, and duration of these stimuli determine how quickly the scars appear, the direction and speed of growth, and the intensity of symptoms. These proinflammatory stimuli include a variety of local, systemic, and genetic factors. These observations together suggest that the clinical differences between keloids and hypertrophic scars merely reflect differences in the intensity, frequency, and duration of

  5. Epicutaneous challenge of orally immunized mice redirects antigen-specific gut-homing T cells to the skin.

    PubMed

    Oyoshi, Michiko K; Elkhal, Abdallah; Scott, Jordan E; Wurbel, Marc-Andre; Hornick, Jason L; Campbell, James J; Geha, Raif S

    2011-06-01

    Patients with atopic dermatitis (AD) often suffer from food allergy and develop flares upon skin contact with food allergens. However, it is unclear whether T cells sensitized to allergens in the gut promote this skin inflammation. To address this question, we orally immunized WT mice and mice lacking the skin-homing chemokine receptor Ccr4 (Ccr4-/- mice) with OVA and then challenged them epicutaneously with antigen. Allergic skin inflammation developed in the WT mice but not in the mutants and was characterized by epidermal thickening, dermal infiltration by eosinophils and CD4+ T cells, and upregulation of Th2 cytokines. T cells purified from mesenteric lymph nodes (MLNs) of orally immunized WT mice transferred allergic skin inflammation to naive recipients cutaneously challenged with antigen, but this effect was lost in T cells purified from Ccr4-/- mice. In addition, the ability of adoptively transferred OVA-activated T cells to home to the skin following cutaneous OVA challenge was ablated in mice that lacked lymph nodes. These results indicate that cutaneous exposure to food antigens can reprogram gut-homing effector T cells in LNs to express skin-homing receptors, eliciting skin lesions upon food allergen contact in orally sensitized AD patients.

  6. Changes in Bacteria Induce Inflammatory Skin Diseases | Center for Cancer Research

    Cancer.gov

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that manifests as dry skin with a relentless itch and eczema. AD is considered an allergic disease in which the skin inflammation manifests in response to chronic exposure to contact allergens. However, identification of a responsible allergen is uncommon. Meanwhile, analyses have demonstrated that the surface of

  7. Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging

    PubMed Central

    Trost, Andrea; Weber, Manuela; Klausegger, Alfred; Gruber, Christina; Bruckner, Daniela; Reitsamer, Herbert A.; Bauer, Johann W.; Breitenbach, Michael

    2015-01-01

    The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII, COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex‐ and age‐matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls. PMID:26143532

  8. Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging.

    PubMed

    Breitenbach, Jenny S; Rinnerthaler, Mark; Trost, Andrea; Weber, Manuela; Klausegger, Alfred; Gruber, Christina; Bruckner, Daniela; Reitsamer, Herbert A; Bauer, Johann W; Breitenbach, Michael

    2015-06-01

    The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII,COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex- and age-matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls.

  9. Dietary Milk Sphingomyelin Prevents Disruption of Skin Barrier Function in Hairless Mice after UV-B Irradiation.

    PubMed

    Oba, Chisato; Morifuji, Masashi; Ichikawa, Satomi; Ito, Kyoko; Kawahata, Keiko; Yamaji, Taketo; Asami, Yukio; Itou, Hiroyuki; Sugawara, Tatsuya

    2015-01-01

    Exposure to ultraviolet-B (UV-B) irradiation causes skin barrier defects. Based on earlier findings that milk phospholipids containing high amounts of sphingomyelin (SM) improved the water content of the stratum corneum (SC) in normal mice, here we investigated the effects of dietary milk SM on skin barrier defects induced by a single dose of UV-B irradiation in hairless mice. Nine week old hairless mice were orally administrated SM (146 mg/kg BW/day) for a total of ten days. After seven days of SM administration, the dorsal skin was exposed to a single dose of UV-B (20 mJ/cm2). Administration of SM significantly suppressed an increase in transepidermal water loss and a decrease in SC water content induced by UV-B irradiation. SM supplementation significantly maintained covalently-bound ω-hydroxy ceramide levels and down-regulated mRNA levels of acute inflammation-associated genes, including thymic stromal lymphopoietin, interleukin-1 beta, and interleukin-6. Furthermore, significantly higher levels of loricrin and transglutaminase-3 mRNA were observed in the SM group. Our study shows for the first time that dietary SM modulates epidermal structures, and can help prevent disruption of skin barrier function after UV-B irradiation.

  10. Noninvasive quantitative documentation of cutaneous inflammation in vivo using spectral imaging

    NASA Astrophysics Data System (ADS)

    Stamatas, Georgios N.; Kollias, Nikiforos

    2006-02-01

    Skin inflammation is often accompanied by edema and erythema. While erythema is the result of capillary dilation and subsequent local increase of oxygenated hemoglobin (oxy-Hb) concentration, edema is characterized by an increase in extracellular fluid in the dermis leading to local tissue swelling. Edema and erythema are typically graded visually. In this work we tested the potential of spectral imaging as a non-invasive method for quantitative documentation of both the erythema and the edema reactions. As examples of dermatological conditions that exhibit skin inflammation we imaged patients suffering from acne, herpes zoster, and poison ivy rashes using a hyperspectral-imaging camera. Spectral images were acquired in the visible and near infrared part of the spectrum, where oxy-Hb and water demonstrate absorption bands. The values of apparent concentrations of oxy-Hb and water were calculated based on an algorithm that takes into account spectral contributions of deoxy-hemoglobin, melanin, and scattering. In each case examined concentration maps of oxy-Hb and water can be constructed that represent quantitative visualizations of the intensity and extent of erythema and edema correspondingly. In summary, we demonstrate that spectral imaging can be used in dermatology to quantitatively document parameters relating to skin inflammation. Applications may include monitoring of disease progression as well as efficacy of treatments.

  11. Efficacy and Pharmacology of the NLRP3 Inflammasome Inhibitor CP-456,773 (CRID3) in Murine Models of Dermal and Pulmonary Inflammation.

    PubMed

    Primiano, Michael J; Lefker, Bruce A; Bowman, Michael R; Bree, Andrea G; Hubeau, Cedric; Bonin, Paul D; Mangan, Matthew; Dower, Ken; Monks, Brian G; Cushing, Leah; Wang, Stephen; Guzova, Julia; Jiao, Aiping; Lin, Lih-Ling; Latz, Eicke; Hepworth, David; Hall, J Perry

    2016-09-15

    A critical component of innate immune response to infection and tissue damage is the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome, and this pathway and its activation products have been implicated in the pathophysiology of a variety of diseases. NLRP3 inflammasome activation leads to the cleavage of pro-IL-1β and pro-IL-18, as well as the subsequent release of biologically active IL-1β, IL-18, and other soluble mediators of inflammation. In this study, we further define the pharmacology of the previously reported NLRP3 inflammasome-selective, IL-1β processing inhibitor CP-456,773 (also known as MCC950), and we demonstrate its efficacy in two in vivo models of inflammation. Specifically, we show that in human and mouse innate immune cells CP-456,773 is an inhibitor of the cellular release of IL-1β, IL-1α, and IL-18, that CP-456,773 prevents inflammasome activation induced by disease-relevant soluble and crystalline NLRP3 stimuli, and that CP-456,773 inhibits R848- and imiquimod-induced IL-1β release. In mice, CP-456,773 demonstrates potent inhibition of the release of proinflammatory cytokines following acute i.p. challenge with LPS plus ATP in a manner that is proportional to the free/unbound concentrations of the drug, thereby establishing an in vivo pharmacokinetic/pharmacodynamic model for CP-456,773. Furthermore, CP-456,773 reduces ear swelling in an imiquimod cream-induced mouse model of skin inflammation, and it reduces airway inflammation in mice following acute challenge with house dust mite extract. These data implicate the NLRP3 inflammasome in the pathogenesis of dermal and airway inflammation, and they highlight the utility of CP-456,773 for interrogating the contribution of the NLRP3 inflammasome and its outputs in preclinical models of inflammation and disease. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Possible Mediation by Methylation in Acute Inflammation Following Personal Exposure to Fine Particulate Air Pollution

    PubMed Central

    Wang, Cuicui; Chen, Renjie; Shi, Min; Cai, Jing; Shi, Jingjin; Yang, Changyuan; Li, Huichu; Lin, Zhijing; Meng, Xia; Liu, Cong; Niu, Yue; Xia, Yongjie; Zhao, Zhuohui; Kan, Haidong; Weinberg, Clarice R

    2018-01-01

    Abstract Air pollution may increase cardiovascular and respiratory risk through inflammatory pathways, but evidence for acute effects has been weak and indirect. Between December 2014 and July 2015, we enrolled 36 healthy, nonsmoking college students for a panel study in Shanghai, China, a city with highly variable levels of air pollution. We measured personal exposure to particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5) continuously for 72 hours preceding each of 4 clinical visits that included phlebotomy. We measured 4 inflammation proteins and DNA methylation at nearby regulatory cytosine-phosphate-guanine (CpG) loci. We applied linear mixed-effect models to examine associations over various lag times. When results suggested mediation, we evaluated methylation as mediator. Increased PM2.5 concentration was positively associated with all 4 inflammation proteins and negatively associated with DNA methylation at regulatory loci for tumor necrosis factor alpha (TNF-α) and soluble intercellular adhesion molecule-1. A 10-μg/m3 increase in average PM2.5 during the 24 hours preceding blood draw corresponded to a 4.4% increase in TNF-α and a statistically significant decrease in methylation at one of the two studied candidate CpG loci for TNF-α. Epigenetics may play an important role in mediating effects of PM2.5 on inflammatory pathways. PMID:29020142

  13. Acute skin toxicity-related, out-of-pocket expenses in patients with breast cancer treated with external beam radiotherapy: a descriptive, exploratory study.

    PubMed

    Schnur, Julie B; Graff Zivin, Joshua; Mattson, David M K; Green, Sheryl; Jandorf, Lina H; Wernicke, A Gabriella; Montgomery, Guy H

    2012-12-01

    Acute skin toxicity is one of the most common side effects of breast cancer radiotherapy. To date, no one has estimated the nonmedical out-of-pocket expenses associated with this side effect. The primary aim of the present descriptive, exploratory study was to assess the feasibility of a newly developed skin toxicity costs questionnaire. The secondary aims were to: (1) estimate nonmedical out-of-pocket costs, (2) examine the nature of the costs, (3) explore potential background predictors of costs, and (4) explore the relationship between patient-reported dermatologic quality of life and expenditures. A total of 50 patients (mean age = 54.88, Stage 0-III) undergoing external beam radiotherapy completed a demographics/medical history questionnaire as well as a seven-item Skin Toxicity Costs (STC) questionnaire and the Skindex-16 in week 5 of treatment. Mean skin toxicity costs were $131.64 (standard error [SE] = $23.68). Most frequently incurred expenditures were new undergarments and products to manage toxicity. Education was a significant unique predictor of spending, with more educated women spending more money. Greater functioning impairment was associated with greater costs. The STC proved to be a practical, brief measure which successfully indicated specific areas of patient expenditures and need. Results reveal the nonmedical, out-of-pocket costs associated with acute skin toxicity in the context of breast cancer radiotherapy. To our knowledge, this study is the first to quantify individual costs associated with this treatment side effect, as well as the first to present a scale specifically designed to assess such costs. In future research, the STC could be used as an outcome variable in skin toxicity prevention and control research, as a behavioral indicator of symptom burden, or as part of a needs assessment.

  14. Total skin electron irradiation for mycosis fungoides: relationship between acute toxicities and measured dose at different anatomic sites.

    PubMed

    Desai, K R; Pezner, R D; Lipsett, J A; Vora, N L; Luk, K H; Wong, J Y; Chan, S L; Findley, D O; Hill, L R; Marin, L A

    1988-09-01

    From June 1978 to June 1986, 50 patients with primary and recurrent mycosis fungoides were treated with total skin electron irradiation (TSEI), using the Stanford technique, to a total dose of 3600 cGy. TSEI was used alone, or in combination with low dose total body photon irradiation, or MOPP. Thermoluminescent dosimeter (TLD) measurements of the prescribed skin dose were obtained on twenty patients. The dorsum of the foot was 24% higher. The axillae, the bottom, and the arch of the foot were significantly underdosed. Frequencies of acute toxicities noted at 2000 cGy were: Skin, Grade I-II (RTOG) 80%. Partial epilation: scalp, 100%; eyebrows and at eyelashes, 20%. Nail dystrophy, 48%. Edema: hands and feet, 44%. Bullae: dorsum of feet, 8%; hands, 4%; and 3600 cGy: Skin, grade III 22%. Total epilation: scalp, 66%; eyebrows and eyelashes, 56%. Nail loss, 38%. Edema: hands and feet, 76%. Bullae: dorsum of feet, 34%; hands, 12%. Conjunctivitis, 4%. Large bullae, were more significant on the dorsum of the feet. Severe moist desquamation occurred in eight patients who had ulcerated lesions on initial presentation. Three patients were hospitalized due to ulceration and skin infection. All patients completed treatment after a short to moderate break. No patient developed skin necrosis, or corneal ulceration. No correlation exists between dose level, degree and onset of toxicity with previous chemotherapy or TBI. We conclude that the overall toxicity of TSEI is well tolerated.

  15. Acute bacterial skin infections in pediatric medicine: current issues in presentation and treatment.

    PubMed

    Hedrick, James

    2003-01-01

    Bacterial skin and skin structure infections commonly encountered in children include impetigo, folliculitis, furunculosis, carbuncles, wound infections, abscesses, cellulitis, erysipelas, scarlet fever, acute paronychia, and staphylococcal scalded skin syndrome. If diagnosed early and treated appropriately, these infections are almost always curable, but some have the potential to cause serious complications such as septicemia, nephritis, carditis and arthritis if diagnosis is delayed and/or treatment is inadequate. During the initial evaluation, it is important to determine whether the infection is superficial or deep, and whether it is localized or spreading. Prompt treatment is essential if the infection appears to be spreading, as the sequelae can be life threatening. Once the proper diagnosis is made, the next important step is selecting the most appropriate therapy. In children presenting with mild or moderately severe bacterial skin and skin structure infections and not requiring inpatient management or urgent operative débridement, prompt provision of oral antimicrobial therapy avoids the risk of worsening infection or hospitalization. Empiric antimicrobial therapy should be directed at the most likely pathogens, (e.g. Staphylococcus aureus or Streptococcus pyogenes), although some infections (e.g. subcutaneous abscesses and cellulitis following animal or human bites) may have a polymicrobial origin. In choosing the appropriate antimicrobial therapy, one must take into account the resistance profile of the target pathogen, the agent's antibacterial profile and intrinsic activity against the target pathogen, and its pharmacokinetic properties (including absorption, elimination, and extent of tissue penetration). Other factors to consider include tolerability of the drug, convenience of the dosing regimen, and acceptability and palatability of the oral formulation administered. Any treatment plan for bacterial skin and skin structure infections should aim

  16. Effects of Ghrelin miRNA on Inflammation and Calcium Pathway in Pancreatic Acinar Cells of Acute Pancreatitis.

    PubMed

    Tang, Xiping; Tang, Guodu; Liang, Zhihai; Qin, Mengbin; Fang, Chunyun; Zhang, Luyi

    The study investigated the effects of endogenous targeted inhibition of ghrelin gene on inflammation and calcium pathway in an in vitro pancreatic acinar cell model of acute pancreatitis. Lentiviral expression vector against ghrelin gene was constructed and transfected into AR42J cells. The mRNA and protein expression of each gene were detected by reverse transcription polymerase chain reaction, Western blotting, or enzyme-linked immunosorbent assay. The concentration of intracellular calcium ([Ca]i) was determined by calcium fluorescence mark probe combined with laser scanning confocal microscopy. Compared with the control group, cerulein could upregulate mRNA and protein expression of inflammatory factors, calcium pathway, ghrelin, and [Ca]i. mRNA and protein expression of inflammatory factors increased significantly in cells transfected with ghrelin miRNA compared with the other groups. Intracellular calcium and expression of some calcium pathway proteins decreased significantly in cells transfected with ghrelin miRNA compared with the other groups. Targeted inhibition of ghrelin gene in pancreatic acinar cells of acute pancreatitis can upregulate the expression of the intracellular inflammatory factors and alleviate the intracellular calcium overload.

