Sample records for acute spinal injury

  1. Acute spinal injury after centrifuge training in asymptomatic fighter pilots.

    PubMed

    Kang, Kyung-Wook; Shin, Young Ho; Kang, Seungcheol

    2015-04-01

    Many countries have hypergravity training centers using centrifuges for pilots to cope with a high gravity (G) environment. The high G training carries potential risk for the development of spinal injury. However, no studies evaluated the influence of centrifuge training on the spines of asymptomatic fighter pilots on a large scale. Study subjects were 991 male fighter pilots with high G training at one institution. Subject variables included information about physical characteristics, flight hours of pilots prior to the training, and G force exposure related factors during training. The two dependent variables were whether the pilots developed acute spinal injury after training and the severity of the injury (major/minor). The incidence of acute spinal injury after high G training was 2.3% (23 of 991 subjects). There were 19 subjects who developed minor injury and 4 subjects who developed a herniated intervertebral disc, which is considered a major injury. In multivariate analysis, only the magnitude of G force during training was significantly related to the development of acute spinal injury. However, there was no significant factor related to the severity of the injury. These results suggest that high G training could cause negative effects on fighter pilots' spines. The magnitude of G force during training seemed to be the most significant factor affecting the occurrence of acute spinal injury.

  2. Update on traumatic acute spinal cord injury. Part 2.

    PubMed

    Mourelo Fariña, M; Salvador de la Barrera, S; Montoto Marqués, A; Ferreiro Velasco, M E; Galeiras Vázquez, R

    The aim of treatment in acute traumatic spinal cord injury is to preserve residual neurologic function, avoid secondary injury, and restore spinal alignment and stability. In this second part of the review, we describe the management of spinal cord injury focusing on issues related to short-term respiratory management, where the preservation of diaphragmatic function is a priority, with prediction of the duration of mechanical ventilation and the need for tracheostomy. Surgical assessment of spinal injuries based on updated criteria is discussed, taking into account that although the type of intervention depends on the surgical team, nowadays treatment should afford early spinal decompression and stabilization. Within a comprehensive strategy in spinal cord injury, it is essential to identify and properly treat patient anxiety and pain associated to spinal cord injury, as well as to prevent and ensure the early diagnosis of complications secondary to spinal cord injury (thromboembolic disease, gastrointestinal and urinary disorders, pressure ulcers). Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  3. Demographics of acute admissions to a National Spinal Injuries Unit.

    PubMed

    Lenehan, B; Boran, S; Street, J; Higgins, T; McCormack, D; Poynton, A R

    2009-07-01

    This prospective demographic study was undertaken to review the epidemiology and demographics of all acute admissions to the National Spinal Injuries Unit in Ireland for the 5 years to 2003. The study was conducted at the National Spinal Injuries Unit, Mater Miscericordiae University Hospital, Dublin, Ireland. Records of all patients admitted to our unit from 1999 to 2003 were compiled from a prospective computerized spinal database. In this 5-year period, 942 patients were acutely hospitalized at the National Spinal Injuries Unit. There were 686 (73%) males and 256 (27%) females, with an average age of 32 years (range 16-84 years). The leading cause of admission with a spinal injury was road traffic accidents (42%), followed by falls (35%), sport (11%), neoplasia (7.5%) and miscellaneous (4.5%). The cervical spine was most commonly affected (51%), followed by lumbar (28%) and thoracic (21%). On admission 38% of patients were ASIA D or worse, of which one-third were AISA A. Understanding of the demographics of spinal column injuries in unique populations can help us to develop preventative and treatment strategies at both national and international levels.

  4. Management of acute traumatic spinal cord injuries.

    PubMed

    Shank, C D; Walters, B C; Hadley, M N

    2017-01-01

    Acute traumatic spinal cord injury (SCI) is a devastating disease process affecting tens of thousands of people across the USA each year. Despite the increase in primary prevention measures, such as educational programs, motor vehicle speed limits, automobile running lights, and safety technology that includes automobile passive restraint systems and airbags, SCIs continue to carry substantial permanent morbidity and mortality. Medical measures implemented following the initial injury are designed to limit secondary insult to the spinal cord and to stabilize the spinal column in an attempt to decrease devastating sequelae. This chapter is an overview of the contemporary management of an acute traumatic SCI patient from the time of injury through the stay in the intensive care unit. We discuss initial triage, immobilization, and transportation of the patient by emergency medical services personnel to a definitive treatment facility. Upon arrival at the emergency department, we review initial trauma protocols and the evidence-based recommendations for radiographic evaluation of the patient's vertebral column. Finally, we outline closed cervical spine reduction and various aggressive medical therapies aimed at improving neurologic outcome. © 2017 Elsevier B.V. All rights reserved.

  5. Transcutaneous electrical neurostimulation in musculoskeletal pain of acute spinal cord injuries.

    PubMed

    Richardson, R R; Meyer, P R; Cerullo, L J

    1980-01-01

    Cervical, thoracic, thoracolumbar, and lumbar fractures associated with physiologic complete or incomplete spinal cord injuries frequently have severe soft-tissue injury as well as severe pain associated with the site or area of injury. Transcutaneous electrical neurostimulation has proved effective in the treatment of various causes of severe acute and chronic intractable pains. We applied this modality to a group of 20 patients who had acute spinal cord injuries and pain associated with severe, extensive soft-tissue injury. Its advantages include ease of application, lack of major complications, increased intestinal peristalsis, and avoidance of narcotic analgesic medications. It also produced significant (greater than 50%) pain relief in 75% of patients treated by transcutaneous electrical neurostimulation.

  6. Neuroprotection and Acute Spinal Cord Injury: A Reappraisal

    PubMed Central

    Hall, Edward D.; Springer, Joe E.

    2004-01-01

    Summary: It has long been recognized that much of the post-traumatic degeneration of the spinal cord following injury is caused by a multi-factorial secondary injury process that occurs during the first minutes, hours, and days after spinal cord injury (SCI). A key biochemical event in that process is reactive oxygen-induced lipid peroxidation (LP). In 1990 the results of the Second National Acute Spinal Cord Injury Study (NASCIS II) were published, which showed that the administration of a high-dose regimen of the glucocorticoid steroid methylprednisolone (MP), which had been previously shown to inhibit post-traumatic LP in animal models of SCI, could improve neurological recovery in spinal-cord-injured humans. This resulted in the registration of high-dose MP for acute SCI in several countries, although not in the U.S. Nevertheless, this treatment quickly became the standard of care for acute SCI since the drug was already on the U.S. market for many other indications. Subsequently, it was demonstrated that the non-glucocorticoid 21-aminosteroid tirilazad could duplicate the antioxidant neuroprotective efficacy of MP in SCI models, and evidence of human efficacy was obtained in a third NASCIS trial (NASCIS III). In recent years, the use of high-dose MP in acute SCI has become controversial largely on the basis of the risk of serious adverse effects versus what is perceived to be on average a modest neurological benefit. The opiate receptor antagonist naloxone was also tested in NASCIS II based upon the demonstration of its beneficial effects in SCI models. Although it did not a significant overall effect, some evidence of efficacy was seen in incomplete (i.e., paretic) patients. The monosialoganglioside GM1 has also been examined in a recently completed clinical trial in which the patients first received high-dose MP treatment. However, GM1 failed to show any evidence of a significant enhancement in the extent of neurological recovery over the level afforded by

  7. Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury

    DTIC Science & Technology

    2017-09-01

    oxygen delivery and oxygen consumption . The oxygen portion of the Oxylite probe emits short pulses of blue LED light resulting in a fluorescent...Award Number: W81XWH-16-1-0602 TITLE: Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation

  8. Optical monitoring of spinal cord subcellular damage after acute spinal cord injury

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.

    2018-02-01

    Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, p<0.05) was observed following SCI, indicating progressive SC cellular damage at the injury site. Elevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.

  9. [The metabolic profilings study of serum and spinal cord from acute spinal cord injury rats ¹H NMR spectroscopy].

    PubMed

    Hu, Hua-Hui; Huang, Xiao-Long; Quan, Ren-Fu; Yang, Zong-Bao; Xu, Jing-Jing

    2017-02-25

    To establish the rat model of acute spinal cord injury, followed by aprimary study on this model with ¹H NMR based on metabonomics and to explore the metabonomics and biomarkers of spinal cord injury rat. Twenty eight-week-old adult male SD rats of clean grade, with body weight of (200±10) g, were divided into sham operation group and model group in accordance with the law of random numbers, and every group had 10 rats. The rats of sham operation group were operated without damaging the spinal cord, and rats of model group were made an animal model of spinal cord incomplete injury according to the modified Allen's method. According to BBB score to observate the motor function of rats on the 1th, 5th, and 7th days after surgery. Postoperative spinal cord tissue was collected in order to pathologic observation at the 7th day, and the metabolic profilings of serum and spinal cord from spinal cord injury rats were studied by ¹H NMR spectroscopy. The hindlimb motion of rats did not obviously change in sham operation group, there was no significant difference at each time point;and rats of model group occurred flaccid paralysis of both lower extremities, there was a significant difference at each time; there was significant differences between two groups at each time. Pathological results showed the spinal cord structure was normal with uniform innervation in shame group, while in model group, the spinal cord structure was mussy, and the neurons were decreased, with inflammatory cells and necrotic tissue. Analysis of metabonomics showed that concentration of very low density fat protein (VLDL), low density fat protein (LDL), glutamine, citric acid, dimethylglycine (DMG) in the serum and glutathione, 3-OH-butyrate, N-Acetyl-L-aspartic acid (NAA), glycerophosphocholine (GPC), glutamic acid, and ascorbate in spinal cord had significant changes( P <0.05). There are significant differences in metabolic profile from serum and spinal cord sample between model group and sham

  10. Rhabdomyolysis and acute kidney injury in patients with traumatic spinal cord injury

    PubMed Central

    Galeiras, Rita; Mourelo, Mónica; Pértega, Sonia; Lista, Amanda; Ferreiro, Mª Elena; Salvador, Sebastián; Montoto, Antonio; Rodríguez, Antonio

    2016-01-01

    Background: Patients with acute traumatic spinal cord injuries (SCIs) exhibit factors that, in other populations, have been associated with rhabdomyolysis. Purpose: The aim of the study is to determine the incidence of rhabdomyolysis in patients with acute traumatic SCI admitted to the Intensive Care Unit (ICU), as well as the development of secondary acute kidney injury and associated factors. Study Design and Setting: This was an observational, retrospective study. Patient Sample: All adult patients admitted to the ICU with acute traumatic SCI who presented rhabdomyolysis, diagnosed through creatine phosphokinase (CPK) levels >500 IU/L. Outcome Measures: Incidence of rhabdomyolysis and subsequent renal dysfunction was calculated. Materials and Methods: Data about demographic variables, comorbidity, rhabdomyolysis risk factors, and variables involving SCI, severity scores, and laboratory parameters were obtained from clinical records. Multivariate logistic regression was used to identify renal injury risk factors. Results: In 2006–2014, 200 patients with acute SCI were admitted to ICU. Of these, 103 had rhabdomyolysis (incidence = 51.5%; 95% confidence interval [CI]: 44.3%–58.7%). The most typical American Spinal Injury Association classification was A (70.3%). The injury severity score was 30.3 ± 12.1 and sequential organ failure assessment (SOFA) score was 5.6 ± 3.3 points. During their stay, 57 patients (55.3%; 95% CI: 45.2%–65.4%) presented renal dysfunction (creatinine ≥1.2 mg/dL). In the multivariate analysis, variables associated with renal dysfunction were creatinine at admission (odds ratio [OR] = 9.20; P = 0.006) and hemodynamic SOFA score the day following admission (OR = 1.33; P = 0.024). Creatinine was a better predictor of renal dysfunction than the peak CPK value during the rhabdomyolysis (area under the receiver operating characteristic curve: 0.91 vs. 0.63, respectively). Conclusions: Rhabdomyolysis is a frequent condition in patients

  11. Worldwide Steroid Prescription for Acute Spinal Cord Injury

    PubMed Central

    Falavigna, Asdrubal; Quadros, Francine W.; Teles, Alisson R.; Wong, Chung Chek; Barbagallo, Giuseppe; Brodke, Darrel; Al-Mutair, Abdulaziz; Riew, K. Daniel

    2018-01-01

    Study Design: Cross-sectional study. Objectives: To continue the line of a previous publication using steroid for acute spinal cord injury (SCI) by spine surgeons from Latin America (LA) and assess the current status of methylprednisolone (MP) prescription in Europe (EU), Asia Pacific (AP), North America (NA), and Middle East (ME) to determine targets for educational activities suitable for each region. Methods: The English version of a previously published questionnaire was used to evaluate opinions about MP administration in acute SCI in LA, EU, AP, NA, and ME. This Internet-based survey was conducted by members of AOSpine. The questionnaire asked about demographic features, background with management of spine trauma patients, routine administration of MP in acute SCI, and reasons for MP administration. Results: A total of 2659 responses were obtained for the electronic questionnaire from LA, EU, AP, NA, and ME. The number of spine surgeons that treat SCI was 2206 (83%). The steroid was used by 1198 (52.9%) surgeons. The uses of MP were based predominantly on the National Acute Spinal Cord Injury Study III study (n = 595, 50%). The answers were most frequently given by spine surgeons from AP, ME, and LA. These regions presented a statistically significant difference from North America (P < .001). The number of SCI patients treated per year inversely influenced the use of MP. The higher the number of patients treated, the lower the administration rates of MP observed. Conclusions: The study identified potential targets for educational campaigns, aiming to reduce inappropriate practices of MP administration. PMID:29796379

  12. Clinical Trial of AC105 (Mg/PEG) for Treatment of Acute Spinal Cord Injury (SCI). Phase 2

    DTIC Science & Technology

    2013-10-01

    glycol with a molecular weight of 3350 Daltons ( PEG 3350 ), is manufactured by Dow Chemical Company and complies with NF, FCC and EurPh requirements...Mg/ PEG ) for Treatment of Acute Spinal Cord Injury (SCI) PRINCIPAL INVESTIGATOR: Andrew Blight, PhD RECIPIENT: Acorda Therapeutics...of AC105 (Mg/ PEG ) for Treatment of Acute Spinal Cord Injury (SCI) 5b. GRANT NUMBER W81XWH-12-2 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  13. Effects of core body temperature on changes in spinal somatosensory-evoked potential in acute spinal cord compression injury: an experimental study in the rat.

    PubMed

    Jou, I M

    2000-08-01

    Acute spinal cord injury was induced by a clip compression model in rats to approximate spinal cord injury encountered in spinal surgery. Spinal somatosensory-evoked potential neuromonitoring was used to study the electrophysiologic change. To compare and correlate changes in evoked potential after acute compression at different core temperatures with postoperative neurologic function and histologic change, to evaluate current intraoperative neuromonitoring warning criteria for neural damage, and to confirm the protective effect of hypothermia in acute spinal cord compression injury by electrophysiologic, histologic, and clinical observation. With the increase in aggressive correction of spinal deformities, and the invasiveness of surgical instruments, the incidence of neurologic complication appears to have increased despite the availability of sensitive intraoperative neuromonitoring techniques designed to alert surgeons to impending neural damage. Many reasons have been given for the frequent failures of neuromonitoring, but the influence of temperature-a very important and frequently encountered factor-on evoked potential has not been well documented. Specifically, decrease in amplitude and elongation of latency seem not to have been sufficiently taken into account when intraoperative neuromonitoring levels were interpreted and when acceptable intraoperative warning criteria were determined. Experimental acute spinal cord injury was induced in rats by clip compression for two different intervals and at three different core temperatures. Spinal somatosensory-evoked potential, elicited by stimulating the median nerve and recorded from the cervical interspinous C2-C3, was monitored immediately before and after compression, and at 15-minute intervals for 1 hour. Spinal somatosensory-evoked potential change is almost parallel to temperature-based amplitude reduction and latency elongation. Significant neurologic damage induced by acute compression of the cervical

  14. The course of fatigue after acute spinal cord injury.

    PubMed

    Anton, H A; Miller, W C; Townson, A F; Imam, B; Silverberg, N; Forwell, S

    2017-01-01

    Prospective cohort study. To determine the prevalence and course of fatigue following acute spinal cord injury (SCI) during rehabilitation and after discharge. Tertiary spinal cord rehabilitation facility. Fifty-two patients with traumatic SCI were assessed after admission to rehabilitation and followed until 6-months post discharge into the community. Fatigue was measured using the Fatigue Severity Scale (FSS) and the Modified Fatigue Impact Scale for Spinal Cord Injury (MFIS-SCI) at admission, discharge and 6 months after discharge. Clinically significant fatigue was defined as FSS scores ⩾4 or MFIS-SCI scores ⩾24.5. The mean (s.d.) age of our mainly male (78.8%) sample was 46.3 (17.8) years of age. Half had cervical and 61.6% had complete injuries. Mean (s.d.) FSS scores were 3.7 (1.6) at baseline, 3.4 (1.5) at discharge and 3.7 (1.7) post discharge. Mean (s.d.) MFIS-SCI scores were 24.4 (16.1) at baseline, 23.4 (16.3) at discharge and 27.8 (17.5) post discharge. Fatigue on the FSS was present in 51.9% at baseline, 38.3% at discharge and 48.1% post discharge. Fatigue on the MFIS-SCI was present in 44.2% at baseline, 44.7% at discharge and 51.9% post discharge. There was no relationship between fatigue and injury level or completeness. Fatigue is common in SCI patients admitted to rehabilitation. Fatigue remained stable during rehabilitation and after discharge into the community. Clinicians should consider early screening for fatigue and interventions to reduce the consequences of fatigue in people with SCI. The British Columbia Medical Services Foundation funded our study.

