Science.gov

Sample records for acute sleep restriction

  1. Sleep active cortical neurons expressing neuronal nitric oxide synthase are active after both acute sleep deprivation and chronic sleep restriction.

    PubMed

    Zielinski, M R; Kim, Y; Karpova, S A; Winston, S; McCarley, R W; Strecker, R E; Gerashchenko, D

    2013-09-05

    Non-rapid eye movement (NREM) sleep electroencephalographic (EEG) delta power (~0.5-4 Hz), also known as slow wave activity (SWA), is typically enhanced after acute sleep deprivation (SD) but not after chronic sleep restriction (CSR). Recently, sleep-active cortical neurons expressing neuronal nitric oxide synthase (nNOS) were identified and associated with enhanced SWA after short acute bouts of SD (i.e., 6h). However, the relationship between cortical nNOS neuronal activity and SWA during CSR is unknown. We compared the activity of cortical neurons expressing nNOS (via c-Fos and nNOS immuno-reactivity, respectively) and sleep in rats in three conditions: (1) after 18-h of acute SD; (2) after five consecutive days of sleep restriction (SR) (18-h SD per day with 6h ad libitum sleep opportunity per day); (3) and time-of-day matched ad libitum sleep controls. Cortical nNOS neuronal activity was enhanced during sleep after both 18-h SD and 5 days of SR treatments compared to control treatments. SWA and NREM sleep delta energy (the product of NREM sleep duration and SWA) were positively correlated with enhanced cortical nNOS neuronal activity after 18-h SD but not 5days of SR. That neurons expressing nNOS were active after longer amounts of acute SD (18h vs. 6h reported in the literature) and were correlated with SWA further suggest that these cells might regulate SWA. However, since these neurons were active after CSR when SWA was not enhanced, these findings suggest that mechanisms downstream of their activation are altered during CSR.

  2. Acute sleep restriction effects on emotion responses in 30- to 36-month-old children.

    PubMed

    Berger, Rebecca H; Miller, Alison L; Seifer, Ronald; Cares, Stephanie R; LeBourgeois, Monique K

    2012-06-01

    Early childhood is a period of dramatic change in sleep and emotion processing, as well as a time when disturbance in both domains are first detected. Although sleep is recognized as central in emotion processing and psychopathology, the great majority of experimental data have been collected in adults. We examined the effects of acute sleep restriction (nap deprivation) on toddlers' emotion expression. Ten healthy children (seven females; 30-36 months old) followed a strict sleep schedule (≥12.5 h time in bed per 24-h) for 5 days, before each of two randomly assigned afternoon emotion assessments following Nap and No-Nap conditions (resulting in an 11-day protocol). Children viewed emotion-eliciting pictures (five positive, three neutral, three negative) and completed puzzles (one solvable, one unsolvable). Children's faces were video-recorded, and emotion displays were coded. When sleep restricted, children displayed less confusion in response to neutral pictures, more negativity to neutral and negative pictures, and less positivity to positive pictures. Sleep restriction also resulted in a 34% reduction in positive emotion responses (solvable puzzle), as well as a 31% increase in negative emotion responses and a 39% decrease in confused responses (unsolvable puzzle). These findings suggest sleep is a key factor in how young children respond to their world. When sleep restricted, toddlers are neither able to take full advantage of positive experiences nor are they as adaptive in challenging contexts. If insufficient sleep consistently 'taxes' young children's emotion responses, they may not manage emotion regulation challenges effectively, potentially placing them at risk for future emotional/behavioral problems.

  3. Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction.

    PubMed

    Faraut, Brice; Boudjeltia, Karim Zouaoui; Dyzma, Michal; Rousseau, Alexandre; David, Elodie; Stenuit, Patricia; Franck, Thierry; Van Antwerpen, Pierre; Vanhaeverbeek, Michel; Kerkhofs, Myriam

    2011-01-01

    Understanding the interactions between sleep and the immune system may offer insight into why short sleep duration has been linked to negative health outcomes. We, therefore, investigated the effects of napping and extended recovery sleep after sleep restriction on the immune and inflammatory systems and sleepiness. After a baseline night, healthy young men slept for a 2-h night followed by either a standard 8-h recovery night (n=12), a 30-min nap (at 1 p.m.) in addition to an 8-h recovery night (n=10), or a 10-h extended recovery night (n=9). A control group slept 3 consecutive 8-h nights (n=9). Subjects underwent continuous electroencephalogram polysomnography and blood was sampled every day at 7 a.m. Leukocytes, inflammatory and atherogenesis biomarkers (high-sensitivity C-reactive protein, interleukin-8, myeloperoxidase, fibrinogen and apolipoproteins ApoB/ApoA), sleep patterns and sleepiness were investigated. All parameters remained unchanged in the control group. After sleep restriction, leukocyte and - among leukocyte subsets - neutrophil counts were increased, an effect that persisted after the 8-h recovery sleep, but, in subjects who had a nap or a 10-h recovery sleep, these values returned nearly to baseline. Inflammatory and atherogenesis biomarkers were unchanged except for higher myeloperoxidase levels after sleep restriction. The increased sleepiness after sleep restriction was reversed better in the nap and extended sleep recovery conditions. Saliva cortisol decreased immediately after the nap. Our results indicate that additional recovery sleep after sleep restriction provided by a midday nap prior to recovery sleep or a sleep extended night can improve alertness and return leukocyte counts to baseline values.

  4. Short-term memory deficits correlate with hippocampal-thalamic functional connectivity alterations following acute sleep restriction.

    PubMed

    Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang

    2016-07-21

    Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.

  5. Behavioral and physiological consequences of sleep restriction.

    PubMed

    Banks, Siobhan; Dinges, David F

    2007-08-15

    Adequate sleep is essential for general healthy functioning. This paper reviews recent research on the effects of chronic sleep restriction on neurobehavioral and physiological functioning and discusses implications for health and lifestyle. Restricting sleep below an individual's optimal time in bed (TIB) can cause a range of neurobehavioral deficits, including lapses of attention, slowed working memory, reduced cognitive throughput, depressed mood, and perseveration of thought. Neurobehavioral deficits accumulate across days of partial sleep loss to levels equivalent to those found after 1 to 3 nights of total sleep loss. Recent experiments reveal that following days of chronic restriction of sleep duration below 7 hours per night, significant daytime cognitive dysfunction accumulates to levels comparable to that found after severe acute total sleep deprivation. Additionally, individual variability in neurobehavioral responses to sleep restriction appears to be stable, suggesting a trait-like (possibly genetic) differential vulnerability or compensatory changes in the neurobiological systems involved in cognition. A causal role for reduced sleep duration in adverse health outcomes remains unclear, but laboratory studies of healthy adults subjected to sleep restriction have found adverse effects on endocrine functions, metabolic and inflammatory responses, suggesting that sleep restriction produces physiological consequences that may be unhealthy.

  6. Sleep in patients with restrictive lung disease.

    PubMed

    Won, Christine H J; Kryger, Meir

    2014-09-01

    Restrictive lung disease leads to ventilatory defects and diffusion impairments. These changes may contribute to abnormal nocturnal pathophysiology, including sleep architecture disruption and impaired ventilation and oxygenation. Patients with restrictive lung disease may suffer significant daytime fatigue and dysfunction. Hypercarbia and hypoxemia during sleep may impact progression of lung disease and related symptoms. Little is known about the impact of treatment of sleep disruption on sleep quality and overall prognosis in restrictive lung disease. This review discusses the pathophysiology of sleep and comorbid sleep disorders in restrictive lung diseases including interstitial lung disease, neuromuscular disease, and obesity hypoventilation syndrome.

  7. Increased Sleep Depth in Developing Neural Networks: New Insights from Sleep Restriction in Children.

    PubMed

    Kurth, Salome; Dean, Douglas C; Achermann, Peter; O'Muircheartaigh, Jonathan; Huber, Reto; Deoni, Sean C L; LeBourgeois, Monique K

    2016-01-01

    Brain networks respond to sleep deprivation or restriction with increased sleep depth, which is quantified as slow-wave activity (SWA) in the sleep electroencephalogram (EEG). When adults are sleep deprived, this homeostatic response is most pronounced over prefrontal brain regions. However, it is unknown how children's developing brain networks respond to acute sleep restriction, and whether this response is linked to myelination, an ongoing process in childhood that is critical for brain development and cortical integration. We implemented a bedtime delay protocol in 5- to 12-year-old children to obtain partial sleep restriction (1-night; 50% of their habitual sleep). High-density sleep EEG was assessed during habitual and restricted sleep and brain myelin content was obtained using mcDESPOT magnetic resonance imaging. The effect of sleep restriction was analyzed using statistical non-parametric mapping with supra-threshold cluster analysis. We observed a localized homeostatic SWA response following sleep restriction in a specific parieto-occipital region. The restricted/habitual SWA ratio was negatively associated with myelin water fraction in the optic radiation, a developing fiber bundle. This relationship occurred bilaterally over parieto-temporal areas and was adjacent to, but did not overlap with the parieto-occipital region showing the most pronounced homeostatic SWA response. These results provide evidence for increased sleep need in posterior neural networks in children. Sleep need in parieto-temporal areas is related to myelin content, yet it remains speculative whether age-related myelin growth drives the fading of the posterior homeostatic SWA response during the transition to adulthood. Whether chronic insufficient sleep in the sensitive period of early life alters the anatomical generators of deep sleep slow-waves is an important unanswered question.

  8. Increased Sleep Depth in Developing Neural Networks: New Insights from Sleep Restriction in Children

    PubMed Central

    Kurth, Salome; Dean, Douglas C.; Achermann, Peter; O’Muircheartaigh, Jonathan; Huber, Reto; Deoni, Sean C. L.; LeBourgeois, Monique K.

    2016-01-01

    Brain networks respond to sleep deprivation or restriction with increased sleep depth, which is quantified as slow-wave activity (SWA) in the sleep electroencephalogram (EEG). When adults are sleep deprived, this homeostatic response is most pronounced over prefrontal brain regions. However, it is unknown how children’s developing brain networks respond to acute sleep restriction, and whether this response is linked to myelination, an ongoing process in childhood that is critical for brain development and cortical integration. We implemented a bedtime delay protocol in 5- to 12-year-old children to obtain partial sleep restriction (1-night; 50% of their habitual sleep). High-density sleep EEG was assessed during habitual and restricted sleep and brain myelin content was obtained using mcDESPOT magnetic resonance imaging. The effect of sleep restriction was analyzed using statistical non-parametric mapping with supra-threshold cluster analysis. We observed a localized homeostatic SWA response following sleep restriction in a specific parieto-occipital region. The restricted/habitual SWA ratio was negatively associated with myelin water fraction in the optic radiation, a developing fiber bundle. This relationship occurred bilaterally over parieto-temporal areas and was adjacent to, but did not overlap with the parieto-occipital region showing the most pronounced homeostatic SWA response. These results provide evidence for increased sleep need in posterior neural networks in children. Sleep need in parieto-temporal areas is related to myelin content, yet it remains speculative whether age-related myelin growth drives the fading of the posterior homeostatic SWA response during the transition to adulthood. Whether chronic insufficient sleep in the sensitive period of early life alters the anatomical generators of deep sleep slow-waves is an important unanswered question. PMID:27708567

  9. Semantic congruence reverses effects of sleep restriction on associative encoding.

    PubMed

    Alberca-Reina, Esther; Cantero, Jose L; Atienza, Mercedes

    2014-04-01

    Encoding and memory consolidation are influenced by factors such as sleep and congruency of newly learned information with prior knowledge (i.e., schema). However, only a few studies have examined the contribution of sleep to enhancement of schema-dependent memory. Based on previous studies showing that total sleep deprivation specifically impairs hippocampal encoding, and that coherent schemas reduce the hippocampal consolidation period after learning, we predict that sleep loss in the pre-training night will mainly affect schema-unrelated information whereas sleep restriction in the post-training night will have similar effects on schema-related and unrelated information. Here, we tested this hypothesis by presenting participants with face-face associations that could be semantically related or unrelated under different sleep conditions: normal sleep before and after training, and acute sleep restriction either before or after training. Memory was tested one day after training, just after introducing an interference task, and two days later, without any interference. Significant results were evident on the second retesting session. In particular, sleep restriction before training enhanced memory for semantically congruent events in detriment of memory for unrelated events, supporting the specific role of sleep in hippocampal memory encoding. Unexpectedly, sleep restriction after training enhanced memory for both related and unrelated events. Although this finding may suggest a poorer encoding during the interference task, this hypothesis should be specifically tested in future experiments. All together, the present results support a framework in which encoding processes seem to be more vulnerable to sleep loss than consolidation processes.

  10. Effects of work-related sleep restriction on acute physiological and psychological stress responses and their interactions: A review among emergency service personnel.

    PubMed

    Wolkow, Alexander; Ferguson, Sally; Aisbett, Brad; Main, Luana

    2015-01-01

    Emergency work can expose personnel to sleep restriction. Inadequate amounts of sleep can negatively affect physiological and psychological stress responses. This review critiqued the emergency service literature (e.g., firefighting, police/law enforcement, defense forces, ambulance/paramedic personnel) that has investigated the effect of sleep restriction on hormonal, inflammatory and psychological responses. Furthermore, it investigated if a psycho-physiological approach can help contextualize the significance of such responses to assist emergency service agencies monitor the health of their personnel. The available literature suggests that sleep restriction across multiple work days can disrupt cytokine and cortisol levels, deteriorate mood and elicit simultaneous physiological and psychological responses. However, research concerning the interaction between such responses is limited and inconclusive. Therefore, it is unknown if a psycho-physiological relationship exists and as a result, it is currently not feasible for agencies to monitor sleep restriction related stress based on psycho- physiological interactions. Sleep restriction does however, appear to be a major stressor contributing to physiological and psychological responses and thus, warrants further investigation.

  11. The cortisol awakening response (CAR) in 2- to 4-year-old children: effects of acute nighttime sleep restriction, wake time, and daytime napping.

    PubMed

    Gribbin, Colleen E; Watamura, Sarah Enos; Cairns, Alyssa; Harsh, John R; Lebourgeois, Monique K

    2012-05-01

    The cortisol awakening response (CAR) is presumed critically important for healthy adaptation. The current literature, however, is hampered by systematic measurement difficulties relative to awakening, especially with young children. While reports suggest the CAR is smaller in children than adults, well-controlled research in early childhood is scarce. We examined whether robust CARs exist in 2- to 4-year-old children and if sleep restriction, wake timing, and napping influence the CAR (n = 7). During a 25-day in-home protocol, researchers collected four salivary cortisol samples (0, 15, 30, 45 min post-wake) following five polysomnographic sleep recordings on nonconsecutive days after 4 hr (morning nap), 7 hr (afternoon nap), 10 hr (evening nap), 13 hr (baseline night), and 16 hr (sleep restriction night) of wakefulness (20 samples/child). The CAR was robust after nighttime sleep, diminished after sleep restriction, and smaller but distinct after morning and afternoon (not evening) naps. Cortisol remained elevated 45 min after morning and afternoon naps. .

  12. Maternal dietary restriction alters offspring's sleep homeostasis.

    PubMed

    Shimizu, Noriyuki; Chikahisa, Sachiko; Nishi, Yuina; Harada, Saki; Iwaki, Yohei; Fujihara, Hiroaki; Kitaoka, Kazuyoshi; Shiuchi, Tetsuya; Séi, Hiroyoshi

    2013-01-01

    Nutritional state in the gestation period influences fetal growth and development. We hypothesized that undernutrition during gestation would affect offspring sleep architecture and/or homeostasis. Pregnant female mice were assigned to either control (fed ad libitum; AD) or 50% dietary restriction (DR) groups from gestation day 12 to parturition. After parturition, dams were fed AD chow. After weaning, the pups were also fed AD into adulthood. At adulthood (aged 8-9 weeks), we carried out sleep recordings. Although offspring mice displayed a significantly reduced body weight at birth, their weights recovered three days after birth. Enhancement of electroencephalogram (EEG) slow wave activity (SWA) during non-rapid eye movement (NREM) sleep was observed in the DR mice over a 24-hour period without changing the diurnal pattern or amounts of wake, NREM, or rapid eye movement (REM) sleep. In addition, DR mice also displayed an enhancement of EEG-SWA rebound after a 6-hour sleep deprivation and a higher threshold for waking in the face of external stimuli. DR adult offspring mice exhibited small but significant increases in the expression of hypothalamic peroxisome proliferator-activated receptor α (Pparα) and brain-specific carnitine palmitoyltransferase 1 (Cpt1c) mRNA, two genes involved in lipid metabolism. Undernutrition during pregnancy may influence sleep homeostasis, with offspring exhibiting greater sleep pressure.

  13. Metabolic and hormonal effects of ‘catch-up’ sleep in men with chronic, repetitive, lifestyle-driven sleep restriction

    PubMed Central

    Killick, Roo; Hoyos, Camilla M.; Melehan, Kerri; Dungan, George C.; Poh, Jonathon; Liu, Peter Y.

    2016-01-01

    Summary Objective Acutely restricting sleep worsens insulin sensitivity in healthy individuals whose usual sleep is normal in duration and pattern. The effect of recovery or weekend ‘catch-up’ sleep on insulin sensitivity and metabolically active hormones in individuals with chronic sleep restriction who regularly ‘catch-up’ on sleep at weekends is as yet unstudied. Design 19 men (mean ± SEM age 28.6±2.0years, BMI 26.0±0.8kg/m2) with at least 6 months’ history (5.1±0.9years) of lifestyle driven, restricted sleep during the working week (373±6.6 min/night) with regular weekend ‘catch up’ sleep (weekend sleep extension 37.4±2.3%) completed an in-laboratory, randomised, cross-over study comprising 2 of 3 conditions, stratified by age. Conditions were 3 weekend nights of 10 hours, 6 hours or 10 hours time-in-bed with slow wave sleep suppression using targeted acoustic stimuli. Measurements Insulin sensitivity was measured in the morning following the 3rd intervention night by minimal modelling of 19 samples collected during a 2 hour oral glucose tolerance test. Glucose, insulin, c-peptide, leptin, peptide YY, ghrelin, cortisol, testosterone and luteinising hormone (LH) were measured from daily fasting blood samples; HOMA-IR, HOMA-β and QUICKI were calculated. Results Insulin sensitivity was higher following 3 nights of sleep extension compared to sustained sleep restriction. Fasting insulin, c-peptide, HOMA-IR, HOMA-β, leptin and PYY decreased with ‘catch-up’ sleep, QUICKI and testosterone increased, while morning cortisol and LH did not change. Targeted acoustic stimuli reduced SWS by 23%, but did not alter insulin sensitivity. Conclusions Three nights of ‘catch-up’ sleep improved insulin sensitivity in men with chronic, repetitive sleep restriction. Methods to improve metabolic health by optimising sleep are plausible. PMID:25683266

  14. Behavioral Sleep-Wake Homeostasis and EEG Delta Power Are Decoupled By Chronic Sleep Restriction in the Rat

    PubMed Central

    Stephenson, Richard; Caron, Aimee M.; Famina, Svetlana

    2015-01-01

    Study Objectives: Chronic sleep restriction (CSR) is prevalent in society and is linked to adverse consequences that might be ameliorated by acclimation of homeostatic drive. This study was designed to test the hypothesis that the sleep-wake homeostat will acclimatize to CSR. DESIGN: A four-parameter model of proportional control was used to quantify sleep homeostasis with and without recourse to a sleep intensity function. Setting: Animal laboratory, rodent walking-wheel apparatus. Subjects: Male Sprague-Dawley rats. Interventions: Acute total sleep deprivation (TSD, 1 day × 18 or 24 h, N = 12), CSR (10 days × 18 h TSD, N = 6, or 5 days × 20 h TSD, N = 5). Measurements and Results: Behavioral rebounds were consistent with model predictions for proportional control of cumulative times in wake, nonrapid eye movement sleep (NREM) and rapid eye movement sleep (REM). Delta (Δ) energy homeostasis was secondary to behavioral homeostasis; a biphasic NREM Δ power rebound contributed to the dynamics (rapid response) but not to the magnitude of the rebound in Δ energy. REM behavioral homeostasis was little affected by CSR. NREM behavioral homeostasis was attenuated in proportion to cumulative NREM deficit, whereas the biphasic NREM Δ power rebound was only slightly suppressed, indicating decoupled regulatory mechanisms following CSR. Conclusions: We conclude that sleep homeostasis is achieved through behavioral regulation, that the nonrapid eye movement sleep behavioral homeostat is susceptible to attenuation during chronic sleep restriction and that the concept of sleep intensity is not essential in a model of sleep-wake regulation. Citation: Stephenson R, Caron AM, Famina S. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat. SLEEP 2015;38(5):685–697. PMID:25669184

  15. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation

    NASA Technical Reports Server (NTRS)

    Van Dongen, Hans P A.; Maislin, Greg; Mullington, Janet M.; Dinges, David F.

    2003-01-01

    OBJECTIVES: To inform the debate over whether human sleep can be chronically reduced without consequences, we conducted a dose-response chronic sleep restriction experiment in which waking neurobehavioral and sleep physiological functions were monitored and compared to those for total sleep deprivation. DESIGN: The chronic sleep restriction experiment involved randomization to one of three sleep doses (4 h, 6 h, or 8 h time in bed per night), which were maintained for 14 consecutive days. The total sleep deprivation experiment involved 3 nights without sleep (0 h time in bed). Each study also involved 3 baseline (pre-deprivation) days and 3 recovery days. SETTING: Both experiments were conducted under standardized laboratory conditions with continuous behavioral, physiological and medical monitoring. PARTICIPANTS: A total of n = 48 healthy adults (ages 21-38) participated in the experiments. INTERVENTIONS: Noctumal sleep periods were restricted to 8 h, 6 h or 4 h per day for 14 days, or to 0 h for 3 days. All other sleep was prohibited. RESULTS: Chronic restriction of sleep periods to 4 h or 6 h per night over 14 consecutive days resulted in significant cumulative, dose-dependent deficits in cognitive performance on all tasks. Subjective sleepiness ratings showed an acute response to sleep restriction but only small further increases on subsequent days, and did not significantly differentiate the 6 h and 4 h conditions. Polysomnographic variables and delta power in the non-REM sleep EEG-a putative marker of sleep homeostasis--displayed an acute response to sleep restriction with negligible further changes across the 14 restricted nights. Comparison of chronic sleep restriction to total sleep deprivation showed that the latter resulted in disproportionately large waking neurobehavioral and sleep delta power responses relative to how much sleep was lost. A statistical model revealed that, regardless of the mode of sleep deprivation, lapses in behavioral alertness

  16. Alcohol and Sleep Restriction Combined Reduces Vigilant Attention, Whereas Sleep Restriction Alone Enhances Distractibility

    PubMed Central

    Lee, James; Manousakis, Jessica; Fielding, Joanne; Anderson, Clare

    2015-01-01

    Study Objectives: Alcohol and sleep loss are leading causes of motor vehicle crashes, whereby attention failure is a core causal factor. Despite a plethora of data describing the effect of alcohol and sleep loss on vigilant attention, little is known about their effect on voluntary and involuntary visual attention processes. Design: Repeated-measures, counterbalanced design. Setting: Controlled laboratory setting. Participants: Sixteen young (18–27 y; M = 21.90 ± 0.60 y) healthy males. Interventions: Participants completed an attention test battery during the afternoon (13:00–14:00) under four counterbalanced conditions: (1) baseline; (2) alcohol (0.05% breath alcohol concentration); (3) sleep restriction (02:00–07:00); and (4) alcohol/sleep restriction combined. This test battery included a Psychomotor Vigilance Task (PVT) as a measure of vigilant attention, and two ocular motor tasks—visually guided and antisaccade—to measure the involuntary and voluntary allocation of visual attention. Measurements and Results: Only the combined condition led to reductions in vigilant attention characterized by slower mean reaction time, fastest 10% responses, and increased number of lapses (P < 0.05) on the PVT. In addition, the combined condition led to a slowing in the voluntary allocation of attention as reflected by increased antisaccade latencies (P < 0.05). Sleep restriction alone however increased both antisaccade inhibitory errors [45.8% errors versus < 28.4% all others; P < 0.001] and the involuntary allocation of attention, as reflected by faster visually guided latencies (177.7 msec versus > 185.0 msec all others) to a peripheral target (P < 0.05). Conclusions: Our data reveal specific signatures for sleep related attention failure: the voluntary allocation of attention is impaired, whereas the involuntary allocation of attention is enhanced. This provides key evidence for the role of distraction in attention failure during sleep loss. Citation: Lee J

  17. Optimizing sleep/wake schedules in space: Sleep during chronic nocturnal sleep restriction with and without diurnal naps

    NASA Astrophysics Data System (ADS)

    Mollicone, Daniel J.; Van Dongen, Hans P. A.; Dinges, David F.

    2007-02-01

    Effective sleep/wake schedules for space operations must balance severe time constraints with allocating sufficient time for sleep in order to sustain high levels of neurobehavioral performance. Developing such schedules requires knowledge about the relationship between scheduled "time in bed" (TIB) and actual physiological sleep obtained. A ground-based laboratory study in N=93 healthy adult subjects was conducted to investigate physiological sleep obtained in a range of restricted sleep schedules. Eighteen different conditions with restricted nocturnal anchor sleep, with and without diurnal naps, were examined in a response surface mapping paradigm. Sleep efficiency was found to be a function of total TIB per 24 h regardless of how the sleep was divided among nocturnal anchor sleep and diurnal nap sleep periods. The amounts of sleep stages 1+2 and REM showed more complex relationships with the durations of the anchor and nap sleep periods, while slow-wave sleep was essentially preserved among the different conditions of the experiment. The results of the study indicated that when sleep was chronically restricted, sleep duration was largely unaffected by whether the sleep was placed nocturnally or split between nocturnal anchor sleep periods and daytime naps. Having thus assessed that split-sleep schedules are feasible in terms of obtaining physiological sleep, further research will reveal whether these schedules and the associated variations in the distribution of sleep stages may be advantageous in mitigating neurobehavioral performance impairment in the face of limited time for sleep.

  18. Predicting Risk in Space: Genetic Markers for Differential Vulnerability to Sleep Restriction.

    PubMed

    Goel, Namni; Dinges, David F

    2012-08-01

    Several laboratories have found large, highly reliable individual differences in the magnitude of cognitive performance, fatigue and sleepiness, and sleep homeostatic vulnerability to acute total sleep deprivation and to chronic sleep restriction in healthy adults. Such individual differences in neurobehavioral performance are also observed in space flight as a result of sleep loss. The reasons for these stable phenotypic differential vulnerabilities are unknown: such differences are not yet accounted for by demographic factors, IQ or sleep need, and moreover, psychometric scales do not predict those individuals cognitively vulnerable to sleep loss. The stable, trait-like (phenotypic) inter-individual differences observed in response to sleep loss-with intraclass correlation coefficients accounting for 58%-92% of the variance in neurobehavioral measures- point to an underlying genetic component. To this end, we utilized multi-day highly controlled laboratory studies to investigate the role of various common candidate gene variants-each independently-in relation to cumulative neurobehavioral and sleep homeostatic responses to sleep restriction. These data suggest that common genetic variations (polymorphisms) involved in sleep-wake, circadian, and cognitive regulation may serve as markers for prediction of inter-individual differences in sleep homeostatic and neurobehavioral vulnerability to sleep restriction in healthy adults. Identification of genetic predictors of differential vulnerability to sleep restriction-as determined from candidate gene studies-will help identify astronauts most in need of fatigue countermeasures in space flight and inform medical standards for obtaining adequate sleep in space. This review summarizes individual differences in neurobehavioral vulnerability to sleep deprivation and ongoing genetic efforts to identify markers of such differences.

  19. Predicting risk in space: Genetic markers for differential vulnerability to sleep restriction

    NASA Astrophysics Data System (ADS)

    Goel, Namni; Dinges, David F.

    2012-08-01

    Several laboratories have found large, highly reliable individual differences in the magnitude of cognitive performance, fatigue and sleepiness, and sleep homeostatic vulnerability to acute total sleep deprivation and to chronic sleep restriction in healthy adults. Such individual differences in neurobehavioral performance are also observed in space flight as a result of sleep loss. The reasons for these stable phenotypic differential vulnerabilities are unknown: such differences are not yet accounted for by demographic factors, IQ or sleep need, and moreover, psychometric scales do not predict those individuals cognitively vulnerable to sleep loss. The stable, trait-like (phenotypic) inter-individual differences observed in response to sleep loss—with intraclass correlation coefficients accounting for 58-92% of the variance in neurobehavioral measures—point to an underlying genetic component. To this end, we utilized multi-day highly controlled laboratory studies to investigate the role of various common candidate gene variants—each independently—in relation to cumulative neurobehavioral and sleep homeostatic responses to sleep restriction. These data suggest that common genetic variations (polymorphisms) involved in sleep-wake, circadian, and cognitive regulation may serve as markers for prediction of inter-individual differences in sleep homeostatic and neurobehavioral vulnerability to sleep restriction in healthy adults. Identification of genetic predictors of differential vulnerability to sleep restriction—as determined from candidate gene studies—will help identify astronauts most in need of fatigue countermeasures in space flight and inform medical standards for obtaining adequate sleep in space. This review summarizes individual differences in neurobehavioral vulnerability to sleep deprivation and ongoing genetic efforts to identify markers of such differences.

  20. Sleep Restriction Worsens Mood and Emotion Regulation in Adolescents

    ERIC Educational Resources Information Center

    Baum, Katherine T.; Desai, Anjali; Field, Julie; Miller, Lauren E.; Rausch, Joseph; Beebe, Dean W.

    2014-01-01

    Background: The relationship between inadequate sleep and mood has been well-established in adults and is supported primarily by correlational data in younger populations. Given that adolescents often experience shortened sleep on school nights, we sought to better understand the effect of experimentally induced chronic sleep restriction on…

  1. Changes in Serum TSH and Free T4 during Human Sleep Restriction

    PubMed Central

    Kessler, Lynn; Nedeltcheva, Arlet; Imperial, Jacqueline; Penev, Plamen D.

    2010-01-01

    Study Objectives: To examine whether recurrent sleep restriction is accompanied by changes in measures of thyroid function. Design: Two-period crossover intervention study. Setting: University clinical research center and sleep laboratory. Participants: 11 healthy volunteers (5F/6M) with a mean (± SD) age of 39 ± 5 y and BMI 26.5 ± 1.5 kg/m2. Intervention: Randomized exposure to 14 days of sedentary living with ad libitum food intake and 5.5- vs. 8.5-h overnight sleep opportunity. Measurements and Results: Serum thyroid-stimulating hormone (TSH) and free thyroxine (T4) were measured at the end of each intervention. Partial sleep restriction was accompanied by a modest but statistically significant reduction in TSH and free T4, seen mainly in the female participants of the study. Conclusions: Compared to the well-known rise in TSH and thyroid hormone concentrations during acute sleep loss, tests obtained after 14 days of partial sleep restriction did not show a similar activation of the human thyroid axis. Citation: Kessler L; Nedeltcheva A; Imperial J; Penev PD. Changes in serum TSH and free T4 during human sleep restriction. SLEEP 2010;33(8):1115-1118. PMID:20815195

  2. Cognitive Workload and Sleep Restriction Interact to Influence Sleep Homeostatic Responses

    PubMed Central

    Goel, Namni; Abe, Takashi; Braun, Marcia E.; Dinges, David F.

    2014-01-01

    Study Objectives: Determine the effects of high versus moderate workload on sleep physiology and neurobehavioral measures, during sleep restriction (SR) and no sleep restriction (NSR) conditions. Design: Ten-night experiment involving cognitive workload and SR manipulations. Setting: Controlled laboratory environment. Participants: Sixty-three healthy adults (mean ± standard deviation: 33.2 ± 8.7 y; 29 females), age 22–50 y. Interventions: Following three baseline 8 h time in bed (TIB) nights, subjects were randomized to one of four conditions: high cognitive workload (HW) + SR; moderate cognitive workload (MW) + SR; HW + NSR; or MW + NSR. SR entailed 5 consecutive nights at 4 h TIB; NSR entailed 5 consecutive nights at 8 h TIB. Subjects received three workload test sessions/day consisting of 15-min preworkload assessments, followed by a 60-min (MW) or 120-min (HW) workload manipulation comprised of visually based cognitive tasks, and concluding with 15-min of postworkload assessments. Experimental nights were followed by two 8-h TIB recovery sleep nights. Polysomnography was collected on baseline night 3, experimental nights 1, 4, and 5, and recovery night 1 using three channels (central, frontal, occipital [C3, Fz, O2]). Measurements and Results: High workload, regardless of sleep duration, increased subjective fatigue and sleepiness (all P < 0.05). In contrast, sleep restriction produced cumulative increases in Psychomotor Vigilance Test (PVT) lapses, fatigue, and sleepiness and decreases in PVT response speed and Maintenance of Wakefulness Test (MWT) sleep onset latencies (all P < 0.05). High workload produced longer sleep onset latencies (P < 0.05, d = 0.63) and less wake after sleep onset (P < 0.05, d = 0.64) than moderate workload. Slow-wave energy—the putative marker of sleep homeostasis—was higher at O2 than C3 only in the HW + SR condition (P < 0.05). Conclusions: High cognitive workload delayed sleep onset, but it also promoted sleep homeostatic

  3. Sleep Restriction Impairs Vocabulary Learning when Adolescents Cram for Exams: The Need for Sleep Study

    PubMed Central

    Huang, Sha; Deshpande, Aadya; Yeo, Sing-Chen; Lo, June C.; Chee, Michael W.L.; Gooley, Joshua J.

    2016-01-01

    Study Objectives: The ability to recall facts is improved when learning takes place at spaced intervals, or when sleep follows shortly after learning. However, many students cram for exams and trade sleep for other activities. The aim of this study was to examine the interaction of study spacing and time in bed (TIB) for sleep on vocabulary learning in adolescents. Methods: In the Need for Sleep Study, which used a parallel-group design, 56 adolescents aged 15–19 years were randomly assigned to a week of either 5 h or 9 h of TIB for sleep each night as part of a 14-day protocol conducted at a boarding school. During the sleep manipulation period, participants studied 40 Graduate Record Examination (GRE)-type English words using digital flashcards. Word pairs were presented over 4 consecutive days (spaced items), or all at once during single study sessions (massed items), with total study time kept constant across conditions. Recall performance was examined 0 h, 24 h, and 120 h after all items were studied. Results: For all retention intervals examined, recall of massed items was impaired by a greater amount in adolescents exposed to sleep restriction. In contrast, cued recall performance on spaced items was similar between sleep groups. Conclusions: Spaced learning conferred strong protection against the effects of sleep restriction on recall performance, whereas students who had insufficient sleep were more likely to forget items studied over short time intervals. These findings in adolescents demonstrate the importance of combining good study habits and good sleep habits to optimize learning outcomes. Citation: Huang S, Deshpande A, Yeo SC, Lo JC, Chee MW, Gooley JJ. Sleep restriction impairs vocabulary learning when adolescents cram for exams: the Need for Sleep Study. SLEEP 2016;39(9):1681–1690. PMID:27253768

  4. Sleep restriction can attenuate prioritization benefits on declarative memory consolidation.

    PubMed

    Lo, June C; Bennion, Kelly A; Chee, Michael W L

    2016-12-01

    As chronic sleep restriction is a widespread problem among adolescents, the present study investigated the effects of a 1-week sleep restriction (SR) versus control period on the consolidation of long-term memory for prose passages. We also determined whether the benefit of prioritization on memory is modulated by adequate sleep occurring during consolidation. Fifty-six healthy adolescents (25 male, aged 15-19 years) were instructed to remember a prose passage in which half of the content was highlighted (prioritized), and were told that they would receive an additional bonus for remembering highlighted content. Following an initial free recall test, participants underwent a 7-night period in which they received either a 5-h (SR) or 9-h (control) nightly sleep opportunity, monitored by polysomnography on selected nights. Free recall of the passage was tested at the end of the sleep manipulation period (1 week after encoding), and again 6 weeks after encoding. Recall of highlighted content was superior to that of non-highlighted content at all three time-points (initial, 1 week, 6 weeks). This beneficial effect of prioritization on memory was stronger 1 week relative to a few minutes after encoding for the control, but not the SR group. N3 duration was similar in the control and SR groups. Overall, the present study shows that the benefits of prioritization on memory are enhanced over time, requiring time and sleep to unfold fully. Partial sleep deprivation (i.e. 5-h nocturnal sleep opportunity) may attenuate such benefits, but this may be offset by preservation of N3 sleep duration.

  5. Sleep Modifications in Acute Transient Global Amnesia

    PubMed Central

    Della Marca, Giacomo; Mazza, Marianna; Losurdo, Anna; Testani, Elisa; Broccolini, Aldobrando; Frisullo, Giovanni; Marano, Giuseppe; Morosetti, Roberta; Pilato, Fabio; Profice, Paolo; Vollono, Catello; Di Lazzaro, Vincenzo

    2013-01-01

    Study Objective: Transient global amnesia (TGA) is a temporary memory loss characterized by an abrupt onset of antero-grade and retrograde amnesia, totally reversible. Since sleep plays a major role in memory consolidation, and in the storage of memory-related traces into the brain cortex, the aims of the present study were: (1) to evaluate changes in sleep macro-structure in TGA; (2) to assess modifications in sleep micro-structure in TGA, with particular reference to the arousal EEG and to cyclic alternating pattern (CAP); (3) to compare sleep parameters in TGA patients with a control group of patients with acute ischemic events (“minor stroke” or transient ischemic attack [TIA]) clinically and neuroradiologically “similar” to the TGA. Methods: TGA group: 17 patients, (8 men and 9 women, 60.2 ± 12.5 years). Stroke or TIA (SoT) group: 17 patients hospitalized in the Stroke Unit for recent onset of minor stroke or TIA with hemispheric localization; healthy controls (HC) group: 17 healthy volunteers, matched for age and sex. Patients and controls underwent full-night polysomnography. Results: In the multivariate analysis (conditions TGA, SoT, and HC) a significant effect of the condition was observed for sleep efficiency index, number of awakenings longer 1 min, REM latency, CAP time, and CAP rate. TGA and SoT differed only for CAP time and CAP rate, which were lower in the TGA group. Conclusions: Microstructural modification associated with TGA could be consequent to: (1) hippocampal dysfunction and memory impairment; (2) impairment of arousal-related structures (in particular, cholinergic pathways); (3) emotional distress. Citation: Della Marca G; Mazza M; Losurdo A; Testani E; Broccolini A; Frisullo G; Marano G; Morosetti R; Pilato F; Profice P; Vollono C; Di Lazzaro V. Sleep modifications in acute transient global amnesia. J Clin Sleep Med 2013;9(9):921-927. PMID:23997704

  6. The effects of sleep restriction and sleep deprivation in producing false memories.

    PubMed

    Chatburn, Alex; Kohler, Mark J; Payne, Jessica D; Drummond, Sean P A

    2017-01-01

    False memory has been claimed to be the result of an associative process of generalisation, as well as to be representative of memory errors. These can occur at any stage of memory encoding, consolidation, or retrieval, albeit through varied mechanisms. The aim of this paper is to experimentally determine: (i) if cognitive dysfunction brought about by sleep loss at the time of stimulus encoding can influence false memory production; and (ii) whether this relationship holds across sensory modalities. Subjects undertook both the Deese-Roedigger-McDermott (DRM) false memory task and a visual task designed to produce false memories. Performance was measured while subjects were well-rested (9h Time in Bed or TIB), and then again when subjects were either sleep restricted (4h TIB for 4 nights) or sleep deprived (30h total SD). Results indicate (1) that partial and total sleep loss produced equivalent effects in terms of false and veridical verbal memory, (2) that subjects performed worse after sleep loss (regardless of whether this was partial or total sleep loss) on cued recognition-based false and veridical verbal memory tasks, and that sleep loss interfered with subjects' ability to recall veridical, but not false memories under free recall conditions, and (3) that there were no effects of sleep loss on a visual false memory task. This is argued to represent the dysfunction and slow repair of an online verbal associative process in the brain following inadequate sleep.

  7. Effects of Sustained Sleep Restriction on Mitogen-Stimulated Cytokines, Chemokines and T Helper 1/ T Helper 2 Balance in Humans

    PubMed Central

    Axelsson, John; Rehman, Javaid-ur; Akerstedt, Torbjorn; Ekman, Rolf; Miller, Gregory E.; Höglund, Caroline Olgart; Lekander, Mats

    2013-01-01

    Background Recent studies suggest that acute sleep deprivation disrupts cellular immune responses by shifting T helper (Th) cell activity towards a Th2 cytokine profile. Since little is known about more long-term effects, we investigated how five days of sleep restriction would affect pro-inflammatory, chemotactic, Th1- and Th2 cytokine secretion. Methods Nine healthy males participated in an experimental sleep protocol with two baseline sleep-wake cycles (sleep 23.00 – 07.00 h) followed by 5 days with restricted sleep (03.00 – 07.00 h). On the second baseline day and on the fifth day with restricted sleep, samples were drawn every third hour for determination of cytokines/chemokines (tumor necrosis factor alpha (TNF-α), interleukin (IL) -1β, IL-2, IL-4 and monocyte chemoattractant protein-1 (MCP-1)) after in vitro stimulation of whole blood samples with the mitogen phytohemagglutinin (PHA). Also leukocyte numbers, mononuclear cells and cortisol were analysed. Results 5-days of sleep restriction affected PHA-induced immune responses in several ways. There was a general decrease of IL-2 production (p<.05). A shift in Th1/Th2 cytokine balance was also evident, as determined by a decrease in IL2/IL4 ratio. No other main effects of restricted sleep were shown. Two significant interactions showed that restricted sleep resulted in increased TNF-α and MCP-1 in the late evening and early night hours (p’s<.05). In addition, all variables varied across the 24 h day. Conclusions 5-days of sleep restriction is characterized by a shift towards Th2 activity (i.e. lower 1L-2/IL-4 ratio) which is similar to the effects of acute sleep deprivation and psychological stress. This may have implications for people suffering from conditions characterized by excessive Th2 activity like in allergic disease, such as asthma, for whom restricted sleep could have negative consequences. PMID:24349251

  8. Chronic stress undermines the compensatory sleep efficiency increase in response to sleep restriction in adolescents.

    PubMed

    Astill, Rebecca G; Verhoeven, Dorit; Vijzelaar, Romy L; Van Someren, Eus J W

    2013-08-01

    To investigate the effects of real-life stress on the sleep of adolescents, we performed a repeated-measures study on actigraphic sleep estimates and subjective measures during one regular school week, two stressful examination weeks and a week's holiday. Twenty-four adolescents aged 17.63 ± 0.10 years (mean ± standard error of the mean) wore actigraphs and completed diaries on subjective stress, fatigue, sleep quality, number of examinations and consumption of caffeine and alcohol for 4 weeks during their final year of secondary school. The resulting almost 500 assessments were analysed using mixed-effect models to estimate the effects of mere school attendance and additional examination stress on sleep estimates and subjective ratings. Total sleep time decreased from 7:38 h ± 12 min during holidays to 6:40 h ± 12 min during a regular school week. This 13% decrease elicited a partial compensation, as indicated by a 3% increase in sleep efficiency and a 6% decrease in the duration of nocturnal awakenings. During examination weeks total sleep time decreased to 6:23 h ± 8 min, but it was now accompanied by a decrease in sleep efficiency and subjective sleep quality and an increase in wake bout duration. In conclusion, school examination stress affects the sleep of adolescents. The compensatory mechanism of more consolidated sleep, as elicited by the sleep restriction associated with mere school attendance, collapsed during 2 weeks of sustained examination stress.

  9. Sleep restriction impairs blood-brain barrier function.

    PubMed

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

    2014-10-29

    The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice.

  10. Metabolic Consequences in Humans of Prolonged Sleep Restriction Combined with Circadian Disruption

    PubMed Central

    Buxton, Orfeu M.; Cain, Sean W.; O’Connor, Shawn P.; Porter, James H.; Duffy, Jeanne F.; Wang, Wei; Czeisler, Charles A.; Shea, Steven A.

    2013-01-01

    Epidemiological studies link short sleep and circadian disruption with risk of metabolic syndrome and diabetes. We tested the hypotheses that prolonged sleep restriction with concurrent circadian disruption, as can occur with shift work, impairs glucose regulation and metabolism. Healthy adults spent >5 weeks in controlled laboratory conditions including: sleep extension (baseline), 3-week sleep restriction (5.6 h sleep/24 h) combined with circadian disruption (recurring 28-h ‘days’), and 9-day recovery sleep with circadian re-entrainment. Prolonged sleep restriction with concurrent circadian disruption significantly decreased resting metabolic rate, and increased postprandial plasma via inadequate pancreatic beta cell responsivity; these normalized with 9 days of recovery sleep and stable circadian reentrainment. Thus, in humans, prolonged sleep restriction with concurrent circadian disruption alters metabolism and could increase risk of obesity and diabetes. PMID:22496545

  11. Sleep Restriction during Simulated Wildfire Suppression: Effect on Physical Task Performance

    PubMed Central

    Vincent, Grace; Ferguson, Sally A.; Tran, Jacqueline; Larsen, Brianna; Wolkow, Alexander; Aisbett, Brad

    2015-01-01

    Objectives To examine the effects of sleep restriction on firefighters’ physical task performance during simulated wildfire suppression. Methods Thirty-five firefighters were matched and randomly allocated to either a control condition (8-hour sleep opportunity, n = 18) or a sleep restricted condition (4-hour sleep opportunity, n = 17). Performance on physical work tasks was evaluated across three days. In addition, heart rate, core temperature, and worker activity were measured continuously. Rate of perceived and exertion and effort sensation were evaluated during the physical work periods. Results There were no differences between the sleep-restricted and control groups in firefighters’ task performance, heart rate, core temperature, or perceptual responses during self-paced simulated firefighting work tasks. However, the sleep-restricted group were less active during periods of non-physical work compared to the control group. Conclusions Under self-paced work conditions, 4 h of sleep restriction did not adversely affect firefighters’ performance on physical work tasks. However, the sleep-restricted group were less physically active throughout the simulation. This may indicate that sleep-restricted participants adapted their behaviour to conserve effort during rest periods, to subsequently ensure they were able to maintain performance during the firefighter work tasks. This work contributes new knowledge to inform fire agencies of firefighters’ operational capabilities when their sleep is restricted during multi-day wildfire events. The work also highlights the need for further research to explore how sleep restriction affects physical performance during tasks of varying duration, intensity, and complexity. PMID:25615988

  12. The impact of increasing sleep restriction on cortisol and daytime sleepiness in adolescents.

    PubMed

    Voderholzer, Ulrich; Piosczyk, Hannah; Holz, Johannes; Feige, Bernd; Loessl, Barbara; Kopasz, Marta; Riemann, Dieter; Nissen, Christoph

    2012-01-24

    Sleep restriction is a widespread phenomenon, specifically in adolescents. This study investigated the impact of increasing sleep restriction in adolescents on cortisol levels and daytime sleepiness. Eighty-eight healthy adolescents were randomized to five sleep restriction protocols (four consecutive nights with 9, 8, 7, 6, or 5 h time in bed). Polysomnography (baseline and last experimental night) and multiple sleep latency test (day 6) data were obtained. Saliva cortisol levels were assessed half-hourly in the evening before and in the morning after the baseline and the last experimental night. Four nights of sleep restriction in healthy adolescents lead to a linear increase of objective sleepiness, but had no significant effect on evening or morning cortisol levels. The lack of detrimental effects of sleep restriction on cortisol levels might be due to compensation mechanisms during sleep.

  13. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses

    PubMed Central

    Aho, Vilma; Ollila, Hanna M.; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J.; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S.A.; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M.; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T.; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja

    2016-01-01

    Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases. PMID:27102866

  14. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    NASA Technical Reports Server (NTRS)

    Meerlo, P.; Koehl, M.; van der Borght, K.; Turek, F. W.

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine stress systems. However, few attempts have been made to examine how sleep loss affects the HPA axis response to subsequent stressors. Furthermore, most studies applied short-lasting total sleep deprivation and not restriction of sleep over a longer period of time, as often occurs in human society. Using the rat as our model species, we investigated: (i) the HPA axis activity during and after sleep deprivation and (ii) the effect of sleep loss on the subsequent HPA response to a novel stressor. In one experiment, rats were subjected to 48 h of sleep deprivation by placing them in slowly rotating wheels. Control rats were placed in nonrotating wheels. In a second experiment, rats were subjected to an 8-day sleep restriction protocol allowing 4 h of sleep each day. To test the effects of sleep loss on subsequent stress reactivity, rats were subjected to a 30-min restraint stress. Blood samples were taken at several time points and analysed for adrenocorticotropic hormone (ACTH) and corticosterone. The results show that ACTH and corticosterone concentrations were elevated during sleep deprivation but returned to baseline within 4 h of recovery. After 1 day of sleep restriction, the ACTH and corticosterone response to restraint stress did not differ between control and sleep deprived rats. However, after 48 h of total sleep deprivation and after 8 days of restricted sleep, the ACTH response to restraint was significantly reduced whereas the corticosterone response was unaffected. These results show that sleep loss not only is a mild activator of the HPA axis itself, but also affects the subsequent response to stress. Alterations in HPA axis regulation may gradually appear under

  15. Metabolic consequences of chronic sleep restriction in rats: changes in body weight regulation and energy expenditure.

    PubMed

    Barf, R P; Van Dijk, G; Scheurink, A J W; Hoffmann, K; Novati, A; Hulshof, H J; Fuchs, E; Meerlo, P

    2012-10-10

    Epidemiological studies have shown an association between short or disrupted sleep and an increased risk to develop obesity. In animal studies, however, sleep restriction leads to an attenuation of weight gain that cannot be explained by changes in energy intake. In the present study, we assessed whether the attenuated weight gain under conditions of restricted sleep is a consequence of an overall increase in energy expenditure. Adult male rats were subjected to a schedule of chronic sleep restriction (SR) for 8 days with a 4h window of unrestricted rest per day. Electroencephalogram and electromyogram recordings were performed to quantify the effect of the sleep restriction schedule on sleep-wake patterns. In a separate experiment, we measured sleep restriction-induced changes in body weight, food intake, and regulatory hormones such as glucose, insulin, leptin and corticosterone. To investigate whether a change in energy expenditure underlies the attenuation of weight gain, energy expenditure was measured by the doubly labeled water method from day 5 until day 8 of the SR protocol. Results show a clear attenuation of weight gain during sleep restriction but no change in food intake. Baseline plasma glucose, insulin and leptin levels are decreased after sleep restriction which presumably reflects the nutritional status of the rats. The daily energy expenditure during SR was significantly increased compared to control rats. Together, we conclude that the attenuation of body weight gain in sleep restricted rats is explained by an overall increase in energy expenditure together with an unaltered energy intake.

  16. The impact of sleep restriction on daytime movement in typically developing children.

    PubMed

    Poirier, Abbey; Gendron, Melissa; Vriend, Jennifer; Davidson, Fiona; Corkum, Penny

    2016-03-01

    The current study investigated the link between poor sleep and ADHD symptomatology. The effects of extending versus restricting sleep on subjective (questionnaires) and objective (actigraphy) measures of daytime movement were examined in 25 typically developing children aged 8-12 years. Subjective measures demonstrated an increase in ADHD symptomology following sleep restriction, with follow-up analyses indicating that findings were due to poorer attention, not changes in hyperactivity. The results of actigraphy data indicated that there were no differences found for mean or median daytime activity, but the standard deviation of activity was found to be significantly higher following sleep restriction. Contrary to the popular belief that sleep restriction results in increased overall activity, this study instead found an increase in variability of activity. This suggests that a sleep-restricted child's activity level may appear as alternating periods of high and low activity levels throughout the day.

  17. [Acute aortic syndromes and sleep apnea].

    PubMed

    Baguet, Jean-Philippe

    2016-10-01

    Obstructive sleep apnea (OSA) is a common disease, often present in "cardiovascular or metabolic patients". OSA favours the occurrence of arterial lesions, all the more if severe. There is a strong relationship between OSA and acute aortic syndromes (AAS). This relationship is in part explained by aortic dilatation linked to OSA. The presence of repeated episodes of sudden variation of transmural pressure applied on aortic wall seems to play a major role in this dilatation. All OSA patients should have a search of aortic dilatation by ultrasound (at a thoracic and abdominal level). Also, screening of OSA should be systematically performed in patients with aortic disease. The effect of continuous positive airway pressure in apneic patients with AAS has not been studied.

  18. Sleep Restriction for 1 Week Reduces Insulin Sensitivity in Healthy Men

    PubMed Central

    Buxton, Orfeu M.; Pavlova, Milena; Reid, Emily W.; Wang, Wei; Simonson, Donald C.; Adler, Gail K.

    2010-01-01

    OBJECTIVE Short sleep duration is associated with impaired glucose tolerance and an increased risk of diabetes. The effects of sleep restriction on insulin sensitivity have not been established. This study tests the hypothesis that decreasing nighttime sleep duration reduces insulin sensitivity and assesses the effects of a drug, modafinil, that increases alertness during wakefulness. RESEARCH DESIGN AND METHODS This 12-day inpatient General Clinical Research Center study included 20 healthy men (age 20–35 years and BMI 20–30 kg/m2). Subjects spent 10 h/night in bed for ≥8 nights including three inpatient nights (sleep-replete condition), followed by 5 h/night in bed for 7 nights (sleep-restricted condition). Subjects received 300 mg/day modafinil or placebo during sleep restriction. Diet and activity were controlled. On the last 2 days of each condition, we assessed glucose metabolism by intravenous glucose tolerance test (IVGTT) and euglycemic-hyperinsulinemic clamp. Salivary cortisol, 24-h urinary catecholamines, and neurobehavioral performance were measured. RESULTS IVGTT-derived insulin sensitivity was reduced by (means ± SD) 20 ± 24% after sleep restriction (P = 0.001), without significant alterations in the insulin secretory response. Similarly, insulin sensitivity assessed by clamp was reduced by 11 ± 5.5% (P < 0.04) after sleep restriction. Glucose tolerance and the disposition index were reduced by sleep restriction. These outcomes were not affected by modafinil treatment. Changes in insulin sensitivity did not correlate with changes in salivary cortisol (increase of 51 ± 8% with sleep restriction, P < 0.02), urinary catecholamines, or slow wave sleep. CONCLUSIONS Sleep restriction (5 h/night) for 1 week significantly reduces insulin sensitivity, raising concerns about effects of chronic insufficient sleep on disease processes associated with insulin resistance. PMID:20585000

  19. Sleep quality but not sleep quantity effects on cortisol responses to acute psychosocial stress

    PubMed Central

    Bassett, Sarah M.; Lupis, Sarah B.; Gianferante, Danielle; Rohleder, Nicolas; Wolf, Jutta M.

    2016-01-01

    Given the well-documented deleterious health effects, poor sleep has become a serious public health concern and increasing efforts are directed towards understanding underlying pathways. One potential mechanism may be stress and its biological correlates; however, studies investigating the effects of poor sleep on a body’s capacity to deal with challenges are lacking. The current study thus aimed at testing the effects of sleep quality and sleep quantity on cortisol responses to acute psychosocial stress. A total of 73 college-aged adults (44 females) were investigated. Self-reported sleep behavior was assessed via the Pittsburgh Sleep Quality Index and salivary cortisol responses to the Trier Social Stress Test (TSST) were measured. In terms of sleep quality, we found a significant three-way interaction, such that relative to bad sleep quality, men who reported fairly good or very good sleep quality showed blunted or exaggerated cortisol responses, respectively, while women’s stress responses were less dependent on their self-reported sleep quality. Contrarily, average sleep duration did not appear to impact cortisol stress responses. Lastly, participants who reported daytime dysfunctions (i.e., having trouble staying awake or keeping up enthusiasm) also showed a trend to blunted cortisol stress responses compared to participants who did not experience these types of daytime dysfunctions. Overall, the current study suggests gender-specific stress reactivity dysfunctions as one mechanism linking poor sleep with detrimental physical health outcomes. Furthermore, the observed differential sleep effects may indicate that while the body may be unable to maintain normal HPA functioning in an acute psychosocial stress situation after falling prey to low sleep quality, it may retain capacities to deal with challenges during extended times of sleep deprivation. PMID:26414625

  20. Chronic sleep restriction during development can lead to long-lasting behavioral effects.

    PubMed

    Saré, R Michelle; Levine, Merlin; Hildreth, Christine; Picchioni, Dante; Smith, Carolyn Beebe

    2016-03-01

    Sleep abnormalities are highly correlated with neurodevelopmental disorders, and the severity of behavioral abnormalities correlates with the presence of sleep abnormalities. Given the importance of sleep in developmental plasticity, we sought to determine the effects of chronic sleep-restriction during development on subsequent adult behavior. We sleep-restricted developing wild-type mice from P5-P42 for 3h per day by means of gentle handling (n=30) and compared behavioral outputs to controls that were handled 10 min daily (n=33). We assayed activity in the open field, social behavior, repetitive behavior, and anxiety immediately following sleep restriction and after four weeks of recovery. At six weeks of age, immediately following chronic sleep-restriction, mice were less active in an open field arena. Sociability was increased, but repetitive behaviors were unchanged in both males and females. After a 4-week period of recovery, some behavioral abnormalities persisted and some became apparent. Sleep-restricted mice had decreased activity in the beginning of an open field test. Female mice continued to have increased sociability and, in addition, increased preference for social novelty. In contrast, male mice demonstrated decreased sociability with medium effect sizes. Repetitive behavior was decreased in sleep-restricted female mice and increased in males. Measures of anxiety were not affected in the sleep-restricted mice. These results indicate that chronic sleep restriction during development can lead to long-lasting behavioral changes that are modulated by sex. Our study may have implications for a role of disrupted sleep in childhood on the unfolding of neurodevelopmental disorders.

  1. Temporal dynamics of ocular indicators of sleepiness across sleep restriction

    PubMed Central

    Ftouni, Suzanne; Rahman, Shadab A.; Crowley, Kate E.; Anderson, Clare; Rajaratnam, Shantha M.W.; Lockley, Steven W.

    2015-01-01

    The current study characterized the temporal dynamics of ocular indicators of sleepiness during extended sleep restriction. Ten male participants (mean age ± SD = 23.3 ± 1.6 years) underwent 40-hours of continuous wakefulness under constant routine (CR) conditions, and completed the Karolinska Sleepiness Scale (KSS) and a 10-minute auditory psychomotor vigilance task (aPVT) hourly. Waking electroencephalography (EEG) and ocular measures were recorded continuously throughout the CR. Infrared-reflectance oculography was used to collect the ocular measures positive and negative amplitude/velocity ratio, mean blink duration, the percentage of eye closure, and a composite score of sleepiness levels (Johns Drowsiness Scale). All ocular measures except blink duration, displayed homeostatic and circadian properties. Only circadian effects were detected in blink duration. Significant, phase-locked cross-correlations (p < 0.05) were detected between ocular measures and aPVT reaction time (RT), aPVT lapses, KSS, and EEG delta-theta (0.5-5.5 Hz), theta-alpha (5.0-9.0 Hz) and beta (13.0-20.0 Hz) activity. Receiver Operating Characteristic (ROC) curve analysis demonstrated reasonable sensitivity and specificity of ocular measures in correctly classifying aPVT lapses above individual baseline thresholds (initial 16 h of wakefulness). Under conditions of sleep restriction, ocular indicators of sleepiness paralleled performance impairment and self-rated sleepiness levels, and demonstrated their potential to detect sleepiness-related attentional lapses. These findings, if reproduced in a larger sample, will have implications on the use of ocular based sleepiness-warning systems in operational settings. PMID:24336419

  2. Sleep restriction and serving accuracy in performance tennis players, and effects of caffeine.

    PubMed

    Reyner, L A; Horne, J A

    2013-08-15

    Athletes often lose sleep on the night before a competition. Whilst it is unlikely that sleep loss will impair sports mostly relying on strength and endurance, little is known about potential effects on sports involving psychomotor performance necessitating judgement and accuracy, rather than speed, as in tennis for example, and where caffeine is 'permitted'. Two studies were undertaken, on 5h sleep (33%) restriction versus normal sleep, on serving accuracy in semi-professional tennis players. Testing (14:00 h-16:00 h) comprised 40 serves into a (1.8 m×1.1 m) 'service box' diagonally, over the net. Study 1 (8 m; 8 f) was within-Ss, counterbalanced (normal versus sleep restriction). Study 2 (6m;6f -different Ss) comprised three conditions (Latin square), identical to Study 1, except for an extra sleep restriction condition with 80 mg caffeine vs placebo in a sugar-free drink, given (double blind), 30 min before testing. Both studies showed significant impairments to serving accuracy after sleep restriction. Caffeine at this dose had no beneficial effect. Study 1 also assessed gender differences, with women significantly poorer under all conditions, and non-significant indications that women were more impaired by sleep restriction (also seen in Study 2). We conclude that adequate sleep is essential for best performance of this type of skill in tennis players and that caffeine is no substitute for 'lost sleep'. 210.

  3. Sleep and the sleep environment of older adults in acute care settings.

    PubMed

    Missildine, Kathy

    2008-06-01

    The purpose of this descriptive pilot study was to describe sleep characteristics of hospitalized older adults and the nighttime environmental noise and light they encountered. Study participants included patients in an acute care setting; actigraphy and light and sound meters were used to measure the variables. Mean sleep time was 215 minutes, and the average sleep efficiency was 44.72%. Nighttime sleep was fragmented into 5 to 38 intervals of 15 to 24 minutes, with frequent awakenings. Mean light levels were 6.14 lux, with peak intensities of 59.68 lux lasting 95 minutes each night. Mean sound levels were 52.87 dB(A). Sleep was markedly impaired in an environment of elevated light and sound levels. Understanding the role of noise and light in the sleep efficiency of ill older adults can help nurses identify sources of noise and light and initiate sleep improvement protocols.

  4. Sleep quality but not sleep quantity effects on cortisol responses to acute psychosocial stress.

    PubMed

    Bassett, Sarah M; Lupis, Sarah B; Gianferante, Danielle; Rohleder, Nicolas; Wolf, Jutta M

    2015-01-01

    Given the well-documented deleterious health effects, poor sleep has become a serious public health concern and increasing efforts are directed toward understanding underlying pathways. One potential mechanism may be stress and its biological correlates; however, studies investigating the effects of poor sleep on a body's capacity to deal with challenges are lacking. The current study thus aimed at testing the effects of sleep quality and quantity on cortisol responses to acute psychosocial stress. A total of 73 college-aged adults (44 females) were investigated. Self-reported sleep behavior was assessed via the Pittsburgh Sleep Quality Index and salivary cortisol responses to the Trier Social Stress Test were measured. In terms of sleep quality, we found a significant three-way interaction, such that relative to bad sleep quality, men who reported fairly good or very good sleep quality showed blunted or exaggerated cortisol responses, respectively, while women's stress responses were less dependent on their self-reported sleep quality. Contrarily, average sleep duration did not appear to impact cortisol stress responses. Lastly, participants who reported daytime dysfunctions (i.e. having trouble staying awake or keeping up enthusiasm) also showed a trend to blunted cortisol stress responses compared to participants who did not experience these types of daytime dysfunctions. Overall, the current study suggests gender-specific stress reactivity dysfunctions as one mechanism linking poor sleep with detrimental physical health outcomes. Furthermore, the observed differential sleep effects may indicate that while the body may be unable to maintain normal hypothalamic-pituitary-adrenal functioning in an acute psychosocial stress situation after falling prey to low sleep quality, it may retain capacities to deal with challenges during extended times of sleep deprivation.

  5. An experimental study of adolescent sleep restriction during a simulated school week: changes in phase, sleep staging, performance and sleepiness.

    PubMed

    Agostini, Alex; Carskadon, Mary A; Dorrian, Jillian; Coussens, Scott; Short, Michelle A

    2017-04-01

    This laboratory study investigated the impact of restricted sleep during a simulated school week on circadian phase, sleep stages and daytime functioning. Changes were examined across and within days and during a simulated weekend recovery. Participants were 12 healthy secondary school students (six male) aged 15-17 years [mean = 16.1 years, standard deviation (SD) = 0.9]. After 2 nights with 10 h (21:30-07:30 hours), time in bed was restricted to 5 h for 5 nights (02:30-07:30 hours), then returned to 10 h time in bed for 2 nights (21:30-07:30 hours). Saliva was collected in dim light on the first and last sleep restriction nights to measure melatonin onset phase. Sleep was recorded polysomnographically, and the Psychomotor Vigilance Task (PVT) and Karolinska Sleepiness Scale were undertaken 3-hourly while awake. Average phase delay measured by melatonin was 3 h (SD = 50 min). Compared to baseline, sleep during the restriction period contained a smaller percentage of Stages 1 and 2 and rapid eye movement (REM) and a greater percentage of Stage 4. PVT lapses increased significantly during sleep restriction and did not return to baseline levels during recovery. Subjective sleepiness showed a similar pattern during restriction, but returned to baseline levels during recovery. Results suggest that sustained attention in adolescents is affected negatively by sleep restriction, particularly in the early morning, and that a weekend of recovery sleep is insufficient to restore performance. The discrepancy between sleepiness ratings and performance may indicate a lack of perception of this residual impairment.

  6. A Meta-Analysis of the Effect of Experimental Sleep Restriction on Youth's Attention and Hyperactivity.

    PubMed

    Lundahl, Alyssa; Kidwell, Katherine M; Van Dyk, Tori R; Nelson, Timothy D

    2015-01-01

    This meta-analysis examined the effect experimental sleep restriction has on youth's attention and hyperactivity outcomes. Thirteen published studies containing 17 independent samples were included (N = 496). Random- and fixed-effects models were used to estimate pooled effect sizes and moderator effects, respectively. Results indicate that sleep-restricted youth had significantly worse attention outcomes than youth with extended sleep, but no differences were evident regarding hyperactivity. Significant moderators of this effect included age and sex. These results have important implications for both the prevention and treatment of attention problems, highlighting the need for health professionals to screen for and treat underlying sleep issues.

  7. Decrease in Circulating Fatty Acids Is Associated with Islet Dysfunction in Chronically Sleep-Restricted Rats

    PubMed Central

    Zhan, Shanshan; Wu, Yangyang; Sun, Peng; Lin, Haiyan; Zhu, Yunxia; Han, Xiao

    2016-01-01

    Previous studies have shown that sleep restriction-induced environmental stress is associated with abnormal metabolism, but the underlying mechanism is poorly understood. In the current study, we investigated the possible lipid and glucose metabolism patterns in chronically sleep-restricted rat. Without changes in food intake, body weight was decreased and energy expenditure was increased in sleep-restricted rats. The effects of chronic sleep disturbance on metabolites in serum were examined using 1H NMR metabolomics and GC-FID/MS analysis. Six metabolites (lipoproteins, triglycerides, isoleucine, valine, choline, and phosphorylcholine) exhibited significant alteration, and all the fatty acid components were decreased, which suggested fatty acid metabolism was impaired after sleep loss. Moreover, increased blood glucose, reduced serum insulin, decreased glucose tolerance, and impaired glucose-stimulated insulin secretion of islets were also observed in sleep-restricted rats. The islet function of insulin secretion could be partially restored by increasing dietary fat to sleep-disturbed rats suggested that a reduction in circulating fatty acids was related to islet dysfunction under sleep deficiency-induced environmental stress. This study provides a new perspective on the relationship between insufficient sleep and lipid/glucose metabolism, which offers insights into the role of stressful challenges in a healthy lifestyle. PMID:27983645

  8. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption.