  17. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A2 in Mice

    PubMed Central

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A2 (bvPLA2) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA2 in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA2 six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA2 treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA2 treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes’ mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA2 on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA2 in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA2 are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA2 in radiation pneumonitis and fibrosis treatments. PMID:27144583

  18. The Role of Phytonutrients in Skin Health

    PubMed Central

    Evans, Julie A.; Johnson, Elizabeth J.

    2010-01-01

    Photodamage is known to occur in skin with exposure to sunlight, specifically ultraviolet (UV) radiation. Such damage includes inflammation, oxidative stress, breakdown of the extracellular matrix, and development of cancer in the skin. Sun exposure is considered to be one of the most important risk factors for both nonmelanoma and melanoma skin cancers. Many phytonutrients have shown promise as photoprotectants in clinical, animal and cell culture studies. In part, the actions of these phytonutrients are thought to be through their actions as antioxidants. In regard to skin health, phytonutrients of interest include vitamin E, certain flavonoids, and the carotenoids, β-carotene, lycopene and lutein. PMID:22254062

  19. Telavancin for Acute Bacterial Skin and Skin Structure Infections, a Post Hoc Analysis of the Phase 3 ATLAS Trials in Light of the 2013 FDA Guidance

    PubMed Central

    Pushkin, Richard; Barriere, Steven L.; Corey, G. Ralph; Stryjewski, Martin E.

    2015-01-01

    Two phase 3 ATLAS trials demonstrated noninferiority of telavancin compared with vancomycin for complicated skin and skin structure infections. Data from these trials were retrospectively evaluated according to 2013 U.S. Food and Drug Administration (FDA) guidance on acute bacterial skin and skin structure infections. This post hoc analysis included patients with lesion sizes of ≥75 cm2 and excluded patients with ulcers or burns (updated all-treated population; n = 1,127). Updated day 3 (early) clinical response was defined as a ≥20% reduction in lesion size from baseline and no rescue antibiotic. Updated test-of-cure (TOC) clinical response was defined as a ≥90% reduction in lesion size, no increase in lesion size since day 3, and no requirement for additional antibiotics or significant surgical procedures. Day 3 (early) clinical responses were achieved in 62.6% and 61.0% of patients receiving telavancin and vancomycin, respectively (difference, 1.7%, with a 95% confidence interval [CI] of −4.0% to 7.4%). Updated TOC visit cure rates were similar for telavancin (68.0%) and vancomycin (63.3%), with a difference of 4.8% (95% CI, −0.7% to 10.3%). Adopting current FDA guidance, this analysis corroborates previous noninferiority findings of the ATLAS trials of telavancin compared with vancomycin. PMID:26248356

  20. Tacrolimus hydrate ointment inhibits skin plasma extravasation in rats induced by topical m-xylene but not capsaicin.

    PubMed

    Goto, Shiho; Kondo, Fumio; Ikai, Yoshitomo; Miyake, Mio; Futamura, Masaki; Ito, Komei; Sakamoto, Tatsuo

    2009-04-17

    Tacrolimus ointment is used to treat various chronic inflammatory skin diseases. However, the effect of this ointment on acute neurogenic inflammation in the skin remains to be fully elucidated. Topical capsaicin and m-xylene produce tachykinin release from sensory nerves in the skin, resulting in skin plasma leakage. We investigated the effect of tacrolimus ointment (0.1%) on skin microvascular leakage induced by topical capsaicin (10 mM) and m-xylene (neat), and intracutaneous compound 48/80 (c48/80) (10 microg/ml, 50 microl/site) in two groups of rats pretreated with excessive capsaicin or its vehicle. The amount of leaked Evans blue dye reflected skin plasma leakage. Capsaicin, m-xylene or c48/80 was applied to the shaved abdomens of rats 8 h after topical application of tacrolimus ointment or its base. Desensitization with capsaicin reduced the skin response to capsaicin and m-xylene by 100% and 65%, respectively, but not to c48/80. Tacrolimus ointment significantly inhibited the skin response induced by m-xylene and c48/80, regardless of pretreatment with capsaicin. However, topical tacrolimus did not influence the skin response induced by capsaicin. We also evaluated whether topical capsaicin and m-xylene, and intracutaneous c48/80 cause mast cell degranulation in skin treated with tacrolimus. Mast cell degranulation was microscopically assessed. Topical tacrolimus only significantly suppressed degranulation induced by m-xylene and c48/80. Our data shows that tacrolimus ointment partially inhibits plasma leakage and mast cell degranulation in rat skin induced by m-xylene and c48/80 but not capsaicin, suggesting that the inhibitory effect is not associated with a reduction in neurogenic-mediated mechanisms.

  1. Comparative study on skin dose measurement using MOSFET and TLD for pediatric patients with acute lymphatic leukemia.

    PubMed

    Al-Mohammed, Huda I; Mahyoub, Fareed H; Moftah, Belal A

    2010-07-01

    The object of this study was to compare the difference of skin dose measured in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using metal oxide semiconductor field-effect transistors (mobile MOSFET dose verification system (TN-RD-70-W) and thermoluminescent dosimeters (TLD-100 chips, Harshaw/ Bicron, OH, USA). Because TLD has been the most-commonly used technique in the skin dose measurement of TBI, the aim of the present study is to prove the benefit of using the mobile MOSFET (metal oxide semiconductor field effect transistor) dosimeter, for entrance dose measurements during the total body irradiation (TBI) over thermoluminescent dosimeters (TLD). The measurements involved 10 pediatric patients ages between 3 and 14 years. Thermoluminescent dosimeters and MOSFET dosimetry were performed at 9 different anatomic sites on each patient. The present results show there is a variation between skin dose measured with MOSFET and TLD in all patients, and for every anatomic site selected, there is no significant difference in the dose delivered using MOSFET as compared to the prescribed dose. However, there is a significant difference for every anatomic site using TLD compared with either the prescribed dose or MOSFET. The results indicate that the dosimeter measurements using the MOSFET gave precise measurements of prescribed dose. However, TLD measurement showed significant increased skin dose of cGy as compared to either prescribed dose or MOSFET group. MOSFET dosimeters provide superior dose accuracy for skin dose measurement in TBI as compared with TLD.

  2. Primary Severe Acute Respiratory Syndrome Coronavirus Infection Limits Replication but Not Lung Inflammation upon Homologous Rechallenge

    PubMed Central

    Clay, Candice; Donart, Nathan; Fomukong, Ndingsa; Knight, Jennifer B.; Lei, Wanli; Price, Lance; Hahn, Fletcher; Van Westrienen, Jesse

    2012-01-01

    Our knowledge regarding immune-protective and immunopathogenic events in severe acute respiratory syndrome coronavirus (SARS-CoV) infection is limited, and little is known about the dynamics of the immune response at the primary site of disease. Here, an African green monkey (AGM) model was used to elucidate immune mechanisms that facilitate viral clearance but may also contribute to persistent lung inflammation following SARS-CoV infection. During primary infection, SARS-CoV replicated in the AGM lung for up to 10 days. Interestingly, lung inflammation was more prevalent following viral clearance, as leukocyte numbers peaked at 14 days postinfection (dpi) and remained elevated at 28 dpi compared to those of mock-infected controls. Lung macrophages but not dendritic cells were rapidly activated, and both cell types had high activation marker expression at late infection time points. Lung proinflammatory cytokines were induced at 1 to 14 dpi, but most returned to baseline by 28 dpi except interleukin 12 (IL-12) and gamma interferon. In SARS-CoV homologous rechallenge studies, 11 of the 12 animals were free of replicating virus at day 5 after rechallenge. However, incidence and severity of lung inflammation was not reduced despite the limited viral replication upon rechallenge. Evaluating the role of antibodies in immune protection or potentiation revealed a progressive increase in anti-SARS-CoV antibodies in lung and serum that did not correlate temporally or spatially with enhanced viral replication. This study represents one of the first comprehensive analyses of lung immunity, including changes in leukocyte populations, lung-specific cytokines, and antibody responses following SARS-CoV rechallenge in AGMs. PMID:22345460

  3. Analysis of adrenocortical secretory responses during acute an prolonged immune stimulation in inflammation-susceptible and -resistant rat strains.

    PubMed

    Andersson, I M; Lorentzen, J C; Ericsson-Dahlstrand, A

    2000-11-01

    Endogenous corticosterone secreted during immune challenge restricts the inflammatory process and genetic variations in this neuroendocrine-immune dialogue have been suggested to influence an individuals sensitivity to develop chronic inflammatory disorders. We have tested inflammation-susceptible Dark Agouti (DA) rats and resistant, MHC-identical, PVG.1AV1 rats for their abilities to secrete corticosterone in response to acute challenge with bacterial lipopolysaccharide (LPS) or a prolonged activation of the nonspecific immune system with arthritogenic yeast beta-glucan. Intravenous injection of LPS triggered equipotent secretion of corticosterone in both rat strains. Interestingly, peak concentrations of corticosterone did not differ significantly between the strains. Intradermal injection of beta-glucan caused severe, monophasic, polyarthritis in DA rats while PVG.1AV1 responded with significantly milder joint inflammation. Importantly, serial sampling of plasma from glucan-injected DA and PVG.1AV1 rats did not reveal elevated concentrations of plasma corticosterone at any time from days 1-30 postinjection compared to preinjection values, in spite of the ongoing inflammatory process. Interestingly, adrenalectomized, beta-glucan-challenged DA rats responded with an aggravated arthritic process, indicating an anti-inflammatory role for the basal levels of corticosterone that were detected in intact DA rats challenged with beta-glucan. Moreover, substitution with subcutaneous corticosterone-secreting pellets, yielding moderate stress-levels, significantly attenuated the arthritic response. In contrast, adrenalectomized and glucan-challenged PVG.1AV1 rats did not respond with an elevated arthritic response, suggesting that these rats contain the arthritic process via corticosterone-independent mechanisms. In conclusion, the hypothalamic-pituitary-adrenal axis in both rat strains exhibited strong activation after challenge with LPS. This contrasted to the basal

  4. Systemic inflammatory response following acute myocardial infarction

    PubMed Central

    Fang, Lu; Moore, Xiao-Lei; Dart, Anthony M; Wang, Le-Min

    2015-01-01

    Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial infarction, and heart failure) in patients with AMI. PMID:26089856

  5. Ion channels in inflammation.

    PubMed

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  6. Inflammation in Acute and Chronic Pancreatitis

    PubMed Central

    Habtezion, Aida

    2015-01-01

    Summary Immune cell contribution to the pathogenesis of acute and chronic pancreatitis is gaining more appreciation and further understanding in immune signaling presents potential therapeutic targets that can alter disease progression. PMID:26107390

  7. The etiology of 'smoker's paradox' in acute myocardial infarction with special emphasis on the association with inflammation.

    PubMed

    Katayama, Toshiro; Iwasaki, Yoshihiro; Sakoda, Naoya; Yoshioka, Masato

    2008-01-01

    Despite increased risk for coronary artery disease and acute myocardial infarction (AMI), prior studies have found that smokers with AMI have lower mortality rates than nonsmokers, a phenomenon often termed 'smoker's paradox'. The present study was designed to examine the etiology of 'smoker's paradox', especially with respect to the association with inflammation. The subjects included 528 consecutive AMI patients who were admitted within 24 hours of onset and underwent successful coronary intervention. Of the 528 subjects, 232 (44%) were smokers. The cardiac mortality rates over a 6 month period was significantly lower in the smoking group than the nonsmoking group (3% versus 9%, P = 0.01). There were significantly more male patients in the smoking group, and the smoking group was significantly younger than the nonsmoking group (P < 0.0001). The value of high sensitivity C-reactive protein (hs-CRP) on admission and 24 hours after onset, and serum amyloid A protein (SAA) were significantly higher, and acute phase BNP was significantly lower (hs-CRP on admission 1.36 +/- 1.03 mg/dL versus 0.75 +/- 0.82 mg/dL, P = 0.02, hs-CRP at 24 hours 3.86 +/- 4.32 mg/dL versus 2.90 +/- 3.46 mg/dL, P = 0.008, SAA; 288 +/- 392 microg/dL versus 176 +/- 206 microg/dL, P < 0.05, BNP; 248 +/- 342 pg/mL versus 444 +/- 496 pg/mL, P = 0.0002) in the smoking group than in the nonsmoking group. The early ST-segment resolution rate was higher in the smoking group compared with the nonsmoking group (80% versus 66%, P = 0.003). The reason why smokers with AMI have lower mortality rates than nonsmokers, the so-called 'smoker's paradox', is believed to be because smoking induces inflammation and smokers may have less damage to microvascular function after primary percutaneous coronary intervention.

  8. GPR43 activation enhances psoriasis-like inflammation through epidermal upregulation of IL-6 and dual oxidase 2 signaling in a murine model.

    PubMed

    Nadeem, Ahmed; Ahmad, Sheikh F; Al-Harbi, Naif O; El-Sherbeeny, Ahmed M; Al-Harbi, Mohammed M; Almukhlafi, Talal S

    2017-05-01

    The gut is densely inhabited by commensal bacteria, which metabolize dietary fibers/undigested carbohydrates and produce short-chain fatty acids such as acetate. GPR43 is one of the receptors to sense short-chain fatty acids, and expressed in various immune and non-immune cells. Acetate/GPR43 signaling has been shown to affect various inflammatory diseases through Th17 responses and NADPH oxidase (NOX)-derived reactive oxygen species (ROS) generation. However, no study has previously explored the effects of GPR43 activation during psoriasis-like inflammation. Therefore, this study investigated the effect of acetate/phenylacetamide (GPR43 agonists) on imiquimod induced skin inflammation in mice. Mice were administered phenylacetamide/acetate followed by assessment of skin inflammation, NOXs (NOX-2, NOX-4, dual oxidases), and Th17 related signaling. Our study showed induction of epidermal GPR43 after imiquimod treatment, i.e. psoriasis-like inflammation. Acetate administration in psoriatic mice led to further increase in skin inflammation (ear thickness/myeloperoxidase activity) with concurrent increase in Th17 immune responses and epidermal dual oxidase-2 signaling. Further, topical application of GPR43 agonist, phenylacetamide led to enhanced ear thickness with concomitant epidermal IL-6 signaling as well as dual oxidase-2 upregulation which may be responsible for increased psoriasis-like inflammation. Taken together, dual oxidase-2 and IL-6 play important roles in GPR43-mediated skin inflammation. The current study suggests that GPR43 activation in psoriatic patients may lead to aggravation of psoriatic inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Multispectral assessment of skin malformations using a modified video-microscope

    NASA Astrophysics Data System (ADS)

    Bekina, A.; Diebele, I.; Rubins, U.; Zaharans, J.; Derjabo, A.; Spigulis, J.

    2012-10-01

    A simplified method is proposed for alternative clinical diagnostics of skin malformations. A modified digital microscope, additionally equipped with a fourcolour LED (450 nm, 545 nm, 660 nm and 940 nm) subsequent illumination system, was applied for assessment of skin cancerous lesions and cutaneous inflammations. Multispectral image analysis was performed to map distributions of skin erythema index, bilirubin index, melanoma/nevus differentiation parameter, and fluorescence indicator. The skin malformation monitoring has shown that it is possible to differentiate melanoma from other pathologies.