  15. Development of a Personalized Model for Pressure Ulcer Prevention Acutely Following Spinal Cord Injury: Biomarkers of Muscle Composition and Resilience

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0618 TITLE: Development of a Personalized Model for Pressure Ulcer Prevention Acutely Following Spinal Cord Injury...Model for Pressure Ulcer Prevention Acutely Following Spinal Cord Injury: Biomarkers of Muscle Composition and Resilience 5a. CONTRACT NUMBER...military and veterans. All persons with SCI are at increased risk of pressure ulcer development which remains one of the most significant secondary

  16. The Brain and Spinal Injury Center score: a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings.

    PubMed

    Talbott, Jason F; Whetstone, William D; Readdy, William J; Ferguson, Adam R; Bresnahan, Jacqueline C; Saigal, Rajiv; Hawryluk, Gregory W J; Beattie, Michael S; Mabray, Marc C; Pan, Jonathan Z; Manley, Geoffrey T; Dhall, Sanjay S

    2015-10-01

    Previous studies that have evaluated the prognostic value of abnormal changes in signals on T2-weighted MRI scans of an injured spinal cord have focused on the longitudinal extent of this signal abnormality in the sagittal plane. Although the transverse extent of injury and the degree of spared spinal cord white matter have been shown to be important for predicting outcomes in preclinical animal models of spinal cord injury (SCI), surprisingly little is known about the prognostic value of altered T2 relaxivity in humans in the axial plane. The authors undertook a retrospective chart review of 60 patients who met the inclusion criteria of this study and presented to the authors' Level I trauma center with an acute blunt traumatic cervical SCI. Within 48 hours of admission, all patients underwent MRI examination, which included axial and sagittal T2 images. Neurological symptoms, evaluated with the grades according to the American Spinal Injury Association (ASIA) Impairment Scale (AIS), at the time of admission and at hospital discharge were correlated with MRI findings. Five distinct patterns of intramedullary spinal cord T2 signal abnormality were defined in the axial plane at the injury epicenter. These patterns were assigned ordinal values ranging from 0 to 4, referred to as the Brain and Spinal Injury Center (BASIC) scores, which encompassed the spectrum of SCI severity. The BASIC score strongly correlated with neurological symptoms at the time of both hospital admission and discharge. It also distinguished patients initially presenting with complete injury who improved by at least one AIS grade by the time of discharge from those whose injury did not improve. The authors' proposed score was rapid to apply and showed excellent interrater reliability. The authors describe a novel 5-point ordinal MRI score for classifying acute SCIs on the basis of axial T2-weighted imaging. The proposed BASIC score stratifies the SCIs according to the extent of transverse T2

  17. Neuroprotective effects of autophagy induced by rapamycin in rat acute spinal cord injury model.

    PubMed

    Wang, Zhen-Yu; Liu, Wen-Ge; Muharram, Akram; Wu, Zhao-Yan; Lin, Jian-Hua

    2014-01-01

    To explore the effects of rapamycin-induced autophagy on apoptosis in a rat model of acute spinal cord injury (SCI), and to explore the effect of rapamycin on apoptosis in primary spinal cord cell culture. SCI was induced at T10 in female adult Sprague-Dawley rats. After injury was induced, the rats were injected with rapamycin and/or methylprednisolone and were sacrificed at various days after injury. Apoptosis and autophagy were examined with TUNEL staining and electron microscopy. Hind limb function was assessed by the Gale scale. The expression of the apoptosis-related protein caspase-3 did not significantly increase until 21 days following injury, while increases in LC3II and LC3I began 10 days after injury, but then declined. TUNEL staining and electron microscopy confirmed that following injury autophagy occurred before apoptosis, but by 14 days after the injury, the level of autophagy had decreased significantly while the level of apoptosis showed a continued increase. Following treatment with rapamycin, apoptosis was significantly higher than in the vehicle control group, but significantly lower than in the sham-operated group, showing a protective effect of rapamycin. Gale scale grades in rats treated with rapamycin were significantly higher compared with the vehicle control group, suggesting a functional effect of rapamycin-induced inhibition of apoptosis. The results indicate that rapamycin significantly improved the prognosis of acute SCI in rats by inhibiting cell apoptosis. Rapamycin might be useful as a therapeutic agent for acute SCI. © 2014 S. Karger AG, Basel

  18. Acute spinal cord injuries in the Lebanon War, 1982.

    PubMed

    Ohry, A; Rozin, R

    1984-04-01

    Our experience with 17 patients with spinal cord injuries (SCI) acquired in the Lebanon War, 1982, is described. The SCI were due to gunshot wounds in 12 patients and to other causes in 5. Two laparotomies and one thoracotomy were performed. Corticosteroids were not seen to influence recovery, nor was laminectomy, which was performed in three cases. Complications such as pressure sores, hydronephrosis, ileus and deep vein thrombosis were rare or did not occur. Three high quadriplegics died. Based on our experience, we recommend conservative treatment and rehabilitation in acute SCI.

  19. A Multicenter, Randomized Controlled Trial of Cerebrospinal Fluid Drainage in Acute Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    Injury PRINCIPAL INVESTIGATOR: Nicholas Theodore, MD CONTRACTING ORGANIZATION: Dignity Health San Francisco, CA 94107-1773 REPORT DATE: October 2015...TASK NUMBER E-Mail: Nicholas.Theodore@bnaneuro.net 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dignity Health AND ADDRESS...patients aims to reduce cell death and axonal damage leading to improved neurological function in patients. 2. KEYWORDS acute spinal cord injury

  20. Delayed Imatinib Treatment for Acute Spinal Cord Injury: Functional Recovery and Serum Biomarkers

    PubMed Central

    Finn, Anja; Hao, Jingxia; Wellfelt, Katrin; Josephson, Anna; Svensson, Camilla I.; Wiesenfeld-Hallin, Zsuzsanna; Eriksson, Ulf; Abrams, Mathew

    2015-01-01

    Abstract With no currently available drug treatment for spinal cord injury, there is a need for additional therapeutic candidates. We took the approach of repositioning existing pharmacological agents to serve as acute treatments for spinal cord injury and previously found imatinib to have positive effects on locomotor and bladder function in experimental spinal cord injury when administered immediately after the injury. However, for imatinib to have translational value, it needs to have sustained beneficial effects with delayed initiation of treatment, as well. Here, we show that imatinib improves hind limb locomotion and bladder recovery when initiation of treatment was delayed until 4 h after injury and that bladder function was improved with a delay of up to 24 h. The treatment did not induce hypersensitivity. Instead, imatinib-treated animals were generally less hypersensitive to either thermal or mechanical stimuli, compared with controls. In an effort to provide potential biomarkers, we found serum levels of three cytokines/chemokines—monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-3α, and keratinocyte chemoattractant/growth-regulated oncogene (interleukin 8)—to increase over time with imatinib treatment and to be significantly higher in injured imatinib-treated animals than in controls during the early treatment period. This correlated to macrophage activation and autofluorescence in lymphoid organs. At the site of injury in the spinal cord, macrophage activation was instead reduced by imatinib treatment. Our data strengthen the case for clinical trials of imatinib by showing that initiation of treatment can be delayed and by identifying serum cytokines that may serve as candidate markers of effective imatinib doses. PMID:25914996

  1. Functional status predicts acute care readmission in the traumatic spinal cord injury population.

    PubMed

    Huang, Donna; Slocum, Chloe; Silver, Julie K; Morgan, James W; Goldstein, Richard; Zafonte, Ross; Schneider, Jeffrey C

    2018-03-29

    Context/objective Acute care readmission has been identified as an important marker of healthcare quality. Most previous models assessing risk prediction of readmission incorporate variables for medical comorbidity. We hypothesized that functional status is a more robust predictor of readmission in the spinal cord injury population than medical comorbidities. Design Retrospective cross-sectional analysis. Setting Inpatient rehabilitation facilities, Uniform Data System for Medical Rehabilitation data from 2002 to 2012 Participants traumatic spinal cord injury patients. Outcome measures A logistic regression model for predicting acute care readmission based on demographic variables and functional status (Functional Model) was compared with models incorporating demographics, functional status, and medical comorbidities (Functional-Plus) or models including demographics and medical comorbidities (Demographic-Comorbidity). The primary outcomes were 3- and 30-day readmission, and the primary measure of model performance was the c-statistic. Results There were a total of 68,395 patients with 1,469 (2.15%) readmitted at 3 days and 7,081 (10.35%) readmitted at 30 days. The c-statistics for the Functional Model were 0.703 and 0.654 for 3 and 30 days. The Functional Model outperformed Demographic-Comorbidity models at 3 days (c-statistic difference: 0.066-0.096) and outperformed two of the three Demographic-Comorbidity models at 30 days (c-statistic difference: 0.029-0.056). The Functional-Plus models exhibited negligible improvements (0.002-0.010) in model performance compared to the Functional models. Conclusion Readmissions are used as a marker of hospital performance. Function-based readmission models in the spinal cord injury population outperform models incorporating medical comorbidities. Readmission risk models for this population would benefit from the inclusion of functional status.

  2. Spinal cord injuries in Australian footballers.

    PubMed

    2003-07-01

    Acute spinal cord injury is a serious concern in football, particularly the rugby codes. This Australia-wide study covers the years 1986-1996 and data are compared with those from a previous identical study for 1960-1985. A retrospective review of 80 players with a documented acute spinal cord injury admitted to the six spinal cord injury units in Australia. Personal interview was carried out in 85% of the participants to determine the injury circumstances and the level of compensation. The severity of the neurological deficit and the functional recovery were determined (Frankel grade). The annual incidence of injuries for all codes combined did not change over the study period, but there was some decrease in rugby union and an increase in rugby league. In particular there was a significant decline in the incidence of adult rugby union injuries (P = 0.048). Scrum injuries in union have decreased subsequent to law changes in 1985, particularly in schoolboys, although ruck and maul injuries are increasing; 39% of scrum injuries occurred in players not in their regular position. Tackles were the most common cause of injury in league, with two-on-one tackles accounting for nearly half of these. Schoolboy injuries tended to mirror those in adults, but with a lower incidence. Over half of the players remain wheelchair-dependent, and 10% returned to near-normality. Six players (7.5%) died as a result of their injuries. The rugby codes must be made safer by appropriate preventative strategies and law changes. In particular, attention is necessary for tackle injuries in rugby league and players out of regular position in scrummage. Compensation for injured players is grossly inadequate. There is an urgent need to establish a national registry to analyse these injuries prospectively.

  3. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models.

    PubMed

    Abdullahi, Dauda; Annuar, Azlina Ahmad; Mohamad, Masro; Aziz, Izzuddin; Sanusi, Junedah

    2017-01-01

    It has been shown that animal spinal cord compression (using methods such as clips, balloons, spinal cord strapping, or calibrated forceps) mimics the persistent spinal canal occlusion that is common in human spinal cord injury (SCI). These methods can be used to investigate the effects of compression or to know the optimal timing of decompression (as duration of compression can affect the outcome of pathology) in acute SCI. Compression models involve prolonged cord compression and are distinct from contusion models, which apply only transient force to inflict an acute injury to the spinal cord. While the use of forceps to compress the spinal cord is a common choice due to it being inexpensive, it has not been critically assessed against the other methods to determine whether it is the best method to use. To date, there is no available review specifically focused on the current compression methods of inducing SCI in rats; thus, we performed a systematic and comprehensive publication search to identify studies on experimental spinalization in rat models, and this review discusses the advantages and limitations of each method.

  4. Sensitivity and specificity of the 'knee-up test' for estimation of the American Spinal Injury Association Impairment Scale in patients with acute motor incomplete cervical spinal cord injury.

    PubMed

    Yugué, Itaru; Okada, Seiji; Maeda, Takeshi; Ueta, Takayoshi; Shiba, Keiichiro

    2018-04-01

    A retrospective study. Precise classification of the neurological state of patients with acute cervical spinal cord injury (CSCI) can be challenging. This study proposed a useful and simple clinical method to help classify patients with incomplete CSCI. Spinal Injuries Centre, Japan. The sensitivity and specificity of the 'knee-up test' were evaluated in patients with acute CSCI classified as American Spinal Injury Association Impairment Scale (AIS) C or D. The result is positive if the patient can lift the knee in one or both legs to an upright position, whereas the result is negative if the patient is unable to lift the knee in either leg to an upright position. The AIS of these patients was classified according to a strict computerised algorithm designed by Walden et al., and the knee-up test was tested by non-expert examiners. Among the 200 patients, 95 and 105 were classified as AIS C and AIS D, respectively. Overall, 126 and 74 patients demonstrated positive and negative results, respectively, when evaluated using the knee-up test. A total of 104 patients with positive results and 73 patients with negative results were classified as AIS D and AIS C, respectively. The sensitivity, specificity, positive predictive and negative predictive values of this test for all patients were 99.1, 76.8, 82.5 and 98.7, respectively. The knee-up test may allow easy and highly accurate estimation, without the need for special skills, of AIS classification for patients with incomplete CSCI.

  5. Cardiac dysfunctions following spinal cord injury

    PubMed Central

    Sandu, AM; Popescu, M; Iacobini, MA; Stoian, R; Neascu, C; Popa, F

    2009-01-01

    The aim of this article is to analyze cardiac dysfunctions occurring after spinal cord injury (SCI). Cardiac dysfunctions are common complications following SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. We reviewed epidemiology of cardiac disturbances after SCI, and neuroanatomy and pathophysiology of autonomic nervous system, sympathetic and parasympathetic. SCI causes disruption of descendent pathways from central control centers to spinal sympathetic neurons, originating into intermediolateral nuclei of T1–L2 spinal cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant cardiac dysfunction. Impairment of autonomic nervous control system, mostly in patients with cervical or high thoracic SCI, causes cardiac dysrrhythmias, especially bradycardia and, rarely, cardiac arrest, or tachyarrhytmias and hypotension. Specific complication dependent on the period of time after trauma like spinal shock and autonomic dysreflexia are also reviewed. Spinal shock occurs during the acute phase following SCI and is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe bradycardia and hypotension. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Besides all this, additional cardiac complications, such as cardiac deconditioning and coronary heart disease may also occur. Proper prophylaxis, including nonpharmacologic and pharmacological strategies and cardiac rehabilitation diminish occurrence of the cardiac dysfunction following

  6. Vascular dysfunctions following spinal cord injury

    PubMed Central

    Popa, F; Grigorean, VT; Onose, G; Sandu, AM; Popescu, M; Burnei, G; Strambu, V; Sinescu, C

    2010-01-01

    The aim of this article is to analyze the vascular dysfunctions occurring after spinal cord injury (SCI). Vascular dysfunctions are common complications of SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. Neuroanatomy and physiology of autonomic nervous system, sympathetic and parasympathetic, is reviewed. SCI implies disruption of descendent pathways from central centers to spinal sympathetic neurons, originating in intermediolateral nuclei of T1–L2 cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant vascular dysfunction. Spinal shock occurs during the acute phase following SCI and it is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe arterial hypotension and bradycardia. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Arterial hypotension with orthostatic hypotension occurs in both acute and chronic phases. The etiology is multifactorial. We described a few factors influencing the orthostatic hypotension occurrence in SCI: sympathetic nervous system dysfunction, low plasma catecholamine levels, rennin–angiotensin–aldosterone activity, peripheral alpha–adrenoceptor hyperresponsiveness, impaired function of baroreceptors, hyponatremia and low plasmatic volume, cardiovascular deconditioning, morphologic changes in sympathetic neurons, plasticity within spinal circuits, and motor deficit leading to loss of skeletal muscle pumping activity. Additional associated cardiovascular concerns in SCI, such as

  7. Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial.