    PubMed

    Buxton, Orfeu M; Cain, Sean W; O'Connor, Shawn P; Porter, James H; Duffy, Jeanne F; Wang, Wei; Czeisler, Charles A; Shea, Steven A

    2012-04-11

    Epidemiological studies link short sleep duration and circadian disruption with higher risk of metabolic syndrome and diabetes. We tested the hypotheses that prolonged sleep restriction with concurrent circadian disruption, as can occur in people performing shift work, impairs glucose regulation and metabolism. Healthy adults spent >5 weeks under controlled laboratory conditions in which they experienced an initial baseline segment of optimal sleep, 3 weeks of sleep restriction (5.6 hours of sleep per 24 hours) combined with circadian disruption (recurring 28-hour "days"), followed by 9 days of recovery sleep with circadian re-entrainment. Exposure to prolonged sleep restriction with concurrent circadian disruption, with measurements taken at the same circadian phase, decreased the participants' resting metabolic rate and increased plasma glucose concentrations after a meal, an effect resulting from inadequate pancreatic insulin secretion. These parameters normalized during the 9 days of recovery sleep and stable circadian re-entrainment. Thus, in humans, prolonged sleep restriction with concurrent circadian disruption alters metabolism and could increase the risk of obesity and diabetes.

  9. Sleep Disturbance and Older Adults' Inflammatory Responses to Acute Stress

    PubMed Central

    Heffner, Kathi L.; Ng, H. Mei; Suhr, Julie A.; France, Christopher R.; Marshall, Gailen D.; Pigeon, Wilfred R.; Moynihan, Jan A.

    2013-01-01

    Objectives Poor sleep diminishes mental and physical health. The objective of this study was to examine associations between sleep disturbance and interleukin-6 (IL-6) responses to acute mental stress in older adults. Design Observational study of community-dwelling, healthy older adults. Setting Participants completed the study in a clinical research laboratory of a mid-sized university. Participants Generally healthy, community-dwelling men and women 50 years of age and older. Measurements IL-6 and negative affect at rest and following a series of challenging cognitive tests; sleep quality; depressive symptoms; perceived stress; loneliness. Results Participants categorized as poor sleepers based on Pittsburgh Sleep Quality Index scores had significantly larger IL-6 responses to the cognitive stressors compared to good sleepers. The association between poor sleep and heightened IL-6 response to acute stress was not explained by other psychosocial factors previously linked to immune dysregulation, including depressive symptoms, perceived stress, and loneliness. Conclusions Findings add to the growing evidence for poor sleep as an independent risk factor for poor mental and physical health. Older adults may be particularly vulnerable to effects of sleep disturbance due to significant age-related changes in both sleep and inflammatory regulation. PMID:22327621

  10. MCH levels in the CSF, brain preproMCH and MCHR1 gene expression during paradoxical sleep deprivation, sleep rebound and chronic sleep restriction.

    PubMed

    Dias Abdo Agamme, Ana Luiza; Aguilar Calegare, Bruno Frederico; Fernandes, Leandro; Costa, Alicia; Lagos, Patricia; Torterolo, Pablo; D'Almeida, Vânia

    2015-12-01

    Neurons that utilize melanin-concentrating hormone (MCH) as neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area. These neurons project throughout the central nervous system and play a role in sleep regulation. With the hypothesis that the MCHergic system function would be modified by the time of the day as well as by disruptions of the sleep-wake cycle, we quantified in rats the concentration of MCH in the cerebrospinal fluid (CSF), the expression of the MCH precursor (Pmch) gene in the hypothalamus, and the expression of the MCH receptor 1 (Mchr1) gene in the frontal cortex and hippocampus. These analyses were performed during paradoxical sleep deprivation (by a modified multiple platform technique), paradoxical sleep rebound and chronic sleep restriction, both at the end of the active (dark) phase (lights were turned on at Zeitgeber time zero, ZT0) and during the inactive (light) phase (ZT8). We observed that in control condition (waking and sleep ad libitum), Mchr1 gene expression was larger at ZT8 (when sleep predominates) than at ZT0, both in frontal cortex and hippocampus. In addition, compared to control, disturbances of the sleep-wake cycle produced the following effects: paradoxical sleep deprivation for 96 and 120 h reduced the expression of Mchr1 gene in frontal cortex at ZT0. Sleep rebound that followed 96 h of paradoxical sleep deprivation increased the MCH concentration in the CSF also at ZT0. Twenty-one days of sleep restriction produced a significant increment in MCH CSF levels at ZT8. Finally, sleep disruptions unveiled day/night differences in MCH CSF levels and in Pmch gene expression that were not observed in control (undisturbed) conditions. In conclusion, the time of the day and sleep disruptions produced subtle modifications in the physiology of the MCHergic system.

  11. Diffuse Brain Injury Induces Acute Post-Traumatic Sleep

    PubMed Central

    Rowe, Rachel K.; Striz, Martin; Bachstetter, Adam D.; Van Eldik, Linda J.; Donohue, Kevin D.; O'Hara, Bruce F.; Lifshitz, Jonathan

    2014-01-01

    Objective Clinical observations report excessive sleepiness immediately following traumatic brain injury (TBI); however, there is a lack of experimental evidence to support or refute the benefit of sleep following a brain injury. The aim of this study is to investigate acute post-traumatic sleep. Methods Sham, mild or moderate diffuse TBI was induced by midline fluid percussion injury (mFPI) in male C57BL/6J mice at 9:00 or 21:00 to evaluate injury-induced sleep behavior at sleep and wake onset, respectively. Sleep profiles were measured post-injury using a non-invasive, piezoelectric cage system. In separate cohorts of mice, inflammatory cytokines in the neocortex were quantified by immunoassay, and microglial activation was visualized by immunohistochemistry. Results Immediately after diffuse TBI, quantitative measures of sleep were characterized by a significant increase in sleep (>50%) for the first 6 hours post-injury, resulting from increases in sleep bout length, compared to sham. Acute post-traumatic sleep increased significantly independent of injury severity and time of injury (9:00 vs 21:00). The pro-inflammatory cytokine IL-1β increased in brain-injured mice compared to sham over the first 9 hours post-injury. Iba-1 positive microglia were evident in brain-injured cortex at 6 hours post-injury. Conclusion Post-traumatic sleep occurs for up to 6 hours after diffuse brain injury in the mouse regardless of injury severity or time of day. The temporal profile of secondary injury cascades may be driving the significant increase in post-traumatic sleep and contribute to the natural course of recovery through cellular repair. PMID:24416145

  12. Sleep Restriction Enhances the Daily Rhythm of Circulating Levels of Endocannabinoid 2-Arachidonoylglycerol

    PubMed Central

    Hanlon, Erin C.; Tasali, Esra; Leproult, Rachel; Stuhr, Kara L.; Doncheck, Elizabeth; de Wit, Harriet; Hillard, Cecilia J.; Van Cauter, Eve

    2016-01-01

    Study Objectives: Increasing evidence from laboratory and epidemiologic studies indicates that insufficient sleep may be a risk factor for obesity. Sleep curtailment results in stimulation of hunger and food intake that exceeds the energy cost of extended wakefulness, suggesting the involvement of reward mechanisms. The current study tested the hypothesis that sleep restriction is associated with activation of the endocannabinoid (eCB) system, a key component of hedonic pathways involved in modulating appetite and food intake. Methods: In a randomized crossover study comparing 4 nights of normal (8.5 h) versus restricted sleep (4.5 h) in healthy young adults, we examined the 24-h profiles of circulating concentrations of the endocannabinoid 2-arachidonoylglycerol (2-AG) and its structural analog 2-oleoylglycerol (2-OG). We concomitantly assessed hunger, appetite, and food intake under controlled conditions. Results: A robust daily variation of 2-AG concentrations with a nadir around the middle of the sleep/overnight fast, followed by a continuous increase culminating in the early afternoon, was evident under both sleep conditions but sleep restriction resulted in an amplification of this rhythm with delayed and extended maximum values. Concentrations of 2-OG followed a similar pattern, but with a lesser amplitude. When sleep deprived, participants reported increases in hunger and appetite concomitant with the afternoon elevation of 2-AG concentrations, and were less able to inhibit intake of palatable snacks. Conclusions: Our findings suggest that activation of the eCB system may be involved in excessive food intake in a state of sleep debt and contribute to the increased risk of obesity associated with insufficient sleep. Commentary: A commentary on this article appears in this issue on page 495. Citation: Hanlon EC, Tasali E, Leproult R, Stuhr KL, Doncheck E, de Wit H, Hillard CJ, Van Cauter E. Sleep restriction enhances the daily rhythm of circulating levels of

  13. Effects of recovery sleep after one work week of mild sleep restriction on interleukin-6 and cortisol secretion and daytime sleepiness and performance

    PubMed Central

    Pejovic, Slobodanka; Basta, Maria; Kritikou, Ilia; Shaffer, Michele L.; Tsaoussoglou, Marina; Stiffler, David; Stefanakis, Zacharias; Bixler, Edward O.; Chrousos, George P.

    2013-01-01

    One workweek of mild sleep restriction adversely impacts sleepiness, performance, and proinflammatory cytokines. Many individuals try to overcome these adverse effects by extending their sleep on weekends. To assess whether extended recovery sleep reverses the effects of mild sleep restriction on sleepiness/alertness, inflammation, and stress hormones, 30 healthy young men and women (mean age ± SD, 24.7 ± 3.5 yr; mean body mass index ± SD, 23.6 ± 2.4 kg/m2) participated in a sleep laboratory experiment of 13 nights [4 baseline nights (8 h/night), followed by 6 sleep restriction nights (6 h/night) and 3 recovery nights (10 h/night)]. Twenty-four-hour profiles of circulating IL-6 and cortisol, objective and subjective daytime sleepiness (Multiple Sleep Latency Test and Stanford Sleepiness Scale), and performance (Psychomotor Vigilance Task) were assessed on days 4 (baseline), 10 (after 1 wk of sleep restriction), and 13 (after 2 nights of recovery sleep). Serial 24-h IL-6 plasma levels increased significantly during sleep restriction and returned to baseline after recovery sleep. Serial 24-h cortisol levels during restriction did not change compared with baseline, but after recovery they were significantly lower. Subjective and objective sleepiness increased significantly after restriction and returned to baseline after recovery. In contrast, performance deteriorated significantly after restriction and did not improve after recovery. Extended recovery sleep over the weekend reverses the impact of one work week of mild sleep restriction on daytime sleepiness, fatigue, and IL-6 levels, reduces cortisol levels, but does not correct performance deficits. The long-term effects of a repeated sleep restriction/sleep recovery weekly cycle in humans remain unknown. PMID:23941878

  14. The effects of acute sleep deprivation during residency training.

    PubMed

    Bartle, E J; Sun, J H; Thompson, L; Light, A I; McCool, C; Heaton, S

    1988-08-01

    Verbal and symbol concentration, learning, problem solving, clear thinking, manual skills, and memory were tested in 42 surgical residents to assess the effects of acute sleep deprivation on specific neuropsychological parameters. A series of eight neuropsychological tests--digit symbols, digit vigilance, story memory, trail making, PASAT, Raven matrices, delayed story, and pegboard--and a questionnaire on mood states were completed by the residents both when fatigued (less than 4 hours of sleep: mean, 2.0 +/- 1.5 hours) and when rested (more than 4 hours of sleep: mean, 6.5 +/- 1.0 hours), with at least 7 days between tests. In order to eliminate the effects of learning from the first test series, randomization of residents was performed so that one half were first evaluated when rested and one half when fatigued. ANOVA, multiple regression analysis, and the Student t test were used to assess differences. In the acute sleep-deprived state, residents were less vigorous and more fatigued, depressed, tense, confused, and angry (p less than 0.05) than they were in rested state. Despite these changes in mood, however, the responses on all of the functional tests were no different statistically in those who were rested and those who were fatigued (even in those with less than 2 hours' sleep). We conclude that acute sleep deprivation of less than 4 hours alters mood state but does not change performance in test situations in which concentration, clear thinking, and problem solving are important.

  15. Sleep or swim? Early-morning training severely restricts the amount of sleep obtained by elite swimmers.

    PubMed

    Sargent, Charli; Halson, Shona; Roach, Gregory Daniel

    2014-01-01

    Good sleep is essential for optimal performance, yet few studies have examined the sleep/wake behaviour of elite athletes. The aim of this study was to assess the impact of early-morning training on the amount of sleep obtained by world-class swimmers. A squad of seven swimmers from the Australian Institute of Sport participated in this study during 14 days of high-intensity training in preparation for the 2008 Olympic Games. During these 14 days, participants had 12 training days, each starting with a session at 06:00 h, and 2 rest days. For each day, the amount of sleep obtained by participants was determined using self-report sleep diaries and wrist-worn activity monitors. On nights that preceded training days, participants went to bed at 22:05 h (s=00:52), arose at 05:48 h (s=00:24) and obtained 5.4 h (s=1.3) of sleep. On nights that preceded rest days, participants went to bed at 00:32 h (s=01:29), arose at 09:47 h (s=01:47) and obtained 7.1 h (s=1.2) of sleep. Mixed model analyses revealed that on nights prior to training days, bedtimes and get-up times were significantly earlier (p<0.001), time spent in bed was significantly shorter (p<0.001) and the amount of sleep obtained was significantly less (p<0.001), than on nights prior to rest days. These results indicate that early-morning training sessions severely restrict the amount of sleep obtained by elite athletes. Given that chronic sleep restriction of <6 h per night can impair psychological and physiological functioning, it is possible that early-morning schedules actually limit the effectiveness of training.

  16. Time-of-day mediates the influences of extended wake and sleep restriction on simulated driving.

    PubMed

    Matthews, Raymond W; Ferguson, Sally A; Zhou, Xuan; Sargent, Charli; Darwent, David; Kennaway, David J; Roach, Gregory D

    2012-06-01

    Although a nonlinear time-of-day and prior wake interaction on performance has been well documented, two recent studies have aimed to incorporate the influences of sleep restriction into this paradigm. Through the use of sleep-restricted forced desynchrony protocols, both studies reported a time-of-day × sleep restriction interaction, as well as a time-of-day × prior wake × sleep dose three-way interaction. The current study aimed to investigate these interactions on simulated driving performance, a more complex task with ecological validity for the problem of fatigued driving. The driving performance of 41 male participants (mean ± SD: 22.8 ±2.2 yrs) was assessed on a 10-min simulated driving task with the standard deviation of lateral position (SDLAT) measured. Using a between-group design, participants were subjected to either a control condition of 9.33 h of sleep/18.66 h of wake, a moderate sleep-restriction (SR) condition of 7 h of sleep/21 h of wake, or a severe SR condition of 4.66 h of sleep/23.33 h of wake. In each condition, participants were tested at 2.5-h intervals after waking across 7 × 28-h d of forced desynchrony. Driving sessions occurred at nine doses of prior wake, within six divisions of the circadian cycle based on core body temperature (CBT). Mixed-models analyses of variance (ANOVAs) revealed significant main effects of time-of-day, prior wake, sleep debt, and sleep dose on SDLAT. Additionally, significant two-way interactions of time-of-day × prior wake and time-of-day × sleep debt, as well as significant three-way interactions of time-of-day × prior wake × sleep debt and time-of-day × sleep debt × sleep dose were observed. Although limitations such as the presence of practice effects and large standard errors are noted, the study concludes with three findings. The main effects demonstrate that extending wake, reducing sleep, and driving at poor times of day all significantly impair driving performance at an individual

  17. Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy

    PubMed Central

    Raimundo, Joyce R S; Bergamaschi, Cassia T; Campos, Ruy R; Palma, Beatriz D; Tufik, Sergio; Gomes, Guiomar N

    2016-01-01

    OBJECTIVES: Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. METHODS: After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. RESULTS: The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. CONCLUSIONS: Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure. PMID:27652834

  18. Restricted sleep and negative affective states in commercial pilots during short haul operations.

    PubMed

    Drury, D Arthur; Ferguson, Sally A; Thomas, Matthew J W

    2012-03-01

    This study aims to investigate (1) the relationship between restricted sleep and Heightened Emotional Activity (HEA) during normal flight operations, and (2) whether sleep patterns influence the strength of the HEA as a response to threats. Accident investigation reports continue to highlight the relationship between restricted sleep and poor safety outcomes. However, to date we have a limited understanding of how sleep and HEA interact. A total of 302 sectors of normal airline flight operations were observed by trained observers, and instances of heightened emotional activity were recorded. During the cruise phase of each of these sectors, crew members were asked to calculate the amount of sleep they had obtained in previous 24 and 48 h. In the 302 sectors of normal flight operations, 535 instances of HEA were observed. Descriptive analyses of instances of HEA and sleep in the prior 24 and 48 h showed a significant relationship between the occurrence of HEA and recent sleep. The relationship between restricted sleep and HEA suggests that there may well be further implications with respect to operational safety.

  19. The effect of sleep restriction on neurobehavioural functioning in normally developing children and adolescents: insights from the Attention, Behaviour and Sleep Laboratory.

    PubMed

    Cassoff, J; Bhatti, J A; Gruber, R

    2014-10-01

    In the current paper, we first introduce the research themes of the attention, behaviour and sleep (ABS) laboratory, namely, sleep and ADHD, sleep and obesity, and sleep and academic performance. We then focus in on the topic to be reviewed in the current paper - the association between sleep restriction and neurobehavioral functioning (NBF) in typically developing children. We review the research thus far conducted by the ABS lab specific to this topic and posit the unique methodological contributions of the ABS lab (e.g. home-based assessment of sleep architecture and patterns, extensive phenotyping, etc.) in terms of advancing this research area. In the second section of the paper, we review 13 studies investigating the causal association between experimental sleep restriction and NBF in normally developing pediatric populations. Eight of the 13 studies found that sleep restriction causes impairments in neurobehavioural functioning. However, given the inconsistency in outcome measures, experimental protocols and statistical power, the studies reviewed herein are difficult to interpret. Strategies used by the ABS including implementing home assessments of sleep, restricting sleep relative to the participants' typical sleep schedules, blinding raters who assess NBF, and using valid and reliable NBF assessments are an attempt to address the gaps in this research area and clarify the causal relationship between sleep restriction and NBF in typically developing children and adolescents.

  20. Influence of chronic moderate sleep restriction and exercise training on anxiety, spatial memory, and associated neurobiological measures in mice.

    PubMed

    Zielinski, Mark R; Davis, J Mark; Fadel, James R; Youngstedt, Shawn D

    2013-08-01

    Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (∼4h loss/day) vs. ad libitum sleep] × 2 [exercise (1h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction.

  1. Sleep in the spider monkey (Ateles geoffroyi): A semi-restrictive, non-invasive, polysomnographic study.

    PubMed

    Cruz-Aguilar, Manuel Alejandro; Ayala-Guerrero, Fructuoso; Jiménez-Anguiano, Anabel; Santillán-Doherty, Ana María; García-Orduña, Francisco; Velázquez-Moctezuma, Javier

    2015-02-01

    The normal sleep patterns of the spider monkey (Ateles geoffroyi) have not been described yet. The objective of this study was to characterize the electrophysiological patterns, sleeping postures, and sleep-wake cycle in semi-restricted spider monkeys. Continuous 24-hr polysomnographic (PSG) recordings, involving simultaneous recording of non-invasive electroencephalographic (EEG), electro-oculographic (EOG), and electromyographic (EMG) activities, were carried out in captive monkeys living in outdoor rainforest enclosures. Electrode placement was done according to the human international 10-20 system. Specific behaviors displayed by monkeys during the sleep-wake cycles were correlated with the PSG recordings. The nycthemeral distribution of the sleep-wake cycle was also calculated. The results show that electrophysiological N-REM sleep patterns in spider monkeys are similar to those observed in other primates, including human beings. Furthermore, a vertical semi-fetal posture was observed during N-REM and REM sleep phases. The amount of nocturnal sleep was significantly higher than that of the diurnal period, showing that the spider monkey is a diurnal primate. An outstanding finding was the absence of muscular atonia during the spider monkey's REM sleep, which suggests that arboreal primates have developed a neuromuscular mechanism specialized for sleeping in a vertical posture.

  2. CNS arousal and neurobehavioral performance in a short-term sleep restriction paradigm.

    PubMed

    Cote, Kimberly A; Milner, Catherine E; Smith, Brian A; Aubin, Adam J; Greason, Tamara A; Cuthbert, Brielle P; Wiebe, Stephanie; Duffus, Shannon E G

    2009-09-01

    Few studies have investigated waking electrophysiological measures of arousal during sleep restriction. This study examined electroencephalogram (EEG) activity and performance during a 96-hour laboratory protocol where participants slept a baseline night (8 h), were randomly assigned to 3-, 5-, or 8-hour sleep groups for the next two nights sleep restriction (SR1, SR2), and then slept a recovery night (8 h). There were dose-dependent deficits on measures of mood, sleepiness, and reaction time that were apparent during this short-term bout of sleep restriction. The ratio of alpha to theta EEG recorded at rest indicated dose-dependent changes in CNS arousal. At 9:00 hours, both the 3- and 5-hour groups showed EEG slowing (sleepiness) during restriction, with the 3-hour group exhibiting greater deficits. Later in the day at 13:00 hours, the 5-hour group no longer exhibited EEG slowing, but the extent of slowing was more widespread across the scalp for the 3-hour group. High-frequency EEG, a measure of effort, was greater on the mornings following sleep restriction. The 5-hour group had increased beta EEG at central-parietal sites following both nights of restriction, whereas the 3-hour group had increased beta and gamma EEG at occipital regions following the first night only. Short-term sleep restriction leads to deficits in performance as well as EEG slowing that correspond to the amount and duration of sleep loss. High-frequency EEG may be a marker of effort or compensation.

  3. Sleep restriction in rats leads to changes in operant behaviour indicative of reduced prefrontal cortex function.

    PubMed

    Kamphuis, Jeanine; Baichel, Swetlana; Lancel, Marike; de Boer, Sietse F; Koolhaas, Jaap M; Meerlo, Peter

    2017-02-01

    Sleep deprivation has profound effects on cognitive performance, and some of these effects may be mediated by impaired prefrontal cortex function. In search of an animal model to investigate this relationship we studied the influence of restricted sleep on operant conditioning in rats, particularly the performance in a differential reinforcement of low rate responding (DRL) task, which is highly dependent upon an intact prefrontal cortex. Animals were trained to withhold a lever press until an imposed delay of 30 s after the last press had passed in order to achieve a food reward. Once the animals had mastered the task, they were sleep-restricted for 7 days with 20 h of sleep deprivation per day. At the end of each daily sleep deprivation session, performance on the DRL task was assessed. The results show that sleep-restricted animals were less able to time their responses correctly, started pressing the lever more randomly and showed signs of behavioural disinhibition, the latter possibly reflecting enhanced impulsivity. Our data support the hypothesis that a sleep debt has disruptive consequences for the functioning of the prefrontal cortex. This model offers possibilities for future studies investigating the underlying biochemical and molecular mechanisms of this relationship.

  4. Effects of sleep restriction on glucose control and insulin secretion during diet-induced weight loss

    PubMed Central

    Nedeltcheva, A. V.; Imperial, J. G.; Penev, P. D.

    2012-01-01

    Insufficient sleep is associated with changes in glucose tolerance, insulin secretion, and insulin action. Despite widespread use of weight-loss diets for metabolic risk reduction, the effects of insufficient sleep on glucose regulation in overweight dieters are not known. To examine the consequences of recurrent sleep restriction on 24-hour blood glucose control during diet-induced weight loss, 10 overweight and obese adults (3F/7M; mean [SD] age 41 [5] y; BMI 27.4 [2.0] kg/m2) completed two 14-day treatments with hypocaloric diet and 8.5 or 5.5-h nighttime sleep opportunity in random order 7 [3] months apart. Oral and intravenous glucose tolerance test (IVGTT) data, fasting lipids and free-fatty acids (FFA), and 24-hour blood glucose, insulin, C-peptide, and counter-regulatory hormone measurements were collected after each treatment. Participants had comparable weight loss (1.0 [0.3] BMI units) during each treatment. Bedtime restriction reduced sleep by 131 [30] min/day. Recurrent sleep curtailment decreased 24-hour serum insulin concentrations (i.e. enhanced 24-hour insulin economy) without changes in oral glucose tolerance and 24-hour glucose control. This was accompanied by a decline in fasting blood glucose, increased fasting FFA which suppressed normally following glucose ingestion, and lower total and LDL cholesterol concentrations. Sleep-loss-related changes in counter-regulatory hormone secretion during the IVGTT limited the utility of the test in this study. In conclusion, sleep restriction enhanced 24-hour insulin economy without compromising glucose homeostasis in overweight individuals placed on a balanced hypocaloric diet. The changes in fasting blood glucose, insulin, lipid and FFA concentrations in sleep-restricted dieters resembled the pattern of human metabolic adaptation to reduced carbohydrate availability. PMID:22513492

  5. The sleep architecture of Australian volunteer firefighters during a multi-day simulated wildfire suppression: Impact of sleep restriction and temperature.

    PubMed

    Cvirn, Michael A; Dorrian, Jillian; Smith, Bradley P; Jay, Sarah M; Vincent, Grace E; Ferguson, Sally A

    2017-02-01

    Wildland firefighting exposes personnel to combinations of occupational and environmental stressors that include physical activity, heat and sleep restriction. However, the effects of these stressors on sleep have rarely been studied in the laboratory, and direct comparisons to field scenarios remain problematic. The aim of this study was to examine firefighters' sleep during a three-day, four-night simulated wildfire suppression that included sleep restriction and physical activity circuits representative of firefighting wildfire suppression tasks in varied temperatures. Sixty-one volunteer firefighters (37.5±14.5 years of age, mean±SD) were assigned to one of three conditions: control (n=25; 8h sleep opportunities and 18-20°C), awake (n=25; 4h sleep opportunities and 18-20°C) or awake/hot (n=11; 4h sleep opportunities and 33-35°C during the day and 23-25°C during the night). Results demonstrated that amounts of N1, N2 and R sleep, TST, SOL and WASO declined, whilst sleep efficiency increased significantly in the awake and awake/hot conditions compared to the control condition. Results also demonstrated that SWS sleep remained relatively stable in the awake and awake/hot conditions compared to control values. Most importantly, no significant differences were found for any of the sleep measures between the awake and awake/hot conditions. Thus, working in hot daytime temperatures in combination with sleep restriction during the night did not affect patterns of sleep compared to working in temperate conditions in combination with sleep restriction during the night. However, the effects on sleep of high (>25°C) night-time temperatures with sleep restriction in addition to physical activity remains to be studied.

  6. Influence of long-term food restriction on sleep pattern in male rats.

    PubMed

    Alvarenga, Tathiana A F; Andersen, Monica L; Papale, Ligia A; Antunes, Isabela B; Tufik, Sergio

    2005-09-28

    The present purpose was to determine the effects of different schedules of long-term food restriction (FR) applied to rats from weaning to the 8th week. Rats were distributed into FR and ad libitum groups at weaning and fed at 7 am, at 7 pm, and finally, restricted rats fed ad libitum. The restricted rats started with 6 g/day and the food was increased by 1 g per week until reaching 15 g/day by adulthood. The rats were implanted with electrodes to record electrocorticogram/eletromyogram signals. Their wake-sleep cycles were monitored over 3 consecutive days (72 h of recording). The FR group fed at 7 am showed an increase in awake time, and decrease in slow wave sleep (SWS) and paradoxical sleep (PS) during the three light periods compared with the control recordings whereas in the dark periods, these sleep parameters were the opposite. The restricted group fed in the evening showed no statistical significances at diurnal periods; however, a significant decrease was observed in the dark recordings for awake time, but the SWS and PS were increased in relation to controls. The analysis of the 24-h period demonstrated that both FR groups presented increase in SWS time. After being FR, the rats were fed ad libitum and their sleep was monitored for 3 additional days. During the first dark recording, the decrease in awake time and increase in SWS were still present; however, as ad libitum food continued, these sleep parameters returned to control values, reestablishing the normal sleep pattern. These results suggest that dietary restriction, regardless to the feeding schedule, caused increase in total sleep time, during the active period.

  7. Restricting Time in Bed in Early Adolescence Reduces Both NREM and REM Sleep but Does Not Increase Slow Wave EEG

    PubMed Central

    Campbell, Ian G.; Kraus, Amanda M.; Burright, Christopher S.; Feinberg, Irwin

    2016-01-01

    Study Objectives: School night total sleep time decreases across adolescence (9–18 years) by 10 min/year. This decline is comprised entirely of a selective decrease in NREM sleep; REM sleep actually increases slightly. Decreasing sleep duration across adolescence is often attributed to insufficient time in bed. Here we tested whether sleep restriction in early adolescence produces the same sleep stage changes observed on school nights across adolescence. Methods: All-night sleep EEG was recorded in 76 children ranging in age from 9.9 to 14.0 years. Each participant kept 3 different sleep schedules that consisted of 3 nights of 8.5 h in bed followed by 4 nights of either 7, 8.5, or 10 h in bed. Sleep stage durations and NREM delta EEG activity were compared across the 3 time in bed conditions. Results: Shortening time in bed from 10 to 7 hours reduced sleep duration by approximately 2 hours, roughly equal to the decrease in sleep duration we recorded longitudinally across adolescence. However, sleep restriction significantly reduced both NREM (by 83 min) and REM (by 47 min) sleep. Sleep restriction did not affect NREM delta EEG activity. Conclusions: Our findings suggest that the selective NREM reduction and the small increase in REM we observed longitudinally across 9–18 years are not produced by sleep restriction. We hypothesize that the selective NREM decline reflects adolescent brain maturation (synaptic elimination) that reduces the need for the restorative processes of NREM sleep. Citation: Campbell IG, Kraus AM, Burright CS, Feinberg I. Restricting time in bed in early adolescence reduces both NREM and REM sleep but does not increase slow wave EEG. SLEEP 2016;39(9):1663–1670. PMID:27397569

  8. Chronic Moderate Sleep Restriction in Older Long Sleepers and Older Average Duration Sleepers: A Randomized Controlled Trial

    PubMed Central

    Youngstedt, Shawn D.; Jean-Louis, Girardin; Bootzin, Richard R.; Kripke, Daniel F.; Cooper, Jonnifer; Dean, Lauren R.; Catao, Fabio; James, Shelli; Vining, Caitlyn; Williams, Natasha J.; Irwin, Michael R.

    2013-01-01

    Epidemiologic studies have consistently shown that sleeping < 7 hr and ≥ 8 hr is associated with increased mortality and morbidity. The risks of short sleep may be consistent with results from experimental sleep deprivation studies. However, there has been little study of chronic moderate sleep restriction and no evaluation of older adults who might be more vulnerable to negative effects of sleep restriction, given their age-related morbidities. Moreover, the risks of long sleep have scarcely been examined experimentally. Moderate sleep restriction might benefit older long sleepers who often spend excessive time in bed (TIB), in contrast to older adults with average sleep patterns. Our aims are: (1) to examine the ability of older long sleepers and older average sleepers to adhere to 60 min TIB restriction; and (2) to contrast effects of chronic TIB restriction in older long vs. average sleepers. Older adults (n=100) (60–80 yr) who sleep 8–9 hr per night and 100 older adults who sleep 6–7.25 hr per night will be examined at 4 sites over 5 years. Following a 2-week baseline, participants will be randomized to one of two 12-week treatments: (1) a sleep restriction involving a fixed sleep-wake schedule, in which TIB is reduced 60 min below each participant’s baseline TIB; (2) a control treatment involving no sleep restriction, but a fixed sleep schedule. Sleep will be assessed with actigraphy and a diary. Measures will include glucose tolerance, sleepiness, depressive symptoms, quality of life, cognitive performance, incidence of illness or accident, and inflammation. PMID:23811325

  9. Chronic moderate sleep restriction in older long sleepers and older average duration sleepers: a randomized controlled trial.

    PubMed

    Youngstedt, Shawn D; Jean-Louis, Girardin; Bootzin, Richard R; Kripke, Daniel F; Cooper, Jonnifer; Dean, Lauren R; Catao, Fabio; James, Shelli; Vining, Caitlin; Williams, Natasha J; Irwin, Michael R

    2013-09-01

    Epidemiologic studies have consistently shown that sleeping <7 h and ≥8 h is associated with increased mortality and morbidity. The risks of short sleep may be consistent with results from experimental sleep deprivation studies. However, there has been little study of chronic moderate sleep restriction and little evaluation of older adults who might be more vulnerable to negative effects of sleep restriction, given their age-related morbidities. Moreover, the risks of long sleep have scarcely been examined experimentally. Moderate sleep restriction might benefit older long sleepers who often spend excessive time in bed (TIB) in contrast to older adults with average sleep patterns. Our aims are: (1) to examine the ability of older long sleepers and older average sleepers to adhere to 60 min TIB restriction; and (2) to contrast effects of chronic TIB restriction in older long vs. average sleepers. Older adults (n = 100) (60-80 years) who sleep 8-9 h per night and 100 older adults who sleep 6-7.25 h per night will be examined at 4 sites over 5 years. Following a 2-week baseline, participants will be randomized to one of two 12-week treatments: (1) a sleep restriction involving a fixed sleep-wake schedule, in which TIB is reduced 60 min below each participant's baseline TIB; and (2) a control treatment involving no sleep restriction, but a fixed sleep schedule. Sleep will be assessed with actigraphy and a diary. Measures will include glucose tolerance, sleepiness, depressive symptoms, quality of life, cognitive performance, incidence of illness or accident, and inflammation.

  10. Psychomotor Vigilance Task Performance During and Following Chronic Sleep Restriction in Rats

    PubMed Central

    Deurveilher, Samuel; Bush, Jacquelyn E.; Rusak, Benjamin; Eskes, Gail A.; Semba, Kazue

    2015-01-01

    Study Objectives: Chronic sleep restriction (CSR) impairs sustained attention in humans, as commonly assessed with the psychomotor vigilance task (PVT). To further investigate the mechanisms underlying performance deficits during CSR, we examined the effect of CSR on performance on a rat version of PVT (rPVT). Design: Adult male rats were trained on a rPVT that required them to press a bar when they detected irregularly presented, brief light stimuli, and were then tested during CSR. CSR consisted of 100 or 148 h of continuous cycles of 3-h sleep deprivation (using slowly rotating wheels) alternating with a 1-h sleep opportunity (3/1 protocol). Measurements and Results: After 28 h of CSR, the latency of correct responses and the percentages of lapses and omissions increased, whereas the percentage of correct responses decreased. Over 52–148 h of CSR, all performance measures showed partial or nearly complete recovery, and were at baseline levels on the first or second day after CSR. There were large interindividual differences in the magnitude of performance impairment during CSR, suggesting differential vulnerability to the effects of sleep loss. Wheel-running controls showed no changes in performance. Conclusions: A 28-h period of the 3/1 chronic sleep restriction (CSR) protocol disrupted performance on a sustained attention task in rats, as sleep deprivation does in humans. Performance improved after longer periods of CSR, suggesting allostatic adaptation, contrary to some reports of progressive deterioration in psychomotor vigilance task performance during CSR in humans. However, as observed in humans, there were individual differences among rats in the vulnerability of their attention performance to CSR. Citation: Deurveilher S, Bush JE, Rusak B, Eskes GA, Semba K. Psychomotor vigilance task performance during and following chronic sleep restriction in rats. SLEEP 2015;38(4):515–528. PMID:25515100

  11. Simulated driving under the influence of extended wake, time of day and sleep restriction.

    PubMed

    Matthews, Raymond W; Ferguson, Sally A; Zhou, Xuan; Kosmadopoulos, Anastasi; Kennaway, David J; Roach, Gregory D

    2012-03-01

    Around a fifth of all road accidents can be attributed to fatigued drivers. Previous studies indicate that driving performance is influenced by time of day and decreases with sustained wakefulness. However, these influences occur naturally in unison, confounding their effects. Typically, when people drive at a poor time of day and with extended wake, their sleep is also restricted. Hence, the aim of the current study was to determine the independent effects of prior wake and time of day on driving performance under conditions of sleep restriction. The driving performance of fourteen male participants (21.8 ± 3.8 years, mean ± SD) was assessed during a 10 min simulated driving task with speed/lane mean, variability and violations (speeding and crashes) measured. Participants were tested at 2.5h intervals after waking, across 7 × 28 h days with a sleep:wake ratio of 1:5. By forced desynchrony each driving session occurred at 9 doses of prior wake and within 6 divisions of the circadian cycle based on core body temperature. A mixed models ANOVA revealed significant main effects of circadian phase, prior wake and sleep debt on lane violations. In addition, three significant two-way interactions (circadian phase × prior wake, prior wake × sleep debt, sleep debt × circadian phase) and one three-way interaction (circadian × prior wake × sleep debt) were identified. The presence of the large interaction effects shows that the influence of each factor is largely dependent on the magnitude of the other factors. For example, the presence of the time of day influence on driving performance is dependent on the length of prior wake or the presence of sleep debt. The findings suggest that people are able to undertake a low-difficulty simulated drive safely, at least for a short period, during their circadian nadir provided that they have had sufficient sleep and have not been awake too long.

  12. Exercise-Induced growth hormone during acute sleep deprivation.

    PubMed

    Ritsche, Kevin; Nindl, Bradly C; Wideman, Laurie

    2014-10-01

    The effect of acute (24-h) sleep deprivation on exercise-induced growth hormone (GH) and insulin-like growth factor-1 (IGF-1) was examined. Ten men (20.6 ± 1.4 years) completed two randomized 24-h sessions including a brief, high-intensity exercise bout following either a night of sleep (SLEEP) or (24-h) sleep deprivation (SLD). Anaerobic performance (mean power [MP], peak power [PP], minimum power [MinP], time to peak power [TTPP], fatigue index, [FI]) and total work per sprint [TWPS]) was determined from four maximal 30-sec Wingate sprints on a cycle ergometer. Self-reported sleep 7 days prior to each session was similar between SLEEP and SLD sessions (7.92 ± 0.33 vs. 7.98 ± 0.39 h, P = 0.656, respectively) and during the actual SLEEP session in the lab, the total amount of sleep was similar to the 7 days leading up to the lab session (7.72 ± 0.14 h vs. 7.92 ± 0.33 h, respectively) (P = 0.166). No differences existed in MP, PP, MinP, TTPP, FI, TWPS, resting GH concentrations, time to reach exercise-induced peak GH concentration (TTP), or free IGF-1 between sessions. GH area under the curve (AUC) (825.0 ± 199.8 vs. 2212.9 ± 441.9 μg/L*min, P < 0.01), exercise-induced peak GH concentration (17.8 ± 3.7 vs. 39.6 ± 7.1 μg/L, P < 0.01) and ΔGH (peak GH - resting GH) (17.2 ± 3.7 vs. 38.2 ± 7.3 μg/L, P < 0.01) were significantly lower during the SLEEP versus SLD session. Our results indicate that the exercise-induced GH response was significantly augmented in sleep-deprived individuals.

  13. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain

    PubMed Central

    WEISSHAUPT, ANGELA; WEDEKIND, FRANZISKA; KROLL, TINA; MCCARLEY, ROBERT W.

    2015-01-01

    SUMMARY Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day–1 for 5 consecutive days (SR1–SR5), followed by 3 unrestricted recovery sleep days (R1–R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26–31% from SR1 to R1). A decrease in b-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. PMID:25900125

  14. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain.

    PubMed

    Kim, Youngsoo; Elmenhorst, David; Weisshaupt, Angela; Wedekind, Franziska; Kroll, Tina; Mccarley, Robert W; Strecker, Robert E; Bauer, Andreas

    2015-10-01

    Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction.

  15. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex123

    PubMed Central

    Billeh, Yazan N.; Bernard, Amy; de Vivo, Luisa; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof

    2016-01-01

    Abstract Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25–P30, ≥50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  16. Relationship Between Subtypes of Restricted and Repetitive Behaviors and Sleep Disturbance in Autism Spectrum Disorder.

    PubMed

    Hundley, Rachel J; Shui, Amy; Malow, Beth A

    2016-11-01

    We examined the association of two types of restricted and repetitive behaviors, repetitive sensory motor (RSM) and insistence on sameness (IS), with sleep problems in children with autism spectrum disorder (ASD). Participants included 532 children (aged 2-17) who participated in the Autism Speaks Autism Treatment Network research registry. Confirmatory factor analysis of the Autism Diagnostic Interview-Revised detected the presence of RSM and IS. RSM behaviors were positively associated with parent-reported sleep problems, and this relationship remained significant after controlling for anxiety symptoms. IS was not significantly associated with sleep problems. Better understanding of the relationship between specific types of repetitive behaviors and sleep problems may allow providers to tailor interventions to the individual presentations of their patients with ASD.

  17. Prolonged REM sleep restriction induces metabolic syndrome-related changes: Mediation by pro-inflammatory cytokines.

    PubMed

    Venancio, Daniel Paulino; Suchecki, Deborah

    2015-07-01

    Chronic sleep restriction in human beings results in metabolic abnormalities, including changes in the control of glucose homeostasis, increased body mass and risk of cardiovascular disease. In rats, 96h of REM sleep deprivation increases caloric intake, but retards body weight gain. Moreover, this procedure increases the expression of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), which may be involved with the molecular mechanism proposed to mediate insulin resistance. The goal of the present study was to assess the effects of a chronic protocol of sleep restriction on parameters of energy balance (food intake and body weight), leptin plasma levels and its hypothalamic receptors and mediators of the immune system in the retroperitoneal adipose tissue (RPAT). Thirty-four Wistar rats were distributed in control (CTL) and sleep restriction groups; the latter was kept onto individual narrow platforms immersed in water for 18h/day (from 16:00h to 10:00h), for 21days (SR21). Food intake was assessed daily, after each sleep restriction period and body weight was measured daily, after the animals were taken from the sleep deprivation chambers. At the end of the 21day of sleep restriction, rats were decapitated and RPAT was obtained for morphological and immune functional assays and expression of insulin receptor substrate 1 (IRS-1) was assessed in skeletal muscle. Another subset of animals was used to evaluate blood glucose clearance. The results replicated previous findings on energy balance, e.g., increased food intake and reduced body weight gain. There was a significant reduction of RPAT mass (p<0.001), of leptin plasma levels and hypothalamic leptin receptors. Conversely, increased levels of TNF-α and IL-6 and expression of phosphorylated NFκ-β in the RPAT of SR21 compared to CTL rats (p<0.01, for all parameters). SR21 rats also displayed reduced glucose clearance and IRS-1 expression than CTL rats (p<0.01). The

  18. Barriers to Engagement in Sleep Restriction and Stimulus Control in Chronic Insomnia

    ERIC Educational Resources Information Center

    Vincent, Norah; Lewycky, Samantha; Finnegan, Heather

    2008-01-01

    Sleep restriction (SRT) and stimulus control (SC) have been found to be effective interventions for chronic insomnia (Morgenthaler et al., 2006), and yet adherence to SRT and SC varies widely. The objective of this study was to investigate correlates to adherence to SC/SRT among 40 outpatients with primary or comorbid insomnia using a…

  19. Exercise‐Induced growth hormone during acute sleep deprivation

    PubMed Central

    Ritsche, Kevin; Nindl, Bradly C.; Wideman, Laurie

    2014-01-01

    Abstract The effect of acute (24‐h) sleep deprivation on exercise‐induced growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) was examined. Ten men (20.6 ± 1.4 years) completed two randomized 24‐h sessions including a brief, high‐intensity exercise bout following either a night of sleep (SLEEP) or (24‐h) sleep deprivation (SLD). Anaerobic performance (mean power [MP], peak power [PP], minimum power [MinP], time to peak power [TTPP], fatigue index, [FI]) and total work per sprint [TWPS]) was determined from four maximal 30‐sec Wingate sprints on a cycle ergometer. Self‐reported sleep 7 days prior to each session was similar between SLEEP and SLD sessions (7.92 ± 0.33 vs. 7.98 ± 0.39 h, P =0.656, respectively) and during the actual SLEEP session in the lab, the total amount of sleep was similar to the 7 days leading up to the lab session (7.72 ± 0.14 h vs. 7.92 ± 0.33 h, respectively) (P =0.166). No differences existed in MP, PP, MinP, TTPP, FI, TWPS, resting GH concentrations, time to reach exercise‐induced peak GH concentration (TTP), or free IGF‐1 between sessions. GH area under the curve (AUC) (825.0 ± 199.8 vs. 2212.9 ± 441.9 μg/L*min, P <0.01), exercise‐induced peak GH concentration (17.8 ± 3.7 vs. 39.6 ± 7.1 μg/L, P <0.01) and ΔGH (peak GH – resting GH) (17.2 ± 3.7 vs. 38.2 ± 7.3 μg/L, P <0.01) were significantly lower during the SLEEP versus SLD session. Our results indicate that the exercise‐induced GH response was significantly augmented in sleep‐deprived individuals. PMID:25281616

  20. Inter-Individual Differences in Neurobehavioural Impairment following Sleep Restriction Are Associated with Circadian Rhythm Phase.

    PubMed

    Sletten, Tracey L; Segal, Ahuva Y; Flynn-Evans, Erin E; Lockley, Steven W; Rajaratnam, Shantha M W

    2015-01-01

    Although sleep restriction is associated with decrements in daytime alertness and neurobehavioural performance, there are considerable inter-individual differences in the degree of impairment. This study examined the effects of short-term sleep restriction on neurobehavioural performance and sleepiness, and the associations between individual differences in impairments and circadian rhythm phase. Healthy adults (n = 43; 22 M) aged 22.5 ± 3.1 (mean ± SD) years maintained a regular 8:16 h sleep:wake routine for at least three weeks prior to laboratory admission. Sleep opportunity was restricted to 5 hours time-in-bed at home the night before admission and 3 hours time-in-bed in the laboratory, aligned by wake time. Hourly saliva samples were collected from 5.5 h before until 5 h after the pre-laboratory scheduled bedtime to assess dim light melatonin onset (DLMO) as a marker of circadian phase. Participants completed a 10-min auditory Psychomotor Vigilance Task (PVT), the Karolinska Sleepiness Scale (KSS) and had slow eye movements (SEM) measured by electrooculography two hours after waking. We observed substantial inter-individual variability in neurobehavioural performance, particularly in the number of PVT lapses. Increased PVT lapses (r = -0.468, p < 0.01), greater sleepiness (r = 0.510, p < 0.0001), and more slow eye movements (r = 0.375, p = 0.022) were significantly associated with later DLMO, consistent with participants waking at an earlier circadian phase. When the difference between DLMO and sleep onset was less than 2 hours, individuals were significantly more likely to have at least three attentional lapses the following morning. This study demonstrates that the phase of an individual's circadian system is an important variable in predicting the degree of neurobehavioural performance impairment in the hours after waking following sleep restriction, and confirms that other factors influencing performance decrements require further investigation.

  1. Sleep

    MedlinePlus

    ... is REM sleep? What is the effect of sleep deprivation? What are sleep myths? What are sleep disorders? ... is REM sleep? What is the effect of sleep deprivation? What are sleep myths? What are sleep disorders? ...

  2. Partial Sleep Restriction Activates Immune Response-Related Gene Expression Pathways: Experimental and Epidemiological Studies in Humans

    PubMed Central

    Rantanen, Ville; Kronholm, Erkki; Surakka, Ida; van Leeuwen, Wessel M. A.; Lehto, Maili; Matikainen, Sampsa; Ripatti, Samuli; Härmä, Mikko; Sallinen, Mikael; Salomaa, Veikko; Jauhiainen, Matti; Alenius, Harri; Paunio, Tiina; Porkka-Heiskanen, Tarja

    2013-01-01

    Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9) was restricted to 4 h/night for five nights. The control subjects (N = 4) spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472). Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005). Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases. PMID:24194869

  3. Non-invasive Positive Pressure Ventilation during Sleep at 3800m: relationship to Acute Mountain Sickness and sleeping oxyhemoglobin saturation

    PubMed Central

    Johnson, PL; Popa, DA; Prisk, GK; Sullivan, CE; Edwards, N

    2014-01-01

    Background and objectives Ascent to high altitude results in hypobaric hypoxia and some individuals will develop Acute Mountain Sickness, which has been shown to be associated with low oxyhemoglobin saturation during sleep. Previous research has shown that positive end-expiratory pressure by use of expiratory valves in a face mask while awake, results in a reduction in AMS symptoms and higher oxyhemoglobin saturation. We aimed to test whether pressure ventilation during sleep would prevent AMS by keeping oxyhaemoglobin higher during sleep. Methods We compared sleeping oxyhemoglobin saturation and the incidence and severity of Acute Mountain Sickness in seven subjects sleeping for two consecutive nights at 3800m above sea level using either non-invasive positive pressure ventilation that delivered positive inspiratory and expiratory airway pressure via a face mask, or sleeping without assisted ventilation. The presence and severity of Acute Mountain Sickness was assessed by administration of the Lake Louise questionnaire. Results We found significant increases in the mean and minimum sleeping oxyhemoglobin saturation and decreases in AMS symptoms in subjects who used positive pressure ventilation during sleep. Mean and minimum sleeping SaO2 was lower in subjects who developed AMS after the night spent without positive pressure ventilation. Conclusion The use of positive pressure ventilation during sleep at 3800m significantly increased the sleeping oxygen saturation; we suggest that the marked reduction in symptoms of AMS is due to this higher sleeping SaO2. We agree with the findings from previous studies that the development of AMS is associated with a lower sleeping oxygen saturation. PMID:20051046

  4. Influence of food restriction on lipid profile and spontaneous glucose levels in male rats subjected to paradoxical sleep deprivation

    PubMed Central

    Alvarenga, Tathiana Aparecida; Tufik, Sergio; Pires, Gabriel Natan; Andersen, Monica Levy

    2012-01-01

    OBJECTIVES: The purpose of this study was to determine the paired consequences of food restriction and paradoxical sleep deprivation on lipid profile and spontaneous glucose levels in male rats. METHOD: Food restriction began at weaning, with 6 g of food being provided per day, which was subsequently increased by 1 g per week until reaching 15 g per day by the eighth week. At adulthood, both rats subjected to food restriction and those fed ad libitum were exposed to paradoxical sleep deprivation for 96 h or were maintained in their home-cage groups. RESULTS: Animals subjected to food restriction exhibited a significant increase in high-density lipoprotein levels compared to animals that were given free access to food. After the paradoxical sleep deprivation period, the food-restricted animals demonstrated reduced concentrations of high-density lipoprotein relative to their respective controls, although the values for the food-restricted animals after sleep deprivation were still higher than those for the ad libitum group. The concentration of low-density lipoproteins was significantly increased in sleep-deprived animals fed the ad libitum diet. The levels of triglycerides, very low-density lipoproteins, and glucose in food-restricted animals were each decreased compared to both ad libitum groups. CONCLUSION: These results may help to illustrate the mechanisms underlying the relationship between sleep curtailment and metabolism and may suggest that, regardless of sleep deprivation, dietary restriction can minimize alterations in parameters related to cardiovascular risk. PMID:22522763

  5. Ghrelin-induced sleep responses in ad libitum fed and food-restricted rats.

    PubMed

    Szentirmai, E; Hajdu, I; Obal, F; Krueger, James M

    2006-05-09

    Ghrelin is an endogenous ligand for the growth hormone secretagogue receptor and a well-characterized food intake regulatory peptide. Hypothalamic ghrelin-, neuropeptide Y (NPY)-, and orexin-containing neurons form a feeding regulatory circuit. Orexins and NPY are also implicated in sleep-wake regulation. Sleep responses and motor activity after central administration of 0.2, 1, or 5 microg ghrelin in free-feeding rats as well as in feeding-restricted rats (1 microg dose) were determined. Food and water intake and behavioral responses after the light onset injection of saline or 1 microg ghrelin were also recorded. Light onset injection of ghrelin suppressed non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS) for 2 h. In the first hour, ghrelin induced increases in behavioral activity including feeding, exploring, and grooming and stimulated food and water intake. Ghrelin administration at dark onset also elicited NREMS and REMS suppression in hours 1 and 2, but the effect was not as marked as that, which occurred in the light period. In hours 3-12, a secondary NREMS increase was observed after some doses of ghrelin. In the feeding-restricted rats, ghrelin suppressed NREMS in hours 1 and 2 and REMS in hours 3-12. Data are consistent with the notion that ghrelin has a role in the integration of feeding, metabolism, and sleep regulation.

  6. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction

    PubMed Central

    Hurtado-Alvarado, Gabriela; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier

    2016-01-01

    Chronic sleep restriction induces blood-brain barrier disruption and increases pro-inflammatory mediators in rodents. Those inflammatory mediators may modulate the blood-brain barrier and constitute a link between sleep loss and blood-brain barrier physiology. We propose that adenosine action on its A2A receptor may be modulating the blood-brain barrier dynamics in sleep-restricted rats. We administrated a selective A2A adenosine receptor antagonist (SCH58261) in sleep-restricted rats at the 10th day of sleep restriction and evaluated the blood-brain barrier permeability to dextrans coupled to fluorescein (FITC-dextrans) and Evans blue. In addition, we evaluated by western blot the expression of tight junction proteins (claudin-5, occludin, ZO-1), adherens junction protein (E-cadherin), A2A adenosine receptor, adenosine-synthesizing enzyme (CD73), and neuroinflammatory markers (Iba-1 and GFAP) in the cerebral cortex, hippocampus, basal nuclei and cerebellar vermis. Sleep restriction increased blood-brain barrier permeability to FITC-dextrans and Evans blue, and the effect was reverted by the administration of SCH58261 in almost all brain regions, excluding the cerebellum. Sleep restriction increased the expression of A2A adenosine receptor only in the hippocampus and basal nuclei without changing the expression of CD73 in all brain regions. Sleep restriction reduced the expression of tight junction proteins in all brain regions, except in the cerebellum; and SCH58261 restored the levels of tight junction proteins in the cortex, hippocampus and basal nuclei. Finally, sleep restriction induced GFAP and Iba-1 overexpression that was attenuated with the administration of SCH58261. These data suggest that the action of adenosine on its A2A receptor may have a crucial role in blood-brain barrier dysfunction during sleep loss probably by direct modulation of brain endothelial cell permeability or through a mechanism that involves gliosis with subsequent inflammation and

  7. Towards standardisation and improved understanding of sleep restriction therapy for insomnia disorder: A systematic examination of CBT-I trial content.

    PubMed

    Kyle, Simon D; Aquino, Maria Raisa Jessica; Miller, Christopher B; Henry, Alasdair L; Crawford, Megan R; Espie, Colin A; Spielman, Arthur J

    2015-10-01

    Sleep restriction therapy is a core element of contemporary cognitive-behavioural therapy for insomnia and is also effective as a single-component therapeutic strategy. Since its original description, sleep restriction therapy has been applied in several different ways, potentially limiting understanding of key therapeutic ingredients, mode of action, evidence synthesis, and clinical implementation. We sought to examine the quality of reporting and variability in the application of sleep restriction therapy within the context of insomnia intervention trials. Systematic literature searches revealed 88 trials of cognitive-behavioural therapy/sleep restriction therapy that met pre-defined inclusion/exclusion criteria. All papers were coded in relation to their description of sleep restriction therapy procedures. Findings indicate that a large proportion of papers (39%) do not report any details regarding sleep restriction therapy parameters and, for those papers that do, variability in implementation is present at every level (sleep window generation, minimum time-in-bed, sleep efficiency titration criteria, and positioning of sleep window). Only 7% of papers reported all parameters of sleep restriction treatment. Poor reporting and variability in the application of sleep restriction therapy may hinder progress in relation to evidence synthesis, specification of mechanistic components, and refinement of therapeutic procedures for patient benefit. We set out guidelines for the reporting of sleep restriction therapy as well as a research agenda aimed at advancing understanding of sleep restriction therapy.

  8. Acute Heroin Abstinence in Man. 1. Changes in Behavior and Sleep

    DTIC Science & Technology

    1980-01-01

    112. 17 D. C. Kay, R. B. Eisenstein and D. R. Jasinski, Morphine effects on human REM state, waking state, and NREM sleep . Psychopharmacologia, 14...recording days. The EEG state data showed an increase in waking and decrease in both slow wave and REM sleep during acute heroin withdrawal. Total sleep ...was maximally suppressed on withdrawal days 2 and 3 and was still below normal control values on with- drawal days 5 - 7. REM sleep was more

  9. Physiological arousal and attention during a week of continuous sleep restriction.

    PubMed

    Cote, Kimberly A; Milner, Catherine E; Osip, Stephanie L; Baker, Meghan L; Cuthbert, Brielle P

    2008-10-20

    Waking brain physiology underlying deficits from continuous sleep restriction (CSR) is not well understood. Fourteen good sleepers participated in a 21-day protocol where they slept their usual amount in a baseline week, had their time in bed restricted by 33% in a CSR week, and slept the desired amount in a recovery week. Participants slept at home, completing diaries and wearing activity monitors to verify compliance. Each day participants completed an RT task and mood and sleepiness ratings every 3 h. Laboratory assessment of electrophysiology and performance took place at the end of baseline, three times throughout the CSR week, and at the beginning of recovery. Participants reported less sleep during CSR which was confirmed by activity monitors. Correspondingly, well-being and neurobehavioural performance was impaired. Quantitative EEG analysis revealed significantly reduced arousal between the 1st and 7th days of restriction and linear effects at anterior sites (Fp2, Fz, F8, T8). At posterior sites (P4, P8), reductions occurred only later in the week between the 4th and 7th nights of restriction. Both the immediate linear decline in arousal and precipitous drop later in the week were apparent at central sites (C4, Cz). Thus, frontal regions were affected immediately, while parietal regions showed maintenance of function until restriction was more severe. The P300 ERP component showed evidence of reduced attention by the 7th day of restriction (at Pz, P4). EEG and ERPs deficits were more robust in the right-hemisphere, which may reflect greater vulnerability to sleep loss in the non-dominant hemisphere.

  10. More Daytime Sleeping Predicts Less Functional Recovery Among Older People Undergoing Inpatient Post-Acute Rehabilitation

    PubMed Central

    Alessi, Cathy A.; Martin, Jennifer L.; Webber, Adam P.; Alam, Tarannum; Littner, Michael R.; Harker, Judith O.; Josephson, Karen R.

    2008-01-01

    Study Objectives: To study the association between sleep/wake patterns among older adults during inpatient post-acute rehabilitation and their immediate and long-term functional recovery Design: Prospective, observational cohort study Setting: Two inpatient post-acute rehabilitation sites (one community and one Veterans Administration) Participants: Older patients (aged ≥ 65 years, N = 245) admitted for inpatient post-acute rehabilitation Interventions: None Measurements and Results: Based on 7-day wrist actigraphy during the rehabilitation stay, mean nighttime percent sleep was only 52.2% and mean daytime percent sleep was 15.8% (16.3% based on structured behavioral observations). Using the Pittsburgh Sleep Quality Index (PSQI), participants reported their sleep was worse during rehabilitation compared to their premorbid sleep. Functional recovery between admission and discharge from rehabilitation (measured by the motor component of the Functional Independence Measure) was not significantly associated with reported sleep quality (PSQI scores) or actigraphically measured nighttime sleep. However, more daytime percent sleep (estimated by actigraphy and observations) during the rehabilitation stay was associated with less functional recovery from admission to discharge, even after adjusting for other significant predictors of functional recovery (mental status, hours of rehabilitation therapy received, rehospitalization, and reason for admission; adjusted R2 = 0.267, P < 0.0001). More daytime sleeping during rehabilitation remained a significant predictor of less functional recovery in adjusted analyses at 3-month follow-up. Conclusions: Sleep disturbance is common among older people undergoing inpatient post-acute rehabilitation. These data suggest that more daytime sleeping during the rehabilitation stay is associated with less functional recovery for up to three months after admission for rehabilitation. Citation: Alessi CA; Martin JL; Webber AP; Alam T

  11. PER3 and ADORA2A polymorphisms impact neurobehavioral performance during sleep restriction.

    PubMed

    Rupp, Tracy L; Wesensten, Nancy J; Newman, Rachel; Balkin, Thomas J

    2013-04-01

    The objective of the study was to determine whether ADORA2A or PER3 polymorphisms contribute to individual responsivity to sleep restriction. Nineteen healthy adults (ages 18-39, 11 males, 8 females) underwent sleep restriction (SR) which consisted of seven nights of 3 h time in bed (TIB) (04:00-07:00). SR was preceded by seven in-laboratory nights of 10 h TIB (21:00-07:00) and followed by three nights of 8 h TIB (23:00-07:00). Volunteers underwent psychomotor vigilance, objective alertness, and subjective sleepiness assessments throughout. Volunteers were genotyped for the PER3 VNTR polymorphism (PER3(4/4) n = 7; PER3(4/5) n = 10; PER3(5/5) n = 2) and the ADORA2A c.1083T>C polymorphism, (ADORA2A(C) (/T) n = 9; ADORA2A(T) (/T) n = 9; ADORA2A(C) (/C) n = 1) using polymerase chain reaction (PCR). Separate mixed-model anovas were used to assess contributions of ADORA2A and PER3 polymorphisms. Results showed that PER3(4/4) and ADORA2A(C/T) individuals expressed greater behavioral resiliency to SR compared to PER(4/5) and ADORA2A(T/T) individuals. Our findings contrast with previously reported non-significant effects for the PER3 polymorphism under a less challenging sleep restriction regimen (4 h TIB per night for five nights). We conclude that PER3 and ADORA2A polymorphisms become more behaviorally salient with increasing severity and/or duration of sleep restriction (based on psychomotor vigilance). Given the small sample size these results are preliminary and require replication.

  12. Effects of sleep restriction during pregnancy on the mother and fetuses in rats.

    PubMed

    Pardo, Grace Violeta Espinoza; Goularte, Jéferson Ferraz; Hoefel, Ana Lúcia; de Castro, Alexandre Luz; Kucharski, Luiz Carlos; da Rosa Araujo, Alex Sander; Lucion, Aldo Bolten

    2016-03-01

    The present study aimed to analyze the effects of sleep restriction (SR) during pregnancy in rats. The following three groups were studied: home cage (HC pregnant females remained in their home cage), Sham (females were placed in tanks similar to the SR group but with sawdust) and SR (females were submitted to the multiple platform method for 20 h per day from gestational days (GD) 14 to 20). Plasma corticosterone after 6 days of SR was not different among the groups. However, the relative adrenal weight was higher in the SR group compared with the HC group, which suggests possible stress impact. SR during pregnancy reduces the body weight of the female but no changes in liver glycogen, cholesterol and triglycerides, and muscle glycogen were detected. On GD 20, the fetuses of the females submitted to SR exhibited increased brain derived neurotrophic factor (BDNF) in the hippocampus, which indicates that sleep restriction of mothers during the final week of gestation may affect neuronal growth factors in a fetal brain structure, in which active neurogenesis occurs during the deprivation period. However, no changes in the total reactive oxygen species (ROS) in the cortex, hippocampus, or cerebellum of the fetuses were detected. SR females showed no major change in the maternal behavior, and the pups' preference for the mother's odor on postpartum day (PPD) 7 was not altered. On GD 20, the SR females exhibited increased plasma prolactin (PRL) and oxytocin (OT) compared with the HC and Sham groups. The negative outcomes of sleep restriction during delivery could be related, in part, to this hormonal imbalance. Sleep restriction during pregnancy induces different changes compared with the changes described in males and affects both the mother and offspring.

  13. Phenotypic Stability of Energy Balance Responses to Experimental Total Sleep Deprivation and Sleep Restriction in Healthy Adults

    PubMed Central

    Dennis, Laura E.; Spaeth, Andrea M.; Goel, Namni

    2016-01-01

    Experimental studies have shown that sleep restriction (SR) and total sleep deprivation (TSD) produce increased caloric intake, greater fat consumption, and increased late-night eating. However, whether individuals show similar energy intake responses to both SR and TSD remains unknown. A total of N = 66 healthy adults (aged 21–50 years, 48.5% women, 72.7% African American) participated in a within-subjects laboratory protocol to compare daily and late-night intake between one night of SR (4 h time in bed, 04:00–08:00) and one night of TSD (0 h time in bed) conditions. We also examined intake responses during subsequent recovery from SR or TSD and investigated gender differences. Caloric and macronutrient intake during the day following SR and TSD were moderately to substantially consistent within individuals (Intraclass Correlation Coefficients: 0.34–0.75). During the late-night period of SR (22:00–04:00) and TSD (22:00–06:00), such consistency was slight to moderate, and participants consumed a greater percentage of calories from protein (p = 0.01) and saturated fat (p = 0.02) during SR, despite comparable caloric intake (p = 0.12). Similarly, participants consumed a greater percentage of calories from saturated fat during the day following SR than TSD (p = 0.03). Participants also consumed a greater percentage of calories from protein during recovery after TSD (p < 0.001). Caloric intake was greater in men during late-night hours and the day following sleep loss. This is the first evidence of phenotypic trait-like stability and differential vulnerability of energy balance responses to two commonly experienced types of sleep loss: our findings open the door for biomarker discovery and countermeasure development to predict and mitigate this critical health-related vulnerability. PMID:27999367

  14. Rapid Eye Movement Sleep Abnormalities in Children with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS)

    PubMed Central

    Gaughan, Thomas; Buckley, Ashura; Hommer, Rebecca; Grant, Paul; Williams, Kyle; Leckman, James F.; Swedo, Susan E.

    2016-01-01

    Study Objectives: Polysomnographic investigation of sleep architecture in children presenting with pediatric acute-onset neuropsychiatric syndrome (PANS). Methods: Fifteen consecutive subjects meeting criteria for PANS (mean age = 7.2 y; range 3–10 y) underwent single-night full polysomnography (PSG) read by a pediatric neurologist. Results: Thirteen of 15 subjects (87%) had abnormalities detected with PSG. Twelve of 15 had evidence of rapid eye movement (REM) sleep motor disinhibition, as characterized by excessive movement, laughing, hand stereotypies, moaning, or the continuation of periodic limb movements during sleep (PLMS) into REM sleep. Conclusions: This study shows various forms of REM sleep motor disinhibition present in a population of children with PANS. Citation: Gaughan T, Buckley A, Hommer R, Grant P; Williams K, Leckman JF, Swedo SE. Rapid eye movement sleep abnormalities in children with pediatric acute-onset neuropsychiatric syndrome (PANS). J Clin Sleep Med 2016;12(7):1027–1032. PMID:27166296

  15. Effects of acute sleep deprivation on motor and reversal learning in mice.

    PubMed

    Varga, Andrew W; Kang, Mihwa; Ramesh, Priyanka V; Klann, Eric

    2014-10-01

    Sleep supports the formation of a variety of declarative and non-declarative memories, and sleep deprivation often impairs these types of memories. In human subjects, natural sleep either during a nap or overnight leads to long-lasting improvements in visuomotor and fine motor tasks, but rodent models recapitulating these findings have been scarce. Here we present evidence that 5h of acute sleep deprivation impairs mouse skilled reach learning compared to a matched period of ad libitum sleep. In sleeping mice, the duration of total sleep time during the 5h of sleep opportunity or during the first bout of sleep did not correlate with ultimate gain in motor performance. In addition, we observed that reversal learning during the skilled reaching task was also affected by sleep deprivation. Consistent with this observation, 5h of sleep deprivation also impaired reversal learning in the water-based Y-maze. In conclusion, acute sleep deprivation negatively impacts subsequent motor and reversal learning and memory.

  16. Piromelatine, a novel melatonin receptor agonist, stabilizes metabolic profiles and ameliorates insulin resistance in chronic sleep restricted rats.