  10. Inhibition of carrageenan-induced acute inflammation in mice by oral administration of anthocyanin mixture from wild mulberry and cyanidin-3-glucoside.

    PubMed

    Hassimotto, Neuza Mariko Aymoto; Moreira, Vanessa; do Nascimento, Neide Galvão; Souto, Pollyana Cristina Maggio de Castro; Teixeira, Catarina; Lajolo, Franco Maria

    2013-01-01

    Anthocyanins are flavonoids which demonstrated biological activities in in vivo and in vitro models. Here in the anti-inflammatory properties of an anthocyanin-enriched fraction (AF) extracted from wild mulberry and the cyanidin-3-glucoside (C3G), the most abundant anthocyanin in diet, were studied in two acute inflammation experimental models, in the peritonitis and in the paw oedema assays, both of which were induced by carrageenan (cg) in mice. In each trial, AF and C3G (4 mg/100 g/animal) were orally administered in two distinct protocols: 30 min before and 1 h after cg stimulus. The administration of both AF and C3G suppresses the paw oedema in both administration times (P < 0.05). In the peritonitis, AF and C3G reduced the polymorphonuclear leukocytes (PMN) influx in the peritoneal exudates when administered 1 h after cg injection. AF was more efficient reducing the PMN when administered 30 min before cg. Both AF and C3G were found to suppress mRNA as well as protein levels of COX-2 upregulated by cg in both protocols, but the inhibitory effect on PGE2 production in the peritoneal exudates was observed when administered 30 min before cg (P < 0.05). Our findings suggest that AF and C3G minimize acute inflammation and they present positive contributions as dietary supplements.

  11. Structural Changes in the Skin of Hairless Mice Following Exposure to Sulfur Mustard Correlate with Inflammation and DNA Damage

    PubMed Central

    Joseph, Laurie B.; Gerecke, Donald R.; Heck, Diane E.; Black, Adrienne T.; Sinko, Patrick J.; Cervelli, Jessica A.; Casillas, Robert P.; Babin, Michael C.; Laskin, Debra L.; Laskin, Jeffrey D.

    2011-01-01

    Sulfur mustard (SM, bis(2-chloroethyl)sulfide) is a bifunctional alkylating agent that causes dermal inflammation, edema and blistering. To investigate the pathogenesis of SM-induced injury, we used a vapor cup model which provides an occlusive environment in which SM is in constant contact with the skin. The dorsal skin of SKH-1 hairless mice was exposed to saturated SM vapor or air control. Histopathological changes, inflammatory markers and DNA damage were analyzed 1–14 days later. After 1 day, SM caused epidermal thinning, stratum corneum shedding, basal cell karyolysis, hemorrhage and macrophage and neutrophil accumulation in the dermis. Cleaved caspase-3 and phosphorylated histone 2A.X (phospho-H2A.X), markers of apoptosis and DNA damage, respectively, were increased whereas proliferating cell nuclear antigen (PCNA) was down-regulated after SM exposure. By 3 days, epithelial cell hypertrophy, edema, parakeratosis and loss of epidermal structures were noted. Enzymes generating pro-inflammatory mediators including myeloperoxidase and cyclooxygenase-2 were upregulated. After 7 days, keratin-10, a differentiation marker, was evident in the stratum corneum. This was associated with an underlying eschar, as neoepidermis began to migrate at the wound edges. Trichrome staining revealed increased collagen deposition in the dermis. PCNA expression in the epidermis was correlated with hyperplasia, hyperkeratosis, and parakeratosis. By 14 days, there was epidermal regeneration with extensive hyperplasia, and reduced expression of cleaved caspase-3, cyclooxygenase-2 and phospho-H2A.X. These findings are consistent with the pathophysiology of SM-induced skin injury in humans suggesting that the hairless mouse can be used to investigate the dermatoxicity of vesicants and the potential efficacy of countermeasures. PMID:21672537

  12. Intravital multiphoton tomography as an appropriate tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    NASA Astrophysics Data System (ADS)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Mess, Christian; Dimitrova, Valentina; Schwarz, Martin; Riemann, Iris; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2011-03-01

    Increasing incidence of inflammatory skin diseases such as Atopic Dermatitis (AD) has been noted in the past years. According to recent estimations around 15% of newborn subjects are affected with a disease severity that requires medical treatment. Although its pathogenesis is multifactorial, recent reports indicate that an impaired physical skin barrier predispose for the development of AD. The major part of this barrier is formed by the stratum corneum (SC) wherein corneocytes are embedded in a complex matrix of proteins and lipids. Its components were synthesized in the stratum granulosum (SG) and secreted via lamellar bodies at the SC/SG interface. Within a clinical in vivo study we focused on the skin metabolism at the SC/SG interface in AD affected patients in comparison to healthy subjects. Measurement of fluorescence life-time of NADH provides access to the metabolic state of skin. Due to the application of a 5D intravital tomographic skin analysis we facilitate the non-invasive investigation of human epidermis in the longitudinal course of AD therapy. We could ascertain by blinded analysis of 40 skin areas of 20 patients in a three month follow-up that the metabolic status at the SC/SG interface was altered in AD compromised skin even in non-lesional, apparent healthy skin regions. This illustrates an impaired skin barrier formation even at non-affected skin of AD subjects appearing promotive for the development of acute skin inflammation. Therefore, our findings allow a deeper understanding of the individual disease development and the improved management of the therapeutic intervention in clinical application.

  13. Amino acid supplementation is anabolic during the acute phase of endotoxin-induced inflammation: A human randomized crossover trial.

    PubMed

    Rittig, N; Bach, E; Thomsen, H H; Johannsen, M; Jørgensen, J O; Richelsen, B; Jessen, N; Møller, N

    2016-04-01

    Inflammation is catabolic and causes muscle loss. It is unknown if amino acid supplementation reverses these effects during the acute phase of inflammation. The aim was to test whether amino acid supplementation counteracts endotoxin-induced catabolism. Eight young, healthy, lean males were investigated three times in randomized order: (i) normal conditions (Placebo), (ii) endotoxemia (LPS), and (iii) endotoxemia with amino acid supplementation (LPS + A). Protein kinetics were determined using phenylalanine, tyrosine, and urea tracers. Each study day consisted of a four-hour non-insulin stimulated period and a two-hour hyperinsulinemic euglycemic clamp period. Muscle biopsies were collected once each period. Endotoxin administration created a significant inflammatory response (cytokines, hormones, and vital parameters) without significant differences between LPS and LPS + A. Whole body protein breakdown was elevated during LPS compared with Placebo and LPS + A (p < 0.05). Whole body protein synthesis was higher during LPS + A than both Placebo and LPS (p < 0.003). Furthermore, protein synthesis was higher during LPS than during Placebo (p < 0.02). Net muscle phenylalanine release was markedly decreased during LPS + A (p < 0.004), even though muscle protein synthesis and breakdown rates did not differ significantly between interventions. LPS + A increased mammalian target of rapamycin (mTOR) phosphorylation (p < 0.05) and eukaryotic translation factor 4E-binding protein 1 (4EBP1) phosphorylation (p = 0.007) without activating AMPK or affecting insulin signaling through Akt. During insulin stimulation net muscle phenylalanine release and protein degradation were further reduced. Amino acid supplementation in the acute phase of inflammation reduces whole body and muscle protein loss, and this effect is associated with activation of mTOR and downstream signaling to protein synthesis through mTORC1, suggesting a therapeutic role for intravenous

  14. Prevention of UV-induced skin damages by 11,14,17-eicosatrienoic acid in hairless mice in vivo.

    PubMed

    Jin, Xing-Ji; Kim, Eun Ju; Oh, In Kyung; Kim, Yeon Kyung; Park, Chi-Hyun; Chung, Jin Ho

    2010-06-01

    Polyunsaturated fatty acids (PUFAs) are known to play important roles in various physiological and pathological processes. Recent studies have shown that some omega-3 (omega-3) PUFAs, such as eicosapentaenoic acid (EPA) and dodecahexaenoic acid (DHA), have protective effects on acute and chronic UV-induced changes. However, the effects of other omega-3 PUFAs including 11,14,17-eicosatrienoic acid (20:3) (ETA) on UV-induced skin damages are poorly understood. In this study, we investigated the cutaneous photoprotective effects of ETA in hairless mice in vivo. Female HR-1 hairless mice were topically treated with vehicle (ethanol:polyethylene glycol=30:70) only, 0.1% ETA, or 1% ETA once a day for 3 successive days after one time UV irradiation (200 mJ/cm(2)) on dorsal skins. Skin biopsy was carried out on the fourth day (72 hr after UV irradiation). We found that topical treatment with ETA attenuated UV-induced epidermal and dermal thickness and infiltration of inflammatory cells, and impairment of skin barrier function. In addition, ETA suppressed the expression of IL-1beta, COX-2, and MMP-13 induced by UV irradiation. Our results show that the topical application of ETA protects against UV-induced skin damage in hairless mice and suggest that ETA can be a potential agent for preventing and/or treating UV-induced inflammation and photoaging.

  15. Physiological and Molecular Effects of in vivo and ex vivo Mild Skin Barrier Disruption.

    PubMed

    Pfannes, Eva K B; Weiss, Lina; Hadam, Sabrina; Gonnet, Jessica; Combardière, Béhazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2018-01-01

    The success of topically applied treatments on skin relies on the efficacy of skin penetration. In order to increase particle or product penetration, mild skin barrier disruption methods can be used. We previously described cyanoacrylate skin surface stripping as an efficient method to open hair follicles, enhance particle penetration, and activate Langerhans cells. We conducted ex vivo and in vivo measurements on human skin to characterize the biological effect and quantify barrier disruption-related inflammation on a molecular level. Despite the known immunostimulatory effects, this barrier disruption and hair follicle opening method was well accepted and did not result in lasting changes of skin physiological parameters, cytokine production, or clinical side effects. Only in ex vivo human skin did we find a discrete increase in IP-10, TGF-β, IL-8, and GM-CSF mRNA. The data underline the safety profile of this method and demonstrate that the procedure per se does not cause substantial inflammation or skin damage, which is also of interest when applied to non-invasive sampling of biomarkers in clinical trials. © 2018 S. Karger AG, Basel.

  16. [Hygienic study and evaluation of textile materials with reduced combustibility with reference to the use of the new anti-inflammable preparations Pyrofix 2 and Torflam].

    PubMed

    Uzunova, S; Baĭnova, A; Iordanova, I; Dolova, D

    1986-01-01

    The new anti-flammable preparations, proposed by the Higher Chemical Technology Institute (Sofia), were studied, namely: Pyrofix 2--for treatment of textile materials and Torflam--for production of anti-inflammable polyester fibres. The following parameters were studied: skin-irritating and skin-sensitizing effect of both preparations, skin toxic effect of Pyrofix 2 and migration of chemicals from the anti-inflammable textile materials (from the composition of the preparations used). The results obtained revealed the absence of skin-irritating and skin-sensitizing effect of both preparations and cumulative dermal toxicity of Pyrofix 2. The textile materials with reduced combustibility are chemically stable and do not release compounds in the contact aqueous medium, imitating the underclothes space. Formaldehyde from recipe for the treatment of Pyrofix 2 migrates in the air environment. In conclusion, Pyrofix 2 could be applied for the final anti-inflammable treatment of the textile materials for industrial needs, working garments and everyday textile (with the elimination of formaldehyde compound from the recipe). Torflam could be used in the production of anti-inflammable polyester fibres for textile materials intended for industry and everyday life without immediate contact with the skin of the consumers.

  17. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation

    PubMed Central

    Basil, Maria C.; Levy, Bruce D.

    2017-01-01

    Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids and have important roles in orchestrating the resolution of tissue inflammation — that is, catabasis. Host responses to tissue infection elicit acute inflammation in an attempt to control invading pathogens. SPMs are lipid mediators that are part of a larger family of pro-resolving molecules, which includes proteins and gases, that together restrain inflammation and resolve the infection. These immunoresolvents are distinct from immunosuppressive molecules as they not only dampen inflammation but also promote host defence. Here, we focus primarily on SPMs and their roles in lung infection and inflammation to illustrate the potent actions these mediators play in restoring tissue homeostasis after an infection. PMID:26688348

  18. Consumption of flavanol-rich cocoa acutely increases microcirculation in human skin.

    PubMed

    Neukam, Karin; Stahl, Wilhelm; Tronnier, Hagen; Sies, Helmut; Heinrich, Ulrike

    2007-02-01

    Long term cocoa ingestion leads to an increased resistance against UV-induced erythema and a lowered transepidermal water loss. To investigate the acute effects of a single dose of cocoa rich in flavanols on dermal microcirculation. In a crossover design study, 10 healthy women ingested a cocoa drink (100 ml) with high (329 mg) or low (27 mg) content of flavanols. The major flavanol monomer in both drinks was epicatechin, 61 mg in the high flavanol, and 6.6 mg in the low flavanol product per 100 ml. Dermal blood flow and oxygen saturation of hemoglobin were examined by laser Doppler flowmetry and spectroscopically at 1 mm skin depth at t = 0, 1, 2, 4, and 6 h. At the same time points, plasma levels of total epicatechin (free compound plus conjugates) were measured by means of HPLC. Subsequent to the intake of high flavanol cocoa, dermal blood flow was significantly increased by 1.7-fold at t = 2 h and oxygen saturation was elevated 1.8-fold. No statistically significant changes were found upon intake of low flavanol cocoa. Maximum plasma levels of total epicatechin were observed 1 h after ingestion of the high flavanol cocoa drink, 11.6 +/- 7.4 nmol/l at baseline, and 62.9 +/- 35.8 nmol/l at 1 h. No change of total epicatechin was found in the low flavanol group. Flavanol-rich cocoa consumption acutely increases dermal blood flow and oxygen saturation.

  19. Skin and antioxidants.

    PubMed

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  20. Staphlyococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation.

    PubMed

    Syed, Adnan K; Reed, Tamra J; Clark, Kaitlyn L; Boles, Blaise R; Kahlenberg, J Michelle

    2015-09-01

    Staphylococcus aureus is a human commensal that colonizes the skin. While it is normally innocuous, it has strong associations with atopic dermatitis pathogenesis and has become the leading cause of skin and soft tissue infections in the United States. The factors that dictate the role of S. aureus in disease are still being determined. In this work, we utilized primary keratinocyte culture and an epidermal murine colonization model to investigate the role of S. aureus phenol-soluble modulins (PSMs) in proinflammatory cytokine release and inflammation induction. We demonstrated that many species of Staphylococcus are capable of causing release of interleukin 18 (IL-18) from keratinocytes and that S. aureus PSMs are necessary and sufficient to stimulate IL-18 release from keratinocytes independently of caspase 1. Further, after 7 days of epicutaneous exposure to wild-type S. aureus, but not S. aureus Δpsm, we saw dramatic changes in gross pathology, as well as systemic release of proinflammatory cytokines. This work demonstrates the importance of PSM peptides in S. aureus-mediated inflammatory cytokine release from keratinocytes in vitro and in vivo and further implicates PSMs as important contributors to pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Acute skin toxicity associated with a 1-week schedule of whole breast radiotherapy compared with a standard 3-week regimen delivered in the UK FAST-Forward Trial.