    PubMed

    Kwon, Brian K; Curt, Armin; Belanger, Lise M; Bernardo, Arlene; Chan, Donna; Markez, John A; Gorelik, Stephen; Slobogean, Gerard P; Umedaly, Hamed; Giffin, Mitch; Nikolakis, Michael A; Street, John; Boyd, Michael C; Paquette, Scott; Fisher, Charles G; Dvorak, Marcel F

    2009-03-01

    Ischemia is an important factor in the pathophysiology of secondary damage after traumatic spinal cord injury (SCI) and, in the setting of thoracoabdominal aortic aneurysm repair, can be the primary cause of paralysis. Lowering the intrathecal pressure (ITP) by draining CSF is routinely done in thoracoabdominal aortic aneurysm surgery but has not been evaluated in the setting of acute traumatic SCI. Additionally, while much attention is directed toward maintaining an adequate mean arterial blood pressure (MABP) in the acute postinjury phase, little is known about what is happening to the ITP during this period when spinal cord perfusion pressure (MABP - ITP) is important. The objectives of this study were to: 1) evaluate the safety and feasibility of draining CSF to lower ITP after acute traumatic SCI; 2) evaluate changes in ITP before and after surgical decompression; and 3) measure neurological recovery in relation to the drainage of CSF. Twenty-two patients seen within 48 hours of injury were prospectively randomized to a drainage or no-drainage treatment group. In all cases a lumbar intrathecal catheter was inserted for 72 hours. Acute complications of headache/nausea/vomiting, meningitis, or neurological deterioration were carefully monitored. Acute Spinal Cord Injury motor scores were documented at baseline and at 6 months postinjury. On insertion of the catheter, mean ITP was 13.8 +/- 1.3 mm Hg (+/- SD), and it increased to a mean peak of 21.7 +/- 1.5 mm Hg intraoperatively. The difference between the starting ITP on catheter insertion and the observed peak intrathecal pressure after decompression was, on average, an increase of 7.9 +/- 1.6 mm Hg (p < 0.0001, paired t-test). During the postoperative period, the peak recorded ITP in the patients randomized to the no-drainage group was 30.6 +/- 2.3 mm Hg, which was significantly higher than the peak intraoperative ITP (p = 0.0098). During the same period, the peak recorded ITP in patients randomized to receive

  8. Systemic hypothermia for the treatment of acute cervical spinal cord injury in sports.

    PubMed

    Dietrich, William Dalton; Cappuccino, Andrew; Cappuccino, Helen

    2011-01-01

    Spinal cord injury is a devastating condition that affects approximately 12,000 patients each year in the United States. Major causes for spinal cord injury include motor vehicle accidents, sports-related injuries, and direct trauma. Moderate hypothermia has gained attention as a potential therapy due to recent experimental and clinical studies and the use of modest systemic hypothermia (MSH) in high profile case of spinal cord injury in a National Football League (NFL) player. In experimental models of spinal cord injury, moderate hypothermia has been shown to improve functional recovery and reduce overall structural damage. In a recent Phase I clinical trial, systemic hypothermia has been shown to be safe and provide some encouraging results in terms of functional recovery. This review will summarize recent preclinical data, as well as clinical findings that support the continued investigations for the use of hypothermia in severe cervical spinal cord injury.

  9. Spinal injury - resources

    MedlinePlus

    Resources - spinal injury ... The following organizations are good resources for information on spinal injury : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/Disorders/All-Disorders/Spinal-Cord- ...

  10. Update on critical care for acute spinal cord injury in the setting of polytrauma.

    PubMed

    Yue, John K; Winkler, Ethan A; Rick, Jonathan W; Deng, Hansen; Partow, Carlene P; Upadhyayula, Pavan S; Birk, Harjus S; Chan, Andrew K; Dhall, Sanjay S

    2017-11-01

    Traumatic spinal cord injury (SCI) often occurs in patients with concurrent traumatic injuries in other body systems. These patients with polytrauma pose unique challenges to clinicians. The current review evaluates existing guidelines and updates the evidence for prehospital transport, immobilization, initial resuscitation, critical care, hemodynamic stability, diagnostic imaging, surgical techniques, and timing appropriate for the patient with SCI who has multisystem trauma. Initial management should be systematic, with focus on spinal immobilization, timely transport, and optimizing perfusion to the spinal cord. There is general evidence for the maintenance of mean arterial pressure of > 85 mm Hg during immediate and acute care to optimize neurological outcome; however, the selection of vasopressor type and duration should be judicious, with considerations for level of injury and risks of increased cardiogenic complications in the elderly. Level II recommendations exist for early decompression, and additional time points of neurological assessment within the first 24 hours and during acute care are warranted to determine the temporality of benefits attributable to early surgery. Venous thromboembolism prophylaxis using low-molecular-weight heparin is recommended by current guidelines for SCI. For these patients, titration of tidal volumes is important to balance the association of earlier weaning off the ventilator, with its risk of atelectasis, against the risk for lung damage from mechanical overinflation that can occur with prolonged ventilation. Careful evaluation of infection risk is a priority following multisystem trauma for patients with relative immunosuppression or compromise. Although patients with polytrauma may experience longer rehabilitation courses, long-term neurological recovery is generally comparable to that in patients with isolated SCI after controlling for demographics. Bowel and bladder disorders are common following SCI, significantly

  11. [Heterotopic ossification spinal cord injury. Management through early diagnosis and therapy].

    PubMed

    Maier, D

    2005-02-01

    Heterotopic ossification is a frequent and potentially disastrous complication of acute spinal cord injury. Pathogenesis and etiology are not well described, initial clinical symptoms are uncharacteristic, specific laboratory findings do not exist. Between March 1997 and May 2000 all 290 patients admitted to our facility with acute spinal cord injury underwent standardized sonographic examinations of the soft tissue around the hip joint every three weeks, starting as early as two weeks after injury. In 12% of the patient population characteristic sonographic findings for heterotopic ossification were present while the regular x-ray examination was still unremarkable. Laboratory findings (alkaline phosphatase, C-reactive protein, anorganic phosphate) were unspecific. Clinical findings were present only in a few patients. All patients underwent radiotherapy consisting of the administration of 5 times 3 Gy to the area as soon as possible. Follow up demonstrated no progression of the heterotopic bone formation in these cases. In conclusion, regular ultrasound examination proved to be a secure, fast and reproducible method for the very early diagnosis of heterotopic ossification after acute spinal cord injury.

  12. Spinal column and spinal cord injuries in mountain bikers: a 13-year review.

    PubMed

    Dodwell, Emily R; Kwon, Brian K; Hughes, Barbara; Koo, David; Townson, Andrea; Aludino, Allan; Simons, Richard K; Fisher, Charles G; Dvorak, Marcel F; Noonan, Vanessa K

    2010-08-01

    Multiple studies have described in general the injuries associated with mountain biking, and detailed accounts of spine injuries sustained in hockey, gymnastics, skiing, snowboarding, rugby, and paragliding have previously been published. However, no large-scale detailed assessment of mountain biking associated spinal fractures and spinal cord injuries has previously been published. This study was undertaken to describe the patient demographics, injuries, mechanisms, treatments, outcomes, and resource requirements associated with spine injuries sustained while mountain biking. Case series; Level of evidence, 4. Patients who were injured while mountain biking, and who were seen at a provincial spine referral center between 1995 and 2007 inclusive, with spinal cord injuries and/or spine fracture were included. A chart review was performed to obtain demographic data, and details of the injury, treatment, outcome, and resource requirements. A total of 102 men and 5 women were identified for inclusion. The mean age at injury was 32.7 years (95% confidence interval 30.6, 35.0). Seventy-nine patients (73.8%) sustained cervical injuries, while the remainder sustained thoracic or lumbar injuries. Forty-three patients (40.2%) sustained a spinal cord injury. Of those with cord injuries, 18 (41.9%) were American Spinal Injury Association (ASIA) A, 5 (11.6%) were ASIA B, 10 (23.3%) ASIA C, and 10 (23.3%) ASIA D. Sixty-seven patients (62.6%) required surgical treatment. The mean length of stay in an acute hospital bed was 16.9 days (95% confidence interval 13.1, 30.0). Thirty-three patients (30.8%) required intensive care unit attention, and 31 patients (29.0%) required inpatient rehabilitation. Of the 43 patients (40.2%) seen with spinal cord injuries, 14 (32.5%) improved by 1 ASIA category, and 1 (2.3%) improved by 2 ASIA categories. Two patients remained ventilator-dependent at discharge. Spine fractures and spinal cord injuries caused by mountain biking accidents typically

  13. Noninvasive, targeted gene therapy for acute spinal cord injury using LIFU-mediated BDNF-loaded cationic nanobubble destruction.

    PubMed

    Song, Zhaojun; Ye, Yongjie; Zhang, Zhi; Shen, Jieliang; Hu, Zhenming; Wang, Zhigang; Zheng, Jiazhuang

    2018-02-12

    Various gene delivery systems have been widely studied for the acute spinal cord injury (SCI) treatment. In the present study, a novel type of brain-derived neurotrophic factor (BDNF)-loaded cationic nanobubbles (CNBs) conjugated with MAP-2 antibody (mAb MAP-2 /BDNF/CNBs) was prepared to provide low-intensity focused ultrasound (LIFU)-targeted gene therapy. In vitro experiments, the ultrasound-targeted tranfection to BDNF overexpressioin in neurons and efficiently inhibition neuronal apoptosis have been demonstrated, and the elaborately designed mAb MAP-2 /BDNF/CNBs can specifically target to the neurons. Furthermore, in a acute SCI rat model, LIFU-mediated mAb MAP-2 /BDNF/CNBs transfection significantly increased BDNF expression, attenuated histological injury, decreased neurons loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in SCI rats. LIFU-mediated mAb MAP-2 /BDNF/CNBs destruction significantly increase transfection efficiency of BDNF gene both in vitro and in vivo, and has a significant neuroprotective effect on the injured spinal cord. Therefore, the combination of LIFU irradiation and gene therapy through mAb MAP-2 /BDNF/CNBs can be considered as a novel non-invasive and targeted treatment for gene therapy of SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Current practice of methylprednisolone administration for acute spinal cord injury in Germany: a national survey.

    PubMed

    Druschel, Claudia; Schaser, Klaus-Dieter; Schwab, Jan M

    2013-05-15

    Written mail-out survey. To determine current practice in high-dose methylprednisolone succinate (MPSS) administration for treatment of acute spinal cord injury (SCI) in Germany. Reanalysis of the National Acute Spinal Cord Injury Studies (NASCIS) resulted in criticism of the use of high-dose MPSS for treatment of acute SCI. Subsequently, SCI treatment guidelines were revised leading to a reduction in MPSS use across North America. The impact of these revisions on SCI treatment in Germany is not known. A questionnaire was sent to all trauma, orthopedic and neurosurgical departments of German university centers, affiliated teaching hospitals, and specialized SCI care centers. Survey included 6 questions about the administration of MPSS after acute SCI. Three hundred seventy-two respondents completed the survey (response rate: 51% overall, 76% university hospitals, 85% specialized SCI care centers). Overall, 55% of departments that treat SCI prescribe MPSS. Among them, 73% are "frequent" users administering MPSS to more than 50% of their patients. Ten percent prescribe according to NASCIS I, 43% NASCIS II, 33% NASCIS III, and 13% "generic protocols." As justification for MPSS treatment, "effectiveness" ranked before "common practice" and "medicolegal reasons." "Specialized" SCI care centers differ in that (1) MPSS is administered less frequently, (2) NASCIS I doses are not used, and (3) during the past several years, practice patterns are more likely to have shifted away from the treatment of SCI with MPSS. About one-half of the institutions continue to prescribe MPSS in the setting of acute SCI. A need for further education in almost one-fourth of German departments treating acute SCI is demonstrated through responses indicating use of the outdated NASCIS I protocol, a "legal need" or "unchanged MPSS application during the last years." "Specialized" SCI centers are more likely to change their practice in accordance with evolving literature. 3.

  15. Cognitive appraisals and emotional status following a spinal cord injury in post-acute rehabilitation.

    PubMed

    Eaton, Rebecca; Jones, Kevin; Duff, Jane

    2018-06-12

    Retrospective, cross-sectional study. To investigate the factor structure of the ADAPSS-short form (ADAPSS-SF) in an acutely injured SCI population and to assess the relationship between cognitive appraisals made in the initial phase of rehabilitation and the experience of anxiety and depression. National Spinal Injuries Centre, UK. Participants were acutely injured patients admitted to the NSIC over 35 months. Cognitive appraisals were measured using the ADAPSS-SF; psychological distress was measured using the HADS. Individual profiles, including demographics and injury characteristics, were collected. Principle Component Analysis with oblique rotation demonstrated a coherent two-factor structure of the ADAPSS-SF: resilience and loss. Correlational analysis found that individuals who negatively appraised their injury were more likely to report lower mood. Findings identified four vulnerable subgroups that were more likely to negatively appraise their injury: females, individuals older at the time of SCI, individuals with AIS-A injuries and individuals whose SCI was acquired through assault. Hierarchical regression analysis reported that resilience and loss factors were significant predictors of depression. Gender, resilience and loss factors were significant predictors of anxiety. Cognitive appraisals accounted for more variance in mood above biological markers. Findings support a two-factor structure and validity of ADAPSS-SF in acute SCI rehabilitation. The study provides support for the role of cognitive appraisals in psychological adjustment in the early phases of rehabilitation, above injury characteristics. Findings highlighted the vulnerable subgroups that are more likely to initially endorse negative appraisals, which may influence clinical practice and provides an avenue for further research.

  16. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate.

    PubMed

    Bowers, Christian A; Kundu, Bornali; Hawryluk, Gregory W J

    2016-06-01

    Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS) was hailed as a breakthrough for patients with acute spinal cord injury (SCI). MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS's status as a historical standard of care.

  17. Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury.

    PubMed

    Levi, Allan D; Casella, Gizelda; Green, Barth A; Dietrich, W Dalton; Vanni, Steven; Jagid, Jonathan; Wang, Michael Y

    2010-04-01

    Although a number of neuroprotective strategies have been tested after spinal cord injury (SCI), no treatments have been established as a standard of care. We report the clinical outcomes at 1-year median follow-up, using endovascular hypothermia after SCI and a detailed analysis of the complications. We performed a retrospective analysis of American Spinal Injury Association and International Medical Society of Paraplegia Impairment Scale (AIS) scores and complications in 14 patients with SCI presenting with a complete cervical SCI (AIS A). All patients were treated with 48 hours of modest (33 degrees C) intravascular hypothermia. The comparison group was composed of 14 age- and injury-matched subjects treated at the same institution. Six of the 14 cooled patients (42.8%) were incomplete at final follow-up (50.2 [9.7] weeks). Three patients improved to AIS B, 2 patients improved to AIS C, and 1 patient improved to AIS D. Complications were predominantly respiratory and infectious in nature. However, in the control group, a similar number of complications was observed. Adverse events such as coagulopathy, deep venous thrombosis, and pulmonary embolism were not seen in the patients undergoing hypothermia. This study is the first phase 1 clinical trial on the safety and outcome with the use of endovascular hypothermia in the treatment of acute cervical SCI. In this small cohort of patients with SCI, complication rates were similar to those of normothermic patients with an associated AIS A conversion rate of 42.8%.