    PubMed

    She, Meihua; Hu, Xiaobo; Su, Zehong; Zhang, Chi; Yang, Shenghua; Ding, Lin; Laudon, Moshe; Yin, Weidong

    2014-03-15

    Chronic sleep deprivation may speed the onset or increase the severity of age-related conditions such as Type 2 diabetes, high blood pressure and obesity. Piromelatine (Neu-P11) is a novel melatonin agonist, which has been developed for the treatment of insomnia. Animal studies have suggested possible efficacy of piromelatine in sleep maintenance, anxiety and depression. In addition, piromelatine has been shown to inhibit weight gain and improve insulin sensitivity in high-fat/high-sucrose-fed (HFSD) rats. The objective of this study was to investigate the effects of piromelatine on insulin sensitivity in sleep restricted rats. Sleep restriction was established by rotating cages intermittently for 20h thereby sleeping time of rats was limited to 4h per day. During 8 days of sleep restriction, rats were injected intraperitoneally with piromelatine (20mg/kg), melatonin (5mg/kg) or a vehicle. The results showed that sleep restriction increased plasma glucose, fasting insulin, total cholesterol (TC), triglycerides (TG) and oxidative stress markers while HDL-cholesterol (HDL-C) level and glucose tolerance were decreased. However, under piromelatine or melatonin treatment, the levels of plasma glucose, TG, TC decreased and HDL-C, glucose tolerance and antioxidative potency increased when compared with the vehicle-treated group. These data suggest that chronic sleep restriction in rats induce metabolic dysfunction, oxidative stress and insulin resistance, and these symptoms were improved by treatment with piromelatine or melatonin. We conclude that piromelatine could regulate metabolic profiles and insulin sensitivity, and attenuate insulin resistance induced by sleep restriction.

  17. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression.

    PubMed

    Zielinski, Mark R; Kim, Youngsoo; Karpova, Svetlana A; McCarley, Robert W; Strecker, Robert E; Gerashchenko, Dmitry

    2014-09-19

    Acute sleep loss increases pro-inflammatory and synaptic plasticity-related molecules in the brain, including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and brain-derived neurotrophic factor (BDNF). These molecules enhance non-rapid eye movement sleep slow wave activity (SWA), also known as electroencephalogram delta power, and modulate neurocognitive performance. Evidence suggests that chronic sleep restriction (CSR), a condition prevalent in today's society, does not elicit the enhanced SWA that is seen after acute sleep loss, although it cumulatively impairs neurocognitive functioning. Rats were continuously sleep deprived for 18h per day and allowed 6h of ad libitum sleep opportunity for 1 (SR1), 3 (SR3), or 5 (SR5) successive days (i.e., CSR). IL-1β, TNF-α, and BDNF mRNA levels were determined in the somatosensory cortex, frontal cortex, hippocampus, and basal forebrain. Largely, brain IL-1β and TNF-α expression were significantly enhanced throughout CSR. In contrast, BDNF mRNA levels were similar to baseline values in the cortex after 1 day of SR and significantly lower than baseline values in the hippocampus after 5 days of SR. In the basal forebrain, BDNF expression remained elevated throughout the 5 days of CSR, although IL-1β expression was significantly reduced. The chronic elevations of IL-1β and TNF-α and inhibition of BDNF might contribute to the reported lack of SWA responses reported after CSR. Further, the CSR-induced enhancements in brain inflammatory molecules and attenuations in hippocampal BDNF might contribute to neurocognitive and vigilance detriments that occur from CSR.

  18. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    PubMed Central

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  19. Chronic sleep restriction induces changes in the mandibular condylar cartilage of rats: roles of Akt, Bad and Caspase-3

    PubMed Central

    Zhu, Yong; Wu, Gaoyi; Zhu, Guoxiong; Ma, Chuan; Zhao, Huaqiang

    2014-01-01

    Aims: The aim of the present study was to observe changes in the temporomandibular joint (TMJ) of rats that had been subjected to chronic sleep restriction and to investigate whether Akt, Bad and Caspase3 play a role in the mechanism underlying the changes. Main methods: One hundred and eighty male Wistar rats were randomly divided into three groups (n = 60 in each): cage control group, large-platform control group, and sleep restriction group. Each group was divided into three subgroups (n = 20 in each) of three different time points (7, 14 and 21 days), respectively. The modified multiple platform method was used to induce chronic sleep restriction. The TMJ tissue histology was studied by staining with haematoxylin and eosin. The expression of Akt, p-Aktser473, Bad, p-Badser136 and Caspase3 proteins was detected by immunohistochemistry and western blotting. The expression of Akt, Bad and Caspase3 mRNAs was measured by real-time quantitative polymerase chain reaction (RT-qPCR). Key findings: Compared with the large-platform and cage control groups, condylar cartilage pathological alterations were found in the sleep restriction group. There were significantly decreased expression levels of Akt, p-Aktser473 and p-Badser136 and significantly increased expression levels of Bad and Caspase3 after sleep restriction. Significance: These data suggest that sleep restriction may induce pathological alterations in the condylar cartilage of rats. Alterations in Akt, Bad and Caspase3 may be associated with the potential mechanism by which chronic sleep restriction influences the condylar cartilage. PMID:25356113

  20. Effects of acute administration of brotizolam in subjects with disturbed sleep

    PubMed Central

    Roehrs, T.; Zorick, F.; Koshorek, G. L.; Wittig, R.; Roth, T.

    1983-01-01

    1 Effects of ingestion of brotizolam (0.25 and 0.50 mg) over 1-3 days on polysomnographic measures of sleep were assessed in patients complaining of insomnia. 2 Brotizolam reduced latency to sleep, number of awakenings and wake during sleep, and increased total sleep time. It also increased stage 2 sleep and decreased slow wave and rapid eye movement sleep. 3 Increasing the dose from 0.25 to 0.50 mg increased hypnotic efficacy, and there was a more consistent and reliable effect. 4 Discontinuation of brotizolam had minimal effects on sleep compared with placebo over the 3 nights after acute administration. 5 No side-effects or disruption of daytime function was found using questionnaires and objective tests of performance. PMID:6661383

  1. Acute total sleep deprivation potentiates cocaine-induced hyperlocomotion in mice.

    PubMed

    Berro, L F; Santos, R; Hollais, A W; Wuo-Silva, R; Fukushiro, D F; Mári-Kawamoto, E; Costa, J M; Trombin, T F; Patti, C L; Grapiglia, S B; Tufik, S; Andersen, M L; Frussa-Filho, R

    2014-09-05

    Sleep deprivation is common place in modern society. Nowadays, people tend to self-impose less sleep in order to achieve professional or social goals. In the social context, late-night parties are frequently associated with higher availability of recreational drugs with abuse potential. Physiologically, all of these drugs induce an increase in dopamine release in the mesolimbic dopaminergic system, which leads to hyperlocomotion in rodents. Sleep deprivation also seems to play an important role in the events related to the neurotransmission of the dopaminergic system by potentiating its behavioral effects. In this scenario, the aim of the present study was to investigate the effects of total sleep deprivation (6h) on the acute cocaine-induced locomotor stimulation in male mice. Animals were sleep deprived or maintained in their home cages and subsequently treated with an acute i.p. injection of 15mg/kg cocaine or saline and observed in the open field. Total sleep deprivation for 6h potentiated the hyperlocomotion induced by acute cocaine administration. In addition, the cocaine sleep deprived group showed a decreased ratio central/total locomotion compared to the cocaine control group, which might be related to an increase in the impulsiveness of mice. Our data indicate that acute periods of sleep loss should be considered risk factors for cocaine abuse.

  2. Assessing the benefits of napping and short rest breaks on processing speed in sleep-restricted adolescents.

    PubMed

    Lim, Julian; Lo, June C; Chee, Michael W L

    2017-04-01

    Achievement-oriented adolescents often study long hours under conditions of chronic sleep restriction, adversely affecting cognitive function. Here, we studied how napping and rest breaks (interleaved off-task periods) might ameliorate the negative effects of sleep restriction on processing speed. Fifty-seven healthy adolescents (26 female, age = 15-19 years) participated in a 15-day live-in protocol. All participants underwent sleep restriction (5 h time-in-bed), but were then randomized into two groups: one of these groups received a daily 1-h nap opportunity. Data from seven of the study days (sleep restriction days 1-5, and recovery days 1-2) are reported here. The Blocked Symbol Decoding Test, administered once a day, was used to assess time-on-task effects and the effects of rest breaks on processing speed. Controlling for baseline differences, participants who took a nap demonstrated faster speed of processing and greater benefit across testing sessions from practice. These participants were also affected significantly less by time-on-task effects. In contrast, participants who did not receive a nap benefited more from the rest breaks that were permitted between blocks of the test. Our results indicate that napping partially reverses the detrimental effects of sleep restriction on processing speed. However, rest breaks have a greater effect as a countermeasure against poor performance when sleep pressure is higher. These data add to the growing body of evidence showing the importance of sleep for good cognitive functioning in adolescents, and suggest that more frequent rest breaks might be important in situations where sleep loss is unavoidable.

  3. Effects of intrauterine growth restriction on sleep and the cardiovascular system: The use of melatonin as a potential therapy?

    PubMed

    Yiallourou, Stephanie R; Wallace, Euan M; Miller, Suzanne L; Horne, Rosemary S C

    2016-04-01

    Intrauterine growth restriction (IUGR) complicates 5-10% of pregnancies and is associated with increased risk of preterm birth, mortality and neurodevelopmental delay. The development of sleep and cardiovascular control are closely coupled and IUGR is known to alter this development. In the long-term, IUGR is associated with altered sleep and an increased risk of hypertension in adulthood. Melatonin plays an important role in the sleep-wake cycle. Experimental animal studies have shown that melatonin therapy has neuroprotective and cardioprotective effects in the IUGR fetus. Consequently, clinical trials are currently underway to assess the short and long term effects of antenatal melatonin therapy in IUGR pregnancies. Given melatonin's role in sleep regulation, this hormone could affect the developing infants' sleep-wake cycle and cardiovascular function after birth. In this review, we will 1) examine the role of melatonin as a therapy for IUGR pregnancies and the potential implications on sleep and the cardiovascular system; 2) examine the development of sleep-wake cycle in fetal and neonatal life; 3) discuss the development of cardiovascular control during sleep; 4) discuss the effect of IUGR on sleep and the cardiovascular system and 5) discuss the future implications of melatonin therapy in IUGR pregnancies.

  4. Nonapnea Sleep Disorders and the Risk of Acute Kidney Injury

    PubMed Central

    Lin, Hugo You-Hsien; Chang, Kai-Ting; Chang, Yu-Han; Lu, Tzongshi; Liang, Chan-Jung; Wang, Dean-Chuan; Tsai, Jui-Hsiu; Hsu, Chung-Yao; Hung, Chi-Chih; Kuo, Mei-Chuan; Lin, Chang-Shen; Hwang, Shang-Jyh

    2016-01-01

    Abstract Nonapnea sleep disorders (NASDs) and associated problems, which are highly prevalent in patients with kidney diseases, are associated with unfavorable medical sequelae. Nonetheless, whether NASDs are associated with acute kidney injury (AKI) development has not been thoroughly analyzed. We examined the association between NASD and AKI. We conducted a population-based study by using 1,000,000 representative data from the Taiwan National Health Insurance Research Database for the period from January 1, 2000, to December 31, 2010. We studied the incidence and risk of AKI in 9178 newly diagnosed NASD patients compared with 27,534 people without NASD matched according to age, sex, index year, urbanization level, region of residence, and monthly income at a 1:3 ratio. The NASD cohort had an adjusted hazard ratio (hazard ratio [HR]; 95% confidence interval [CI] = 1.15–2.63) of subsequent AKI 1.74-fold higher than that of the control cohort. Older age and type 2 diabetes mellitus were significantly associated with an increased risk of AKI (P < 0.05). Among different types of NASDs, patients with insomnia had a 120% increased risk of developing AKI (95% CI = 1.38–3.51; P = 0.001), whereas patients with other sleep disorders had a 127% increased risk of subsequent AKI (95% CI = 1.07–4.80; P = 0.033). Men with NASDs were at a high risk of AKI (P < 0.05). This nationwide population-based cohort study provides evidence that patients with NASDs are at higher risk of developing AKI than people without NASDs. PMID:26986132

  5. Early Life Stress and Sleep Restriction as Risk Factors in PTSD: An Integrative Pre-Clinical Approach

    DTIC Science & Technology

    2014-04-01

    1 AD_________________ Award Number: W81XWH-11-2-0111 TITLE: “Early Life Stress and Sleep ...REPORT TYPE Annual 3. DATES COVERED 1 April 2013 - 31 March 2014 4. TITLE AND SUBTITLE “Early Life Stress and Sleep Restriction as Risk Factors...Gal Richter-Levin 5d. PROJECT NUMBER 5e. TASK NUMBER email:galrichterlevin@gmail.com 5f. WORK UNIT NUMBER 7. PERFORMING

  6. Adverse Impact of Sleep Restriction and Circadian Misalignment on Autonomic Function in Healthy Young Adults.

    PubMed

    Grimaldi, Daniela; Carter, Jason R; Van Cauter, Eve; Leproult, Rachel

    2016-07-01

    Insufficient sleep and circadian rhythm disturbances have been each associated with adverse cardiovascular outcomes in epidemiological studies, but experimental evidence for a causal link is scarce. The present study compares the impact of circadian misalignment (CM) to circadian alignment (CA) on human autonomic function using a nonrandomized parallel group design to achieve the same total sleep time in both conditions. After baseline assessments (3 days with 10-hour bedtimes), 26 healthy young adults were assigned to sleep restriction (SR; eight 5-hour bedtimes) with either fixed nocturnal bedtimes (CA; n=13) or bedtimes delayed by 8.5 hours on 4 of the 8 days (CM; n=13). Daytime ambulatory blood pressure and heart rate (HR; CA, n=11; CM, n=10) and 24-hour urinary norepinephrine levels (CA, n=13; CM, n=13) were assessed at baseline and the end of SR. Nocturnal HR and HR variability were analyzed during sleep at baseline and during the fourth and seventh nights of SR (CA, n=8; CM, n=12). SR resulted in a significant increase in daytime HR in both groups, without changes in blood pressure. SR increased 24-hour urinary norepinephrine in the CM group (30±4 versus 21±2 μg), but not in the circadian alignment group (group×condition, P=0.005). In contrast to the lack of detectable impact of CM on daytime autonomic function, SR with CM elicited greater increases in nocturnal HR, as well as greater reductions in vagal indices of HR variability, than SR without CM (group×condition, P<0.05). In conclusion, SR and CM both result in impaired autonomic function that could lead, under chronic conditions, to enhanced cardiovascular risk.

  7. The effects of an acute bout of sleep on running economy and VO2 max.

    PubMed

    Pierce, E F; McGowan, R W; Barkett, E; Fry, R W

    1993-04-01

    Synchronized human sleep has been shown to decrease activation of the sympathetic nervous system, resulting in reduced levels of oxygen consumption. This is in direct conflict with sympathetic arousal, which coincides with the initiation of exercise. Although a considerable body of research has investigated the effects of sleep deprivation on exercise performance, the effects of an acute bout of sleep on exercise response have not been previously reported. This question appears relevant considering the occurrence of acute sleep bouts among athletes competing in prolonged multi-event competition (e.g. swimming, track and field). To investigate the effects of an acute bout of sleep on submaximal (running economy) and maximal oxygen consumption, seven male volunteers participated in a continuous, progressive treadmill test to volitional exhaustion immediately following a 1-h bout of sleep (SB) or no sleep (Control). The subjects served as their own controls and the order of trials was randomized. A MANOVA with repeated measures indicated no difference between groups for running economy or VO2 (P < 0.05). However, a significant interaction effect was observed in which SB resulted in greater running economy (lower VO2) through the first two stages of the protocol, while the control treatment yielded a greater economy throughout the remaining stages. While the implications of the findings are uncertain, they may indicate differences in psychological arousal or anxiety as a result of treatments or the possibility of a delayed sympathetic arousal in the early stages of exercise following sleep.

  8. Acute physical exercise under hypoxia improves sleep, mood and reaction time.

    PubMed

    de Aquino-Lemos, Valdir; Santos, Ronaldo Vagner T; Antunes, Hanna Karen Moreira; Lira, Fabio S; Luz Bittar, Irene G; Caris, Aline V; Tufik, Sergio; de Mello, Marco Tulio

    2016-02-01

    This study aimed to assess the effect of two sessions of acute physical exercise at 50% VO2peak performed under hypoxia (equivalent to an altitude of 4500 m for 28 h) on sleep, mood and reaction time. Forty healthy men were randomized into 4 groups: Normoxia (NG) (n = 10); Hypoxia (HG) (n = 10); Exercise under Normoxia (ENG) (n = 10); and Exercise under Hypoxia (EHG) (n = 10). All mood and reaction time assessments were performed 40 min after awakening. Sleep was reassessed on the first day at 14 h after the initiation of hypoxia; mood and reaction time were measured 28 h later. Two sessions of acute physical exercise at 50% VO2peak were performed for 60 min on the first and second days after 3 and 27 h, respectively, after starting to hypoxia. Improved sleep efficiency, stage N3 and REM sleep and reduced wake after sleep onset were observed under hypoxia after acute physical exercise. Tension, anger, depressed mood, vigor and reaction time scores improved after exercise under hypoxia. We conclude that hypoxia impairs sleep, reaction time and mood. Acute physical exercise at 50% VO2peak under hypoxia improves sleep efficiency, reversing the aspects that had been adversely affected under hypoxia, possibly contributing to improved mood and reaction time.

  9. The Impact of Heat Exposure and Sleep Restriction on Firefighters' Work Performance and Physiology during Simulated Wildfire Suppression.

    PubMed

    Vincent, Grace E; Aisbett, Brad; Larsen, Brianna; Ridgers, Nicola D; Snow, Rod; Ferguson, Sally A

    2017-02-12

    This study was designed to examine the effects of ambient heat on firefighters' physical task performance, and physiological and perceptual responses when sleep restricted during simulated wildfire conditions. Thirty firefighters were randomly allocated to the sleep restricted (n = 17, SR; 19 °C, 4-h sleep opportunity) or hot and sleep restricted (n = 13, HOT + SR; 33 °C, 4-h sleep opportunity) condition. Firefighters performed two days of simulated, intermittent, self-paced work circuits comprising six firefighting tasks. Heart rate, and core temperature were measured continuously. After each task, firefighters reported their rating of perceived exertion and thermal sensation. Effort sensation was also reported after each work circuit. Fluids were consumed ad libitum. Urine volume and urine specific gravity were analysed. Sleep was monitored using polysomnography. There were no differences between the SR and HOT + SR groups in firefighters' physiological responses, hydration status, ratings of perceived exertion, motivation, and four of the six firefighting tasks (charged hose advance, rake, hose rolling, static hose hold). Black out hose and lateral repositioning were adversely affected in the HOT + SR group. Working in hot conditions did not appear to consistently impair firefighters work performance, physiology, and perceptual responses. Future research should determine whether such findings remain true when individual tasks are performed over longer durations.

  10. The Impact of Heat Exposure and Sleep Restriction on Firefighters’ Work Performance and Physiology during Simulated Wildfire Suppression

    PubMed Central

    Vincent, Grace E.; Aisbett, Brad; Larsen, Brianna; Ridgers, Nicola D.; Snow, Rod; Ferguson, Sally A.

    2017-01-01

    This study was designed to examine the effects of ambient heat on firefighters’ physical task performance, and physiological and perceptual responses when sleep restricted during simulated wildfire conditions. Thirty firefighters were randomly allocated to the sleep restricted (n = 17, SR; 19 °C, 4-h sleep opportunity) or hot and sleep restricted (n = 13, HOT + SR; 33 °C, 4-h sleep opportunity) condition. Firefighters performed two days of simulated, intermittent, self-paced work circuits comprising six firefighting tasks. Heart rate, and core temperature were measured continuously. After each task, firefighters reported their rating of perceived exertion and thermal sensation. Effort sensation was also reported after each work circuit. Fluids were consumed ad libitum. Urine volume and urine specific gravity were analysed. Sleep was monitored using polysomnography. There were no differences between the SR and HOT + SR groups in firefighters’ physiological responses, hydration status, ratings of perceived exertion, motivation, and four of the six firefighting tasks (charged hose advance, rake, hose rolling, static hose hold). Black out hose and lateral repositioning were adversely affected in the HOT + SR group. Working in hot conditions did not appear to consistently impair firefighters work performance, physiology, and perceptual responses. Future research should determine whether such findings remain true when individual tasks are performed over longer durations. PMID:28208688

  11. A Unified Mathematical Model to Quantify Performance Impairment for Both Chronic Sleep Restriction and Total Sleep Deprivation

    DTIC Science & Technology

    2013-04-24

    Performance prediction models based on the classical two- process model of sleep regulation are reasonably effective at predicting alertness and...recent history exerting greater influence. This incorporation of sleep/wake history into the classical two- process model captures an individual’s...capacity to recover during sleep as a function of sleep debt and naturally bridges the continuum from CSR to TSD by reducing to the classical two- process

  12. Effects of overnight sleep restriction on brain chemistry and mood in women with unipolar depression and healthy controls

    PubMed Central

    Bernier, Denise; Bartha, Robert; Devarajan, Sivakumaran; MacMaster, Frank P.; Schmidt, Matthias H.; Rusak, Benjamin

    2009-01-01

    Background Partial or total overnight sleep deprivation produces immediate mood improvement in about 50% of patients with depression, but not in healthy controls. Our objectives were to compare the neurochemical changes that accompanied partial overnight sleep deprivation in healthy and depressed participants, and to compare baseline neurochemical profiles and overnight neurochemical changes between those depressed participants who did and did not respond to sleep loss with mood improvement. Methods We studied 2 brain regions (left dorsal prefrontal area and pons) in 12 women with unipolar depression and in 15 healthy women using proton magnetic resonance spectroscopy acquired at 1.5 T. The scans took place at baseline and 24 hours later after a night with sleep restricted to a maximum of 2.5 hours (22:30–01:00). We assessed 3 neurochemical signals (referenced to internal water): N-acetylaspartate (NAA), choline compounds (Cho) and creatine-plus-phosphocreatine (tCr). Results In both groups combined, sleep restriction caused a 20.1% decrease in pontine tCr (F1–16 = 5.07, p = 0.039, Cohen’s d = 0.54) and an 11.3% increase in prefrontal Cho (F1–21 = 5.24, p = 0.033, Cohen’s d = 0.46). Follow-up tests revealed that prefrontal Cho increases were significant only among depressed participants (17.9% increase, t9 = −3.35, p = 0.008, Cohen’s d = 1.06). Five depressed patients showed at least 30% improvement in mood, whereas 6 showed no change or worsening in mood after sleep restriction. Baseline pontine Cho levels distinguished subsequent responders from nonresponders to sleep restriction among depressed participants (z = 2.61, p = 0.008). Limitations A limitation of this study is the relatively small sample size. Conclusion Sleep restriction altered levels of pontine tCr and prefrontal Cho in both groups combined, suggesting effects on phospholipid and creatine metabolism. Baseline levels of pontine Cho were linked to subsequent mood responses to sleep loss

  13. A LONGITUDINAL STUDY OF POOR SLEEP AFTER INPATIENT POST-ACUTE REHABILITATION: THE ROLE OF DEPRESSION AND PRE-ILLNESS SLEEP QUALITY

    PubMed Central

    Martin, Jennifer L.; Jouldjian, Stella; Mitchell, Michael N.; Josephson, Karen R.; Alessi, Cathy A.

    2012-01-01

    Objectives To explore the unique impact of poor sleep and symptoms of depression on sleep quality for up to one year after inpatient post-acute rehabilitation among older adults. Design Prospective longitudinal cohort study. Setting Two in-patient post-acute rehabilitation facilities Participants 245 individuals over age 65 years (mean age=80 years, 38% female) Interventions None. Measurements Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI) during the post-acute care stay twice to evaluate pre-illness sleep quality and sleep quality during the post-acute care stay, and again at 3, 6, 9 and 12-months follow-up. Demographics, symptoms of depression, cognitive functioning, and comorbidities were also assessed. Results Across time points, sleep was significantly disturbed for many individuals. Nested regression models predicting PSQI total score at 3, 6, 9 and 12 months showed that variables entered in Block 1 (age, gender, cognitive functioning and comorbidities) were significant predictors of poor sleep at 6-months, but not at 3, 9 or 12 months follow-up. Depression (Block 2) and pre-illness PSQI total score (Block 3) were significant predictors of PSQI total score at all follow-up time points. PSQI total score during post-acute care (Block 4) explained a significant proportion of variance only at the 3-month follow-up. Conclusions This study confirms that chronic poor sleep is common among older adults during post-acute rehabilitation, and resolution of sleep disturbance after acute health events may be a lengthy process. Our findings expand understanding of the role of depressive symptoms and pre-existing sleep complaints in predicting poor sleep over time among these vulnerable older adults. PMID:22617164

  14. REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants.

    PubMed

    McCarthy, Andrew; Wafford, Keith; Shanks, Elaine; Ligocki, Marcin; Edgar, Dale M; Dijk, Derk-Jan

    2016-09-01

    Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep.

  15. Effect of Eye Mask on Sleep Quality in Patients with Acute Coronary Syndrome

    PubMed Central

    Daneshmandi, Mohammad; Neiseh, Fatemeh; SadeghiShermeh, Mehdi; Ebadi, Abbas

    2012-01-01

    Introduction: Sleep is one of the basic human needs and sleep deprivation causes nu-merous adverse effects on the human body and mind. Due to reduced sleep quality in patients with acute coronary syndrome, this study was carried out to determine the effect of eye mask on sleep quality in patients with acute coronary syndrome. Methods: In this two-group controlled clinical trial, sixty patients with acute coronary syndrome in the coronary care units of Baqiyatallah Hospital in Tehran in 2010 were selected by purposeful sampling method and randomly allocated to two groups of case and control. In the case group, in the second night stay, the intervention of eye mask was done per night and by using the Petersburg's sleep quality index; sleep quality was evaluated during and at the end of hospitalization. Then data were analyzed by paired t-test, independent t-test, Spearman and Pearson's correlation coefficient and SPSS software version 19. Results: Total sleep quality score of the case group was significantly decreased after intervention (4.86 ± 1.88) from before intervention (10.46 ± 4.09) (p < 0.000). In addi-tion, total score of sleep quality after intervention in the case group (4.86 ± 1.88) was significant different from the control group (8.43 ± 1.97) (p < 0.005). Conclusion: Using eye mask, as an economical and uncomplicated method, can improve sleep quality in patients with acute coronary syndrome in the coronary care units and can be used as an alternative method of treatment instead of drug therapy. PMID:25276688

  16. Are parenting behaviors associated with child sleep problems during treatment for acute lymphoblastic leukemia?

    PubMed

    McCarthy, Maria C; Bastiani, Jessica; Williams, Lauren K

    2016-07-01

    Sleep disturbance is a recognized common side effect in children treated for acute lymphoblastic leukemia (ALL). Although associated with treatment factors such as hospitalization and corticosteroids, sleep problems may also be influenced by modifiable environmental factors such as parenting behaviors. The purpose of this study was to examine sleep problems in children undergoing treatment for ALL compared to healthy children and whether parenting practices are associated with sleep difficulties. Parents of 73 children aged 2-6 years who were (1) in the maintenance phase of ALL treatment (ALL group, n = 43) or (2) had no major medical illness (healthy control group, n = 30) participated in the study. Parents completed questionnaires measuring their child's sleep behavior and their own parenting practices. Parents of children undergoing ALL treatment reported significantly more child sleep problems; 48% of children with ALL compared to 23% of healthy children had clinical levels of sleep disturbance. Parents of the ALL group also reported significantly more lax parenting practices and strategies associated with their child's sleep including co-sleeping, comforting activities, and offering food and drink in the bedroom. Results of multivariate regression analysis indicated that, after controlling for illness status, parent-child co-sleeping was significantly associated with child sleep difficulties. Strategies employed by parents during ALL treatment may be a potential modifiable intervention target that could result in improved child sleep behaviors. Future research aimed at developing and testing parenting interventions aimed to improve child sleep in the context of oncology treatment is warranted.

  17. Quantity and quality of nocturnal sleep affect morning glucose measurement in acutely burned children.

    PubMed

    Mayes, Theresa; Gottschlich, Michele M; Khoury, Jane; Simakajornboon, Narong; Kagan, Richard J

    2013-01-01

    Hyperglycemia after severe burn injury has long been recognized, whereas sleep deprivation after burns is a more recent finding. The postburn metabolic effects of poor sleep are not clear despite reports in other populations demonstrating the association between sleep insufficiency and deleterious endocrine consequences. The aim of this study was to determine whether a relationship between sleep and glucose dynamics exists in acutely burned children. Two overnight polysomnography runs (2200 to 0600) per subject were conducted in 40 patients with a mean (± SEM) age of 9.4 ± 0.7 years, 50.1 ± 2.9% TBSA burn, and 43.2 ± 3.6% full-thickness injury. Serum glucose was drawn in the morning (0600) immediately after the sleep test. Insulin requirements during the 24-hour period preceding the 0600 glucose measurement were recorded. Generalized linear models were used by the authors to evaluate percent time in each stage of sleep, percent wake time, total sleep time, sleep efficiency, and morning serum glucose, accounting for insulin use. Increased time awake (P = .04, linear; P = .02, quadratic) and reduced time spent in stage 1 sleep (P = .03, linear) were associated with higher glucose levels. Sleep efficiency (P = .01, linear; P = .02, quadratic) and total sleep time (P = .01 linear; P = .02, quadratic) were inversely associated with glucose level. Morning glucose levels appear to be affected by the quality and quantity of overnight sleep in children who have sustained extensive burn injuries. Future research is needed to elucidate the metabolic and neuroendocrine consequences of sleep deprivation on metabolism after burns.

  18. Impact of Acute Sleep Deprivation on Sarcasm Detection.

    PubMed

    Deliens, Gaétane; Stercq, Fanny; Mary, Alison; Slama, Hichem; Cleeremans, Axel; Peigneux, Philippe; Kissine, Mikhail

    2015-01-01

    There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another perspective in gauging sarcastic statements. At 9am, after a whole night of sleep (n = 15) or a sleep deprivation night (n = 15), participants had to read the description of an event happening to a group of friends. An ambiguous voicemail message left by one of the friends on another's phone was then presented, and participants had to decide whether the recipient would perceive the message as sincere or as sarcastic. Messages were uttered with a neutral intonation and were either: (1) sarcastic from both the participant's and the addressee's perspectives (i.e. both had access to the relevant background knowledge to gauge the message as sarcastic), (2) sarcastic from the participant's but not from the addressee's perspective (i.e. the addressee lacked context knowledge to detect sarcasm) or (3) sincere. A fourth category consisted in messages sarcastic from both the participant's and from the addressee's perspective, uttered with a sarcastic tone. Although sleep-deprived participants were as accurate as sleep-rested participants in interpreting the voice message, they were also slower. Blunted reaction time was not fully explained by generalized cognitive slowing after sleep deprivation; rather, it could reflect a compensatory mechanism supporting normative accuracy level in sarcasm understanding. Introducing prosodic cues compensated for increased processing difficulties in sarcasm detection after sleep deprivation. Our findings support the hypothesis that sleep deprivation might

  19. Impact of Acute Sleep Deprivation on Sarcasm Detection

    PubMed Central

    Mary, Alison; Slama, Hichem; Cleeremans, Axel; Peigneux, Philippe; Kissine, Mikhail

    2015-01-01

    There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another perspective in gauging sarcastic statements. At 9am, after a whole night of sleep (n = 15) or a sleep deprivation night (n = 15), participants had to read the description of an event happening to a group of friends. An ambiguous voicemail message left by one of the friends on another's phone was then presented, and participants had to decide whether the recipient would perceive the message as sincere or as sarcastic. Messages were uttered with a neutral intonation and were either: (1) sarcastic from both the participant’s and the addressee’s perspectives (i.e. both had access to the relevant background knowledge to gauge the message as sarcastic), (2) sarcastic from the participant’s but not from the addressee’s perspective (i.e. the addressee lacked context knowledge to detect sarcasm) or (3) sincere. A fourth category consisted in messages sarcastic from both the participant’s and from the addressee’s perspective, uttered with a sarcastic tone. Although sleep-deprived participants were as accurate as sleep-rested participants in interpreting the voice message, they were also slower. Blunted reaction time was not fully explained by generalized cognitive slowing after sleep deprivation; rather, it could reflect a compensatory mechanism supporting normative accuracy level in sarcasm understanding. Introducing prosodic cues compensated for increased processing difficulties in sarcasm detection after sleep deprivation. Our findings support the hypothesis that sleep

  20. Food restriction or sleep deprivation: which exerts a greater influence on the sexual behaviour of male rats?

    PubMed

    Alvarenga, Tathiana A; Andersen, Monica L; Velázquez-Moctezuma, Javier; Tufik, Sergio

    2009-09-14

    The purpose of this study was to determine the effects of food restriction (FR) and paradoxical sleep deprivation (PSD), either alone or in combination, on sexual behaviours (mount, intromission and ejaculation) in adult male rats. Diet restriction began at weaning with 6g/day of food, and the amount of food was increased by 1g/week until it reached 15g/day amount (in adulthood). During adulthood, rats under FR and those fed ad libitum were either subjected to PSD for 96h or maintained in home-cage groups. The results indicated that both FR and ad libitum sleep-deprived groups showed a significant decrease in performance and motivation to initiate sexual behaviour, reflected by the increase in mount and intromission latencies and decreased copulatory rate. FR associated with PSD reversed the adverse effects of sleep deprivation on the number of ejaculations and inter-copulatory interval. Testosterone concentrations decreased after sleep deprivation, regardless of food availability; while progesterone was significantly higher in the FR-PSD group only. In light of the limited understanding of the link between secretion patterns and neural-hormonal control of food availability related to sexual behaviour, our data indicate that sleep loss affects sexual responses, and FR was able to restore some of the sexual parameters investigated.

  1. Dawn simulation light impacts on different cognitive domains under sleep restriction.

    PubMed

    Gabel, Virginie; Maire, Micheline; Reichert, Carolin F; Chellappa, Sarah L; Schmidt, Christina; Hommes, Vanja; Cajochen, Christian; Viola, Antoine U

    2015-03-15

    Chronic sleep restriction (SR) has deleterious effects on cognitive performance that can be counteracted by light exposure. However, it is still unknown if naturalistic light settings (dawn simulating light) can enhance daytime cognitive performance in a sustainable matter. Seventeen participants were enrolled in a 24-h balanced cross-over study, subsequent to SR (6-h of sleep). Two different light settings were administered each morning: a) dawn simulating light (DsL; polychromatic light gradually increasing from 0 to 250 lx during 30 min before wake-up time, with light around 250 lx for 20 min after wake-up time) and b) control dim light (DL; <8 lx). Cognitive tests were performed every 2 h during scheduled wakefulness and questionnaires were completed hourly to assess subjective mood. The analyses yielded a main effect of "light condition" for the motor tracking task, sustained attention to response task and a working memory task (visual 1 and 3-back task), as well as for the Simple Reaction Time Task, such that participants showed better task performance throughout the day after morning DsL exposure compared to DL. Furthermore, low performers benefited more from the light effects compared to high performers. Conversely, no significant influences from the DsL were found for the Psychomotor Vigilance Task and a contrary effect was observed for the digit symbol substitution test. No light effects were observed for subjective perception of sleepiness, mental effort, concentration and motivation. Our data indicate that short exposure to artificial morning light may significantly enhance cognitive performance in a domain-specific manner under conditions of mild SR.

  2. Hormone treatment gives no benefit against cognitive changes caused by acute sleep deprivation in postmenopausal women.

    PubMed

    Karakorpi, Maija; Alhola, Paula; Urrila, Anna Sofia; Kylmälä, Mervi; Portin, Raija; Kalleinen, Nea; Polo-Kantola, Päivi

    2006-09-01

    The objective was to evaluate whether hormone therapy (HT) gives any benefit against the possible impairment of cognitive performance when challenged by acute sleep deprivation. Twenty postmenopausal women volunteered (age range 59-72 years, mean=64.4 years, SD=4.4): 10 HT users and 10 nonusers. Eleven young women served as a control group for the cognitive age effect (age range 20-26 years, mean age 23.1 years, SD=1.6). The subjects spent four consecutive nights at the sleep laboratory and were exposed to acute sleep deprivation of 40 h. Measures of attention (reaction speed and vigilance), alertness, and mood were administered every 2 h during the daytime and every hour during the sleep deprivation night. Postmenopausal women performed slower than young controls, whereas young controls made more errors. In HT users, the recovery night did not fully restore the performance in the simple and two-choice reaction time tasks, but in nonusers it did so. Sleep deprivation had a detrimental, yet reversible effect on vigilance in all groups. In all groups, sleepiness started to increase after 15 h of sleep deprivation and remained elevated in the morning after the recovery night. Prolonged wakefulness or HT had no effect on mood. In conclusion, sleep deprivation impaired cognitive performance in postmenopausal as well as young women. Postmenopausal women kept up their performance at the expense of reaction speed and young women at the expense of accuracy. One night was not enough for HT users to recover from sleep deprivation. Thus, HT gave no benefit in maintaining the attention and alertness during sleep deprivation.

  3. Daily Rhythms of Hunger and Satiety in Healthy Men during One Week of Sleep Restriction and Circadian Misalignment.

    PubMed

    Sargent, Charli; Zhou, Xuan; Matthews, Raymond W; Darwent, David; Roach, Gregory D

    2016-01-29

    The impact of sleep restriction on the endogenous circadian rhythms of hunger and satiety were examined in 28 healthy young men. Participants were scheduled to 2 × 24-h days of baseline followed by 8 × 28-h days of forced desynchrony during which sleep was either moderately restricted (equivalent to 6 h in bed/24 h; n = 14) or severely restricted (equivalent to 4 h in bed/24 h; n = 14). Self-reported hunger and satisfaction were assessed every 2.5 h during wake periods using visual analogue scales. Participants were served standardised meals and snacks at regular intervals and were not permitted to eat ad libitum. Core body temperature was continuously recorded with rectal thermistors to determine circadian phase. Both hunger and satiety exhibited a marked endogenous circadian rhythm. Hunger was highest, and satiety was lowest, in the biological evening (i.e., ~17:00-21:00 h) whereas hunger was lowest, and satiety was highest in the biological night (i.e., 01:00-05:00 h). The results are consistent with expectations based on previous reports and may explain in some part the decrease in appetite that is commonly reported by individuals who are required to work at night. Interestingly, the endogenous rhythms of hunger and satiety do not appear to be altered by severe--as compared to moderate--sleep restriction.

  4. Rapid eye movement-sleep is reduced in patients with acute uncomplicated diverticulitis-an observational study.

    PubMed

    Huang, Chenxi; Alamili, Mahdi; Nielsen, Claus Henrik; Rosenberg, Jacob; Gögenur, Ismail

    2015-01-01

    Introduction. Sleep disturbances are commonly found in patients in the postoperative period. Sleep disturbances may give rise to several complications including cardiopulmonary instability, transient cognitive dysfunction and prolonged convalescence. Many factors including host inflammatory responses are believed to cause postoperative sleep disturbances, as inflammatory responses can alter sleep architecture through cytokine-brain interactions. Our aim was to investigate alteration of sleep architecture during acute infection and its relationships to inflammation and clinical symptoms. Materials & Methods. In this observational study, we included patients with acute uncomplicated diverticulitis as a model to investigate the isolated effects of inflammatory responses on sleep. Eleven patients completed the study. Patients were admitted and treated with antibiotics for two nights, during which study endpoints were measured by polysomnography recordings, self-reported discomfort scores and blood samples of cytokines. One month later, the patients, who now were in complete remission, were readmitted and the endpoints were re-measured (the baseline values). Results. Total sleep time was reduced 4% and 7% the first (p = 0.006) and second (p = 0.014) nights of diverticulitis, compared to baseline, respectively. The rapid eye movement sleep was reduced 33% the first night (p = 0.016), compared to baseline. Moreover, plasma IL-6 levels were correlated to non-rapid eye movement sleep, rapid eye movement sleep and fatigue. Conclusion. Total sleep time and rapid eye movement sleep were reduced during nights with active diverticulitis and correlated with markers of inflammation.

  5. Early Life Stress and Sleep Restriction as Risk Factors in PTSD: An Integrative Pre-Clinical Approach

    DTIC Science & Technology

    2012-04-01

    establish an effective animal model of PTSD that would consider the contribution of risk factors to the induction of the trauma. 2) To examine the... effects of sleep restriction on coping with Under Water Trauma (UWT) in rats. Methods: Animals – Male Sprague Dawley rats (~36 days old, 125-150...SR protocol As depicted in figure 2, Repeated measures ANOVA indicated a significant main effect for group on the total rotations per hour on the

  6. Poor Self-Reported Sleep Quality Predicts Mortality within One Year of Inpatient Post-Acute Rehabilitation among Older Adults

    PubMed Central

    Martin, Jennifer L.; Fiorentino, Lavinia; Jouldjian, Stella; Mitchell, Michael; Josephson, Karen R.; Alessi, Cathy A.

    2011-01-01

    Study Objective: To evaluate the association between self-reported sleep quality among older adults during inpatient post-acute rehabilitation and one-year survival. Design: Prospective, observational cohort study. Setting: Two inpatient post-acute rehabilitation sites (one community and one Veterans Administration). Participants: Older patients (aged ≥ 65 years, n = 245) admitted for inpatient post-acute rehabilitation. Interventions: None. Measurements and Results: Within one year of post-acute rehabilitation, 57 participants (23%) were deceased. Cox proportional hazards models showed that worse Pittsburgh Sleep Quality Index (PSQI) total scores during the post-acute care stay were associated with increased mortality risk when controlling for amount of rehabilitation therapy received, comorbidities, and cognitive functioning (Hazard ratio [95% CI] = 1.11 [1.02-1.20]). Actigraphically estimated sleep was unrelated to mortality risk. Conclusions: Poorer self-reported sleep quality, but not objectively estimated sleep parameters, during post-acute rehabilitation was associated with shorter survival among older adults. This suggests self-reported poor sleep may be an important and potentially modifiable risk factor for negative outcomes in these vulnerable older adults. Studies of interventions to improve sleep quality during inpatient rehabilitation should therefore be undertaken, and the long-term health benefits of improved sleep should be explored. Citation: Martin JL; Fiorentino L; Jouldjian S; Mitchell M; Josephson KR; Alessi CA. Poor self-reported sleep quality predicts mortality within one year of inpatient post-acute rehabilitation among older adults. SLEEP 2011;34(12):1715-1721. PMID:22131610

  7. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: a high density EEG investigation

    PubMed Central

    Plante, David T.; Goldstein, Michael R.; Cook, Jesse D.; Smith, Richard; Riedner, Brady A.; Rumble, Meredith E.; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M.; Peterson, Michael J.

    2015-01-01

    Objective Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Methods Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Results Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Conclusions Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. Significance These results demonstrate a homeostatic response to partial sleep loss in humans. PMID:26596212

  8. Effect of obstructive sleep apnoea on severity and short-term prognosis of acute coronary syndrome.

    PubMed

    Barbé, Ferran; Sánchez-de-la-Torre, Alicia; Abad, Jorge; Durán-Cantolla, Joaquin; Mediano, Olga; Amilibia, Jose; Masdeu, Maria José; Florés, Marina; Barceló, Antonia; de la Peña, Mónica; Aldomá, Albina; Worner, Fernando; Valls, Joan; Castellà, Gerard; Sánchez-de-la-Torre, Manuel

    2015-02-01

    The goal of this study was to evaluate the influence of obstructive sleep apnoea on the severity and short-term prognosis of patients admitted for acute coronary syndrome. Obstructive sleep apnoea was defined as an apnoea-hypopnoea index (AHI) >15 h(-1). We evaluated the acute coronary syndrome severity (ejection fraction, Killip class, number of diseased vessels, and plasma peak troponin) and short-term prognosis (length of hospitalisation, complications and mortality). We included 213 patients with obstructive sleep apnoea (mean±sd AHI 30±14 h(-1), 61±10 years, 80% males) and 218 controls (AHI 6±4 h(-1), 57±12 years, 82% males). Patients with obstructive sleep apnoea exhibited a higher prevalence of systemic hypertension (55% versus 37%, p<0.001), higher body mass index (29±4 kg·m(-2) versus 26±4 kg·m(-2), p<0.001), and lower percentage of smokers (61% versus 71%, p=0.04). After adjusting for smoking, age, body mass index and hypertension, the plasma peak troponin levels were significantly elevated in the obstructive sleep apnoea group (831±908 ng·L(-1) versus 987±884 ng·L(-1), p=0.03) and higher AHI severity was associated with an increased number of diseased vessels (p=0.04). The mean length of stay in the coronary care unit was higher in the obstructive sleep apnoea group (p=0.03). This study indicates that obstructive sleep apnoea is related to an increase in the peak plasma troponin levels, number of diseased vessels, and length of stay in the coronary care unit.

  9. The influence of acute exercise on sleep following high caffeine intake.

    PubMed

    Youngstedt, S D; O'Connor, P J; Crabbe, J B; Dishman, R K

    2000-02-01

    The purpose of this study was to examine the influence of vigorous acute exercise on nocturnal sleep that had been disrupted by high doses (1200 mg) of caffeine throughout the daytime. Eight moderately fit, young males with a history of moderate caffeine use completed four conditions in a within-subjects, counterbalanced design: 60 min of (i) cycling at 60% VO(2peak) or (ii) quiet rest following placebo consumption, (iii) cycling, or (iv) quiet rest following the consumption of a high dose of caffeine. Each condition was performed twice from 1615-1715 h and followed by all-night polysomnographic recording. Subjects consumed two blinded 200-mg capsules of either lactose placebo or caffeine upon awakening, at 1600 h, and 2 h before bedtime. State anxiety was assessed at bedtime. Criterion scores consisted of the mean data across the two days in each condition. Sleep data were analyzed using a condition (exercise versus quiet rest) by drug (caffeine versus placebo) repeated-measures ANOVA. Caffeine-elicited sleep disturbance that was less than previously reported. Exercise attenuated selected sleep disturbances to a small degree. In general, the effects of exercise on sleep were not greater following caffeine compared to placebo. Indeed, increases in slow-wave sleep after exercise were approximately 1/3 smaller following caffeine treatment compared to placebo.

  10. Withania somnifera as a potential anxiolytic and immunomodulatory agent in acute sleep deprived female Wistar rats.

    PubMed

    Kaur, Taranjeet; Singh, Harpal; Mishra, Rachana; Manchanda, Shaffi; Gupta, Muskan; Saini, Vedangana; Sharma, Anuradha; Kaur, Gurcharan

    2017-03-01

    Sleep is a profound regulator of cellular immunity, and the curtailment of sleep in present day lifestyle leads to disruption of neuro-immune-endocrine interactions. No therapeutic remedy is yet known for the amelioration of detrimental effects caused by sleep deprivation (SD). The current study was aimed to elucidate the effects of acute SD on immune function and its modulation by water extract from leaves of Withania somnifera (ASH-WEX). Three groups of animals, i.e. Vehicle-Undisturbed sleep (VUD), Vehicle-Sleep deprived (VSD) and ASH-WEX fed sleep deprived (WSD) rats were tested for their anxiety-like behaviour and further used for the study of inflammatory and apoptotic markers expression in piriform cortex and hippocampus regions of the brain. VSD animals showed high level of anxiety in elevated plus maze test, which was ameliorated in WSD group. The stress induced expression of inflammatory and immune response markers GFAP, TNFα, IL-6, OX-18 and OX-42 in VSD animals was found to be modulated by ASH-WEX. Further, the stress induced apoptosis was suppressed in WSD group as indicated by expression of NF-κB, AP-1, Bcl-xL and Cytochrome c. This study provides scientific validation to the anxiolytic, anti-inflammatory and anti-apoptotic properties of ASH-WEX, which may serve as an effective dietary supplement for management of SD induced stress and associated functional impairments.

  11. Acute stress alters autonomic modulation during sleep in women approaching menopause.

    PubMed

    de Zambotti, Massimiliano; Sugarbaker, David; Trinder, John; Colrain, Ian M; Baker, Fiona C

    2016-04-01

    Hot flashes, hormones, and psychosocial factors contribute to insomnia risk in the context of the menopausal transition. Stress is a well-recognized factor implicated in the pathophysiology of insomnia; however the impact of stress on sleep and sleep-related processes in perimenopausal women remains largely unknown. We investigated the effect of an acute experimental stress (impending Trier Social Stress Task in the morning) on pre-sleep measures of cortisol and autonomic arousal in perimenopausal women with and without insomnia that developed in the context of the menopausal transition. In addition, we assessed the macro- and micro-structure of sleep and autonomic functioning during sleep. Following adaptation to the laboratory, twenty two women with (age: 50.4 ± 3.2 years) and eighteen women without (age: 48.5 ± 2.3 years) insomnia had two randomized in-lab overnight recordings: baseline and stress nights. Anticipation of the task resulted in higher pre-sleep salivary cortisol levels and perceived tension, faster heart rate and lower vagal activity, based on heart rate variability measures, in both groups of women. The effect of the stress manipulation on the autonomic nervous system extended into the first 4 h of the night in both groups. However, vagal tone recovered 4-6 h into the stress night in controls but not in the insomnia group. Sleep macrostructure was largely unaltered by the stress, apart from a delayed latency to REM sleep in both groups. Quantitative analysis of non-rapid eye movement sleep microstructure revealed greater electroencephalographic (EEG) power in the beta1 range (15-≤23 Hz), reflecting greater EEG arousal during sleep, on the stress night compared to baseline, in the insomnia group. Hot flash frequency remained similar on both nights for both groups. These results show that pre-sleep stress impacts autonomic nervous system functioning before and during sleep in perimenopausal women with and without insomnia. Findings also indicate

  12. Effect of Acute Intermittent CPAP Depressurization during Sleep in Obese Patients

    PubMed Central

    Jun, Jonathan C.; Unnikrishnan, Dileep; Schneider, Hartmut; Kirkness, Jason; Schwartz, Alan R.; Smith, Philip L.; Polotsky, Vsevolod Y.

    2016-01-01

    Background Obstructive Sleep Apnea (OSA) describes intermittent collapse of the airway during sleep, for which continuous positive airway pressure (CPAP) is often prescribed for treatment. Prior studies suggest that discontinuation of CPAP leads to a gradual, rather than immediate return of baseline severity of OSA. The objective of this study was to determine the extent of OSA recurrence during short intervals of CPAP depressurization during sleep. Methods Nine obese (BMI = 40.4 ± 3.5) subjects with severe OSA (AHI = 88.9 ± 6.8) adherent to CPAP were studied during one night in the sleep laboratory. Nasal CPAP was delivered at therapeutic (11.1 ± 0.6 cm H20) or atmospheric pressure, in alternating fashion for 1-hour periods during the night. We compared sleep architecture and metrics of OSA during CPAP-on and CPAP-off periods. Results 8/9 subjects tolerated CPAP withdrawal. The average AHI during CPAP-on and CPAP-off periods was 3.6 ± 0.6 and 15.8 ± 3.6 respectively (p<0.05). The average 3% ODI during CPAP-on and CPAP-off was 4.7 ± 2 and 20.4 ± 4.7 respectively (p<0.05). CPAP depressurization also induced more awake (p<0.05) and stage N1 (p<0.01) sleep, and less stage REM (p<0.05) with a trend towards decreased stage N3 (p = 0.064). Conclusion Acute intermittent depressurization of CPAP during sleep led to deterioration of sleep architecture but only partial re-emergence of OSA. These observations suggest carryover effects of CPAP. PMID:26731735

  13. Sleep laboratory studies in restless legs syndrome patients as compared with normals and acute effects of ropinirole. 1. Findings on objective and subjective sleep and awakening quality.

    PubMed

    Saletu, B; Gruber, G; Saletu, M; Brandstätter, N; Hauer, C; Prause, W; Ritter, K; Saletu-Zyhlarz, G

    2000-01-01

    Although the restless legs syndrome (RLS) is a disorder with a relatively high prevalence rate (8% in Austria) and leads to insomnia and excessive daytime tiredness, there is a paucity of sleep laboratory data concerning objective and subjective sleep and awakening quality. Thus, the aim of this study was to investigate 12 untreated RLS patients as compared with 12 normal controls and subsequently measure the acute effects of 0.5 mg ropinirole (Requip((R))) - a nonergoline dopamine agonist - as compared with placebo. In 3 nights (adaptation, placebo, ropinirole night) sleep induction, maintenance and architecture were measured objectively by polysomnography, subjective sleep and awakening quality were assessed by self-rating scales and visual-analog scales, and objective awakening quality was evaluated by a psychometric test battery. In polysomnography, RLS patients demonstrated, as compared with normal controls, a decreased total sleep time (TST) and sleep efficacy, increased wakefulness during the total sleep period and frequency of nocturnal awakenings, increased sleep stage S1, decreased S2 and increased stage shifts. Subjective sleep quality tended to decrease, and morning well-being, mood, affectivity and wakefulness were deteriorated. In the noopsyche, fine motor activity and reaction time performance were deteriorated. Ropinirole 0.5 mg induced, as compared with placebo, an increase in TST, sleep efficacy, S2 sleep and stage shifts. In the morning, somatic complaints increased slightly, while fine motor activity and reaction time performance improved. Our findings suggest a key-lock principle in the diagnosis/treatment of RLS and a dopaminergic mechanism in its pathogenesis, which is supported by the data on periodic leg movements during sleep and arousals of the subsequent paper.

  14. Sleep disruption and its effect on lymphocyte redeployment following an acute bout of exercise.

    PubMed

    Ingram, Lesley A; Simpson, Richard J; Malone, Eva; Florida-James, Geraint D

    2015-07-01

    Sleep disruption and deprivation are common in contemporary society and have been linked with poor health, decreased job performance and increased life-stress. The rapid redeployment of lymphocytes between the blood and tissues is an archetypal feature of the acute stress response, but it is not known if short-term perturbations in sleep architecture affect lymphocyte redeployment. We examined the effects of a disrupted night sleep on the exercise-induced redeployment of lymphocytes and their subtypes. 10 healthy male cyclists performed 1h of cycling at a fixed power output on an indoor cycle ergometer, following a night of undisrupted sleep (US) or a night of disrupted sleep (DS). Blood was collected before, immediately after and 1h after exercise completion. Lymphocytes and their subtypes were enumerated using direct immunofluorescence assays and 4-colour flow cytometry. DS was associated with elevated concentrations of total lymphocytes and CD3(-)/CD56(+) NK-cells. Although not affecting baseline levels, DS augmented the exercise-induced redeployment of CD8(+) T-cells, with the naïve/early differentiated subtypes (KLRG1(-)/CD45RA(+)) being affected most. While the mobilisation of cytotoxic lymphocyte subsets (NK cells, CD8(+) T-cells γδ T-cells), tended to be larger in response to exercise following DS, their enhanced egress at 1h post-exercise was more marked. This occurred despite similar serum cortisol and catecholamine levels between the US and DS trials. NK-cells redeployed with exercise after DS retained their expression of perforin and Granzyme-B indicating that DS did not affect NK-cell 'arming'. Our findings indicate that short-term changes in sleep architecture may 'prime' the immune system and cause minor enhancements in lymphocyte trafficking in response to acute dynamic exercise.

  15. Excess diuresis and natriuresis during acute sleep deprivation in healthy adults.

    PubMed

    Kamperis, Konstantinos; Hagstroem, Soren; Radvanska, Eva; Rittig, Soren; Djurhuus, Jens Christian

    2010-08-01

    The transition from wakefulness to sleep is associated with a pronounced decline in diuresis, a necessary physiological process that allows uninterrupted sleep. The aim of this study was to assess the effect of acute sleep deprivation (SD) on urine output and renal water, sodium, and solute handling in healthy young volunteers. Twenty young adults (10 male) were recruited for two 24-h studies under standardized dietary conditions. During one of the two admissions, subjects were deprived of sleep. Urine output, electrolyte excretions, and osmolar excretions were calculated. Activated renin, angiotensin II, aldosterone, arginine vasopressin, and atrial natriuretic peptide were measured in plasma, whereas prostaglandin E(2) and melatonin were measured in urine. SD markedly increased the diuresis and led to excess renal sodium excretion. The effect was more pronounced in men who shared significantly higher diuresis levels during SD compared with women. Renal water handling and arginine vasopressin levels remained unaltered during SD, but the circadian rhythm of the hormones of the renin-angiotensin-aldosterone system was significantly affected. Urinary melatonin and prostaglandin E(2) excretion levels were comparable between SD and baseline night. Hemodynamic changes were characterized by the attenuation of nocturnal blood pressure dipping and an increase in creatinine clearance. Acute deprivation of sleep induces natriuresis and osmotic diuresis, leading to excess nocturnal urine production, especially in men. Hemodynamic changes during SD may, through renal and hormonal processes, be responsible for these observations. Sleep architecture disturbances should be considered in clinical settings with nocturnal polyuria such as enuresis in children and nocturia in adults.

  16. Exercise, but not acute sleep loss, increases salivary antimicrobial protein secretion.

    PubMed

    Gillum, Trevor L; Kuennen, Matthew R; Castillo, Micaela N; Williams, Nicole L; Jordan-Patterson, Alex T

    2015-05-01

    Sleep deficiencies may play a role in depressing immune parameters. Little is known about the impact of exercise after sleep deprivation on mucosal immunity. The purpose of this study was to quantify salivary antimicrobial proteins (AMPs) in response to sleep loss before and after exercise. Four men and 4 women (age: 22.8 ± 2; : 49.1 ± 7.1 ml · kg(-1) · min(-1)) completed 2 exercise trials consisting of 45 minutes of running at 75% VO2peak after a normal night of sleep (CON) and after a night without sleep (WS). Exercise trials were separated by 10 ± 3 days. Saliva was collected before, immediately after, and 1 hour after exercise. LL-37, HNP1-3, Lactoferrin (Lac), and Lysozyme (Lys) were measured. Sleep loss did not affect the concentration or secretion rate of AMPs before or in response to exercise. However, exercise increased the concentration from pre- to post-exercise of LL-37 (pre: 15.5 ± 8.7; post: 22.3 ± 16.2 ng · ml(-1)), HNP1-3 (pre: 2.2 ± 2.3; post: 3.3 ± 2.5 µg · ml(-1)), Lac (pre: 5,234 ± 4,202; post: 12,283 ± 10,995 ng · ml(-1)), and Lys (pre: 5,831 ± 4,465; post: 12,542 ± 10,755 ng · ml(-1)), p <= 0.05. The secretion rates were higher immediately after and 1 hour after exercise compared with before exercise for LL-37 (pre: 3.1 ± 2.1; post: 5.1 ± 3.7; +1: 6.9 ± 8.4 ng · min(-1)), HNP1-3 (pre: 0.38 ± 0.38; post: 0.80 ± 0.75; +1: 0.84 ± 0.67 µg · min(-1)), Lac (pre: 1,096 ± 829; post: 2,948 ± 2,923; +1: 2,464 ± 3,785 ng · min(-1)), and Lys (pre: 1,534 ± 1,790; post: 3,042 ± 2,773; +1: 1,916 ± 1,682 ng · min-(1)), p <= 0.05. These data suggest that the major constituents of the mucosal immune system are unaffected by acute sleep loss and by exercise after acute sleep loss. Exercise increased the concentration and secretion rate of each AMP suggesting enhanced immunity and control of inflammation, despite limited sleep.

  17. Sleep Loss and Inflammation

    PubMed Central

    Simpson, Norah S.; Meier-Ewert, Hans K.; Haack, Monika

    2012-01-01

    Controlled, experimental studies on the effects of acute sleep loss in humans have shown that mediators of inflammation are altered by sleep loss. Elevations in these mediators have been found to occur in healthy, rigorously screened individuals undergoing experimental vigils of more than 24 hours, and have also been seen in response to various durations of sleep restricted to between 25 and 50% of a normal 8 hour sleep amount. While these altered profiles represent small changes, such sub-clinical shifts in basal inflammatory cytokines are known to be associated with the future development of metabolic syndrome disease in healthy, asymptomatic individuals. Although the mechanism of this altered inflammatory status in humans undergoing experimental sleep loss is unknown, it is likely that autonomic activation and metabolic changes play key roles. PMID:21112025

  18. Reduction in ultrasonic vocalizations in pups born to rapid eye movement sleep restricted mothers in rat model.

    PubMed

    Gulia, Kamalesh K; Patel, Niraj; Radhakrishnan, Arathi; Kumar, Velayudhan Mohan

    2014-01-01

    The effects of rapid eye movement sleep restriction (REMSR) in rats during late pregnancy were studied on the ultrasonic vocalizations (USVs) made by the pups. USVs are distress calls inaudible to human ears. Rapid eye movement (REM) sleep was restricted in one group of pregnant rats for 22 hours, starting from gestational day 14 to 20, using standard single platform method. The USVs of male pups were recorded after a brief isolation from their mother for two minutes on alternate post-natal days, from day one till weaning. The USVs were recorded using microphones and were analysed qualitatively and quantitatively using SASPro software. Control pups produced maximum vocalization on post-natal days 9 to 11. In comparison, the pups born to REMSR mothers showed not only a reduction in vocalization but also a delay in peak call making days. The experimental group showed variations in the types and characteristics of call types, and alteration in temporal profile. The blunting of distress call making response in these pups indicates that maternal sleep plays a role in regulating the neural development involved in vocalizations and possibly in shaping the emotional behaviour in neonates. It is suggested that the reduced ultrasonic vocalizations can be utilized as a reliable early marker for affective state in rat pups. Such impaired vocalization responses could provide an important lead in understanding mother-child bonding for an optimal cognitive development during post-partum life. This is the first report showing a potential link between maternal REM sleep deprivation and the vocalization in neonates and infants.

  19. Sleep after critical illness: Study of survivors of acute respiratory distress syndrome and systematic review of literature

    PubMed Central

    Dhooria, Sahajal; Sehgal, Inderpaul Singh; Agrawal, Anshu Kumar; Agarwal, Ritesh; Aggarwal, Ashutosh Nath; Behera, Digambar

    2016-01-01

    Background and Aims: This study aims to evaluate the sleep quality, architecture, sleep-related quality of life, and sleep-disordered breathing (SDB) in acute respiratory distress syndrome (ARDS) survivors early after discharge. Materials and Methods: In this prospective, observational study, consecutive patients with ARDS discharged from the Intensive Care Unit (ICU) underwent evaluation with Epworth sleepiness scale (ESS), Pittsburgh Sleep Quality Index (PSQI), Functional Outcomes of Sleep Questionnaire (FOSQ), and overnight polysomnography. Patients having one or more of the following characteristics were classified as having abnormal sleep: ESS>10, PSQI>5, FOSQ <17.9, apnea–hypopnea index (AHI) ≥5, or AHI during rapid eye movement (REM) sleep ≥5. Results: Twenty patients (median interquartile range [IQR] age of 24 [22–28] years, 11 [55%] females) were included in the study. Acute febrile illness of unknown etiology with multi-organ dysfunction syndrome was the most common underlying etiology for ARDS. The median (IQR) PaO2/FiO2 ratio and APACHE II scores on admission were 176 (151–191.5) and 14 (14–16), respectively. The median (IQR) duration of stay in the ICU was 10 days (7.3–19.5). The overall sleep efficiency (median [IQR], 54% [32.3–65.4%]) was poor. None of the patients had ESS>10, seven (35%) had global PSQI>5 and one had FOSQ <17.9. Ten (50%) patients had at least one characteristic that suggested abnormal sleep (4 insomnia, 2 central sleep apnea, 1 obstructive sleep apnea, 1 REM-SDB, and 2 with a high PSQI, but no specific sleep abnormality). Conclusions: Sleep disturbances are common in ARDS survivors early after discharge from the ICU. PMID:27390455

  20. Acute stress alters autonomic modulation during sleep in women approaching menopause

    PubMed Central

    de Zambotti, Massimiliano; Sugarbaker, David; Trinder, John; Colrain, Ian M.; Baker, Fiona C.

    2016-01-01

    Hot flashes, hormones, and psychosocial factors contribute to insomnia risk in the context of the menopausal transition. Stress is a well-recognized factor implicated in the pathophysiology of insomnia; however the impact of stress on sleep and sleep-related processes in perimenopausal women remains largely unknown. We investigated the effect of an acute experimental stress (impending Trier Social Stress Task in the morning) on presleep measures of cortisol and autonomic arousal in perimenopausal women with and without insomnia that developed in the context of the menopausal transition. In addition, we assessed the macro- and micro-structure of sleep and autonomic functioning during sleep. Following adaptation to the laboratory, twenty two women with (age: 50.4 ± 3.2 y) and eighteen women without (age: 48.5±2.3 y) insomnia had two randomized in-lab overnight recordings: baseline and stress nights. Anticipation of the task resulted in higher pre-sleep salivary cortisol levels and perceived tension, faster heart rate and lower vagal activity, based on heart rate variability measures, in both groups of women. The effect of the stress manipulation on the autonomic nervous system extended into the first four hours of the night in both groups. However, vagal tone recovered four-six hours into the stress night in controls but not in the insomnia group. Sleep macrostructure was largely unaltered by the stress, apart from a delayed latency to REM sleep in both groups. Quantitative analysis of non-rapid eye movement sleep microstructure revealed greater electroencephalographic (EEG) power in the beta1 range (15-≤23Hz), reflecting greater EEG arousal during sleep, on the stress night compared to baseline, in the insomnia group. Hot flash frequency remained similar on both nights for both groups. These results show that presleep stress impacts autonomic nervous system functioning before and during sleep in perimenopausal women with and without insomnia. Findings also

  1. Metabolic status, gonadotropin secretion, and ovarian function during acute nutrient restriction of beef heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of acute nutritional restriction on metabolic status, gonadotropin secretion, and ovarian function of heifers was determined in 2 experiments. In Exp. 1, 14-mo-old heifers were fed a diet supplying 1.2 × maintenance energy requirements (1.2M). After 10 d, heifers were fed 1.2M or were res...

  2. Obesity and short sleep: unlikely bedfellows?

    PubMed

    Horne, J

    2011-05-01

    The link between habitual short sleep and obesity is critically examined from a sleep perspective. Sleep estimates are confounded by 'time in bed', naps; the normal distribution of sleep duration. Wide categorizations of 'short sleep', with claims that <7 h sleep is associated with obesity and morbidity, stem from generalizations from 5 h sleepers (<8% of adults) and acute restriction studies involving unendurable sleepiness. Statistically significant epidemiological findings are of questionable clinical concern, even for 5 h sleepers, as any weight gains accumulate slowly over years; easily redressed by e.g. short exercise exposures, contrasting with huge accumulations of 'lost' sleep. Little evidence supports 'more sleep', alone, as an effective treatment for obesity. Impaired sleep quality and quantity are surrogates for many physical and psychological disorders, as can be obesity. Advocating more sleep, in these respects, could invoke unwarranted use of sleep aids including hypnotics. Inadequate sleep in obese children is usually symptomatic of problems not overcome by increasing sleep alone. Interestingly, neuropeptides regulating interactions between sleep, locomotion and energy balance in normal weight individuals, are an avenue for investigation in some obese short sleepers. The real danger of inadequate sleep lies with excessive daytime sleepiness, not obesity.

  3. Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression

    PubMed Central

    Boström, Adrian E.; Mwinyi, Jessica; Schiöth, Helgi B.

    2016-01-01

    Abstract Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data. PMID:27310475

  4. The Effects of Acute Stress-Induced Sleep Disturbance on Acoustic Trauma-Induced Tinnitus in Rats

    PubMed Central

    Stiles, Lucy; Darlington, Cynthia L.; Smith, Paul F.