    PubMed

    Brunt, A Murray; Wheatley, Duncan; Yarnold, John; Somaiah, Navita; Kelly, Stephen; Harnett, Adrian; Coles, Charlotte; Goodman, Andrew; Bahl, Amit; Churn, Mark; Zotova, Rada; Sydenham, Mark; Griffin, Clare L; Morden, James P; Bliss, Judith M

    2016-07-01

    FAST-Forward is a phase 3 clinical trial testing a 1-week course of whole breast radiotherapy against the UK standard 3-week regimen after primary surgery for early breast cancer. Two acute skin toxicity substudies were undertaken to test the safety of the test schedules with respect to early skin reactions. Patients were randomly allocated to 40Gy/15 fractions (F)/3-weeks, 27Gy/5F/1-week or 26Gy/5F/1-week. Acute breast skin reactions were graded using RTOG (first substudy) and CTCAE criteria v4.03 (second substudy) weekly during treatment and for 4weeks after treatment ended. Primary endpoint was the proportion of patients within each treatment group with grade ⩾3 toxicity (RTOG and CTCAE, respectively) at any time from the start of radiotherapy to 4weeks after completion. 190 and 162 patients were recruited. In the first substudy, evaluable patients with grade 3 RTOG toxicity were: 40Gy/15F 6/44 (13.6%); 27Gy/5F 5/51 (9.8%); 26Gy/5F 3/52 (5.8%). In the second substudy, evaluable patients with grade 3 CTCAE toxicity were: 40Gy/15F 0/43; 27Gy/5F 1/41 (2.4%); 26Gy/5F 0/53. Acute breast skin reactions with two 1-week schedules of whole breast radiotherapy under test in FAST-Forward were mild. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Protein Palmitoylation by ZDHHC13 Protects Skin against Microbial-Driven Dermatitis.

    PubMed

    Chen, Li-Ying; Yang-Yen, Hsin-Fang; Tsai, Chun-Chou; Thio, Christina Li-Ping; Chuang, Hsiao-Li; Yang, Liang-Tung; Shen, Li-Fen; Song, I-Wen; Liu, Kai-Ming; Huang, Yen-Te; Liu, Fu-Tong; Chang, Ya-Jen; Chen, Yuan-Tsong; Yen, Jeffrey J Y

    2017-04-01

    Atopic dermatitis is a complex chronic inflammatory skin disorder that results from intimate interactions among genetic predisposition, host environment, skin barrier defects, and immunological factors. However, a clear genetic roadmap leading to atopic dermatitis remains to be fully explored. From a genome-wide mutagenesis screen, deficiency of ZDHHC13, a palmitoylacyl transferase, has previously been associated with skin and multitissue inflammatory phenotypes. Here, we report that ZDHHC13 is required for skin barrier integrity and that deficiency of ZDHHC13 renders mice susceptible to environmental bacteria, resulting in persistent skin inflammation and an atopic dermatitis-like disease. This phenotype is ameliorated in a germ-free environment and is also attenuated by antibiotic treatment, but not by deletion of the Rag1 gene, suggesting that a microbial factor triggers inflammation rather than intrinsic adaptive immunity. Furthermore, skin from ZDHHC13-deficient mice has both elevated levels of IL-33 and type 2 innate lymphoid cells, reinforcing the role of innate immunity in the development of atopic dermatitis. In summary, our study suggests that loss of ZDHHC13 in skin impairs the integrity of multiple barrier functions and leads to a dermatitis lesion in response to microbial encounters. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Advanced therapies of skin injuries.

    PubMed

    Maver, Tina; Maver, Uroš; Kleinschek, Karin Stana; Raščan, Irena Mlinarič; Smrke, Dragica Maja

    2015-12-01

    The loss of tissue is still one of the most challenging problems in healthcare. Efficient laboratory expansion of skin tissue to reproduce the skins barrier function can make the difference between life and death for patients with extensive full-thickness burns, chronic wounds, or genetic disorders such as bullous conditions. This engineering has been initiated based on the acute need in the 1980s and today, tissue-engineered skin is the reality. The human skin equivalents are available not only as models for permeation and toxicity screening, but are frequently applied in vivo as clinical skin substitutes. This review aims to introduce the most important recent development in the extensive field of tissue engineering and to describe already approved, commercially available skin substitutes in clinical use.

  4. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats.

    PubMed

    Jung, Kyung Hee; Song, Sun U; Yi, Tacghee; Jeon, Myung-Shin; Hong, Sang-Won; Zheng, Hong-Mei; Lee, Hee-Seung; Choi, Myung-Joo; Lee, Don-Haeng; Hong, Soon-Sun

    2011-03-01

    Acute pancreatitis (AP) has a high mortality rate; repetitive AP induces chronic AP and pancreatic adenocarcinoma. Mesenchymal stem cells (MSCs) have immunoregulatory effects and reduce inflammation. We developed a protocol to isolate human bone marrow-derived clonal MSCs (hcMSCs) from bone marrow aspirate and investigated the effects of these cells in rat models of mild and severe AP. Mild AP was induced in Sprague-Dawley rats by 3 intraperitoneal injections of cerulein (100 μg/kg), given at 2-hour intervals; severe AP was induced by intraparenchymal injection of 3% sodium taurocholate solution. hcMSCs were labeled with CM-1,1'-dioctadecyl-3,3,3'-tetramethylindo-carbocyanine perchloride and administered to rats through the tail vein. hcMSCs underwent self-renewal and had multipotent differentiation capacities and immunoregulatory functions. Greater numbers of infused hcMSCs were detected in pancreas of rats with mild and severe AP than of control rats. Infused hcMSCs reduced acinar-cell degeneration, pancreatic edema, and inflammatory cell infiltration in each model of pancreatitis. The hcMSCs reduced expression of inflammation mediators and cytokines in rats with mild and severe AP. hcMSCs suppressed the mixed lymphocyte reaction and increased expression of Foxp3(+) (a marker of regulatory T cells) in cultured rat lymph node cells. Rats with mild or severe AP that were given infusions of hcMSCs had reduced numbers of CD3(+) T cells and increased expression of Foxp3(+) in pancreas tissues. hcMSCs reduced inflammation and damage to pancreatic tissue in a rat model of AP; they reduced levels of cytokines and induced numbers of Foxp3(+) regulatory T cells. hcMSCs might be developed as a cell therapy for pancreatitis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Sulforaphane suppresses ultraviolet B-induced inflammation in HaCaT keratinocytes and HR-1 hairless mice.

    PubMed

    Shibata, Akira; Nakagawa, Kiyotaka; Yamanoi, Hiroko; Tsuduki, Tsuyoshi; Sookwong, Phumon; Higuchi, Ohki; Kimura, Fumiko; Miyazawa, Teruo

    2010-08-01

    Ultraviolet B (UVB) irradiation induces skin damage and inflammation. One way to reduce the inflammation is via the use of molecules termed photochemopreventive agents. Sulforaphane (4-methylsulfinylbutyl isothiocyanate, SF), which is found in cruciferous vegetables, is known for its potent physiological properties. This study was designed to evaluate the effect of SF on skin inflammation in vitro and in vivo. In in vitro study using immortalized human keratinocytes (HaCaT), UVB caused marked inflammatory responses [i.e., decrease of HaCaT viability and increase of production of an inflammatory marker interleukin-6 (IL-6)]. SF recovered the cell proliferation and suppressed the IL-6 production. These anti-inflammatory effects of SF were explained by its ability to reduce UVB-induced inflammatory gene expressions [IL-6, IL-1beta and cyclooxgenase-2 (COX-2)]. Because SF seems to have an impact on COX-2 expression, we focused on COX-2 and found that SF reduced UVB-induced COX-2 protein expression. In support of this, PGE(2) released from HaCaT was suppressed by SF. Western blot analysis revealed that SF inhibited p38, ERK and SAPK/JNK activation, indicating that the inhibition of mitogen-activated protein kinases (MAPK) by SF would attenuate the expression of inflammatory mediators (e.g., COX-2), thereby reducing inflammatory responses. Moreover, we conducted skin thickening assay using HR-1 hairless mice and found that UVB-induced skin thickness, COX-2 protein expression and hyperplasia were all suppressed by feeding SF to the mice. These results suggest that SF has a potential use as a compound for protection against UVB-induced skin inflammation. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate

    PubMed Central

    Kostarnoy, Alexey V.; Gancheva, Petya G.; Lepenies, Bernd; Tukhvatulin, Amir I.; Dzharullaeva, Alina S.; Polyakov, Nikita B.; Grumov, Daniil A.; Egorova, Daria A.; Kulibin, Andrey Y.; Bobrov, Maxim A.; Malolina, Ekaterina A.; Soloviev, Andrey I.; Maltseva, Diana V.; Sakharov, Dmitry A.; Tonevitsky, Alexander G.; Verkhovskaya, Lyudmila V.; Logunov, Denis Y.; Naroditsky, Boris S.; Gintsburg, Alexander L.

    2017-01-01

    Sterile (noninfected) inflammation underlies the pathogenesis of many widespread diseases, such as allergies and autoimmune diseases. The evolutionarily conserved innate immune system is considered to play a key role in tissue injury recognition and the subsequent development of sterile inflammation; however, the underlying molecular mechanisms are not yet completely understood. Here, we show that cholesterol sulfate, a molecule present in relatively high concentrations in the epithelial layer of barrier tissues, is selectively recognized by Mincle (Clec4e), a C-type lectin receptor of the innate immune system that is strongly up-regulated in response to skin damage. Mincle activation by cholesterol sulfate causes the secretion of a range of proinflammatory mediators, and s.c. injection of cholesterol sulfate results in a Mincle-mediated induction of a severe local inflammatory response. In addition, our study reveals a role of Mincle as a driving component in the pathogenesis of allergic skin inflammation. In a well-established model of allergic contact dermatitis, the absence of Mincle leads to a significant suppression of the magnitude of the skin inflammatory response as assessed by changes in ear thickness, myeloid cell infiltration, and cytokine and chemokine secretion. Taken together, our results provide a deeper understanding of the fundamental mechanisms underlying sterile inflammation. PMID:28292894

  7. Attenuation fluctuations and local dermal reflectivity are indicators of immune cell infiltrate and epidermal hyperplasia in skin inflammation

    NASA Astrophysics Data System (ADS)

    Phillips, Kevin G.; Wang, Yun; Choudhury, Niloy; Levitz, David; Swanzey, Emily; Lagowski, James; Kulesz-Martin, Molly; Jacques, Steven

    2012-02-01

    Psoriasis is a common inflammatory skin disease resulting from genetic and environmental alterations of cutaneous immune responses responsible for skin homeostasis. While numerous therapeutic targets involved in the immunopathogenesis of psoriasis have been identified, the in vivo dynamics of psoriasis remains under investigated. To elucidate the spatial-temporal morphological evolution of psoriasis we undertook in vivo time course focus-tracked optical coherence tomography (OCT) imaging to non-invasively document dermal alterations due to immune cell infiltration and epidermal hyperplasia in an Imiquimod (IMQ) induced model of psoriasis-like inflammation in DBA2/C57Bl6 hybrid mice. Quantitative appraisal of dermal architectural changes was achieved through a three parameter fit of OCT axial scans in the dermis of the form A(z) = ρ exp(-mu;z +ɛ(z)). Ensemble averaging of the fit parameters over 2000 axial scans per mouse in each treatment arm revealed that the local dermal reflectivity ρ, decreased significantly in response to 6 day IMQ treatment (p = 0.0001), as did the standard deviation of the attenuation fluctuation std(ɛ(z)), (p = 0.04), in comparison to cream controls and day 1 treatments. No significant changes were observed in the average dermal attenuation rate, μ. Our results suggest these label-free OCT-based metrics can be deployed to investigate new therapeutic targets in animal models as well as aid in clinical staging of psoriasis in conjunction with the psoriasis area and severity index.

  8. Increased matriptase zymogen activation in inflammatory skin disorders

    PubMed Central

    Chen, Cheng-Jueng; Wu, Bai-Yao; Tsao, Pai-In; Chen, Chi-Yung; Wu, Mei-Hsuan; Chan, Yee Lam E.; Lee, Herng-Sheng; Johnson, Michael D.; Eckert, Richard L.; Chen, Ya-Wen; Chou, Fengpai; Lin, Chen-Yong

    2011-01-01

    Matriptase, a type 2 transmembrane serine protease, and its inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 are required for normal epidermal barrier function, and matriptase activity is tightly regulated during this process. We therefore hypothesized that this protease system might be deregulated in skin disease. To test this, we examined the level and activation state of matriptase in examples of 23 human skin disorders. We first examined matriptase and HAI-1 protein distribution in normal epidermis. Matriptase was detected at high levels at cell-cell junctions in the basal layer and spinous layers but was present at minimal levels in the granular layer. HAI-1 was distributed in a similar pattern, except that high-level expression was retained in the granular layer. This pattern of expression was retained in most skin disorders. We next examined the distribution of activated matriptase. Although activated matriptase is not detected in normal epidermis, a dramatic increase is seen in keratinocytes at the site of inflammation in 16 different skin diseases. To gain further evidence that activation is associated with inflammatory stimuli, we challenged HaCaT cells with acidic pH or H2O2 and observed matriptase activation. These findings suggest that inflammation-associated reactive oxygen species and tissue acidity may enhance matriptase activation in some skin diseases. PMID:21123732

  9. Ultrasonography of Skin Changes in Legs with Chronic Venous Disease.

    PubMed

    Caggiati, A

    2016-10-01

    In daily practice, ultrasonography (US) is used only to designate the location and pattern of venous lesions. Skin US is not performed between routine venous investigations. Skin morphology is evaluated by the same probes used for routine Duplex evaluation of superficial veins. US findings from evident skin lesions are comparatively evaluated with those from the surrounding apparently normal skin and from the contralateral leg. Inflammation and dermal edema can be found in the apparently normal skin of C2 legs. Swollen legs show thickening of the subcutaneous layer as a result of diffuse soaking or anechoic cavities, with or without dermal edema. Chronic hypodermitis is characterized by inflammatory edema in initial phases, and by liposclerosis in advanced cases. Recrudescence of inflammation provokes focal rarefactions of the subcutaneous layer, possibly related to ulcer opening. In legs with venous disorders, sonography refines clinical evaluation of the skin and may reveal changes not highlighted by inspection. Some of these changes could require further investigation because they have not yet been explained or described. Skin sonography should improve knowledge of the natural history of skin changes, as well as contribute to a better grading of venous diseases severity In particular, US evidence of cutaneous and subcutaneous changes in C2 legs should be considered to stratify the treatment in C2 legs, by identifying those in which varicose veins are not simply a cosmetic problem. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Acute Bronchitis

    MedlinePlus

    ... bronchitis? Acute bronchitis is inflammation of your bronchial tree. The bronchial tree consists of tubes that carry air into your ... weeks or months. This happens because the bronchial tree takes a while to heal. A lasting cough ...

  11. Systematic review and network meta-analysis of tedizolid for the treatment of acute bacterial skin and skin structure infections caused by MRSA.