  18. Type and Timing of Rehabilitation Following Acute and Subacute Spinal Cord Injury: A Systematic Review.

    PubMed

    Burns, Anthony S; Marino, Ralph J; Kalsi-Ryan, Sukhvinder; Middleton, James W; Tetreault, Lindsay A; Dettori, Joseph R; Mihalovich, Kathryn E; Fehlings, Michael G

    2017-09-01

    The objective of this study was to conduct a systematic review of the literature to address the following clinical questions: In adult patients with acute and subacute complete or incomplete traumatic SCI, (1) does the time interval between injury and commencing rehabilitation affect outcome?; (2) what is the comparative effectiveness of different rehabilitation strategies, including different intensities and durations of treatment?; (3) are there patient or injury characteristics that affect the efficacy of rehabilitation?; and (4) what is the cost-effectiveness of various rehabilitation strategies? A systematic search was conducted for literature published through March 31, 2015 that evaluated rehabilitation strategies in adults with acute or subacute traumatic SCI at any level. Studies were critically appraised individually and the overall strength of evidence was evaluated using methods proposed by the GRADE (Grades of Recommendation Assessment, Development and Evaluation) working group. The search strategy yielded 384 articles, 19 of which met our inclusion criteria. Based on our results, there was no difference between body weight-supported treadmill training and conventional rehabilitation with respect to improvements in Functional Independence Measure (FIM) Locomotor score, Lower Extremity Motor Scores, the distance walked in 6 minutes or gait velocity over 15.2 m. Functional electrical therapy resulted in slightly better FIM Motor, FIM Self-Care, and Spinal Cord Independence Measure Self-Care subscores compared with conventional occupational therapy. Comparisons using the Toronto Rehabilitation Institute Hand Function Test demonstrated no differences between groups in 7 of 9 domains. There were no clinically important differences in Maximal Lean Test, Maximal Sidewards Reach Test, T-shirt Test, or the Canadian Occupational Performance Measure between unsupported sitting training and standard in-patient rehabilitation. The current evidence base for

  19. Type and Timing of Rehabilitation Following Acute and Subacute Spinal Cord Injury: A Systematic Review

    PubMed Central

    Marino, Ralph J.; Kalsi-Ryan, Sukhvinder; Middleton, James W.; Tetreault, Lindsay A.; Dettori, Joseph R.; Mihalovich, Kathryn E.; Fehlings, Michael G.

    2017-01-01

    Objectives: The objective of this study was to conduct a systematic review of the literature to address the following clinical questions: In adult patients with acute and subacute complete or incomplete traumatic SCI, (1) does the time interval between injury and commencing rehabilitation affect outcome?; (2) what is the comparative effectiveness of different rehabilitation strategies, including different intensities and durations of treatment?; (3) are there patient or injury characteristics that affect the efficacy of rehabilitation?; and (4) what is the cost-effectiveness of various rehabilitation strategies? Methods: A systematic search was conducted for literature published through March 31, 2015 that evaluated rehabilitation strategies in adults with acute or subacute traumatic SCI at any level. Studies were critically appraised individually and the overall strength of evidence was evaluated using methods proposed by the GRADE (Grades of Recommendation Assessment, Development and Evaluation) working group. Results: The search strategy yielded 384 articles, 19 of which met our inclusion criteria. Based on our results, there was no difference between body weight–supported treadmill training and conventional rehabilitation with respect to improvements in Functional Independence Measure (FIM) Locomotor score, Lower Extremity Motor Scores, the distance walked in 6 minutes or gait velocity over 15.2 m. Functional electrical therapy resulted in slightly better FIM Motor, FIM Self-Care, and Spinal Cord Independence Measure Self-Care subscores compared with conventional occupational therapy. Comparisons using the Toronto Rehabilitation Institute Hand Function Test demonstrated no differences between groups in 7 of 9 domains. There were no clinically important differences in Maximal Lean Test, Maximal Sidewards Reach Test, T-shirt Test, or the Canadian Occupational Performance Measure between unsupported sitting training and standard in-patient rehabilitation

  20. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats.

    PubMed

    Kim, Jae Hwan; Kim, Jae Young; Mun, Chin Hee; Suh, Minah; Lee, Jong Eun

    2017-10-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206 + & ED1 + cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.

  1. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats

    PubMed Central

    Kim, Jae Young; Mun, Chin Hee; Suh, Minah

    2017-01-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206+ & ED1+ cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype. PMID:29093636

  2. Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury

    PubMed Central

    Mercier, L. M.; Gonzalez-Rothi, E. J.; Streeter, K. A.; Posgai, S. S.; Poirier, A. S.; Fuller, D. D.; Reier, P. J.

    2016-01-01

    Intraspinal microstimulation (ISMS) using implanted electrodes can evoke locomotor movements after spinal cord injury (SCI) but has not been explored in the context of respiratory motor output. An advantage over epidural and direct muscle stimulation is the potential of ISMS to selectively stimulate components of the spinal respiratory network. The present study tested the hypothesis that medullary respiratory activity could be used to trigger midcervical ISMS and diaphragm motor unit activation in rats with cervical SCI. Studies were conducted after acute (hours) and subacute (5–21 days) C2 hemisection (C2Hx) injury in adult rats. Inspiratory bursting in the genioglossus (tongue) muscle was used to trigger a 250-ms train stimulus (100 Hz, 100–200 μA) to the ventral C4 spinal cord, targeting the phrenic motor nucleus. After both acute and subacute injury, genioglossus EMG activity effectively triggered ISMS and activated diaphragm motor units during the inspiratory phase. The ISMS paradigm also evoked short-term potentiation of spontaneous inspiratory activity in the previously paralyzed hemidiaphragm (i.e., bursting persisting beyond the stimulus period) in ∼70% of the C2Hx animals. We conclude that medullary inspiratory output can be used to trigger cervical ISMS and diaphragm activity after SCI. Further refinement of this method may enable “closed-loop-like” ISMS approaches to sustain ventilation after severe SCI. NEW & NOTEWORTHY We examined the feasibility of using intraspinal microstimulation (ISMS) of the cervical spinal cord to evoke diaphragm activity ipsilateral to acute and subacute hemisection of the upper cervical spinal cord of the rat. This proof-of-concept study demonstrated the efficacy of diaphragm activation, using an upper airway respiratory EMG signal to trigger ISMS at the level of the ipsilesional phrenic nucleus during acute and advanced postinjury intervals. PMID:27881723

  3. Neuroprotective effects and impact on caspase-12 expression of tauroursodeoxycholic acid after acute spinal cord injury in rats

    PubMed Central

    Dong, Yi; Miao, Lei; Hei, Long; Lin, Leilei; Ding, Huiqiang

    2015-01-01

    Objective: To observe the effects of tauroursodeoxycholic acid (TUDCA) on nerve function after acute spinal cord injury (SCI) in rats, observe its effect on neuronal apoptosis and caspase-12 expression levels, and investigate the underlying mechanism. Methods: We used a modified Allen’s weight-drop trauma method to establish a rat acute SCI model. The rats were randomly divided into three groups: group A (sham surgery group), group B (DMSO control group) and group C (TUDCA treatment group), with 36 rats in each group. At one minute and at 24 hours after successfully establishing the model, rats in group C received an intraperitoneal injection of TUDCA (200 mg/kg), while rats in group B received an equal amount of DMSO at the same time points. At 24 hours, three days, and five days after injury, a modified Tarlov scoring method and Rivlin’s oblique plate test were used to evaluate rat spinal cord nerve function recovery. Animals were sacrificed at 24 hours, three days, and five days after injury. Specimens were obtained from the center of the injury sites; the pathological changes in spinal cord tissue were observed after hematoxylin-eosin (HE) staining; apoptosis was detected using the TUNEL method, and the expression of caspase-12 was measured at the protein level using immunohistochemistry and Western blots. Results: Group C differed significantly from group B in Tarlov scores and the oblique table test as early as 24 hours after the injury (P < 0.05). The TUNEL assay test results showed that neurons underwent apoptosis after SCI, which peaked at 24 hours. The ratios of apoptotic cells in group C were significantly lower than those in group B at 24 hours, three days, and five days after injury (P < 0.01). The immunohistochemistry and Western blot results showed that the caspase-12 expression levels of group C were lower than those of group B at 24 hours, three days, and five days after injury (P < 0.05). Conclusion: TUDCA can inhibit the expression of caspase

  4. Acute spinal cord injury (SCI) transforms how GABA affects nociceptive sensitization.

    PubMed

    Huang, Yung-Jen; Lee, Kuan H; Murphy, Lauren; Garraway, Sandra M; Grau, James W

    2016-11-01

    Noxious input can sensitize pain (nociceptive) circuits within the spinal cord, inducing a lasting increase in spinal cord neural excitability (central sensitization) that is thought to contribute to chronic pain. The development of spinally-mediated central sensitization is regulated by descending fibers and GABAergic interneurons. The current study provides evidence that spinal cord injury (SCI) transforms how GABA affects nociceptive transmission within the spinal cord, recapitulating an earlier developmental state wherein GABA has an excitatory effect. In spinally transected rats, noxious electrical stimulation and inflammation induce enhanced mechanical reactivity (EMR), a behavioral index of nociceptive sensitization. Pretreatment with the GABA A receptor antagonist bicuculline blocked these effects. Peripheral application of an irritant (capsaicin) also induced EMR. Both the induction and maintenance of this effect were blocked by bicuculline. Cellular indices of central sensitization [c-fos expression and ERK phosphorylation (pERK)] were also attenuated. In intact (sham operated) rats, bicuculline had the opposite effect. Pretreatment with a GABA agonist (muscimol) attenuated nociceptive sensitization in intact, but not spinally injured, rats. The effect of SCI on GABA function was linked to a reduction in the Cl - transporter, KCC2, leading to a reduction in intracellular Cl - that would attenuate GABA-mediated inhibition. Pharmacologically blocking the KCC2 channel (with i.t. DIOA) in intact rats mimicked the effect of SCI. Conversely, a pharmacological treatment (bumetanide) that should increase intracellular Cl - levels blocked the effect of SCI. The results suggest that GABAergic neurons drive, rather than inhibit, the development of nociceptive sensitization after spinal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Association between presence of pneumonia and pressure ulcer formation following traumatic spinal cord injury.

    PubMed

    Krishnan, Shilpa; Karg, Patricia E; Boninger, Michael L; Brienza, David M

    2017-07-01

    To determine if the presence of pneumonia and pressure ulcers are associated in individuals with an acute spinal cord injury during acute care and rehabilitation hospitalizations. Retrospective, secondary analyses of data obtained from the Spinal Cord Injury Model Systems enrolled from 1993 until 2006 Setting: Acute care hospitalization and inpatient rehabilitation facilities Participants: A cohort of individuals hospitalized in acute care (n = 3,098) and inpatient rehabilitation (n = 1,768) was included in the analysis. Frequencies of pressure ulcer formation and episodes of pneumonia were noted in both settings. Not applicable. Pressure ulcer formation and diagnosis of pneumonia Results: The development of pressure ulcers, including stage I, was 20.3% acute care and 21.1% during in inpatient rehabilitation. Multivariate logistic regression analyses revealed a significant association of pneumonia with occurrence of pressure ulcers (P ≤ 0.001, OR = 2.3 and 2.2 respectively), the American Spinal Injury Association Impairment Scale grades (P < 0.001), and utilization of mechanical ventilation (P < 0.01) in both settings. A higher presence of pressure ulcers was found in individuals with pneumonia, after adjusting for injury severity, age, sex, and utilization of mechanical ventilation. Impaired inflammatory response and decreased mobility in individuals with pneumonia may predispose these individuals to develop pressure ulcers. Surveillance and preventive measures for pressure ulcers should be rigorous in individuals with SCI and pneumonia.

  6. Living with Spinal Cord Injury

    MedlinePlus

    ... With Spinal Cord Injury A spinal cord injury (SCI) can result from trauma, such as a motor ... these injuries occur in men. A person with SCI typically has some paralysis and decreased or loss ...

  7. Incidence of acute spinal cord injury in the Czech Republic: a prospective epidemiological study 2006-2015.

    PubMed

    Kriz, J; Kulakovska, M; Davidova, H; Silova, M; Kobesova, A

    2017-09-01

    A prospective study. Analysis of epidemiological data about acute spinal cord injury (SCI) in the Czech Republic over a period of 10 years (2006-2015). A data collection system was implemented in the rehabilitation centres which provides care to patients with acute SCI in the Czech Republic. The recorded variables are as follows: age at time of SCI; gender; cause of injury; neurological level of injury (NLI); and its severity (ASIA Impairment Scale (AIS)). Data from 2006 to 2015 were analysed and trends were determined. The overall number of acute SCI ranges between 250 and 300 cases annually. Two-third of the affected population are males. The average age at time of SCI is 49.1 years. The average incidence of traumatic SCI is 15.5 cases per year and is gradually decreasing. The leading cause of SCI are falls (44.5%), followed by traffic accidents (28.2%) and sports injuries including diving into water (19.7%). The incidence of non-traumatic SCI is 8.6 cases per year on average and has an upward trend. Inflammatory lesions account for 26.7% of cases, tumours account for 20.9%, and vascular related injuries make up 17.7%. The NLI occurs most often in the cervical segments (45.3%). The most frequently occurring lesions are motor incomplete: AIS D (33.3%). This study shows a stable occurrence of SCI in the Czech Republic, with cervical and motor incomplete cases being the leading ones. Epidemiological data are needed to improve the care of SCI patients and to promote an active life following it.

  8. Acute spinal cord injury changes the disposition of some, but not all drugs given intravenously.

    PubMed

    García-López, P; Martínez-Cruz, A; Guízar-Sahagún, G; Castañeda-Hernández, G

    2007-09-01

    Experimental laboratory investigations in paraplegic rats. In order to understand why acute spinal cord injury (SCI) changes the disposition of some, but not all drugs given intravenously (i.v.), pharmacokinetic parameters of drugs with different pharmacological properties were evaluated to determine the influence of SCI on physiological processes such as distribution, metabolism and excretion. Mexico City, Mexico. Rats were subjected to severe SCI (contusion) at T-9 level; pharmacokinetic studies of phenacetin, naproxen or gentamicin were performed 24 h after. These drugs were not chosen as markers because of their therapeutic properties, but because of their pharmacokinetic characteristics. Additional studies including plasma proteins, liver and renal function tests, and micro-vascular hepatic blood flow, were also performed at the same time after injury. Acute SCI significantly reduced distribution of drugs with intermediate and low binding to plasma proteins (phenacetin 30% and gentamicin 10%, respectively), but distribution did not change when naproxen - a drug highly bound to plasma proteins (99%) - was used, in absence of changes in plasma proteins. Metabolism was significantly altered only for a drug with liver blood flow - limited clearance (phenacetin) and not for a drug with liver capacity-limited clearance (naproxen). The liver function test did not change, whereas the hepatic micro-vascular blood flow significantly decreased after SCI. Renal excretion, evaluated by gentamicin clearance, was significantly reduced as a consequence of SCI, without significant changes in serum creatinine. Changes in drug disposition associated to acute SCI are complex and generalization is not possible. They are highly dependent on each drug properties as well as on the altered physiological processes. Results motivate the quest for strategies to improve disposition of selective i.v. drugs during spinal shock, in an effort to avoid therapeutic failure.

  9. Exercise recommendations for individuals with spinal cord injury.

    PubMed

    Jacobs, Patrick L; Nash, Mark S

    2004-01-01

    Persons with spinal cord injury (SCI) exhibit deficits in volitional motor control and sensation that limit not only the performance of daily tasks but also the overall activity level of these persons. This population has been characterised as extremely sedentary with an increased incidence of secondary complications including diabetes mellitus, hypertension and atherogenic lipid profiles. As the daily lifestyle of the average person with SCI is without adequate stress for conditioning purposes, structured exercise activities must be added to the regular schedule if the individual is to reduce the likelihood of secondary complications and/or to enhance their physical capacity. The acute exercise responses and the capacity for exercise conditioning are directly related to the level and completeness of the spinal lesion. Appropriate exercise testing and training of persons with SCI should be based on the individual's exercise capacity as determined by accurate assessment of the spinal lesion. The standard means of classification of SCI is by application of the International Standards for Classification of Spinal Cord Injury, written by the Neurological Standards Committee of the American Spinal Injury Association. Individuals with complete spinal injuries at or above the fourth thoracic level generally exhibit dramatically diminished cardiac acceleration with maximal heart rates less than 130 beats/min. The work capacity of these persons will be limited by reductions in cardiac output and circulation to the exercising musculature. Persons with complete spinal lesions below the T(10) level will generally display injuries to the lower motor neurons within the lower extremities and, therefore, will not retain the capacity for neuromuscular activation by means of electrical stimulation. Persons with paraplegia also exhibit reduced exercise capacity and increased heart rate responses (compared with the non-disabled), which have been associated with circulatory limitations

  10. [Exoskeletons for rehabilitation of patients with spinal cord injuries. Options and limitations].