    2014-01-01

    Chronic tinnitus is a debilitating condition and often accompanied by anxiety, depression, and sleep disturbance. It has been suggested that sleep disturbance, such as insomnia, may be a risk factor/predictor for tinnitus-related distress and the two conditions may share common neurobiological mechanisms. This study investigated whether acute stress-induced sleep disturbance could increase the susceptibility to acoustic trauma-induced tinnitus in rats. The animals were exposed to unilateral acoustic trauma 24 h before sleep disturbance being induced using the cage exchange method. Tinnitus perception was assessed behaviourally using a conditioned lick suppression paradigm 3 weeks after the acoustic trauma. Changes in the orexin system in the hypothalamus, which plays an important role in maintaining long-lasting arousal, were also examined using immunohistochemistry. Cage exchange resulted in a significant reduction in the number of sleep episodes and acoustic trauma-induced tinnitus with acoustic features similar to a 32 kHz tone at 100 dB. However, sleep disturbance did not exacerbate the perception of tinnitus in rats. Neither tinnitus alone nor tinnitus plus sleep disturbance altered the number of orexin-expressing neurons. The results suggest that acute sleep disturbance does not cause long-term changes in the number of orexin neurons and does not change the perception of tinnitus induced by acoustic trauma in rats. PMID:25162023

  5. Trauma-Related Context Increases Sleep Disturbances in People with Acute Stress Disorder Symptoms.

    PubMed

    Grossman, Ephraim S; Hoffman, Yaakov S G; Shrira, Amit

    2016-04-06

    In this study, we addressed how sleep is related to acute stress disorder (ASD) symptoms, and how the presence of a trauma related-context moderates this relationship. This study (N = 140) was carried out during the 2014 Israel-Gaza conflict, during which 70% of Israelis were exposed to missile attacks. Findings show that participants with clinical ASD symptom levels reported more sleep disturbances than participants without clinical ASD symptom levels. More critically, this effect was only evident among respondents who had a reinforced security room in their houses. While reinforced security rooms offer protection against indirect missile damage, their relevance is salient in negative traumatic situations, which individuals with a clinical level of ASD are more sensitive to. Conversely, in houses without a reinforced security room, there was no difference in subjective sleep reports between individuals with or without clinical levels of ASD symptoms. Results are discussed in reference to trauma being activated by context and the ensuing effects on sleep. Theoretical and clinical implications are discussed. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation

    PubMed Central

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E.; McCarley, Robert W.; Choi, Jee Hyun

    2017-01-01

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation. PMID:28193862

  7. Differential Kinetics in Alteration and Recovery of Cognitive Processes from a Chronic Sleep Restriction in Young Healthy Men.

    PubMed

    Rabat, Arnaud; Gomez-Merino, Danielle; Roca-Paixao, Laura; Bougard, Clément; Van Beers, Pascal; Dispersyn, Garance; Guillard, Mathias; Bourrilhon, Cyprien; Drogou, Catherine; Arnal, Pierrick J; Sauvet, Fabien; Leger, Damien; Chennaoui, Mounir

    2016-01-01

    Chronic sleep restriction (CSR) induces neurobehavioral deficits in young and healthy people with a morning failure of sustained attention process. Testing both the kinetic of failure and recovery of different cognitive processes (i.e., attention, executive) under CSR and their potential links with subject's capacities (stay awake, baseline performance, age) and with some biological markers of stress and anabolism would be useful in order to understand the role of sleep debt on human behavior. Twelve healthy subjects spent 14 days in laboratory with 2 baseline days (B1 and B2, 8 h TIB) followed by 7 days of sleep restriction (SR1-SR7, 4 h TIB), 3 sleep recovery days (R1-R3, 8 h TIB) and two more ones 8 days later (R12-R13). Subjective sleepiness (KSS), maintenance of wakefulness latencies (MWT) were evaluated four times a day (10:00, 12:00 a.m. and 2:00, 4:00 p.m.) and cognitive tests were realized at morning (8:30 a.m.) and evening (6:30 p.m.) sessions during B2, SR1, SR4, SR7, R2, R3 and R13. Saliva (B2, SR7, R2, R13) and blood (B1, SR6, R1, R12) samples were collected in the morning. Cognitive processes were differently impaired and recovered with a more rapid kinetic for sustained attention process. Besides, a significant time of day effect was only evidenced for sustained attention failures that seemed to be related to subject's age and their morning capacity to stay awake. Executive processes were equally disturbed/recovered during the day and this failure/recovery process seemed to be mainly related to baseline subject's performance and to their capacity to stay awake. Morning concentrations of testosterone, cortisol and α-amylase were significantly decreased at SR6-SR7, but were either and respectively early (R1), tardily (after R2) and not at all (R13) recovered. All these results suggest a differential deleterious and restorative effect of CSR on cognition through biological changes of the stress pathway and subject's capacity (ClinicalTrials-NCT01989741).

  8. Differential Kinetics in Alteration and Recovery of Cognitive Processes from a Chronic Sleep Restriction in Young Healthy Men

    PubMed Central

    Rabat, Arnaud; Gomez-Merino, Danielle; Roca-Paixao, Laura; Bougard, Clément; Van Beers, Pascal; Dispersyn, Garance; Guillard, Mathias; Bourrilhon, Cyprien; Drogou, Catherine; Arnal, Pierrick J.; Sauvet, Fabien; Leger, Damien; Chennaoui, Mounir

    2016-01-01

    Chronic sleep restriction (CSR) induces neurobehavioral deficits in young and healthy people with a morning failure of sustained attention process. Testing both the kinetic of failure and recovery of different cognitive processes (i.e., attention, executive) under CSR and their potential links with subject’s capacities (stay awake, baseline performance, age) and with some biological markers of stress and anabolism would be useful in order to understand the role of sleep debt on human behavior. Twelve healthy subjects spent 14 days in laboratory with 2 baseline days (B1 and B2, 8 h TIB) followed by 7 days of sleep restriction (SR1-SR7, 4 h TIB), 3 sleep recovery days (R1–R3, 8 h TIB) and two more ones 8 days later (R12–R13). Subjective sleepiness (KSS), maintenance of wakefulness latencies (MWT) were evaluated four times a day (10:00, 12:00 a.m. and 2:00, 4:00 p.m.) and cognitive tests were realized at morning (8:30 a.m.) and evening (6:30 p.m.) sessions during B2, SR1, SR4, SR7, R2, R3 and R13. Saliva (B2, SR7, R2, R13) and blood (B1, SR6, R1, R12) samples were collected in the morning. Cognitive processes were differently impaired and recovered with a more rapid kinetic for sustained attention process. Besides, a significant time of day effect was only evidenced for sustained attention failures that seemed to be related to subject’s age and their morning capacity to stay awake. Executive processes were equally disturbed/recovered during the day and this failure/recovery process seemed to be mainly related to baseline subject’s performance and to their capacity to stay awake. Morning concentrations of testosterone, cortisol and α-amylase were significantly decreased at SR6-SR7, but were either and respectively early (R1), tardily (after R2) and not at all (R13) recovered. All these results suggest a differential deleterious and restorative effect of CSR on cognition through biological changes of the stress pathway and subject’s capacity (Clinical

  9. A restricted parabrachial pontine region is active during non-REM sleep

    PubMed Central

    Torterolo, Pablo; Sampogna, Sharon; Chase, Michael H.

    2011-01-01

    The principal site that generates both REM sleep and wakefulness is located in the mesopontine reticular formation, whereas non-REM sleep (NREM) is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase or GABA. During NREM, only a few Fos immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral peribrachial region (CLPB). The number of the Fos+ neurons in the CLPB during NREM was significantly greater (67.9 ± 10.9, P < 0.0001) compared to QW (8.0 ± 6.7), AW (5.2 ± 4.2) or REM-carbachol (8.0 ± 4.7). In addition, there was a positive correlation (R = 0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the explorations of

  10. A restricted parabrachial pontine region is active during non-rapid eye movement sleep.

    PubMed

    Torterolo, P; Sampogna, S; Chase, M H

    2011-09-08

    The principal site that generates both rapid eye movement (REM) sleep and wakefulness is located in the mesopontine reticular formation, whereas non-rapid eye movement (NREM) sleep is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single-labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double-labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase, or GABA. During NREM, only a few Fos-immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral parabrachial region (CLPB). The number of Fos+ neurons in the CLPB during NREM was significantly greater (67.9±10.9, P<0.0001) compared with QW (8.0±6.7), AW (5.2±4.2), or REM-carbachol (8.0±4.7). In addition, there was a positive correlation (R=0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however, about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the

  11. High risk for obstructive sleep apnea in patients with acute myocardial infarction1

    PubMed Central

    Andrechuk, Carla Renata Silva; Ceolim, Maria Filomena

    2015-01-01

    Objectives: to stratify the risk for obstructive sleep apnea in patients with acute myocardial infarction, treated at a public, tertiary, teaching hospital of the state of São Paulo, Brazil, and to identify related sociodemographic and clinical factors. Method: cross-sectional analytical study with 113 patients (mean age 59.57 years, 70.8% male). A specific questionnaire was used for the sociodemographic and clinical characterization and the Berlin Questionnaire for the stratification of the risk of obstructive sleep apnea syndrome. Results: the prevalence of high risk was 60.2% and the outcome of clinical worsening during hospitalization was more frequent among these patients. The factors related to high risk were body mass index over 30 kg/m2, arterial hypertension and waist circumference indicative of cardiovascular risk, while older age (60 years and over) constituted a protective factor. Conclusion: considering the high prevalence of obstructive sleep apnea and its relation to clinical worsening, it is suggested that nurses should monitor, in their clinical practice, people at high risk for this syndrome, guiding control measures of modifiable factors and aiming to prevent the associated complications, including worsening of cardiovascular diseases. PMID:26487128

  12. Acute nicotine treatment prevents REM sleep deprivation-induced learning and memory impairment in rat.

    PubMed

    Aleisa, A M; Helal, G; Alhaider, I A; Alzoubi, K H; Srivareerat, M; Tran, T T; Al-Rejaie, S S; Alkadhi, K A

    2011-08-01

    Rapid eye movement (REM) sleep deprivation (SD) is implicated in impairment of spatial learning and memory and hippocampal long-term potentiation (LTP). An increase in nicotine consumption among habitual smokers and initiation of tobacco use by nonsmokers was observed during SD. Although nicotine treatment was reported to attenuate the impairment of learning and memory and LTP associated with several mental disorders, the effect of nicotine on SD-induced learning and memory impairment has not been studied. Modified multiple platform paradigm was used to induce SD for 24 or 48 h during which rats were injected with saline or nicotine (1 mg kg(-1) s.c.) twice a day. In the radial arm water maze (RAWM) task, 24- or 48-h SD significantly impaired learning and short-term memory. In addition, extracellular recordings from CA1 and dentate gyrus (DG) regions of the hippocampus in urethane anesthetized rats showed a significant impairment of LTP after 24- and 48-h SD. Treatment of normal rats with nicotine for 24 or 48 h did not enhance spatial learning and memory or affect magnitude of LTP in the CA1 and DG regions. However, concurrent, acute treatment of rats with nicotine significantly attenuated SD-induced impairment of learning and STM and prevented SD-induced impairment of LTP in the CA1 and DG regions. These results show that acute nicotine treatment prevented the deleterious effect of sleep loss on cognitive abilities and synaptic plasticity.

  13. Obstructive Sleep Apnea, Obesity, and the Development of Acute Respiratory Distress Syndrome

    PubMed Central

    Karnatovskaia, Lioudmila V.; Lee, Augustine S.; Bender, S. Patrick; Talmor, Daniel; Festic, Emir

    2014-01-01

    Background: Obstructive sleep apnea (OSA) may increase the risk of respiratory complications and acute respiratory distress syndrome (ARDS) among surgical patients. OSA is more prevalent among obese individuals; obesity can predispose to ARDS. Hypothesis: It is unclear whether OSA independently contributes towards the risk of ARDS among hospitalized patients. Methods: This is a pre-planned retrospective subgroup analysis of the prospectively identified cohort of 5,584 patients across 22 hospitals with at least one risk factor for ARDS at the time of hospitalization from a trial by the US Critical Illness and Injury Trials Group designed to validate the Lung Injury Prediction Score. A total of 252 patients (4.5%) had a diagnosis of OSA at the time of hospitalization; of those, 66% were obese. Following multivariate adjustment in the logistic regression model, there was no significant relationship between OSA and development of ARDS (OR = 0.65, 95%CI = 0.32-1.22). However, body mass index (BMI) was associated with subsequent ARDS development (OR = 1.02, 95%CI = 1.00-1.04, p = 0.03). Neither OSA nor BMI affected mechanical ventilation requirement or mortality. Conclusions: Prior diagnosis of OSA did not independently affect development of ARDS among patients with at least one predisposing condition, nor the need for mechanical ventilation or hospital mortality. Obesity appeared to independently increase the risk of ARDS. Citation: Karnatovskaia LV, Lee AS, Bender SP, Talmor D, Festic E. Obstructive sleep apnea, obesity, and the development of acute respiratory distress syndrome. J Clin Sleep Med 2014;10(6):657-662. PMID:24932146

  14. Recurrent acute pulmonary oedema after aortic and mitral valve surgery due to trachea malacia and obstructive sleep apnoea syndrome

    PubMed Central

    Sankatsing, S.U.C.; Hanselaar, W.E.J.J.; van Steenwijk, R.P.; van der Sloot, J.A.P.; Broekhuis, E.; Kok, W.E.M.

    2008-01-01

    In this report we describe a patient with recurrent episodes of acute pulmonary oedema after aortic and mitral valve surgery. The first episode of pulmonary oedema was caused by mitral valve dysfunction. The second episode of pulmonary oedema was not clearly associated with a mitral valve problem, but reoperation was performed in the absence of another explanation. After the third episode of acute pulmonary oedema occurred, the diagnosis of obstructive sleep apnoea syndrome (OSAS) was considered and confirmed. After starting treatment with continuous positive airway pressure (CPAP) during his sleep the patient had no further episodes of acute respiratory failure. Our case demonstrates that acute pulmonary oedema after cardiothoracic surgery can be caused or at least be precipitated by OSAS and should be suspected in patients with unexplained episodes of (recurrent) pulmonary oedema. (Neth Heart J 2008;16:310-2.) PMID:18827875

  15. The Acute Effect of Resistance Exercise with Blood Flow Restriction with Hemodynamic Variables on Hypertensive Subjects

    PubMed Central

    Araújo, Joamira P.; Silva, Eliney D.; Silva, Julio C. G.; Souza, Thiago S. P.; Lima, Eloíse O.; Guerra, Ialuska; Sousa, Maria S. C.

    2014-01-01

    The purpose of this study was to analyze systolic blood pressure (SBP), diastolic blood pressure (DBP) and the heart rate (HR) before, during and after training at moderate intensity (MI, 50%-1RM) and at low intensity with blood flow restriction (LIBFR). In a randomized controlled trial study, 14 subjects (average age 45±9,9 years) performed one of the exercise protocols during two separate visits to the laboratory. SBP, DBP and HR measurements were collected prior to the start of the set and 15, 30, 45 and 60 minutes after knee extension exercises. Repeated measures of analysis of variance (ANOVA) were used to identify significant variables (2 × 5; group × time). The results demonstrated a significant reduction in SBP in the LIBFR group. These results provide evidence that strength training performed acutely alters hemodynamic variables. However, training with blood flow restriction is more efficient in reducing blood pressure in hypertensive individuals than training with moderate intensity. PMID:25713647

  16. The acute effect of resistance exercise with blood flow restriction with hemodynamic variables on hypertensive subjects.

    PubMed

    Araújo, Joamira P; Silva, Eliney D; Silva, Julio C G; Souza, Thiago S P; Lima, Eloíse O; Guerra, Ialuska; Sousa, Maria S C

    2014-09-29

    The purpose of this study was to analyze systolic blood pressure (SBP), diastolic blood pressure (DBP) and the heart rate (HR) before, during and after training at moderate intensity (MI, 50%-1RM) and at low intensity with blood flow restriction (LIBFR). In a randomized controlled trial study, 14 subjects (average age 45±9,9 years) performed one of the exercise protocols during two separate visits to the laboratory. SBP, DBP and HR measurements were collected prior to the start of the set and 15, 30, 45 and 60 minutes after knee extension exercises. Repeated measures of analysis of variance (ANOVA) were used to identify significant variables (2 × 5; group × time). The results demonstrated a significant reduction in SBP in the LIBFR group. These results provide evidence that strength training performed acutely alters hemodynamic variables. However, training with blood flow restriction is more efficient in reducing blood pressure in hypertensive individuals than training with moderate intensity.

  17. Changes in sleep, food intake, and activity levels during acute painful episodes in children with sickle cell disease.

    PubMed

    Jacob, Eufemia; Miaskowski, Christine; Savedra, Marilyn; Beyer, Judith E; Treadwell, Marsha; Styles, Lori

    2006-02-01

    As part of a larger study that examined pain experience, pain management, and pain outcomes among children with sickle cell disease, functional status (sleep, food intake, and activity levels) was examined during hospitalization for acute painful episodes. Children were asked to rate the amount of pain they experienced as well as the amount of time they slept, the amount of food they ate, and the amount of activity they had everyday. Children reported high levels of pain, which showed only a small decrease throughout hospitalization, and had disrupted sleep and wake patterns, decreased food intake, and decreased activity levels. Nurses need to routinely monitor functional status during acute painful episodes so that strategies to promote adequate sleep, food intake, and activity may be incorporated to minimize long-term negative outcomes in children with sickle cell disease.

  18. The acute inhibition of rapid eye movement sleep by citalopram may impair spatial learning and passive avoidance in mice.

    PubMed

    Bridoux, A; Laloux, C; Derambure, P; Bordet, R; Monaca Charley, C

    2013-03-01

    Rapid eye movement (REM) sleep is known to be essential for memory. Hence, REM sleep deprivation impairs memory processes. The frequently prescribed selective serotonin reuptake inhibitors (SSRIs) are known to cause REM sleep deprivation and to impair cognitive performance in humans and rodents. We suggested that impaired memory processes by citalopram in C57/BL6 mice could be explained by the acute inhibition of REM sleep. We hypothesized that those acute citalopram 5 and 10 mg/kg injections induced REM sleep deprivation, altered cognitive performance in passive avoidance, impaired spatial memory compared to controls. Three experiments have been realized: (1) mice received successively physiological saline, injection of citalopram 5 and 10 mg/kg and were recorded by polysomnographic recording after each injection. (2) Cognitive performance was evaluated in the passive avoidance with two groups of mice. One group received citalopram before training and one, after training. (3) Spatial learning was evaluated with another group of animals in the Y-maze test. At 5 and 10 mg/kg, citalopram delayed REM sleep onset and decreased REM sleep amounts (vs. controls). The same doses were administrated in the passive avoidance test and have significantly shortened latency to enter the dark compartment. In the Y-maze, citalopram-treated mice showed a decreased percentage of time spent in the novel arm in contrast to the two other arms compared with controls. We showed that citalopram impaired cognitive performance in behavioral tasks. Those impairments could be linked to REM sleep deprivation induced by citalopram although causal relationship needs to be investigated in further studies.

  19. Acute total sleep deprivation potentiates amphetamine-induced locomotor-stimulant effects and behavioral sensitization in mice.

    PubMed

    Saito, Luis P; Fukushiro, Daniela F; Hollais, André W; Mári-Kawamoto, Elisa; Costa, Jacqueline M; Berro, Laís F; Aramini, Tatiana C F; Wuo-Silva, Raphael; Andersen, Monica L; Tufik, Sergio; Frussa-Filho, Roberto

    2014-02-01

    It has been demonstrated that a prolonged period (48 h) of paradoxical sleep deprivation (PSD) potentiates amphetamine (AMP)-induced behavioral sensitization, an animal model of addiction-related neuroadaptations. In the present study, we examined the effects of an acute short-term deprivation of total sleep (TSD) (6h) on AMP-induced behavioral sensitization in mice and compared them to the effects of short-term PSD (6 h). Three-month-old male C57BL/6J mice underwent TSD (experiment 1-gentle handling method) or PSD (experiment 2-multiple platforms method) for 6 h. Immediately after the sleep deprivation period, mice were tested in the open field for 10 min under the effects of saline or 2.0 mg/kg AMP. Seven days later, to assess behavioral sensitization, all of the mice received a challenge injection of 2.0 mg/kg AMP and were tested in the open field for 10 min. Total, peripheral, and central locomotion, and grooming duration were measured. TSD, but not PSD, potentiated the hyperlocomotion induced by an acute injection of AMP and this effect was due to an increased locomotion in the central squares of the apparatus. Similarly, TSD facilitated the development of AMP-induced sensitization, but only in the central locomotion parameter. The data indicate that an acute period of TSD may exacerbate the behavioral effects of AMP in mice. Because sleep architecture is composed of paradoxical and slow wave sleep, and 6-h PSD had no effects on AMP-induced hyperlocomotion or sensitization, our data suggest that the deprivation of slow wave sleep plays a critical role in the mechanisms that underlie the potentiating effects of TSD on both the acute and sensitized addiction-related responses to AMP.

  20. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation.

    PubMed

    Wallingford, J K; Deurveilher, S; Currie, R W; Fawcett, J P; Semba, K

    2014-09-26

    Chronic sleep restriction (CSR) has various negative consequences on cognitive performance and health. Using a rat model of CSR that uses alternating cycles of 3h of sleep deprivation (using slowly rotating activity wheels) and 1h of sleep opportunity continuously for 4 days ('3/1' protocol), we previously observed not only homeostatic but also allostatic (adaptive) sleep responses to CSR. In particular, non-rapid eye movement sleep (NREMS) electroencephalogram (EEG) delta power, an index of sleep intensity, increased initially and then declined gradually during CSR, with no rebound during a 2-day recovery period. To study underlying mechanisms of these allostatic responses, we examined the levels of brain-derived neurotrophic factor (BDNF), which is known to regulate NREMS EEG delta activity, during the same CSR protocol. Mature BDNF protein levels were measured in the frontal cortex and basal forebrain, two brain regions involved in sleep and EEG regulation, and the hippocampus, using Western blot analysis. Adult male Wistar rats were housed in motorized activity wheels, and underwent the 3/1 CSR protocol for 27 h, for 99 h, or for 99 h followed by 24h of recovery. Additional rats were housed in either locked wheels (locked wheel controls [LWCs]) or unlocked wheels that rats could rotate freely (wheel-running controls [WRCs]). BDNF levels did not differ between WRC and LWC groups. BDNF levels were increased, compared to the control levels, in all three brain regions after 27 h, and were increased less strongly after 99 h, of CSR. After 24h of recovery, BDNF levels were at the control levels. This time course of BDNF levels parallels the previously reported changes in NREMS delta power during the same CSR protocol. Changes in BDNF protein levels in the cortex and basal forebrain may be part of the molecular mechanisms underlying allostatic sleep responses to CSR.

  1. Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment.

    PubMed

    Aleisa, A M; Alzoubi, K H; Alkadhi, K A

    2011-07-15

    Rapid eye movement sleep deprivation (REM-SD) is associated with spatial learning and memory impairment. During REM-SD, an increase in nicotine consumption among habitual smokers and initiation of tobacco use by non-smokers have been reported. We have shown recently that nicotine treatment prevented learning and memory impairments associated with REM-SD. We now report the interactive effects of post-learning REM-SD and/or nicotine. The animals were first trained on the radial arm water maze (RAWM) task, then they were REM-sleep deprived using the modified multiple platform paradigm for 24h. During REM-SD period, the rats were injected with saline or nicotine (1mg/kg s.c. every 12h: a total of 3 injections). The animals were tested for long-term memory in the RAWM at the end of the REM-SD period. The 24h post-learning REM-SD significantly impaired long-term memory. However, nicotine treatment reversed the post-learning REM-SD-induced impairment of long-term memory. On the other hand, post-learning treatment of normal rats with nicotine for 24h enhanced long-term memory. These results indicate that post-learning acute nicotine treatment prevented the deleterious effect of REM-SD on cognitive abilities.

  2. Genome-wide effects of acute progressive feed restriction in liver and white adipose tissue

    SciTech Connect

    Pohjanvirta, Raimo Boutros, Paul C.; Moffat, Ivy D.; Linden, Jere; Wendelin, Dominique; Okey, Allan B.

    2008-07-01

    Acute progressive feed restriction (APFR) represents a specific form of caloric restriction in which feed availability is increasingly curtailed over a period of a few days to a few weeks. It is often used for control animals in toxicological and pharmacological studies on compounds causing body weight loss to equalize weight changes between experimental and control groups and thereby, intuitively, to also set their metabolic states to the same phase. However, scientific justification for this procedure is lacking. In the present study, we analyzed by microarrays the impact on hepatic gene expression in rats of two APFR regimens that caused identical diminution of body weight (19%) but differed slightly in duration (4 vs. 10 days). In addition, white adipose tissue (WAT) was also subjected to the transcriptomic analysis on day-4. The data revealed that the two regimens led to distinct patterns of differentially expressed genes in liver, albeit some major pathways of energy metabolism were similarly affected (particularly fatty acid and amino acid catabolism). The reason for the divergence appeared to be entrainment by the longer APFR protocol of peripheral oscillator genes, which resulted in derailment of circadian rhythms and consequent interaction of altered diurnal fluctuations with metabolic adjustments in gene expression activities. WAT proved to be highly unresponsive to the 4-day APFR as only 17 mRNA levels were influenced by the treatment. This study demonstrates that body weight is a poor proxy of metabolic state and that the customary protocols of feed restriction can lead to rhythm entrainment.

  3. Investigating the effect of acute sleep deprivation on hypothalamic-pituitary-adrenal-axis response to a psychosocial stressor.

    PubMed

    Vargas, Ivan; Lopez-Duran, Nestor

    2017-05-01

    The hypothalamic-pituitary-adrenal (HPA) axis has been previously identified as one potential mechanism that may explain the link between sleep deprivation and negative health outcomes. However, few studies have examined the direct association between sleep deprivation and HPA-axis functioning, particularly in the context of stress. Therefore, the aim of the current study was to investigate the relationship between acute sleep deprivation and HPA-axis reactivity to a psychosocial stressor. Participants included 40 healthy, young adults between the ages of 18-29. The current protocol included spending two nights in the laboratory. After an adaptation night (night 1), participants were randomized into either a sleep deprivation condition (29 consecutive hours awake) or a control condition (night 2). Following the second night, all participants completed the Trier Social Stress Test (TSST). Salivary cortisol was collected before, during, and after the TSST. Results indicated that there were significant group differences in cortisol stress reactivity. Specifically, compared to participants in the control condition, participants in the sleep deprivation condition had greater baseline (i.e., pre-stress) cortisol, yet a blunted cortisol response to the TSST. Taken together, a combination of elevated baseline cortisol (and its subsequent effect on HPA-axis regulatory processes) and a relative 'ceiling' on the amount of cortisol a laboratory stressor can produce may explain why participants in the sleep deprivation condition demonstrated blunted cortisol responses.

  4. A test of the effects of acute sleep deprivation on general and specific self-reported anxiety and depressive symptoms: an experimental extension.

    PubMed

    Babson, Kimberly A; Trainor, Casey D; Feldner, Matthew T; Blumenthal, Heidemarie

    2010-09-01

    Evidence indicates acute sleep deprivation affects negative mood states. The present study experimentally tested the effects of acute sleep deprivation on self-reported symptoms of state anxiety and depression as well as general distress among 88 physically and psychologically healthy adults. As hypothesized, the effects of acute sleep deprivation increased state anxiety and depression, as well as general distress, relative to a normal night of sleep control condition. Based on the tripartite model of anxiety and depression, these findings replicate and extend prior research by suggesting sleep deprivation among individuals without current Axis I disorders increases both state symptoms of anxiety and depression specifically, and general distress more broadly. Extending this work to clinical samples and prospectively testing mechanisms underlying these effects are important future directions in this area of research.

  5. Socially isolated mice exhibit a blunted homeostatic sleep response to acute sleep deprivation compared to socially paired mice.

    PubMed

    Kaushal, Navita; Nair, Deepti; Gozal, David; Ramesh, Vijay

    2012-05-15

    Sleep is an important physiological process underlying maintenance of physical, mental and emotional health. Consequently, sleep deprivation (SD) is associated with adverse consequences and increases the risk for anxiety, immune, and cognitive disorders. SD is characterized by increased energy expenditure responses and sleep rebound upon recovery that are regulated by homeostatic processes, which in turn are influenced by stress. Since all previous studies on SD were conducted in a setting of social isolation, the impact of the social contextual setting is unknown. Therefore, we used a relatively stress-free SD paradigm in mice to assess the impact of social isolation on sleep, wakefulness and delta electroencephalogram (EEG) power during non-rapid eye movement (NREM) sleep. Paired or isolated C57BL/6J adult chronically-implanted male mice were exposed to SD for 6h and telemetric polygraphic recordings were conducted, including 18 h recovery. Recovery from SD in the paired group showed a significant decrease in wake and significant increase in NREM sleep and rapid eye movement (REM), and a similar, albeit less robust response occurred in the isolated mice. Delta power during NREM sleep was increased in both groups immediately following SD, but paired mice exhibited significantly higher delta power throughout the dark period. The increase in body temperature and gross motor activity observed during the SD procedure was decreased during the dark period. In both open field and elevated plus maze tests, socially isolated mice showed significantly higher anxiety than paired mice. The homeostatic processes altered by SD are differentially affected in paired and isolated mice, suggesting that the social context of isolation stress may adversely affect the quantity and quality of sleep in mice.

  6. Frontal cortical mitochondrial dysfunction and mitochondria-related β-amyloid accumulation by chronic sleep restriction in mice.

    PubMed

    Zhao, Hongyi; Wu, Huijuan; He, Jialin; Zhuang, Jianhua; Liu, Zhenyu; Yang, Yang; Huang, Liuqing; Zhao, Zhongxin

    2016-08-17

    Mitochondrial dysfunction induced by mitochondria-related β-amyloid (Aβ) accumulation is increasingly being considered a novel risk factor for sporadic Alzheimer's disease pathophysiology. The close relationship between chronic sleep restriction (CSR) and cortical Aβ elevation was confirmed recently. By assessing frontal cortical mitochondrial function (electron microscopy manifestation, cytochrome C oxidase concentration, ATP level, and mitochondrial membrane potential) and the levels of mitochondria-related Aβ in 9-month-old adult male C57BL/6J mice subjected to CSR and as an environmental control (CO) group, we aimed to evaluate the association of CSR with mitochondrial dysfunction and mitochondria-related Aβ accumulation. In this study, frontal cortical mitochondrial dysfunction was significantly more severe in CSR mice compared with CO animals. Furthermore, CSR mice showed higher mitochondria-associated Aβ, total Aβ, and mitochondria-related β-amyloid protein precursor (AβPP) levels compared with CO mice. In the CSR model, mouse frontal cortical mitochondrial dysfunction was correlated with mitochondria-associated Aβ and mitochondria-related AβPP levels. However, frontal cortical mitochondria-associated Aβ levels showed no significant association with cortical total Aβ and mitochondrial AβPP concentrations. These findings indicated that CSR-induced frontal cortical mitochondrial dysfunction and mitochondria-related Aβ accumulation, which was closely related to mitochondrial dysfunction under CSR.

  7. The effects of circadian phase, time awake, and imposed sleep restriction on performing complex visual tasks: Evidence from comparative visual search

    PubMed Central

    Pomplun, Marc; Silva, Edward J.; Ronda, Joseph M.; Cain, Sean W.; Münch, Mirjam Y.; Czeisler, Charles A.; Duffy, Jeanne F.

    2012-01-01

    Cognitive performance not only differs between individuals, but also varies within them, influenced by factors that include sleep-wakefulness and biological time of day (circadian phase). Previous studies have shown that both factors influence accuracy rather than the speed of performing a visual search task, which can be hazardous in safety-critical tasks such as air-traffic control or baggage screening. However, prior investigations used simple, brief search tasks requiring little use of working memory. In order to study the effects of circadian phase, time awake, and chronic sleep restriction on the more realistic scenario of longer tasks requiring the sustained interaction of visual working memory and attentional control, the present study employed two comparative visual search tasks. In these tasks, participants had to detect a mismatch between two otherwise identical object distributions, with one of the tasks (mirror task) requiring an additional mental image transformation. Time awake and circadian phase both had significant influences on the speed, but not the accuracy of task performance. Over the course of three weeks of chronic sleep restriction, speed but not accuracy of task performance was impacted. The results suggest measures for safer performance of important tasks and point out the importance of minimizing the impact of circadian phase and sleep-wake history in laboratory vision experiments. PMID:22836655

  8. Restrictive transfusion practice during extracorporeal membrane oxygenation therapy for severe acute respiratory distress syndrome.

    PubMed

    Voelker, Maria T; Busch, Thilo; Bercker, Sven; Fichtner, Falk; Kaisers, Udo X; Laudi, Sven

    2015-04-01

    Recommendations concerning the management of hemoglobin levels and hematocrit in patients on extracorporeal membrane oxygenation (ECMO) still advise maintenance of a normal hematocrit. In contrast, current transfusion guidelines for critically ill patients support restrictive transfusion practice. We report on a series of patients receiving venovenous ECMO (vvECMO) for acute respiratory distress syndrome (ARDS) treated according to the restrictive transfusion regimen recommended for critically ill patients. We retrospectively analyzed 18 patients receiving vvECMO due to severe ARDS. Hemoglobin concentrations were kept between 7 and 9 g/dL with a transfusion trigger at 7 g/dL or when physiological transfusion triggers were apparent. We assessed baseline data, hospital mortality, time on ECMO, hemoglobin levels, hematocrit, quantities of packed red blood cells received, and lactate concentrations and compared survivors and nonsurvivors. The overall mortality of all patients on vvECMO was 38.9%. Mean hemoglobin concentration over all patients and ECMO days was 8.30 ± 0.51 g/dL, and hematocrit was 0.25 ± 0.01, with no difference between survivors and nonsurvivors. Mean numbers of given PRBCs showed a trend towards higher quantities in the group of nonsurvivors, but the difference was not significant (1.97 ± 1.47 vs. 0.96 ± 0.76 units; P = 0.07). Mean lactate clearance from the first to the third day was 45.4 ± 28.3%, with no significant difference between survivors and nonsurvivors (P = 0.19). In our cohort of patients treated with ECMO due to severe ARDS, the application of a restrictive transfusion protocol did not result in an increased mortality. Safety and feasibility of the application of a restrictive transfusion protocol in patients on ECMO must further be evaluated in randomized controlled trials.

  9. Effect of sleep deprivation on the human metabolome.

    PubMed

    Davies, Sarah K; Ang, Joo Ern; Revell, Victoria L; Holmes, Ben; Mann, Anuska; Robertson, Francesca P; Cui, Nanyi; Middleton, Benita; Ackermann, Katrin; Kayser, Manfred; Thumser, Alfred E; Raynaud, Florence I; Skene, Debra J

    2014-07-22

    Sleep restriction and circadian clock disruption are associated with metabolic disorders such as obesity, insulin resistance, and diabetes. The metabolic pathways involved in human sleep, however, have yet to be investigated with the use of a metabolomics approach. Here we have used untargeted and targeted liquid chromatography (LC)/MS metabolomics to examine the effect of acute sleep deprivation on plasma metabolite rhythms. Twelve healthy young male subjects remained in controlled laboratory conditions with respect to environmental light, sleep, meals, and posture during a 24-h wake/sleep cycle, followed by 24 h of wakefulness. Two-hourly plasma samples collected over the 48 h period were analyzed by LC/MS. Principal component analysis revealed a clear time of day variation with a significant cosine fit during the wake/sleep cycle and during 24 h of wakefulness in untargeted and targeted analysis. Of 171 metabolites quantified, daily rhythms were observed in the majority (n = 109), with 78 of these maintaining their rhythmicity during 24 h of wakefulness, most with reduced amplitude (n = 66). During sleep deprivation, 27 metabolites (tryptophan, serotonin, taurine, 8 acylcarnitines, 13 glycerophospholipids, and 3 sphingolipids) exhibited significantly increased levels compared with during sleep. The increased levels of serotonin, tryptophan, and taurine may explain the antidepressive effect of acute sleep deprivation and deserve further study. This report, to our knowledge the first of metabolic profiling during sleep and sleep deprivation and characterization of 24 h rhythms under these conditions, offers a novel view of human sleep/wake regulation.

  10. Effects of polychlorinated biphenyls and nutritional restriction on barbituate-induced sleeping times and selected blood characteristics in raccoons (Procyon lotor)

    SciTech Connect

    Montz, W.E.; Card, W.C.; Kirkpatrick, R.L.

    1982-05-01

    Hepatic microsomal enzyme activity was induced in wild-trapped raccoons (Procyon lotor) and selected blood characteristics were measured in an effort to detect responses due to PCB ingestion, nutritional restriction, and their interactions. Barbiturate-induced sleeping times were used as an index of hepatic microsomal activity because they have been used reliably by other workers. Blood characteristics examined in the study were nonesterified fatty acids (NEFA), cholesterol, and three ketone bodies (D-(-)-3-hydroxybutyrate, acetoacetate, and acetone). Results show a reduction in sleeping times, elevated NEFA and D-(-)-3-hydroxybutyrate concentrations, and lower cholesterol concentrations in PCB-treated groups. A highly significant interaction between PCB treatment and nutritional restriction was observed in acetoacetate concentrations. (JMT)

  11. Acute enhancement of non-rapid eye movement sleep in rats after drinking water contaminated with cadmium chloride.

    PubMed

    Unno, Katsuya; Yamoto, Kurumi; Takeuchi, Kouhei; Kataoka, Aya; Ozaki, Tomoya; Mochizuki, Takatoshi; Honda, Kazuki; Miura, Nobuhiko; Ikeda, Masayuki

    2014-02-01

    Cadmium (Cd) is a heavy metal widely used or effused by industries. Serious environmental Cd pollution has been reported over the past two centuries, whereas the mechanisms underlying Cd-mediated diseases are not fully understood. Interestingly, an increase in reactive oxygen species (ROS) after Cd exposure has been shown. Our group has demonstrated that sleep is triggered via accumulation of ROS during neuronal activities, and we thus hypothesize the involvement of Cd poisoning in sleep-wake irregularities. In the present study, we analyzed the effects of Cd intake (1-100 ppm CdCl₂ in drinking water) on rats by monitoring sleep encephalograms and locomotor activities. The results demonstrated that 100 ppm CdCl₂ administration for 28 h was sufficient to increase non-rapid-eye-movement (non-REM) sleep and reduce locomotor activities during the night (the rat active phase). In contrast, free-running locomotor rhythms under constant dim red light and their re-entrainment to 12:12-h light/dark cycles were intact under chronic (1 month) 100 ppm CdCl₂ administrations, suggesting a limited influence on circadian clock movements at this dosage. The relative amount of oxidized glutathione increased in the brain after the 28-h 100 ppm CdCl₂ administrations similar to the levels in cultured astrocytes receiving H₂O₂ or CdCl₂ in culture medium. Therefore, we propose Cd-induced sleep as a consequence of oxidative stress. As oxidized glutathione is an endogenous sleep substance, we suggest that Cd rapidly induces sleepiness and influences activity performance by occupying intrinsic sleep-inducing mechanisms. In conclusion, we propose increased non-REM sleep during the active phase as an index of acute Cd exposure.

  12. Sleep Deprivation.

    PubMed

    Abrams, Robert M

    2015-09-01

    Sleep deprivation occurs when inadequate sleep leads to decreased performance, inadequate alertness, and deterioration in health. It is incompletely understood why humans need sleep, although some theories include energy conservation, restoration, and information processing. Sleep deprivation has many deleterious health effects. Residency programs have enacted strict work restrictions because of medically related errors due to sleep deprivation. Because obstetrics is an unpredictable specialty with long irregular hours, enacting a hospitalist program enhances patient safety, decreases malpractice risk, and improves the physician's quality of life by allowing obstetricians to get sufficient rest.

  13. [A case of brachial plexus neuropathy who presented with acute paralysis of the hand after sleep].

    PubMed

    Iijima, Makiko; Okuma, Yasuyuki; Ohizumi, Hideki; Fujishima, Kenji; Goto, Keigo; Mizuno, Yoshikuni

    2002-09-01

    We report a 46-year-old woman who presented with acute paresis of the right hand and arm. She was well until when she noted a paresis and dysesthesia in her right hand in the morning. Neurological examination revealed weakness in the muscles which were supplied by lower cervical segments, with increased deep tendon reflexes in the right arm. Allen's test and Wright's test were positive. The nerve conduction studies disclosed a reduced CMAPs more severely by right median than ulnar nerve stimulation. The frequency and amplitude of the F waves was also reduced. Needle electromyogram showed a mild neurogenic pattern in the right hand muscles. Digital subtraction angiography revealed a tapering of the subclavian artery when the right arm was abducted. She underwent decompression surgery. A remarkable improvement of the symptoms was observed after surgery. Our patient suggests that brachial plexus neuropathy should be considered in the acute paresis of the hand after sleep, and that surgical procedure would lead to a successful outcome.

  14. Gray Matter-Specific Changes in Brain Bioenergetics after Acute Sleep Deprivation: A 31P Magnetic Resonance Spectroscopy Study at 4 Tesla

    PubMed Central

    Plante, David T.; Trksak, George H.; Jensen, J. Eric; Penetar, David M.; Ravichandran, Caitlin; Riedner, Brady A.; Tartarini, Wendy L.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.; Harper, David G.

    2014-01-01

    Study Objectives: A principal function of sleep may be restoration of brain energy metabolism caused by the energetic demands of wakefulness. Because energetic demands in the brain are greater in gray than white matter, this study used linear mixed-effects models to examine tissue-type specific changes in high-energy phosphates derived using 31P magnetic resonance spectroscopy (MRS) after sleep deprivation and recovery sleep. Design: Experimental laboratory study. Setting: Outpatient neuroimaging center at a private psychiatric hospital. Participants: A total of 32 MRS scans performed in eight healthy individuals (mean age 35 y; range 23-51 y). Interventions: Phosphocreatine (PCr) and β-nucleoside triphosphate (NTP) were measured using 31P MRS three dimensional-chemical shift imaging at high field (4 Tesla) after a baseline night of sleep, acute sleep deprivation, and 2 nights of recovery sleep. Novel linear mixed-effects models were constructed using spectral and tissue segmentation data to examine changes in bioenergetics in gray and white matter. Measurements and Results: PCr increased in gray matter after 2 nights of recovery sleep relative to sleep deprivation with no significant changes in white matter. Exploratory analyses also demonstrated that increases in PCr were associated with increases in electroencephalographic slow wave activity during recovery sleep. No significant changes in β-NTP were observed. Conclusions: These results demonstrate that sleep deprivation and subsequent recovery-induced changes in high-energy phosphates primarily occur in gray matter, and increases in phosphocreatine after recovery sleep may be related to sleep homeostasis. Citation: Plante DT, Trksak GH, Jensen JE, Penetar DM, Ravichandran C, Riedner BA, Tartarini WL, Dorsey CM, Renshaw PF, Lukas SE, Harper DG. Gray matter-specific changes in brain bioenergetics after acute sleep deprivation: a 31P magnetic resonance spectroscopy study at 4 Tesla. SLEEP 2014

  15. Mechanical thrombectomy for acute stroke in childhood: how much does restricted diffusion matter?

    PubMed

    Ladner, Travis R; He, Lucy; Jordan, Lori C; Cooper, Calvin; Froehler, Michael T; Mocco, J

    2015-12-01

    Mechanical thrombectomy holds promise for children with large cerebral arterial occlusions, although there are few reports in this population. We report a case of retrievable stent-assisted mechanical thrombectomy in a 5-year-old with basilar artery occlusion, despite late presentation and extensive initial diffusion-weighted imaging (DWI) restriction. This resulted in successful Thrombolysis in Cerebral Infarction 2B reperfusion and excellent clinical outcome. At 6-week follow-up he was completely back to baseline with no residual deficits (pediatric stroke outcome measure=0, modified Rankin scale=0). At 3-month follow-up the patient has not had any recurrent stroke or concern for stroke-like symptoms. We review the literature on mechanical thrombectomy and DWI changes in acute stroke in early to middle childhood (<12 years old).

  16. Acute sleep deprivation: the effects of the AMPAKINE compound CX717 on human cognitive performance, alertness and recovery sleep.

    PubMed

    Boyle, Julia; Stanley, Neil; James, Lynette M; Wright, Nicola; Johnsen, Sigurd; Arbon, Emma L; Dijk, Derk-Jan

    2012-08-01

    AMPA receptor modulation is a potential novel approach to enhance cognitive performance. CX717 is a positive allosteric modulator of the AMPA receptor that has shown efficacy in rodent and primate cognition models. CX717 (100 mg, 300 mg and 1000 mg) and placebo were studied in 16 healthy male volunteers (18-45 years) in a randomized, crossover study. Cognitive function, arousal and recovery sleep (by polysomnography) were assessed during the extended wakefulness protocol. Placebo condition was associated with significant decrements in cognition, particularly at the circadian nadir (between 03:00 and 05:00). Pre-specified primary and secondary analyses (general linear mixed modelling, GLMM) at each separate time point did not reveal consistent improvements in performance or objective alertness with any dose of CX717. Exploratory repeated measures analysis, a method used to take into account the influence of individual differences, demonstrated an improvement in attention-based task performance following the 1000 mg dose. Analysis of the recovery sleep showed that CX717 1000 mg significantly reduced stage 4 and slow-wave sleep (p ≤ 0.05) with evidence of reduced electroencephalogram (EEG) slow-wave and spindle activity. The study suggests that CX717 only at the 1000 mg dose may counteract effects of sleep deprivation on attention-based tasks and that it may interfere with subsequent recovery sleep.

  17. The viability of an ecologically valid chronic sleep restriction and circadian timing protocol: An examination of sample attrition, compliance, and effectiveness at impacting sleepiness and mood

    PubMed Central

    Drummond, Sean P. A.; McElroy, Todd

    2017-01-01

    Chronic sleep restriction (SR) increases sleepiness, negatively impacts mood, and impairs a variety of cognitive performance measures. The vast majority of work establishing these effects are tightly controlled in-lab experimental studies. Examining commonly-experienced levels of SR in naturalistic settings is more difficult and generally involves observational methods, rather than active manipulations of sleep. The same is true for analyzing behavioral and cognitive outcomes at circadian unfavorable times. The current study tested the ability of an at-home protocol to manipulate sleep schedules (i.e., impose SR), as well as create a mismatch between a subject’s circadian preference and time of testing. Viability of the protocol was assessed via completion, compliance with the SR, and success at manipulating sleepiness and mood. An online survey was completed by 3630 individuals to assess initial eligibility, 256 agreed via email response to participate in the 3-week study, 221 showed for the initial in-person session, and 184 completed the protocol (175 with complete data). The protocol consisted of 1 week at-home SR (5-6 hours in bed/night), 1 week wash-out, and 1 week well-rested (WR: 8-9 hours in bed/night). Sleep was monitored with actigraphy, diary, and call-ins. Risk management strategies were implemented for subject safety. At the end of each experimental week, subjects reported sleepiness and mood ratings. Protocol completion was 83%, with lower depression scores, higher anxiety scores, and morning session assignment predicting completion. Compliance with the sleep schedule was also very good. Subjects spent approximately 2 hours less time in bed/night and obtained an average of 1.5 hours less nightly sleep during SR, relative to WR, with 82% of subjects obtaining at least 60 minutes less average nightly sleep. Sleepiness and mood were impacted as expected by SR. These findings show the viability of studying experimental chronic sleep restriction outside

  18. Sleep disorders and acute nocturnal delirium in the elderly: a comorbidity not to be overlooked.

    PubMed

    Terzaghi, Michele; Sartori, Ivana; Rustioni, Valter; Manni, Raffaele

    2014-04-01

    Delirium is a disturbance of consciousness and cognition that results in a confusional state. It tends to fluctuate in intensity and is often observed in older patients. Sleep is a window of vulnerability for the occurrence of delirium and sleep disorders can play a role in its appearance. In particular, delirious episodes have been associated with obstructive sleep apnoea syndrome, which is reported to be frequent in the elderly. Hereby, we present a case-report documenting the sudden onset of a confusional state triggered by obstructive sleep apnoea-induced arousal, together with a review of the literature on the topic. We emphasise that, among the many pathogenic factors implicated in delirium, it is worth considering the possible link between nocturnal delirium and the occurrence of impaired arousals. Indeed, the complex confusional manifestations of delirium could be due, in part, to persistence of dysfunctional sleep activity resulting in an inability to sustain full arousal during behavioural wakefulness. Arousals can be triggered by sleep disturbances or other medical conditions. Clinicians should be aware that older patients may present disordered sleep patterns, and make investigation of sleep patterns and disorders potentially affecting sleep continuity a key part of their clinical workup, especially in the presence of cognitive comorbidities. Correct diagnosis and optimal treatment of sleep disorders and disrupted sleep can have a significant impact in the elderly, improving sleep quality and reducing the occurrence of abnormal sleep-related behaviours.

  19. Feasibility and Behavioral Effects of an At-Home Multi-Night Sleep Restriction Protocol for Adolescents

    ERIC Educational Resources Information Center

    Beebe, Dean W.; Fallone, Gahan; Godiwala, Neha; Flanigan, Matt; Martin, David; Schaffner, Laura; Amin, Raouf

    2008-01-01

    Background: Sleep deprivation is common among adolescents and has been associated with adverse behavioral and educational outcomes. However, it is difficult to draw strong causal conclusions because of a dearth of experimental sleep research. In part, this appears related to methodological challenges when working with this population. This study…

  20. Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude.

    PubMed

    Fulco, Charles S; Muza, Stephen R; Beidleman, Beth A; Demes, Robby; Staab, Janet E; Jones, Juli E; Cymerman, Allen

    2011-02-01

    There is an expectation that repeated daily exposures to normobaric hypoxia (NH) will induce ventilatory acclimatization and lessen acute mountain sickness (AMS) and the exercise performance decrement during subsequent hypobaric hypoxia (HH) exposure. However, this notion has not been tested objectively. Healthy, unacclimatized sea-level (SL) residents slept for 7.5 h each night for 7 consecutive nights in hypoxia rooms under NH [n = 14, 24 ± 5 (SD) yr] or "sham" (n = 9, 25 ± 6 yr) conditions. The ambient percent O(2) for the NH group was progressively reduced by 0.3% [150 m equivalent (equiv)] each night from 16.2% (2,200 m equiv) on night 1 to 14.4% (3,100 m equiv) on night 7, while that for the ventilatory- and exercise-matched sham group remained at 20.9%. Beginning at 25 h after sham or NH treatment, all subjects ascended and lived for 5 days at HH (4,300 m). End-tidal Pco(2), O(2) saturation (Sa(O(2))), AMS, and heart rate were measured repeatedly during daytime rest, sleep, or exercise (11.3-km treadmill time trial). From pre- to posttreatment at SL, resting end-tidal Pco(2) decreased (P < 0.01) for the NH (from 39 ± 3 to 35 ± 3 mmHg), but not for the sham (from 39 ± 2 to 38 ± 3 mmHg), group. Throughout HH, only sleep Sa(O(2)) was higher (80 ± 1 vs. 76 ± 1%, P < 0.05) and only AMS upon awakening was lower (0.34 ± 0.12 vs. 0.83 ± 0.14, P < 0.02) in the NH than the sham group; no other between-group rest, sleep, or exercise differences were observed at HH. These results indicate that the ventilatory acclimatization induced by NH sleep was primarily expressed during HH sleep. Under HH conditions, the higher sleep Sa(O(2)) may have contributed to a lessening of AMS upon awakening but had no impact on AMS or exercise performance for the remainder of each day.

  1. Correlates and Escitalopram Treatment Effects on Sleep Disturbance in Patients with Acute Coronary Syndrome: K-DEPACS and EsDEPACS

    PubMed Central

    Kim, Jae-Min; Stewart, Robert; Bae, Kyung-Yeol; Kang, Hee-Ju; Kim, Sung-Wan; Shin, Il-Seon; Hong, Young Joon; Ahn, Youngkeun; Jeong, Myung Ho; Yoon, Jin-Sang

    2015-01-01

    Study Objectives: To investigate the correlates of sleep disturbance and to assess escitalopram treatment effects of depression on sleep disturbance in patients with acute coronary syndrome (ACS). Design: A cross-sectional study in patients with ACS within 2 w post-ACS, and a 24-w double-blind controlled trial of escitalopram against placebo for patients with ACS who have comorbid depressive disorders. Setting: A university hospital in South Korea. Participants: There were 1,152 patients with ACS who were consecutively recruited. Of 446 patients with comorbid depressive disorders, 300 were randomized to the trial. Measurements and Results: Sleep disturbance was evaluated by the Leeds Sleep Evaluation Questionnaire. Demographic and clinical characteristics were assessed, including cardiovascular risk factors, current cardiac status, and depressive symptoms. Depressive symptoms were most strongly and consistently associated with sleep disturbance. In addition, older age, female sex, hypertension, and more severe ACS status were associated with certain aspects of sleep disturbance. Escitalopram was significantly superior to placebo for improving sleep disturbance over the 24-w treatment period. These effects were substantially explained by improvement in depressive symptoms. Conclusions: Depression screening is indicated in patients with acute coronary syndrome with sleep disturbance. Successful treatment of depression has beneficial effects on sleep outcomes in these patients. Clinical Trials Information: ClinicalTrial.gov identifier for the 24-w drug trial, NCT00419471. Citation: Kim JM, Stewart R, Bae KY, Kang HJ, Kim SW, Shin IS, Hong YJ, Ahn Y, Jeong MH, Yoon JS. Correlates and escitalopram treatment effects on sleep disturbance in patients with acute coronary syndrome: K-DEPACS and EsDEPACS. SLEEP 2015;38(7):1105–1111. PMID:25581916

  2. The Association of Lesion Location and Sleep Related Breathing Disorder in Patients with Acute Ischemic Stroke

    PubMed Central

    Teuber, Anja; Wersching, Heike; Young, Peter; Dittrich, Ralf; Ritter, Martin; Dziewas, Rainer; Minnerup, Jens

    2017-01-01

    Background and aims Sleep related breathing disorders (SRBD) are common in patients with ischemic stroke and are associated with poor outcome. SRBD after stroke were assumed to be a direct consequence of injury of specific central nervous system structures. However, whether specific locations of ischemic infarcts cause SRBD is yet unknown. We therefore investigated the association of ischemic lesion location with SRBD. Methods Patients with acute ischemic stroke treated on our stroke unit were included in a prospective observational study. All patients underwent magnetic resonance imaging (MRI) and polygraphy in the acute phase after stroke. SRBD was defined by an apnea—hypopnea index (AHI) ≥10. MRI were evaluated using standardized maps to depict voxel-wise probability distribution of infarction for patients with and without SRBD. Groups were compared using logistic regression analysis. Results Of 142 patients included, 86 (59%) had a SRBD. Age, body mass index and prevalence of arterial hypertension were significantly higher in patients with SRBD. There was no statistically significant association between any lesion location and SRBD. Conclusion We found no association of lesion location and SRBD in stroke patients, whereas established risk factors for SRBD, known from general population, were significantly associated with SRBD. Given the high prevalence of SRBD in stroke patients, these findings suggest that cerebral ischemia facilitates the occurrence of SRBD in patients with pre-existing risk factors rather than causing it by damaging specific central nervous system structures. Our findings can be used to identify stroke patients who might benefit from polygraphy screening. PMID:28135315

  3. Melatonin acutely improves the neuroendocrine architecture of sleep in blind individuals.

    PubMed

    Fischer, Stefan; Smolnik, Rüdiger; Herms, Markus; Born, Jan; Fehm, Horst L

    2003-11-01

    In blind individuals, the absence of light cues results in disturbances of sleep and sleep-related neuroendocrine patterns. The Zeitgeber influence of light on the timing of sleep is assumed to be mediated by melatonin, a hormone of the pineal gland, whose secretion is inhibited by light and enhanced during darkness. Here, we investigated whether a single administration of melatonin improves sleep and associated neuroendocrine patterns in blind individuals. In a double-blind crossover study, 12 totally blind subjects received 5 mg melatonin and placebo orally 1 h before bedtime starting at 2300 h. The dose used enhanced blood melatonin concentrations to clearly supraphysiological levels. Melatonin increased total sleep time and sleep efficiency (P < 0.05, respectively) and reduced time awake (P < 0.05). The increment in total sleep time was primarily due to an increase in stage 2 sleep (P < 0.01) and a slight increase in rapid eye movement sleep (P < 0.06). Most important, melatonin normalized in parallel the temporal pattern of ACTH and cortisol plasma concentration. While after placebo, ACTH and cortisol levels did not differ between early and late sleep, melatonin induced the typical suppression of pituitary-adrenal activity during early sleep and a distinct rise during late sleep (P < 0.01, respectively). Cortisol nadir values were also decreased after melatonin (P < 0.05). We conclude from these data that in totally blind individuals the single administration of a clearly pharmacological dose of melatonin can improve sleep function by synchronizing in time the inhibition of pituitary-adrenal activity with central nervous sleep processes.

  4. Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction.

    PubMed

    Wernbom, Mathias; Paulsen, Gøran; Nilsen, Tormod S; Hisdal, Jonny; Raastad, Truls

    2012-06-01

    Conflicting findings have been reported regarding muscle damage with low-intensity resistance exercise with blood flow restriction (BFR) by pressure cuffs. This study investigated muscle function and muscle fibre morphology after a single bout of low-intensity resistance exercise with and without BFR. Twelve physically active subjects performed unilateral knee extensions at 30% of their one repetition maximum (1RM), with partial BFR on one leg and the other leg without occlusion. With the BFR leg, five sets were performed to concentric torque failure, and the free-flow leg repeated the exact same number of repetitions and sets. Biopsies were obtained from vastus lateralis before and 1, 24 and 48 h after exercise. Maximum isometric torque (MVC) and resting tension were measured before and after exercise and at 4, 24, 48, 72, 96 and 168 h post-exercise. The results demonstrated significant decrements in MVC (lasting ≥48 h) and delayed onset muscle soreness in both legs, and increased resting tension for the occluded leg both acutely and at 24 h post-exercise. The percentage of muscle fibres showing elevated intracellular staining of the plasma protein tetranectin, a marker for sarcolemmal permeability, was significantly increased from 9% before exercise to 27-38% at 1, 24 and 48 h post-exercise for the BFR leg. The changes in the free-flow leg were significant only at 24 h (19%). We conclude that an acute bout of low-load resistance exercise with BFR resulted in changes suggesting muscle damage, which may have implications both for safety aspects and for the training stimulus with BFR exercise.

  5. Acute effects of different diet compositions on skeletal muscle insulin signalling in obese individuals during caloric restriction

    PubMed Central

    Wang, Cecilia C.L.; Adochio, Rebecca L.; Leitner, J. Wayne; Abeyta, Ian M.; Draznin, Boris; Cornier, Marc-Andre

    2012-01-01

    Objective The cellular effects of restricting fat versus carbohydrate during a low-calorie diet are unclear. The aim of this study was to examine acute effects of energy and macronutrient restriction on skeletal muscle insulin signalling in obesity. Materials/Methods Eighteen obese individuals without diabetes underwent euglycemic-hyperinsulinemic clamp and skeletal muscle biopsy after: (a) 5 days of eucaloric diet (30% fat, 50% carbohydrate), and (b) 5 days of a 30% calorie-restricted diet, either low fat/high carbohydrate (LF/HC: 20% fat, 60% carbohydrate) or high-fat/low carbohydrate (HF/LC: 50% fat, 30% carbohydrate). Results Weight, body composition, and insulin sensitivity were similar between groups after eucaloric diet. Weight loss was similar between groups after hypocaloric diet, 1.3 ± 1.3 kg (p<0.0001 compared with eucaloric). Whole-body insulin sensitivity was unchanged after calorie restriction and similar between groups. However, ex vivo skeletal muscle insulin signalling differed depending on macronutrient composition of calorie-restricted diet. Skeletal muscle of the LF/HC group had increased insulin-stimulated tyrosine phosphorylation of IRS-1, decreased insulin-stimulated Ser 307 phosphorylation of IRS-1, and increased IRS-1-associated phosphatidylinositol (PI)3-kinase activity. Conversely, insulin stimulation of tyrosine phosphorylated IRS-1 was absent and serine 307 phosphorylation of IRS-1 was increased on HF/LC, with blunting of IRS-1-associated PI3-kinase activity. Conclusion Acute caloric restriction with a LF/HC diet alters skeletal muscle insulin signalling in a way that improves insulin sensitivity, while acute caloric restriction with a HF/LC diet induces changes compatible with insulin resistance. In both cases, ex vivo changes in skeletal muscle insulin signalling appear prior to changes in whole body insulin sensitivity. PMID:23174405

  6. Acute Total and Chronic Partial Sleep Deprivation: Effects on Neurobehavioral Functions, Waking EEG and Renin-Angiotensin System

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan

    1999-01-01

    protocol of the Quantitative EEG and Waking Neurobehavioral Function project. This will allow us to investigate two additional specific aims: 1) Test the hypothesis that chronic partial sleep deprivation during a 17 day bed rest experiment results in deterioration of neurobehavioral function during waking and increases in EEG power density in the theta frequencies, especially in frontal areas of the brain, as well as the nonREM- REM cycle dependent modulation of heart-rate variability. 2) Test the hypothesis that acute total sleep deprivation modifies the circadian rhythm of the renin-angiotensin system, changes the acute responsiveness of this system to posture beyond what a microgravity environment alone does and affects the nonREM-REM cycle dependent modulation of heart-rate variability.

  7. Region-specific increases in FosB/ΔFosB immunoreactivity in the rat brain in response to chronic sleep restriction.

    PubMed

    Hall, Shannon; Deurveilher, Samüel; Ko, Kristin Robin; Burns, Joan; Semba, Kazue

    2017-03-30

    Using a rat model of chronic sleep restriction (CSR) featuring periodic sleep deprivation with slowly rotating wheels (3h on/1h off), we previously observed that 99h of this protocol induced both homeostatic and allostatic (adaptive) changes in physiological and behavioural measures. Notably, the initial changes in sleep intensity and attention performance gradually adapted during CSR despite accumulating sleep loss. To identify brain regions involved in these responses, we used FosB/ΔFosB immunohistochemistry as a marker of chronic neuronal activation. Adult male rats were housed in motorized activity wheels and underwent the 3/1 CSR protocol for 99h, or 99h followed by 6 or 12days of recovery. Control rats were housed in home cages, locked activity wheels, or unlocked activity wheels that the animals could turn freely. Immunohistochemistry was conducted using an antibody that recognized both FosB and ΔFosB, and 24 brain regions involved in sleep/wake, autonomic, and limbic functions were examined. The number of darkly-stained FosB/ΔFosB-immunoreactive cells was increased immediately following 99h of CSR in 8/24 brain regions, including the medial preoptic and perifornical lateral hypothalamic areas, dorsomedial and paraventricular hypothalamic nuclei, and paraventricular thalamic nucleus. FosB/ΔFosB labeling was at control levels in all 8 brain areas following 6 or 12 recovery days, suggesting that most of the immunoreactivity immediately after CSR reflected FosB, the more transient marker of chronic neuronal activation. This region-specific induction of FosB/ΔFosB following CSR may be involved in the mechanisms underlying the allostatic changes in behavioural and physiological responses to CSR.

  8. NRF2 and the Phase II Response in Acute Stress Resistance Induced by Dietary Restriction

    PubMed Central

    Hine, Christopher M.; Mitchell, James R.

    2013-01-01

    Dietary restriction (DR) as a means to increase longevity is well-established in a number of model organisms from yeast to primates. DR also improves metabolic fitness and increases resistance to acute oxidative, carcinogenic and toxicological stressors - benefits with more immediate potential for clinical translation than increased lifespan. While the detailed mechanism of DR action remains unclear, a conceptual framework involving an adaptive, or hormetic response to the stress of nutrient/energy deprivation has been proposed. A key prediction of the hormesis hypothesis of DR is that beneficial adaptations occur in response to an increase in reactive oxygen/nitrogen species (ROS). These ROS may be derived either from increased mitochondrial respiration or increased xenobiotic metabolism in the case of some DR mimetics. This review will focus on the potential role of the redox-sensing transcription factor NF-E2-related factor 2 (NRF2) and its control of the evolutionarily conserved antioxidant/redox cycling and detoxification systems, collectively known as the Phase II response, in the adaptive response to DR. PMID:23505614

  9. Acute Cardiovascular and Hemodynamic Responses to Low Intensity Eccentric Resistance Exercise with Blood Flow Restriction

    PubMed Central

    Bazgir, Behzad; Rezazadeh Valojerdi, Mojtaba; Rajabi, Hamid; Fathi, Rouhollah; Ojaghi, Seyed Mojtaba; Emami Meybodi, Mohammad Kazem; Neto, Gabriel R.; Rahimi, Mostafa; Asgari, Alireza

    2016-01-01

    Background Recently it has been suggested that low intensity (LI) resistance exercise (RE) alone or in combination with blood flow restriction (BFR) can be applied for cardiovascular function improvement or rehabilitation. Objectives The aim of the present study was to investigate the acute effects of LI eccentric RE with and without BFR on heart rate (HR), rate pressure product (RPP), blood pressure (BP) parameters [systolic, diastolic, and mean arterial pressure (MAP)], oxygen saturation (SpO2) and rate of perceived exertion (RPE). Methods In a semi-experimental study 16 young adults (26.18 ± 3.67 years) volunteered and performed LI (30% maximum voluntary contraction) eccentric RE alone or combined with BFR. Results The results indicated that HR, RPP, and RPE increased significantly within both groups (P < 0.05); SBP and DBP increased significantly only with BFR (P < 0.05); MAP increased significantly during exercise without BFR (P < 0.05); and no change was observed in SpO2 in either groups (P > 0.05). Furthermore, studied parameters did not vary amongst different groups (P > 0.05). Conclusions It is concluded that LI eccentric RE with BFR positively regulated the hemodynamic and cardiovascular responses. Therefore, the eccentric RE combined with BFR seems to be a good option for future studies with the aim of time efficacy, since it alters these parameters within normal values. PMID:28144415

  10. Healthcare Providers' Knowledge of Disordered Sleep, Sleep Assessment Tools, and Nonpharmacological Sleep Interventions for Persons Living with Dementia: A National Survey

    PubMed Central

    Brown, Cary A.; Jones, Allyson; Crick, Katelyn

    2014-01-01

    A large proportion of persons with dementia will also experience disordered sleep. Disordered sleep in dementia is a common reason for institutionalization and affects cognition, fall risk, agitation, self-care ability, and overall health and quality of life. This report presents findings of a survey of healthcare providers' awareness of sleep issues, assessment practices, and nonpharmacological sleep interventions for persons with dementia. There were 1846 participants, with the majority being from nursing and rehabilitation. One-third worked in long-term care settings and one-third in acute care. Few reported working in the community. Findings revealed that participants understated the incidence of sleep deficiencies in persons with dementia and generally lacked awareness of the relationship between disordered sleep and dementia. Their knowledge of sleep assessment tools was limited to caregiver reports, self-reports, and sleep diaries, with few using standardized tools or other assessment methods. The relationship between disordered sleep and comorbid conditions was not well understood. The three most common nonpharmacological sleep interventions participants identified using were a regular bedtime routine, increased daytime activity, and restricted caffeine. Awareness of other evidence-based interventions was low. These findings will guide evidence-informed research to develop and test more targeted and contextualized sleep and dementia knowledge translation strategies. PMID:24851185

  11. Acute bithalamic infarct manifesting as sleep-like coma: A diagnostic challenge.

    PubMed

    Honig, Asaf; Eliahou, Ruth; Eichel, Roni; Shemesh, Ari Aharon; Ben-Hur, Tamir; Auriel, Eitan

    2016-12-01

    Bilateral thalamic infarction (BTI) typically presents as a sleep-like coma (SLC) without localizing signs, posing a diagnostic challenge that may lead the treating physician to search for toxic or metabolic causes and delay treatment. We review our experience with BTI of different etiologies, and emphasize the critical role of timely imaging, diagnosis, and management in a series of 12 patients with a presentation of SLC and acute BTI who were managed in our Medical Centers from 2006-2015. In 11/12, urgent head CT scans showed normal brain tissue, while diffusion-weighted (DWI) MRI revealed symmetric bilateral thalamic hyperintense lesions with variable degrees of brainstem involvement. In 1/12, CT scans revealed a contralateral subacute stroke from a thalamic infarct 1month earlier with a unilateral hyperintense lesion on DWI-MRI. From clinical and imaging findings (DWI-MRI, CT angiography and venography), etiology was attributed to embolic causes (cardio-embolism, artery-to-artery mechanism), small vessel disease, or deep sinus vein thrombosis secondary to dural arteriovenous (AV) fistula. Three patients had good outcomes after prompt diagnosis and optimal treatment in <3hours (intravenous tissue plasminogen activator in two patients cardio-embolic etiology and neuro-endovascular repair in one patient with venous infarction due to a dural AV fistula). The diagnosis was made beyond the therapeutic window in seven patients, who were left with significant neurological sequelae. Higher awareness of BTI presenting as SLC is warranted. Optimal patient management includes urgent DWI-MRI. In cases of BTI, further imaging workup is indicated to provide a comprehensive assessment for etiology. Early diagnosis and prompt, targeted intervention are crucial.