    PubMed

    McCool, Rachael; Gould, Ian M; Eales, Jacqui; Barata, Teresa; Arber, Mick; Fleetwood, Kelly; Glanville, Julie; Kauf, Teresa L

    2017-01-07

    Tedizolid, the active moiety of tedizolid phosphate, is approved in the United States, the European Union, Canada and a number of other countries for the treatment of acute bacterial skin and skin structure infections (ABSSSI) caused by certain susceptible bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). This network meta-analysis (NMA) evaluates the comparative effectiveness of tedizolid and other antibacterials indicated for the treatment of ABSSSI caused by MRSA. Systematic review of 10 databases was undertaken to inform an NMA to estimate the relative effectiveness of tedizolid and established monotherapy comparators (ceftaroline, daptomycin, linezolid, teicoplanin, tigecycline, vancomycin) for treating MRSA-associated ABSSSI. Randomized controlled trials enrolling adults with ABSSSI or complicated skin and skin structure infections caused by suspected/documented MRSA were eligible for inclusion. Networks were developed based on similarity of study design, patient characteristics, outcome measures and available data. Outcomes of interest included clinical response at end of therapy (EOT), post-therapy evaluation (PTE) or test-of-cure assessment and treatment discontinuations resulting from adverse events (AEs). Bayesian NMA was conducted for each outcome using fixed-effects and random effects models. Literature searches identified 3,618 records; 15 trials met the inclusion criteria and were considered suitable for NMA comparison. In fixed-effects models, tedizolid had higher odds of clinical response at EOT (odds ratio [OR], 1.7; credible interval, 1.0, 3.0) and PTE than vancomycin (OR, 1.6; credible interval, 1.1, 2.5). No differences in odds of clinical response at EOT or PTE were observed between tedizolid and other comparators. There was no evidence of a difference among treatments for discontinuation due to AEs. Results from random effects and fixed-effects models were generally consistent. Tedizolid was superior to vancomycin for

  12. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma

    PubMed Central

    Ha, Y; Liu, H; Xu, Z; Yokota, H; Narayanan, S P; Lemtalsi, T; Smith, S B; Caldwell, R W; Caldwell, R B; Zhang, W

    2015-01-01

    Acute glaucoma is a leading cause of irreversible blindness in East Asia. The mechanisms underlying retinal neuronal injury induced by a sudden rise in intraocular pressure (IOP) remain obscure. Here we demonstrate that the activation of CXCL10/CXCR3 axis, which mediates the recruitment and activation of inflammatory cells, has a critical role in a mouse model of acute glaucoma. The mRNA and protein expression levels of CXCL10 and CXCR3 were significantly increased after IOP-induced retinal ischemia. Blockade of the CXCR3 pathway by deleting CXCR3 gene significantly attenuated ischemic injury-induced upregulation of inflammatory molecules (interleukin-1β and E-selectin), inhibited the recruitment of microglia/monocyte to the superficial retina, reduced peroxynitrite formation, and prevented the loss of neurons within the ganglion cell layer. In contrast, intravitreal delivery of CXCL10 increased leukocyte recruitment and retinal cell apoptosis. Inhibition of endoplasmic reticulum (ER) stress with chemical chaperones partially blocked ischemic injury-induced CXCL10 upregulation, whereas induction of ER stress with tunicamycin enhanced CXCL10 expression in retina and primary retinal ganglion cells. Interestingly, deleting CXCR3 attenuated ER stress-induced retinal cell death. In conclusion, these results indicate that ER stress-medicated activation of CXCL10/CXCR3 pathway has an important role in retinal inflammation and neuronal injury after high IOP-induced ischemia. PMID:26448323

  13. Involvement of the cytokine-IDO1-AhR loop in zinc oxide nanoparticle-induced acute pulmonary inflammation.

    PubMed

    Ho, Chia-Chi; Lee, Hui-Ling; Chen, Chao-Yu; Luo, Yueh-Hsia; Tsai, Ming-Hsien; Tsai, Hui-Ti; Lin, Pinpin

    2017-04-01

    Zinc oxide nanoparticles (ZnONPs) are widely used in our daily life, such as in sunscreens and electronic nanodevices. However, pulmonary exposure to ZnONPs causes acute pulmonary inflammation, which is considered as an initial event for various respiratory diseases. Thus, elucidation of the underlying cellular mechanisms of ZnONPs can help us in predicting their potential effects in respiratory diseases. In this study, we observed that ZnONPs increased proinflammatory cytokines, accompanied with an increased expression of aryl hydrocarbon receptor (AhR) and its downstream target cytochrome P450 1A1 (CYP1A1) in macrophages in vitro and in mouse lung epithelia in vivo. Moreover, zinc nitrate, but not silica or titanium dioxide nanoparticles (NPs), had similar effects on macrophages, indicating that the zinc element or ion released from ZnONPs is likely responsible for the activation of the AhR pathway. Cotreatment with an AhR antagonist or AhR knockout reduced ZnONPs-induced cytokine secretion in macrophages or mice, respectively. Furthermore, kynurenine (KYN), an endogenous AhR agonist and a tryptophan metabolite catalyzed by indoleamine 2,3-dioxygenase (IDO), was increased in the serums of mice that aspirated ZnONPs. Consistently, ZnONPs increased IDO1 expression in lung cells in vitro and in vivo. Finally, AhR knockout reduced ZnONPs-induced pulmonary inflammation, cytokine secretion and KYN production in mice, suggesting that AhR activation is involved in ZnONPs-induced cytokine secretion and pulmonary inflammation. In summary, we demonstrated that the pulmonary exposure of ZnONPs stimulated the cytokine-IDO1-AhR loop in the lungs, which has been implied to play roles in immune dysfunctions.

  14. Fluorescent light exposure incites acute and prolonged immune responses in zebrafish (Danio rerio) skin.

    PubMed

    Gonzalez, Trevor J; Lu, Yuan; Boswell, Mikki; Boswell, William; Medrano, Geraldo; Walter, Sean; Ellis, Samuel; Savage, Markita; Varga, Zoltan M; Lawrence, Christian; Sanders, George; Walter, Ronald B

    2018-06-01

    Artificial light produces an emission spectrum that is considerably different than the solar spectrum. Artificial light has been shown to affect various behavior and physiological processes in vertebrates. However, there exists a paucity of data regarding the molecular genetic effects of artificial light exposure. Previous studies showed that one of the commonly used fluorescent light source (FL; 4100K or "cool white") can affect signaling pathways related to maintenance of circadian rhythm, cell cycle progression, chromosome segregation, and DNA repair/recombination in the skin of male Xiphophorus maculatus. These observations raise questions concerning the kinetics of the FL induced gene expression response, and which biological functions become modulated at various times after light exposure. To address these questions, we exposed zebrafish to 4100K FL and utilized RNA-Seq to assess gene expression changes in skin at various times (1 to 12h) after FL exposure. We found 4100K FL incites a robust early (1-2h) transcriptional response, followed by a more protracted late response (i.e., 4-12h). The early transcriptional response involves genes associated with cell migration/infiltration and cell proliferation as part of an overall increase in immune function and inflammation. The protracted late transcriptional response occurs within gene sets predicted to maintain and perpetuate the inflammatory response, as well as suppression of lipid, xenobiotic, and melatonin metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. New aspects in acne inflammation.

    PubMed

    Toyoda, Masahiko; Morohashi, Masaaki

    2003-01-01

    There is ample clinical evidence suggesting that the nervous system such as emotional stress can influence the course of acne. We examined possible participation of cutaneous neurogenic factors including neuropeptides, neuropeptide-degrading enzymes and neurotrophic factors, in association with inflammation in the pathogenesis of acne. Immunohistochemical studies revealed that substance P (SP)-immunoreactive nerve fibers were in close apposition to the sebaceous glands, and that neutral endopeptidase (NEP) was expressed in the germinative cells of the sebaceous glands in the skin from acne patients. Nerve growth factor showed immunoreactivity only within the germinative cells. In addition, an increase in the number of mast cells and a strong expression of endothelial leukocyte adhesion molecule-1 on the postcapillary venules were observed in adjacent areas to the sebaceous glands. In vitro, the levels and the expression of stem cell factor by fibroblasts were upregulated by SP. When organ-cultured normal skin specimens were exposed to SP, we observed significant increases in the sizes of the sebaceous glands and in the number of sebum vacuoles in sebaceous cells. Furthermore, supplementation of SP to organ-cultured skin induced expression of NEP, and we demonstrated the subcellular localization of NEP in the endoplasmic reticulum and the Golgi apparatus within the sebaceous germinative cells using preembedding immunoelectron microscopy. These findings suggest that SP may stimulate lipogenesis of the sebaceous glands which may be followed by proliferation of Propionibacterium acnes, and may yield a potent influence on the sebaceous glands by provocation of inflammatory reactions via mast cells. Thus, cutaneous neurogenic factors should contribute to onset and/or exacerbation of acne inflammation. Copyright 2003 S. Karger AG, Basel

  16. Hyperenhancement of the Pericardium on Cardiac Magnetic Resonance Imaging: A Marker of Acute Inflammation and Neovascularization or a Chronic Fibrotic State.

    PubMed

    Mullen, Liam; Chew, Pei Gee; Frost, Frederick; Ahmed, Ayesha; Khand, Aleem

    2016-01-01

    In cardiac magnetic resonance imaging, hyperenhancement of the pericardium post gadolinium administration in acute chest pain often signifies pericarditis with an acute inflammatory response and neovascularization. In the context of constrictive pericarditis, case series have indicated that the intensity of hyperenhancement and the thickness of the pericardium imply reversibility of the physiology of the constrictive pericarditis. We present a case of intense hyperenhancement and marked thickening of the pericardium in a patient with constrictive pericarditis with antecedent chest pain. Surgical resection of the pericardium and microscopy revealed a chronic fibrotic state with no evidence of inflammation or neovascularization, thus clarifying the failure of initial medical/anti-inflammatory treatment. Our case highlights the fact that hyperenhancement of the pericardium post gadolinium is non-specific for histology and does not necessarily imply the reversibility of pericardial constriction. © 2016 S. Karger AG, Basel.

  17. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells.

    PubMed

    Gong, Yuanqi; Lan, Haibing; Yu, Zhihong; Wang, Meng; Wang, Shu; Chen, Yu; Rao, Haiwei; Li, Jingying; Sheng, Zhiyong; Shao, Jianghua

    2017-09-16

    Sepsis-related acute lung injury (ALI) is characterized by excessive lung inflammation and apoptosis of alveolar epithelial cells resulting in acute hypoxemic respiratory failure. Recent studies indicated that anaerobic glycolysis play an important role in sepsis. However, whether inhibition of aerobic glycolysis exhibits beneficial effect on sepsis-induced ALI is not known. In vivo, a cecal ligation and puncture (CLP)-induced ALI mouse model was set up and mice treated with glycolytic inhibitor 3PO after CLP. The mice treated with the 3PO ameliorated the survival rate, histopathological changes, lung inflammation, lactate increased and lung apoptosis of mice with CLP-induced sepsis. In vitro, the exposure of human alveolar epithelial A549 cells to lipopolysaccharide (LPS) resulted in cell apoptosis, inflammatory cytokine production, enhanced glycolytic flux and reactive oxygen species (ROS) increased. While these changes were attenuated by 3PO treatment. Sequentially, treatment of A549 cells with lactate caused cell apoptosis and enhancement of ROS. Pretreatment with N-acetylcysteine (NAC) significantly lowered LPS and lactate-induced the generation of ROS and cell apoptosis in A549 cells. Therefore, these results indicate that anaerobic glycolysis may be an important contributor in cell apoptosis of sepsis-related ALI. Moreover, LPS specifically induces apoptotic insults to A549 cell through lactate-mediated enhancement of ROS. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Structural changes in the skin of hairless mice following exposure to sulfur mustard correlate with inflammation and DNA damage.

    PubMed

    Joseph, Laurie B; Gerecke, Donald R; Heck, Diane E; Black, Adrienne T; Sinko, Patrick J; Cervelli, Jessica A; Casillas, Robert P; Babin, Michael C; Laskin, Debra L; Laskin, Jeffrey D

    2011-10-01

    Sulfur mustard (SM, bis(2-chloroethyl)sulfide) is a bifunctional alkylating agent that causes dermal inflammation, edema and blistering. To investigate the pathogenesis of SM-induced injury, we used a vapor cup model which provides an occlusive environment in which SM is in constant contact with the skin. The dorsal skin of SKH-1 hairless mice was exposed to saturated SM vapor or air control. Histopathological changes, inflammatory markers and DNA damage were analyzed 1-14 days later. After 1 day, SM caused epidermal thinning, stratum corneum shedding, basal cell karyolysis, hemorrhage and macrophage and neutrophil accumulation in the dermis. Cleaved caspase-3 and phosphorylated histone 2A.X (phospho-H2A.X), markers of apoptosis and DNA damage, respectively, were increased whereas proliferating cell nuclear antigen (PCNA) was down-regulated after SM exposure. By 3 days, epithelial cell hypertrophy, edema, parakeratosis and loss of epidermal structures were noted. Enzymes generating pro-inflammatory mediators including myeloperoxidase and cyclooxygenase-2 were upregulated. After 7 days, keratin-10, a differentiation marker, was evident in the stratum corneum. This was associated with an underlying eschar, as neoepidermis began to migrate at the wound edges. Trichrome staining revealed increased collagen deposition in the dermis. PCNA expression in the epidermis was correlated with hyperplasia, hyperkeratosis, and parakeratosis. By 14 days, there was epidermal regeneration with extensive hyperplasia, and reduced expression of cleaved caspase-3, cyclooxygenase-2 and phospho-H2A.X. These findings are consistent with the pathophysiology of SM-induced skin injury in humans suggesting that the hairless mouse can be used to investigate the dermatoxicity of vesicants and the potential efficacy of countermeasures. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. 76 FR 9031 - National Institute of Arthritis and Musculoskeletal and Skin Diseases; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... Arthritis and Musculoskeletal and Skin Diseases; Notice of Closed Meeting Pursuant to section 10(d) of the... of Arthritis and Musculoskeletal and Skin Diseases, including consideration of personnel... Immunology and Inflammation Branch and the Laboratory of Skin Biology. Place: National Institutes of Health...

  20. 77 FR 1702 - National Institute of Arthritis and Musculoskeletal and Skin Diseases; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... Arthritis and Musculoskeletal and Skin Diseases; Notice of Closed Meeting Pursuant to section 10(d) of the... of Arthritis and Musculoskeletal and Skin Diseases, including consideration of personnel... Molecular Immunology and Inflammation Branch and the Laboratory of Skin Biology. Place: National Institutes...

  1. Inhibition of Carrageenan-Induced Acute Inflammation in Mice by Oral Administration of Anthocyanin Mixture from Wild Mulberry and Cyanidin-3-Glucoside

    PubMed Central

    Hassimotto, Neuza Mariko Aymoto; Moreira, Vanessa; do Nascimento, Neide Galvão; Souto, Pollyana Cristina Maggio de Castro; Teixeira, Catarina; Lajolo, Franco Maria

    2013-01-01

    Anthocyanins are flavonoids which demonstrated biological activities in in vivo and in vitro models. Here in the anti-inflammatory properties of an anthocyanin-enriched fraction (AF) extracted from wild mulberry and the cyanidin-3-glucoside (C3G), the most abundant anthocyanin in diet, were studied in two acute inflammation experimental models, in the peritonitis and in the paw oedema assays, both of which were induced by carrageenan (cg) in mice. In each trial, AF and C3G (4 mg/100 g/animal) were orally administered in two distinct protocols: 30 min before and 1 h after cg stimulus. The administration of both AF and C3G suppresses the paw oedema in both administration times (P < 0.05). In the peritonitis, AF and C3G reduced the polymorphonuclear leukocytes (PMN) influx in the peritoneal exudates when administered 1 h after cg injection. AF was more efficient reducing the PMN when administered 30 min before cg. Both AF and C3G were found to suppress mRNA as well as protein levels of COX-2 upregulated by cg in both protocols, but the inhibitory effect on PGE2 production in the peritoneal exudates was observed when administered 30 min before cg (P < 0.05). Our findings suggest that AF and C3G minimize acute inflammation and they present positive contributions as dietary supplements. PMID:23484081

  2. Protective effects of tiotropium alone or combined with budesonide against cadmium inhalation induced acute neutrophilic pulmonary inflammation in rats

    PubMed Central

    Zhi, Jianming; Gustin, Pascal

    2018-01-01

    As a potent bronchodilator, the anti-inflammatory effects of tiotropium and its interaction with budesonide against cadmium-induced acute pulmonary inflammation were investigated. Compared to values obtained in rats exposed to cadmium, cytological analysis indicated a significant decrease of total cell and neutrophil counts and protein concentration in bronchoalveolar lavage fluid (BALF) in rats pretreated with tiotropium (70μg/15ml or 350μg/15ml). Zymographic tests showed a decrease of MMP-2 activity in BALF in rats pretreated only with high concentration of tiotropium. Histological examination revealed a significant decrease of the severity and extent of inflammatory lung injuries in rats pretreated with both tested concentrations of tiotropium. Though tiotropium (70μg/15ml) or budesonide (250μg/15ml) could not reduce cadmium-induced bronchial hyper-responsiveness, their combination significantly decreased bronchial contractile response to methacholine. These two drugs separately decreased the neutrophil number and protein concentration in BALF but no significant interaction was observed when both drugs were combined. Although no inhibitory effects on MMP-2 and MMP-9 was observed in rats pretreated with budesonide alone, the combination with the ineffective dose of tiotropium induced a significant reduction on these parameters. The inhibitory effect of tiotropium on lung injuries was not influenced by budesonide which alone induced a limited action on the severity and extent of inflammatory sites. Our findings show that tiotropium exerts anti-inflammatory effects on cadmium-induced acute neutrophilic pulmonary inflammation. The combination of tiotropium with budesonide inhibits cadmium-induced inflammatory injuries with a synergistic interaction on MMP-2 and MMP-9 activity and airway hyper-responsiveness. PMID:29489916

  3. Protective effects of tiotropium alone or combined with budesonide against cadmium inhalation induced acute neutrophilic pulmonary inflammation in rats.