    PubMed

    Aach, M; Meindl, R C; Geßmann, J; Schildhauer, T A; Citak, M; Cruciger, O

    2015-02-01

    Mobile exoskeletons are increasingly being applied in the course of rehabilitation and provision of medical aids to patients with spinal cord injuries. This article gives a description of the currently available exoskeletal systems and the clinical application including scientific and medical evidence, to derive recommendations regarding clinical practice of the various exoskeletons in the rehabilitation of patients with spinal cord injuries. The different systems represent a useful adjunct to the therapeutic regimen depending on the medical objectives. Posture-controlled exoskeletons in particular enable mobilization of patients with neurological gait disorders via direct motion support. In addition the neurologically controlled exoskeleton HAL® leads to functional improvements in patients with residual muscular functions in the chronic phase of spinal cord injury in terms of improved walking abilities subsequent to training. However, beneficial effects on bone density, bladder function and perfusion are conceivable but not yet adequately supported by evidence. Positive effects on spasticity and neuropathic pain are currently based only on case series or small clinical trials. Although exoskeletons are not yet an established tool in the treatment of spinal cord injuries, the systems will play a more important role in rehabilitation of patients with spinal cord injuries in the future. Neurologically controlled exoskeletons show beneficial effects in the treatment of acute and chronic spinal cord injuries and might therefore evolve to be a useful alternative to conventional locomotion training.

  11. In vivo imaging of spinal cord in contusion injury model mice by multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Oshima, Y.; Horiuchi, H.; Ogata, T.; Hikita, A.; Miura, H.; Imamura, T.

    2014-03-01

    Fluorescent imaging technique is a promising method and has been developed for in vivo applications in cellular biology. In particular, nonlinear optical imaging technique, multi-photon microscopy has make it possible to analyze deep portion of tissues in living animals such as axons of spinal code. Traumatic spinal cord injuries (SCIs) are usually caused by contusion damages. Therefore, observation of spinal cord tissue after the contusion injury is necessary for understanding cellular dynamics in response to traumatic SCI and development of the treatment for traumatic SCI. Our goal is elucidation of mechanism for degeneration of axons after contusion injuries by establishing SCI model and chronic observation of injured axons in the living animals. Firstly we generated and observed acute SCI model by contusion injury. By using a multi-photon microscope, axons in dorsal cord were visualized approximately 140 micron in depth from the surface. Immediately after injury, minimal morphological change of spinal cord was observed. At 3 days after injury, spinal cord was swelling and the axons seem to be fragmented. At 7 days after injury, increased degradation of axons could be observed, although the image was blurred due to accumulation of the connective tissue. In the present study, we successfully observed axon degeneration after the contusion SCI in a living animal in vivo. Our final goal is to understand molecular mechanisms and cellular dynamics in response to traumatic SCIs in acute and chronic stage.

  12. Part 1: recognizing neonatal spinal cord injury.

    PubMed

    Brand, M Colleen

    2006-02-01

    Neonatal spinal cord injury can occur in utero, as well as after either a difficult delivery or a nontraumatic delivery. Spinal cord injury can also be related to invasive nursery procedures or underlying neonatal pathology. Early clinical signs of spinal cord injury that has occurred in utero or at delivery includes severe respiratory compromise and profound hypotonia. Knowledge of risk factors and awareness of symptoms is required for early recognition and appropriate treatment. This article reviews the embryological development of the spinal column highlighting mechanisms of injury and identifying underlying factors that increase the risk of spinal cord injury in newborns. Signs and symptoms of injury, cervical spine immobilization, and the differential diagnosis are discussed. Nursing implications, general prognosis, and research in spinal cord injury are provided.

  13. Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation

    PubMed Central

    2013-01-01

    Introduction Intraspinal grafting of human neural stem cells represents a promising approach to promote recovery of function after spinal trauma. Such a treatment may serve to: I) provide trophic support to improve survival of host neurons; II) improve the structural integrity of the spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions; and III) provide neuronal populations to potentially form relays with host axons, segmental interneurons, and/or α-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade human fetal spinal cord-derived neural stem cells (HSSC) on the recovery of neurological function in a rat model of acute lumbar (L3) compression injury. Methods Three-month-old female Sprague–Dawley rats received L3 spinal compression injury. Three days post-injury, animals were randomized and received intraspinal injections of either HSSC, media-only, or no injections. All animals were immunosuppressed with tacrolimus, mycophenolate mofetil, and methylprednisolone acetate from the day of cell grafting and survived for eight weeks. Motor and sensory dysfunction were periodically assessed using open field locomotion scoring, thermal/tactile pain/escape thresholds and myogenic motor evoked potentials. The presence of spasticity was measured by gastrocnemius muscle resistance and electromyography response during computer-controlled ankle rotation. At the end-point, gait (CatWalk), ladder climbing, and single frame analyses were also assessed. Syrinx size, spinal cord dimensions, and extent of scarring were measured by magnetic resonance imaging. Differentiation and integration of grafted cells in the host tissue were validated with immunofluorescence staining using human-specific antibodies. Results Intraspinal grafting of HSSC led to a progressive and significant improvement in lower extremity paw placement, amelioration of spasticity, and normalization in thermal and tactile pain/escape thresholds at

  14. Spinal cord injury arising in anaesthesia practice.

    PubMed

    Hewson, D W; Bedforth, N M; Hardman, J G

    2018-01-01

    Spinal cord injury arising during anaesthetic practice is a rare event, but one that carries a significant burden in terms of morbidity and mortality. In this article, we will review the pathophysiology of spinal cord injury. We will then discuss injuries relating to patient position, spinal cord hypoperfusion and neuraxial techniques. The most serious causes of spinal cord injury - vertebral canal haematoma, spinal epidural abscess, meningitis and adhesive arachnoiditis - will be discussed in turn. For each condition, we draw attention to practical, evidence-based measures clinicians can undertake to reduce their incidence, or mitigate their severity. Finally, we will discuss transient neurological symptoms. Some cases of spinal cord injury during anaesthesia can be ascribed to anaesthesia itself, arising as a direct consequence of its conduct. The injury to a spinal nerve root by inaccurate and/or incautious needling during spinal anaesthesia is an obvious example. But in many cases, spinal cord injury during anaesthesia is not caused by, related to, or even associated with, the conduct of the anaesthetic. Surgical factors, whether direct (e.g. spinal nerve root damage due to incorrect pedicle screw placement) or indirect (e.g. cord ischaemia following aortic surgery) are responsible for a significant proportion of spinal cord injuries that occur concurrently with the delivery of regional or general anaesthesia. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  15. Opioid administration following spinal cord injury: Implications for pain and locomotor recovery

    PubMed Central

    Woller, Sarah A.; Hook, Michelle A.

    2013-01-01

    Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries. PMID:23501709

  16. Long-lasting involuntary motor activity after spinal cord injury.

    PubMed

    McKay, W B; Ovechkin, A V; Vitaz, T W; Terson de Paleville, D G L; Harkema, S J

    2011-01-01

    The study design used is prospective cohort study. This study was designed to neurophysiologically characterize spinal motor activity during recovery from spinal cord injury (SCI). University of Louisville, Louisville, Kentucky, USA. Twenty-five consecutive acute SCI admissions were recruited for this study. The American Spinal Injury Association Impairment Scale (AIS) was used to categorize injury level and severity at onset. Surface EMG recording was carried out initially between the day of admission and 17 days post-onset (6.0 ± 4.3, mean ± s.d. days). Follow-up recordings were performed for up to 9 months after injury. Initial AIS distribution was 7 AIS-A; 3 AIS-B; 2 AIS-C; 13 AIS-D. Twelve subjects (48%) showed long-duration involuntary motor-unit activation during relaxation. This activity was seen on initial examination in nine and on follow-up by 3 months post-injury in three others. It was seen in muscles innervated from the injury zone in 11 and caudal to the lesion in 9 subjects. This activity was independent of the presence or absence of tendon reflexes and the ability to volitionally suppress plantar stimulation elicited reflex withdrawal. The form of involuntary activity described here is the likely result of the altered balance of excitation and inhibition reaching spinal motor neurons because of the loss of inhibitory interneurons or their reduced activation by damaged supraspinal drive and the synaptic reorganization that follows SCI. As such, this activity may be useful for monitoring the effects of neuroprotective and restorative intervention strategies in persons with SCI.

  17. Long-lasting Involuntary Motor Activity After Spinal Cord Injury

    PubMed Central

    McKay, WB; Ovechkin, AV; Vitaz, TW; de Paleville, DGLTerson; Harkema, SJ

    2010-01-01

    Study Design Prospective cohort study Objective This study was designed to neurophysiologically characterize spinal motor activity during recovery from spinal cord injury (SCI). Setting University of Louisville, Louisville, Kentucky, USA. Material Twenty five consecutive acute SCI admissions were recruited for this study. Methods The American Spinal Injury Association Impairment Scale (AIS) was used to categorize injury level and severity at onset. Surface EMG recording, was carried out initially between the day of admission and 17 days post onset (6.0 ± 4.3, mean ± SD days). Follow-up recordings were performed for up to 9 months after injury. Initial AIS distribution was: 7 AIS-A; 3 AIS-B; 2 AIS-C; 13 AIS-D. Results Twelve subjects (48%) showed long-duration involuntary motor unit activation during relaxation. This activity was seen on initial examination in nine and on follow-up by three months post-injury in three others. It was seen in muscles innervated from the injury zone in 11 and caudal to the lesion in 9 subjects. This activity was independent of the presence or absence of tendon reflexes and the ability to volitionally suppress plantar stimulation elicited reflex withdrawal. Conclusions The form of involuntary activity described here is the likely result of the altered balance of excitation and inhibition reaching spinal motor neurons due to the loss of inhibitory interneurons or their reduced activation by damaged supraspinal drive and the synaptic reorganization that follows SCI. As such, this activity may be useful for monitoring the effects of neuroprotective and restorative intervention strategies in persons with SCI. PMID:20585326

  18. A Review of Clinical Trials in Spinal Cord Injury including Biomarkers.

    PubMed

    Badhiwala, Jetan H; Wilson, Jefferson R; Kwon, Brian K; Casha, Steve; Fehlings, Michael G

    2018-06-11

    Acute traumatic spinal cord injury (SCI) entered the arena of prospective randomized clinical trials almost 40 years ago, with the undertaking of the National Acute Spinal Cord Study (NASCIS) I trial. Since then, a number of clinical trials have been conducted in the field, spurred by the devastating physical, social, and economic consequences of acute SCI for patients, families, and society at large. Many of these have been controversial and attracted criticism. The current review provides a critical summary of select past and current clinical trials in SCI, focusing in particular on the findings of prospective randomized controlled trials (RCTs), the challenges and barriers encountered, and the valuable lessons learned that can be applied to future trials.

  19. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level

    PubMed Central

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A.; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J.; Finkenstaedt, Felix W.; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas

    2016-01-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient’s environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS (‘immune paralysis’), sufficient to propagate clinically relevant infection in an injury level dependent manner. PMID:26754788

  20. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model.

    PubMed

    Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H

    1990-07-01

    Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.

  1. On-scene treatment of spinal injuries in motor sports.

    PubMed

    Kreinest, M; Scholz, M; Trafford, P

    2017-04-01

    Because spinal cord injuries can have fatal consequences for injured race car drivers, prehospital treatment of spinal injuries is a major concern in motor sports. A structured procedure for assessing trauma patients and their treatment should follow established ABCDE principles. Only then, a stable patient could be further examined and appropriate measures can be undertaken. For patients in an acute life-threatening condition, rapid transport must be initiated and should not be delayed by measures that are not indicated. If a competitor must first be extricated from the racing vehicle, the correct method of extrication must be chosen. To avoid secondary injury to the spine after a racing accident, in-line extrication from the vehicle and immobilization of the patient are standard procedures in motor sports and have been used for decades. Since immobilization can be associated with disadvantages and complications, the need for immobilization of trauma patients outside of motor sports medicine has become the subject of an increasing number of reports in the scientific literature. Even in motor sports, where specific safety systems that offer spinal protection are present, the indications for spinal immobilization need to be carefully considered rather than being blindly adopted as a matter of course. The aim of this article is to use recent literature to present an overview about the treatment of spinal injuries in motor sports. Further, we present a new protocol for indications for immobilizing the spine in motor sports that is based on the ABCDE principles and takes into account the condition of the patient.

  2. Spinal cord injury - Symptoms and causes

    MedlinePlus

    ... are the leading cause of spinal cord injuries, accounting for almost half of new spinal cord injuries ... address these problems if they affect you. Respiratory system. Your injury may make it more difficult to ...

  3. Spinal cord injury with central cord syndrome from surfing.

    PubMed

    Steinfeld, Yaniv; Keren, Yaniv; Haddad, Elias

    2018-01-01

    Central cord syndrome (CCS) is an injury to the center of the spinal cord. It is well known as a hyperextension injury, but it has never been described as a surfing injury. Our report describes this injury in detail. A 35-year-old male novice surfer presented to the emergency department with acute tetraplegia following falling off his surfboard and hitting sea floor at a shallow beach break. He was rescued by a fellow surfer while floating in the sea and unable to raise his head above sea level. Upon arrival at the hospital, tetraplegia and sensory deficits were noted. Radiological investigations showed advanced spinal stenosis at C4-6 levels. T2 magnetic resonance imaging (MRI) demonstrated myelopathy at C5-C6 level. He was diagnosed as having central cord syndrome, treated conservatively, and regained near full neurologic recovery after a month of rehabilitation. Unique sport activities lead to unique injuries. It is important to accurately describe these injuries in order to create protective measures against them. Neurologic injuries in surfers are uncommon. With low-energy trauma, surfer's myelopathy is still the most common diagnosis, but central cord syndrome should be in the differential diagnosis.

  4. High-Mobility Group Box 1 (HMGB1) Is Elevated Systemically in Persons with Acute or Chronic Traumatic Spinal Cord Injury.

    PubMed

    Papatheodorou, Angelos; Stein, Adam; Bank, Matthew; Sison, Cristina P; Gibbs, Katie; Davies, Peter; Bloom, Ona

    2017-02-01

    Inflammation in traumatic spinal cord injury (SCI) has been proposed to promote damage acutely and oppose functional recovery chronically. However, we do not yet understand the signals that initiate or prolong inflammation in persons with SCI. High-Mobility Group Box 1 (HMGB1) is a potent systemic inflammatory cytokine-or damage-associated molecular pattern molecule (DAMP)-studied in a variety of clinical settings. It is elevated in pre-clinical models of traumatic spinal cord injury (SCI), where it promotes secondary injury, and strategies that block HMGB1 improve functional recovery. To investigate the potential translational relevance of these observations, we measured HMGB1 in plasma from adults with acute (≤ 1 week post-SCI, n = 16) or chronic (≥ 1 year post-SCI, n = 47) SCI. Plasma from uninjured persons (n = 51) served as controls for comparison. In persons with acute SCI, average HMGB1 levels were significantly elevated within 0-3 days post-injury (6.00 ± 1.8 ng/mL, mean ± standard error of the mean [SEM]) or 4-7 (6.26 ± 1.3 ng/mL, mean ± SEM), compared with controls (1.26 ± 0.24 ng/mL, mean ± SEM; p ≤ 0.001 and p ≤ 0.01, respectively). In persons with chronic SCI who were injured for 15 ± 1.5 years (mean ± SEM), HMGB1 also was significantly elevated, compared with uninjured persons (3.7 ± 0.69 vs. 1.26 ± 0.24 ng/mL, mean ± SEM; p ≤ 0.0001). Together, these data suggest that HMGB1 may be a common, early, and persistent danger signal promoting inflammation in individuals with SCI.

  5. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.

    PubMed

    Okada, Starlyn L M; Stivers, Nicole S; Stys, Peter K; Stirling, David P

    2014-11-25

    Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular

  6. Early Versus Delayed Surgical Decompression of Spinal Cord after Traumatic Cervical Spinal Cord Injury: A Cost-Utility Analysis.

    PubMed

    Furlan, Julio C; Craven, B Catharine; Massicotte, Eric M; Fehlings, Michael G

    2016-04-01

    This cost-utility analysis was undertaken to compare early (≤24 hours since trauma) versus delayed surgical decompression of spinal cord to determine which approach is more cost effective in the management of patients with acute traumatic cervical spinal cord injury (SCI). This study includes the patients enrolled into the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS) and admitted at Toronto Western Hospital. Cases were grouped into patients with motor complete SCI and individuals with motor incomplete SCI. A cost-utility analysis was performed for each group of patients by the use of data for the first 6 months after SCI. The perspective of a public health care insurer was adopted. Costs were estimated in 2014 U.S. dollars. Utilities were estimated from the STASCIS. The baseline analysis indicates early spinal decompression is more cost-effective approach compared with the delayed spinal decompression. When we considered the delayed spinal decompression as the baseline strategy, the incremental cost-effectiveness ratio analysis revealed a saving of US$ 58,368,024.12 per quality-adjusted life years gained for patients with complete SCI and a saving of US$ 536,217.33 per quality-adjusted life years gained in patients with incomplete SCI for the early spinal decompression. The probabilistic analysis confirmed the early-decompression strategy as more cost effective than the delayed-decompression approach, even though there is no clearly dominant strategy. The results of this economic analysis suggests that early decompression of spinal cord was more cost effective than delayed surgical decompression in the management of patients with motor complete and incomplete SCI, even though no strategy was clearly dominant. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.