  12. Interactive associations of depression and sleep apnea with adverse clinical outcomes after acute myocardial infarction

    PubMed Central

    Hayano, Junichiro; Carney, Robert M.; Watanabe, Eiichi; Kawai, Kiyohiro; Kodama, Itsuo; Stein, Phyllis K.; Watkins, Lana L.; Freedland, Kenneth E.; Blumenthal, James A.

    2012-01-01

    Objective Depression and sleep apnea (SA) are common among patients after acute myocardial infarction (AMI), and both are associated with increased risk for adverse outcomes. We tested the hypothesis that there is an interaction between depression and SA in relation to prognosis in post-AMI patients. Methods Participants were 337 depressed and 379 nondepressed post-AMI patients who participated in a substudy of the Enhancing Recovery in Coronary Heart Disease (ENRICHD) clinical trial. SA was identified from Holter ECG at the entry by an algorithm that detects cyclic variation of heart rate. Results During a median follow-up of 25 months, 43 (6.0%) of patients died and 83 (11.6%) either died or experienced a recurrent AMI. Among 94 patients with both depression and SA, these endpoints occurred in 20 (21.3%) and 25 (26.6%), the prevalence that was 6.9 and 3.9 times higher than predicted probabilities by ENRICHD clinical risk scores (P <.001 for both). In the patients with depression alone, SA alone, or neither, the frequencies did not differ significantly from the predicted probability. Although both depression and SA predicted death and the combined endpoint, we observed depression by SA interactions (P = .03 and .02). SA independently predicted these endpoints in depressed (P <.001 and P = .001), but not in nondepressed patients (P = .73 and .84). Similarly, depression independently predicted these endpoints in SA (P <.001 for both), but not in non-SA patients (P = .61 and .12). Conclusion The combination of depression and SA estimated by CVHR is associated with long-term adverse clinical outcomes after AMI. PMID:23023681

  13. Duty periods with early start times restrict the amount of sleep obtained by short-haul airline pilots.

    PubMed

    Roach, Gregory D; Sargent, Charli; Darwent, David; Dawson, Drew

    2012-03-01

    Most of the research related to human fatigue in the aviation industry has focussed on long-haul pilots, but short-haul pilots also experience elevated levels of fatigue. The aim of this study was to examine the impact of early start times on the amount of sleep obtained prior to duty and on fatigue levels at the start of duty. Seventy short-haul pilots collected data regarding their duty schedule and sleep/wake behaviour for at least two weeks. Data were collected using self-report duty/sleep diaries and wrist activity monitors. Mixed-effects regression analyses were used to examine the effects of duty start time (04:00-10:00 h) on (i) the total amount of sleep obtained in the 12h prior to the start of duty and (ii) self-rated fatigue level at the start of duty. Both analyses indicated significant main effects of duty start time. In particular, the amount of sleep obtained in the 12h prior to duty was lowest for duty periods that commenced between 04:00 and 05:00 h (i.e. 5.4h), and greatest for duty periods that commenced between 09:00 and 10:00 h (i.e. 6.6h). These data indicate that approximately 15 min of sleep is lost for every hour that the start of duty is advanced prior to 09:00 h. In addition, self-rated fatigue at the start of duty was highest for duty periods that commenced between 04:00 and 05:00 h, and lowest for duty periods that commenced between 09:00 and 10:00 h. Airlines should implement a fatigue risk management system (FRMS) for short-haul pilots required to work early-morning shifts. One component of the FRMS should be focussed on the production of 'fatigue-friendly' rosters. A second component of the FRMS should be focussed on training pilots to optimise sleep opportunities, to identify circumstances where the likelihood of fatigue is elevated, and to manage the risks associated with fatigue-related impairment.

  14. Heart-rate response to sympathetic nervous stimulation, exercise, and magnesium concentration in various sleep conditions.

    PubMed

    Omiya, Kazuto; Akashi, Yoshihiro J; Yoneyama, Kihei; Osada, Naohiko; Tanabe, Kazuhiko; Miyake, Fumihiko

    2009-04-01

    The aim of this study was to clarify the mechanism of impaired exercise tolerance in chronic sleep-restricted conditions by investigating variables related to heart-rate (HR) response to sympathetic nervous stimulation. Sixteen healthy men (mean age 21.5 years) were tested in a control state, acute sleep-loss state, and chronic sleep-restricted state. Participants underwent cardiopulmonary exercise testing in each state. Their norepinephrine (NE) concentration was measured before and immediately after exercise. Intracellular magnesium (Mg) concentration was measured in a resting state. Exercise duration was shorter and the ratio of HR response to the percentage increase in NE was higher in the chronic sleep-restricted state than in the control state. Intracellular Mg gradually decreased from control to chronic sleep restriction. There was a negative correlation between peak exercise duration and the ratios of HR response to the rate of increase in NE. Intracellular Mg was positively correlated with the ratios of HR response to the increase in NE both in control and in acute sleep loss. The authors conclude that the impaired exercise tolerance in a chronic sleep-restricted state is caused by hypersensitivity of the HR response to sympathetic nervous stimulation, which showed a compensation for decreased intracellular Mg concentration.

  15. Sleep Moderates the Association Between Response Inhibition and Self-Regulation in Early Childhood

    PubMed Central

    Schumacher, Allyson M.; Miller, Alison L.; Watamura, Sarah E.; Kurth, Salome; Lassonde, Jonathan M.; LeBourgeois, Monique K.

    2017-01-01

    Early childhood is a time of rapid developmental changes in sleep, cognitive control processes, and the regulation of emotion and behavior. This experimental study examined sleep-dependent effects on response inhibition and self-regulation, as well as whether acute sleep restriction moderated the association between these processes. Preschool children (N = 19; 45.6 ± 2.2 months; 11 female) followed a strict sleep schedule for at least 3 days before each of 2 morning behavior assessments: baseline (habitual nap/night sleep) and sleep restriction (missed nap/delayed bedtime). Response inhibition was evaluated via a go/no-go task. Twelve self-regulation strategies were coded from videotapes of children while attempting an unsolvable puzzle. We then created composite variables representing adaptive and maladaptive self-regulation strategies. Although we found no sleep-dependent effects on response inhibition or self-regulation measures, linear mixed-effects regression showed that acute sleep restriction moderated the relationship between these processes. At baseline, children with better response inhibition were more likely to use adaptive self-regulation strategies (e.g., self-talk, alternate strategies), and those with poorer response inhibition showed increased use of maladaptive self-regulation strategies (e.g., perseveration, fidgeting); however, response inhibition was not related to self-regulation strategies following sleep restriction. Our results showing a sleep-dependent effect on the associations between response inhibition and self-regulation strategies indicate that adequate sleep facilitates synergy between processes supporting optimal social-emotional functioning in early childhood. Although replication studies are needed, findings suggest that sleep may alter connections between maturing emotional and cognitive systems, which have important implications for understanding risk for or resilience to developmental psychopathology. PMID:27652491

  16. Alcohol disrupts sleep homeostasis.

    PubMed

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  17. A pilot study: portable out-of-center sleep testing as an early sleep apnea screening tool in acute ischemic stroke

    PubMed Central

    Chernyshev, Oleg Y; McCarty, David E; Moul, Douglas E; Liendo, Cesar; Caldito, Gloria C; Munjampalli, Sai K; Kelley, Roger E; Chesson, Andrew L

    2015-01-01

    Introduction Prompt diagnosis of obstructive sleep apnea (OSA) after acute ischemic stroke (AIS) is critical for optimal clinical outcomes, but in-laboratory conventional polysomnograms (PSG) are not routinely practical. Though portable out-of-center type III cardiopulmonary sleep studies (out-of-center cardiopulmonary sleep testing [OCST]) are widely available, these studies have not been validated in patients who have recently suffered from AIS. We hypothesized that OCST in patients with AIS would yield similar results when compared to conventional PSG. Methods Patients with AIS had simultaneous type III OCST and PSG studies performed within 72 hours from symptom onset. The accuracy of OCST was compared to PSG using: chi-square tests, receiver operatory characteristic curves, Bland–Altman plot, paired Student’s t-test/Wilcoxon signed-rank test, and calculation of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Results Twenty-one out of 23 subjects with AIS (age 61±9.4 years; 52% male; 58% African-American) successfully completed both studies (9% technical failure). Nearly all (95%) had Mallampati IV posterior oropharynx; the mean neck circumference was 16.8±1.6 in. and the mean body mass index (BMI) was 30±7 kg/m2. The apnea hypopnea index (AHI) provided by OCST was similar to that provided by PSG (19.8±18.0 vs 22.0±22.7, respectively; P=0.49). On identifying subjects by OCST with an AHI ≥5 on PSG, OCST had the following parameters: sensitivity 100%, specificity 85.7%, PPV 93%, and NPV 100%. On identifying subjects with an AHI ≥15 on PSG, OCST parameters were as follows: sensitivity 100%, specificity 83.3%, PPV 81.8%, and NPV 100%. Bland–Altman plotting showed an overall diagnostic agreement between OCST and PSG modalities for an AHI cutoff >5, despite fine-grained differences in estimated AHIs. Conclusion Compared with PSG, OCST provides similar diagnostic information when run simultaneously in AIS

  18. Higher-protein diets improve indexes of sleep in energy-restricted overweight and obese adults: results from 2 randomized controlled trials123

    PubMed Central

    Zhou, Jing; Kim, Jung Eun; Armstrong, Cheryl LH; Chen, Ningning; Campbell, Wayne W

    2016-01-01

    Background: Limited and inconsistent research findings exist about the effect of dietary protein intake on indexes of sleep. Objective: We assessed the effect of protein intake during dietary energy restriction on indexes of sleep in overweight and obese adults in 2 randomized, controlled feeding studies. Design: For study 1, 14 participants [3 men and 11 women; mean ± SE age: 56 ± 3 y; body mass index (BMI; in kg/m2): 30.9 ± 0.6] consumed energy-restricted diets (a 750-kcal/d deficit) with either beef and pork (BP; n = 5) or soy and legume (SL; n = 9) as the main protein sources for 3 consecutive 4-wk periods with 10% (control), 20%, or 30% of total energy from protein (random order). At baseline and the end of each period, the global sleep score (GSS) was assessed with the use of the Pittsburgh Sleep Quality Index (PSQI) questionnaire. For study 2, 44 participants (12 men and 32 women; age: 52 ± 1 y; BMI: 31.4 ± 0.5) consumed a 3-wk baseline energy-balance diet with 0.8 g protein · kg baseline body mass−1 · d−1. Then, study 2 subjects consumed either a normal-protein [NP (control); n = 23] or a high-protein (HP; n = 21) (0.8 compared with 1.5 g · kg−1 · d−1, respectively) energy-restricted diet (a 750-kcal/d deficit) for 16 wk. The PSQI was administered during baseline week 3 and intervention weeks 4, 8, 12, and 16. GSSs ranged from 0 to 21 arbitrary units (au), with a higher value representing a worse GSS during the preceding month. Results: In study 1, we showed that a higher protein quantity improved GSSs independent of the protein source. The GSS was higher (P < 0.05) when 10% (6.0 ± 0.4 au) compared with 20% (5.0 ± 0.4 au) protein was consumed, with 30% protein (5.4 ± 0.6 au) intermediate. In study 2, at baseline, the GSS was not different between NP (5.2 ± 0.5 au) and HP (5.4 ± 0.5 au) groups. Over time, the GSS was unchanged for the NP group and improved for the HP group (P-group-by-time interaction < 0.05). After intervention (week

  19. Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats

    PubMed Central

    Mishra, Rachana; Manchanda, Shaffi; Gupta, Muskan; Kaur, Taranjeet; Saini, Vedangana; Sharma, Anuradha; Kaur, Gurcharan

    2016-01-01

    Sleep deprivation (SD) leads to the spectrum of mood disorders like anxiety, cognitive dysfunctions and motor coordination impairment in many individuals. However, there is no effective pharmacological remedy to negate the effects of SD. The current study examined whether 50% ethanolic extract of Tinospora cordifolia (TCE) can attenuate these negative effects of SD. Three groups of adult Wistar female rats - (1) vehicle treated-sleep undisturbed (VUD), (2) vehicle treated-sleep deprived (VSD) and (3) TCE treated-sleep deprived (TSD) animals were tested behaviorally for cognitive functions, anxiety and motor coordination. TSD animals showed improved behavioral response in EPM and NOR tests for anxiety and cognitive functions, respectively as compared to VSD animals. TCE pretreatment modulated the stress induced-expression of plasticity markers PSA-NCAM, NCAM and GAP-43 along with proteins involved in the maintenance of LTP i.e., CamKII-α and calcineurin (CaN) in hippocampus and PC regions of the brain. Interestingly, contrary to VSD animals, TSD animals showed downregulated expression of inflammatory markers such as CD11b/c, MHC-1 and cytokines along with inhibition of apoptotic markers. This data suggests that TCE alone or in combination with other memory enhancing agents may help in managing sleep deprivation associated stress and improving cognitive functions. PMID:27146164

  20. translin is required for metabolic regulation of sleep

    PubMed Central

    Stahl, Bethany A.; Masek, Pavel; Mehta, Aradhana; Heidker, Rebecca; Bollinger, Wesley; Gingras, Robert M.; Kim, Young-Joon; Ja, William W.; Suter, Beat; DiAngelo, Justin R.; Keene, Alex C.

    2016-01-01

    Summary Dysregulation of sleep or feeding has enormous health consequences. In humans, acute sleep loss is associated with increased appetite and insulin insensitivity, while chronically sleep-deprived individuals are more likely to develop obesity, metabolic syndrome, type II diabetes, and cardiovascular disease. Conversely, metabolic state potently modulates sleep and circadian behavior; yet, the molecular basis for sleep-metabolism interactions remains poorly understood. Here, we describe the identification of translin (trsn), a highly conserved RNA/DNA binding protein, as essential for starvation-induced sleep suppression. Strikingly, trsn does not appear to regulate energy stores, free glucose levels, or feeding behavior suggesting the sleep phenotype of trsn mutant flies is not a consequence of general metabolic dysfunction or blunted response to starvation. While broadly expressed in all neurons, trsn is transcriptionally upregulated in the heads of flies in response to starvation. Spatially restricted rescue or targeted knockdown localizes trsn function to neurons that produce the tachykinin-family neuropeptide Leucokinin. Manipulation of neural activity in Leucokinin neurons revealed these neurons to be required for starvation-induced sleep suppression. Taken together, these findings establish trsn as an essential integrator of sleep and metabolic state, with implications for understanding the neural mechanism underlying sleep disruption in response to environmental perturbation. PMID:27020744

  1. Hormone responses to an acute bout of low intensity blood flow restricted resistance exercise in college-aged females.

    PubMed

    Kim, Eonho; Gregg, Lee D; Kim, Ldaeyeol; Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2014-01-01

    The purpose of this study was to determine whether the acute hormone response to exercise differed between low intensity blood flow restricted resistance exercise and traditional high-intensity resistance exercise in college-aged women. A total of 13 healthy women (aged 18-25 yrs), who were taking oral contraceptives, volunteered for this randomized crossover study. Subjects performed a session of low intensity blood flow restricted resistance exercise (BFR) (20% of 1-RM, 1 set 30 reps, 2 sets 15 reps) and a session of traditional high intensity resistance exercise without blood flow restriction (HI) (3 sets of 10 repetitions at 80% of 1-RM) on separate days. Fasting serum cortisol and growth hormone (GH) and blood lactate responses were measured in the morning pre and post exercise sessions. GH (Change: HI: 6.34 ± 1.72; BFR: 4.22 ± 1.40 ng·mL(-1)) and cortisol (Change: HI: 4.46 ± 1.53; BFR: 8.10 ± 2.30 ug·dL(-1)) significantly (p < 0.05) increased immediately post exercise for both protocols compared to baseline and there were no significant differences between the protocols for these responses. In contrast, blood lactate levels (HI: 7.35 ± 0.45; BFR: 4.02 ± 0.33 mmol·L(-1)) and ratings of perceived exertion were significantly (p < 0.01) higher for the HI protocol. In conclusion, acute BFR restricted resistance exercise stimulated similar increases in anabolic and catabolic hormone responses in young women. Key PointsGrowth hormone and cortisol levels significantly increased after a single bout of low intensity blood flow restricted resistance exercise in young women.There were no significant differences in hormone responses between the low intensity blood flow restricted protocol and the traditional high intensity higher total workload protocol.Low intensity blood flow restricted resistance exercise provides a sufficient stimulus to elicit anabolic and catabolic hormone responses in young women.

  2. Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity

    SciTech Connect

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Latendresse, John R.; Mehendale, Harihara M.

    2007-11-15

    Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD{sub 100} dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereas all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-{alpha} and plasma adiponectin increased cardiac fatty acid oxidation (666.9 {+-}14.0 nmol/min/g heart in ad libitum versus 1035.6 {+-} 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMP{alpha}2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 {+-} 2.1 {mu}mol/g heart in ad libitum versus 26.7 {+-} 1.9 {mu}mol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway.

  3. Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load.

    PubMed

    Wernbom, Mathias; Järrebring, Rickard; Andreasson, Mikael A; Augustsson, Jesper

    2009-11-01

    The purpose of this study was to investigate muscle activity and endurance during fatiguing low-intensity dynamic knee extension exercise with and without blood flow restriction. Eleven healthy subjects with strength training experience performed 3 sets of unilateral knee extensions with no relaxation between repetitions to concentric torque failure at 30% of the 1 repetition maximum. One leg was randomized to exercise with cuff occlusion and the other leg to exercise without occlusion. The muscle activity in the quadriceps was recorded with electromyography (EMG). Ratings of perceived exertion (RPE) and acute pain were collected immediately, and delayed onset muscle soreness (DOMS) was rated before and at 24, 48, and 72 hours after exercise. The results demonstrated high EMG levels in both experimental conditions, but there were no significant differences regarding maximal muscle activity, except for a higher EMG in the eccentric phase in set 3 for the nonoccluded condition (p = 0.005). Significantly more repetitions were performed with the nonoccluded leg in every set (p < 0.05). The RPE and acute pain ratings were similar, but DOMS was higher in the nonoccluded leg (p < 0.05). We conclude that blood flow restriction during low-intensity dynamic knee extension decreases the endurance but does not increase the maximum muscle activity compared with training without restriction when both regimes are performed to failure. The high levels of muscle activity suggest that performing low-load dynamic knee extensions in a no-relaxation manner may be a useful method in knee rehabilitation settings when large forces are contraindicated. However, similarly to fatiguing blood flow restricted exercise, this method is associated with ischemic muscle pain, and thus its applications may be limited to highly motivated individuals.

  4. Acute and long-term effects of blood flow restricted training on heat shock proteins and endogenous antioxidant systems.

    PubMed

    Cumming, K T; Ellefsen, S; Rønnestad, B R; Ugelstad, I; Raastad, T

    2016-10-10

    Blood flow restricted exercise (BFRE) with low loads has been demonstrated to induce considerable stress to exercising muscles. Muscle cells have developed a series of defensive systems against exercise-induced stress. However, little is known about acute and long-term effects of BFRE training on these systems. Nine previously untrained females trained low-load BFRE and heavy load strength training (HLS) on separate legs and on separate days to investigate acute and long-term effects on heat shock proteins (HSP) and endogenous antioxidant systems in skeletal muscles. BFRE and HLS increased muscle strength similarly by 12 ± 7% and 12 ± 6%, respectively, after 12 weeks of training. Acutely after the first BFRE and HLS exercise session, αB-crystallin and HSP27 content increased in cytoskeletal structures, accompanied by increased expression of several HSP genes. After 12 weeks of training, this acute HSP response was absent. Basal levels of αB-crystallin, HSP27, HSP70, mnSOD, or GPx1 remained unchanged after 12 weeks of training, but HSP27 levels increased in the cytoskeleton. Marked translocation of HSP to cytoskeletal structures at the commencement of training indicates that these structures are highly stressed from BFRE and HLS. However, as the muscle gets used to this type of exercise, this response is abolished.

  5. The acute effects of twenty-four hours of sleep loss on the performance of national-caliber male collegiate weightlifters.

    PubMed

    Blumert, Peter A; Crum, Aaron J; Ernsting, Mark; Volek, Jeff S; Hollander, Daniel B; Haff, Erin E; Haff, G Gregory

    2007-11-01

    Currently, the degree to which sleep loss influences weightlifting performance is unknown. This study compared the effects of 24 hours of sleep loss on weightlifting performance and subjective ratings of psychological states pre-exercise and postexercise in national-caliber male collegiate weightlifters. Nine males performed a maximal weightlifting protocol following 24 hours of sleep loss and a night of normal sleep. The subjects participated in a randomized, counterbalanced design with each sleep condition separated by 7 days. Testosterone and cortisol levels were quantified prior to, immediately after, and 1 hour after the resistance training session. Additionally, profile of mood states and subjective sleepiness were evaluated at the same time points. The resistance training protocol consisted of several sets of snatches, clean and jerks, and front squats. Performance was evaluated as individual exercise volume load, training intensity and overall workout volume load, and training intensity. During each training session the maximum weight lifted for the snatch, clean and jerk, and front squat were noted. No significant differences were found for any of the performance variables. A significant decrease following the sleep condition was noted for cortisol concentration immediately after and 1 hour postexercise. Vigor, fatigue, confusion, total mood disturbance, and sleepiness were all significantly altered by sleep loss. These data suggest that 24 hours of sleep loss has no adverse effects on weightlifting performance. If an athlete is in an acute period of sleep loss, as noticed by negative mood disturbances, it may be more beneficial to focus on the psychological (motivation) rather than the physiological aspect of the sport.

  6. Acute food restriction increases collagen breakdown and phagocytosis by mature decidual cells of mice.

    PubMed

    Spadacci-Morena, D D; Katz, S G

    2001-06-01

    An ultrastructural study was undertaken on antimesometrial mature decidual tissue of fed and food-restricted mice, on day 9 of pregnancy. The mean ad libitum food intake was established on mice from the 8th till the 9th day of pregnancy. Fed mice were used as controls. Experimental animals were divided into two groups: one was allowed to feed 25% of normal diet and the other 50%. Extracellular collagen fibrils were scarce in fed animals and conspicuous in food restriction. Granular electron-dense deposits and filamentous aggregates of disintegrating collagen fibrils were observed in all food-deprived mice but were rarely noted in fed animals. Intracellular vacuolar structures exhibited other typical cross-banded collagen immersed in finely granular electron-translucent material (clear vacuole) or electron-dense material containing collagen fibrils with a faint periodicity (dark vacuole). The clear and dark vacuoles were scarce in fed animals and evident in food-restricted mice, mainly in those 25% food restricted. Although collagen breakdown may be part of the normal process of decidual tissue remodelling our results suggest that it is enhanced in food-restricted animals. Thus it seems that collagen breakdown is a normal mechanism that may be regulated by the food intake of the pregnant animal.

  7. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Behavioral and physiological rhythms can be entrained by daily restricted feeding (RF), indicating the existence of a food-entrainable oscillator (FEO). One manifestation of the presence of FEO is anticipatory activity to regularly scheduled feeding. In the present study, we tested if intact ghrelin...

  8. Sex differences in the enhanced responsiveness to acute angiotensin II in growth-restricted rats: role of fasudil, a Rho kinase inhibitor

    PubMed Central

    Ojeda, Norma B.; Royals, Thomas P.

    2013-01-01

    This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg−1·min−1) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P < 0.05). Cotreatment with the Rho kinase inhibitor fasudil (33 μg·kg−1·min−1) significantly attenuated these hemodynamic changes (P < 0.05), but it did not abolish the differential increase in blood pressure above baseline, suggesting that the impact of intrauterine growth restriction on blood pressure in intact male growth-restricted rats is independent of Rho kinase. Gonadectomy in conjunction with fasudil returned blood pressure back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats. PMID:23344570

  9. Carbohydrate-Binding Non-Peptidic Pradimicins for the Treatment of Acute Sleeping Sickness in Murine Models

    PubMed Central

    Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Reichardt, Niels C.; Igarashi, Yasuhiro; Liekens, Sandra; Balzarini, Jan

    2016-01-01

    Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT. PMID:27662652

  10. Sleep-related headaches.

    PubMed

    Rains, Jeanetta C; Poceta, J Steven

    2012-11-01

    Irrespective of diagnosis, chronic daily, morning, or "awakening" headache patterns are soft signs of a sleep disorder. Sleep apnea headache may emerge de novo or may present as an exacerbation of cluster, migraine, tension-type, or other headache. Insomnia is the most prevalent sleep disorder in chronic migraine and tension-type headache, and increases risk for depression and anxiety. Sleep disturbance (e.g., sleep loss, oversleeping, schedule shift) is an acute headache trigger for migraine and tension-type headache. Snoring and sleep disturbance are independent risk factors for progression from episodic to chronic headache.

  11. Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders.

    PubMed

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2015-07-01

    Heat tolerance can be improved by feed restriction in broiler chickens. It is unknown whether the same is true for broiler breeders, which are restrictedly fed. Therefore, the current study was conducted to study the effects of heat stress on plasma metabolites, hormones, and oxidative status of restricted fed broiler breeders with special emphases on the temperature and latency of heat exposure. In trial 1, 12 broiler breeders were kept either in a thermoneutral chamber (21°C, control, n = 6) or in a chamber with a step-wise increased environmental temperature from 21 to 33°C (21, 25, 29, 33°C, heat-stressed, n = 6). Changes in plasma total cholesterol, glucose, and triiodothyronine (T3) were closely related to the environmental temperature. When the temperature reached 29°C, plasma T3 (P < 0.05) was significantly decreased in acute heat-stressed birds, whereas plasma glucose (P < 0.001) and cholesterol (P = 0.002) increased only when the temperature reached 33°C. Plasma triglyceride (P = 0.026) and creatine kinase (CK, P = 0.018) were lower in heat-stressed birds than controls regardless of the temperatures applied. In Trial 2, 24 broiler breeders were divided into 2 groups and raised under 21°C and 32°C for 8 weeks, respectively. Total cholesterol was increased in chronic heat-stressed broiler breeders after 4 weeks. Plasma lactate dehydrogenase (LDH, P = 0.047) and glutamic-oxaloacetic transaminase (GOT, P = 0.036) was up-regulated after 6 weeks of thermal treatment, whereas plasma CK (P = 0.009) was increased at the end of thermal treatment. Plasma malonaldehyde, protein carbonyl content, activity of total superoxide dismutase (SOD), and corticosterone content were not altered after acute and prolonged heat challenges. Taken together, acute heat stress primarily resulted in disturbance of plasma metabolites, whereas chronic heat stress caused tissue damage reflected by increased plasma LDA, GOT, and CK. During acute heat stress, plasma metabolites were

  12. The effect of acute sleep deprivation and fatigue in cardiovascular perfusion students: a mixed methods study.

    PubMed

    Hodge, Ashley B; Snyder, Alexandra C; Fernandez, Adam L; Boan, Andrea D; Malek, Angela M; Sistino, Joseph J

    2012-09-01

    Sleep deprivation as a result of long working hours has been associated with an increased risk of adverse events in healthcare professions but not in cardiovascular perfusion. The purpose of this study is to investigate the impact of sleep deprivation on cardiovascular perfusion students. Testing with high-fidelity simulation after 24 hours of sleep deprivation allowed investigators to assess user competency and the effect of fatigue on performance. After informed consent, seven senior perfusion students were enrolled in the study (three declined to participate). The qualitative portion of the study included a focus group session, whereas the quantitative portion included administration of questionnaires, including the Epworth Sleepiness Scale (ESS) and the Stanford Sleepiness Scale (SSS), as well as clinical skills assessment using high-fidelity simulation. Subjects were assessed at three different intervals of sleep deprivation over a 24-hour period: baseline (6:00 AM), 12 hours (6:00 PM), 16 hours (10:00 PM), and 24 hours (6:00 AM) of wakefulness. During each scenario, normally monitored bypass parameters, including mean arterial pressure, activated clotting times, partial pressures of oxygen, partial pressures of carbon dioxide, and venous flow, were manipulated, and the subjects were required to return the parameters to normal levels. In addition, the scenario required calculation of the final protamine dose (using a dose-response curve) and detection of electrocardiography changes. Each task was varied at the different simulation sessions to decrease the effect of learning. Despite any lack of sleep, we hypothesized that, because of repetition, the times to complete the task would decrease at each session. We also hypothesized that the ESS and SSS scores would increase over time. We expected that the students would anticipate which tasks were being evaluated and would react more quickly. The average ESS scores progressively increased at each time period

  13. The Effect of Acute Sleep Deprivation and Fatigue in Cardiovascular Perfusion Students: A Mixed Methods Study

    PubMed Central

    Hodge, Ashley B.; Snyder, Alexandra C.; Fernandez, Adam L.; Boan, Andrea D.; Malek, Angela M.; Sistino, Joseph J.

    2012-01-01

    Abstract: Sleep deprivation as a result of long working hours has been associated with an increased risk of adverse events in healthcare professions but not in cardiovascular perfusion. The purpose of this study is to investigate the impact of sleep deprivation on cardiovascular perfusion students. Testing with highfidelity simulation after 24 hours of sleep deprivation allowed investigators to assess user competency and the effect of fatigue on performance. After informed consent, seven senior perfusion students were enrolled in the study (three declined to participate). The qualitative portion of the study included a focus group session, whereas the quantitative portion included administration of questionnaires, including the Epworth Sleepiness Scale (ESS) and the Stanford Sleepiness Scale (SSS), as well as clinical skills assessment using high-fidelity simulation. Subjects were assessed at three different intervals of sleep deprivation over a 24-hour period: baseline (6:00 am), 12 hours (6:00 pm), 16 hours (10:00 pm), and 24 hours (6:00 am) of wakefulness. During each scenario, normally monitored bypass parameters, including mean arterial pressure, activated clotting times, partial pressures of oxygen, partial pressures of carbon dioxide, and venous flow, were manipulated, and the subjects were required to return the parameters to normal levels. In addition, the scenario required calculation of the final protamine dose (using a dose–response curve) and detection of electrocardiography changes. Each task was varied at the different simulation sessions to decrease the effect of learning. Despite any lack of sleep, we hypothesized that, because of repetition, the times to complete the task would decrease at each session. We also hypothesized that the ESS and SSS scores would increase over time. We expected that the students would anticipate which tasks were being evaluated and would react more quickly. The average ESS scores progressively increased at each time

  14. Are Dietary Restraint Scales Valid Measures of Acute Dietary Restriction? Unobtrusive Observational Data Suggest Not

    ERIC Educational Resources Information Center

    Stice, Eric; Fisher, Melissa; Lowe, Michael R.

    2004-01-01

    The finding that dietary restraint scales predict onset of bulimic pathology has been interpreted as suggesting that dieting causes this eating disturbance, despite the dearth of evidence that these scales are valid measures of dietary restriction. The authors conducted 4 studies that tested whether dietary restraint scales were inversely…

  15. Viral Evolution and Cytotoxic T Cell Restricted Selection in Acute Infant HIV-1 Infection

    PubMed Central

    Garcia-Knight, Miguel A.; Slyker, Jennifer; Payne, Barbara Lohman; Pond, Sergei L. Kosakovsky; de Silva, Thushan I.; Chohan, Bhavna; Khasimwa, Brian; Mbori-Ngacha, Dorothy; John-Stewart, Grace; Rowland-Jones, Sarah L.; Esbjörnsson, Joakim

    2016-01-01

    Antiretroviral therapy-naive HIV-1 infected infants experience poor viral containment and rapid disease progression compared to adults. Viral factors (e.g. transmitted cytotoxic T- lymphocyte (CTL) escape mutations) or infant factors (e.g. reduced CTL functional capacity) may explain this observation. We assessed CTL functionality by analysing selection in CTL-targeted HIV-1 epitopes following perinatal infection. HIV-1 gag, pol and nef sequences were generated from a historical repository of longitudinal specimens from 19 vertically infected infants. Evolutionary rate and selection were estimated for each gene and in CTL-restricted and non-restricted epitopes. Evolutionary rate was higher in nef and gag vs. pol, and lower in infants with non-severe immunosuppression vs. severe immunosuppression across gag and nef. Selection pressure was stronger in infants with non-severe immunosuppression vs. severe immunosuppression across gag. The analysis also showed that infants with non-severe immunosuppression had stronger selection in CTL-restricted vs. non-restricted epitopes in gag and nef. Evidence of stronger CTL selection was absent in infants with severe immunosuppression. These data indicate that infant CTLs can exert selection pressure on gag and nef epitopes in early infection and that stronger selection across CTL epitopes is associated with favourable clinical outcomes. These results have implications for the development of paediatric HIV-1 vaccines. PMID:27403940

  16. Effects of acute microinjections of thyroid hormone to the preoptic region of hypothyroid adult male rats on sleep, motor activity and body temperature.

    PubMed

    Moffett, Steven X; Giannopoulos, Phillip F; James, Thomas D; Martin, Joseph V

    2013-06-21

    Thyroid hormones induce short-latency nongenomic effects in adult brain tissue, suggesting that their acute administration would affect brain activity in intact animals. The influence on EEG-defined sleep of acute restoration of l-3,3'5-triiodothyronine (T3) to a sleep-regulatory brain region, the preoptic region, was examined in hypothyroid rats. Sleep parameters were monitored for 48 h weekly: for 24 h immediately following a control microinjection and for an additional 24h after a second microinjection including a T3 dose to the preoptic region or lateral ventricle. Male albino rats were implanted with EEG and EMG electrodes, abdominal temperature/activity transponders and unilateral lateral ventricle cannulae or bilateral preoptic region cannulae, and were given 0.02% n-propythiouracil (PTU) in their drinking water for 4 weeks. For histologically-confirmed bilateral preoptic region cannula placements (N=7), effects of T3 (especially a 3 μg dose) were apparent within 10h of injection as decreases in REM, NREM and total sleep and increases in waking and activity. Minimal effects of lateral ventricle T3 microinjection were demonstrated (N=5). Significant effects due to the time of day on the experimental measures were seen in both lateral ventricle and preoptic region groups, but these effects did not interact with the effect of administered hormone dose. These effects of T3 microinjection to the preoptic region were demonstrated after acute injections and within hours of injection rather than after chronic administration over days.

  17. Sleep deprivation does not affect neuronal susceptibility to mild traumatic brain injury in the rat

    PubMed Central

    Caron, Aimee M; Stephenson, Richard

    2015-01-01

    Mild and moderate traumatic brain injuries (TBIs) (and concussion) occur frequently as a result of falls, automobile accidents, and sporting activities, and are a major cause of acute and chronic disability. Fatigue and excessive sleepiness are associated with increased risk of accidents, but it is unknown whether prior sleep debt also affects the pathophysiological outcome of concussive injury. Using the “dark neuron” (DN) as a marker of reversible neuronal damage, we tested the hypothesis that acute (48 hours) total sleep deprivation (TSD) and chronic sleep restriction (CSR; 10 days, 6-hour sleep/day) affect DN formation following mild TBI in the rat. TSD and CSR were administered using a walking wheel apparatus. Mild TBI was administered under anesthesia using a weight-drop impact model, and the acute neuronal response was observed without recovery. DNs were detected using standard bright-field microscopy with toluidine blue stain following appropriate tissue fixation. DN density was low under home cage and sleep deprivation control conditions (respective median DN densities, 0.14% and 0.22% of neurons), and this was unaffected by TSD alone (0.1%). Mild TBI caused significantly higher DN densities (0.76%), and this was unchanged by preexisting acute or chronic sleep debt (TSD, 0.23%; CSR, 0.7%). Thus, although sleep debt may be predicted to increase the incidence of concussive injury, the present data suggest that sleep debt does not exacerbate the resulting neuronal damage. PMID:26124685

  18. Comparing the Effect of Foot Reflexology Massage, Foot Bath and Their Combination on Quality of Sleep in Patients with Acute Coronary Syndrome

    PubMed Central

    Rahmani, Ali; Naseri, Mahdi; Salaree, Mohammad Mahdi; Nehrir, Batool

    2016-01-01

    Introduction: Many patients in coronary care unit (CCU) suffer from decreased sleep quality caused by environmental and mental factors. This study compared the efficacy of foot reflexology massage, foot bath, and a combination of them on the quality of sleep of patients with acute coronary syndrome (ACS). Methods: This quasi-experimental study was implemented on ACS patients in Iran. Random sampling was used to divide the patients into four groups of 35 subjects. The groups were foot reflexology massage, foot bath, a combination of the two and the control group. Sleep quality was measured using the Veran Snyder-Halpern questionnaire. Data were analyzed by SPSS version 13. Results: The mean age of the four groups was 61.22 (11.67) years. The mean sleep disturbance in intervention groups (foot reflexology massage and foot bath groups) during the second and third nights was significantly less than before intervention. The results also showed a greater reduction in sleep disturbance in the combined group than in the other groups when compared to the control group. Conclusion: It can be concluded that the intervention of foot bath and massage are effective in reducing sleep disorders and there was a synergistic effect when used in combination. This complementary care method can be recommended to be implemented by CCU nurses. PMID:28032074

  19. Comparing the Effect of Foot Reflexology Massage, Foot Bath and Their Combination on Quality of Sleep in Patients with Acute Coronary Syndrome.

    PubMed

    Rahmani, Ali; Naseri, Mahdi; Salaree, Mohammad Mahdi; Nehrir, Batool

    2016-12-01

    Introduction: Many patients in coronary care unit (CCU) suffer from decreased sleep quality caused by environmental and mental factors. This study compared the efficacy of foot reflexology massage, foot bath, and a combination of them on the quality of sleep of patients with acute coronary syndrome (ACS). Methods: This quasi-experimental study was implemented on ACS patients in Iran. Random sampling was used to divide the patients into four groups of 35 subjects. The groups were foot reflexology massage, foot bath, a combination of the two and the control group. Sleep quality was measured using the Veran Snyder-Halpern questionnaire. Data were analyzed by SPSS version 13. Results: The mean age of the four groups was 61.22 (11.67) years. The mean sleep disturbance in intervention groups (foot reflexology massage and foot bath groups) during the second and third nights was significantly less than before intervention. The results also showed a greater reduction in sleep disturbance in the combined group than in the other groups when compared to the control group. Conclusion: It can be concluded that the intervention of foot bath and massage are effective in reducing sleep disorders and there was a synergistic effect when used in combination. This complementary care method can be recommended to be implemented by CCU nurses.

  20. The acute effects of light on murine sleep during the dark phase: importance of melanopsin for maintenance of light-induced sleep.

    PubMed

    Muindi, Fanuel; Zeitzer, Jamie M; Colas, Damien; Heller, H Craig

    2013-06-01

    Light exerts a direct effect on sleep and wakefulness in nocturnal and diurnal animals, with a light pulse during the dark phase suppressing locomotor activity and promoting sleep in the former. In the present study, we investigated this direct effect of light on various sleep parameters by exposing mice to a broad range of illuminances (0.2-200 μW/cm(2) ; equivalent to 1-1000 lux) for 1 h during the dark phase (zeitgeber time 13-14). Fitting the data with a three-parameter log model indicated that ~0.1 μW/cm(2) can generate half the sleep response observed at 200 μW/cm(2). We observed decreases in total sleep time during the 1 h following the end of the light pulse. Light reduced the latency to sleep from ~30 min in darkness (baseline) to ~10 min at the highest intensity, although this effect was invariant across the light intensities used. We then assessed the role of melanopsin during the rapid transition from wakefulness to sleep at the onset of a light pulse and the maintenance of sleep with a 6-h 20 μW/cm(2) light pulse. Even though the melanopsin knockout mice had robust induction of sleep (~35 min) during the first hour of the pulse, it was not maintained. Total sleep decreased by almost 65% by the third hour in comparison with the first hour of the pulse in mice lacking melanopsin, whereas only an 8% decrease was observed in wild-type mice. Collectively, our findings highlight the selective effects of light on murine sleep, and suggest that melanopsin-based photoreception is primarily involved in sustaining light-induced sleep.

  1. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants.

    PubMed

    Antoni, Rona; Johnston, Kelly L; Collins, Adam L; Robertson, M Denise

    2016-03-28

    The intermittent energy restriction (IER) approach to weight loss involves short periods of substantial (75-100 %) energy restriction (ER) interspersed with normal eating. This study aimed to characterise the early metabolic response to these varying degrees of ER, which occurs acutely and prior to weight loss. Ten (three female) healthy, overweight/obese participants (36 (SEM 5) years; 29·0 (sem 1·1) kg/m2) took part in this acute three-way cross-over study. Participants completed three 1-d dietary interventions in a randomised order with a 1-week washout period: isoenergetic intake, partial 75 % ER and total 100 % ER. Fasting and postprandial (6-h) metabolic responses to a liquid test meal were assessed the following morning via serial blood sampling and indirect calorimetry. Food intake was also recorded for two subsequent days of ad libitum intake. Relative to the isoenergetic control, postprandial glucose responses were increased following total ER (+142 %; P=0·015) and to a lesser extent after partial ER (+76 %; P=0·051). There was also a delay in the glucose time to peak after total ER only (P=0·024). Both total and partial ER interventions produced comparable reductions in postprandial TAG responses (-75 and -59 %, respectively; both P<0·05) and 3-d energy intake deficits of approximately 30 % (both P=0·015). Resting and meal-induced thermogenesis were not significantly affected by either ER intervention. In conclusion, our data demonstrate the ability of substantial ER to acutely alter postprandial glucose-lipid metabolism (with partial ER producing the more favourable overall response), as well as incomplete energy-intake compensation amongst overweight/obese participants. Further investigations are required to establish how metabolism adapts over time to the repeated perturbations experienced during IER, as well as the implications for long-term health.

  2. Sleep and adult neurogenesis: implications for cognition and mood.

    PubMed

    Mueller, Anka D; Meerlo, Peter; McGinty, Dennis; Mistlberger, Ralph E

    2015-01-01

    The hippocampal dentate gyrus plays a critical role in learning and memory throughout life, in part by the integration of adult-born neurons into existing circuits. Neurogenesis in the adult hippocampus is regulated by numerous environmental, physiological, and behavioral factors known to affect learning and memory. Sleep is also important for learning and memory. Here we critically examine evidence from correlation, deprivation, and stimulation studies that sleep may be among those factors that regulate hippocampal neurogenesis. There is mixed evidence for correlations between sleep variables and rates of hippocampal cell proliferation across the day, the year, and the lifespan. There is modest evidence that periods of increased sleep are associated with increased cell proliferation or survival. There is strong evidence that disruptions of sleep exceeding 24 h, by total deprivation, selective REM sleep deprivation, and chronic restriction or fragmentation, significantly inhibit cell proliferation and in some cases neurogenesis. The mechanisms by which sleep disruption inhibits neurogenesis are not fully understood. Although sleep disruption procedures are typically at least mildly stressful, elevated adrenal corticosterone secretion is not necessary for this effect. However, procedures that prevent both elevated corticosterone and interleukin 1β signaling have been found to block the effect of sleep deprivation on cell proliferation. This result suggests that sleep loss impairs hippocampal neurogenesis by the presence of wake-dependent factors, rather than by the absence of sleep-specific processes. This would weigh against a hypothesis that regulation of neurogenesis is a function of sleep. Nonetheless, impaired neurogenesis may underlie some of the memory and mood effects associated with acute and chronic sleep disruptions.

  3. Sleep in High Stress Occupations

    NASA Technical Reports Server (NTRS)

    Flynn-Evans, Erin

    2014-01-01

    High stress occupations are associated with sleep restriction, circadian misalignment and demanding workload. This presentation will provide an overview of sleep duration, circadian misalignment and fatigue countermeasures and performance outcomes during spaceflight and commercial aviation.

  4. Immunotherapy of acute leukemia by chimeric antigen receptor-modified lymphocytes using an improved Sleeping Beauty transposon platform

    PubMed Central

    Magnani, Chiara F.; Turazzi, Nice; Benedicenti, Fabrizio; Calabria, Andrea; Tenderini, Erika; Tettamanti, Sarah; Attianese, Greta M.P. Giordano; Cooper, Laurence J.N.; Aiuti, Alessandro; Montini, Eugenio; Biondi, Andrea; Biagi, Ettore

    2016-01-01

    Chimeric antigen receptor (CAR)-modified T-cell adoptive immunotherapy is a remarkable therapeutic option proven effective in the treatment of hematological malignancies. In order to optimize cell manufacturing, we sought to develop a novel clinical-grade protocol to obtain CAR-modified cytokine-induced killer cells (CIKs) using the Sleeping Beauty (SB) transposon system. Administration of irradiated PBMCs overcame cell death of stimulating cells induced by non-viral transfection, enabling robust gene transfer together with efficient T-cell expansion. Upon single stimulation, we reached an average of 60% expression of CD123- and CD19- specific 3rd generation CARs (CD28/OX40/TCRzeta). Furthermore, modified cells displayed persistence of cell subsets with memory phenotype, specific and effective lytic activity against leukemic cell lines and primary blasts, cytokine secretion, and proliferation. Adoptive transfer of CD123.CAR or CD19.CAR lymphocytes led to a significant anti-tumor response against acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) disseminated diseases in NSG mice. Notably, we found no evidence of integration enrichment near cancer genes and transposase expression at the end of the differentiation. Taken all together, our findings describe a novel donor-derived non-viral CAR approach that may widen the repertoire of available methods for T cell-based immunotherapy. PMID:27323395

  5. Immunotherapy of acute leukemia by chimeric antigen receptor-modified lymphocytes using an improved Sleeping Beauty transposon platform.

    PubMed

    Magnani, Chiara F; Turazzi, Nice; Benedicenti, Fabrizio; Calabria, Andrea; Tenderini, Erika; Tettamanti, Sarah; Giordano Attianese, Greta M P; Cooper, Laurence J N; Aiuti, Alessandro; Montini, Eugenio; Biondi, Andrea; Biagi, Ettore

    2016-08-09

    Chimeric antigen receptor (CAR)-modified T-cell adoptive immunotherapy is a remarkable therapeutic option proven effective in the treatment of hematological malignancies. In order to optimize cell manufacturing, we sought to develop a novel clinical-grade protocol to obtain CAR-modified cytokine-induced killer cells (CIKs) using the Sleeping Beauty (SB) transposon system. Administration of irradiated PBMCs overcame cell death of stimulating cells induced by non-viral transfection, enabling robust gene transfer together with efficient T-cell expansion. Upon single stimulation, we reached an average of 60% expression of CD123- and CD19- specific 3rd generation CARs (CD28/OX40/TCRzeta). Furthermore, modified cells displayed persistence of cell subsets with memory phenotype, specific and effective lytic activity against leukemic cell lines and primary blasts, cytokine secretion, and proliferation. Adoptive transfer of CD123.CAR or CD19.CAR lymphocytes led to a significant anti-tumor response against acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) disseminated diseases in NSG mice. Notably, we found no evidence of integration enrichment near cancer genes and transposase expression at the end of the differentiation. Taken all together, our findings describe a novel donor-derived non-viral CAR approach that may widen the repertoire of available methods for T cell-based immunotherapy.

  6. Developmental differences in EEG and sleep responses to acute ethanol administration and its withdrawal (hangover) in adolescent and adult Wistar rats.

    PubMed

    Ehlers, Cindy L; Desikan, Anita; Wills, Derek N

    2013-12-01

    Age-related differences in sensitivity to the acute effects of alcohol may play an important role in the increased risk for the development of alcoholism seen in teens that begin drinking at an early age. The present study evaluated the acute and protracted (hangover) effects of ethanol in adolescent (P33-P40) and adult (P100-P107) Wistar rats, using the cortical electroencephalogram (EEG). Six minutes of EEG was recorded during waking, 15 min after administration of 0, 1.5, or 3.0 g/kg ethanol, and for 3 h at 20 h post ethanol, during the rats' next sleep cycle. Significantly higher overall frontal and parietal cortical power was seen in a wide range of EEG frequencies in adolescent rats as compared to adult rats in their waking EEG. Acute administration of ethanol did not produce differences between adolescents and adults on behavioral measures of acute intoxication. However, it did produce a significantly less intense acute EEG response to ethanol in the theta frequencies in parietal cortex in the adolescents as compared to the adults. At 20 h following acute ethanol administration, during the rats' next sleep cycle, a decrease in slow-wave frequencies (1-4 Hz) was seen and the adolescent rats were found to display more reduction in the slow-wave frequencies than the adults did. The present study found that adolescent rats, as compared to adults, demonstrate low sensitivity to acute ethanol administration in the theta frequencies and more susceptibility to disruption of slow-wave sleep during hangover. These studies may lend support to the idea that these traits may contribute to increased risk for alcohol use disorders seen in adults who begin drinking in their early teenage years.

  7. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex

    PubMed Central

    de Vivo, Luisa; Nelson, Aaron B.; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara

    2016-01-01

    Study Objective: The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Methods: Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6–8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Results: Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Conclusions: Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. Citation: de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of sleep affects the ultrastructure of pyramidal neurons in the adolescent mouse frontal cortex. SLEEP 2016;39(4):861–874. PMID:26715225

  8. Central Sleep Apnoea Is Related to the Severity and Short-Term Prognosis of Acute Coronary Syndrome

    PubMed Central

    Sánchez-de-la-Torre, Alicia; Sánchez-de-la-Torre, Manuel; Aldomá, Albina; Worner, Fernando; Galera, Estefanía; Seminario, Asunción; Torres, Gerard; Dalmases, Mireia; Montserrat, Josep M.; Garmendia, Onintza; Barbé, Ferran

    2016-01-01

    Objective To evaluate the relation of central sleep apnoea (CSA) to the severity and short-term prognosis of patients who experience acute coronary syndrome (ACS). Methods Observational study with cross-sectional and longitudinal analyses. Patients acutely admitted to participating hospitals because of ACS underwent respiratory polygraphy during the first 24 to 72 h. CSA was defined as an apnoea-hypopnoea index (AHI) >15 events•h-1 (>50% of central apnoeas). ACS severity (Killip class, ejection fraction, number of diseased vessels and peak plasma troponin) was evaluated at baseline, and short-term prognosis (length of hospitalization, complications and mortality) was evaluated at discharge. Results A total of 68 CSA patients (AHI 31±18 events•h−1, 64±12 years, 87% males) and 92 controls (AHI 7±5 events•h−1, 62±12 years, 84% males) were included in the analyses. After adjusting for age, body mass index, hypertension and smoking status, patients diagnosed with CSA spent more days in the coronary unit compared with controls (3.7±2.9 vs. 1.5±1.7; p<0.001) and had a worse Killip class (Killip I: 16% vs. 96%; p<0.001). No differences were observed in ejection fraction estimates. Conclusions CSA patients exhibited increased ACS severity as indicated by their Killip classification. These patients had a worse prognosis, with longer lengths of stay in the coronary care units. Our results highlight the relevance of CSA in patients suffering ACS episodes and suggest that diagnosing CSA may be a useful strategy to improve the management of certain ACS patients. PMID:27880845

  9. Impact of High Risk for Obstructive Sleep Apnea on Survival after Acute Coronary Syndrome: Insights from the ERICO Registry

    PubMed Central

    Maia, Flavia C; Goulart, Alessandra C.; Drager, Luciano F.; Staniak, Henrique L.; Santos, Itamar de Souza; Lotufo, Paulo Andrade; Bensenor, Isabela M.

    2017-01-01

    Background Obstructive sleep apnea (OSA) is a very often clinical condition that can be associated with high mortality risk, particularly in coronary heart disease (CHD). The diagnosis of OSA is not always accessible via the gold-standard method polysomnography. Objective To evaluate long-term influence of the high risk for OSA on fatal and non-fatal outcomes after acute coronary syndrome (ACS) in the Acute Coronary Syndrome Registry Strategy (ERICO) Study using the Berlin questionnaire as a surrogate. Methods Berlin questionnaire, a screening questionnaire for OSA, was applied in 639 cases of ACS 30 days after the index event. Cox regression proportional-hazards model was used to calculate the hazard ratio (HR) of all-cause, cardiovascular and CHD (myocardial infarction) mortality, as well as, the combined endpoint of fatal or recurrent non-fatal CHD. Results The high-risk group for OSA had higher frequencies of previous personal/family history of CHD and diabetes, in addition to a poorer event-free survival, as compared to the low-risk group (p-log-rank=0.03). The HR for fatal or recurrent non-fatal CHD was 4.26 (95% confidence interval, 1.18 - 15.36) in patients at high risk for OSA compared to those at low risk for OSA after a 2.6-year mean follow-up. Conclusions Using Berlin questionnaire, we were able to identify high risk for OSA as an independent predictor of non-fatal reinfarction or CHD mortality in post-ACS individuals in a long-term follow-up. PMID:28146212

  10. The acute effects of flotation restricted environmental stimulation technique on recovery from maximal eccentric exercise.

    PubMed

    Morgan, Paul M; Salacinski, Amanda J; Stults-Kolehmainen, Matthew A

    2013-12-01

    Flotation restricted environmental stimulation technique (REST) involves compromising senses of sound, sight, and touch by creating a quiet dark environment. The individual lies supine in a tank of Epsom salt and water heated to roughly skin temperature (34-35° C). This study was performed to determine if a 1-hour flotation REST session would aid in the recovery process after maximal eccentric knee extensions and flexions. Twenty-four untrained male students (23.29 ± 2.1 years, 184.17 ± 6.85 cm, 85.16 ± 11.54 kg) participated in a randomized, repeated measures crossover study. The participants completed 2 exercise and recovery protocols: a 1-hour flotation REST session and a 1-hour seated control (passive recovery). After isometric muscle strength testing, participants were fatigued with eccentric isokinetic muscle contractions (50 repetitions at 60°·s) of the nondominant knee extensors and flexors. Blood lactate, blood glucose, heart rate, OMNI-rating of perceived exertion for resistance exercise (OMNI-RPE), perceived pain, muscle soreness, and isometric strength were collected before exercise, after treatment, and 24 and 48 hours later. A multivariate analysis of covariance found that treatment had a significant main effect on blood lactate, whereas subsequent univariate analyses of variance found statistical significance with the immediate posttreatment blood lactate measures. The results indicate that flotation REST appears to have a significant impact on blood lactate and perceived pain compared with a 1-hour passive recovery session in untrained healthy men. No difference was found between conditions for muscle strength, blood glucose, muscle soreness, heart rate, or OMNI-RPE. Flotation REST may be used for recreational and professional athletes to help reduce blood lactate levels after eccentric exercise.

  11. Acute Feasibility of Neuromuscular Electrical Stimulation in Severely Obese Patients with Obstructive Sleep Apnea Syndrome: A Pilot Study

    PubMed Central

    Maffiuletti, Nicola A.; Borel, Anne-Laure; Grangier, Angélique; Wuyam, Bernard; Pépin, Jean-Louis

    2017-01-01

    Objective. Obesity and obstructive sleep apnea (OSA) are closely interconnected conditions both leading to high cardiovascular risk. Inactivity is frequent and physical activity programs remain difficult in these patients. We investigated the acute feasibility of two neuromuscular electrical stimulation (NMES) modalities in extremely inactive obese patients with OSA. Design. A randomized cross-over study, with two experimental sessions (one per condition: multipath NMES versus conventional NMES). Setting. Outpatient research hospital. Subjects. Twelve patients with obesity, already treated for OSA. Interventions. No intervention. Measures. Feasibility outcomes included NMES current intensity, knee extension force evoked by NMES, and self-reported discomfort. Results. We found higher current intensity, a trend to significantly higher evoked force and lower discomfort during multipath NMES versus conventional NMES, suggesting better tolerance to the former NMES modality. However, patients were rapidly limited in the potential of increasing current intensity of multipath NMES. Conclusion. Both NMES modalities were feasible and relatively well tolerated by obese patients with OSA, even if multipath NMES showed a better muscle response/discomfort ratio than conventional NMES. There is an urgent need for a proof-of-concept study and interventional randomized controlled trials comparing NMES therapy versus current care to justify its utilization in obese and apneic patients with low physical activity levels. PMID:28194410

  12. Sleeping Beauty transposon screen identifies signaling modules that cooperate with STAT5 activation to induce B cell acute lymphoblastic leukemia

    PubMed Central

    Heltemes-Harris, Lynn M.; Larson, Jon D.; Starr, Timothy K.; Hubbard, Gregory K.; Sarver, Aaron L.; Largaespada, David A.; Farrar, Michael A.

    2015-01-01

    STAT5 activation occurs frequently in human progenitor B cell acute lymphoblastic leukemia (B-ALL). To identify gene alterations that cooperate with STAT5 activation to initiate leukemia we crossed mice expressing a constitutively active form of STAT5 (Stat5b-CA) to mice in which a mutagenic Sleeping Beauty transposon (T2/Onc) was mobilized only in B cells. Stat5b-CA mice typically do not develop B-ALL (<2% penetrance); in contrast, 89% of Stat5b–CA mice in which the T2/Onc transposon had been mobilized died of B-ALL by 3 months of age. High-throughput sequencing approaches were used to identify genes frequently targeted by the T2/Onc transposon; these included Sos1 (74%), Kdm2a (35%), Jak1 (26%), Bmi1 (19%), Prdm14 or Ncoa2 (13%), Cdkn2a (10%), Ikzf1 (8%), Caap1 (6%) and Klf3 (6%). Collectively, these mutations target three major cellular processes: (i) the JAK/STAT5 pathway (ii) progenitor B cell differentiation and (iii) the CDKN2A tumor suppressor pathway. Transposon insertions typically resulted in altered expression of these genes, as well as downstream pathways including STAT5, ERK and p38. Importantly, expression of Sos1 and Kdm2a, and activation of p38, correlated with survival, further underscoring the role these genes and associated pathways play in B-ALL. PMID:26500062

  13. Effects of acute microinjections of the thyroid hormone derivative 3-iodothyronamine to the preoptic region of adult male rats on sleep, thermoregulation and motor activity.

    PubMed

    James, Thomas D; Moffett, Steven X; Scanlan, Thomas S; Martin, Joseph V

    2013-06-01

    The decarboxylated thyroid hormone derivative 3-iodothyronamine (T1AM) has been reported as having behavioral and physiological consequences distinct from those of thyroid hormones. Here, we investigate the effects of T1AM on EEG-defined sleep after acute administration to the preoptic region of adult male rats. Our laboratory recently demonstrated a decrease in EEG-defined sleep after administration of 3,3',5-triiodo-l-thyronine (T3) to the same brain region. After injection of T1AM or vehicle solution, EEG, EMG, activity, and core body temperature were recorded for 24h. Sleep parameters were determined from EEG and EMG data. Earlier investigations found contrasting systemic effects of T3 and T1AM, such as decreased heart rate and body temperature after intraperitoneal T1AM injection. However, nREM sleep was decreased in the present study after injections of 1 or 3 μg T1AM, but not after 0.3 or 10 μg, closely mimicking the previously reported effects of T3 administration to the preoptic region. The biphasic dose-response observed after either T1AM or T3 administration seems to indicate shared mechanisms and/or functions of sleep regulation in the preoptic region. Consistent with systemic administration of T1AM, however, microinjection of T1AM decreased body temperature. The current study is the first to show modulation of sleep by T1AM, and suggests that T1AM and T3 have both shared and independent effects in the adult mammalian brain.

  14. Restrictive vs liberal blood transfusion for acute upper gastrointestinal bleeding: rationale and protocol for a cluster randomized feasibility trial.

    PubMed

    Jairath, Vipul; Kahan, Brennan C; Gray, Alasdair; Doré, Caroline J; Mora, Ana; Dyer, Claire; Stokes, Elizabeth A; Llewelyn, Charlotte; Bailey, Adam A; Dallal, Helen; Everett, Simon M; James, Martin W; Stanley, Adrian J; Church, Nicholas; Darwent, Melanie; Greenaway, John; Le Jeune, Ivan; Reckless, Ian; Campbell, Helen E; Meredith, Sarah; Palmer, Kelvin R; Logan, Richard F A; Travis, Simon P L; Walsh, Timothy S; Murphy, Michael F

    2013-07-01

    Acute upper gastrointestinal bleeding (AUGIB) is the commonest reason for hospitalization with hemorrhage in the UK and the leading indication for transfusion of red blood cells (RBCs). Observational studies suggest an association between more liberal RBC transfusion and adverse patient outcomes, and a recent randomised trial reported increased further bleeding and mortality with a liberal transfusion policy. TRIGGER (Transfusion in Gastrointestinal Bleeding) is a pragmatic, cluster randomized trial which aims to evaluate the feasibility and safety of implementing a restrictive versus liberal RBC transfusion policy in adult patients admitted with AUGIB. The trial will take place in 6 UK hospitals, and each centre will be randomly allocated to a transfusion policy. Clinicians throughout each hospital will manage all eligible patients according to the transfusion policy for the 6-month trial recruitment period. In the restrictive centers, patients become eligible for RBC transfusion when their hemoglobin is <8 g/dL. In the liberal centers patients become eligible for transfusion once their hemoglobin is <10 g/dL. All clinicians will have the discretion to transfuse outside of the policy but will be asked to document the reasons for doing so. Feasibility outcome measures include protocol adherence, recruitment rate, and evidence of selection bias. Clinical outcome measures include further bleeding, mortality, thromboembolic events, and infections. Quality of life will be measured using the EuroQol EQ-5D at day 28, and the costs associated with hospitalization for AUGIB in the UK will be estimated. Consent will be sought from participants or their representatives according to patient capacity for use of routine hospital data and day 28 follow up. The study has ethical approval for conduct in England and Scotland. Results will be analysed according to a pre-defined statistical analysis plan and disseminated in peer reviewed publications to relevant stakeholders. The

  15. Endocrine responses to acute and chronic high-altitude exposure (4,300 meters): modulating effects of caloric restriction.

    PubMed

    Barnholt, Kimberly E; Hoffman, Andrew R; Rock, Paul B; Muza, Stephen R; Fulco, Charles S; Braun, Barry; Holloway, Leah; Mazzeo, Robert S; Cymerman, Allen; Friedlander, Anne L

    2006-06-01

    High-altitude anorexia leads to a hormonal response pattern modulated by both hypoxia and caloric restriction (CR). The purpose of this study was to compare altitude-induced neuroendocrine changes with or without energy imbalance and to explore how energy sufficiency alters the endocrine acclimatization process. Twenty-six normal-weight, young men were studied for 3 wk. One group [hypocaloric group (HYPO), n = 9] stayed at sea level and consumed 40% fewer calories than required to maintain body weight. Two other groups were deployed to 4,300 meters (Pikes Peak, CO), where one group (ADQ, n = 7) was adequately fed to maintain body weight and the other [deficient group (DEF), n = 10] had calories restricted as above. HYPO experienced a typical CR-induced reduction in many hormones such as insulin, testosterone, and leptin. At altitude, fasting glucose, insulin, and epinephrine exhibited a muted rise in DEF compared with ADQ. Free thyroxine, thyroid-stimulating hormone, and norepinephrine showed similar patterns between the two altitude groups. Morning cortisol initially rose higher in DEF than ADQ at 4,300 meters, but the difference disappeared by day 5. Testosterone increased in both altitude groups acutely but declined over time in DEF only. Adiponectin and leptin did not change significantly from sea level baseline values in either altitude group regardless of energy intake. These data suggest that hypoxia tends to increase blood hormone concentrations, but anorexia suppresses elements of the endocrine response. Such suppression results in the preservation of energy stores but may sacrifice the facilitation of oxygen delivery and the use of oxygen-efficient fuels.

  16. Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion.

    PubMed

    Neto, Gabriel R; Sousa, Maria S C; Costa e Silva, Gabriel V; Gil, Ana L S; Salles, Belmiro F; Novaes, Jefferson S

    2016-01-01

    The aim of this study was to compare the acute effect of resistance exercise (RE) with and without blood flow restriction (BFR) on heart rate (HR), double product (DP), oxygen saturation (SpO2 ) and rating of perceived exertion (RPE). Twenty-four men (21·79 ± 3·21 years) performed three experimental protocols in a random order (crossover): (i) high-intensity RE at 80% of 1RM (HI), (ii) low-intensity RE at 20% of 1RM (LI) and (iii) low-intensity RE at 20% of 1RM combined with partial blood flow restriction (LI+BFR). HR, blood pressure, SpO2 and RPE were assessed. The data were analysed using repeated measures analysis of variance and the Wilcoxon test for RPE. The results indicated that all protocols significantly increased HR, both immediately postexercise and during the subsequent 60 min (P<0·05), and postexercise DP (P<0·05), but there were no differences between protocols. The protocols of LI and LI+BFR reduced postexercise SpO2 (P = 0·033, P = 0·007), and the LI+BFR protocol presented a perception of greater exertion in the lower limbs compared with HI (P = 0·022). We conclude that RE performed at low intensity combined with BFR seems to reduce the SpO2 after exercise and increase HR and DP while maintaining a perception of greater exertion on the lower limbs.