    PubMed

    Zhao, Shiwei; Yang, Qi; Yu, Zhixi; Lv, You; Zhi, Jianming; Gustin, Pascal; Zhang, Wenhui

    2018-01-01

    As a potent bronchodilator, the anti-inflammatory effects of tiotropium and its interaction with budesonide against cadmium-induced acute pulmonary inflammation were investigated. Compared to values obtained in rats exposed to cadmium, cytological analysis indicated a significant decrease of total cell and neutrophil counts and protein concentration in bronchoalveolar lavage fluid (BALF) in rats pretreated with tiotropium (70μg/15ml or 350μg/15ml). Zymographic tests showed a decrease of MMP-2 activity in BALF in rats pretreated only with high concentration of tiotropium. Histological examination revealed a significant decrease of the severity and extent of inflammatory lung injuries in rats pretreated with both tested concentrations of tiotropium. Though tiotropium (70μg/15ml) or budesonide (250μg/15ml) could not reduce cadmium-induced bronchial hyper-responsiveness, their combination significantly decreased bronchial contractile response to methacholine. These two drugs separately decreased the neutrophil number and protein concentration in BALF but no significant interaction was observed when both drugs were combined. Although no inhibitory effects on MMP-2 and MMP-9 was observed in rats pretreated with budesonide alone, the combination with the ineffective dose of tiotropium induced a significant reduction on these parameters. The inhibitory effect of tiotropium on lung injuries was not influenced by budesonide which alone induced a limited action on the severity and extent of inflammatory sites. Our findings show that tiotropium exerts anti-inflammatory effects on cadmium-induced acute neutrophilic pulmonary inflammation. The combination of tiotropium with budesonide inhibits cadmium-induced inflammatory injuries with a synergistic interaction on MMP-2 and MMP-9 activity and airway hyper-responsiveness.

  4. Role of Antioxidants and Natural Products in Inflammation

    PubMed Central

    Fard, Masoumeh Tangestani; Tan, Woan Sean; Gothai, Sivapragasam; Kumar, S. Suresh

    2016-01-01

    Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases. PMID:27803762

  5. Inflammatory process induced by carrageenan in adjacent tissue triggers the acute inflammation in deep digital flexor tendon of rats.

    PubMed

    Vieira, Cristiano Pedrozo; De Aro, Andrea Aparecida; Da Ré Guerra, Flávia; De Oliveira, Letícia Prado; De Almeida, Marcos Dos Santos; Pimentel, Edson Rosa

    2013-08-01

    Tendinopathy is a pathology found mainly in the rotator cuff, patellar, Achilles and flexor tendons. Tendinopathy is a significant impediment to performance in athletes and in workers in the labor market. Some studies have indicated that inflammation in adjacent tissues may affect the rotator cuff and Achilles tendon. In this study alterations were verified in the extracellular matrix (ECM) of the deep digital flexor tendon after two periods (12 and 24 hr) of induction inflammation in rat paw. Wistar rats were divided into three groups: those that received injection of 1% carrageenan; those that received 0.9% NaCl; and those that received no application. The tendon was divided into distal (d), proximal (p), and intermediate (i) regions. Biochemical analyses were performed and included non-collagenous proteins (NCP), glycosaminoglycans (GAGs), hydroxyproline (HoPro) and metalloproteinases 2 and 9. Tissue sections were stained with toluidine blue, hematoxylin-eosin, and Ponceau SS and observed under polarization microscopy. Remarkable results were detected that included the presence of MMP-9, degradation of NCP and GAG and the presence of cellular infiltrate closer to digits in d region. The different concentrations of HoPro, as well as alterations in the organization of the collagen fibers showed the collagenous matrix undergoing some alterations. The results indicated that the induced inflammation in rat paw exhibited characteristics similar to the typical acute inflammatory process observed in tendons. Copyright © 2013 Wiley Periodicals, Inc.

  6. [Effects of bloodletting pricking, cupping and surrounding acupuncture on inflammation-related indices in peripheral and local blood in patients with acute herpes zoster].

    PubMed

    Hao, Pengliang; Yang, Yiling; Guan, Ling

    2016-01-01

    To observe the effects of bloodletting pricking, cupping and surrounding acupuncture on blood inflammation-related indices in patients with acute herpes zoster (HZ), and to explore the mechanism of pain control and treatment. A total of 60 patients were randomly divided into an observation group and a control group, 30 cases in each one. In the observation group, the patients were treated with bloodletting pricking at herpes, followed by cupping treatment; also the surrounding acupuncture was performed at injured skin. The treatment was given once a day and once every other day after the first 3 days; totally one-week treatment was given. In the control group, the patients were treated with intravenous drip of acyclovir and oral administration of vitamin B1 and B12, once a day for total one week. The visual analogue scale (VAS) and percentages of neutrophil, lymphocyte in peripheral and local blood were observed before and after treatment in the two groups. After treatment, the score of VAS was significantly reduced in both groups (both P < 0.05); compared with the control group, the score of VAS and the time of pain relieve were significantly improved in the observation group (P < 0.01, P < 0.05). Compared before treatment, the percentages of lymphocyte in peripheral and local blood were reduced after treatment (both P < 0.05) and the percentages of neutrophil in local blood were increased (both P < 0.05). The lymphocyte in local blood was also reduced after treatment in the control group (P < 0.05); compared with peripheral blood in the observation group and local blood in the control group, the percentages of lymphocyte in local blood were reduced (both P < 0.05). The efficacy of bloodletting pricking, cupping and surrounding acupuncture on acute herpes zoster is positive, and it can significantly lower the number of lymphocytes in the local blood and increase the number of neutrophil, which is likely to be one of the anti-virus mechanisms.

  7. Inflammation and Alzheimer’s disease

    PubMed Central

    Akiyama, Haruhiko; Barger, Steven; Barnum, Scott; Bradt, Bonnie; Bauer, Joachim; Cole, Greg M.; Cooper, Neil R.; Eikelenboom, Piet; Emmerling, Mark; Fiebich, Berndt L.; Finch, Caleb E.; Frautschy, Sally; Griffin, W.S.T.; Hampel, Harald; Hull, Michael; Landreth, Gary; Lue, Lih–Fen; Mrak, Robert; Mackenzie, Ian R.; McGeer, Patrick L.; O’Banion, M. Kerry; Pachter, Joel; Pasinetti, Guilio; Plata–Salaman, Carlos; Rogers, Joseph; Rydel, Russell; Shen, Yong; Streit, Wolfgang; Strohmeyer, Ronald; Tooyoma, Ikuo; Van Muiswinkel, Freek L.; Veerhuis, Robert; Walker, Douglas; Webster, Scott; Wegrzyniak, Beatrice; Wenk, Gary; Wyss–Coray, Tony

    2013-01-01

    Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer’s disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid β peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder. PMID:10858586

  8. Deepening our understanding of immune sentinels in the skin

    PubMed Central

    Nestle, Frank O.; Nickoloff, Brian J.

    2007-01-01

    Advances in our understanding of the skin immune system have a major impact on studies of skin autoimmunity, graft-versus-host disease, inflammation, and cancer as well as on the development of novel vaccines and immunotherapy approaches. In this issue of the JCI, Zaba et al. carefully dissected the complex network of DCs and macrophages residing in normal human skin and defined novel phenotypic markers for these immunocytes (see the related article beginning on page 2517). These studies provide the basis for better insight into the role of important immune sentinels contributing to the maintenance of skin tissue homeostasis and lay the foundation for future studies of the skin immune system. PMID:17786233

  9. Pain related inflammation analysis using infrared images

    NASA Astrophysics Data System (ADS)

    Bhowmik, Mrinal Kanti; Bardhan, Shawli; Das, Kakali; Bhattacharjee, Debotosh; Nath, Satyabrata

    2016-05-01

    Medical Infrared Thermography (MIT) offers a potential non-invasive, non-contact and radiation free imaging modality for assessment of abnormal inflammation having pain in the human body. The assessment of inflammation mainly depends on the emission of heat from the skin surface. Arthritis is a disease of joint damage that generates inflammation in one or more anatomical joints of the body. Osteoarthritis (OA) is the most frequent appearing form of arthritis, and rheumatoid arthritis (RA) is the most threatening form of them. In this study, the inflammatory analysis has been performed on the infrared images of patients suffering from RA and OA. For the analysis, a dataset of 30 bilateral knee thermograms has been captured from the patient of RA and OA by following a thermogram acquisition standard. The thermograms are pre-processed, and areas of interest are extracted for further processing. The investigation of the spread of inflammation is performed along with the statistical analysis of the pre-processed thermograms. The objectives of the study include: i) Generation of a novel thermogram acquisition standard for inflammatory pain disease ii) Analysis of the spread of the inflammation related to RA and OA using K-means clustering. iii) First and second order statistical analysis of pre-processed thermograms. The conclusion reflects that, in most of the cases, RA oriented inflammation affects bilateral knees whereas inflammation related to OA present in the unilateral knee. Also due to the spread of inflammation in OA, contralateral asymmetries are detected through the statistical analysis.

  10. Possible Involvement of Liver Resident Macrophages (Kupffer Cells) in the Pathogenesis of Both Intrahepatic and Extrahepatic Inflammation

    PubMed Central

    Kakinuma, Yuki; Kimura, Takuya

    2017-01-01

    Liver resident macrophages designated Kupffer cells (KCs) form the largest subpopulation of tissue macrophages. KCs are involved in the pathogenesis of liver inflammation. However, the role of KCs in the systemic inflammation is still elusive. In this study, we examined whether KCs are involved in not only intrahepatic inflammation but also extrahepatic systemic inflammation. Administration of clodronate liposomes resulted in the KC deletion and in the suppression of liver injury in T cell-mediated hepatitis by ConA as a local acute inflammation model, while the treatment did not influence dextran sulfate sodium- (DSS-) induced colitis featured by weight loss, intestinal shrink, and pathological observation as an ectopic local acute inflammation model. In contrast, KC deletion inhibited collagen-induced arthritis as a model of extrahepatic, systemic chronical inflammation. KC deleted mice showed weaker arthritic scores, less joint swelling, and more joint space compared to arthritis-induced control mice. These results strongly suggest that KCs are involved in not only intrahepatic inflammatory response but also systemic (especially) chronic inflammation. PMID:28804705

  11. Possible Involvement of Liver Resident Macrophages (Kupffer Cells) in the Pathogenesis of Both Intrahepatic and Extrahepatic Inflammation.

    PubMed

    Kakinuma, Yuki; Kimura, Takuya; Watanabe, Yoshifumi

    2017-01-01

    Liver resident macrophages designated Kupffer cells (KCs) form the largest subpopulation of tissue macrophages. KCs are involved in the pathogenesis of liver inflammation. However, the role of KCs in the systemic inflammation is still elusive. In this study, we examined whether KCs are involved in not only intrahepatic inflammation but also extrahepatic systemic inflammation. Administration of clodronate liposomes resulted in the KC deletion and in the suppression of liver injury in T cell-mediated hepatitis by ConA as a local acute inflammation model, while the treatment did not influence dextran sulfate sodium- (DSS-) induced colitis featured by weight loss, intestinal shrink, and pathological observation as an ectopic local acute inflammation model. In contrast, KC deletion inhibited collagen-induced arthritis as a model of extrahepatic, systemic chronical inflammation. KC deleted mice showed weaker arthritic scores, less joint swelling, and more joint space compared to arthritis-induced control mice. These results strongly suggest that KCs are involved in not only intrahepatic inflammatory response but also systemic (especially) chronic inflammation.

  12. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-08-29

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.

  13. Regulation of the macrophage oxytocin receptor in response to inflammation

    PubMed Central

    Szeto, Angela; Sun-Suslow, Ni; Mendez, Armando J.; Hernandez, Rosa I.; Wagner, Klaus V.

    2017-01-01

    It has been demonstrated that the neuropeptide oxytocin (OT) attenuates oxidative stress and inflammation in macrophages. In the current study, we examined the role of inflammation on the expression of the oxytocin receptor (OXTR). We hypothesized that OXTR expression is increased during the inflammation through a nuclear factor-κB (NF-κB)-mediated pathway, thus responding as an acute-phase protein. Inflammation was induced by treating macrophages (human primary, THP-1, and murine) with lipopolysaccharide (LPS) and monitored by expression of IL-6. Expression of OXTR and vasopressin receptors was assessed by qPCR, and OXTR expression was confirmed by immunoblotting. Inflammation upregulated OXTR transcription 10- to 250-fold relative to control in THP-1 and human primary macrophages and increased OXTR protein expression. In contrast, vasopressin receptor-2 mRNA expression was reduced following LPS treatment. Blocking NF-κB activation prevented the increase in OXTR transcription. OT treatment of control cells and LPS-treated cells increased ERK1/2 phosphorylation, demonstrating activation of the OXTR/Gαq/11 signaling pathway. OT activation of OXTR reduced secretion of IL-6 in LPS-activated macrophages. Collectively, these findings suggest that OXTR is an acute-phase protein and that its increased expression is regulated by NF-κB and functions to attenuate cellular inflammatory responses in macrophages. PMID:28049625

  14. Autoinflammatory Skin Disorders: The Inflammasomme in Focus

    PubMed Central

    Gurung, Prajwal; Kanneganti, Thirumala-Devi

    2016-01-01

    Autoinflammatory skin disorders are a group of heterogeneous diseases that include diseases such as cryopyrin-associated periodic syndrome (CAPS) and familial Mediterranean fever (FMF). Therapeutic strategies targeting IL-1 cytokines have proved helpful in ameliorating some of these diseases. While inflammasomes are the major regulators of IL-1 cytokines, inflammasome-independent complexes can also process IL-1 cytokines. Herein, we focus on recent advances in our understanding of how IL-1 cytokines, stemming from inflammasome-dependent and -independent pathways are involved in the regulation of skin conditions. Importantly, we discuss several mouse models of skin inflammation generated to help elucidate the basic cellular and molecular effects and modulation of IL-1 in the skin. Such models offer perspectives on how these signaling pathways could be targeted to improve therapeutic approaches in the treatment of these rare and debilitating inflammatory skin disorders. PMID:27267764

  15. Skin changes in streptozotocin-induced diabetic rats.

    PubMed

    Andrade, Thiago Antônio Moretti; Masson-Meyers, Daniela Santos; Caetano, Guilherme Ferreira; Terra, Vânia Aparecida; Ovidio, Paula Payão; Jordão-Júnior, Alceu Afonso; Frade, Marco Andrey Cipriani

    2017-09-02

    Diabetes can cause serious health complications, which can affect every organ of the body, including the skin. The molecular etiology has not yet been clarified for all diabetic skin conditions. Thus, this study aimed to investigate the changes of diabetes in skin compared to non-diabetic skin in rats. Fifteen days after establishing the diabetic status, skin samples from the dorsum-cervical region were harvested for subsequent analysis of alterations caused by diabetes. Our results demonstrate that diabetes stimulated higher inflammation and oxidative stress in skin, but antioxidant defense levels were lower compared to the non-diabetic group (p < 0.05). This could have been related to a decreased number of blood vessels and low expression of VEGF, eNOS and TGF-β1. Finally, insulin signaling proteins IRS, Akt, Shc and ERK showed a low expression in the diabetic group. Thus, our study shows that the pathology of diabetes induced immunohistopathological and biochemical skin changes compared to non-diabetic skin in rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Inflammation in sickle cell disease.