    PubMed

    Bennett, D J; Sanelli, L; Cooke, C L; Harvey, P J; Gorassini, M A

    2004-05-01

    Following chronic sacral spinal cord transection in rats the affected tail muscles exhibit marked spasticity, with characteristic long-lasting tail spasms evoked by mild stimulation. The purpose of the present paper was to characterize the long-lasting reflex seen in tail muscles in response to electrical stimulation of the tail nerves in the awake spastic rat, including its development with time and relation to spasticity. Before and after sacral spinal transection, surface electrodes were placed on the tail for electrical stimulation of the caudal nerve trunk (mixed nerve) and for recording EMG from segmental tail muscles. In normal and acute spinal rats caudal nerve trunk stimulation evoked little or no EMG reflex. By 2 wk after injury, the same stimulation evoked long-lasting reflexes that were 1) very low threshold, 2) evoked from rest without prior EMG activity, 3) of polysynaptic latency with >6 ms central delay, 4) about 2 s long, and 5) enhanced by repeated stimulation (windup). These reflexes produced powerful whole tail contractions (spasms) and developed gradually over the weeks after the injury (< or =52 wk tested), in close parallel to the development of spasticity. Pure low-threshold cutaneous stimulation, from electrical stimulation of the tip of the tail, also evoked long-lasting spastic reflexes, not seen in acute spinal or normal rats. In acute spinal rats a strong C-fiber stimulation of the tip of the tail (20 x T) could evoke a weak EMG response lasting about 1 s. Interestingly, when this C-fiber stimulation was used as a conditioning stimulation to depolarize the motoneuron pool in acute spinal rats, a subsequent low-threshold stimulation of the caudal nerve trunk evoked a 300-500 ms long reflex, similar to the onset of the long-lasting reflex in chronic spinal rats. A similar conditioned reflex was not seen in normal rats. Thus there is an unusually long low-threshold polysynaptic input to the motoneurons (pEPSP) that is normally inhibited by

  8. Differential expression of ryanodine receptor isoforms after spinal cord injury.

    PubMed

    Pelisch, Nicolas; Gomes, Cynthia; Nally, Jacqueline M; Petruska, Jeffrey C; Stirling, David P

    2017-11-01

    Ryanodine receptors (RyRs) are highly conductive intracellular Ca 2+ release channels and are widely expressed in many tissues, including the central nervous system. RyRs have been implicated in intracellular Ca 2+ overload which can drive secondary damage following traumatic injury to the spinal cord (SCI), but the spatiotemporal expression of the three isoforms of RyRs (RyR1-3) after SCI remains unknown. Here, we analyzed the gene and protein expression of RyR isoforms in the murine lumbar dorsal root ganglion (DRG) and the spinal cord lesion site at 1, 2 and 7 d after a mild contusion SCI. Quantitative RT PCR analysis revealed that RyR3 was significantly increased in lumbar DRGs and at the lesion site at 1 and 2 d post contusion compared to sham (laminectomy only) controls. Additionally, RyR2 expression was increased at 1 d post injury within the lesion site. RyR2 and -3 protein expression was localized to lumbar DRG neurons and their spinal projections within the lesion site acutely after SCI. In contrast, RyR1 expression within the DRG and lesion site remained unaltered following trauma. Our study shows that SCI initiates acute differential expression of RyR isoforms in DRG and spinal cord. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of aquaporin 4 and inward rectifier potassium channel 4.1 on medullospinal edema after methylprednisolone treatment to suppress acute spinal cord injury in rats.

    PubMed

    Li, Ye; Hu, Haifeng; Liu, Jingchen; Zhu, Qingsan; Gu, Rui

    2018-02-01

    To investigate the effects of aquaporin 4 (AQP4) and inward rectifier potassium channel 4.1 (Kir4.1) on medullospinal edema after treatment with methylprednisolone (MP) to suppress acute spinal cord injury (ASCI) in rats. Sprague Dawley rats were randomly divided into control, sham, ASCI, and MP-treated ASCI groups. After the induction of ASCI, we injected 30 mg/kg MP via the tail vein at various time points. The Tarlov scoring method was applied to evaluate neurological symptoms, and the wet-dry weights method was applied to measure the water content of the spinal cord. The motor function score of the ASCI group was significantly lower than that of the sham group, and the spinal water content was significantly increased. In addition, the levels of AQP4 and Kir4.1 were significantly increased, as was their degree of coexpression. Compared with that in the ASCI group, the motor function score and the water content were significantly increased in the MP group; in addition, the expression and coexpression of AQP4 and Kir4.1 were significantly reduced. Methylprednisolone inhibited medullospinal edema in rats with acute spinal cord injury, possibly by reducing the coexpression of aquaporin 4 and Kir4.1 in medullospinal tissues.

  10. Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury.

    PubMed

    Fairbanks, C A; Schreiber, K L; Brewer, K L; Yu, C G; Stone, L S; Kitto, K F; Nguyen, H O; Grocholski, B M; Shoeman, D W; Kehl, L J; Regunathan, S; Reis, D J; Yezierski, R P; Wilcox, G L

    2000-09-12

    Antagonists of glutamate receptors of the N-methyl-d-aspartate subclass (NMDAR) or inhibitors of nitric oxide synthase (NOS) prevent nervous system plasticity. Inflammatory and neuropathic pain rely on plasticity, presenting a clinical opportunity for the use of NMDAR antagonists and NOS inhibitors in chronic pain. Agmatine (AG), an endogenous neuromodulator present in brain and spinal cord, has both NMDAR antagonist and NOS inhibitor activities. We report here that AG, exogenously administered to rodents, decreased hyperalgesia accompanying inflammation, normalized the mechanical hypersensitivity (allodynia/hyperalgesia) produced by chemical or mechanical nerve injury, and reduced autotomy-like behavior and lesion size after excitotoxic spinal cord injury. AG produced these effects in the absence of antinociceptive effects in acute pain tests. Endogenous AG also was detected in rodent lumbosacral spinal cord in concentrations similar to those previously detected in brain. The evidence suggests a unique antiplasticity and neuroprotective role for AG in processes underlying persistent pain and neuronal injury.

  11. Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury

    PubMed Central

    Fairbanks, Carolyn A.; Schreiber, Kristin L.; Brewer, Kori L.; Yu, Chen-Guang; Stone, Laura S.; Kitto, Kelley F.; Nguyen, H. Oanh; Grocholski, Brent M.; Shoeman, Don W.; Kehl, Lois J.; Regunathan, Soundararajan; Reis, Donald J.; Yezierski, Robert P.; Wilcox, George L.

    2000-01-01

    Antagonists of glutamate receptors of the N-methyl-d-aspartate subclass (NMDAR) or inhibitors of nitric oxide synthase (NOS) prevent nervous system plasticity. Inflammatory and neuropathic pain rely on plasticity, presenting a clinical opportunity for the use of NMDAR antagonists and NOS inhibitors in chronic pain. Agmatine (AG), an endogenous neuromodulator present in brain and spinal cord, has both NMDAR antagonist and NOS inhibitor activities. We report here that AG, exogenously administered to rodents, decreased hyperalgesia accompanying inflammation, normalized the mechanical hypersensitivity (allodynia/hyperalgesia) produced by chemical or mechanical nerve injury, and reduced autotomy-like behavior and lesion size after excitotoxic spinal cord injury. AG produced these effects in the absence of antinociceptive effects in acute pain tests. Endogenous AG also was detected in rodent lumbosacral spinal cord in concentrations similar to those previously detected in brain. The evidence suggests a unique antiplasticity and neuroprotective role for AG in processes underlying persistent pain and neuronal injury. PMID:10984543

  12. Spinal cord injuries in Australian footballers 1997-2002.

    PubMed

    Carmody, David J; Taylor, Thomas K F; Parker, David A; Coolican, Myles R J; Cumming, Robert G

    2005-06-06

    To review acute spinal cord injuries (ASCIs) in all Australian codes of football (rugby union [RU], rugby league [RL], Australian Rules football [ARF] and soccer) for 1997-2002 and to compare data with those of a 1986-1996 survey. Retrospective review of hospital records, and structured interviews with injured players. Patients admitted to any of the six Australian spinal cord injury units with a documented football-related ASCI over the period 1997-2002. Average annual incidence of ASCIs per 100,000 players in the different codes, final Frankel grading of injuries, and wheelchair status. Fifty-two footballers (45 adult men and seven schoolboys) suffered ASCIs between 1997 and 2002. The average annual incidence of ASCIs per 100,000 players was 3.2 for RU, 1.5 for RL, 0.5 for ARF and 0.2 for soccer. While there has been little change in incidence since the 1986-1996 survey, there has been a trend towards less severe injuries in RU and RL, but not in ARF. There have been no scrum injuries in RL since 1996, when the scrum stopped being contested. Seven injuries occurred in RU scrums, six at the moment of engagement of the opposing teams. The incidence of 2-on-1 and "gang" tackles (involving multiple tacklers) in RL is disturbing. Overall, 39% of injured players became permanently wheelchair-dependent. There continues to be good reason to revise the laws of scrum engagement in RU. The laws relating to multiple tacklers in RL should be examined. The insurance cover for injured players is grossly inadequate. The longstanding need for a registry of spinal cord injuries for all football codes regrettably remains unmet.

  13. Simultaneously diagnosed pulmonary thromboembolism and hemopericardium in a man with thoracic spinal cord injury.

    PubMed

    Han, Jae-Young; Seon, Hyo-Jeong; Choi, In-Sung; Ahn, Youngkeun; Jeong, Myung-Ho; Lee, Sam-Gyu

    2012-05-01

    Simultaneous pulmonary thromboembolism (PTE) and hemopericardium is a rare but life-threatening condition. As hemopericardium is a contraindication to anticoagulation treatment, it is challenging to handle both conditions together. The objective of the study was to report a rare case of a man with thoracic spinal cord injury presenting with simultaneous PTE and hemopericardium. Case report. A 43-year-old man with incomplete T9 paraplegia (American Spinal Injury Association Impairment Scale D) complained of fever one and a half months after spinal cord injury sustained in a fall. During evaluation of fever origin, chest computed tomography and transthoracic echocardiogram revealed simultaneous PTE and hemopericardium. After serial echocardiograms over 2 days demonstrated stability, intravenous heparin, and oral warfarin were administered and his medical status was observed closely. Ultimately, both conditions improved without significant complications. We report successful treatment of man with acute spinal cord injury who presented with simultaneously diagnosed PTE and hemopericardium, a rare complication involving two distinct and opposing pathological mechanisms and conflicting treatments.

  14. Spinal injuries in skiers and snowboarders.

    PubMed

    Tarazi, F; Dvorak, M F; Wing, P C

    1999-01-01

    Spinal injuries are among the most devastating injuries associated with recreational sports. Snowboarding spinal injury patterns have not been described. During two seasons (1994 to 1995 and 1995 to 1996), 34 skiers and 22 snowboarders suffered serious spinal injuries (fracture or neurologic deficit or both) at two ski areas in British Columbia, Canada. Ski patrol records, the Provincial Trauma Database, and hospital records were reviewed. Injury rates were based on computerized lift-ticket data and a population estimate of 15% snowboarders (ski patrol observation). The incidence of spinal injury among skiers was 0.01 per 1000 skier-days, and among snowboarders was 0.04 per 1000 snowboarder-days. Mean age was 34.5 years for skiers and 22.4 years for snowboarders. Seventy percent of the skiers were men, whereas all of the snowboarders were men. Jumping (intentional jump > 2 meters) was the cause of injury in 20% of skiers and 77% of snowboarders. Neither age nor sex accounted for any significant portion of this difference. The rate of spinal injuries among snowboarders is fourfold that among skiers. Although jumping is the primary cause of injury, it is an intrinsic element of snowboarding. Until research defines effective injury-prevention strategies, knowledge of the risk of snowboarding should be disseminated and techniques for safe jumping should be taught.

  15. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury.

    PubMed

    Kabu, Shushi; Gao, Yue; Kwon, Brian K; Labhasetwar, Vinod

    2015-12-10

    Spinal cord injury (SCI) results in devastating neurological and pathological consequences, causing major dysfunction to the motor, sensory, and autonomic systems. The primary traumatic injury to the spinal cord triggers a cascade of acute and chronic degenerative events, leading to further secondary injury. Many therapeutic strategies have been developed to potentially intervene in these progressive neurodegenerative events and minimize secondary damage to the spinal cord. Additionally, significant efforts have been directed toward regenerative therapies that may facilitate neuronal repair and establish connectivity across the injury site. Despite the promise that these approaches have shown in preclinical animal models of SCI, challenges with respect to successful clinical translation still remain. The factors that could have contributed to failure include important biologic and physiologic differences between the preclinical models and the human condition, study designs that do not mirror clinical reality, discrepancies in dosing and the timing of therapeutic interventions, and dose-limiting toxicity. With a better understanding of the pathobiology of events following acute SCI, developing integrated approaches aimed at preventing secondary damage and also facilitating neuroregenerative recovery is possible and hopefully will lead to effective treatments for this devastating injury. The focus of this review is to highlight the progress that has been made in drug therapies and delivery systems, and also cell-based and tissue engineering approaches for SCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    ClinicalTrials.gov

    2018-05-16

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  17. Improving the Efficiency and Efficacy of Glibenclamide in Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    2   INTRODUCTION: The magnitude of acute post- traumatic hemorrhagic necrosis (PHN) is an early prognostic indicator of long-term...Efficacy of Glibenclamide in Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury PRINCIPAL INVESTIGATOR: J. Marc Simard...Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury 5b. GRANT NUMBER W81XWH-10-1-0898 5c. PROGRAM ELEMENT NUMBER 6

  18. Neurobiological Effects of Morphine after Spinal Cord Injury

    PubMed Central

    Woller, Sarah A.; Bancroft, Eric; Aceves, Miriam; Funk, Mary Katherine; Hartman, John; Garraway, Sandra M.

    2017-01-01

    Abstract Opioids and non-steroidal anti-inflammatory drugs are used commonly to manage pain in the early phase of spinal cord injury (SCI). Despite its analgesic efficacy, however, our studies suggest that intrathecal morphine undermines locomotor recovery and increases lesion size in a rodent model of SCI. Similarly, intravenous (IV) morphine attenuates locomotor recovery. The current study explores whether IV morphine also increases lesion size after a spinal contusion (T12) injury and quantifies the cell types that are affected by early opioid administration. Using an experimenter-administered escalating dose of IV morphine across the first seven days post-injury, we quantified the expression of neuron, astrocyte, and microglial markers at the injury site. SCI decreased NeuN expression relative to shams. In subjects with SCI treated with IV morphine, virtually no NeuN+ cells remained across the rostral-caudal extent of the lesion. Further, whereas SCI per se increased the expression of astrocyte and microglial markers (glial fibrillary acidic protein and OX-42, respectively), morphine treatment decreased the expression of these markers. These cellular changes were accompanied by attenuation of locomotor recovery (Basso, Beattie, Bresnahan scores), decreased weight gain, and the development of opioid-induced hyperalgesia (increased tactile reactivity) in morphine-treated subjects. These data suggest that morphine use is contraindicated in the acute phase of a spinal injury. Faced with a lifetime of intractable pain, however, simply removing any effective analgesic for the management of SCI pain is not an ideal option. Instead, these data underscore the critical need for further understanding of the molecular pathways engaged by conventional medications within the pathophysiological context of an injury. PMID:27762659

  19. MRI Atlas-Based Measurement of Spinal Cord Injury Predicts Outcome in Acute Flaccid Myelitis.

    PubMed

    McCoy, D B; Talbott, J F; Wilson, Michael; Mamlouk, M D; Cohen-Adad, J; Wilson, Mark; Narvid, J

    2017-02-01

    Recent advances in spinal cord imaging analysis have led to the development of a robust anatomic template and atlas incorporated into an open-source platform referred to as the Spinal Cord Toolbox. Using the Spinal Cord Toolbox, we sought to correlate measures of GM, WM, and cross-sectional area pathology on T2 MR imaging with motor disability in patients with acute flaccid myelitis. Spinal cord imaging for 9 patients with acute flaccid myelitis was analyzed by using the Spinal Cord Toolbox. A semiautomated pipeline using the Spinal Cord Toolbox measured lesion involvement in GM, WM, and total spinal cord cross-sectional area. Proportions of GM, WM, and cross-sectional area affected by T2 hyperintensity were calculated across 3 ROIs: 1) center axial section of lesion; 2) full lesion segment; and 3) full cord atlas volume. Spearman rank order correlation was calculated to compare MR metrics with clinical measures of disability. Proportion of GM metrics at the center axial section significantly correlated with measures of motor impairment upon admission ( r [9] = -0.78; P = .014) and at 3-month follow-up ( r [9] = -0.66; P = .05). Further, proportion of GM extracted across the full lesion segment significantly correlated with initial motor impairment ( r [9] = -0.74, P = .024). No significant correlation was found for proportion of WM or proportion of cross-sectional area with clinical disability. Atlas-based measures of proportion of GM T2 signal abnormality measured on a single axial MR imaging section and across the full lesion segment correlate with motor impairment and outcome in patients with acute flaccid myelitis. This is the first atlas-based study to correlate clinical outcomes with segmented measures of T2 signal abnormality in the spinal cord. © 2017 by American Journal of Neuroradiology.