  17. Metabolic consequences of sleep and sleep loss

    PubMed Central

    Van Cauter, Eve; Spiegel, Karine; Tasali, Esra; Leproult, Rachel

    2015-01-01

    Reduced sleep duration and quality appear to be endemic in modern society. Curtailment of the bedtime period to minimum tolerability is thought to be efficient and harmless by many. It has been known for several decades that sleep is a major modulator of hormonal release, glucose regulation and cardiovascular function. In particular, slow wave sleep (SWS), thought to be the most restorative sleep stage, is associated with decreased heart rate, blood pressure, sympathetic nervous activity and cerebral glucose utilization, compared with wakefulness. During SWS, the anabolic growth hormone is released while the stress hormone cortisol is inhibited. In recent years, laboratory and epidemiologic evidence have converged to indicate that sleep loss may be a novel risk factor for obesity and type 2 diabetes. The increased risk of obesity is possibly linked to the effect of sleep loss on hormones that play a major role in the central control of appetite and energy expenditure, such as leptin and ghrelin. Reduced leptin and increased ghrelin levels correlate with increases in subjective hunger when individuals are sleep restricted rather than well rested. Given the evidence, sleep curtailment appears to be an important, yet modifiable, risk factor for the metabolic syndrome, diabetes and obesity. The marked decrease in average sleep duration in the last 50 years coinciding with the increased prevalence of obesity, together with the observed adverse effects of recurrent partial sleep deprivation on metabolism and hormonal processes, may have important implications for public health. PMID:18929315

  18. Metabolic consequences of sleep and sleep loss.

    PubMed

    Van Cauter, Eve; Spiegel, Karine; Tasali, Esra; Leproult, Rachel

    2008-09-01

    Reduced sleep duration and quality appear to be endemic in modern society. Curtailment of the bedtime period to minimum tolerability is thought to be efficient and harmless by many. It has been known for several decades that sleep is a major modulator of hormonal release, glucose regulation and cardiovascular function. In particular, slow wave sleep (SWS), thought to be the most restorative sleep stage, is associated with decreased heart rate, blood pressure, sympathetic nervous activity and cerebral glucose utilization, compared with wakefulness. During SWS, the anabolic growth hormone is released while the stress hormone cortisol is inhibited. In recent years, laboratory and epidemiologic evidence have converged to indicate that sleep loss may be a novel risk factor for obesity and type 2 diabetes. The increased risk of obesity is possibly linked to the effect of sleep loss on hormones that play a major role in the central control of appetite and energy expenditure, such as leptin and ghrelin. Reduced leptin and increased ghrelin levels correlate with increases in subjective hunger when individuals are sleep restricted rather than well rested. Given the evidence, sleep curtailment appears to be an important, yet modifiable, risk factor for the metabolic syndrome, diabetes and obesity. The marked decrease in average sleep duration in the last 50 years coinciding with the increased prevalence of obesity, together with the observed adverse effects of recurrent partial sleep deprivation on metabolism and hormonal processes, may have important implications for public health.

  19. Association between chloride-rich versus chloride-restrictive intravenous fluid administration and acute kidney injury in cardiovascular patients in ICU wards.

    PubMed

    Wang, Xudong; Zhang, Chao; Huang, Guangsu; Han, Dahe; Meng, Xiaoyan; Guo, Yi; Kan, Chen

    2016-08-01

    The aim of the study was to investigate the therapeutic effect of chloride-restrictive fluid to prevent acute kidney injury (AKI) in cardiovascular patients in intensive care unit (ICU) wards. Between January 2013 and September 2014, 456 patients admitted to ICU wards following diagnosis of cardiovascular disease were recruited and randomized to receive chloride-rich (232 patients) or chloride-restrictive (224 patients) fluid. The baseline characteristics and incidence of Kidney Disease Improving Global Outcomes (KDIGO)-defined AKI was then compared. No significant difference was identified in the baseline characteristics between the two groups. The incidence of moderate-to-severe KDIGO-defined AKI was significantly decreased in patients who received chloride-restrictive fluid. In conclusion, chloride-restrictive may be a novel effective intervention in preventing KDIGO-defined AKI in cardiovascular patients in ICU wards.

  20. Effect of acupressure with valerian oil 2.5% on the quality and quantity of sleep in patients with acute coronary syndrome in a cardiac intensive care unit.

    PubMed

    Bagheri-Nesami, Masoumeh; Gorji, Mohammad Ali Heidari; Rezaie, Somayeh; Pouresmail, Zahra; Cherati, Jamshid Yazdani

    2015-10-01

    The purpose of this three-group double-blind clinical trial study was to investigate the effect of acupressure ( zhǐ yā) with valerian ( xié cǎo) oil 2.5% on the quality and quantity of sleep in patients with acute coronary syndrome (ACS) in a coronary intensive care unit (CCU). This study was conducted on 90 patients with ACS in Mazandaran Heart Center (Sari, Iran) during 2013. The patients were randomly assigned to one of three groups. Patients in the acupressure with valerian oil 2.5% group (i.e., valerian acupressure group) received bilateral acupoint ( xué wèi) massage with two drops of valerian oil for 2 minutes for three nights; including every point this treatment lasted in total 18 minutes. Patients in the acupressure group received massage at the same points with the same technique but without valerian oil. Patients in the control group received massage at points that were 1-1.5 cm from the main points using the same technique and for the same length of time. The quality and quantity of the patients' sleep was measured by the St. Mary's Hospital Sleep Questionnaire (SMHSQ). After the intervention, there was a significant difference between sleep quality and sleep quantity in the patients in the valerian acupressure group and the acupressure group, compared to the control group (p < 0.05). Patients that received acupressure with valerian oil experienced improved sleep quality; however, this difference was not statistically significant in comparison to the acupressure only group. Acupressure at the ear spirit gate ( shén mén), hand Shenmen, glabella ( yìn táng), Wind Pool ( fēng chí), and Gushing Spring ( yǒng quán) acupoints can have therapeutic effects and may improve the quality and quantity of sleep in patients with ACS. Using these techniques in combination with herbal medicines such valerian oil can have a greater impact on improving sleep and reducing waking during the night.

  1. Effect of acupressure with valerian oil 2.5% on the quality and quantity of sleep in patients with acute coronary syndrome in a cardiac intensive care unit

    PubMed Central

    Bagheri-Nesami, Masoumeh; Gorji, Mohammad Ali Heidari; Rezaie, Somayeh; Pouresmail, Zahra; Cherati, Jamshid Yazdani

    2015-01-01

    The purpose of this three-group double-blind clinical trial study was to investigate the effect of acupressure (指壓 zhǐ yā) with valerian (纈草 xié cǎo) oil 2.5% on the quality and quantity of sleep in patients with acute coronary syndrome (ACS) in a coronary intensive care unit (CCU). This study was conducted on 90 patients with ACS in Mazandaran Heart Center (Sari, Iran) during 2013. The patients were randomly assigned to one of three groups. Patients in the acupressure with valerian oil 2.5% group (i.e., valerian acupressure group) received bilateral acupoint (穴位 xué wèi) massage with two drops of valerian oil for 2 minutes for three nights; including every point this treatment lasted in total 18 minutes. Patients in the acupressure group received massage at the same points with the same technique but without valerian oil. Patients in the control group received massage at points that were 1–1.5 cm from the main points using the same technique and for the same length of time. The quality and quantity of the patients' sleep was measured by the St. Mary's Hospital Sleep Questionnaire (SMHSQ). After the intervention, there was a significant difference between sleep quality and sleep quantity in the patients in the valerian acupressure group and the acupressure group, compared to the control group (p < 0.05). Patients that received acupressure with valerian oil experienced improved sleep quality; however, this difference was not statistically significant in comparison to the acupressure only group. Acupressure at the ear spirit gate (神門 shén mén), hand Shenmen, glabella (印堂 yìn táng), Wind Pool (風池 fēng chí), and Gushing Spring (湧泉 yǒng quán) acupoints can have therapeutic effects and may improve the quality and quantity of sleep in patients with ACS. Using these techniques in combination with herbal medicines such valerian oil can have a greater impact on improving sleep and reducing waking during the night. PMID:26587395

  2. A new mathematical model for the homeostatic effects of sleep loss on neurobehavioral performance

    PubMed Central

    McCauley, Peter; Kalachev, Leonid V.; Smith, Amber D.; Belenky, Gregory; Dinges, David F.; Van Dongen, Hans P.A.

    2009-01-01

    The two-process model of sleep regulation makes accurate predictions of sleep timing and duration for a variety of experimental sleep deprivation and nap sleep scenarios. Upon extending its application to waking neurobehavioral performance, however, the model fails to predict the effects of chronic sleep restriction. Here we show that the two-process model belongs to a broader class of models formulated in terms of coupled non-homogeneous first-order ordinary differential equations, which have a dynamic repertoire capturing waking neurobehavioral functions across a wide range of wake/sleep schedules. We examine a specific case of this new model class, and demonstrate the existence of a bifurcation: for daily amounts of wakefulness less than a critical threshold, neurobehavioral performance is predicted to converge to an asymptotically stable state of equilibrium; whereas for daily wakefulness extended beyond the critical threshold, neurobehavioral performance is predicted to diverge from an unstable state of equilibrium. Comparison of model simulations to laboratory observations of lapses of attention on a psychomotor vigilance test (PVT), in experiments on the effects of chronic sleep restriction and acute total sleep deprivation, suggests that this bifurcation is an essential feature of performance impairment due to sleep loss. We present three new predictions that may be experimentally verified to validate the model. These predictions, if confirmed, challenge conventional notions about the effects of sleep and sleep loss on neurobehavioral performance. The new model class implicates a biological system analogous to two connected compartments containing interacting compounds with time-varying concentrations as being a key mechanism for the regulation of psychomotor vigilance as a function of sleep loss. We suggest that the adenosinergic neuromodulator/receptor system may provide the underlying neurobiology. PMID:18938181

  3. Shorter Sleep Duration is Associated with Decreased Insulin Sensitivity in Healthy White Men

    PubMed Central

    Wong, Patricia M.; Manuck, Stephen B.; DiNardo, Monica M.; Korytkowski, Mary; Muldoon, Matthew F.

    2015-01-01

    Study Objective: Short sleep has been linked to increased risk for type 2 diabetes and incident cardiovascular disease and acute sleep restriction impairs insulin-mediated glucose disposal. Here, we examined whether indices of glucose metabolism vary with naturally occurring differences in sleep duration. Design and Measures: Subjects were midlife, nondiabetic community volunteers (N = 224; mean age 44.5 ± 6.6 y [range: 30–54]; 52% female; 89% white). Laboratory measures of insulin sensitivity (Si) and acute secretion (AIRg), glucose effectiveness (Sg), and disposition index (Di) were obtained from a 180-min, intravenous glucose tolerance test. Results: Shorter self-reported sleep duration (in hours) was associated with lower Si (P = 0.043), although an interaction of sleep duration with participant race (β = −0.81, P = 0.002) showed this association significant only in whites. Moreover, sex-stratified analyses revealed that shorter sleep duration predicted lower Si in white men (β = 0.29, P = 0.003) but not in white women (P = 0.22). Findings were similar for AIRg. The relationship between sleep duration and AIRg was moderated by race as well as sex, such that shorter sleep duration associated with greater insulin release only in white men (β = −0.28, P = 0.004). Sleep duration was unrelated to Sg and Di (P's > 0.05). Conclusions: Our findings suggest that shorter sleep duration may impair insulin sensitivity and beta-cell function in nondiabetic white men, possibly contributing to later type 2 diabetes and cardiovascular disease. Citation: Wong PM, Manuck SB, DiNardo MM, Korytkowski M, Muldoon MF. Shorter sleep duration is associated with decreased insulin sensitivity in healthy white men. SLEEP 2015;38(2):223–231. PMID:25325485

  4. Sleep walking

    MedlinePlus

    ... sleep cycle has stages, from light drowsiness to deep sleep. During the stage called rapid eye movement ( ... REM sleep. Sleepwalking (somnambulism) most often occurs during deep, non-REM sleep (called N3 sleep) early in ...

  5. Recovery sleep and performance following sleep deprivation with dextroamphetamine.

    PubMed

    Caldwell, J L; Caldwell, J A

    1997-06-01

    Twelve subjects were studied to determine the after-effects of using three 10-mg doses of dextroamphetamine to sustain alertness during sleep deprivation. Sleep architecture during recovery sleep was evaluated by comparing post-deprivation sleep after placebo. Performance and mood recovery were assessed by comparing volunteers who received dextroamphetamine first (during sleep deprivation) to those who received placebo first. Stages 1 and 2 sleep, movement time, REM latency, and sleep latency increased on the night after sleep deprivation with dextroamphetamine vs. placebo. Stage 4 was unaffected. Comparisons to baseline revealed more stage 1 during baseline than during either post-deprivation sleep period and more stage 2 during baseline than during sleep following placebo. Stage 4 sleep was lower during baseline and after dextroamphetamine than after placebo. Sleep onset was slowest on the baseline night. Next-day performance and mood were not different as a function of whether subjects received dextroamphetamine or placebo during deprivation. These data suggest dextroamphetamine alters post-deprivation sleep architecture when used to sustain alertness during acute sleep loss, but next-day performance and subjective mood ratings are not substantially affected. A recovery sleep period of only 8 h appears to be adequate to regain baseline performance levels after short-term sleep deprivation.

  6. The Neuroprotective Aspects of Sleep.

    PubMed

    Eugene, Andy R; Masiak, Jolanta

    2015-03-01

    Sleep is an important component of human life, yet many people do not understand the relationship between the brain and the process of sleeping. Sleep has been proven to improve memory recall, regulate metabolism, and reduce mental fatigue. A minimum of 7 hours of daily sleep seems to be necessary for proper cognitive and behavioral function. The emotional and mental handicaps associated with chronic sleep loss as well as the highly hazardous situations which can be contributed to the lack of sleep is a serious concern that people need to be aware of. When one sleeps, the brain reorganizes and recharges itself, and removes toxic waste byproducts which have accumulated throughout the day. This evidence demonstrates that sleeping can clear the brain and help maintain its normal functioning. Multiple studies have been done to determine the effects of total sleep deprivation; more recently some have been conducted to show the effects of sleep restriction, which is a much more common occurrence, have the same effects as total sleep deprivation. Each phase of the sleep cycle restores and rejuvenates the brain for optimal function. When sleep is deprived, the active process of the glymphatic system does not have time to perform that function, so toxins can build up, and the effects will become apparent in cognitive abilities, behavior, and judgment. As a background for this paper we have reviewed literature and research of sleep phases, effects of sleep deprivation, and the glymphatic system of the brain and its restorative effect during the sleep cycle.

  7. The Neuroprotective Aspects of Sleep

    PubMed Central

    Eugene, Andy R.; Masiak, Jolanta

    2015-01-01

    Sleep is an important component of human life, yet many people do not understand the relationship between the brain and the process of sleeping. Sleep has been proven to improve memory recall, regulate metabolism, and reduce mental fatigue. A minimum of 7 hours of daily sleep seems to be necessary for proper cognitive and behavioral function. The emotional and mental handicaps associated with chronic sleep loss as well as the highly hazardous situations which can be contributed to the lack of sleep is a serious concern that people need to be aware of. When one sleeps, the brain reorganizes and recharges itself, and removes toxic waste byproducts which have accumulated throughout the day. This evidence demonstrates that sleeping can clear the brain and help maintain its normal functioning. Multiple studies have been done to determine the effects of total sleep deprivation; more recently some have been conducted to show the effects of sleep restriction, which is a much more common occurrence, have the same effects as total sleep deprivation. Each phase of the sleep cycle restores and rejuvenates the brain for optimal function. When sleep is deprived, the active process of the glymphatic system does not have time to perform that function, so toxins can build up, and the effects will become apparent in cognitive abilities, behavior, and judgment. As a background for this paper we have reviewed literature and research of sleep phases, effects of sleep deprivation, and the glymphatic system of the brain and its restorative effect during the sleep cycle. PMID:26594659

  8. Effect of acute sleep deprivation and recovery on Insulin-like Growth Factor-I responses and inflammatory gene expression in healthy men.

    PubMed

    Chennaoui, Mounir; Drogou, Catherine; Sauvet, Fabien; Gomez-Merino, Danielle; Scofield, Denis E; Nindl, Bradley C

    2014-01-01

    Acute sleep deprivation in humans has been found to increase inflammatory markers and signaling pathways in the periphery through a possible Toll-like receptor 4 (TLR-4). In addition, short duration sleep has been associated with low circulating total Insulin-like Growth Factor-I (IGF-I) concentrations. We aimed to determine whether a total sleep deprivation (TSD) protocol with recovery altered whole-blood gene expression of the proinflammatory cytokines TNF-α and IL-6, as well as TLR-4 expression, and to examine the relationship with circulating concentrations of the IGF-I system. Twelve healthy men participated in a five-day TSD (two control nights followed by one night of sleep deprivation and one night of recovery). Blood was sampled at 0800, before and after sleep deprivation (D2 and D4), and after recovery (D5). It is shown that 25 h of sleep deprivation (D4) induced significant increases in mRNA levels of TNF-α and its soluble receptor R1 (P<0.01 respectively), as well as TLR-4 (P<0.05), while IL-6 mRNA levels remained unchanged. Circulating concentrations of free IGF-I were decreased at D4 (P<0.001). One night of recovery was sufficient to restore basal expression levels for TNF-α, sTNF-R1, TLR-4 and circulating IGF-I. Changes in TLR-4 mRNA levels during the protocol correlated positively with those of TNF-α and sTNF-R1 (r=0.393 and r=0.490 respectively), and negatively with circulating free IGF-I (r=-0.494). In conclusion, 25 h of sleep deprivation in healthy subjects is sufficient to induce transient and reversible genomic expression of the pro-inflammatory cytokine TNF-α and its R1 receptor, and its mediator TLR-4, with a possible link to IGF-I axis inhibition.

  9. Acute Effects of Resistance Exercise With Continuous and Intermittent Blood Flow Restriction on Hemodynamic Measurements and Perceived Exertion.

    PubMed

    Neto, Gabriel R; Novaes, Jefferson S; Salerno, Verônica P; Gonçalves, Michel M; Piazera, Bruna K L; Rodrigues-Rodrigues, Thais; Cirilo-Sousa, Maria S

    2016-11-11

    This study compared the acute effects of low-intensity resistance exercise (RE) sessions for the upper limb with continuous and intermittent blood flow restriction (BFR) and high-intensity RE with no BFR on lactate, heart rate, double product (DP; heart rate times systolic blood pressure), and perceived exertion (RPE). Ten recreationally trained men (1-5 years strength training; age mean = 19 ± 0.82 years) performed three experimental protocols in random order: (a) low-intensity RE at 20% one-repetition maximum (1RM) with intermittent BFR (LI + IBFR), (b) low-intensity RE at 20% 1RM with continuous BFR (LI + CBFR), and (c) high-intensity RE at 80% 1RM. The three RE protocols increased lactate and DP at the end of the session (p < .05) and increased heart rate at the end of each exercise (p < .05). However, greater local and general RPE was observed in the high-intensity protocol compared with LI + IBFR and LI + CBFR in the lat pull-down, triceps curl, and biceps curl exercises (p < .05). A greater percentage change in DP and lactate was observed for continuous BFR compared with intermittent BFR; however, RPE was lower for intermittent BFR. In conclusion, intermittent BFR appears to be an excellent option for physical training because it did not differ significantly from continuous BFR in any variable and promoted a lower percentage change in DP and RPE.

  10. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

    PubMed Central

    Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.

    2014-01-01

    Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645

  11. Temporal changes in tissue repair permit survival of diet-restricted rats from an acute lethal dose of thioacetamide.

    PubMed

    Ramaiah, S K; Bucci, T J; Warbritton, A; Soni, M G; Mehendale, H M

    1998-10-01

    Although, diet restriction (DR) has been shown to substantially increase longevity while reducing or delaying the onset of age-related diseases, little is known about the mechanisms underlying the beneficial effects of DR on acute toxic outcomes. An earlier study (S. K. Ramaiah et al., 1998, Toxicol. Appl. Pharmacol. 150, 12-21) revealed that a 35% DR compared to ad libitum (AL) feeding leads to a substantial increase in liver injury of thioacetamide (TA) at a low dose (50 mg/kg, i.p.). Higher liver injury was accompanied by enhanced survival. A prompt and enhanced tissue repair response in DR rats at the low dose (sixfold higher liver injury) occurred, whereas at equitoxic doses (50 mg/kg in DR and 600 mg/kg in AL rats) tissue repair in AL rats was substantially diminished and delayed. The extent of liver injury did not appear to be closely related to the extent of stimulated tissue repair response. The purpose of the present study was to investigate the time course (0-120 h) of liver injury and liver tissue repair at the high dose (600 mg TA/kg, i.p., lethal in AL rats) in AL and DR rats. Male Sprague-Dawley rats (225-275 g) were 35% diet restricted compared to their AL cohorts for 21 days and on day 22 they received a single dose of TA (600 mg/kg, i.p.). Liver injury was assessed by plasma ALT and by histopathological examination of liver sections. Tissue repair was assessed by [3H]thymidine incorporation into hepatonuclear DNA and proliferating cell nuclear antigen (PCNA) immunohistochemistry during 0-120 h after TA injection. In AL-fed rats hepatic necrosis was evident at 12 h, peaked at 60 h, and persisted thereafter until mortality (3 to 6 days). Peak liver injury was approximately twofold higher in DR rats compared to that seen in AL rats. Hepatic necrosis was evident at 36 h, peaked at 48 h, persisted until 96 h, and returned to normal by 120 h. Light microscopy of liver sections revealed progression of hepatic injury in AL rats whereas injury regressed

  12. Short sleep is a questionable risk factor for obesity and related disorders: statistical versus clinical significance.

    PubMed

    Horne, Jim

    2008-03-01

    Habitually insufficient sleep could contribute towards obesity, metabolic syndrome, etc., via sleepiness-related inactivity and excess energy intake; more controversially, through more direct physiological changes. Epidemiological studies in adult/children point to small clinical risk only in very short (around 5h in adults), or long sleepers, developing over many years, involving hundreds of hours of 'too little' or 'too much' sleep. Although acute 4h/day sleep restriction leads to glucose intolerance and incipient metabolic syndrome, this is too little sleep and cannot be sustained beyond a few days. Few obese adults/children are short sleepers, and few short sleeping adults/children are obese or suffer obesity-related disorders. For adults, about 7h uninterrupted daily sleep is 'healthy'. Extending sleep, even with hypnotics, to lose weight, may take years, compared with the rapidity of utilising extra sleep time to exercise and evaluate one's diet. The real health risk of inadequate sleep comes from a sleepiness-related accident.

  13. Sleep and hormonal changes in aging.

    PubMed

    Copinschi, Georges; Caufriez, Anne

    2013-06-01

    Age-related sleep and endocrinometabolic alterations frequently interact with each other. For many hormones, sleep curtailment in young healthy subjects results in alterations strikingly similar to those observed in healthy old subjects not submitted to sleep restriction. Thus, recurrent sleep restriction, which is currently experienced by a substantial and rapidly growing proportion of children and young adults, might contribute to accelerate the senescence of endocrine and metabolic function. The mechanisms of sleep-hormonal interactions, and therefore the endocrinometabolic consequences of age-related sleep alterations, which markedly differ from one hormone to another, are reviewed in this article.

  14. Systematic review and meta-analysis reveals acutely elevated plasma cortisol following fasting but not less severe calorie restriction.

    PubMed

    Nakamura, Yuko; Walker, Brian R; Ikuta, Toshikazu

    2016-01-01

    Elevated plasma cortisol has been reported following caloric restriction, and may contribute to adverse effects including stress-induced overeating, but results from published studies are inconsistent. To clarify the effects of caloric restriction on plasma cortisol, and to assess cortisol as an indicator of stress during caloric restriction, we conducted a systematic review and meta-analysis of published studies in which cortisol was measured following caloric restriction without other manipulations in humans. We further compared effects of fasting, very low calorie diet (VLCD), and other less intense low calorie diet (LCD), as well as the duration of caloric restriction by meta-regression. Overall, caloric restriction significantly increased serum cortisol level in 13 studies (357 total participants). Fasting showed a very strong effect in increasing serum cortisol, while VLCD and LCD did not show significant increases. The meta-regression analysis showed a negative association between the serum cortisol level and the duration of caloric restriction, indicating serum cortisol is increased in the initial period of caloric restriction but decreased to the baseline level after several weeks. These results suggest that severe caloric restriction causes activation of the hypothalamic-pituitary-adrenal axis, which may be transient, but results in elevated cortisol which could mediate effects of starvation on brain and metabolic function as well as ameliorate weight loss.

  15. Sleep Problems

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... PDF 474KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...

  16. Sleep Disorders

    MedlinePlus

    ... the day, even if you have had enough sleep? You might have a sleep disorder. The most common kinds are Insomnia - a hard time falling or staying asleep Sleep apnea - breathing interruptions during sleep Restless legs syndrome - ...

  17. Insomnia and sleep disruption: relevance for athletic performance.

    PubMed

    Leger, Damien; Metlaine, Arnaud; Choudat, Dominique

    2005-04-01

    Insomnia is a common sleep complaint even in young adults and has important daytime consequences. Several subjective and objective tools are recommended to assess the magnitude of the problem and to try to find a cause. Chronic insomnia is often caused by precipitating factors, such as acute stress, work conditions, illness, and travel, and perpetuating factors, such as poor sleep hygiene, anxiety, and medications. Insomnia may have implications in athletic performance resulting from physical and cognitive effects. Several pharmacologic and nonpharmacologic approaches are employed in the management of insomnia that have proven effective for short-term treatment. The pharmacologic approaches include the use of zolpidem and specific GABA agonists, benzodiazepines for specific indications, antidepressants, and melatonin. The nonpharmacologic approaches include stimulus control, sleep restriction, relaxation strategies, and cognitive behavioral therapy.

  18. Acute Sleep Deprivation Induces a Local Brain Transfer Information Increase in the Frontal Cortex in a Widespread Decrease Context

    PubMed Central

    Alonso, Joan F.; Romero, Sergio; Mañanas, Miguel A.; Alcalá, Marta; Antonijoan, Rosa M.; Giménez, Sandra

    2016-01-01

    Sleep deprivation (SD) has adverse effects on mental and physical health, affecting the cognitive abilities and emotional states. Specifically, cognitive functions and alertness are known to decrease after SD. The aim of this work was to identify the directional information transfer after SD on scalp EEG signals using transfer entropy (TE). Using a robust methodology based on EEG recordings of 18 volunteers deprived from sleep for 36 h, TE and spectral analysis were performed to characterize EEG data acquired every 2 h. Correlation between connectivity measures and subjective somnolence was assessed. In general, TE showed medium- and long-range significant decreases originated at the occipital areas and directed towards different regions, which could be interpreted as the transfer of predictive information from parieto-occipital activity to the rest of the head. Simultaneously, short-range increases were obtained for the frontal areas, following a consistent and robust time course with significant maps after 20 h of sleep deprivation. Changes during sleep deprivation in brain network were measured effectively by TE, which showed increased local connectivity and diminished global integration. TE is an objective measure that could be used as a potential measure of sleep pressure and somnolence with the additional property of directed relationships. PMID:27089346

  19. Acute Sleep Deprivation Induces a Local Brain Transfer Information Increase in the Frontal Cortex in a Widespread Decrease Context.

    PubMed

    Alonso, Joan F; Romero, Sergio; Mañanas, Miguel A; Alcalá, Marta; Antonijoan, Rosa M; Giménez, Sandra

    2016-04-14

    Sleep deprivation (SD) has adverse effects on mental and physical health, affecting the cognitive abilities and emotional states. Specifically, cognitive functions and alertness are known to decrease after SD. The aim of this work was to identify the directional information transfer after SD on scalp EEG signals using transfer entropy (TE). Using a robust methodology based on EEG recordings of 18 volunteers deprived from sleep for 36 h, TE and spectral analysis were performed to characterize EEG data acquired every 2 h. Correlation between connectivity measures and subjective somnolence was assessed. In general, TE showed medium- and long-range significant decreases originated at the occipital areas and directed towards different regions, which could be interpreted as the transfer of predictive information from parieto-occipital activity to the rest of the head. Simultaneously, short-range increases were obtained for the frontal areas, following a consistent and robust time course with significant maps after 20 h of sleep deprivation. Changes during sleep deprivation in brain network were measured effectively by TE, which showed increased local connectivity and diminished global integration. TE is an objective measure that could be used as a potential measure of sleep pressure and somnolence with the additional property of directed relationships.

  20. Priorities for the elimination of sleeping sickness.

    PubMed

    Welburn, Susan C; Maudlin, Ian

    2012-01-01

    Sleeping sickness describes two diseases, both fatal if left untreated: (i) Gambian sleeping sickness caused by Trypanosoma brucei gambiense, a chronic disease with average infection lasting around 3 years, and (ii) Rhodesian sleeping sickness caused by T. b. rhodesiense, an acute disease with death occurring within weeks of infection. Control of Gambian sleeping sickness is based on case detection and treatment involving serological screening, followed by diagnostic confirmation and staging. In stage I, patients can remain asymptomatic as trypanosomes multiply in tissues and body fluids; in stage II, trypanosomes cross the blood-brain barrier, enter the central nervous system and, if left untreated, death follows. Staging is crucial as it defines the treatment that is prescribed; for both forms of disease, stage II involves the use of the highly toxic drug melarsoprol or, in the case of Gambian sleeping sickness, the use of complex and very expensive drug regimes. Case detection of T. b. gambiense sleeping sickness is known to be inefficient but could be improved by the identification of parasites using molecular tools that are, as yet, rarely used in the field. Diagnostics are not such a problem in relation to T. b. rhodesiense sleeping sickness, but the high level of under-reporting of this disease suggests that current strategies, reliant on self-reporting, are inefficient. Sleeping sickness is one of the 'neglected tropical diseases' that attracts little attention from donors or policymakers. Proper quantification of the burden of sleeping sickness matters, as the primary reason for its 'neglect' is that the true impact of the disease is unknown, largely as a result of under-reporting. Certainly, elimination will not be achieved without vast improvements in field diagnostics for both forms of sleeping sickness especially if there is a hidden reservoir of 'chronic carriers'. Mass screening would be a desirable aim for Gambian sleeping sickness and could be

  1. Task-Based and Questionnaire Measures of Inhibitory Control Are Differentially Affected by Acute Food Restriction and by Motivationally Salient Food Stimuli in Healthy Adults

    PubMed Central

    Bartholdy, Savani; Cheng, Jiumu; Schmidt, Ulrike; Campbell, Iain C.; O'Daly, Owen G.

    2016-01-01

    Adaptive eating behaviors are dependent on an interaction between motivational states (e.g., hunger) and the ability to control one's own behavior (inhibitory control). Indeed, behavioral paradigms are emerging that seek to train inhibitory control to improve eating behavior. However, inhibitory control is a multifaceted concept, and it is not yet clear how different types (e.g., reactive motor inhibition, proactive motor inhibition, reward-related inhibition) are affected by hunger. Such knowledge will provide insight into the contexts in which behavioral training paradigms would be most effective. The present study explored the impact of promoting a “need” state (hunger) together with motivationally salient distracting stimuli (food/non-food images) on inhibitory control in 46 healthy adults. Participants attended two study sessions, once after eating breakfast as usual and once after acute food restriction on the morning of the session. In each session, participants completed questionnaires on hunger, mood and inhibitory control, and undertook task-based measures of inhibitory control, and had physiological measurements (height, weight, and blood glucose) obtained by a researcher. Acute food restriction influenced task-based assessments but not questionnaire measures of inhibitory control, suggesting that hunger affects observable behavioral control but not self-reported inhibitory control. After acute food restriction, participants showed greater temporal discounting (devaluation of future rewards), and subjective hunger and these were inversely correlated with stop accuracy on the stop signal task. Finally, participants generally responded faster when food-related distractor images were presented, compared to non-food images, independent of state. This suggests that although food stimuli motivate approach behavior, stimulus relevance does not impact inhibitory control in healthy individuals, nor interact with motivational state. These findings may provide

  2. Sleep-related breathing disorders in acute respiratory failure assisted by non-invasive ventilatory treatment: utility of portable polysomnographic system.

    PubMed

    Resta, O; Guido, P; Foschino Barbaro, M P; Picca, V; Talamo, S; Lamorgese, V

    2000-02-01

    In the majority of patients admitted to an Intensive Care Unit with acute respiratory failure (ARF), the aetiology for ARF is quite evident. In a minority of patients no obvious aetiology is apparent at presentation. In this group a previously unrecognized sleep-related breathing disorder (SRBD) may be the cause of the ARF. In spite of clinical suspicion SRBD remains infrequently diagnosed in ARF also because the technology necessary for this type of diagnosis (polysomnography) is usually unavailable in Intensive Care Units. The aim of this study was to evaluate the utility of portable polysomnography system (PSGp) in a group of patients with ARF of unclear aetiology and with a clinical suspicion of SRBD. We studied a selected group of 14 patients (eight males, six females) admitted to an Intermediate Intensive care unit with varying degree of acute respiratory failure. Mean (SD) age was 57 (13) years, pH 7.28 (0.04), PaO2 5.6 (0.7) kPa), PaO2 (8.8 (1.6) kPa), Body mass index 42.7 (9.6) kg m(-2). The patients had no history of skeletal, neuromuscular or cardiovascular disease. None of them had a history of overt chronic lung diseases or had obvious respiratory tract infections. They were submitted to cardiac and respiratory functional evaluation and to nightly PSGp (VITALOG HMS 5000, Respironics Inc., Redwood City, CA, U.S.A.) which was performed in an intermediate intensive care unit. Ten subjects had obstructive sleep apnoea-hypopnoea syndrome (OSAS), with mean respiratory disorder index h(-1) (RDI) 60.1 (25.9) [in five associated with obesity-hypoventilation syndrome (OHS)]; two had central sleep apnoea with mean RDI 45 (28.3) (one with hypothyroidism and one with cerebral multiple infarctions and right hemidiaphragmatic paralysis) and two had OHS with mean RDI 12.5 (3.5). Nocturnal hypoventilation was present in almost all patients. Continuous positive airway pressure (CPAP) was effective in three patients. Eight patients needed to be treated with BILEVEL (Bi

  3. Effects of acute microinjections of thyroid hormone to the preoptic region of euthyroid adult male rats on sleep and motor activity.

    PubMed

    Martin, Joseph V; Giannopoulos, Phillip F; Moffett, Steven X; James, Thomas D

    2013-06-21

    In adult brain tissue, thyroid hormones are known to have multiple effects which are not mediated by chronic influences of the hormones on heterodimeric thyroid hormone nuclear receptors. Previous work has shown that acute microinjections of l-triiodothyronine (T3) to the preoptic region significantly influence EEG-defined sleep in hypothyroid rats. The current study examined the effects of similar microinjections in euthyroid rats. In 7 rats with histologically confirmed microinjection sites bilaterally placed in the preoptic region, slow-wave sleep time was significantly decreased, but REM and waking were increased as compared to vehicle-injected controls. The EEG-defined parameters were significantly influenced by the microinjections in a biphasic dose-response relationship; the lowest (0.3μg) and highest (10μg) doses tested were without significant effect while intermediate doses (1 and 3μg) induced significant differences from controls. There were significant diurnal variations in the measures, yet no significant interactions between the effect of hormone and time of day were demonstrated. Core body temperature was not significantly altered in the current study. The demonstration of effects of T3 within hours instead of days is consistent with a rapid mechanism of action such as a direct influence on neurotransmission. Since the T3-mediated effects were robust in the current work, euthyroid rats retain thyroid hormone sensitivity which would be needed if sleep-regulatory mechanisms in the preoptic region are continuously modulated by the hormones. This article is part of a Special Issue entitled LInked: BRES-D-12-01552 & BRES-D-12-01363R2.

  4. Sleep apnoea.

    PubMed

    Jun, Jonathan C; Chopra, Swati; Schwartz, Alan R

    2016-03-01

    Sleep apnoea is a disorder characterised by repetitive pauses in breathing during sleep caused by airway occlusion (obstructive sleep apnoea) or altered control of breathing (central sleep apnoea). In this Clinical Year in Review, we summarise high-impact research from the past year pertaining to management, diagnosis and cardio-metabolic consequences of sleep apnoea.

  5. Sleep in eating disorders.

    PubMed

    Lauer, Christoph J; Krieg, Jürgen-Christian

    2004-04-01

    Sleep research on eating disorders has addressed two major questions: (1) the effects of chronic starvation in anorexia nervosa and of rapidly fluctuating eating patterns in bulimia nervosa on the sleep regulating processes and (2) the search for a significant neurobiological relationship between eating disorders and major depression. At present, the latter question appears to be resolved, since most of the available evidences clearly underline the notion that eating disorders (such as anorexia and bulimia nervosa) and affective disorders are two distinct entities. Regarding the effects of starvation on sleep regulation, recent research in healthy humans and in animals demonstrates that such a condition results in a fragmentation of sleep and a reduction of slow wave sleep. Although several peptides are supposed to be involved in these regulatory processes (i.e. CCK, orexin, leptin), their mode of action is still poorly understood. In opposite to these experimentally induced sleep disturbances are the findings that the sleep patterns in eating disorder patients per se do not markedly differ from those in healthy subjects. However, when focusing on the so-called restricting anorexics, who maintain their chronic underweight by strictly dieting, the expected effects of malnutrition on sleep can be ascertained. Furthermore, at least partial weight restoration results in a 'deepening' of nocturnal sleep in the anorexic patients. However, our knowledge about the neurobiological systems (as well as their circadian pattern of activity) that transmit the effects of starvation and of weight restoration on sleep is still limited and should be extended to metabolic signals mediating sleep.

  6. Restricted Consonant Inventories of 2-Year-Old Finnish Children with a History of Recurrent Acute Otitis Media

    ERIC Educational Resources Information Center

    Haapala, Sini; Niemitalo-Haapola, Elina; Raappana, Antti; Kujala, Tiia; Kujala, Teija; Jansson-Verkasalo, Eira

    2015-01-01

    Many children experience recurrent acute otitis media (RAOM) in early childhood. In a previous study, 2-year-old children with RAOM were shown to have immature neural patterns for speech sound discrimination. The present study further investigated the consonant inventories of these same children using natural speech samples. The results showed…

  7. Sleep and Rest Requirements: Physiological Considerations

    NASA Technical Reports Server (NTRS)

    Neri, David F.; Rosekind, Mark R. (Technical Monitor)

    1997-01-01

    Sleep is a vital physiological need which must be met to insure optimal functioning. A single night of significantly shortened sleep negatively impacts performance, alertness, and mood. Restricted sleep studies have shown that even a relatively small amount of sleep loss over several consecutive days can be additive and result in a cumulative sleep debt with similar detrimental effects. Compounding the problem of sleep loss in the operational environment is the poor correlation between subjective reports of sleepiness and objective measures of physiological sleep need. Some of the factors determining how sleepy an individual is at a given point in time are: (1) individual characteristics (e.g., amount of prior sleep and wakefulness, circadian phase, age), (2) environmental conditions (e.g., noise, temperature, amount of social interaction), and (3) task variables (e.g., signal rate, workload). Although sleep need can be masked with medications, the only way to reduce it is with sleep itself. The timing of the sleep period can affect sleep duration and quality and thus its restorative strength. The data are clear that increasing sleep time results in improved alertness. This paper will briefly review the scientific findings on sleep need, the effects of sleep loss, napping strategies, and the implications of incorporating physiologically sound sleep and rest strategies into the operational aviation environment.

  8. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.

    PubMed

    Brown, Marishka K; Chan, May T; Zimmerman, John E; Pack, Allan I; Jackson, Nicholas E; Naidoo, Nirinjini

    2014-06-01

    Alterations in the quality, quantity, and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response. The effectiveness of the adaptive unfolded protein response is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of X-box binding protein 1 and upregulation of phosphorylated elongation initiation factor 2 α, in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged or sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep or sleep debt discharge.

  9. Reversal of the neurological deficit in acute stroke with the signal of efficacy trial of auto-BPAP to limit damage from suspected sleep apnea (Reverse-STEAL): study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Although the negative impact of sleep apnea on the clinical course of acute ischemic stroke (AIS) is well known, data regarding non-invasive ventilation in acute patients are scarce. Several studies have shown its tolerability and safety, yet no controlled randomized sequential phase studies exist that aim to establish the efficacy of early non-invasive ventilation in AIS patients. Methods/design We decided to examine our hypothesis that early non-invasive ventilation with auto-titrating bilevel positive airway pressure (auto-BPAP) positively affects short-term clinical outcomes in AIS patients. We perform a multicenter, prospective, randomized, controlled, third rater- blinded, parallel-group trial. Patients with AIS with proximal arterial obstruction and clinically suspected sleep apnea will be randomized to standard stroke care alone or standard stroke care plus auto-BPAP. Auto-BPAP will be initiated within 24 hours of stroke onset and performed for a maximum of 48 hours during diurnal and nocturnal sleep. Patients will undergo unattended cardiorespiratory polygraphy between days three and five to assess sleep apnea. Our primary endpoint will be any early neurological improvement on the NIHSS at 72 hours from randomization. Safety, tolerability, short-term and three-months functional outcomes will be assessed as secondary endpoints by un-blinded and blinded observers respectively. Discussion We expect that this study will advance our understanding of how early treatment with non-invasive ventilation can counterbalance, or possibly reverse, the deleterious effects of sleep apnea in the acute phase of ischemic stroke. The study will provide preliminary data to power a subsequent phase III study. Trial registration Clinicaltrials.gov Identifier: NCT01812993 PMID:23941576

  10. Sleeping sickness.

    PubMed

    Malvy, D; Chappuis, F

    2011-07-01

    Human African trypanosomiasis (HAT), or sleeping sickness, is a vector-borne disease that flourishes in impoverished, rural parts of sub-Saharan Africa. It is caused by infection with the protozoan parasite Trypanosoma brucei and is transmitted by tsetse flies of the genus Glossina. The majority of cases are caused by T. b. gambiense, which gives rise to the chronic, anthroponotic endemic disease in Western and Central Africa. Infection with T. b. rhodesiense leads to the acute, zoonotic form of Eastern and Southern Africa. The parasites live and multiply extracellularly in the blood and tissue fluids of their human host. They have elaborated a variety of strategies for invading hosts, to escape the immune system and to take advantage of host growth factors. HAT is a challenging and deadly disease owing to its complex epidemiology and clinical presentation and, if left untreated, can result in high death rates. As one of the most neglected tropical diseases, HAT is characterized by the limited availability of safe and cost-effective control tools. No vaccine against HAT is available, and the toxicity of existing old and cumbersome drugs precludes the adoption of control strategies based on preventive chemotherapy. As a result, the keystones of interventions against sleeping sickness are active and passive case-finding for early detection of cases followed by treatment, vector control and animal reservoir management. New methods to diagnose and treat patients and to control transmission by the tsetse fly are needed to achieve the goal of global elimination of the disease.

  11. Sleep mechanisms: Sleep deprivation and detection of changing levels of consciousness

    NASA Technical Reports Server (NTRS)

    Dement, W. C.; Barchas, J. D.

    1972-01-01

    An attempt was made to obtain information relevant to assessing the need to sleep and make up for lost sleep. Physiological and behavioral parameters were used as measuring parameters. Sleep deprivation in a restricted environment, derivation of data relevant to determining sleepiness from EEG, and the development of the Sanford Sleepiness Scale were discussed.

  12. Effect of oxcarbazepine on sleep architecture.

    PubMed

    Ayala-Guerrero, Fructuoso; Mexicano, Graciela; González, Valentín; Hernandez, Mario

    2009-07-01

    The most common side effects following administration of antiepileptic drugs involve alterations in sleep architecture and varying degrees of daytime sleepiness. Oxcarbazepine is a drug that is approved as monotherapy for the treatment of partial seizures and generalized tonic-clonic seizures. However, there is no information about its effects on sleep pattern organization; therefore, the objective of this work was to analyze such effects. Animals (Wistar rats) exhibited three different behavioral and electrophysiological states of vigilance: wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Oral treatment with oxcarbazepine (100 mg/kg) produced an increment in total sleep time throughout the recording period. This increment involved both SWS and REM sleep. Mean duration of the REM sleep phase was not affected. In contrast, the frequency of this sleep phase increased significantly across the 10-hour period. REM sleep latency shortened significantly. Results obtained in this work indicate that oxcarbazepine's acute effects point to hypnotic properties.

  13. Genetic Analysis of Histamine Signaling in Larval Zebrafish Sleep

    PubMed Central

    Oikonomou, Grigorios

    2017-01-01

    Abstract Pharmacological studies in mammals and zebrafish suggest that histamine plays an important role in promoting arousal. However, genetic studies using rodents with disrupted histamine synthesis or signaling have revealed only subtle or no sleep/wake phenotypes. Studies of histamine function in mammalian arousal are complicated by its production in cells of the immune system and its roles in humoral and cellular immunity, which can have profound effects on sleep/wake states. To avoid this potential confound, we used genetics to explore the role of histamine in regulating sleep in zebrafish, a diurnal vertebrate in which histamine production is restricted to neurons in the brain. Similar to rodent genetic studies, we found that zebrafish that lack histamine due to mutation of histidine decarboxylase (hdc) exhibit largely normal sleep/wake behaviors. Zebrafish containing predicted null mutations in several histamine receptors also lack robust sleep/wake phenotypes, although we are unable to verify that these mutants are completely nonfunctional. Consistent with some rodent studies, we found that arousal induced by overexpression of the neuropeptide hypocretin (Hcrt) or by stimulation of hcrt-expressing neurons is not blocked in hdc or hrh1 mutants. We also found that the number of hcrt-expressing or histaminergic neurons is unaffected in animals that lack histamine or Hcrt signaling, respectively. Thus, while acute pharmacological manipulation of histamine signaling has been shown to have profound effects on zebrafish and mammalian sleep, our results suggest that chronic loss of histamine signaling due to genetic mutations has only subtle effects on sleep in zebrafish, similar to rodents. PMID:28275716

  14. Involvement of Spindles in Memory Consolidation Is Slow Wave Sleep-Specific

    ERIC Educational Resources Information Center

    Cox, Roy; Hofman, Winni F.; Talamini, Lucia M.

    2012-01-01

    Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention…

  15. Sleep Loss Produces False Memories

    PubMed Central

    Diekelmann, Susanne; Landolt, Hans-Peter; Lahl, Olaf; Born, Jan; Wagner, Ullrich

    2008-01-01

    People sometimes claim with high confidence to remember events that in fact never happened, typically due to strong semantic associations with actually encoded events. Sleep is known to provide optimal neurobiological conditions for consolidation of memories for long-term storage, whereas sleep deprivation acutely impairs retrieval of stored memories. Here, focusing on the role of sleep-related memory processes, we tested whether false memories can be created (a) as enduring memory representations due to a consolidation-associated reorganization of new memory representations during post-learning sleep and/or (b) as an acute retrieval-related phenomenon induced by sleep deprivation at memory testing. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., “night”, “dark”, “coal”,…), lacking the strongest common associate or theme word (here: “black”). Subjects either slept or stayed awake immediately after learning, and they were either sleep deprived or not at recognition testing 9, 33, or 44 hours after learning. Sleep deprivation at retrieval, but not sleep following learning, critically enhanced false memories of theme words. This effect was abolished by caffeine administration prior to retrieval, indicating that adenosinergic mechanisms can contribute to the generation of false memories associated with sleep loss. PMID:18946511

  16. Sleep loss produces false memories.

    PubMed

    Diekelmann, Susanne; Landolt, Hans-Peter; Lahl, Olaf; Born, Jan; Wagner, Ullrich

    2008-01-01

    People sometimes claim with high confidence to remember events that in fact never happened, typically due to strong semantic associations with actually encoded events. Sleep is known to provide optimal neurobiological conditions for consolidation of memories for long-term storage, whereas sleep deprivation acutely impairs retrieval of stored memories. Here, focusing on the role of sleep-related memory processes, we tested whether false memories can be created (a) as enduring memory representations due to a consolidation-associated reorganization of new memory representations during post-learning sleep and/or (b) as an acute retrieval-related phenomenon induced by sleep deprivation at memory testing. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., "night", "dark", "coal",...), lacking the strongest common associate or theme word (here: "black"). Subjects either slept or stayed awake immediately after learning, and they were either sleep deprived or not at recognition testing 9, 33, or 44 hours after learning. Sleep deprivation at retrieval, but not sleep following learning, critically enhanced false memories of theme words. This effect was abolished by caffeine administration prior to retrieval, indicating that adenosinergic mechanisms can contribute to the generation of false memories associated with sleep loss.

  17. Sustained Liver Glucose Release in Response to Adrenaline Can Improve Hypoglycaemic Episodes in Rats under Food Restriction Subjected to Acute Exercise

    PubMed Central

    Babata, Lucas K. R.; Pedrosa, Maria M. D.; Garcia, Rosângela F.; Peicher, Márcia V.; de Godoi, Vilma Aparecida Ferreira

    2014-01-01

    Background. As the liver is important for blood glucose regulation, this study aimed at relating liver glucose release stimulated by glucagon and adrenaline to in vivo episodes of hypoglycaemia. Methods. The blood glucose profile during an episode of insulin-induced hypoglycaemia in exercised and nonexercised male Wistar control (GC) and food-restricted (GR, 50%) rats and liver glucose release stimulated by glucagon and adrenaline were investigated. Results. In the GR, the hypoglycaemic episodes showed severe decreases in blood glucose, persistent hypoglycaemia, and less complete glycaemic recovery. An exercise session prior to the episode of hypoglycaemia raised the basal blood glucose, reduced the magnitude of the hypoglycaemia, and improved the recovery of blood glucose. In fed animals of both groups, liver glucose release was activated by glucagon and adrenaline. In fasted GR rats, liver glycogenolysis activated by glucagon was impaired, despite a significant basal glycogenolysis, while an adrenaline-stimulated liver glucose release was recorded. Conclusions. The lack of liver response to glucagon in the GR rats could be partially responsible for the more severe episodes of hypoglycaemia observed in vivo in nonexercised animals. The preserved liver response to adrenaline can partially account for the less severe hypoglycaemia in the food-restricted animals after acute exercise. PMID:24719616

  18. Mechanisms for independent and combined effects of calorie restriction and acute exercise on insulin-stimulated glucose uptake by skeletal muscle of old rats.

    PubMed

    Sharma, Naveen; Wang, Haiyan; Arias, Edward B; Castorena, Carlos M; Cartee, Gregory D

    2015-04-01

    Either calorie restriction [CR; consuming 60-65% of ad libitum (AL) intake] or acute exercise can independently improve insulin sensitivity in old age, but their combined effects on muscle insulin signaling and glucose uptake have previously been unknown. Accordingly, we assessed the independent and combined effects of CR (beginning at 14 wk old) and acute exercise (3-4 h postexercise) on insulin signaling and glucose uptake in insulin-stimulated epitrochlearis muscles from 30-mo-old rats. Either CR alone or exercise alone vs. AL sedentary controls induced greater insulin-stimulated glucose uptake. Combined CR and exercise vs. either treatment alone caused an additional increase in insulin-stimulated glucose uptake. Either CR or exercise alone vs. AL sedentary controls increased Akt Ser(473) and Akt Thr(308) phosphorylation. Combined CR and exercise further elevated Akt phosphorylation on both sites. CR alone, but not exercise alone, vs. AL sedentary controls significantly increased Akt substrate of 160 kDa (AS160) Ser(588) and Thr(642) phosphorylation. Combined CR and exercise did not further enhance AS160 phosphorylation. Exercise alone, but not CR alone, modestly increased GLUT4 abundance. Combined CR and exercise did not further elevate GLUT4 content. These results suggest that CR or acute exercise independently increases insulin-stimulated glucose uptake via overlapping (greater Akt phosphorylation) and distinct (greater AS160 phosphorylation for CR, greater GLUT4 for exercise) mechanisms. Our working hypothesis is that greater insulin-stimulated glucose uptake in the combined CR and exercise group vs. CR or exercise alone relies on greater Akt activation, leading to greater phosphorylation of one or more Akt substrates other than AS160.

  19. BDNF in sleep, insomnia, and sleep deprivation.

    PubMed

    Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne

    2016-01-01

    The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase.

  20. Sleep and waking during acute histamine H3 agonist BP 2.94 or H3 antagonist carboperamide (MR 16155) administration in rats.

    PubMed

    Monti, J M; Jantos, H; Ponzoni, A; Monti, D

    1996-07-01

    The present study evaluated the effects of histamine H3 receptor agonist BP 2.94 or H3 receptor antagonist carboperamide (MR 16155) given by oral route on sleep and waking in rats surgically prepared for long-term recordings. BP 2.94 produced a significant increase of slow-wave sleep (SWS) that was related to slight decreases of waking, light sleep, and REM sleep. Carboperamide significantly increased waking and decreased SWS and REM sleep. Pretreatment with carboperamide prevented the effect of BP 2.94 on SWS. It is suggested that the effects of BP 2.94 or carboperamide on sleep and waking could depend on changes in the availability of histamine at the postsynaptic H1 receptor. Alternatively, activation or blockade of the H3 heteroreceptors found in the central catecholamine, indolamine, and acetylcholine nerve endings could inhibit or increase the release of noradrenaline, serotonin, dopamine, and acetylcholine. This would secondarily result in changes of sleep variables.

  1. Sleep deprivation suppresses aggression in Drosophila

    PubMed Central

    Kayser, Matthew S; Mainwaring, Benjamin; Yue, Zhifeng; Sehgal, Amita

    2015-01-01

    Sleep disturbances negatively impact numerous functions and have been linked to aggression and violence. However, a clear effect of sleep deprivation on aggressive behaviors remains unclear. We find that acute sleep deprivation profoundly suppresses aggressive behaviors in the fruit fly, while other social behaviors are unaffected. This suppression is recovered following post-deprivation sleep rebound, and occurs regardless of the approach to achieve sleep loss. Genetic and pharmacologic approaches suggest octopamine signaling transmits changes in aggression upon sleep deprivation, and reduced aggression places sleep-deprived flies at a competitive disadvantage for obtaining a reproductive partner. These findings demonstrate an interaction between two phylogenetically conserved behaviors, and suggest that previous sleep experiences strongly modulate aggression with consequences for reproductive fitness. DOI: http://dx.doi.org/10.7554/eLife.07643.001 PMID:26216041

  2. Sleep Talking (Somniloquy)

    MedlinePlus

    ... Overview & Facts Symptoms & Risk Factors Diagnosis & Treatment Sleep Hallucinations Overview & Facts Symptoms & Risk Factors Diagnosis & Treatment Exploding ... Sleep Behavior Disorder Sleep Paralysis Nightmares Bedwetting Sleep Hallucinations Exploding Head Syndrome Sleep Talking Sleep Talking – Overview ...

  3. Sleep Disturbances

    MedlinePlus

    ... middle of the night. Sleep in a cool dark place and use the bed only for sleeping ... in Parkinson's Navigating Employment, Insurance, Financial and Legal Matters PD Take Three: Tips from the Health Care ...

  4. Sleep Apnea

    MedlinePlus

    Sleep apnea is a common disorder that causes your breathing to stop or get very shallow. Breathing ... an hour. The most common type is obstructive sleep apnea. It causes your airway to collapse or ...

  5. Sleeping sickness

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001362.htm Sleeping sickness To use the sharing features on this page, please enable JavaScript. Sleeping sickness is an infection caused by germs carried ...

  6. Predicting Performance during Chronic Sleep Loss: Identification of Factors Sensitive to Individual Fatigue Resistance

    DTIC Science & Technology

    2015-03-18

    that predicted for Trials 2 – 8 and 10 – 20. During each day of the sleep restriction period, the lowest predicted level of performance effectiveness ...the study, masking any fatigue- related effects . Comparing and Contrasting Chronic Sleep Restriction with Total Sleep Deprivation The experiment...sensitive to the performance impairments associated with total sleep deprivation but on which participants actually improved during chronic sleep

  7. The cognitive cost of sleep lost

    PubMed Central

    McCoy, John G.; Strecker, Robert E.

    2013-01-01

    A substantial body of literature supports the intuitive notion that a good night’s sleep can facilitate human cognitive performance the next day. Deficits in attention, learning & memory, emotional reactivity, and higher-order cognitive processes, such as executive function and decision making, have all been documented following sleep disruption in humans. Thus, whilst numerous clinical and experimental studies link human sleep disturbance to cognitive deficits, attempts to develop valid and reliable rodent models of these phenomena are fewer, and relatively more recent. This review focuses primarily on the cognitive impairments produced by sleep disruption in rodent models of several human patterns of sleep loss/sleep disturbance. Though not an exclusive list, this review will focus on four specific types of sleep disturbance: total sleep deprivation, experimental sleep fragmentation, selective REM sleep deprivation, and chronic sleep restriction. The use of rodent models can provide greater opportunities to understand the neurobiological changes underlying sleep loss induced cognitive impairments. Thus, this review concludes with a description of recent neurobiological findings concerning the neuroplastic changes and putative brain mechanisms that may underlie the cognitive deficits produced by sleep disturbances. PMID:21875679

  8. Sleep in the intensive care unit

    PubMed Central

    Beltrami, Flávia Gabe; Nguyen, Xuân-Lan; Pichereau, Claire; Maury, Eric; Fleury, Bernard; Fagondes, Simone

    2015-01-01

    ABSTRACT Poor sleep quality is a consistently reported by patients in the ICU. In such a potentially hostile environment, sleep is extremely fragmented and sleep architecture is unconventional, with a predominance of superficial sleep stages and a limited amount of time spent in the restorative stages. Among the causes of sleep disruption in the ICU are factors intrinsic to the patients and the acute nature of their condition, as well as factors related to the ICU environment and the treatments administered, such as mechanical ventilation and drug therapy. Although the consequences of poor sleep quality for the recovery of ICU patients remain unknown, it seems to influence the immune, metabolic, cardiovascular, respiratory, and neurological systems. There is evidence that multifaceted interventions focused on minimizing nocturnal sleep disruptions improve sleep quality in ICU patients. In this article, we review the literature regarding normal sleep and sleep in the ICU. We also analyze sleep assessment methods; the causes of poor sleep quality and its potential implications for the recovery process of critically ill patients; and strategies for sleep promotion. PMID:26785964

  9. Acute stress response modified by modest inhibition of growth hormone axis: a potential machinery of the anti-aging effect of calorie restriction.

    PubMed

    Komatsu, Toshimitsu; Trindade, Lucas S; Chiba, Takuya; Hayashi, Hiroko; Henmi, Tomoko; Ushiroda, Yoko; Mori, Ryoichi; Shimokawa, Isao

    2011-03-01

    Calorie restriction (CR) may exert antiaging effects by inhibiting the growth hormone (GH)/IGF-1 axis. The present study investigated the effect of modest inhibition of GH signaling on stress response and compared it with the effect of CR. Heterozygous (tg/-) rats of a transgenic strain of male rats, whose GH signaling was inhibited by overexpression of the anti-sense GH gene, and wild-type (WT) rats were used. Rats were fed ad libitum (AL) or 30% CR diets from 6 weeks of age. At 6 months of age, rats were killed between 0 and 8h after lipopolysaccharide (LPS) injection to evaluate the acute phase stress response. tg/- rats had less tissue injury, indicated by blood aspartate aminotransferase (AST) concentrations, than WT rats. Successive waves of incremental plasma TNF-α, IL-6, and interferon (IFN)-γ levels were also attenuated in tg/- rats. Activation of NF-κB, a redox-sensitive transcription factor, was slightly diminished in tg/- rats, whereas the AP-1 activity was increased. Similar trends were also observed in the CR groups as compared to the AL groups. The present results suggest an involvement of the GH/IGF-1 axis in the effect of CR for stress response, even if CR does not act solely through the GH axis.

  10. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  11. Acute effects of nasal continuous positive airway pressure on 24-hour blood pressure and catecholamines in patients with obstructive sleep apnea.

    PubMed

    Minemura, H; Akashiba, T; Yamamoto, H; Akahoshi, T; Kosaka, N; Horie, T

    1998-12-01

    To assess the acute effects of nasal continuous positive airway pressure (CPAP) on the 24-hour blood pressure and the secretion of catecholamines in urine and plasma, we investigated the changes in the 24-hour blood pressure and urinary and plasma concentrations of epinephrine (E) and norepinephrine (NE) in 26 men with obstructive sleep apnea (OSA) with and without nasal CPAP. Nasal CPAP resulted in significant decreases in the daytime diastolic pressure (from 86 +/-16 mmHg to 83+/-12 mmHg), the nighttime diastolic pressure (from 81+/-12 mmHg to 77+/-9 mmHg) and the nighttime systolic pressures (from 125+/-15 mmHg to 120+/-10 mmHg). There was no significant difference between patients with and without CPAP in the daytime or nighttime urinary E level, but patients who received CPAP showed a significant decrease in daytime urinary NE level (from 156+/-112 microg/14h to 119+/-101 microg/14h) and nighttime urinary NE level (from 143+/-91 microg/10h to 112+/-65 microg/10h). The morning plasma level of NE also decreased (from 371+/-181 pg/ml to 273 +/-148 pg/ml) in patients who received nasal CPAP (p<0.02), but the plasma level of E remained unchanged. There were no correlations between PSG parameters and the reductions in blood pressure and the catecholamine levels induced by nasal CPAP. These findings suggest that OSA contributes, at least in part, to the development of systemic hypertension by increasing sympathetic nervous activity.

  12. Sleeping Beauty transposon screen identifies signaling modules that cooperate with STAT5 activation to induce B-cell acute lymphoblastic leukemia.

    PubMed

    Heltemes-Harris, L M; Larson, J D; Starr, T K; Hubbard, G K; Sarver, A L; Largaespada, D A; Farrar, M A

    2016-06-30

    Signal transducer and activator of transcription 5 (STAT5) activation occurs frequently in human progenitor B-cell acute lymphoblastic leukemia (B-ALL). To identify gene alterations that cooperate with STAT5 activation to initiate leukemia, we crossed mice expressing a constitutively active form of STAT5 (Stat5b-CA) with mice in which a mutagenic Sleeping Beauty transposon (T2/Onc) was mobilized only in B cells. Stat5b-CA mice typically do not develop B-ALL (<2% penetrance); in contrast, 89% of Stat5b-CA mice in which the T2/Onc transposon had been mobilized died of B-ALL by 3 months of age. High-throughput sequencing approaches were used to identify genes frequently targeted by the T2/Onc transposon; these included Sos1 (74%), Kdm2a (35%), Jak1 (26%), Bmi1 (19%), Prdm14 or Ncoa2 (13%), Cdkn2a (10%), Ikzf1 (8%), Caap1 (6%) and Klf3 (6%). Collectively, these mutations target three major cellular processes: (i) the Janus kinase/STAT5 pathway (ii) progenitor B-cell differentiation and (iii) the CDKN2A tumor-suppressor pathway. Transposon insertions typically resulted in altered expression of these genes, as well as downstream pathways including STAT5, extracellular signal-regulated kinase (Erk) and p38. Importantly, expression of Sos1 and Kdm2a, and activation of p38, correlated with survival, further underscoring the role these genes and associated pathways have in B-ALL.

  13. Effect of Patient Sex on the Severity of Coronary Artery Disease in Patients with Newly Diagnosis of Obstructive Sleep Apnoea Admitted by an Acute Coronary Syndrome

    PubMed Central

    Sánchez-de-la-Torre, Alicia; Abad, Jorge; Durán-Cantolla, Joaquín; Mediano, Olga; Cabriada, Valentín; Masdeu, María José; Terán, Joaquín; Masa, Juan Fernando; de la Peña, Mónica; Aldomá, Albina; Worner, Fernando; Valls, Joan; Barbé, Ferran; Sánchez-de-la-Torre, Manuel

    2016-01-01

    Background The cardiovascular consequences of obstructive sleep apnoea (OSA) differ by sex. We hypothesized that sex influences the severity of acute coronary syndrome (ACS) in patients with OSA. OSA was defined as an apnoea–hypopnoea index (AHI)>15 events·h-1. We evaluated the severity of ACS according to the ejection fraction, Killip class, number of diseased vessels, number of stents implanted and plasma peak troponin level. Methods We included 663 men (mean±SD, AHI 37±18 events·h-1) and 133 women (AHI 35±18 events·h-1) with OSA. Results The men were younger than the women (59±11 versus 66±11 years, p<0.0001), exhibited a higher neck circumference (p<0.0001), and were more likely to be smokers and alcohol users than women (p<0.0001, p = 0.0005, respectively). Body mass index and percentage of hypertensive patients or diabetics were similar between sexes. We observed a slight tendency for a higher Killip classification in women, although it was not statistically significant (p = 0.055). For men, we observed that the number of diseased vessels and the number of stents implanted were higher (p = 0.02, p = 0.001, respectively), and a decrease in the ejection fraction (p = 0.002). Conclusions This study shows that sex in OSA influences the severity of ACS. Men show a lower ejection fraction and an increased number of diseased vessels and number of stents implanted. PMID:27416494

  14. Sleep and Premenstrual Syndrome

    PubMed Central

    Jehan, Shazia; Auguste, Evan; Hussain, Mahjabeen; Pandi-Perumal, Seithikurippu R.; Brzezinski, Amon; Gupta, Ravi; Attarian, Hrayr; Jean-Louis, Giradin; McFarlane, Samy I.

    2016-01-01

    The etiology of premenstrual syndrome (PMS) is unknown; it may be due to the normal effect of hormones during the menstrual cycle as it occurs in the late luteal phase of the menstrual cycle.PMS affects women of childbearing age and remits with the onset of menstruation. The menstrual phase is known to influence stage 2 and REM sleep in women, irrespective of premenstrual dysphoric disorder (PMDD). Women with PMDD showed a decreased response to melatonin in their luteal phase as compared to the follicular phase of the menstrual cycle. However, melatonin duration or timing of offset in the morning has not been reported to correlate with the mood. Rather, improvement in mood-related symptoms of PMDD has been found to be influenced by sleep deprivation, be it sleep restrictions in early or late night. Sleep disturbance and decreased melatonin secretions due to hormonal fluctuations during the luteal phase of the menstrual cycle could explain the sleep complaints of PMDD. PMID:28239684

  15. Pain-related diseases and sleep disorders

    PubMed Central

    Roizenblatt, M.; Rosa Neto, N.S.; Tufik, S.; Roizenblatt, S.

    2012-01-01

    Pain and sleep share mutual relations under the influence of cognitive and neuroendocrine changes. Sleep is an important homeostatic feature and, when impaired, contributes to the development or worsening of pain-related diseases. The aim of the present review is to provide a panoramic view for the generalist physician on sleep disorders that occur in pain-related diseases within the field of Internal Medicine, such as rheumatic diseases, acute coronary syndrome, digestive diseases, cancer, and headache. PMID:22760852

  16. The important role of sleep in metabolism.

    PubMed

    Copinschi, Georges; Leproult, Rachel; Spiegel, Karine

    2014-01-01

    Both reduction in total sleep duration with slow-wave sleep (SWS) largely preserved and alterations of sleep quality (especially marked reduction of SWS) with preservation of total sleep duration are associated with insulin resistance without compensatory increase in insulin secretion, resulting in impaired glucose tolerance and increased risk of type 2 diabetes. When performed under rigorously controlled conditions of energy intake and physical activity, sleep restriction is also associated with a decrease in circulating levels of leptin (an anorexigenic hormone) and an increase in circulating levels of ghrelin (an orexigenic hormone), hunger and appetite. Furthermore, sleep restriction is also associated with a stimulation of brain regions sensitive to food stimuli, indicating that sleep loss may lead to obesity through the selection of high-calorie food. There is also evidence that sleep restriction could provide a permissive environment for the activation of genes that promote obesity. Indeed, the heritability of body mass index is increased in short sleepers. Thus, chronic sleep curtailment, which is on the rise in modern society, including in children, is likely to contribute to the current epidemics of type 2 diabetes and obesity.