    PubMed

    Conran, Nicola; Belcher, John D

    2018-01-01

    The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.

  17. P-Selectin Targeted Dexamethasone-Loaded Lipid Nanoemulsions: A Novel Therapy to Reduce Vascular Inflammation

    PubMed Central

    Simion, Viorel; Constantinescu, Cristina Ana; Stan, Daniela; Deleanu, Mariana; Tucureanu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Simionescu, Maya

    2016-01-01

    Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation. PMID:27703301

  18. Can the Hydroxyapatite-Coated Skin-Penetrating Abutment for Bone Conduction Hearing Implants Integrate with the Surrounding Skin?

    PubMed

    van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan

    2015-01-01

    Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.

  19. Characterization of atopic skin and the effect of a hyperforin-rich cream by laser scanning microscopy.

    PubMed

    Meinke, Martina C; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M

    2015-05-01

    Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.

  20. Characterization of atopic skin and the effect of a hyperforin-rich cream by laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Meinke, Martina C.; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M.

    2015-05-01

    Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.

  1. Atomic hydrogen surrounded by water molecules, H(H2O)m, modulates basal and UV-induced gene expressions in human skin in vivo.

    PubMed

    Shin, Mi Hee; Park, Raeeun; Nojima, Hideo; Kim, Hyung-Chel; Kim, Yeon Kyung; Chung, Jin Ho

    2013-01-01

    Recently, there has been much effort to find effective ingredients which can prevent or retard cutaneous skin aging after topical or systemic use. Here, we investigated the effects of the atomic hydrogen surrounded by water molecules, H(H2O)m, on acute UV-induced responses and as well as skin aging. Interestingly, we observed that H(H2O)m application to human skin prevented UV-induced erythema and DNA damage. And H(H2O)m significantly prevented UV-induced MMP-1, COX-2, IL-6 and IL-1β mRNA expressions in human skin in vivo. We found that H(H2O)m prevented UV-induced ROS generation and inhibited UV-induced MMP-1, COX-2 and IL-6 expressions, and UV-induced JNK and c-Jun phosphorylation in HaCaT cells. Next, we investigated the effects of H(H2O)m on intrinsically aged or photoaged skin of elderly subjects. In intrinsically aged skin, H(H2O)m application significantly reduced constitutive expressions of MMP-1, IL-6, and IL-1β mRNA. Additionally, H(H2O)m significantly increased procollagen mRNA and also decreased MMP-1 and IL-6 mRNA expressions in photoaged facial skin. These results demonstrated that local application of H(H2O)m may prevent UV-induced skin inflammation and can modulate intrinsic skin aging and photoaging processes. Therefore, we suggest that modifying the atmospheric gas environment within a room may be a new way to regulate skin functions or skin aging.

  2. Atomic Hydrogen Surrounded by Water Molecules, H(H2O)m, Modulates Basal and UV-Induced Gene Expressions in Human Skin In Vivo

    PubMed Central

    Shin, Mi Hee; Park, Raeeun; Nojima, Hideo; Kim, Hyung-Chel; Kim, Yeon Kyung; Chung, Jin Ho

    2013-01-01

    Recently, there has been much effort to find effective ingredients which can prevent or retard cutaneous skin aging after topical or systemic use. Here, we investigated the effects of the atomic hydrogen surrounded by water molecules, H(H2O)m, on acute UV-induced responses and as well as skin aging. Interestingly, we observed that H(H2O)m application to human skin prevented UV-induced erythema and DNA damage. And H(H2O)m significantly prevented UV-induced MMP-1, COX-2, IL-6 and IL-1β mRNA expressions in human skin in vivo. We found that H(H2O)m prevented UV-induced ROS generation and inhibited UV-induced MMP-1, COX-2 and IL-6 expressions, and UV-induced JNK and c-Jun phosphorylation in HaCaT cells. Next, we investigated the effects of H(H2O)m on intrinsically aged or photoaged skin of elderly subjects. In intrinsically aged skin, H(H2O)m application significantly reduced constitutive expressions of MMP-1, IL-6, and IL-1β mRNA. Additionally, H(H2O)m significantly increased procollagen mRNA and also decreased MMP-1 and IL-6 mRNA expressions in photoaged facial skin. These results demonstrated that local application of H(H2O)m may prevent UV-induced skin inflammation and can modulate intrinsic skin aging and photoaging processes. Therefore, we suggest that modifying the atmospheric gas environment within a room may be a new way to regulate skin functions or skin aging. PMID:23637886

  3. Ovalbumin-induced allergic inflammation lead to structural alterations in mouse model and protective effects of intranasal curcumin: A comparative study.

    PubMed

    Subhashini; Chauhan, P S; Singh, R

    2016-01-01

    Antigen exposure and persistent inflammation leads to structural changes in the asthmatic airways which are collectively termed as "airway remodelling". Presently available asthma medications ameliorate inflammations but are unable to prevent or reverse the airway remodelling process as most of the treatment strategies are only focused on inflammation instead of remodelling. Curcumin, a phytochemical present in the rhizome of Curcuma longa is well known for its anti-inflammatory activity; however, the main drawback is its poor bioavailability which limits its therapeutic approval. So, the effect of nasal curcumin on acute and chronic asthma has been studied where short exposure to ovalbumin (4 days) represents acute phase whereas repeated exposures for longer (twice per week till 5 weeks) represents chronic asthma. Disodium cromoglycate (DSCG, 50mg/kg, i.p.) and dexamethasone (1mg/kg, i.p.) were used as standard drugs in acute and chronic model of asthma respectively. OVA-induced airway inflammation initiated in acute stage led to remodelling due to persistent inflammation, epithelial and sub epithelial thickening (smooth muscle thickening), extracellular matrix (ECM) deposition, goblet cell hyperplasia and mucus plug formation. Intranasal curcumin is effective in inhibiting airway inflammation and remodelling both by maintaining the structural integrity of lungs in terms of inflammation, airway wall thickening and mucus production. Our findings suggest that curcumin administered through nasal route might prove therapeutically efficient in inhibiting allergic airway inflammations and maintaining structural integrity in the mouse model of allergic asthma. This may lead to the development of curcumin aerosol in near future. Copyright © 2016 SEICAP. Published by Elsevier Espana. All rights reserved.

  4. Reduction in Acute Gastroenteritis among Military Trainees: Secondary Effects of a Hygiene-based Cluster-Randomized Trial for Skin and Soft Tissue Infection Prevention

    PubMed Central

    D’Onofrio, Michael J.; Schlett, Carey D.; Millar, Eugene V.; Cui, Tianyuan; Lanier, Jeffrey B.; Law, Natasha N.; Tribble, David R.; Ellis, Michael W.

    2018-01-01

    Military personnel in congregate settings are at increased risk for acute gastroenteritis.1,2 Personal hygiene (eg, frequent hand washing, hand sanitizers, etc.) remains a central strategy. A skin and soft tissue infection (SSTI) prevention trial was conducted among military trainees.3 Trainees were randomized to 1 of 3 groups with incrementally increasing education- and hygiene-based measures. The principal components were promotion of hand washing in addition to a once-weekly application of a chlorhexidine-based body wash. Herein, we report the trial’s impact on acute gastroenteritis. PMID:25695181

  5. Progress and opportunities for tissue-engineered skin

    NASA Astrophysics Data System (ADS)

    MacNeil, Sheila

    2007-02-01

    Tissue-engineered skin is now a reality. For patients with extensive full-thickness burns, laboratory expansion of skin cells to achieve barrier function can make the difference between life and death, and it was this acute need that drove the initiation of tissue engineering in the 1980s. A much larger group of patients have ulcers resistant to conventional healing, and treatments using cultured skin cells have been devised to restart the wound-healing process. In the laboratory, the use of tissue-engineered skin provides insight into the behaviour of skin cells in healthy skin and in diseases such as vitiligo, melanoma, psoriasis and blistering disorders.

  6. Interleukin-22-deficiency and microbiota contribute to the exacerbation of Toxoplasma gondii-induced intestinal inflammation.

    PubMed

    Couturier-Maillard, A; Froux, N; Piotet-Morin, J; Michaudel, C; Brault, L; Le Bérichel, J; Sénéchal, A; Robinet, P; Chenuet, P; Jejou, S; Dumoutier, L; Renauld, J C; Iovanna, J; Huber, S; Quesniaux, Vfj; Sokol, H; Ryffel, B

    2018-05-04

    Upon oral infection with Toxoplasma gondii cysts (76 K strain) tachyzoites are released into the intestinal lumen and cross the epithelial barrier causing damage and acute intestinal inflammation in C57BL/6 (B6) mice. Here we investigated the role of microbiota and IL-22 in T.gondii-induced small intestinal inflammation. Oral T.gondii infection in B6 mice causes inflammation with IFNγ and IL-22 production. In IL-22-deficient mice, T.gondii infection augments the Th1 driven inflammation. Deficiency in either IL-22bp, the soluble IL-22 receptor or Reg3γ, an IL-22-dependent antimicrobial lectin/peptide, did not reduce inflammation. Under germ-free conditions, T.gondii-induced inflammation was reduced in correlation with parasite load. But intestinal inflammation is still present in germ-free mice, at low level, in the lamina propria, independently of IL-22 expression. Exacerbated intestinal inflammation driven by absence of IL-22 appears to be independent of IL-22 deficiency associated-dysbiosis as similar inflammation was observed after fecal transplantation of IL-22 -/- or WT microbiota to germ-free-WT mice. Our results suggest cooperation between parasite and intestinal microbiota in small intestine inflammation development and endogenous IL-22 seems to exert a protective role independently of its effect on the microbiota. In conclusion, IL-22 participates in T.gondii induced acute small intestinal inflammation independently of microbiota and Reg3γ.

  7. Effect of Acute Ozone Induced Airway Inflammation on Human Sympathetic Nerve Traffic: A Randomized, Placebo Controlled, Crossover Study

    PubMed Central

    Tank, Jens; Biller, Heike; Heusser, Karsten; Holz, Olaf; Diedrich, André; Framke, Theodor; Koch, Armin; Grosshennig, Anika; Koch, Wolfgang; Krug, Norbert; Jordan, Jens; Hohlfeld, Jens M.

    2011-01-01

    Background Ozone concentrations in ambient air are related to cardiopulmonary perturbations in the aging population. Increased central sympathetic nerve activity induced by local airway inflammation may be one possible mechanism. Methodology/Principal Findings To elucidate this issue further, we performed a randomized, double-blind, cross-over study, including 14 healthy subjects (3 females, age 22–47 years), who underwent a 3 h exposure with intermittent exercise to either ozone (250 ppb) or clean air. Induced sputum was collected 3 h after exposure. Nineteen to 22 hours after exposure, we recorded ECG, finger blood pressure, brachial blood pressure, respiration, cardiac output, and muscle sympathetic nerve activity (MSNA) at rest, during deep breathing, maximum-inspiratory breath hold, and a Valsalva maneuver. While the ozone exposure induced the expected airway inflammation, as indicated by a significant increase in sputum neutrophils, we did not detect a significant estimated treatment effect adjusted for period on cardiovascular measurements. Resting heart rate (clean air: 59±2, ozone 60±2 bpm), blood pressure (clean air: 121±3/71±2 mmHg; ozone: 121±2/71±2 mmHg), cardiac output (clean air: 7.42±0.29 mmHg; ozone: 7.98±0.60 l/min), and plasma norepinephrine levels (clean air: 213±21 pg/ml; ozone: 202±16 pg/ml), were similar on both study days. No difference of resting MSNA was observed between ozone and air exposure (air: 23±2, ozone: 23±2 bursts/min). Maximum MSNA obtained at the end of apnea (air: 44±4, ozone: 48±4 bursts/min) and during the phase II of the Valsalva maneuver (air: 64±5, ozone: 57±6 bursts/min) was similar. Conclusions/Significance Our study suggests that acute ozone-induced airway inflammation does not increase resting sympathetic nerve traffic in healthy subjects, an observation that is relevant for environmental health. However, we can not exclude that chronic airway inflammation may contribute to sympathetic activation

  8. Effects of acute ingestion of different fats on oxidative stress and inflammation in overweight and obese adults.

    PubMed

    Peairs, Abigail D; Rankin, Janet W; Lee, Yong Woo

    2011-11-07

    Studies show that obese individuals have prolonged elevations in postprandial lipemia and an exacerbated inflammatory response to high fat meals, which can increase risk for cardiovascular diseases. As epidemiological studies indicate an association between type of fat and circulating inflammatory markers, the purpose of this study was to investigate the acute effect of different fat sources on inflammation and oxidative stress in overweight and obese individuals. Eleven overweight and obese subjects consumed three high fat milkshakes rich in monounsaturated fat (MFA), saturated fat (SFA), or long-chain omega 3 polyunsaturated fat (O3FA) in random order. Blood samples collected at baseline, 1, 2, 4, and 6 hours postprandial were analyzed for markers of inflammation (soluble intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor- α (TNF-α), and C-reactive protein (CRP)), oxidative stress (8-epi-prostaglandin-F2α (8-epi) and nuclear factor-κB (NF-κB)), and metabolic factors (glucose, insulin, non-esterified free fatty acids, and triglycerides (TG)). O3FA enhanced NF-kB activation compared to SFA, but did not increase any inflammatory factors measured. Conversely, SFA led to higher ICAM-1 levels than MFA (p = 0.051), while MFA increased TG more than SFA (p < 0.05). CRP increased while TNF-α and 8-epi decreased with no difference between treatments. While most of the inflammatory factors measured had modest or no change following the meal, ICAM-1 and NF-κB responded differently by meal type. These results are provocative and suggest that type of fat in meals may differentially influence postprandial inflammation and endothelial activation. © 2011 Peairs et al; licensee BioMed Central Ltd.

  9. A Phase 3, Randomized, Double-Blind, Multicenter Study To Evaluate the Safety and Efficacy of Intravenous Iclaprim versus Vancomycin for Treatment of Acute Bacterial Skin and Skin Structure Infections Suspected or Confirmed To Be Due to Gram-Positive Pathogens (REVIVE-2 Study).