  20. Acute diagnostic biomarkers for spinal cord injury: review of the literature and preliminary research report.

    PubMed

    Yokobori, Shoji; Zhang, Zhiqun; Moghieb, Ahmed; Mondello, Stefania; Gajavelli, Shyam; Dietrich, W Dalton; Bramlett, Helen; Hayes, Ronald L; Wang, Michael; Wang, Kevin K W; Bullock, M Ross

    2015-05-01

    Many efforts have been made to create new diagnostic technologies for use in the diagnosis of central nervous system injury. However, there is still no consensus for the use of biomarkers in clinical acute spinal cord injury (SCI). The aims of this review are (1) to evaluate the current status of neurochemical biomarkers and (2) to discuss their potential acute diagnostic role in SCI by reviewing the literature. PubMed (http://www.ncbi.nlm.nih.gov/pubmed) was searched up to 2012 to identify publications concerning diagnostic biomarkers in SCI. To support more knowledge, we also checked secondary references in the primarily retrieved literature. Neurofilaments, cleaved-Tau, microtubule-associated protein 2, myelin basic protein, neuron-specific enolase, S100β, and glial fibrillary acidic protein were identified as structural protein biomarkers in SCI by this review process. We could not find reports relating ubiquitin C-terminal hydrolase-L1 and α-II spectrin breakdown products, which are widely researched in other central nervous system injuries. Therefore, we present our preliminary data relating to these two biomarkers. Some of biomarkers showed promising results for SCI diagnosis and outcome prediction; however, there were unresolved issues relating to accuracy and their accessibility. Currently, there still are not many reports focused on diagnostic biomarkers in SCI. This fact warranted the need for greater efforts to innovate sensitive and reliable biomarkers for SCI. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Design and testing of a controlled electromagnetic spinal cord impactor for use in large animal models of acute traumatic spinal cord injury.

    PubMed

    Petteys, Rory J; Spitz, Steven M; Syed, Hasan; Rice, R Andrew; Sarabia-Estrada, Rachel; Goodwin, C Rory; Sciubba, Daniel M; Freedman, Brett A

    2017-09-01

    Spinal cord injury (SCI) causes debilitating neurological dysfunction and has been observed in warfighters injured in IED blasts. Clinical benefit of SCI treatment remains elusive and better large animal models are needed to assess treatment options. Here, we describe a controlled electromagnetic spinal cord impactor for use in large animal models of SCI. A custom spinal cord impactor and platform were fabricated for large animals (e.g., pig, sheep, dog, etc.). Impacts were generated by a voice coil actuator; force and displacement were measured with a load cell and potentiometer respectively. Labview (National Instruments, Austin, TX) software was used to control the impact cycle and import force and displacement data. Software finite impulse response (FIR) filtering was employed for all input data. Silicon tubing was used a surrogate for spinal cord in order to test the device; repeated impacts were performed at 15, 25, and 40 Newtons. Repeated impacts demonstrated predictable results at each target force. The average duration of impact was 71.2 ±6.1ms. At a target force of 40N, the output force was 41.5 ±0.7N. With a target of 25N, the output force was 23.5 ±0.6N; a target of 15Newtons revealed an output force of 15.2 ±1.4N. The calculated acceleration range was 12.5-21.2m/s 2 . This custom spinal cord impactor reliably delivers precise impacts to the spinal cord and will be utilized in future research to study acute traumatic SCI in a large animal. Published by Elsevier Ltd.

  2. Spinal Cord Injury Causes Chronic Liver Pathology in Rats

    PubMed Central

    Sauerbeck, Andrew D.; Laws, J. Lukas; Bandaru, Veera V.R.; Popovich, Phillip G.; Haughey, Norman J.

    2015-01-01

    Abstract Traumatic spinal cord injury (SCI) causes major disruption to peripheral organ innervation and regulation. Relatively little work has investigated these post-SCI systemic changes, however, despite considerable evidence that multiple organ system dysfunction contributes to chronic impairments in health. Because metabolic dysfunction is common after SCI and the liver is a pivotal site for metabolic homeostasis, we sought to determine if liver pathology occurs as a result of SCI in a rat spinal contusion model. Histologic evidence showed excess lipid accumulation in the liver for at least 21 days post-injury after cervical or midthoracic SCI. Lipidomic analysis revealed an acute increase in hepatic ceramides as well as chronically elevated lactosylceramide. Post-SCI hepatic changes also included increased proinflammatory gene expression, including interleukin (IL)-1α, IL-1β, chemokine ligand-2, and tumor necrosis factor-α mRNA. These were coincident with increased CD68+ macrophages in the liver through 21 days post-injury. Serum alanine transaminase, used clinically to detect liver damage, was significantly increased at 21 days post-injury, suggesting that early metabolic and inflammatory damage preceded overt liver pathology. Surprisingly, liver inflammation was even detected after lumbar SCI. Collectively, these results suggest that SCI produces chronic liver injury with symptoms strikingly similar to those of nonalcoholic steatohepatitis (fatty liver disease). These clinically significant hepatic changes after SCI are known to contribute to systemic inflammation, cardiovascular disease, and metabolic syndrome, all of which are more prevalent in persons with SCI. Targeting acute and prolonged hepatic pathology may improve recovery and reduce long-term complications after SCI. PMID:25036371

  3. Using peer mentoring for people with spinal cord injury to enhance self-efficacy beliefs and prevent medical complications.

    PubMed

    Ljungberg, Inger; Kroll, Thilo; Libin, Alexander; Gordon, Samuel

    2011-02-01

    Individuals with spinal cord injury/disease are faced with a myriad of psychosocial adjustment challenges. This article describes the implementation of a peer-mentoring programme designed to support this adjustment process for people with SCI/disease and the programme's believed impact on self-efficacy and prevention of medical complications. With shorter length of stay in acute inpatient rehabilitation after spinal cord injury/disease, peer mentor programmes are becoming an important component to assist with education and community re-integration. Quasi-experimental non-controlled pretest/post-test. Patients with newly acquired spinal cord injury/disease participated in a one-year spinal cord injury peer-mentoring programme. Peer mentors met with their assigned participants regularly during inpatient care and on discharge to track medical complications and assist with adjusting to life after spinal cord injury/disease. In all, of 37 mentees enrolled, 24 successfully completed the programme. Sixty-seven per cent showed improved self-efficacy score between the two time points. Medical complications and doctor visits all decreased significantly between 0-6 months and 7-12 months. Our findings indicate that the older an individual is, the lower the likelihood of having a urinary tract infection (p = 0.006). The programme was well received by all mentees who felt they could connect well with their peer mentor. Peer mentoring in a rehabilitation setting enhances the understanding of challenges that patients and medical staff deal with on a day-to-day basis. Our findings suggest it is important to monitor and educate individuals with spinal cord injury/disease at the acute stage to improve medical outcomes. Caution is advised in the interpretation of these results as they were obtained in a small non-random sample using self-report data. Peer mentors play an increasingly important role in nurse-delivered education in the spinal cord injury/disease population. © 2011

  4. Medical co-morbidities, secondary complications, and mortality in elderly with acute spinal cord injury.

    PubMed

    Krassioukov, Andrei V; Furlan, Julio C; Fehlings, Michael G

    2003-04-01

    Despite an increasing incidence of spinal cord injury (SCI) in the elderly and evidence that age appears to influence outcome after neurotrauma, surprisingly little is known regarding clinical outcomes and secondary complications in elderly with an acute SCI. This study was undertaken to evaluate the effect of age on clinical outcomes after acute traumatic SCI managed in an acute care unit by a multidisciplinary team. A retrospective chart review of all patients with acute SCI admitted to an acute care unit at a university hospital between 1998 and 2000 was performed. Data on clinical outcomes and secondary complications in younger individuals (group 1: age < 60 years) were compared to elderly subjects (group 2: age > or = 60 years). There were 28 elderly (age 60-89 years) and 30 younger (age 17-56 years) individuals. The severity and level of SCI were similar in both groups (p = 0.11; p = 0.93). Co-morbidities were more frequent in the elderly (p < 0.01). There was a trend, which did not achieve significance, for an increased incidence of secondary complications in the elderly (57.1% versus 33.3%; p = 0.11). The most common secondary complications in both groups were infections, psychiatric disorders, pressure sores, and cardiovascular complications. Mortality rates in elderly and younger individuals with acute SCI (p = 0.41) were not significantly different. Our data suggest that rigorous attention to principles of acute SCI care can minimize previously reported higher susceptibility for secondary complications in the elderly. A multidisciplinary team approach to the management of the elderly with acute SCI is essential to minimize or prevent secondary complications.

  5. Growth factors and cytokines in patients with long bone fractures and associated spinal cord injury.

    PubMed

    Khallaf, Fathy G; Kehinde, Elijah O; Mostafa, Ahmed

    2016-06-01

    The aim of the study was to test the effect of acute traumatic spinal cord injury of quadriplegia or paraplegia on bone healing in patients with associated long bone fractures and to investigate the molecular and cellular events of the underlying mechanism for a possible acceleration. Healing indicators of long bone fractures and growth factors, IGF-II, platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), Activin-A, and cytokine I-L-1, in the patients' blood were calculated and measured for 21 patients with spinal cord injuries and associated long bone fractures in prospective controlled study and compared to 20 patients with only spinal cord injuries, 30 patients with only long bone fractures, and 30 healthy volunteers. The study results showed that long bone fractures in patients with associated acute traumatic spinal cord injury of quadriplegia or paraplegia heal more expectedly, faster, and with exuberant florid union callus (P > 0.001) and show statistically significant higher levels of growth factors like PDGF, VEGF, Activin-A, and cytokine I-L-1, along the 3 weeks of follow-up (P > 0.005). I-IGF-II showed statistically significant subnormal level along the whole follow-up period in the same patients (P > 0.005). We concluded that long bone fractures in spinal cord injury patients heal more expectedly, faster, and with exuberant and florid callus formation; growth factors like IGF-II, PDGF, VEGF, Activin-A, and cytokine I-L-I have roles as mediators, in molecular events and as byproducts of the subtle mechanism of accelerated osteogenesis in these patients and may represent therapeutic potentials to serve as agents to enhance bone repair.

  6. Acute and Chronic Deficits in the Urinary Bladder after Spinal Contusion Injury in the Adult Rat

    PubMed Central

    Herrera, Juan J.; Haywood-Watson, Ricky J.L.

    2010-01-01

    Abstract Traumatic spinal cord injury (SCI) permanently alters bladder function in humans. Hematuria and cystitis occur in both human SCI as well as in rodent models of SCI. Others have reported early SCI-dependent disruption to bladder uroepithelial integrity that results in increased permeability to urine and urine-borne substances. This can result in cystitis, or inflammation of the bladder, an ongoing pathological condition present throughout the chronic phase of SCI in humans. The goals of our study were twofold: (1) to begin to examine the inflammatory and molecular changes that occur within the bladder uroepithelium using a clinically-relevant spinal contusion model of injury, and (2) to assess whether these alterations continue into the chronic phase of SCI. Rats received either moderate SCI or sham surgery. Urine was collected from SCI and sham subjects over 7 days or at 7 months to assess levels of excreted proteins. Inflammation in the bladder wall was assessed via biochemical and immunohistochemical methods. Bladder tight junction proteins, mediators of uroepithelial integrity, were also measured in both the acute and chronic phases of SCI. Urine protein and hemoglobin levels rapidly increase following SCI. An SCI-dependent elevation in numbers of neutrophils within the bladder wall peaked at 48 h. Bladder tight junction proteins demonstrate a rapid but transient decrease as early as 2 h post-SCI. Surprisingly, elevated levels of urine proteins and significant deficits in bladder tight junction proteins could be detected in chronic SCI, suggesting that early pathological changes to the bladder may continue throughout the chronic phase of injury. PMID:19891526

  7. Exercise-Dependent Modulation of Neurourological Health Following Spinal Cord Injury

    DTIC Science & Technology

    2014-11-01

    Neurobiology, 2Kentucky Spinal Cord Injury Research Center, 3Department of Neurological Surgery, 4Frazier Rehab Institute, University of Louisville...an infusion pump and pressure transducer.24 Behavioral procedures Training paradigm. Training interventions initiated acutely post-SCI may be...proper plantar placement—e.g. complete toe extension, no ankle rotation, and incorporation of forelimb-hindlimb coordination with minimal assistance

  8. A Single Bolus of Docosahexaenoic Acid Promotes Neuroplastic Changes in the Innervation of Spinal Cord Interneurons and Motor Neurons and Improves Functional Recovery after Spinal Cord Injury.

    PubMed

    Liu, Zhuo-Hao; Yip, Ping K; Adams, Louise; Davies, Meirion; Lee, Jae Won; Michael, Gregory J; Priestley, John V; Michael-Titus, Adina T

    2015-09-16

    Docosahexaenoic acid (DHA) is an ω-3 polyunsaturated fatty acid that is essential in brain development and has structural and signaling roles. Acute DHA administration is neuroprotective and promotes functional recovery in animal models of adult spinal cord injury (SCI). However, the mechanisms underlying this recovery have not been fully characterized. Here we investigated the effects of an acute intravenous bolus of DHA delivered after SCI and characterized DHA-induced neuroplasticity within the adult injured spinal cord. We found robust sprouting of uninjured corticospinal and serotonergic fibers in a rat cervical hemisection SCI model. A mouse pyramidotomy model was used to confirm that this robust sprouting was not species or injury model specific. Furthermore, we demonstrated that corticospinal fibers sprouting to the denervated side of the cord following pyramidotomy contact V2a interneurons. We also demonstrated increased serotonin fibers and synaptophysin in direct contact with motor neurons. DHA also increased synaptophysin in rat cortical cell cultures. A reduction in phosphatase and tensin homolog (PTEN) has been shown to be involved in axonal regeneration and synaptic plasticity. We showed that DHA significantly upregulates miR-21 and downregulates PTEN in corticospinal neurons. Downregulation of PTEN and upregulation of phosphorylated AKT by DHA were also seen in primary cortical neuron cultures and were accompanied by increased neurite outgrowth. In summary, acute DHA induces anatomical and synaptic plasticity in adult injured spinal cord. This study shows that DHA has therapeutic potential in cervical SCI and provides evidence that DHA could exert its beneficial effects in SCI via enhancement of neuroplasticity. In this study, we show that an acute intravenous injection of docosahexaenoic acid (DHA) 30 min after spinal cord injury induces neuroplasticity. We found robust sprouting of uninjured corticospinal and serotonergic fibers in a rat

  9. Gastrointestinal symptoms in spinal cord injury: relationships with level of injury and psychologic factors.

    PubMed

    Ng, Clinton; Prott, Gillian; Rutkowski, Susan; Li, Yueming; Hansen, Ross; Kellow, John; Malcolm, Allison

    2005-08-01

    Previous surveys of gastrointestinal symptoms after spinal cord injury have not used validated questionnaires and have not focused on the full spectrum of such symptoms and their relationship to factors, such as level of spinal cord injury and psychologic dysfunction. This study was designed to detail the spectrum and prevalence of gastrointestinal symptoms in spinal cord injury and to determine clinical and psychologic factors associated with such symptoms. Established spinal cord injury patients (>12 months) randomly selected from a spinal cord injury database completed the following three questionnaires: 1) Rome II Integrative Questionnaire, 2) Hospital Anxiety and Depression Scale, and 3) Burwood Bowel Dysfunction after spinal cord injury. A total of 110 patients participated. The prevalence of abdominal bloating and constipation were 22 and 46 percent, respectively. Bloating was associated with cervical (odds ratio = 9.5) and lumbar (odds ratio = 12.1) level but not with thoracic level of injury. Constipation was associated with a higher level of injury (cervical odds ratio = 5.6 vs. lumbar) but not with psychologic factors. In contrast, abdominal pain (33 percent) and fecal incontinence (41 percent) were associated with higher levels of anxiety (odds ratio = 6.8, and odds ratio = 2.4) but not with the level of injury. There is a high prevalence and wide spectrum of gastrointestinal symptoms in spinal cord injury. Abdominal bloating and constipation are primarily related to specific spinal cord levels of injury, whereas abdominal pain and fecal incontinence are primarily associated with higher levels of anxiety. Based on our findings, further physiologic and psychologic research studies in spinal cord injury patients should lead to more rational management strategies for the common gastrointestinal symptoms in spinal cord injury.