  17. Sleep in the ICU: potential mechanisms and clinical implications.

    PubMed

    Hardin, Kimberly A

    2009-07-01

    Patients in the ICU are known to have severely disrupted sleep with disturbed circadian pattern, decreased nocturnal sleep time, abnormally increased stages 1 and 2 sleep, and reduced or absent deep sleep. Recent data reveal that a subpopulation of critically ill patients manifests unique EEG sleep patterns. The etiology of sleep disruption in the ICU includes the inherent nature of the environment, medications, ventilator-patient interaction, and the effect of acute illness. How sleep disruption contributes to outcomes in critically ill patients, such as recovery time and weaning from mechanical ventilation, is unknown. This article reviews the literature describing sleep in ICU patients, including recent investigations in patients who require mechanical ventilation, factors that affect sleep in critically ill patients, and the potential mechanisms and clinical implications of disturbed sleep in the ICU setting with directions to consider for future investigations.

  18. Role of the adenosine system and glucose restriction in the acute anticonvulsant effect of caprylic acid in the 6 Hz psychomotor seizure test in mice.

    PubMed

    Socała, Katarzyna; Nieoczym, Dorota; Pieróg, Mateusz; Wlaź, Piotr

    2015-03-03

    Although several studies have reported the acute anticonvulsant activity of caprylic acid in animal seizure models, little is known about the mechanism underlying this effect. Recently, the role of adenosine in the efficacy of the ketogenic diet has been postulated. Therefore, the present study aimed to evaluate the possible involvement of the adenosine system (in non-fasted mice) as well as the role of glucose restriction (in fasted and non-fasted mice) in the acute anticonvulsant activity of caprylic acid in the 6 Hz psychomotor seizure threshold test. We showed that the anticonvulsant effect of caprylic acid (30 mmol/kg, p.o.) was reversed by a selective adenosine A1 receptor antagonist (DPCPX, 1mg/kg, i.p.) and a selective adenosine A2A receptor antagonist (KW-6002, 1 mg/kg, p.o.) but not by glibenclamide (1 pg/mouse, i.c.v.) - the ATP-sensitive potassium (KATP) channel blocker. Co-administration of an ineffective dose of caprylic acid (20 mmol/kg) with an ineffective dose of adenosine transporter inhibitor (dipyridamole, 50 mg/kg, i.p.) significantly raised the threshold for the 6 Hz-induced seizures. A high dose of glucose (2 g/kg) significantly only diminished the anticonvulsant effect of caprylic acid (30 mmol/kg) in non-fasted mice, and this was accompanied by an increase in blood glucose level and no changes in ketone body level as compared to the caprylic acid-treated group. In both fasted and non-fasted mice treated with glucose and caprylic acid, a significant decrease in trunk blood pH occurred as compared to the control group. No alternations in motor coordination or muscular strength were noted with any drug treatment, apart from the caprylic acid and glibenclamide combination, where a significant decrease in the muscle strength was observed. The present study provides a new insight into the role of the adenosine system and low glucose usage in the mechanisms underlying the anticonvulsant effects of caprylic acid in the 6 Hz seizure test.

  19. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  20. Sleep Regulates Incubation of Cocaine Craving

    PubMed Central

    Chen, Bo; Wang, Yao; Liu, Xiaodong; Liu, Zheng

    2015-01-01

    After withdrawal from cocaine, chronic cocaine users often experience persistent reduction in total sleep time, which is accompanied by increased sleep fragmentation resembling chronic insomnia. This and other sleep abnormalities have long been speculated to foster relapse and further drug addiction, but direct evidence is lacking. Here, we report that after prolonged withdrawal from cocaine self-administration, rats exhibited persistent reduction in nonrapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep, as well as increased sleep fragmentation. In an attempt to improve sleep after cocaine withdrawal, we applied chronic sleep restriction to the rats during their active (dark) phase of the day, which selectively decreased the fragmentation of REM sleep during their inactive (light) phase without changing NREM or the total amount of daily sleep. Animals with improved REM sleep exhibited decreased incubation of cocaine craving, a phenomenon depicting the progressive intensification of cocaine seeking after withdrawal. In contrast, experimentally increasing sleep fragmentation after cocaine self-administration expedited the development of incubation of cocaine craving. Incubation of cocaine craving is partially mediated by progressive accumulation of calcium-permeable AMPA receptors (CP-AMPARs) in the nucleus accumbens (NAc). After withdrawal from cocaine, animals with improved REM sleep exhibited reduced accumulation of CP-AMPARs in the NAc, whereas increasing sleep fragmentation accelerated NAc CP-AMPAR accumulation. These results reveal a potential molecular substrate that can be engaged by sleep to regulate cocaine craving and relapse, and demonstrate sleep-based therapeutic opportunities for cocaine addiction. SIGNIFICANCE STATEMENT Sleep abnormalities are common symptoms in chronic drug users long after drug withdrawal. These withdrawal-associated sleep symptoms, particularly reduction in total sleep time and deteriorating sleep quality, have been

  1. [Relationships between sleep and addiction].

    PubMed

    Cañellas, Francesca; de Lecea, Luis

    2012-01-01

    While it is well known that there is an interaction between sleep disorders and substance abuse, it is certainly more complex than was previously thought. There is a positive relationship both between having a substance use disorder and suffering from a sleep disorder, and vice versa. The effects on sleep depend on the substance used, but it has been shown that both during use and in withdrawal periods consumers have various sleep problems, and basically more fragmented sleep. We know that sleep problems must be taken into account to prevent addiction relapses. Recent research shows that the hypocretinergic system defined by neuropeptide hypocretin / orexin (Hcrt / ox), located in the lateral hypothalamus and involved in, among other things, the regulation of the sleep-wake cycle, may play an important role in addictive behaviors. Different studies have demonstrated interactions between the hypocretinergic system, acute response to stress circuits and reward systems. We also know that selective optogenetic activation of the hypocretinergic system increases the probability of transition from sleep to wakefulness, and is sufficient for initiating an addictive compulsive behavior relapse. Hypocretinergic system activation could explain the hyperarousal associated with stress and addiction. Improved knowledge of this interaction would help us to understand better the mechanisms of addiction and find new strategies for the treatment of addictions.

  2. Enhancing Slow Wave Sleep with Sodium Oxybate Reduces the Behavioral and Physiological Impact of Sleep Loss

    PubMed Central

    Walsh, James K.; Hall-Porter, Janine M.; Griffin, Kara S.; Dodson, Ehren R.; Forst, Elizabeth H.; Curry, Denise T.; Eisenstein, Rhody D.; Schweitzer, Paula K.

    2010-01-01

    Study Objectives: To investigate whether enhancement of slow wave sleep (SWS) with sodium oxybate reduces the impact of sleep deprivation. Design: Double-blind, parallel group, placebo-controlled design Setting: Sleep research laboratory Participants: Fifty-eight healthy adults (28 placebo, 30 sodium oxybate), ages 18-50 years. Interventions: A 5-day protocol included 2 screening/baseline nights and days, 2 sleep deprivation nights, each followed by a 3-h daytime (08:00-11:00) sleep opportunity and a recovery night. Sodium oxybate or placebo was administered prior to each daytime sleep period. Multiple sleep latency test (MSLT), psychomotor vigilance test (PVT), Karolinska Sleepiness Scale (KSS), and Profile of Mood States were administered during waking hours. Measurements and Results: During daytime sleep, the sodium oxybate group had more SWS, more EEG spectral power in the 1-9 Hz range, and less REM. Mean MSLT latency was longer for the sodium oxybate group on the night following the first daytime sleep period and on the day following the second day sleep period. Median PVT reaction time was faster in the sodium oxybate group following the second day sleep period. The change from baseline in SWS was positively correlated with the change in MSLT and KSS. During recovery sleep the sodium oxybate group had less TST, SWS, REM, and slow wave activity (SWA) than the placebo group. Conclusions: Pharmacological enhancement of SWS with sodium oxybate resulted in a reduced response to sleep loss on measures of alertness and attention. In addition, SWS enhancement during sleep restriction appears to result in a reduced homeostatic response to sleep loss. Citation: Walsh JK; Hall-Porter JM; Griffin KS; Dodson ER; Forst EH; Curry DT; Eisenstein RD; Schweitzer PK. Enhancing slow wave sleep with sodium oxybate reduces the behavioral and physiological impact of sleep loss. SLEEP 2010;33(9):1217-1225. PMID:20857869

  3. American Sleep Association

    MedlinePlus

    ... Sleep Disorders Book Join ASA Press Room American Sleep Association Improving public health by increasing awareness about ... Members Username or Email Password Remember Me Register Sleep Blog Changing Bad Sleep Habits Asthma and Sleep ...

  4. Sleep Disturbances among Persons Who Are Visually Impaired: Survey of Dog Guide Users.

    ERIC Educational Resources Information Center

    Fouladi, Massoud K.; Moseley, Merrick J.; Jones, Helen S.; Tobin, Michael J.

    1998-01-01

    A survey completed by 1237 adults with severe visual impairments found that 20% described the quality of their sleep as poor or very poor. Exercise was associated with better sleep and depression with poorer sleep. However, visual acuity did not predict sleep quality, casting doubt on the idea that restricted visual input (light) causes sleep…

  5. Is sleep deprivation a contributor to obesity in children?

    PubMed

    Chaput, Jean-Philippe

    2016-03-01

    Chronic lack of sleep (called "sleep deprivation") is common in modern societies with 24/7 availability of commodities. Accumulating evidence supports the role of reduced sleep as contributing to the current obesity epidemic in children and youth. Longitudinal studies have consistently shown that short sleep duration is associated with weight gain and the development of obesity. Recent experimental studies have reported that sleep restriction leads to weight gain in humans. Increased food intake appears to be the main mechanism by which insufficient sleep results in weight gain. Voluntary sleep restriction has been shown to increase snacking, the number of meals eaten per day, and the preference for energy-dense foods. Although the causes of sleep loss in the pediatric population are numerous, more research looking at screen exposure before bedtime and its effects on sleep is needed given the pervasiveness of electronic media devices in today's environment. Health professionals should routinely ask questions about sleep and promote a good night's sleep because insufficient sleep impacts activity and eating behaviors. Future research should examine the clinical benefits of increasing sleep duration on eating behaviors and body weight control and determine the importance of adequate sleep to improve the treatment of obesity.

  6. Effects of sleep deprivation on brain bioenergetics, sleep, and cognitive performance in cocaine-dependent individuals.

    PubMed

    Trksak, George H; Bracken, Bethany K; Jensen, J Eric; Plante, David T; Penetar, David M; Tartarini, Wendy L; Maywalt, Melissa A; Dorsey, Cynthia M; Renshaw, Perry F; Lukas, Scott E

    2013-01-01

    In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory. Participants underwent ³¹P magnetic resonance spectroscopy (MRS) brain imaging, polysomnography, Continuous Performance Task, and Digit Symbol Substitution Task. Following recovery sleep, ³¹P MRS scans revealed that cocaine-dependent participants exhibited elevated global brain β-NTP (direct measure of adenosine triphosphate), α-NTP, and total NTP levels compared to those of healthy controls. Cocaine-dependent participants performed worse on the Continuous Performance Task and Digit Symbol Substitution Task at baseline compared to healthy control participants, but sleep deprivation did not worsen cognitive performance in either group. Enhancements of brain ATP levels in cocaine dependent participants following recovery sleep may reflect a greater impact of sleep deprivation on sleep homeostasis, which may highlight the importance of monitoring sleep during abstinence and the potential influence of sleep loss in drug relapse.

  7. SLEEP DEPRIVATION,

    DTIC Science & Technology

    This report was confined to considering the effects of sleep deprivation , in man, with particular reference to studies of the resulting biochemical...have a limited value when taken separately: the biochemical and physiological changes that occur in response to sleep deprivation may depend...three separate heads: first, the biochemical changes resulting from sleep deprivation ; secondly, the physiological ones; and last, the changes in performance and behaviour. (Author)

  8. Sleep Deprivation and Recovery Sleep Prior to a Noxious Inflammatory Insult Influence Characteristics and Duration of Pain

    PubMed Central

    Vanini, Giancarlo

    2016-01-01

    Study Objectives: Insufficient sleep and chronic pain are public health epidemics. Sleep loss worsens pain and predicts the development of chronic pain. Whether previous, acute sleep loss and recovery sleep determine pain levels and duration remains poorly understood. This study tested whether acute sleep deprivation and recovery sleep prior to formalin injection alter post-injection pain levels and duration. Methods: Male Sprague-Dawley rats (n = 48) underwent sleep deprivation or ad libitum sleep for 9 hours. Thereafter, rats received a subcutaneous injection of formalin or saline into a hind paw. In the recovery sleep group, rats were allowed 24 h between sleep deprivation and the injection of formalin. Mechanical and thermal nociception were assessed using the von Frey test and Hargreaves' method. Nociceptive measures were performed at 1, 3, 7, 10, 14, 17 and 21 days post-injection. Results: Formalin caused bilateral mechanical hypersensitivity (allodynia) that persisted for up to 21 days post-injection. Sleep deprivation significantly enhanced bilateral allodynia. There was a synergistic interaction when sleep deprivation preceded a formalin injection. Rats allowed a recovery sleep period prior to formalin injection developed allodynia only in the injected limb, with higher mechanical thresholds (less allodynia) and a shorter recovery period. There were no persistent changes in thermal nociception. Conclusion: The data suggest that acute sleep loss preceding an inflammatory insult enhances pain and can contribute to chronic pain. The results encourage studies in a model of surgical pain to test whether enhancing sleep reduces pain levels and duration. Citation: Vanini G. Sleep deprivation and recovery sleep prior to a noxious inflammatory insult influence characteristics and duration of pain. SLEEP 2016;39(1):133–142. PMID:26237772

  9. Restrictive cardiomyopathy

    MedlinePlus

    Cardiomyopathy - restrictive; Infiltrative cardiomyopathy; Idiopathic myocardial fibrosis ... In a case of restrictive cardiomyopathy, the heart muscle is of normal size or slightly enlarged. Most of the time, it also pumps normally. However, it does ...

  10. Resting metabolic rate varies by race and by sleep duration

    PubMed Central

    Spaeth, Andrea M; Dinges, David F; Goel, Namni

    2015-01-01

    Objective Short sleep duration is a significant risk factor for weight gain, particularly in African Americans and men. Increased caloric intake underlies this relationship but it remains unclear whether decreased energy expenditure is a contributory factor. The current study assessed the impact of sleep restriction and recovery sleep on energy expenditure in African American and Caucasian men and women. Methods Healthy adults participated in a controlled laboratory study. After two baseline sleep nights, subjects were randomized to an experimental (n=36; 4h sleep/night for 5 nights followed by 1 night 12h recovery sleep) or control condition (n=11; 10h sleep/night). Resting metabolic rate and respiratory quotient were measured using indirect calorimetry in the morning after overnight fasting. Results Resting metabolic rate—the largest component of energy expenditure—decreased after sleep restriction (−2.6%, p=0.032) and returned to baseline levels after recovery sleep. No changes in resting metabolic rate were observed in control subjects. Relative to Caucasians (n=14), African Americans (n=22) exhibited comparable daily caloric intake but a lower resting metabolic rate (p=0.043) and higher respiratory quotient (p=0.013) regardless of sleep duration. Conclusions Sleep restriction decreased morning resting metabolic rate in healthy adults, suggesting that sleep loss leads to metabolic changes aimed at conserving energy. PMID:26538305

  11. Chronic Stress is Prospectively Associated with Sleep in Midlife Women: The SWAN Sleep Study

    PubMed Central

    Hall, Martica H.; Casement, Melynda D.; Troxel, Wendy M.; Matthews, Karen A.; Bromberger, Joyce T.; Kravitz, Howard M.; Krafty, Robert T.; Buysse, Daniel J.

    2015-01-01

    Study Objectives: Evaluate whether levels of upsetting life events measured over a 9-y period prospectively predict subjective and objective sleep outcomes in midlife women. Design: Prospective cohort study. Setting: Four sites across the United States. Participants: 330 women (46–57 y of age) enrolled in the Study of Women's Health Across the Nation (SWAN) Sleep Study. Interventions: N/A. Measurements and Results: Upsetting life events were assessed annually for up to 9 y. Trajectory analysis applied to life events data quantitatively identified three distinct chronic stress groups: low stress, moderate stress, and high stress. Sleep was assessed by self-report and in-home polysomnography (PSG) during the ninth year of the study. Multivariate analyses tested the prospective association between chronic stress group and sleep, adjusting for race, baseline sleep complaints, marital status, body mass index, symptoms of depression, and acute life events at the time of the Sleep Study. Women characterized by high chronic stress had lower subjective sleep quality, were more likely to report insomnia, and exhibited increased PSG-assessed wake after sleep onset (WASO) relative to women with low to moderate chronic stress profiles. The effect of chronic stress group on WASO persisted in the subsample of participants without baseline sleep complaints. Conclusions: Chronic stress is prospectively associated with sleep disturbance in midlife women, even after adjusting for acute stressors at the time of the sleep study and other factors known to disrupt sleep. These results are consistent with current models of stress that emphasize the cumulative effect of stressors on health over time. Citation: Hall MH, Casement MD, Troxel WM, Matthews KA, Bromberger JT, Kravitz HM, Krafty RT, Buysse DJ. Chronic stress is prospectively associated with sleep in midlife women: the SWAN Sleep Study. SLEEP 2015;38(10):1645–1654. PMID:26039965

  12. Ancestral sleep.

    PubMed

    de la Iglesia, Horacio O; Moreno, Claudia; Lowden, Arne; Louzada, Fernando; Marqueze, Elaine; Levandovski, Rosa; Pilz, Luisa K; Valeggia, Claudia; Fernandez-Duque, Eduardo; Golombek, Diego A; Czeisler, Charles A; Skene, Debra J; Duffy, Jeanne F; Roenneberg, Till

    2016-04-04

    While we do not yet understand all the functions of sleep, its critical role for normal physiology and behaviour is evident. Its amount and temporal pattern depend on species and condition. Humans sleep about a third of the day with the longest, consolidated episode during the night. The change in lifestyle from hunter-gatherers via agricultural communities to densely populated industrialized centres has certainly affected sleep, and a major concern in the medical community is the impact of insufficient sleep on health [1,2]. One of the causal mechanisms leading to insufficient sleep is altered exposure to the natural light-dark cycle. This includes the wide availability of electric light, attenuated exposure to daylight within buildings, and evening use of light-emitting devices, all of which decrease the strength of natural light-dark signals that entrain circadian systems [3].

  13. Chronic social stress leads to altered sleep homeostasis in mice.

    PubMed

    Olini, Nadja; Rothfuchs, Iru; Azzinnari, Damiano; Pryce, Christopher R; Kurth, Salome; Huber, Reto

    2017-03-15

    Disturbed sleep and altered sleep homeostasis are core features of many psychiatric disorders such as depression. Chronic uncontrollable stress is considered an important factor in the development of depression, but little is known on how chronic stress affects sleep regulation and sleep homeostasis. We therefore examined the effects of chronic social stress (CSS) on sleep regulation in mice. Adult male C57BL/6 mice were implanted for electrocortical recordings (ECoG) and underwent either a 10-day CSS protocol or control handling (CON). Subsequently, ECoG was assessed across a 24-h post-stress baseline, followed by a 4-h sleep deprivation, and then a 20-h recovery period. After sleep deprivation, CSS mice showed a blunted increase in sleep pressure compared to CON mice, as measured using slow wave activity (SWA, electroencephalographic power between 1 - 4Hz) during non-rapid eye movement (NREM) sleep. Vigilance states did not differ between CSS and CON mice during post-stress baseline, sleep deprivation or recovery, with the exception of CSS mice exhibiting increased REM sleep during recovery sleep. Behavior during sleep deprivation was not affected by CSS. Our data provide evidence that CSS alters the homeostatic regulation of sleep SWA in mice. In contrast to acute social stress, which results in a faster SWA build-up, CSS decelerates the homeostatic build up. These findings are discussed in relation to the causal contribution of stress-induced sleep disturbance to depression.

  14. Medicines for sleep

    MedlinePlus

    Benzodiazepines; Sedatives; Hypnotics; Sleeping pills; Insomnia - medicines; Sleep disorder - medicines ... the-counter (OTC) sleeping pills contain antihistamines. These medicines are commonly used to treat allergies. While these ...

  15. Sleep loss, learning capacity and academic performance.

    PubMed

    Curcio, Giuseppe; Ferrara, Michele; De Gennaro, Luigi

    2006-10-01

    At a time when several studies have highlighted the relationship between sleep, learning and memory processes, an in-depth analysis of the effects of sleep deprivation on student learning ability and academic performance would appear to be essential. Most studies have been naturalistic correlative investigations, where sleep schedules were correlated with school and academic achievement. Nonetheless, some authors were able to actively manipulate sleep in order to observe neurocognitive and behavioral consequences, such as learning, memory capacity and school performance. The findings strongly suggest that: (a) students of different education levels (from school to university) are chronically sleep deprived or suffer from poor sleep quality and consequent daytime sleepiness; (b) sleep quality and quantity are closely related to student learning capacity and academic performance; (c) sleep loss is frequently associated with poor declarative and procedural learning in students; (d) studies in which sleep was actively restricted or optimized showed, respectively, a worsening and an improvement in neurocognitive and academic performance. These results may been related to the specific involvement of the prefrontal cortex (PFC) in vulnerability to sleep loss. Most methodological limitations are discussed and some future research goals are suggested.

  16. New neurons in the adult brain: The role of sleep and consequences of sleep loss

    PubMed Central

    Meerlo, Peter; Mistlberger, Ralph E.; Jacobs, Barry L.; Heller, H. Craig; McGinty, Dennis

    2009-01-01

    Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a matter of debate. In the case of the hippocampus, integration of new cells in to the existing neuronal circuitry may be involved in memory processes and the regulation of emotionality. In recent years, various studies have examined how the production of new cells and their development into neurons is affected by sleep and sleep loss. While disruption of sleep for a period shorter than one day appears to have little effect on the basal rate of cell proliferation, prolonged restriction or disruption of sleep may have cumulative effects leading to a major decrease in hippocampal cell proliferation, cell survival and neurogenesis. Importantly, while short sleep deprivation may not affect the basal rate of cell proliferation, one study in rats shows that even mild sleep restriction may interfere with the increase in neurogenesis that normally occurs with hippocampus-dependent learning. Since sleep deprivation also disturbs memory formation, these data suggest that promoting survival, maturation and integration of new cells may be an unexplored mechanism by which sleep supports learning and memory processes. Most methods of sleep deprivation that have been employed affect both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Available data favor the hypothesis that decreases in cell proliferation are related to a reduction in REM sleep, whereas decreases in the number of cells that subsequently develop into adult neurons may be related to reductions in both NREM and REM sleep. The mechanisms by which sleep loss affects different aspects of adult neurogenesis are unknown. It has been proposed that adverse effects of sleep disruption may be mediated by stress and

  17. Troubled sleep

    PubMed Central

    Haig, David

    2014-01-01

    Disrupted sleep is probably the most common complaint of parents with a new baby. Night waking increases in the second half of the first year of infant life and is more pronounced for breastfed infants. Sleep-related phenotypes of infants with Prader-Willi and Angelman syndromes suggest that imprinted genes of paternal origin promote greater wakefulness whereas imprinted genes of maternal origin favor more consolidated sleep. All these observations are consistent with a hypothesis that waking at night to suckle is an adaptation of infants to extend their mothers’ lactational amenorrhea, thus delaying the birth of a younger sib and enhancing infant survival. PMID:24610432

  18. Effects of sleep manipulation on cognitive functioning of adolescents: A systematic review.

    PubMed

    de Bruin, Eduard J; van Run, Chris; Staaks, Janneke; Meijer, Anne Marie

    2017-04-01

    Adolescents are considered to be at risk for deteriorated cognitive functioning due to insufficient sleep. This systematic review examined the effects of experimental sleep manipulation on adolescent cognitive functioning. Sleep manipulations consisted of total or partial sleep restriction, sleep extension, and sleep improvement. Only articles written in English, with participants' mean age between 10 and 19 y, using objective sleep measures and cognitive performance as outcomes were included. Based on these criteria 16 articles were included. The results showed that the sleep manipulations were successful. Partial sleep restriction had small or no effects on adolescent cognitive functioning. Sleep deprivation studies showed decrements in the psychomotor vigilance task as most consistent finding. Sleep extension and sleep improvement contributed to improvement of working memory. Sleep directly after learning improved memory consolidation. Due to the great diversity of tests and lack of coherent results, decisive conclusions could not be drawn about which domains in particular were influenced by sleep manipulation. Small number of participants, not accounting for the role of sleep quality, individual differences in sleep need, compensatory mechanisms in adolescent sleep and cognitive functioning, and the impurity problem of cognitive tests might explain the absence of more distinct results.

  19. National Sleep Foundation

    MedlinePlus

    ... Macedonian Malay Maltese Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swahili Swedish Thai Turkish ... About Us “National Sleep Foundation” is a registered trademark of the National Sleep Foundation. sleep.org Sleep ...

  20. Healthy Sleep Habits

    MedlinePlus

    ... to locate sleep centers in your area. Search radius (in miles): 10 25 50 Share: Essentials in ... to locate sleep centers in your area. Search radius: Email Print Essentials in Sleep Insomnia Sleep Apnea ...

  1. Problems sleeping during pregnancy

    MedlinePlus

    ... sleeping References Balserak BI, Lee KA. Sleep and sleep disorders associated with pregnancy. In: Kryger M, Roth T, ... Elsevier; 2017:chap 156. Ibrahim S, Foldvary-Shaefer N. Sleep disorders in pregnancy: implications, evaluation, and treatment. Neurologic Clinics . ...

  2. Sleep Apnea (For Parents)

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Obstructive Sleep Apnea KidsHealth > For Parents > Obstructive Sleep Apnea Print ... kids and teens can develop it, too. About Sleep Apnea Sleep apnea happens when a person stops ...

  3. Obstructive sleep apnea - adults

    MedlinePlus

    Sleep apnea - obstructive - adults; Apnea - obstructive sleep apnea syndrome - adults; Sleep-disordered breathing - adults; OSA - adults ... When you sleep, all of the muscles in your body become more relaxed. This includes the muscles that help keep your ...

  4. Pediatric sleep apnea

    MedlinePlus

    Sleep apnea - pediatric; Apnea - pediatric sleep apnea syndrome; Sleep-disordered breathing - pediatric ... During sleep, all of the muscles in the body become more relaxed. This includes the muscles that help keep ...

  5. Sleeping during Pregnancy

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Sleeping During Pregnancy KidsHealth > For Parents > Sleeping During Pregnancy ... have trouble getting enough deep, uninterrupted sleep. Why Sleeping Can Be Difficult The first and most pressing ...

  6. American Sleep Apnea Association

    MedlinePlus

    American Sleep Apnea Association Learn About the CPAP Assistance Program About ASAA News about ASAA Who we are Leadership Team Supporting the ASAA Financials Learn Healthy sleep Sleep apnea Other sleep disorders Personal stories Treat Test Yourself ...

  7. Exercise & Sleep

    MedlinePlus

    ... on. Feature: Back to School, the Healthy Way Exercise & Sleep Past Issues / Fall 2012 Table of Contents ... helps kids. Photo: iStock 6 "Bests" About Kids' Exercise At least one hour of physical activity a ...

  8. Electroencephalographic studies of sleep

    NASA Technical Reports Server (NTRS)

    Webb, W. B.; Agnew, H. W., Jr.

    1975-01-01

    Various experimental studies on sleep are described. The following areas are discussed: (1) effect of altered day length on sleep, (2) effect of a partial loss of sleep on subsequent nocturnal sleep; (3) effect of rigid control over sleep-wake-up times; (4) sleep and wakefulness in a time-free environment; (5) distribution of spindles during a full night of sleep; and (6) effect on sleep and performance of swiftly changing shifts of work.

  9. Sleep in Othello

    PubMed Central

    Dimsdale, Joel E.

    2009-01-01

    Some of our best descriptions of sleep disorders come from literature. While Shakespeare is well known for his references to insomnia and sleep walking, his works also demonstrate a keen awareness of many other sleep disorders. This paper examines sleep themes in Shakespeare's play Othello. The play indicates Shakespeare's astute eye for sleep deprivation, sexual parasomnias, and effects of stress and drugs on sleep. Citation: Dimsdale JE. Sleep in Othello. J Clin Sleep Med 2009;5(3):280-281. PMID:19960651

  10. Sleep and pain: interaction of two vital functions.

    PubMed

    Roehrs, Timothy; Roth, Thomas

    2005-03-01

    Disturbed sleep is a key complaint of people experiencing acute and chronic pain. These two vital functions, sleep and pain, interact in complex ways that ultimately impact the biological and behavioral capacity of the individual. Polysomnographic studies of patients experiencing acute pain during postoperative recovery show shortened and fragmented sleep with reduced amounts of slow wave and rapid eye movement (REM) sleep, and the recovery is accompanied by normalization of sleep. Objective assessments of sleep in patients with various chronic pain conditions have been less definitive with some studies showing fragmented and shortened sleep and others showing normal sleep. Although daytime fatigue is a frequent complaint associated with complaints of pain-related disturbed sleep, objective assessments of daytime sleepiness reveal minimally elevated levels of sleepiness and emphasize the importance of distinguishing sleepiness and fatigue. The pain-sleep nexus has been modeled in healthy pain-free subjects and the studies have demonstrated the bidirectionality of the sleep-pain relation. Given this bidirectionality, treatment must focus on alleviation of both the pain and sleep disturbance. Few of the treatment studies have done such, and as a result no clear consensus on treatment approaches, much less on differential etiology-based treatment strategies, has emerged.

  11. The Neurobiology of Orofacial Pain and Sleep and Their Interactions.

    PubMed

    Lavigne, G J; Sessle, B J

    2016-09-01

    This article provides an overview of the neurobiology of orofacial pain as well as the neural processes underlying sleep, with a particular focus on the mechanisms that underlie pain and sleep interactions including sleep disorders. Acute pain is part of a hypervigilance system that alerts the individual to injury or potential injury of tissues. It can also disturb sleep. Disrupted sleep is often associated with chronic pain states, including those that occur in the orofacial region. The article presents many insights that have been gained in the last few decades into the peripheral and central mechanisms involved in orofacial pain and its modulation, as well as the circuits and processes in the central nervous system that underlie sleep. Although it has become clear that sleep is essential to preserve and maintain health, it has also been found that pain, particularly chronic pain, is commonly associated with disturbed sleep. In the presence of chronic pain, a circular relationship may prevail, with mutual deleterious influences causing an increase in pain and a disruption of sleep. This article also reviews findings that indicate that reducing orofacial pain and improving sleep need to be targeted together in the management of acute to chronic orofacial pain states in order to improve an orofacial pain patient's quality of life, to prevent mood alterations or exacerbation of sleep disorder (e.g., insomnia, sleep-disordered breathing) that can negatively affect their pain, and to promote healing and optimize their health.

  12. Altered sleep-wake cycles and physical performance in athletes.

    PubMed

    Reilly, Thomas; Edwards, Ben

    2007-02-28

    Sleep-waking cycles are fundamental in human circadian rhythms and their disruption can have consequences for behaviour and performance. Such disturbances occur due to domestic or occupational schedules that do not permit normal sleep quotas, rapid travel across multiple meridians and extreme athletic and recreational endeavours where sleep is restricted or totally deprived. There are methodological issues in quantifying the physiological and performance consequences of alterations in the sleep-wake cycle if the effects on circadian rhythms are to be separated from the fatigue process. Individual requirements for sleep show large variations but chronic reduction in sleep can lead to immuno-suppression. There are still unanswered questions about the sleep needs of athletes, the role of 'power naps' and the potential for exercise in improving the quality of sleep.

  13. Does Suspected Sleep Disordered Breathing Impact on the Sleep and Performance of Firefighting Volunteers during a Simulated Fire Ground Campaign?

    PubMed

    Jay, Sarah M; Smith, Bradley P; Windler, Samantha; Dorrian, Jillian; Ferguson, Sally A

    2016-01-29

    Adequate sleep is fundamental to workplace performance. For volunteer firefighters who work in safety critical roles, poor performance at work can be life threatening. Extended shifts and sleeping conditions negatively impact sleep during multi-day fire suppression campaigns. Having sleep disordered breathing (SDB) could contribute further to sleep deficits. Our aim was to investigate whether those with suspected SDB slept and performed more poorly during a fire ground simulation involving sleep restriction. Participants, n = 20 participated in a 3-day-4-night fire ground simulation. Based on oximetry desaturation index data collected during their participation, participants were retrospectively allocated to either a SDB (n = 8) or a non-SDB group (n = 12). The simulation began with an 8 h Baseline sleep (BL) followed by two nights of restricted (4 h) sleep and an 8 h recovery sleep (R). All sleeps were recorded using a standard electroencephalography (EEG) montage as well as oxygen saturation. During the day, participants completed neurobehavioral (response time, lapses and subjective fatigue) tasks. Mixed effects ANOVA were used to compare differences in sleep and wake variables. Analyses revealed a main effect of group for Total sleep (TST), REM , wake after sleep onset (WASO) and Arousals/h with the SDB group obtaining less TST and REM and greater WASO and Arousals/h. The group × night interaction was significant for N3 with the SDB group obtaining 42 min less during BL. There was a significant main effect of day for RRT, lapses and subjective fatigue and a significant day × group interaction for RRT. Overall, the SDB group slept less, experienced more disturbed sleep and had poorer response time performance, which was exacerbated by the second night of sleep restriction. This could present a safety concern, particularly during longer campaigns and is worthy of further investigation. In addition, we would recommend promotion of awareness of SDB, its symptoms

  14. Acute Effects of Energy Deficit Induced by Moderate-Intensity Exercise or Energy-Intake Restriction on Postprandial Lipemia in Healthy Girls.

    PubMed

    Thackray, Alice Emily; Barrett, Laura Ann; Tolfrey, Keith

    2015-05-01

    Eleven healthy girls (mean ± SD: age 12.1 ± 0.6 years) completed three 2-day conditions in a counterbalanced, crossover design. On day 1, participants either walked at 60 (2)% peak oxygen uptake (energy deficit 1.55[0.20] MJ), restricted food energy intake (energy deficit 1.51[0.25] MJ) or rested. On day 2, capillary blood samples were taken at predetermined intervals throughout the 6.5 hr postprandial period before, and following, the ingestion of standardized breakfast and lunch meals. Fasting plasma triacylglycerol concentrations (TAG) was 29% and 13% lower than rest control in moderate-intensity exercise (effect size [ES] = 1.39, p = .01) and energy-intake restriction (ES = 0.57, p = .02) respectively; moderate-intensity exercise was 19% lower than energy-intake restriction (ES = 0.82, p = .06). The moderate-intensity exercise total area under the TAG versus time curve was 21% and 13% lower than rest control (ES = 0.71, p = .004) and energy-intake restriction (ES = 0.39, p = .06) respectively; energy-intake restriction was marginally lower than rest control (-10%; ES = 0.32, p = .12). An exercise-induced energy deficit elicited a greater reduction in fasting plasma TAG with a trend for a larger attenuation in postprandial plasma TAG than an isoenergetic diet-induced energy deficit in healthy girls.

  15. Daytime Cognitive Performance in Response to Sunlight or Fluorescent Light Controlling for Sleep Duration

    NASA Technical Reports Server (NTRS)

    Ramos, Jhanic; Zamos, Adela; Rao, Rohit; Flynn-Evans, Erin

    2015-01-01

    Light is the primary synchronizer of the human circadian rhythm and also has acute alerting effects. Our study involves and comparing the alertness, performance and sleep of participants in the NASA Ames Sustainability Base, which uses sunlight as its primary light source, to in a traditional office building which uses overhead florescent lighting and varying exposure to natural light. The purpose of this study is to determine whether the use of natural lighting as a primary light source improves daytime cognitive function and promotes nighttime sleep. Participants from the Sustainability Base will be matched by gender and age to individuals working in other NASA buildings. In a prior study we found no differences in performance between those working in the Sustainability Base and those working in other buildings. Unexpectedly, we found that the average sleep duration among participants in both buildings was short, which likely obscured our ability to detect a difference the effect of light exposure on alertness. Given that such sleep deprivation has negative effects on cognitive performance, in this iteration of the study we are asking the participants to maintain a regular schedule with eight hours in bed each night in order to control for the effect of self-selected sleep restriction. Over the course of one week, we will ask the participants to wear actiwatches continuously, complete a psychomotor vigilance task (PVT) and digit symbol substitution task (DSST) three times per day, and keep daily sleepwork diaries. We hope that this study will provide data to support the idea that natural lighting and green architectural design are optimal to enhance healthy nighttime sleep patterns and daytime cognitive performance.

  16. Mobile phones and sleep - A review

    NASA Astrophysics Data System (ADS)

    Supe, Sanjay S.

    2010-01-01

    The increasing use of mobile phones has raised concerns regarding the potential health effects of exposure to the radiofrequency electromagnetic fields. An increasing amount research related to mobile phone use has focussed on the possible effects of mobile phone exposure on human brain activity and function. In particular, the use of sleep research has become a more widely used technique for assessing the possible effects of mobile phones on human health and wellbeing especially in the investigation of potential changes in sleep architecture resulting from mobile phone use. Acute exposure to a mobile phone prior to sleep significantly enhances electroencephalogram spectral power in the sleep spindle frequency range. This mobile phone-induced enhancement in spectral power is largely transitory and does not linger throughout the night. Furthermore, a reduction in rapid eye movement sleep latency following mobile phone exposure was also found, although interestingly, neither this change in rapid eye movement sleep latency or the enhancement in spectral power following mobile phone exposure, led to changes in the overall quality of sleep. In conclusion, a short exposure to the radiofrequency electromagnetic fields emitted by a mobile phone handset immediately prior to sleep is sufficient to induce changes in brain activity in the initial part of sleep. The consequences or functional significance of this effect are currently unknown and it would be premature to draw conclusions about possible health consequences.

  17. Sleep habits and fatigue of children receiving maintenance chemotherapy for ALL and their parents.

    PubMed

    Zupanec, Sue; Jones, Heather; Stremler, Robyn

    2010-01-01

    The study of potential contributors to fatigue, such as sleep disturbance, has been identified as a research priority in pediatric cancer. The primary objective of this descriptive study was to explore relationships between sleep habits, sleep disturbance, and fatigue for children receiving maintenance chemotherapy for acute lymphoblastic leukemia (ALL). This study also described sleep habits, sleep disturbance, and fatigue of parents of children and adolescents with ALL and determined if relationships existed between parent and child sleep disturbance and fatigue. Using a descriptive, cross-sectional design, children aged 4-18 years receiving maintenance chemotherapy for ALL and their parents completed questionnaires about their sleep and fatigue. Sleep disturbance was common in both children (87%) and parents (48%) and sleep disturbance scores were positively correlated with fatigue scores. From qualitative written responses to open-ended questions, 9 themes emerged related to sleep for children undergoing maintenance chemotherapy for ALL. Sleep differences noted since diagnosis included (1) sleep is disturbed, (2) sleep habits have changed, and (3) sleep is unchanged or improved. Things that got in the way of children sleeping well included (4) side effects of medication, especially dexamethasone; and (5) medication schedules. Things that helped children get sleep at night were (6) sleeping with someone, (7) comforting activities or routine, (8) medications, and (9) food and drink. Sleep disturbance in children on ALL maintenance and their parents is common and likely contributes to increased fatigue and is a potential target for nursing interventions.

  18. Sleep disruption and the sequelae associated with traumatic brain injury

    PubMed Central

    Lucke-Wold, Brandon P.; Smith, Kelly E.; Nguyen, Linda; Turner, Ryan C.; Logsdon, Aric F.; Jackson, Garrett J.; Huber, Jason D.; Rosen, Charles L.; Miller, Diane B.

    2016-01-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. PMID:25956251

  19. Sleep disruption and the sequelae associated with traumatic brain injury.

    PubMed

    Lucke-Wold, Brandon P; Smith, Kelly E; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Jackson, Garrett J; Huber, Jason D; Rosen, Charles L; Miller, Diane B

    2015-08-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy.

  20. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise.

    PubMed

    Fullagar, Hugh H K; Skorski, Sabrina; Duffield, Rob; Hammes, Daniel; Coutts, Aaron J; Meyer, Tim

    2015-02-01

    Although its true function remains unclear, sleep is considered critical to human physiological and cognitive function. Equally, since sleep loss is a common occurrence prior to competition in athletes, this could significantly impact upon their athletic performance. Much of the previous research has reported that exercise performance is negatively affected following sleep loss; however, conflicting findings mean that the extent, influence, and mechanisms of sleep loss affecting exercise performance remain uncertain. For instance, research indicates some maximal physical efforts and gross motor performances can be maintained. In comparison, the few published studies investigating the effect of sleep loss on performance in athletes report a reduction in sport-specific performance. The effects of sleep loss on physiological responses to exercise also remain equivocal; however, it appears a reduction in sleep quality and quantity could result in an autonomic nervous system imbalance, simulating symptoms of the overtraining syndrome. Additionally, increases in pro-inflammatory cytokines following sleep loss could promote immune system dysfunction. Of further concern, numerous studies investigating the effects of sleep loss on cognitive function report slower and less accurate cognitive performance. Based on this context, this review aims to evaluate the importance and prevalence of sleep in athletes and summarises the effects of sleep loss (restriction and deprivation) on exercise performance, and physiological and cognitive responses to exercise. Given the equivocal understanding of sleep and athletic performance outcomes, further research and consideration is required to obtain a greater knowledge of the interaction between sleep and performance.

  1. Sleep enhances false memories depending on general memory performance.

    PubMed

    Diekelmann, Susanne; Born, Jan; Wagner, Ullrich

    2010-04-02

    Memory is subject to dynamic changes, sometimes giving rise to the formation of false memories due to biased processes of consolidation or retrieval. Sleep is known to benefit memory consolidation through an active reorganization of representations whereas acute sleep deprivation impairs retrieval functions. Here, we investigated whether sleep after learning and sleep deprivation at retrieval enhance the generation of false memories in a free recall test. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., "night", "dark", "coal", etc.), lacking the strongest common associate or theme word (here: "black"). Free recall was tested after 9h following a night of sleep, a night of wakefulness (sleep deprivation) or daytime wakefulness. Compared with memory performance after a retention period of daytime wakefulness, both post-learning nocturnal sleep as well as acute sleep deprivation at retrieval significantly enhanced false recall of theme words. However, these effects were only observed in subjects with low general memory performance. These data point to two different ways in which sleep affects false memory generation through semantic generalization: one acts during consolidation on the memory trace per se, presumably by active reorganization of the trace in the post-learning sleep period. The other is related to the recovery function of sleep and affects cognitive control processes of retrieval. Both effects are unmasked when the material is relatively weakly encoded.

  2. Uncovering Residual Effects of Chronic Sleep Loss on Human Performance

    PubMed Central

    Cohen, Daniel A.; Wang, Wei; Wyatt, James K.; Kronauer, Richard E.; Dijk, Derk-Jan; Czeisler, Charles A.; Klerman, Elizabeth B.

    2010-01-01

    Sleep loss leads to profound performance decrements. Yet many individuals believe they adapt to chronic sleep loss or that recovery requires only a single extended sleep episode. To evaluate this, we designed a protocol whereby the usual sleep:wake ratio was reduced from 1:2 to 1:3.3, while the durations of both sleep and wake episodes were increased to ten hours and 32.85 hours respectively. These sleep and wake episodes were distributed across all circadian phases, enabling measurement of the effects of acute and chronic sleep loss at different times of the circadian day and night. Despite recurrent acute and substantial chronic sleep loss, ten hour sleep opportunities consistently restored vigilance performance for several hours of wakefulness. However, chronic sleep loss increased the rate of deterioration in performance across wakefulness, particularly during the circadian “night”. Thus, extended wake during the circadian night reveals the cumulative detrimental effects of chronic sleep loss on performance, with potential adverse health and safety consequences. PMID:20371466

  3. Neuroimmunologic aspects of sleep and sleep loss

    NASA Technical Reports Server (NTRS)

    Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.

    2001-01-01

    The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.

  4. REM Restriction Persistently Alters Strategy Used to Solve a Spatial Task

    ERIC Educational Resources Information Center

    Bjorness, Theresa E.; Tysor, Michael K.; Poe, Gina R.; Riley, Brett T.

    2005-01-01

    We tested the hypothesis that rapid eye movement (REM) sleep is important for complex associative learning by restricting rats from entering REM sleep for 4 h either immediately after training on an eight-box spatial task (0-4 REMr) or 4 h following training (4-8 REMr). Both groups of REM-restricted rats eventually reached the same overall…

  5. Adenosine, caffeine, and performance: from cognitive neuroscience of sleep to sleep pharmacogenetics.

    PubMed

    Urry, Emily; Landolt, Hans-Peter

    2015-01-01

    An intricate interplay between circadian and sleep-wake homeostatic processes regulate cognitive performance on specific tasks, and individual differences in circadian preference and sleep pressure may contribute to individual differences in distinct neurocognitive functions. Attentional performance appears to be particularly sensitive to time of day modulations and the effects of sleep deprivation. Consistent with the notion that the neuromodulator, adenosine , plays an important role in regulating sleep pressure, pharmacologic and genetic data in animals and humans demonstrate that differences in adenosinergic tone affect sleepiness, arousal and vigilant attention in rested and sleep-deprived states. Caffeine--the most often consumed stimulant in the world--blocks adenosine receptors and normally attenuates the consequences of sleep deprivation on arousal, vigilance, and attention. Nevertheless, caffeine cannot substitute for sleep, and is virtually ineffective in mitigating the impact of severe sleep loss on higher-order cognitive functions. Thus, the available evidence suggests that adenosinergic mechanisms, in particular adenosine A2A receptor-mediated signal transduction, contribute to waking-induced impairments of attentional processes, whereas additional mechanisms must be involved in higher-order cognitive consequences of sleep deprivation. Future investigations should further clarify the exact types of cognitive processes affected by inappropriate sleep. This research will aid in the quest to better understand the role of different brain systems (e.g., adenosine and adenosine receptors) in regulating sleep, and sleep-related subjective state, and cognitive processes. Furthermore, it will provide more detail on the underlying mechanisms of the detrimental effects of extended wakefulness, as well as lead to the development of effective, evidence-based countermeasures against the health consequences of circadian misalignment and chronic sleep restriction.

  6. Sleep Apnea

    MedlinePlus

    ... of other risk factors linked to a higher risk of heart disease. The conditions that make up metabolic syndrome include high blood pressure, abnormal cholesterol, high blood sugar and an increased waist circumference. Complications with medications and surgery. Obstructive sleep apnea ...

  7. Sleep, anesthesiology, and the neurobiology of arousal state control.

    PubMed

    Lydic, Ralph; Baghdoyan, Helen A

    2005-12-01

    Sleep, like breathing, is a biologic rhythm that is actively generated by the brain. Neuronal networks that have evolved to regulate naturally occurring sleep preferentially modulate traits that define states of sedation and anesthesia. Sleep is temporally organized into distinct stages that are characterized by a unique constellation of physiologic and behavioral traits. Sleep and anesthetic susceptibility are genetically modulated, heritable phenotypes. This review considers 40 yr of research regarding the cellular and molecular mechanisms contributing to arousal state control. Clinical and preclinical data have debunked and supplanted the primitive view that sleep need is a weakness. Sleep deprivation and restriction diminish vigilance, alter neuroendocrine control, and negatively impact immune function. There is overwhelming support for the view that decrements in vigilance can negatively impact performance. Advances in neuroscience provide a foundation for the sea change in public and legal perspectives that now regard a sleep-deprived individual as impaired.

  8. [Sleep: regulation and phenomenology].

    PubMed

    Vecchierini, M-F

    2013-12-01

    This article describes the two-process model of sleep regulation. The 24-hour sleep-wake cycle is regulated by a homeostatic process and an endogenous, 2 oscillators, circadian process, under the influence of external synchronisers. These two processes are partially independent but influence each other, as shown in the two-sleep-process auto-regulation model. A reciprocal inhibition model of two interconnected neuronal groups, "SP on" and "SP off", explains the regular recurrence of paradoxical sleep. Sleep studies have primarily depended on observation of the subject and have determined the optimal conditions for sleep (position, external conditions, sleep duration and need) and have studied the consequences of sleep deprivation or modifications of sleep schedules. Then, electrophysiological recordings permitted the classification of sleep stages according to the observed EEG patterns. The course of a night's sleep is reported on a "hypnogram". The adult subject falls asleep in non-REM sleep (N1), then sleep deepens progressively to stages N2 and N3 with the appearance of spindles and slow waves (N2). Slow waves become more numerous in stage N3. Every 90minutes REM sleep recurs, with muscle atonia and rapid eye movements. These adult sleep patterns develop progressively during the 2 first years of life as total sleep duration decreases, with the reduction of diurnal sleep and of REM sleep. Around 2 to 4 months, spindles and K complexes appear on the EEG, with the differentiation of light and deep sleep with, however, a predominance of slow wave sleep.

  9. Restrictive cardiomyopathies.

    PubMed

    Nihoyannopoulos, Petros; Dawson, David

    2009-12-01

    Restrictive cardiomyopathies constitute a heterogenous group of heart muscle conditions that all have, in common, the symptoms of heart failure. Diastolic dysfunction with preserved systolic function is often the only echocardiographic abnormality that may be noted, although systolic dysfunction may also be an integral part of some specific pathologies, particularly in the most advanced cases such as amyloid infiltration of the heart. By far, the majority of restrictive cardiomyopathies are secondary to a systemic disorder such as amyloidosis, sarcoidosis, scleroderma, haemochromatosis, eosinophilic heart disease, or as a result of radiation treatment. The much more rare diagnosis of idiopathic restrictive cardiomyopathy is supported only by the absence of specific pathology on either endomyocardial biopsies or at post-mortem. Restrictive cardiomyopathy is diagnosed based on medical history, physical examination, and tests: such as blood tests, electrocardiogram, chest X-ray, echocardiography, and magnetic resonance imaging. With its wide availability, echocardiography is probably the most important investigation to identify the left ventricular dysfunction and should be performed early and by groups that are familiar with the wide variety of aetiologies. Finally, on rare occasions, the differential diagnosis from constrictive pericarditis may be necessary.

  10. The effect of nap frequency on daytime sleep architecture.

    PubMed

    McDevitt, Elizabeth A; Alaynick, William A; Mednick, Sara C

    2012-08-20

    It is well documented that the quality and quantity of prior sleep influence future sleep. For instance, nocturnal sleep restriction leads to an increase in slow wave sleep (SWS) (i.e. SWS rebound) during a subsequent sleep period. However, few studies have examined how prior napping affects daytime sleep architecture. Because daytime naps are recommended for management of disrupted sleep, understanding the impact of napping on subsequent sleep may be important. We monitored sleep-wake patterns for one week with actigraphy followed by a 75-minute polysomnographically-recorded nap. We found that greater nap frequency was correlated with increased Stage 1 and decreased SWS. We categorized subjects based on nap frequency during the prior week (0 nap, 1 to 2 naps, and 3 to 4 naps) and found differences in Stage 1, Stage 2, and SWS between groups. Subjects who took no naps had the greatest amount of SWS, those who took 1 to 2 naps had the most Stage 2 sleep, and those who took 3 to 4 naps had the most Stage 1. While correlations were not found between nap frequency and nocturnal sleep measures, frequent napping was associated with increased subjective sleepiness. Therefore, frequent napping appears to be associated with lighter daytime sleep and increased sleepiness during the day. Speculatively, low levels of daytime sleepiness and increased SWS in non-nappers may help explain why these individuals choose not to nap.

  11. Agarose hydrogel microcompartments for imaging sleep- and wake-like behavior and nervous system development in Caenorhabditis elegans larvae.

    PubMed

    Bringmann, Henrik

    2011-09-30

    Caenorhabditis elegans larvae display specific behavior and development that is not observed in adults. For example, larvae go through a molting cycle that includes a sleep-like state prior to the molt. The study of these processes requires high-resolution long-term observation of individual animals. Here we describe a method for simultaneous culture and observation of several individual young C. elegans larvae inside agarose hydrogel-based arrayed microcompartments. We used agarose hydrogel microcompartments to observe and quantify larval specific sleep-wake-like behavior and to observe neuronal rewiring using confocal fluorescence microscopy without acute immobilization. We found no behavioral aberrations caused by area restriction. We show that worms cultured inside hydrogel microcompartments develop into normal adults. Thus, hydrogel microcompartments appear useful for long-term observation of larval behavior and development.

  12. Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults

    PubMed Central

    Gonçalves, Bruno da Silva B.; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia

    2016-01-01

    The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation. PMID:27732604

  13. Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults.

    PubMed

    Furtado, Fabianne; Gonçalves, Bruno da Silva B; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia; Forner-Cordero, Arturo

    2016-01-01

    The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation.

  14. Boy, Am I Tired!! Sleep....Why You Need It!

    ERIC Educational Resources Information Center

    Olivieri, Chrystyne

    2016-01-01

    Sleep is essential to a healthy human being. It is among the basic necessities of life, located at the bottom of Maslow's Hierarchy of Need. It is a dynamic activity, necessary to maintain mood, memory and cognitive performance. Sleep disorders are strongly associated with the development of acute and chronic medical conditions. This article…

  15. Dynamics of Sleep Stage Transitions in Health and Disease

    NASA Astrophysics Data System (ADS)

    Kishi, Akifumi; Struzik, Zbigniew R.; Natelson, Benjamin H.; Togo, Fumiharu; Yamamoto, Yoshiharu

    2007-07-01

    Sleep dynamics emerges from complex interactions between neuronal populations in many brain regions. Annotated sleep stages from electroencephalography (EEG) recordings could potentially provide a non-invasive way to obtain valuable insights into the mechanisms of these interactions, and ultimately into the very nature of sleep regulation. However, to date, sleep stage analysis has been restricted, only very recently expanding the scope of the traditional descriptive statistics to more dynamical concepts of the duration of and transitions between vigilance states and temporal evaluation of transition probabilities among different stages. Physiological and/or pathological implications of the dynamics of sleep stage transitions have, to date, not been investigated. Here, we study detailed duration and transition statistics among sleep stages in healthy humans and patients with chronic fatigue syndrome, known to be associated with disturbed sleep. We find that the durations of waking and non-REM sleep, in particular deep sleep (Stages III and IV), during the nighttime, follow a power-law probability distribution function, while REM sleep durations follow an exponential function, suggestive of complex underlying mechanisms governing the onset of light sleep. We also find a substantial number of REM to non-REM transitions in humans, while this transition is reported to be virtually non-existent in rats. Interestingly, the probability of this REM to non-REM transition is significantly lower in the patients than in controls, resulting in a significantly greater REM to awake, together with Stage I to awake, transition probability. This might potentially account for the reported poor sleep quality in the patients because the normal continuation of sleep after either the lightest or REM sleep is disrupted. We conclude that the dynamical transition analysis of sleep stages is useful for elucidating yet-to-be-determined human sleep regulation mechanisms with a

  16. Response Surface Mapping of Neurobehavioral Performance: Testing the Feasibility of Split Sleep Schedules for Space Operations.

    PubMed

    Mollicone, Daniel J; Van Dongen, Hans P A; Rogers, Naomi L; Dinges, David F

    2008-01-01

    The demands of sustaining high levels of neurobehavioral performance during space operations necessitate precise scheduling of sleep opportunities in order to best preserve optimal performance. We report here the results of the first split-sleep, dose-response experiment involving a range of sleep/wake scenarios with chronically reduced nocturnal sleep, augmented with a diurnal nap. To characterize performance over all combinations of split sleep in the range studied, we used response surface mapping methodology. Waking neurobehavioral performance was studied in N=90 subjects each assigned to one of 18 sleep regimens consisting of a restricted nocturnal anchor sleep period and a diurnal nap. Psychomotor vigilance task performance and subjective assessments of sleepiness were found to be primarily a function of total time in bed per 24 h regardless of how sleep was divided among nocturnal anchor sleep and diurnal nap periods. Digit symbol substitution task performance was also found to be primarily a function of total time in bed per 24 h; however, accounting for nocturnal sleep duration and nap duration separately provided a small but significant enhancement in the variance explained. The results suggest that reductions in total daily sleep result in a near-linear accumulation of impairment regardless of whether sleep is scheduled as a consolidated nocturnal sleep period or split into a nocturnal anchor sleep period and a diurnal nap. Thus, split sleep schedules are feasible and can be used to enhance the flexibility of sleep/work schedules for space operations involving restricted nocturnal sleep due to mission-critical task scheduling. These results are generally applicable to any continuous industrial operation that involves sleep restriction, night operations, and shift work.

  17. Response Surface Mapping of Neurobehavioral Performance: Testing the Feasibility of Split Sleep Schedules for Space Operations

    PubMed Central

    Mollicone, Daniel J.; Van Dongen, Hans P.A.; Rogers, Naomi L.; Dinges, David F.

    2008-01-01

    The demands of sustaining high levels of neurobehavioral performance during space operations necessitate precise scheduling of sleep opportunities in order to best preserve optimal performance. We report here the results of the first split-sleep, dose-response experiment involving a range of sleep/wake scenarios with chronically reduced nocturnal sleep, augmented with a diurnal nap. To characterize performance over all combinations of split sleep in the range studied, we used response surface mapping methodology. Waking neurobehavioral performance was studied in N=90 subjects each assigned to one of 18 sleep regimens consisting of a restricted nocturnal anchor sleep period and a diurnal nap. Psychomotor vigilance task performance and subjective assessments of sleepiness were found to be primarily a function of total time in bed per 24 h regardless of how sleep was divided among nocturnal anchor sleep and diurnal nap periods. Digit symbol substitution task performance was also found to be primarily a function of total time in bed per 24 h; however, accounting for nocturnal sleep duration and nap duration separately provided a small but significant enhancement in the variance explained. The results suggest that reductions in total daily sleep result in a near-linear accumulation of impairment regardless of whether sleep is scheduled as a consolidated nocturnal sleep period or split into a nocturnal anchor sleep period and a diurnal nap. Thus, split sleep schedules are feasible and can be used to enhance the flexibility of sleep/work schedules for space operations involving restricted nocturnal sleep due to mission-critical task scheduling. These results are generally applicable to any continuous industrial operation that involves sleep restriction, night operations, and shift work. PMID:19194521

  18. Response surface mapping of neurobehavioral performance: Testing the feasibility of split sleep schedules for space operations

    NASA Astrophysics Data System (ADS)

    Mollicone, Daniel J.; Van Dongen, Hans P. A.; Rogers, Naomi L.; Dinges, David F.

    The demands of sustaining high levels of neurobehavioral performance during space operations necessitate precise scheduling of sleep opportunities in order to best preserve optimal performance. We report here the results of the first split sleep, dose-response experiment involving a range of sleep/wake scenarios with chronically reduced nocturnal sleep, augmented with a diurnal nap. To characterize performance over all combinations of split sleep in the range studied, we used response surface mapping methodology. Waking neurobehavioral performance was studied in N=90 subjects each assigned to one of 18 sleep regimens consisting of a restricted nocturnal anchor sleep period and a diurnal nap. Psychomotor vigilance task performance and subjective assessments of sleepiness were found to be primarily a function of total time in bed per 24 h regardless of how sleep was divided among nocturnal anchor sleep and diurnal nap periods. Digit symbol substitution task performance was also found to be primarily a function of total time in bed per 24 h; however, accounting for nocturnal sleep duration and nap duration separately provided a small but significant enhancement in the variance explained. The results suggest that reductions in total daily sleep result in a near-linear accumulation of impairment regardless of whether sleep is scheduled as a consolidated nocturnal sleep period or split into a nocturnal anchor sleep period and a diurnal nap. Thus, split sleep schedules are feasible and can be used to enhance the flexibility of sleep/work schedules for space operations involving restricted nocturnal sleep due to mission-critical task scheduling. These results are generally applicable to any continuous industrial operation that involves sleep restriction, night operations, and shift work.

  19. Sleep and Nutritional Deprivation and Performance of House Officers.

    ERIC Educational Resources Information Center

    Hawkins, Michael R.; And Others

    1985-01-01

    A study to compare cognitive functioning in acutely and chronically sleep-deprived house officers is described. A multivariate analysis of variance revealed significant deficits in primary mental tasks involving basic rote memory, language, and numeric skills. (Author/MLW)

  20. Intensive sleep deprivation and cognitive behavioral therapy for pharmacotherapy refractory insomnia in a hospitalized patient.

    PubMed

    Breitstein, Joshua; Penix, Brandon; Roth, Bernard J; Baxter, Tristin; Mysliwiec, Vincent

    2014-06-15

    The case of a 59-year-old woman psychiatrically hospitalized with comorbid insomnia, suicidal ideation, and generalized anxiety disorder is presented. Pharmacologic therapies were unsuccessful for treating insomnia prior to and during hospitalization. Intensive sleep deprivation was initiated for 40 consecutive hours followed by a recovery sleep period of 8 hours. Traditional components of cognitive behavioral therapy for insomnia (CBTi), sleep restriction, and stimulus control therapies, were initiated on the ward. After two consecutive nights with improved sleep, anxiety, and absence of suicidal ideation, the patient was discharged. She was followed in the sleep clinic for two months engaging in CBTi. Treatment resulted in substantial improvement in her insomnia, daytime sleepiness, and anxiety about sleep. Sleep deprivation regimens followed by a restricted sleep recovery period have shown antidepressant effects in depressed patients. Similar treatment protocols have not been investigated in patients with pharmacotherapy refractory insomnia and generalized anxiety disorder.

  1. Stress-free automatic sleep deprivation using air puffs

    PubMed Central

    Gross, Brooks A.; Vanderheyden, William M.; Urpa, Lea M.; Davis, Devon E.; Fitzpatrick, Christopher J.; Prabhu, Kaustubh; Poe, Gina R.

    2015-01-01

    Background Sleep deprivation via gentle handling is time-consuming and personnel-intensive. New Method We present here an automated sleep deprivation system via air puffs. Implanted EMG and EEG electrodes were used to assess sleep/waking states in six male Sprague-Dawley rats. Blood samples were collected from an implanted intravenous catheter every 4 hours during the 12-hour light cycle on baseline, 8 hours of sleep deprivation via air puffs, and 8 hours of sleep deprivation by gentle handling days. Results The automated system was capable of scoring sleep and waking states as accurately as our offline version (~90% for sleep) and with sufficient speed to trigger a feedback response within an acceptable amount of time (1.76 s). Manual state scoring confirmed normal sleep on the baseline day and sleep deprivation on the two manipulation days (68% decrease in non-REM, 63% decrease in REM, and 74% increase in waking). No significant differences in levels of ACTH and corticosterone (stress hormones indicative of HPA axis activity) were found at any time point between baseline sleep and sleep deprivation via air puffs. Comparison with Existing Method There were no significant differences in ACTH or corticosterone concentrations between sleep deprivation by air puffs and gentle handling over the 8-hour period. Conclusions Our system accurately detects sleep and delivers air puffs to acutely deprive rats of sleep with sufficient temporal resolution during the critical 4-5 h post learning sleep-dependent memory consolidation period. The system is stress-free and a viable alternative to existing sleep deprivation techniques. PMID:26014662

  2. Effect of sleep deprivation on tolerance of prolonged exercise.

    PubMed

    Martin, B J

    1981-01-01

    Acute loss of sleep produces few apparent physiological effects at rest. Nevertheless, many anecdotes suggest that adequate sleep is essential for optimum endurance athletic performance. To investigate this question, heavy exercise performance after 36 h without sleep was compared with that after normal sleep in eight subjects. During prolonged treadmill walking at about 80% of the VO2 max, sleep loss reduced work time to exhaustion by an average of 11% (p = 0.05). This decrease occurred despite doubling monetary incentives for subjects during work after sleeplessness. Subjects appeared to fall into "resistant" and "susceptible" categories: four showed less than a 5% change in performance after sleep loss, while four others showed decrements in exercise tolerance ranging from 15 to 40%. During the walk, sleep loss resulted in significantly greater perceived exertion (p less than 0.05), even though exercise heart rate and metabolic rate (VO2 and VCO2) were unchanged. Minute ventilation was significantly elevated during exercise after sleep loss ( p less than 0.05). Sleep loss failed to alter the continuous slow rises in VE and heart rate that occurred as work was prolonged. These findings suggest that the psychological effects of acute sleep loss may contribute to decreased tolerance of prolonged heavy exercise.

  3. Sleep studies (image)

    MedlinePlus

    During a sleep study the sleep cycles and stages of sleep are monitored. Electrodes are placed to monitor continuous recordings of brain waves, electrical activity of muscles, eye movement, respiratory ...

  4. Isolated sleep paralysis

    MedlinePlus

    Sleep paralysis - isolated; Parasomnia - isolated sleep paralysis ... Episodes of isolated sleep paralysis last from a few seconds to 1 or 2 minutes. During these episodes the person is unable to move or ...

  5. Polysomnography (Sleep Study)

    MedlinePlus

    ... begins with a sleep stage called non-rapid eye movement (NREM) sleep. During this stage, your brain waves, ... your brain activity picks up again, and rapid eye movement (REM) sleep begins. Most dreaming occurs during REM ...

  6. Sleep and Your Preschooler

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Sleep and Your Preschooler KidsHealth > For Parents > Sleep and ... child chattering away, playing through the entire naptime. Sleeping Problems Preschoolers may have nightmares or night terrors , ...

  7. Can We Predict Cognitive Performance Decrements Due to Sleep Loss and the Recuperative Effects of Caffeine

    DTIC Science & Technology

    2015-10-14

    effects of partial sleep loss [or chronic sleep restriction ( CSR )] because they did not account for the effects of prior sleep debt [4]. • All models...both TSD and CSR conditions, 2) be customized to an individual to provide individual-specific predictions of performance during sleep loss, and 3...we used performance data from one study, comprising of four different CSR conditions, to develop the model and validated its predictions on

  8. Use of Stimulants to Ameliorate the Effects of Sleep Loss during Sustained Performance

    DTIC Science & Technology

    1992-01-01

    and caffeine increase sleep latencies (Mitler et al., 1986; Zwyghuizen-Doorenbos, Roehrs , Lipshutz, Timms, & Roth, 1990). Caffeine improved auditory...vigilance reaction time (RT) even after a restricted sleep of 5 hr (L. Rosenthal, Roehrs , Zwyghuizen-Doorenbos, Plath, & Roth, 1991). Based on these...Rosenthal. L.. Roehrs . T.. Zwvghuizen-Doorenbos. A.. Plath. D.. & Roth, T. (1991). Alerting effects of caffeine after normal and restricted sleep . Neurops

  9. Sleep-disordered breathing as a delayed complication of iatrogenic vocal cord trauma.

    PubMed

    Faiz, Saadia A; Bashoura, Lara; Kodali, Lavanya; Hessel, Amy C; Evans, Scott E; Balachandran, Diwakar D

    2016-06-01

    A case of a 55-year-old woman with iatrogenic vocal cord trauma and sleep-related symptoms is reported. In particular, this case highlights sleep-disordered breathing as a delayed complication after iatrogenic vocal cord trauma. The patient developed acute stridor from a contralateral vocal cord hematoma following vocal fold injection for right vocal cord paralysis. Acute respiratory symptoms resolved with oxygen, steroids, and nebulized therapy, but nocturnal symptoms persisted and polysomnography revealed sleep-related hypoventilation and mild obstructive sleep apnea. Positive pressure therapy was successfully used to ameliorate her symptoms and treat sleep-disordered breathing until her hematoma resolved. In addition to the typically acute respiratory symptoms that may result from vocal cord dysfunction, sleep-disordered breathing may also present as a significant subacute or chronic problem. Management of the acute respiratory symptoms is relatively well established, but clinicians should be alert for more subtle nocturnal symptoms that may require further study with polysomnography.

  10. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy.