    PubMed

    Holland, Thomas L; O'Riordan, William; McManus, Alison; Shin, Elliot; Borghei, Ali; File, Thomas M; Wilcox, Mark H; Torres, Antoni; Dryden, Matthew; Lodise, Thomas; Oguri, Toyoko; Corey, G Ralph; McLeroth, Patrick; Shukla, Rajesh; Huang, David B

    2018-05-01

    Iclaprim is a novel diaminopyrimidine antibiotic that may be an effective and safe treatment for serious skin infections. The safety and effectiveness of iclaprim were assessed in a global phase 3, double-blind, randomized, active-controlled trial. Six hundred thirteen adults with acute bacterial skin and skin structure infections (ABSSSIs) suspected or confirmed to be due to Gram-positive pathogens were randomized to iclaprim (80 mg) or vancomycin (15 mg/kg of body weight), both of which were administered intravenously every 12 h for 5 to 14 days. The primary endpoint was a ≥20% reduction in lesion size compared with that at the baseline at 48 to 72 h after the start of administration of study drug in the intent-to-treat population. Among patients randomized to iclaprim, 78.3% (231 of 295) met this primary endpoint, whereas 76.7% (234 of 305) of those receiving vancomycin met this primary endpoint (difference, 1.58%; 95% confidence interval, -5.10% to 8.26%). This met the prespecified 10% noninferiority margin. Iclaprim was well tolerated, with most adverse events being categorized as mild. In conclusion, iclaprim was noninferior to vancomycin in this phase 3 clinical trial for the treatment of acute bacterial skin and skin structure infections. On the basis of these results, iclaprim may be an efficacious and safe treatment for skin infections suspected or confirmed to be due to Gram-positive pathogens. (This trial has been registered at ClinicalTrials.gov under identifier NCT02607618.). Copyright © 2018 American Society for Microbiology.

  10. Simulation of Healing Threshold in Strain-Induced Inflammation Through a Discrete Informatics Model.

    PubMed

    Ibrahim, Israr Bin M; Sarma O V, Sanjay; Pidaparti, Ramana M

    2018-05-01

    Respiratory diseases such as asthma and acute respiratory distress syndrome as well as acute lung injury involve inflammation at the cellular level. The inflammation process is very complex and is characterized by the emergence of cytokines along with other changes in cellular processes. Due to the complexity of the various constituents that makes up the inflammation dynamics, it is necessary to develop models that can complement experiments to fully understand inflammatory diseases. In this study, we developed a discrete informatics model based on cellular automata (CA) approach to investigate the influence of elastic field (stretch/strain) on the dynamics of inflammation and account for probabilistic adaptation based on statistical interpretation of existing experimental data. Our simulation model investigated the effects of low, medium, and high strain conditions on inflammation dynamics. Results suggest that the model is able to indicate the threshold of innate healing of tissue as a response to strain experienced by the tissue. When strain is under the threshold, the tissue is still capable of adapting its structure to heal the damaged part. However, there exists a strain threshold where healing capability breaks down. The results obtained demonstrate that the developed discrete informatics based CA model is capable of modeling and giving insights into inflammation dynamics parameters under various mechanical strain/stretch environments.

  11. Inflammation: maladies, models, mechanisms and molecules.

    PubMed

    Stewart, A G; Beart, P M

    2016-02-01

    The continued focus of attention on the diversity of mechanisms underpinning inflammation has improved our understanding of the potential to target specific pathways in the inflammatory network to achieve meaningful therapeutic gains. In this themed issue of the British Journal of Pharmacology our scope was deliberately broad, ranging across both acute and chronic disease in various organs. Pro- and anti-inflammatory mechanisms receive attention as does the phenotype of macrophages. Whilst the manifestations of neuro-inflammation are less obvious than those in peripheral tissues, central innate and adaptive immunity in brain and the M1/M2 phenotypes of microglia are topics of special interest. The contributions to the inflammatory milieu of cytokines, chemokines and associated signalling cascades are considered. Overall, the coverage herein advances the basic science underpinning our understanding of inflammation and emphasizes its importance in different pathologies. © 2016 The British Pharmacological Society.

  12. Case Report: Clinically amyopathic dermatomyositis presenting acutely with isolated facial edema

    PubMed Central

    Pappa, Efthymia; Gkeka, Marina; Protogerou, Asimina; Marinos, Leonidas; Loupa, Chariclia; Christopoulos, Constantinos

    2018-01-01

    A 45-year-old Asian man presented with acute-onset periorbital and facial edema associated with pyrexia. Muscle weakness was absent. Initial laboratory investigations showed an inflammatory reaction, while screening for infections was negative. Serum muscle enzyme levels were normal. He was hospitalized and treated empirically with antibiotics and corticosteroids, pending the result of facial skin and muscle biopsy. He showed a good clinical and laboratory response but an attempt to discontinue corticosteroids led to a prompt relapse of facial edema and pyrexia, associated with rising laboratory indices of inflammation. Biopsy findings were typical of dermatomyositis. Reintroduction of corticosteroid treatment resulted in complete clinical and laboratory remission. Facial edema as the sole clinical manifestation of dermatomyositis is extremely rare. There have been no previous reports of isolated facial edema in the setting of acute, clinically amyopathic dermatomyositis in adults. A high level of suspicion is required to make the diagnosis in the absence of myopathy and the hallmark cutaneous manifestations of the disease (heliotrope rash, Gottron papules). PMID:29707197

  13. LTβR expression on hematopoietic cells regulates acute inflammation and influences maturation of myeloid subpopulations.

    PubMed

    Wege, Anja K; Huber, Barbara; Wimmer, Nadin; Männel, Daniela N; Hehlgans, Thomas

    2014-07-01

    Lymphotoxin beta-receptor (LTβR) is involved in the formation and maintenance of secondary lymphoid structures, as well as in the regulation of inflammatory responses. Because LTβR lymphoid structure formation continues to develop in infants, we compared two different chimera models: one using adult mice and the other using a transplantation model of neonatal mice. To elucidate the function of LTβR on lymphoid and non-lymphoid cells, we generated bone marrow chimeras on the wild type C57Bl/6 and the LTβR-deficient (LTβR(-/-)) background, and reconstituted the mice with bone marrow cells reciprocally. These chimeric mice were analyzed in the experimental model of acute dextran sulfate sodium-induced colitis. Interestingly, both models revealed not only equal reconstitution levels but also similar immunological responses: LTβR expression on stromal cells is essential for lymph node formation, whereas LTBR on hematopoietic cells is crucial for a decrease in inflammation. In addition, mice lacking LTβR on hematopoietic cells revealed (a) an increase of immature granulocytic cells in the spleen and (b) a reduced proportion of myeloid cells in peripheral blood and spleen expressing CD11b(+)Ly6C(+)Ly6G(-) (myeloid-derived suppressor cells expression profile). In conclusion, LTβR expression on hematopoietic cells seems to be involved in the down-regulation of acute inflammatory reactions paralleled by the appearance of immature myeloid cells. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Ultra-pure soft water ameliorates atopic skin disease by preventing metallic soap deposition in NC/Tnd mice and reduces skin dryness in humans.

    PubMed

    Tanaka, Akane; Matsuda, Akira; Jung, Kyungsook; Jang, Hyosun; Ahn, Ginnae; Ishizaka, Saori; Amagai, Yosuke; Oida, Kumiko; Arkwright, Peter D; Matsuda, Hiroshi

    2015-09-01

    Mineral ions in tap water react with fatty acids in soap, leading to the formation of insoluble precipitate (metallic soap) on skin during washing. We hypothesised that metallic soap might negatively alter skin conditions. Application of metallic soap onto the skin of NC/Tnd mice with allergic dermatitis further induced inflammation with elevation of plasma immunoglobulin E and proinflammatory cytokine expression. Pruritus and dryness were ameliorated when the back of mice was washed with soap in Ca2+- and Mg2+-free ultra-pure soft water (UPSW). Washing in UPSW, but not tap water, also protected the skin of healthy volunteers from the soap deposition. Furthermore, 4 weeks of showering with UPSW reduced dryness and pruritus of human subjects with dry skin. Washing with UPSW may be therapeutically beneficial in patients with skin troubles.

  15. Acute skin lesions after surgical procedures: a clinical approach.

    PubMed

    Borrego, L

    2013-11-01

    In the hospital setting, dermatologists are often required to evaluate inflammatory skin lesions arising during surgical procedures performed in other departments. These lesions can be of physical or chemical origin. Povidone iodine is the most common reported cause of such lesions. If this antiseptic solution remains in contact with the skin in liquid form for a long period of time, it can give rise to serious irritant contact dermatitis in dependent or occluded areas. Less common causes of skin lesions after surgery include allergic contact dermatitis and burns under the dispersive electrode of the electrosurgical device. Most skin lesions that arise during surgical procedures are due to an incorrect application of antiseptic solutions. Special care must therefore be taken during the use of these solutions and, in particular, they should be allowed to dry. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  16. Histopathology of acute human immunodeficiency virus exanthema.

    PubMed Central

    Balslev, E; Thomsen, H K; Weismann, K

    1990-01-01

    Acute exanthema occurs in patients who are human immunodeficiency virus (HIV) positive before they become seropositive. The patients have influenza like symptoms and a macular skin rash on the upper trunk. Histopathological investigation of skin punch biopsy specimens from four patients with acute HIV exanthema showed a normal epidermis and a sparse dermal, mainly perivascular, lymphocytic/histiocytic infiltrate around vessels of the superficial plexus. Histopathological changes of the exanthema of acute HIV infection are non-specific and resemble those of other acute viral exanthema, but when both the histopathological features and the clinical picture are suggestive, the clinician should take into consideration the possibility of HIV infection. Images PMID:2332516

  17. Systemic Inflammation after Third Molar Removal: A Case-Control Study.

    PubMed

    Graziani, F; D'Aiuto, F; Gennai, S; Petrini, M; Nisi, M; Cirigliano, N; Landini, L; Bruno, R M; Taddei, S; Ghiadoni, L

    2017-12-01

    Third molar extraction is one of the most frequent interventions in dentistry. Nevertheless, there is scarce evidence on the host response of individuals with impacted or semi-impacted third molars and the possible effects of surgical removal. A case-control study of 40 patients was designed to evaluate 1) the differences in biomarkers of systemic inflammation, vascular function, and metabolism (high-sensitive C-reactive protein, lipids, fibrinogen, oxidative stress, and endothelial function analysis) and 2) the acute and short-term effects of surgical removal in patients with bilateral impacted or semi-impacted third molars compared to controls with no third molars. Patients undergoing third molar extraction exhibited greater levels of systemic inflammation, oxidative stress, and triglycerides than controls. Raised white blood cell counts as well as peaks of serum levels of C-reactive protein and fibrinogen were noticed in the first postoperative week. Three months after the extraction, all markers returned to baseline values. Malondialdehyde, an indicator of oxidative stress indicator, was significantly reduced after third molar removal. Semi-impacted or impacted third molars are associated with higher systemic inflammation, and their removal may represent a useful human model to study acute inflammation and determine beneficial systemic effects ( ClinicalTrials.gov NCT03048175).

  18. A combination of lactic acid bacteria regulates Escherichia coli infection and inflammation of the bovine endometrium.

    PubMed

    Genís, Sandra; Sánchez-Chardi, Alejandro; Bach, Àlex; Fàbregas, Francesc; Arís, Anna

    2017-01-01

    Uterine function in cattle is compromised by bacterial contamination and inflammation after calving. The objective of this study was to select a combination of lactic acid bacteria (LAB) to decrease endometrium inflammation and Escherichia coli infection. Primary endometrial epithelial cells were cultured in vitro to select the most favorable LAB combination modulating basal tissue inflammation and E. coli infection. Supernatants were obtained to determine expression of pro-inflammatory cytokines, and E. coli infection was evaluated after harvesting the tissue and plate counting. The selected LAB combination was tested in uterus explants to assess its capacity to modulate basal and acute inflammation (associated with E. coli infection). The combination of Lactobacillus rhamnosus, Pediococcus acidilactici, and Lactobacillus reuteri at a ratio of 25:25:2, respectively, reduced E. coli infection in vitro with (89.77%) or without basal tissue inflammation (95.10%) compared with single LAB strains. Lactic acid bacteria treatment reduced CXCL8 and IL1B expression 4.7- and 2.2-fold, respectively, under acute inflammation. Ex vivo, the tested LAB combination reduced acute inflammation under E. coli infection, decreasing IL-8, IL-1β, and IL-6 up to 2.2-, 2.5-, and 2.2-fold, respectively. In the total inflammation model, the LAB combination decreased IL-8 1.6-fold and IL-6 1.2-fold. Ultrastructural evaluation of the tissue suggested no direct interaction between the LAB and E. coli, although pathological effects of E. coli in endometrial cells were greatly diminished or even reversed by the LAB combination. This study shows the promising potential of LAB probiotics for therapeutic use against endometrial inflammation and infection. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Vitamin E improves biochemical indices associated with symptoms of atopic dermatitis-like inflammation in NC/Nga mice.

    PubMed

    Hayashi, Daisuke; Sugaya, Hotaka; Ohkoshi, Takayuki; Sekizawa, Kaori; Takatsu, Hirokatsu; Shinkai, Tadashi; Urano, Shiro

    2012-01-01

    We aimed to define whether vitamin E improves biochemical indices associated with symptoms of atopic dermatitis-like inflammation in NC/Nga mice. After picryl chloride (PC) application to their backs, changes in the content of thiobarbituric acid reactive substances (TBARS) and vitamin E, as well as the activity of antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSHPx) and catalase) were analyzed in the serum and skin of NC/Nga mice during a symptomatic cycle. The levels of inflammatory factors were also assessed, including IgE, cyclooxigenase-2 (COX-2), tumor necrosis factor (TNF-α) and nuclear factor-κB (NF-κB). When allergic dermatitis was induced by the application of PC to the skin of the mice, skin inflammation appeared 2 wk after PC application, with the peak severity of inflammation observed 5 wk after PC application. Subsequently, the animals recovered from the inflammation by 9 wk after PC application. The TBARS content in the skin and serum increased markedly when the symptoms were the most severe, and decreased to levels near those in control mice by 9 wk after PC application. The activities of SOD and GSHPx in the skin and serum were also positively correlated with symptomatic changes; however, no change in catalase activity was observed 5 wk after PC application. Conversely, vitamin E content decreased at the stage of peak severity. The levels of all inflammatory factors analyzed in this study were altered in a manner similar to other indices. Additionally, vitamin E treatment markedly inhibited these PC-induced alterations. On the basis of these results, it is expected that the observed alterations in biochemical indices, which reflect the symptomatic cycle, may be applicable to objective diagnosis and treatment for atopic dermatitis, and that vitamin E may improve the symptoms of AD.

  20. A novel model of inflammatory pain in human skin involving topical application of sodium lauryl sulfate.

    PubMed

    Petersen, L J; Lyngholm, A M; Arendt-Nielsen, L

    2010-09-01

    Sodium lauryl sulfate (SLS) is a known irritant. It releases pro-inflammatory mediators considered pivotal in inflammatory pain. The sensory effects of SLS in the skin remain largely unexplored. In this study, SLS was evaluated for its effect on skin sensory functions. Eight healthy subjects were recruited for this study. Skin sites were randomized to topical SLS 0.25, 0.5, 1, 2% and vehicle for 24 h. Topical capsaicin 1% was applied for 30 min at 24 h after SLS application. Assessments included laser Doppler imaging of local vasodilation and flare reactions, rating of spontaneous pain, assessment of primary thermal and tactile hyperalgesia, and determination of secondary dynamic and static hyperalgesia. SLS induced significant and dose-dependent local inflammation and primary hyperalgesia to tactile and thermal stimulation at 24 h after application, with SLS 2% treatment eliciting results comparable to those observed following treatment with capsaicin 1%. SLS induced no spontaneous pain, small areas of flare, and minimal secondary hyperalgesia. The primary hyperalgesia vanished within 2-3 days, whereas the skin inflammation persisted and was only partly normalized by Day 6. SLS induces profound perturbations of skin sensory functions lasting 2-3 days. SLS-induced inflammation may be a useful model for studying the mechanisms of inflammatory pain.