    PubMed

    Holst, Sebastian C; Valomon, Amandine; Landolt, Hans-Peter

    2016-01-01

    Research spanning (genetically engineered) animal models, healthy volunteers, and sleep-disordered patients has identified the neurotransmitters and neuromodulators dopamine, serotonin, norepinephrine, histamine, hypocretin, melatonin, glutamate, acetylcholine, γ-amino-butyric acid, and adenosine as important players in the regulation and maintenance of sleep-wake-dependent changes in neuronal activity and the sleep-wake continuum. Dysregulation of these neurochemical systems leads to sleep-wake disorders. Most currently available pharmacological treatments are symptomatic rather than causal, and their beneficial and adverse effects are often variable and in part genetically determined. To evaluate opportunities for evidence-based personalized medicine with present and future sleep-wake therapeutics, we review here the impact of known genetic variants affecting exposure of and sensitivity to drugs targeting the neurochemistry of sleep-wake regulation and the pathophysiology of sleep-wake disturbances. Many functional polymorphisms modify drug response phenotypes relevant for sleep. To corroborate the importance of these and newly identified variants for personalized sleep-wake therapy, human sleep pharmacogenetics should be complemented with pharmacogenomic investigations, research about sleep-wake-dependent pharmacological actions, and studies in mice lacking specific genes. These strategies, together with future knowledge about epigenetic mechanisms affecting sleep-wake physiology and treatment outcomes, may lead to potent and safe novel therapies for the increasing number of sleep-disordered patients (e.g., in aged populations).

  11. Perceptual impairment in face identification with poor sleep

    PubMed Central

    Beattie, Louise; Walsh, Darragh; McLaren, Jessica; Biello, Stephany M.

    2016-01-01

    Previous studies have shown impaired memory for faces following restricted sleep. However, it is not known whether lack of sleep impairs performance on face identification tasks that do not rely on recognition memory, despite these tasks being more prevalent in security and forensic professions—for example, in photo-ID checks at national borders. Here we tested whether poor sleep affects accuracy on a standard test of face-matching ability that does not place demands on memory: the Glasgow Face-Matching Task (GFMT). In Experiment 1, participants who reported sleep disturbance consistent with insomnia disorder show impaired accuracy on the GFMT when compared with participants reporting normal sleep behaviour. In Experiment 2, we then used a sleep diary method to compare GFMT accuracy in a control group to participants reporting poor sleep on three consecutive nights—and again found lower accuracy scores in the short sleep group. In both experiments, reduced face-matching accuracy in those with poorer sleep was not associated with lower confidence in their decisions, carrying implications for occupational settings where identification errors made with high confidence can have serious outcomes. These results suggest that sleep-related impairments in face memory reflect difficulties in perceptual encoding of identity, and point towards metacognitive impairment in face matching following poor sleep. PMID:27853547

  12. Sleep: A Health Imperative

    PubMed Central

    Luyster, Faith S.; Strollo, Patrick J.; Zee, Phyllis C.; Walsh, James K.

    2012-01-01

    Chronic sleep deficiency, defined as a state of inadequate or mistimed sleep, is a growing and underappreciated determinant of health status. Sleep deprivation contributes to a number of molecular, immune, and neural changes that play a role in disease development, independent of primary sleep disorders. These changes in biological processes in response to chronic sleep deficiency may serve as etiological factors for the development and exacerbation of cardiovascular and metabolic diseases and, ultimately, a shortened lifespan. Sleep deprivation also results in significant impairments in cognitive and motor performance which increase the risk of motor vehicle crashes and work-related injuries and fatal accidents. The American Academy of Sleep Medicine and the Sleep Research Society have developed this statement to communicate to national health stakeholders the current knowledge which ties sufficient sleep and circadian alignment in adults to health. Citation: Luyster FS; Strollo PJ; Zee PC; Walsh JK. Sleep: a health imperative. SLEEP 2012;35(6):727-734. PMID:22654183

  13. College residential sleep environment.

    PubMed

    Sexton-Radek, Kathy; Hartley, Andrew

    2013-12-01

    College students regularly report increased sleep disturbances as well as concomitant reductions in performance (e.g., academic grades) upon entering college. Sleep hygiene refers to healthy sleep practices that are commonly used as first interventions in sleep disturbances. One widely used practice of this sort involves arranging the sleep environment to minimize disturbances from excessive noise and light at bedtime. Communal sleep situations such as those in college residence halls do not easily support this intervention. Following several focus groups, a questionnaire was designed to gather self-reported information on sleep disturbances in a college population. The present study used The Young Adult Sleep Environment Inventory (YASEI) and sleep logs to investigate the sleep environment of college students living in residential halls. A summary of responses indicated that noise and light are significant sleep disturbances in these environments. Recommendations are presented related to these findings.

  14. Sleep problems in children.

    PubMed

    Baweja, R; Calhoun, S; Baweja, R; Singareddy, R

    2013-10-01

    Sleep complaints and sleep disorders are common during childhood and adolescence. The impact of not getting enough sleep may affect children's' physical health as well emotional, cognitive and social development. Insomnia, sleep-disordered breathing, parasomnias and sleep disturbances associated with medical and psychiatric disorders are some of the commonly encountered sleep disorders in this age group. Changes in sleep architecture and the amount of sleep requirement associated with each stage of development should be considered during an evaluation of sleep disorders in children. Behavioral treatments should be used initially wherever possible especially considering that most pharmacologic agents used to treat pediatric sleep disorders are off-label. In this review we address the most common sleep problems in children/adolescents as they relate to prevalence, presentation and symptoms, evaluation and management.

  15. Genetics of Sleep and Sleep disorders

    PubMed Central

    Sehgal, Amita; Mignot, Emmanuel

    2011-01-01

    Sleep remains one of the least understood phenomena in biology – even its role in synaptic plasticity remains debatable. Since sleep was recognized to be regulated genetically, intense research has launched on two fronts: the development of model organisms for deciphering the molecular mechanisms of sleep and attempts to identify genetic underpinnings of human sleep disorders. In this Review, we describe how unbiased, high-throughput screens in model organisms are uncovering sleep regulatory mechanisms and how pathways, such as the circadian clock network and specific neurotransmitter signals, have conserved effects on sleep from Drosophila to humans. At the same time, genome-wide association (GWA) studies have uncovered ~14 loci increasing susceptibility to sleep disorders, such as narcolepsy and restless leg syndrome. To conclude, we discuss how these different strategies will be critical to unambiguously defining the function of sleep. PMID:21784243

  16. Ventral medullary control of rapid eye movement sleep and atonia.

    PubMed

    Chen, Michael C; Vetrivelan, Ramalingam; Guo, Chun-Ni; Chang, Catie; Fuller, Patrick M; Lu, Jun

    2017-04-01

    Discrete populations of neurons at multiple levels of the brainstem control rapid eye movement (REM) sleep and the accompanying loss of postural muscle tone, or atonia. The specific contributions of these brainstem cell populations to REM sleep control remains incompletely understood. Here we show in rats that viral vector-based lesions of the ventromedial medulla at a level rostral to the inferior olive (pSOM) produced violent myoclonic twitches and abnormal electromyographic spikes, but not complete loss of tonic atonia, during REM sleep. Motor tone during non-REM (NREM) sleep was unaffected in these same animals. Acute chemogenetic activation of pSOM neurons in rats robustly and selectively suppressed REM sleep but not NREM sleep. Similar lesions targeting the more rostral ventromedial medulla (RVM) did not affect sleep or atonia, while chemogenetic stimulation of the RVM produced wakefulness and reduced sleep. Finally, selective activation of vesicular GABA transporter (VGAT) pSOM neurons in mice produced complete suppression of REM sleep whereas their loss increased EMG spikes during REM sleep. These results reveal a key contribution of the pSOM and specifically the VGAT+ neurons in this region in REM sleep and motor control.

  17. Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia.

    PubMed

    Chouchou, Florian; Chauny, Jean-Marc; Rainville, Pierre; Lavigne, Gilles J

    2015-01-01

    The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM) sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers). Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1) placebo analgesia improved with REM sleep deprivation; 2) pain relief expectations did not differ between REM sleep deprivation and control groups; and 3) REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated.

  18. Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia

    PubMed Central

    Chouchou, Florian; Chauny, Jean-Marc; Rainville, Pierre; Lavigne, Gilles J.

    2015-01-01

    The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM) sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers). Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1) placebo analgesia improved with REM sleep deprivation; 2) pain relief expectations did not differ between REM sleep deprivation and control groups; and 3) REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated. PMID:26678391

  19. Impact of Obstructive Sleep Apnea on the Levels of Placental Growth Factor (PlGF) and Their Value for Predicting Short-Term Adverse Outcomes in Patients with Acute Coronary Syndrome

    PubMed Central

    Barcelo, Antonia; Bauça, Josep Miquel; Yañez, Aina; Fueyo, Laura; Gomez, Cristina; de la Peña, Monica; Pierola, Javier; Rodriguez, Alberto; Sanchez-de-la-Torre, Manuel; Abad, Jorge; Mediano, Olga; Amilibia, Jose; Masdeu, Maria Jose; Teran, Joaquin; Montserrat, Josep Maria; Mayos, Mercè; Sanchez-de-la-Torre, Alicia; Barbé, Ferran

    2016-01-01

    Background Placental growth factor (PlGF) induces angiogenesis and promotes tissue repair, and plasma PlGF levels change markedly during acute myocardial infarction (AMI). Currently, the impact of obstructive sleep apnea (OSA) in patients with AMI is a subject of debate. Our objective was to evaluate the relationships between PlGF levels and both the severity of acute coronary syndrome (ACS) and short-term outcomes after ACS in patients with and without OSA. Methods A total of 538 consecutive patients (312 OSA patients and 226 controls) admitted for ACS were included in this study. All patients underwent polygraphy in the first 72 hours after hospital admission. The severity of disease and short-term prognoses were evaluated during the hospitalization period. Plasma PlGF levels were measured using an electrochemiluminescence immunoassay. Results Patients with OSA were significantly older and more frequently hypertensive and had higher BMIs than those without OSA. After adjusting for age, smoking status, BMI and hypertension, PlGF levels were significantly elevated in patients with OSA compared with patients without OSA (19.9 pg/mL, interquartile range: 16.6–24.5 pg/mL; 18.5 pg/mL, interquartile range: 14.7–22.7 pg/mL; p<0.001), and a higher apnea-hypopnea index (AHI) was associated with higher PlGF concentrations (p<0.003). Patients with higher levels of PlGF had also an increased odds ratio for the presence of 3 or more diseased vessels and for a Killip score>1, even after adjustment. Conclusions The results of this study show that in patients with ACS, elevated plasma levels of PlGF are associated with the presence of OSA and with adverse outcomes during short-term follow-up. Trial Registration ClinicalTrials.gov NCT01335087 PMID:26930634

  20. Metabolic and Glycemic Sequelae of Sleep Disturbances in Children and Adults

    PubMed Central

    Koren, Dorit; O'Sullivan, Katie L.; Mokhlesi, Babak

    2015-01-01

    The prevalence of obesity in adults and children has increased greatly in the past three decades, as have metabolic sequelae, such as insulin resistance and type 2 diabetes mellitus (T2DM). Sleep disturbances are increasingly recognized as contributors to this widespread epidemic in adults, and data are emerging in children as well. The categories of sleep disturbances that contribute to obesity and its glycemic co-morbidities include the following: (1) alterations of sleep duration, chronic sleep restriction and excessive sleep; (2) alterations in sleep architecture; (3) sleep fragmentation; (4) circadian rhythm disorders and disruption (i.e., shift work); and (5) obstructive sleep apnea. This article reviews current evidence supporting the contributions that these sleep disorders play in the development of obesity, insulin resistance, and T2DM as well as possibly influences on glycemic control in type 1 diabetes, with a special focus on data in pediatric populations. PMID:25398202

  1. Metabolic and glycemic sequelae of sleep disturbances in children and adults.

    PubMed

    Koren, Dorit; O'Sullivan, Katie L; Mokhlesi, Babak

    2015-01-01

    The prevalence of obesity in adults and children has increased greatly in the past three decades, as have metabolic sequelae, such as insulin resistance and type 2 diabetes mellitus (T2DM). Sleep disturbances are increasingly recognized as contributors to this widespread epidemic in adults, and data are emerging in children as well. The categories of sleep disturbances that contribute to obesity and its glycemic co-morbidities include the following: (1) alterations of sleep duration, chronic sleep restriction and excessive sleep; (2) alterations in sleep architecture; (3) sleep fragmentation; (4) circadian rhythm disorders and disruption (i.e., shift work); and (5) obstructive sleep apnea. This article reviews current evidence supporting the contributions that these sleep disorders play in the development of obesity, insulin resistance, and T2DM as well as possibly influences on glycemic control in type 1 diabetes, with a special focus on data in pediatric populations.

  2. Effect of shortened sleep on energy expenditure, core body temperature, and appetite: a human randomised crossover trial

    PubMed Central

    Hibi, Masanobu; Kubota, Chie; Mizuno, Tomohito; Aritake, Sayaka; Mitsui, Yuki; Katashima, Mitsuhiro; Uchida, Sunao

    2017-01-01

    The effects of sleep restriction on energy metabolism and appetite remain controversial. We examined the effects of shortened sleep duration on energy metabolism, core body temperature (CBT), and appetite profiles. Nine healthy men were evaluated in a randomised crossover study under two conditions: a 3.5-h sleep duration and a 7-h sleep duration for three consecutive nights followed by one 7-h recovery sleep night. The subjects’ energy expenditure (EE), substrate utilisation, and CBT were continually measured for 48 h using a whole-room calorimeter. The subjects completed an appetite questionnaire every hour while in the calorimeter. Sleep restriction did not affect total EE or substrate utilisation. The 48-h mean CBT decreased significantly during the 3.5-h sleep condition compared with the 7-h sleep condition (7-h sleep, 36.75 ± 0.11 °C; 3.5-h sleep, 36.68 ± 0.14 °C; p = 0.016). After three consecutive nights of sleep restriction, fasting peptide YY levels and fullness were significantly decreased (p = 0.011), whereas hunger and prospective food consumption were significantly increased, compared to those under the 7-h sleep condition. Shortened sleep increased appetite by decreasing gastric hormone levels, but did not affect EE, suggesting that greater caloric intake during a shortened sleep cycle increases the risk of weight gain. PMID:28071649

  3. Adolescents' Sleep Behaviors and Perceptions of Sleep

    ERIC Educational Resources Information Center

    Noland, Heather; Price, James H.; Dake, Joseph; Telljohann, Susan K.

    2009-01-01

    Background: Sleep duration affects the health of children and adolescents. Shorter sleep durations have been associated with poorer academic performance, unintentional injuries, and obesity in adolescents. This study extends our understanding of how adolescents perceive and deal with their sleep issues. Methods: General education classes were…

  4. The spectrum of the non-rapid eye movement sleep electroencephalogram following total sleep deprivation is trait-like.

    PubMed

    Tarokh, Leila; Rusterholz, Thomas; Achermann, Peter; Van Dongen, Hans P A

    2015-08-01

    The sleep electroencephalogram (EEG) spectrum is unique to an individual and stable across multiple baseline recordings. The aim of this study was to examine whether the sleep EEG spectrum exhibits the same stable characteristics after acute total sleep deprivation. Polysomnography (PSG) was recorded in 20 healthy adults across consecutive sleep periods. Three nights of baseline sleep [12 h time in bed (TIB)] following 12 h of wakefulness were interleaved with three nights of recovery sleep (12 h TIB) following 36 h of sustained wakefulness. Spectral analysis of the non-rapid eye movement (NREM) sleep EEG (C3LM derivation) was used to calculate power in 0.25 Hz frequency bins between 0.75 and 16.0 Hz. Intraclass correlation coefficients (ICCs) were calculated to assess stable individual differences for baseline and recovery night spectra separately and combined. ICCs were high across all frequencies for baseline and recovery and for baseline and recovery combined. These results show that the spectrum of the NREM sleep EEG is substantially different among individuals, highly stable within individuals and robust to an experimental challenge (i.e. sleep deprivation) known to have considerable impact on the NREM sleep EEG. These findings indicate that the NREM sleep EEG represents a trait.

  5. Suppression of preoptic sleep-regulatory neuronal activity during corticotropin-releasing factor-induced sleep disturbance.

    PubMed

    Gvilia, Irma; Suntsova, Natalia; Kumar, Sunil; McGinty, Dennis; Szymusiak, Ronald

    2015-11-01

    Corticotropin releasing factor (CRF) is implicated in sleep and arousal regulation. Exogenous CRF causes sleep suppression that is associated with activation of at least two important arousal systems: pontine noradrenergic and hypothalamic orexin/hypocretin neurons. It is not known whether CRF also impacts sleep-promoting neuronal systems. We hypothesized that CRF-mediated changes in wake and sleep involve decreased activity of hypothalamic sleep-regulatory neurons localized in the preoptic area. To test this hypothesis, we examined the effects of intracerebroventricular administration of CRF on sleep-wake measures and c-Fos expression in GABAergic neurons in the median preoptic nucleus (MnPN) and ventrolateral preoptic area (VLPO) in different experimental conditions. Administration of CRF (0.1 nmol) during baseline rest phase led to delayed sleep onset and decreases in total amount and mean duration of non-rapid eye movement (NREM) sleep. Administration of CRF during acute sleep deprivation (SD) resulted in suppression of recovery sleep and decreased c-Fos expression in MnPN/VLPO GABAergic neurons. Compared with vehicle controls, intracerebroventricular CRF potentiated disturbances of both NREM and REM sleep in rats exposed to a species-specific psychological stressor, the dirty cage of a male conspecific. The number of MnPN/VLPO GABAergic neurons expressing c-Fos was reduced in the CRF-treated group of dirty cage-exposed rats. These findings confirm the involvement of CRF in wake-sleep cycle regulation and suggest that increased CRF signaling in the brain 1) negatively affects homeostatic responses to sleep loss, 2) exacerbates stress-induced disturbances of sleep, and 3) suppresses the activity of sleep-regulatory neurons of the MnPN and VLPO.

  6. Cardio-respiratory function during sleep.

    PubMed

    Bonsignore, G

    1991-01-01

    Respiratory function undergoes sleep-associated changes which in normal subjects leave it unaffected. However in some cases they may be more marked than usual or may be superimposed on a pre-existing disease, thus giving rise to sleep-related ventilation disorders. These include obstructive sleep apnea syndrome (OSAS), nocturnal desaturation events of chronic obstructive pulmonary disease (COPD) and restrictive syndromes, as well as nocturnal asthmatic attacks. OSAS is a condition characterized by the frequent recurrence of interruptions of oronasal flow (greater than 10 s.) due to upper airway occlusion induced by a reduction in pharyngeal muscle tone. This phenomenon, particularly prominent in REM sleep, results in oxyhemoglobin desaturation and marked cardiovascular consequences (arrhythmias, increases in pulmonary and systemic arterial pressure), as well as symptoms (loud intermittent snoring, daytime sleepiness, intellectual deterioration etc.). Obesity is often associated with OSAS or may lead to a sleep-related hypoventilation syndrome. Treatment is based on weight loss, surgery of upper airway abnormalities, if present, and on splinting of the upper airway by the application of nasal continuous positive airway pressure. In COPD and restrictive disorders, nocturnal hypoxemia is mainly due to REM-associated loss of respiratory muscle tone, as well as in the sleep-related exaggeration of functional defects due to COPD (low chemoreceptor sensitivity, high closing volume etc.). Treatment is based on oxygen administration, provided that possible side-effects are carefully monitored. Nocturnal asthma is due to circadian changes in hormonal secretion (catecholamines, cortisol), as well as supine posture, reduced muco-ciliary clearance, gastro-esophageal reflux etc. Sleep itself plays some role through a depressed arousal reaction in slow wave sleep, resulting in more marked and prolonged attacks in this stage. Slow-release theophylline or beta-mimetic medications

  7. Favorable effect of priming with granulocyte colony-stimulating factor in remission induction of acute myeloid leukemia restricted to dose escalation of cytarabine.

    PubMed

    Pabst, Thomas; Vellenga, Edo; van Putten, Wim; Schouten, Harry C; Graux, Carlos; Vekemans, Marie-Christiane; Biemond, Bart; Sonneveld, Peter; Passweg, Jakob; Verdonck, Leo; Legdeur, Marie-Cecile; Theobald, Matthias; Jacky, Emanuel; Bargetzi, Mario; Maertens, Johan; Ossenkoppele, Gert Jan; Löwenberg, Bob

    2012-06-07

    The clinical value of chemotherapy sensitization of acute myeloid leukemia (AML) with G-CSF priming has remained controversial. Cytarabine is a key constituent of remission induction chemotherapy. The effect of G-CSF priming has not been investigated in relationship with variable dose levels of cytarabine. We randomized 917 AML patients to receive G-CSF (456 patients) or no G-CSF (461 patients) at the days of chemotherapy. In the initial part of the study, 406 patients were also randomized between 2 cytarabine regimens comparing conventional-dose (199 patients) versus escalated-dose (207 patients) cytarabine in cycles 1 and 2. We found that patients after induction chemotherapy plus G-CSF had similar overall survival (43% vs 40%, P = .88), event-free survival (37% vs 31%, P = .29), and relapse rates (34% vs 36%, P = .77) at 5 years as those not receiving G-CSF. However, patients treated with the escalated-dose cytarabine regimen benefited from G-CSF priming, with improved event-free survival (P = .01) and overall survival (P = .003), compared with patients without G-CSF undergoing escalated-dose cytarabine treatment. A significant survival advantage of sensitizing AML for chemotherapy with G-CSF was not apparent in the entire study group, but it was seen in patients treated with escalated-dose cytarabine during remission induction. The HOVON-42 study is registered under The Netherlands Trial Registry (www.trialregister.nl) as #NTR230.

  8. Self-reported napping and nocturnal sleep in Taiwanese elderly insomniacs.

    PubMed

    Lai, Hui-Ling

    2005-01-01

    Abstract The aim of this study was to investigate the relationships between self-reported nocturnal sleep quality and napping patterns in elderly persons with insomnia and to compare the nocturnal sleep quality between napping and non-napping groups. Convenience sampling was used to recruit 60 community-dwelling elderly residents of Taichung City, Taiwan (age range 60-83 years, mean 67.1 years) who reported insomnia. All participants scored greater than 5 on the Pittsburgh Sleep Quality Index (PSQI) questionnaire. Napping prevalence, frequency, and duration were assessed by participant interview. Self-reported sleep quality, sleep latency, sleep duration, sleep efficiency, sleep disturbance, use of sleep medication, and daytime dysfunction were measured with the PSQI. Sixty-four percentage of participants (n = 38) reported napping. There were no age, gender, and ethnicity differences on napping patterns. Global sleep quality, sleep efficiency, and sleep disturbance were significantly associated with prevalence of napping (r = 0.24-0.26, p < 0.05). A significant correlation was also found between global sleep quality and nap duration (r = 0.31, p < 0.05). Elders in the napping group reported better global sleep quality (t = 2.2, p < 0.05) and sleep efficiency (t = 2.1, p < 0.05) than those in the non-napping group. The findings suggest that there is no need for health care providers to restrict elderly insomniacs' daytime napping.

  9. Retino-hypothalamic regulation of light-induced murine sleep

    PubMed Central

    Muindi, Fanuel; Zeitzer, Jamie M.; Heller, Horace Craig

    2014-01-01

    The temporal organization of sleep is regulated by an interaction between the circadian clock and homeostatic processes. Light indirectly modulates sleep through its ability to phase shift and entrain the circadian clock. Light can also exert a direct, circadian-independent effect on sleep. For example, acute exposure to light promotes sleep in nocturnal animals and wake in diurnal animals. The mechanisms whereby light directly influences sleep and arousal are not well understood. In this review, we discuss the direct effect of light on sleep at the level of the retina and hypothalamus in rodents. We review murine data from recent publications showing the roles of rod-, cone- and melanopsin-based photoreception on the initiation and maintenance of light-induced sleep. We also present hypotheses about hypothalamic mechanisms that have been advanced to explain the acute control of sleep by light. Specifically, we review recent studies assessing the roles of the ventrolateral preoptic area (VLPO) and the suprachiasmatic nucleus (SCN). We also discuss how light might differentially promote sleep and arousal in nocturnal and diurnal animals respectively. Lastly, we suggest new avenues for research on this topic which is still in its early stages. PMID:25140132

  10. Role of sleep and sleep loss in hormonal release and metabolism.

    PubMed

    Leproult, Rachel; Van Cauter, Eve

    2010-01-01

    Compared to a few decades ago, adults, as well as children, sleep less. Sleeping as little as possible is often seen as an admirable behavior in contemporary society. However, sleep plays a major role in neuroendocrine function and glucose metabolism. Evidence that the curtailment of sleep duration may have adverse health effects has emerged in the past 10 years. Accumulating evidence from both epidemiologic studies and well-controlled laboratory studies indicates that chronic partial sleep loss may increase the risk of obesity and weight gain. The present chapter reviews epidemiologic studies in adults and children and laboratory studies in young adults indicating that sleep restriction results in metabolic and endocrine alterations, including decreased glucose tolerance, decreased insulin sensitivity, increased evening concentrations of cortisol, increased levels of ghrelin, decreased levels of leptin and increased hunger and appetite. Altogether, the evidence points to a possible role of decreased sleep duration in the current epidemic of obesity. Bedtime extension in short sleepers should be explored as a novel behavioral intervention that may prevent weight gain or facilitate weight loss. Avoiding sleep deprivation may help to prevent the development of obesity, particularly in children.

  11. Role of Sleep and Sleep Loss in Hormonal Release and Metabolism

    PubMed Central

    Leproult, Rachel; Van Cauter, Eve

    2011-01-01

    Compared to a few decades ago, adults, as well as children, sleep less. Sleeping as little as possible is often seen as an admirable behavior in contemporary society. However, sleep plays a major role in neuroendocrine function and glucose metabolism. Evidence that the curtailment of sleep duration may have adverse health effects has emerged in the past 10 years. Accumulating evidence from both epidemiologic studies and well-controlled laboratory studies indicates that chronic partial sleep loss may increase the risk of obesity and weight gain. The present chapter reviews epidemiologic studies in adults and children and laboratory studies in young adults indicating that sleep restriction results in metabolic and endocrine alterations, including decreased glucose tolerance, decreased insulin sensitivity, increased evening concentrations of cortisol, increased levels of ghrelin, decreased levels of leptin and increased hunger and appetite. Altogether, the evidence points to a possible role of decreased sleep duration in the current epidemic of obesity. Bedtime extension in short sleepers should be explored as a novel behavioral intervention that may prevent weight gain or facilitate weight loss. Avoiding sleep deprivation may help to prevent the development of obesity, particularly in children. PMID:19955752

  12. Sleep and bodily functions: the physiological interplay between body homeostasis and sleep homeostasis.

    PubMed

    Amici, R; Bastianini, S; Berteotti, C; Cerri, M; Del Vecchio, F; Lo Martire, V; Luppi, M; Perez, E; Silvani, A; Zamboni, G; Zoccoli, G

    2014-01-01

    Body homeostasis and sleep homeostasis may both rely on the complex integrative activity carried out by the hypothalamus. Thus, the three main wake-sleep (WS) states (i.e. wakefulness, NREM sleep, and REM sleep) may be better understood if the different cardio-respiratory and metabolic parameters, which are under the integrated control of the autonomic and the endocrine systems, are studied during sleep monitoring. According to this view, many physiological events can be considered as an expression of the activity that physiological regulations should perform in order to cope with the need to fulfill body and sleep homeostasis. This review is aimed at making an assessment of data showing the existence of a physiological interplay between body homeostasis and sleep homeostasis, starting from the spontaneous changes observed in the somatic and autonomic activity during sleep, through evidence showing the deep changes occurring in the central integration of bodily functions during the different WS states, to the changes in the WS states observed when body homeostasis is challenged by the external environment and when the return to normal ambient conditions allows sleep homeo- stasis to run without apparent physiological restrictions. The data summarized in this review suggest that an approach to the dichotomy between NREM and REM sleep based on physiological regulations may offer a framework within which observations that a traditional behavioral approach may overlook can be interpreted. The study of the interplay between body and sleep homeostasis appears, therefore, to be a way to understand the function of complex organisms beyond that of the specific regulations.

  13. Sleep and Infant Learning

    ERIC Educational Resources Information Center

    Tarullo, Amanda R.; Balsam, Peter D.; Fifer, William P.

    2011-01-01

    Human neonates spend the majority of their time sleeping. Despite the limited waking hours available for environmental exploration, the first few months of life are a time of rapid learning about the environment. The organization of neonate sleep differs qualitatively from adult sleep, and the unique characteristics of neonatal sleep may promote…

  14. Sleeping with an Android

    PubMed Central

    2017-01-01

    Sleep quality and duration are strong indicators of an individual’s health and quality of lifebut they are difficult to track in everyday life. Mobile apps such as Sleep as Android leverage smartphone sensors to track sleep patterns and make recommendations to improve sleeping habits. PMID:28293622

  15. Altered functional Connectivity in Lesional Peduncular Hallucinosis with REM Sleep Behavior Disorder

    PubMed Central

    Geddes, Maiya R.; Tie, Yanmei; Gabrieli, John D. E.; McGinnis, Scott M.; Golby, Alexandra J.; Whitfield-Gabrieli, Susan

    2016-01-01

    Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic infarct. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and PFC was significantly increased in the patient. Focal damage to the left rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. PMID:26656284

  16. Short sleep duration and obesity: mechanisms and future perspectives.

    PubMed

    Zimberg, Ioná Zalcman; Dâmaso, Ana; Del Re, Mariana; Carneiro, Aline Millani; de Sá Souza, Helton; de Lira, Fábio Santos; Tufik, Sergio; de Mello, Marco Túlio

    2012-08-01

    A reduction of sleep time has become common over the last century, and growing evidence from both epidemiological and laboratory-based studies suggests sleep curtailment is a new risk factor for the development of obesity. On this basis, the present review examines the role of sleep curtailment in the metabolic and endocrine alterations, including decreased glucose tolerance and insulin sensitivity, increased evening concentrations of cortisol, increased levels of ghrelin, decreased levels of leptin and increased hunger and appetite. It will be discussed how sleep restriction may lead to increase in food intake and result in greater fatigue, which may favour decreased energy expenditure. Altogether, evidences point to a possible role of decreased sleep duration in the current epidemic of obesity and therefore present literature highlights the importance of getting enough good sleep for metabolic health. Many aspects still need to be clarified and intervention studies also need to be conducted.

  17. The effects of physical activity on sleep: a meta-analytic review.

    PubMed

    Kredlow, M Alexandra; Capozzoli, Michelle C; Hearon, Bridget A; Calkins, Amanda W; Otto, Michael W

    2015-06-01

    A significant body of research has investigated the effects of physical activity on sleep, yet this research has not been systematically aggregated in over a decade. As a result, the magnitude and moderators of these effects are unclear. This meta-analytical review examines the effects of acute and regular exercise on sleep, incorporating a range of outcome and moderator variables. PubMed and PsycINFO were used to identify 66 studies for inclusion in the analysis that were published through May 2013. Analyses reveal that acute exercise has small beneficial effects on total sleep time, sleep onset latency, sleep efficiency, stage 1 sleep, and slow wave sleep, a moderate beneficial effect on wake time after sleep onset, and a small effect on rapid eye movement sleep. Regular exercise has small beneficial effects on total sleep time and sleep efficiency, small-to-medium beneficial effects on sleep onset latency, and moderate beneficial effects on sleep quality. Effects were moderated by sex, age, baseline physical activity level of participants, as well as exercise type, time of day, duration, and adherence. Significant moderation was not found for exercise intensity, aerobic/anaerobic classification, or publication date. Results were discussed with regards to future avenues of research and clinical application to the treatment of insomnia.

  18. The influence of pre-sleep cognitive arousal on sleep onset processes.

    PubMed

    Wuyts, Johan; De Valck, Elke; Vandekerckhove, Marie; Pattyn, Nathalie; Bulckaert, Arnoud; Berckmans, Daniel; Haex, Bart; Verbraecken, Johan; Cluydts, Raymond

    2012-01-01

    Cognitive hyperarousal, resulting in enhanced cognitive activation, has been cited as an important contributor to the development and preservation of insomnia. To further understand this process, our study examined the effects of acutely-induced pre-sleep cognitive hyperarousal on sleep onset processes in healthy volunteers. Following an adaptation night, 15 subjects slept two nights in our sleep laboratory: one reference night and another one with cognitive arousal induction, in a counterbalanced order. In the cognitive arousal condition, subjects worked through half an hour of cognitive tasks without interference of an emotional component prior to retiring to bed. Objective sleep onset latency was significantly prolonged in the cognitive arousal condition compared to the reference condition. Significantly more high frequency activity was recorded during the first and second deep-sleep period. Moreover, differences in heart rate and proximal temperature during and after sleep onset were observed in the nights after the cognitive induction. Pre-sleep cognitive activation successfully induced a significant cognitive load and activation in our subjects to influence subsequent sleep (onset) processes.

  19. Acute response of peripheral CCr5 chemoreceptor and NK cells in individuals submitted to a single session of low-intensity strength exercise with blood flow restriction.

    PubMed

    Dorneles, Gilson Pires; Colato, Alana Schraiber; Galvão, Simone Lunelli; Ramis, Thiago Rozales; Ribeiro, Jerri Luiz; Romão, Pedro Roosevelt; Peres, Alessandra

    2016-07-01

    The purpose of this study was to compare the peripheral expression of natural killers and CCR5 in a session of low-intensity strength training with vascular occlusion and in high-intensity training. Young males were randomized into session groups of a high-intensity strength training (HI) and a session group of low-intensity strength training with vascular occlusion (LI-BFR). The exercise session consisted in knee extension and bicep curl in 80% 1RM (HI) and 30% 1RM (LI-BFR) with equalized volumes. Blood collection was made before, immediately after and 24 h after each training session. Immunophenotyping was carried out through CD195+ (CCR5) e CD3-CD16+CD56+ (NK) in peripheral blood and analysed by flow cytometry and presented in frequency (%). Peripheral frequency of NK cells showed no significant difference in LI-BFR group in time effect, while a gradual reduction of NK cells was identified in HI group in before-24 h postexercise and after-24 h postexercise comparison. However, significant differences have been found in relative change of NK cells immediately after exercise between sessions. In addition, HI and LI-BFR groups showed a significant reduction in the cells expressed CCR5 during 24 h postsession compared to the postsession, but CCR5 also differed when comparing before-24 h after session in the HI group. No differences were observed amongst the groups. LIO induced CCR5 response similar to the HI session, while the NK cells remained in similar frequency during the studied moments in LI-BFR, but not in HI group, suggesting that local hypoxia created by the blood flow restriction was able to prevent a change in the frequency of peripheral cells and a possible immunosuppression.

  20. Sleep and Stroke.

    PubMed

    Mims, Kimberly Nicole; Kirsch, Douglas

    2016-03-01

    Evidence increasingly suggests sleep disorders are associated with higher risk of cardiovascular events, including stroke. Strong data correlate untreated sleep apnea with poorer stroke outcomes and more recent evidence implicates sleep disruption as a possible etiology for increased cerebrovascular events. Also, sleep duration may affect incidence of cardiovascular events. In addition, sleep-disordered breathing, insomnia, restless legs syndrome, and parasomnias can occur as a result of cerebrovascular events. Treatment of sleep disorders improve sleep-related symptoms and may also improve stroke recovery and risk of future events.

  1. Movement disorders and sleep.

    PubMed

    Driver-Dunckley, Erika D; Adler, Charles H

    2012-11-01

    This article summarizes what is currently known about sleep disturbances in several movement disorders including Parkinson disease, essential tremor, parkinsonism, dystonia, Huntington disease, myoclonus, and ataxias. There is an association between movement disorders and sleep. In some cases the prevalence of sleep disorders is much higher in patients with movement disorder, such as rapid eye movement sleep behavior disorder in Parkinson disease. In other cases, sleep difficulties worsen the involuntary movements. In many cases the medications used to treat patients with movement disorder disturb sleep or cause daytime sleepiness. The importance of discussing sleep issues in patients with movement disorders cannot be underestimated.

  2. Sleep disorders in pregnancy.

    PubMed

    Oyiengo, Dennis; Louis, Mariam; Hott, Beth; Bourjeily, Ghada

    2014-09-01

    Sleep disturbances are common in pregnancy and may be influenced by a multitude of factors. Pregnancy physiology may predispose to sleep disruption but may also result in worsening of some underlying sleep disorders, and the de novo development of others. Apart from sleep disordered breathing, the impact of sleep disorders on pregnancy, fetal, and neonatal outcomes is poorly understood. In this article, we review the literature and discuss available data pertaining to the most common sleep disorders in perinatal women. These include restless legs syndrome, insomnia, circadian pattern disturbances, narcolepsy, and sleep-disordered breathing.

  3. [Natural factors influencing sleep].

    PubMed

    Jurkowski, Marek K; Bobek-Billewicz, Barbara

    2007-01-01

    Sleep is a universal phenomenon of human and animal lives, although the importance of sleep for homeo-stasis is still unknown. Sleep disturbances influence many behavioral and physiologic processes, leading to health complications including death. On the other hand, sleep improvement can beneficially influence the course of healing of many disorders and can be a prognostic of health recovery. The factors influencing sleep have different biological and chemical origins. They are classical hormones, hypothalamic releasing and inhibitory hormones, neuropeptides, peptides and others as cytokines, prostaglandins, oleamid, adenosine, nitric oxide. These factors regulate most physiologic processes and are likely elements integrating sleep with physiology and physiology with sleep in health and disorders.

  4. Promoting healthy sleep.

    PubMed

    Price, Bob

    2016-03-09

    Nurses are accustomed to helping others with their sleep problems and dealing with issues such as pain that may delay or interrupt sleep. However, they may be less familiar with what constitutes a healthy night's sleep. This article examines what is known about the process and purpose of sleep, and examines the ways in which factors that promote wakefulness and sleep combine to help establish a normal circadian rhythm. Theories relating to the function of sleep are discussed and research is considered that suggests that sleep deficit may lead to metabolic risks, including heart disease, obesity, type 2 diabetes mellitus and several types of cancer.

  5. Occupational Sleep Medicine.

    PubMed

    Cheng, Philip; Drake, Christopher

    2016-03-01

    Sleep and circadian rhythms significantly impact almost all aspects of human behavior and are therefore relevant to occupational sleep medicine, which is focused predominantly around workplace productivity, safety, and health. In this article, 5 main factors that influence occupational functioning are reviewed: (1) sleep deprivation, (2) disordered sleep, (3) circadian rhythms, (4) common medical illnesses that affect sleep and sleepiness, and (5) medications that affect sleep and sleepiness. Consequences of disturbed sleep and sleepiness are also reviewed, including cognitive, emotional, and psychomotor functioning and drowsy driving.

  6. Sleep disorders during pregnancy.

    PubMed

    Pien, Grace W; Schwab, Richard J

    2004-11-01

    This paper reviews the topic of sleep disorders in pregnant women. We describe changes in sleep architecture and sleep pattern during pregnancy, discuss the impact of the physical and biochemical changes of pregnancy on sleep in pregnant women and examine whether maternal-fetal outcomes may be adversely affected in women with disordered sleep. The literature on common sleep disorders affecting pregnant women, including insomnia, sleep-disordered breathing and restless legs syndrome, is reviewed and recommendations are made for the management of these disorders during pregnancy.

  7. A Novel HLA-A*0201 Restricted Peptide Derived From Cathepsin G Is An Effective Immunotherapeutic Target in Acute Myeloid Leukemia

    PubMed Central

    Zhang, Mao; Sukhumalchandra, Pariya; Enyenihi, Atim A.; St John, Lisa S.; Hunsucker, Sally A.; Mittendorf, Elizabeth A.; Sergeeva, Anna; Ruisaard, Kathryn; Atrache, Zein Al; Ropp, Patricia A.; Jakher, Haroon; Rodriguez-Cruz, Tania; Lizee, Gregory; Clise-Dwyer, Karen; Lu, Sijie; Molldrem, Jeffrey J.; Glish, Gary L.; Armistead, Paul M.; Alatrash, Gheath

    2012-01-01

    Purpose Immunotherapy targeting aberrantly expressed leukemia associated antigens (LAA) has shown promise in the management of acute myeloid leukemia (AML). However, because of the heterogeneity and clonal evolution that is a feature of myeloid leukemia, targeting single peptide epitopes has had limited success, highlighting the need for novel antigen discovery. In this study, we characterize the role of the myeloid azurophil granule protease cathepsin G (CG) as a novel target for AML immunotherapy. Experimental Design We used Immune Epitope Database and in vitro binding assays to identify immunogenic epitopes derived from CG. Flow cytometry, immunoblotting and confocal microscopy were used to characterize the expression and processing of CG in AML patient samples, leukemia stem cells and normal neutrophils. Cytotoxicity assays determined the susceptibility of AML to CG-specific cytotoxic T lymphocytes (CTL). Dextramer staining and cytokine flow cytometry were performed to characterize the immune response to CG in patients. Results CG was highly expressed and ubiquitinated in AML blasts, and was localized outside granules in compartments that facilitate antigen presentation. We identified five HLA-A*0201 binding nonameric peptides (CG1-CG5) derived from CG, and demonstrated immunogenicity of the highest HLA-A*0201 binding peptide, CG1. We showed killing of primary AML by CG1-CTL, but not normal bone marrow. Blocking HLA-A*0201 abrogated CG1-CTL mediated cytotoxicity, further confirming HLA-A*0201 dependent killing. Finally, we demonstrated functional CG1-CTLs in peripheral blood from AML patients following allogeneic stem cell transplantation. Conclusion CG is aberrantly expressed and processed in AML and is a novel immunotherapeutic target that warrants further development. PMID:23147993

  8. Isolated sleep paralysis elicited by sleep interruption.

    PubMed

    Takeuchi, T; Miyasita, A; Sasaki, Y; Inugami, M; Fukuda, K

    1992-06-01

    We elicited isolated sleep paralysis (ISP) from normal subjects by a nocturnal sleep interruption schedule. On four experimental nights, 16 subjects had their sleep interrupted for 60 minutes by forced awakening at the time when 40 minutes of nonrapid eye movement (NREM) sleep had elapsed from the termination of rapid eye movement (REM) sleep in the first or third sleep cycle. This schedule produced a sleep onset REM period (SOREMP) after the interruption at a high rate of 71.9%. We succeeded in eliciting six episodes of ISP in the sleep interruptions performed (9.4%). All episodes of ISP except one occurred from SOREMP, indicating a close correlation between ISP and SOREMP. We recorded verbal reports about ISP experiences and recorded the polysomnogram (PSG) during ISP. All of the subjects with ISP experienced inability to move and were simultaneously aware of lying in the laboratory. All but one reported auditory/visual hallucinations and unpleasant emotions. PSG recordings during ISP were characterized by a REM/W stage dissociated state, i.e. abundant alpha electroencephalographs and persistence of muscle atonia shown by the tonic electromyogram. Judging from the PSG recordings, ISP differs from other dissociated states such as lucid dreaming, nocturnal panic attacks and REM sleep behavior disorders. We compare some of the sleep variables between ISP and non-ISP nights. We also discuss the similarities and differences between ISP and sleep paralysis in narcolepsy.

  9. Effects Of Moderate Sleep Deprivation and Low-Dose Alcohol On Driving Simulator Performance and Perception In Young Men

    PubMed Central

    Vakulin, A.; Baulk, S.D.; Catcheside, P.G.; Anderson, R.; van den Heuvel, C.J.; Banks, S.; McEvoy, R.D.

    2007-01-01

    Study Objectives: To determine the combined effects of sleep restriction and low-dose alcohol on driving simulator performance, EEG, and subjective levels of sleepiness and performance in the mid-afternoon. Design: Repeated measures with 4 experimental conditions. Normal sleep without alcohol, sleep restriction alone (4 hours) and sleep restriction in combination with 2 different low blood alcohol concentrations (0.025 g/dL and 0.035 g/dL). Setting: Sleep Laboratory, Adelaide Institute for Sleep Health. Participants: Twenty-one healthy young men, aged 18–30 years, mean (±SD) = 22.5(±3.7) years, BMI = 25(±6.7) kg/m2; all had normal sleep patterns and were free of sleep disorders. Measurements: Participants completed a 70-minute simulated driving session, commencing at 14:00. Driving parameters included steering deviation, braking reaction time, and number of collisions. Alpha and theta EEG activity and subjective driving performance and sleepiness were also measured throughout the driving task. Results: All measures were significantly affected by time. Steering deviation increased significantly when sleep restriction was combined with the higher dose alcohol. This combination also resulted in a significant increase in alpha/theta EEG activity throughout the drive, as well as greater subjective sleepiness and negative driving performance ratings compared to control or sleep restriction alone. Discussion: These data indicate that combining low-dose alcohol with moderate sleep restriction results in significant decrements to subjective alertness and performance as well as to some driving performance and EEG parameters. This highlights the potential risks of driving after consumption of low and legal doses of alcohol when also sleep restricted. Citation: Vakulin A; Baulk SD; Catcheside PG; Anderson R; van den Heuvel CJ; Banks S; McEvoy RD. Effects of moderate sleep deprivation and low-dose alcohol on driving simulator performance and perception in young men. SLEEP

  10. Sleep in adolescents of different socioeconomic status: a systematic review

    PubMed Central

    Felden, Érico Pereira Gomes; Leite, Carina Raffs; Rebelatto, Cleber Fernando; Andrade, Rubian Diego; Beltrame, Thais Silva

    2015-01-01

    Objective: To analyze the sleep characteristics in adolescents from different socioeconomic levels. Data source: Original studies found in the MEDLINE/PubMed and SciELO databases without language and period restrictions that analyzed associations between sleep variables and socioeconomic indicators. The initial search resulted in 99 articles. After reading the titles and abstracts and following inclusion and exclusion criteria, 12 articles with outcomes that included associations between sleep variables (disorders, duration, quality) and socioeconomic status (ethnicity, family income, and social status) were analyzed. Data synthesis: The studies associating sleep with socioeconomic variables are recent, published mainly after the year 2000. Half of the selected studies were performed with young Americans, and only one with Brazilian adolescents. Regarding ethnic differences, the studies do not have uniform conclusions. The main associations found were between sleep variables and family income or parental educational level, showing a trend among poor, low social status adolescents to manifest low duration, poor quality of sleeping patterns. Conclusions: The study found an association between socioeconomic indicators and quality of sleep in adolescents. Low socioeconomic status reflects a worse subjective perception of sleep quality, shorter duration, and greater daytime sleepiness. Considering the influence of sleep on physical and cognitive development and on the learning capacity of young individuals, the literature on the subject is scarce. There is a need for further research on sleep in different realities of the Brazilian population. PMID:26298657

  11. Dynamic Circadian Modulation in a Biomathematical Model for the Effects of Sleep and Sleep Loss on Waking Neurobehavioral Performance

    PubMed Central

    McCauley, Peter; Kalachev, Leonid V.; Mollicone, Daniel J.; Banks, Siobhan; Dinges, David F.; Van Dongen, Hans P. A.

    2013-01-01

    Recent experimental observations and theoretical advances have indicated that the homeostatic equilibrium for sleep/wake regulation—and thereby sensitivity to neurobehavioral impairment from sleep loss—is modulated by prior sleep/wake history. This phenomenon was predicted by a biomathematical model developed to explain changes in neurobehavioral performance across days in laboratory studies of total sleep deprivation and sustained sleep restriction. The present paper focuses on the dynamics of neurobehavioral performance within days in this biomathematical model of fatigue. Without increasing the number of model parameters, the model was updated by incorporating time-dependence in the amplitude of the circadian modulation of performance. The updated model was calibrated using a large dataset from three laboratory experiments on psychomotor vigilance test (PVT) performance, under conditions of sleep loss and circadian misalignment; and validated using another large dataset from three different laboratory experiments. The time-dependence of circadian amplitude resulted in improved goodness-of-fit in night shift schedules, nap sleep scenarios, and recovery from prior sleep loss. The updated model predicts that the homeostatic equilibrium for sleep/wake regulation—and thus sensitivity to sleep loss—depends not only on the duration but also on the circadian timing of prior sleep. This novel theoretical insight has important implications for predicting operator alertness during work schedules involving circadian misalignment such as night shift work. Citation: McCauley P; Kalachev LV; Mollicone DJ; Banks S; Dinges DF; Van Dongen HPA. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance. SLEEP 2013;36(12):1987-1997. PMID:24293775

  12. Sleep deprivation and antidepressant treatment

    PubMed Central

    Voderholzer, Ulrich

    2003-01-01

    The mood-improving effect of sleep deprivation (SD) in depression is even today still not fully understood. Despite the fact that mood and cognitive functions are lowered by prolonged sleep loss and despite convincing data that insomnia is a strong risk factor for subsequent depression,1 acute SD for one night or even partial SD in the second half of the night improves mood in about 60% of depressed patients the day after.2,3 In this respect, among alt types of antidepressant treatments, SD elicits the fastest results, faster even than electroconvulsive therapy. Many authors correlate the likelihood of responding to SD with clinical variables. A summary of predictors is listed in Table I. PMID:22033748

  13. Internalizing and externalizing traits predict changes in sleep efficiency in emerging adulthood: an actigraphy study

    PubMed Central

    Yaugher, Ashley C.; Alexander, Gerianne M.

    2015-01-01

    Research on psychopathology and experimental studies of sleep restriction support a relationship between sleep disruption and both internalizing and externalizing disorders. The objective of the current study was to extend this research by examining sleep, impulsivity, antisocial personality traits, and internalizing traits in a university sample. Three hundred and eighty six individuals (161 males) between the ages of 18 and 27 years (M = 18.59, SD = 0.98) wore actigraphs for 7 days and completed established measures of disorder-linked personality traits and sleep quality (i.e., Personality Assessment Inventory (PAI), Triarchic Psychopathy Measure, Barratt Impulsiveness Scale-11, and the Pittsburgh Sleep Quality Index). As expected, sleep measures and questionnaire scores fell within the normal range of values and sex differences in sleep and personality were consistent with previous research results. Similar to findings in predominantly male forensic psychiatric settings, higher levels of impulsivity predicted poorer subjective sleep quality in both women and men. Consistent with well-established associations between depression and sleep, higher levels of depression in both sexes predicted poorer subjective sleep quality. Bidirectional analyses showed that better sleep efficiency decreases depression. Finally, moderation analyses showed that gender does have a primary role in sleep efficiency and marginal effects were found. The observed relations between sleep and personality traits in a typical university sample add to converging evidence of the relationship between sleep and psychopathology and may inform our understanding of the development of psychopathology in young adulthood. PMID:26500575

  14. The treatment of sleep disorders.

    PubMed

    Smeyatsky, N; Baldwin, D; Botros, W; Gura, R; Kurian, T; Lambert, M T; Patel, A G; Steinert, J; Priest, R G

    1992-05-02

    Narcolepsy is clinically associated with cataplexy, sleep paralysis and hypnagogic hallucinations. It is treated by reassurance (that there is no physical disease) and by stimulants such as ephedrine and amphetamine on an intermittent basis. The special tricyclic antidepressant clomipramine is also used, and mono-amine oxidase inhibitors (MAOIs) are useful in theory. Obstructive sleep apnoea is an important and often unrecognised cause of daytime somnolence. It is treated by weight reduction (pickwickian syndrome), hormones, or recently, with continuous positive pressure apparatus. Night terrors (pavor nocturnus) and sleepwalking typically occur during deep sleep (stage 3 and 4 throughout the episode) in children. In a night terror the child sits up with a scream, with eyes open, but inaccessible. He eventually falls asleep calmly. Sleepwalking, too, shows the features of inaccessibility and subsequent amnesia for the episode. Both conditions are normally treated with reassurance (to the parents) but may occasionally warrant benzodiazepines. Enuresis usually occurs in non-rapid eye movement (NREM) sleep, especially stages 3 and 4. The reason for the efficacy of tricyclic antidepressants is not precisely known. Delirium tremens (DT) is treated as a rebound excess of REM sleep, with benzodiazepines and other drugs. It is the withdrawal syndrome (with or without major seizures) to the barbiturate-alcohol group of drugs, which includes alcohol, chloral, paraldehyde, glutethimide, methylprylone, ethchlorvynol, meprobamate and meprobamate-diphenhydramine. Insomnia may be treated by the above drugs, by analgesics, antidepressants, major tranquillisers (neuroleptics) and miscellaneous other compounds. For the majority of patients, however, the most suitable group seems to be the benzodiazepines. The benzodiazepines are much safer than their predecessors, in both acute and chronic usage.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. How Is Sleep Apnea Treated?

    MedlinePlus

    ... Topics CPAP High Blood Pressure Overweight and Obesity Sleep Deprivation and Deficiency Sleep Studies Send a link to ... For more information, go to the Health Topics Sleep Deprivation and Deficiency article.) If treatment and enough sleep ...

  16. Sleep and the endocrine system.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2015-07-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed.

  17. Sleep and the Endocrine System.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2016-03-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed.

  18. Sleep to grow smart?

    PubMed

    Volk, Carina; Huber, Reto

    2015-01-01

    Sleep is undisputable an essential part of our life, if we do not sleep enough we feel the consequences the next day. The importance of sleep for healthy brain functioning has been well studied in adults, but less is known for the role of sleep in the paediatric age. Childhood and adolescence is a critical phase for brain development. The increased need for sleep during this developmental phase fosters the growing recognition for a central role of sleep during development. In this review we summarize the findings that demonstrate a close relationship between sleep and brain maturation, discuss the consequences of insufficient sleep during childhood and adolescence and outline initial attempts that have been made in order to improve sleep in this age range.

  19. Patterns of sleep behaviour.

    NASA Technical Reports Server (NTRS)

    Webb, W. B.

    1972-01-01

    Discussion of the electroencephalogram as the critical measurement procedure for sleep research, and survey of major findings that have emerged in the last decade on the presence of sleep within the twenty-four-hour cycle. Specifically, intrasleep processes, frequency of stage changes, sequence of stage events, sleep stage amounts, temporal patterns of sleep, and stability of intrasleep pattern in both man and lower animals are reviewed, along with some circadian aspects of sleep, temporal factors, and number of sleep episodes. It is felt that it is particularly critical to take the presence of sleep into account whenever performance is considered. When it is recognized that responsive performance is extremely limited during sleep, it is easy to visualize the extent to which performance is controlled by sleep itself.

  20. [Neurological sleep disorders].

    PubMed

    Khatami, Ramin

    2014-11-01

    Neurological sleep disorders are common in the general population and may have a strong impact on quality of life. General practitioners play a key role in recognizing and managing sleep disorders in the general population. They should therefore be familiar with the most important neurological sleep disorders. This review provides a comprehensive overview of the most prevalent and important neurological sleep disorders, including Restless legs syndrome (with and without periodic limb movements in sleep), narcolepsy, NREM- and REM-sleep parasomnias and the complex relationship between sleep and epilepsies. Although narcolepsy is considered as a rare disease, recent discoveries in narcolepsy research provided insight in the function of brain circuitries involved in sleep wake regulation. REM sleep behavioral parasomnia (RBD) is increasingly recognized to represent an early manifestation of neurodegenerative disorders, in particular evolving synucleinopathies. Early diagnosis may thus open new perspectives for developing novel treatment options by targeting neuroprotective substances.

  1. Sleep: a health imperative.

    PubMed

    Luyster, Faith S; Strollo, Patrick J; Zee, Phyllis C; Walsh, James K

    2012-06-01

    Chronic sleep deficiency, defined as a state of inadequate or mistimed sleep, is a growing and underappreciated determinant of health status. Sleep deprivation contributes to a number of molecular, immune, and neural changes that play a role in disease development, independent of primary sleep disorders. These changes in biological processes in response to chronic sleep deficiency may serve as etiological factors for the development and exacerbation of cardiovascular and metabolic diseases and, ultimately, a shortened lifespan. Sleep deprivation also results in significant impairments in cognitive and motor performance which increase the risk of motor vehicle crashes and work-related injuries and fatal accidents. The American Academy of Sleep Medicine and the Sleep Research Society have developed this statement to communicate to national health stakeholders the current knowledge which ties sufficient sleep and circadian alignment in adults to health.

  2. Parenting and infant sleep.

    PubMed

    Sadeh, Avi; Tikotzky, Liat; Scher, Anat

    2010-04-01

    Infant sleep undergoes dramatic evolution during the first year of life. This process is driven by underlying biological forces but is highly dependent on environmental cues including parental influences. In this review the links between infant sleep and parental behaviors, cognitions, emotions and relationships as well as psychopathology are examined within the context of a transactional model. Parental behaviors, particularly those related to bedtime interactions and soothing routines, are closely related to infant sleep. Increased parental involvement is associated with more fragmented sleep. Intervention based on modifying parental behaviors and cognitions have direct effect on infant sleep. It appears that parental personality, psychopathology and related cognitions and emotions contribute to parental sleep-related behaviors and ultimately influence infant sleep. However, the links are bidirectional and dynamic so that poor infant sleep may influence parental behaviors and poor infant sleep appears to be a family stressor and a risk factor for maternal depression.

  3. Subjective and objective assessment of sleep in adolescents with mild traumatic brain injury.

    PubMed

    Tham, See Wan; Fales, Jessica; Palermo, Tonya M

    2015-06-01

    There is increased recognition that sleep problems may develop in children and adolescents after mild traumatic brain injury (mTBI). However, few studies have utilized both subjective and objective measures to comprehensively assess sleep problems in the pediatric population following the acute post-TBI period. The aims of this study were to compare sleep in adolescents with mTBI to healthy adolescents using subjective and objective measures, and to identify the clinical correlates associated with sleep problems. One hundred adolescents (50 adolescents with mTBI recruited from three to twelve months post-injury and 50 healthy adolescents) completed questionnaires assessing sleep quality, depression, and pain symptoms, and underwent 10 day actigraphic assessment of sleep patterns. Adolescents with mTBI reported poorer sleep quality and demonstrated significantly shorter actigraphic-measured sleep duration, poorer sleep efficiency, and more wake time after onset of sleep, compared with healthy adolescents (all, p<0.05). For both groups of adolescents, poorer self-reported sleep quality was predicted by greater depressive symptoms. Poorer actigraphic sleep efficiency was predicted by membership in the mTBI group after controlling for age, sex, depressive symptoms, and presence of pain. Our findings suggest that adolescents may experience subjective and objective sleep disturbances up to one year following mTBI. These findings require further replication in larger samples. Additionally, research is needed to identify possible mechanisms for poor sleep in youth with mTBI.

  4. Shortened night sleep impairs facial responsiveness to emotional stimuli.

    PubMed

    Schwarz, Johanna F A; Popp, Roland; Haas, Jessica; Zulley, Jürgen; Geisler, Peter; Alpers, Georg W; Osterheider, Michael; Eisenbarth, Hedwig

    2013-04-01

    Sleep deprivation deteriorates mood, impairs the recognition of facial expressions, and affects the ability to regulate emotions. The present study investigated the effect of partial sleep deprivation on facial responses to emotional stimuli. Thirty-three healthy undergraduates were tested twice: after a night with (i) 8h and (ii) 4h sleep. Self-reported sleepiness and sustained attention (Psychomotor Vigilance Task) were assessed. Emotional reactivity was measured with facial Electromyogram (EMG) while participants were asked to respond with either compatible or incompatible facial muscles to emotional stimuli in order to study whether partial sleep deprivation caused slower reactions mainly in response to incompatible stimuli (due to an additional effort to suppress the compatible reaction caused by decreased inhibitory control) or in response to both compatible and incompatible stimuli. Self-reported sleepiness and reaction times in a sustained attention task significantly increased after one night of partial sleep deprivation. Facial reactions to emotional stimuli were decelerated. No significant interaction between sleep restriction and compatibility of the muscle to the picture valence could be observed. Hence, volitional facial reactions in response to emotional stimuli were slower after one night of reduced sleep, but affective inhibitory control was not significantly impaired. However, slowed facial responding to emotional stimuli may affect social interaction after sleep restriction.

  5. Novel immunodominant peptide presentation strategy: a featured HLA-A*2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein.

    PubMed

    Liu, Jun; Wu, Peng; Gao, Feng; Qi, Jianxun; Kawana-Tachikawa, Ai; Xie, Jing; Vavricka, Christopher J; Iwamoto, Aikichi; Li, Taisheng; Gao, George F

    2010-11-01

    Antigenic peptides recognized by virus-specific cytotoxic T lymphocytes (CTLs) are presented by major histocompatibility complex (MHC; or human leukocyte antigen [HLA] in humans) molecules, and the peptide selection and presentation strategy of the host has been studied to guide our understanding of cellular immunity and vaccine development. Here, a severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid (N) protein-derived CTL epitope, N1 (QFKDNVILL), restricted by HLA-A*2402 was identified by a series of in vitro studies, including a computer-assisted algorithm for prediction, stabilization of the peptide by co-refolding with HLA-A*2402 heavy chain and β(2)-microglobulin (β(2)m), and T2-A24 cell binding. Consequently, the antigenicity of the peptide was confirmed by enzyme-linked immunospot (ELISPOT), proliferation assays, and HLA-peptide complex tetramer staining using peripheral blood mononuclear cells (PBMCs) from donors who had recovered from SARS donors. Furthermore, the crystal structure of HLA-A*2402 complexed with peptide N1 was determined, and the featured peptide was characterized with two unexpected intrachain hydrogen bonds which augment the central residues to bulge out of the binding groove. This may contribute to the T-cell receptor (TCR) interaction, showing a host immunodominant peptide presentation strategy. Meanwhile, a rapid and efficient strategy is presented for the determination of naturally presented CTL epitopes in the context of given HLA alleles of interest from long immunogenic overlapping peptides.

  6. Neuroendocrine and Peptidergic Regulation of Stress-Induced REM Sleep Rebound

    PubMed Central

    Machado, Ricardo Borges; Suchecki, Deborah

    2016-01-01

    Sleep homeostasis depends on the length and quality (occurrence of stressful events, for instance) of the preceding waking time. Forced wakefulness (sleep deprivation or sleep restriction) is one of the main tools used for the understanding of mechanisms that play a role in homeostatic processes involved in sleep regulation and their interrelations. Interestingly, forced wakefulness for periods longer than 24 h activates stress response systems, whereas stressful events impact on sleep pattern. Hypothalamic peptides (corticotropin-releasing hormone, prolactin, and the CLIP/ACTH18–39) play an important role in the expression of stress-induced sleep effects, essentially by modulating rapid eye movement sleep, which has been claimed to affect the organism resilience to the deleterious effects of stress. Some of the mechanisms involved in the generation and regulation of sleep and the main peptides/hypothalamic hormones involved in these responses will be discussed in this review. PMID:28066328

  7. Delayed sleep phase disorder: clinical perspective with a focus on light therapy

    PubMed Central

    Figueiro, Mariana G

    2016-01-01

    Delayed sleep phase disorder (DSPD) is common among adolescents and further increases their susceptibility to chronic sleep restriction and associated detrimental outcomes, including increased risk of depression, drug and alcohol use, behavioral problems, and poor scholastic performance. DSPD is characterized by sleep onset that occurs significantly later than desired bedtimes and societal norms. Individuals with DSPD exhibit long sleep latencies when attempting to sleep at conventional bedtimes. Circadian sleep disorders such as DSPD can occur when there is misalignment between sleep timing and societal norms. This review discusses studies using light therapy to advance the timing of sleep in adolescents and college students, in particular on those suffering from DSPD. A discussion on how to increase effectiveness of light therapy in the field will also be provided. PMID:27110143

  8. [Insomnia and sleep apnea].

    PubMed

    Bayon, V; Léger, D

    2014-02-01

    The presence of insomnia in patients with sleep apnea seems paradoxical as excessive sleepiness is one of the major symptoms of sleep apnea. However, recent research has shown that about half of patients with sleep disorder breathing experience insomnia. Moreover, patients complaining of insomnia or non-restorative sleep may also present with moderate to severe sleep apnea syndromes. Thus, in recent years, clinicians have become more aware of the possible association between insomnia and sleep apnea. This article reviews data published on different aspects of this co-occurrence.

  9. Childhood epilepsy and sleep

    PubMed Central

    Al-Biltagi, Mohammed A

    2014-01-01

    Sleep and epilepsy are two well recognized conditions that interact with each other in a complex bi-directional way. Some types of epilepsies have increased activity during sleep disturbing it; while sleep deprivation aggravates epilepsy due to decreased seizure threshold. Epilepsy can deteriorate the sleep-related disorders and at the same time; the parasomnias can worsen the epilepsy. The secretion of sleep-related hormones can also be affected by the occurrence of seizures and supplementation of epileptic patients with some of these sleep-related hormones may have a beneficial role in controlling epilepsy. PMID:25254184

  10. REM Sleep Rebound as an Adaptive Response to Stressful Situations

    PubMed Central

    Suchecki, Deborah; Tiba, Paula Ayako; Machado, Ricardo Borges

    2011-01-01

    Stress and sleep are related to each other in a bidirectional way. If on one hand poor or inadequate sleep exacerbates emotional, behavioral, and stress-related responses, on the other hand acute stress induces sleep rebound, most likely as a way to cope with the adverse stimuli. Chronic, as opposed to acute, stress impairs sleep and has been claimed to be one of the triggering factors of emotional-related sleep disorders, such as insomnia, depressive- and anxiety-disorders. These outcomes are dependent on individual psychobiological characteristics, conferring even more complexity to the stress-sleep relationship. Its neurobiology has only recently begun to be explored, through animal models, which are also valuable for the development of potential therapeutic agents and preventive actions. This review seeks to present data on the effects of stress on sleep and the different approaches used to study this relationship as well as possible neurobiological underpinnings and mechanisms involved. The results of numerous studies in humans and animals indicate that increased sleep, especially the rapid eye movement phase, following a stressful situation is an important adaptive behavior for recovery. However, this endogenous advantage appears to be impaired in human beings and rodent strains that exhibit high levels of anxiety and anxiety-like behavior. PMID:22485105

  11. Sleep physiology and sleep disorders in childhood

    PubMed Central

    El Shakankiry, Hanan M

    2011-01-01

    Sleep has long been considered as a passive phenomenon, but it is now clear that it is a period of intense brain activity involving higher cortical functions. Overall, sleep affects every aspect of a child’s development, particularly higher cognitive functions. Sleep concerns are ranked as the fifth leading concern of parents. Close to one third of all children suffer from sleep disorders, the prevalence of which is increased in certain pediatric populations, such as children with special needs, children with psychiatric or medical diagnoses and children with autism or pervasive developmental disorders. The paper reviews sleep physiology and the impact, classification, and management of sleep disorders in the pediatric age group. PMID:23616721

  12. Sleep and sleep disorders in Don Quixote.

    PubMed

    Iranzo, Alex; Santamaria, Joan; de Riquer, Martín

    2004-01-01

    In Don Quijote de la Mancha, Miguel de Cervantes presents Don Quixote as an amazing character of the 17th century who suffers from delusions and illusions, believing himself to be a medieval knight errant. Besides this neuropsychiatric condition, Cervantes included masterful descriptions of several sleep disorders such as insomnia, sleep deprivation, disruptive loud snoring and rapid eye movement sleep behaviour disorder. In addition, he described the occurrence of physiological, vivid dreams and habitual, post-prandial sleepiness--the siesta. Cervantes' concept of sleep as a passive state where all cerebral activities are almost absent is in conflict with his description of abnormal behaviours during sleep and vivid, fantastic dreams. His concept of sleep was shared by his contemporary, Shakespeare, and could have been influenced by the reading of the classical Spanish book of psychiatry Examen de Ingenios (1575).