  10. Aetioepidemiological profile of spinal injury patients in Eastern Nepal.

    PubMed

    Lakhey, S; Jha, N; Shrestha, B P; Niraula, S

    2005-10-01

    This is a retrospective case series of 233 spinal injury patients admitted to the orthopaedic ward of BPKIHS from May 1997 to April 2001. The inpatient records were analysed. In all, 40.3% of spinal injuries resulted from falls from trees while cutting leaves for fodder, and 27.9% resulted from falls from first/second floors. More than 75% of total spinal injuries are largely preventable. Overall, 46.8% of our spinal injury patients had complete cord transection at the level of injury. All adolescents and adults, irrespective of age or sex, should be the target groups for community education and intervention programmes for prevention of spinal injury.

  11. Improving the Efficiency and Efficacy of Glibenclamide in Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury

    DTIC Science & Technology

    2014-12-01

    glibenclamide reduces acute lesion expansion in a rat model of spinal cord injury. Simard JM, Popovich PG, Tsymbalyuk O, Caridi J , Gullapalli RP, Kilbourne MJ...ScienceDirect Experimental Neurology j ourna l homepage: www.e lsev ie r .com/ locate /yexnrSpinal cord injury with unilateral versus bilateral primary...hemorrhage — Effects of glibenclamide J . Marc Simard a,b,c,⁎, Phillip G. Popovich d, Orest Tsymbalyuk a, Volodymyr Gerzanich a a Department of

  12. Earthquake-related versus non-earthquake-related injuries in spinal injury patients: differentiation with multidetector computed tomography

    PubMed Central

    2010-01-01

    Introduction In recent years, several massive earthquakes have occurred across the globe. Multidetector computed tomography (MDCT) is reliable in detecting spinal injuries. The purpose of this study was to compare the features of spinal injuries resulting from the Sichuan earthquake with those of non-earthquake-related spinal trauma using MDCT. Methods Features of spinal injuries of 223 Sichuan earthquake-exposed patients and 223 non-earthquake-related spinal injury patients were retrospectively compared using MDCT. The date of non-earthquake-related spinal injury patients was collected from 1 May 2009 to 22 July 2009 to avoid the confounding effects of seasonal activity and clothing. We focused on anatomic sites, injury types and neurologic deficits related to spinal injuries. Major injuries were classified according to the grid 3-3-3 scheme of the Magerl (AO) classification system. Results A total of 185 patients (82.96%) in the earthquake-exposed cohort experienced crush injuries. In the earthquake and control groups, 65 and 92 patients, respectively, had neurologic deficits. The anatomic distribution of these two cohorts was significantly different (P < 0.001). Cervical spinal injuries were more common in the control group (risk ratio (RR) = 2.12, P < 0.001), whereas lumbar spinal injuries were more common in the earthquake-related spinal injuries group (277 of 501 injured vertebrae; 55.29%). The major types of injuries were significantly different between these cohorts (P = 0.002). Magerl AO type A lesions composed most of the lesions seen in both of these cohorts. Type B lesions were more frequently seen in earthquake-related spinal injuries (RR = 1.27), while we observed type C lesions more frequently in subjects with non-earthquake-related spinal injuries (RR = 1.98, P = 0.0029). Conclusions Spinal injuries sustained in the Sichuan earthquake were located mainly in the lumbar spine, with a peak prevalence of type A lesions and a high occurrence of

  13. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression.

    PubMed

    Hassan, Atiq; Arnold, Breanna M; Caine, Sally; Toosi, Behzad M; Verge, Valerie M K; Muir, Gillian D

    2018-01-01

    One of the most promising approaches to improve recovery after spinal cord injury (SCI) is the augmentation of spontaneously occurring plasticity in uninjured neural pathways. Acute intermittent hypoxia (AIH, brief exposures to reduced O2 levels alternating with normal O2 levels) initiates plasticity in respiratory systems and has been shown to improve recovery in respiratory and non-respiratory spinal systems after SCI in experimental animals and humans. Although the mechanism by which AIH elicits its effects after SCI are not well understood, AIH is known to alter protein expression in spinal neurons in uninjured animals. Here, we examine hypoxia- and plasticity-related protein expression using immunofluorescence in spinal neurons in SCI rats that were treated with AIH combined with motor training, a protocol which has been demonstrated to improve recovery of forelimb function in this lesion model. Specifically, we assessed protein expression in spinal neurons from animals with incomplete cervical SCI which were exposed to AIH treatment + motor training either for 1 or 7 days. AIH treatment consisted of 10 episodes of AIH: (5 min 11% O2: 5 min 21% O2) for 7 days beginning at 4 weeks post-SCI. Both 1 or 7 days of AIH treatment + motor training resulted in significantly increased expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) relative to normoxia-treated controls, in neurons both proximal (cervical) and remote (lumbar) to the SCI. All other markers examined were significantly elevated in the 7 day AIH + motor training group only, at both cervical and lumbar levels. These markers included vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and phosphorylated and nonphosphorylated forms of the BDNF receptor tropomyosin-related kinase B (TrkB). In summary, AIH induces plasticity at the cellular level after SCI by altering the expression of major plasticity- and hypoxia-related proteins at spinal regions

  14. What are the people's attitudes toward spinal cord injury victims (from common to elite)

    PubMed Central

    Hosseinigolafshani, Zahra; Abedi, Heidarali; Ahmadi, Fazlolah

    2014-01-01

    Background: One of the acutely fatal and prevalent crises in all societies is acute spinal cord injury. Individuals with a spinal cord injury are prone to numerous challenges, perturbation, and acute mental distresses. One of their concerns, often expressed generally and in the form of a complaint, is how people deal with them. The present study aims to analyze the experiences and interactions of the disabled with the society and to achieve a deep clarification of their internal attitudes and realistic approaches in various social classes (from common people to elite). Materials and Methods: The present study is a part of a greater research with a classical grounded theory approach conducted on 12 successful and nationally and internationally popular disabled people. Sampling was firstly purposive and then continued with snowball sampling. The data were collected by open deep interviews which were recorded and transcribed verbatim. The obtained data were analyzed by Graneheim content analysis method. Results: The findings obtained through analysis of the interviews yielded the theme of a socially suppressing attitude which contained four subthemes of compassionate attitude, disability attitude, inhuman attitude, and atonement attitude. Conclusions: The results showed that both groups of common, and educated and elite classes of Iranian society have identically suppressing attitudes and interactions toward spinal cord injury victims. It seems that traditional attitudes yet preponderate academic and scientific knowledge in Iranian society. This gap needs notable attention of all the Iranians, especially policy makers and social personalities. PMID:24949065

  15. Association of head trauma with cervical spine injury, spinal cord injury, or both.

    PubMed

    Iida, H; Tachibana, S; Kitahara, T; Horiike, S; Ohwada, T; Fujii, K

    1999-03-01

    Links between cervical spine and/or spinal cord injuries and head trauma have not been reported in detail. 188 patients with cervical spine and/or spinal cord injury were divided into two groups, i.e., with upper cervical and mid-lower cervical injury, and compared for head injury. Associated head trauma was investigated in 188 patients with cervical spine and/or spinal cord injuries; 35% had moderate or severe injuries. Brain damage was more frequently observed in patients with upper cervical injury than in those with mid to lower cervical injury. Those patients with upper cervical injury appeared to have an elevated risk of suffering skull base fractures, traumatic subarachnoid hemorrhage, and contusional hemotoma. Approximately one third of patients with cervical spine and/or spinal cord injuries had moderate or severe head injuries. Brain damage was more frequently associated with upper cervical injury. Those patients with upper cervical injury are at greater risk of suffering from skull base fractures and severe intracranial hematomas than those with mid to lower cervical injury.

  16. Psychosocial outcome following spinal cord injury.

    PubMed

    Hammell, K R

    1994-11-01

    Studies have indicated that loss of social contact remains the primary complaint of people with head injuries many years after discharge. In an attempt to disentangle specific and nonspecific effects of head injury a study was undertaken to compare a group of 15 men with severe closed head injuries and their wives, with a group of 15 men with complete, traumatic spinal cord injuries and their partners (n = 60). Time since discharge extended from 4 months to several years. This paper focuses primarily upon the results and implication of the responses from the group of men with spinal cord injuries and their partners. The Interview Schedule for Social Interaction was correlated with the Leeds Scale for the Self Assessment of Anxiety and Depression. All groups reported low availability and adequacy of social integration and exhibited high levels of depression. The group of men with spinal cord injuries had the lowest scores for the availability of social integration, indicating that the social isolation which has previously been identified amongst people with head injuries may not be attributable solely to brain damage.

  17. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    PubMed Central

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  18. Temporal and Spatial Evolution of Raised Intraspinal Pressure after Traumatic Spinal Cord Injury.

    PubMed

    Khaing, Zin Z; Cates, Lindsay N; Fischedick, Amanda E; McClintic, Abbi M; Mourad, Pierre D; Hofstetter, Christoph P

    2017-02-01

    Traumatic spinal cord injury (SCI) often leads to permanent neurological impairment. Currently, the only clinically effective intervention for patients with acute SCI is surgical decompression by removal of impinging bone fragments within 24 h after injury. Recent clinical studies suggest that elevated intraparenchymal spinal pressure (ISP) limits functional recovery following SCI. Here, we report on the temporal and spatial patterns of elevated ISP following a moderate rodent contusion SCI. Compared with physiological ISP in the intact cord (2.7 ± 0.5 mm Hg), pressures increase threefold 30 min following injury (8.9 ± 1.1 mm Hg, p < 0.001) and remain elevated for up to 7 days (4.3 ± 0.8 mm Hg). Measurements of rostrocaudal ISP distribution reveal peak pressures in the injury center and in segments rostral to the injury during the acute phase(≤ 24 h). During the subacute phase(≥ 72 h), peak ISP decreases while a 7.5 mm long segment of moderately elevated ISP remains, centered on the initial contusion site. Interestingly, the contribution of the dural and pial compartments toward increased ISP changes with time after injury: Dural and pial linings contribute almost equally to increased ISP during the acute phase, whereas the dural lining is primarily responsible for elevated ISP during the subacute phase (78.9%). Our findings suggest that a rat contusion SCI model in combination with novel micro-catheters allows for direct measurement of ISP after SCI. Similarly to traumatic brain injury, raised tissue pressure is likely to have detrimental effects on spontaneous recovery following SCI.

  19. Spinal injury

    MedlinePlus

    ... Lack of alertness (unconsciousness) Stiff neck, headache, or neck pain First Aid Never move anyone who you think may have a spinal injury, unless it is absolutely necessary. For example, if you need to get the person out ... cervical (neck) Vertebra, lumbar (low back) Vertebra, thoracic (mid ...

  20. Diagnosis and management of traumatic cervical central spinal cord injury: A review.

    PubMed

    Epstein, Nancy E; Hollingsworth, Renee

    2015-01-01

    The classical clinical presentation, neuroradiographic features, and conservative vs. surgical management of traumatic cervical central spinal cord (CSS) injury remain controversial. CSS injuries, occurring in approximately 9.2% of all cord injuries, are usually attributed to significant hyperextension trauma combined with congenital/acquired cervical stenosis/spondylosis. Patients typically present with greater motor deficits in the upper vs. lower extremities accompanied by patchy sensory loss. T2-weighted magnetic resonance (MR) scans usually show hyperintense T2 intramedullary signals reflecting acute edema along with ligamentous injury, while noncontrast computed tomography (CT) studies typically show no attendant bony pathology (e.g. no fracture, dislocation). CSS constitute only a small percentage of all traumatic spinal cord injuries. Aarabi et al. found CSS patients averaged 58.3 years of age, 83% were male and 52.4% involved accidents/falls in patients with narrowed spinal canals (average 5.6 mm); their average American Spinal Injury Association (ASIA) motor score was 63.8, and most pathology was at the C3-C4 and C4-C5 levels (71%). Surgery was performed within 24 h (9 patients), 24-48 h (10 patients), or after 48 h (23 patients). In the Brodell et al. study of 16,134 patients with CSS, 39.7% had surgery. In the Gu et al. series, those with CSS and stenosis/ossification of the posterior longitudinal ligament (OPLL) exhibited better outcomes following laminoplasty. Recognizing the unique features of CSS is critical, as the clinical, neuroradiological, and management strategies (e.g. conservative vs. surgical management: early vs. late) differ from those utilized for other spinal cord trauma. Increased T2-weighted MR images best document CSS, while CT studies confirm the absence of fracture/dislocation.

  1. Neuroprotective Effects of Sulforaphane after Contusive Spinal Cord Injury

    PubMed Central

    Benedict, Andrea L.; Mountney, Andrea; Hurtado, Andres; Bryan, Kelley E.; Schnaar, Ronald L.; Dinkova-Kostova, Albena T.

    2012-01-01

    Abstract Traumatic spinal cord injury (SCI) leads to oxidative stress, calcium mobilization, glutamate toxicity, the release of proinflammatory factors, and depletion of reduced glutathione (GSH) at the site of injury. Induction of the Keap1/Nrf2/ARE pathway can alleviate neurotoxicity by protecting against GSH depletion, oxidation, intracellular calcium overload, mitochondrial dysfunction, and excitotoxicity. Sulforaphane (SF), an isothiocyanate derived from broccoli, is a potent naturally-occurring inducer of the Keap1/Nrf2/ARE pathway, leading to upregulation of genes encoding cytoprotective proteins such as NAD(P)H: quinone oxidoreductase 1, and GSH-regulatory enzymes. Additionally, SF can attenuate inflammation by inhibiting the nuclear factor-κB (NF-κB) pathway, and the enzymatic activity of the proinflammatory cytokine macrophage inhibitory factor (MIF). Our study examined systemic administration of SF in a rat model of contusion SCI, in an effort to utilize its indirect antioxidant and anti-inflammatory properties to decrease secondary injury. Two doses of SF (10 or 50 mg/kg) were administered at 10 min and 72 h after contusion SCI. SF (50 mg/kg) treatment resulted in both acute and long-term beneficial effects, including upregulation of the phase 2 antioxidant response at the injury site, decreased mRNA levels of inflammatory cytokines (i.e., MMP-9) in the injured spinal cord, inactivation of urinary MIF tautomerase activity, enhanced hindlimb locomotor function, and an increased number of serotonergic axons caudal to the lesion site. These findings demonstrate that SF provides neuroprotective effects in the spinal cord after injury, and could be a candidate for therapy of SCI. PMID:22853439

  2. Neuroprotective effects of sulforaphane after contusive spinal cord injury.

    PubMed

    Benedict, Andrea L; Mountney, Andrea; Hurtado, Andres; Bryan, Kelley E; Schnaar, Ronald L; Dinkova-Kostova, Albena T; Talalay, Paul

    2012-11-01

    Traumatic spinal cord injury (SCI) leads to oxidative stress, calcium mobilization, glutamate toxicity, the release of proinflammatory factors, and depletion of reduced glutathione (GSH) at the site of injury. Induction of the Keap1/Nrf2/ARE pathway can alleviate neurotoxicity by protecting against GSH depletion, oxidation, intracellular calcium overload, mitochondrial dysfunction, and excitotoxicity. Sulforaphane (SF), an isothiocyanate derived from broccoli, is a potent naturally-occurring inducer of the Keap1/Nrf2/ARE pathway, leading to upregulation of genes encoding cytoprotective proteins such as NAD(P)H: quinone oxidoreductase 1, and GSH-regulatory enzymes. Additionally, SF can attenuate inflammation by inhibiting the nuclear factor-κB (NF-κB) pathway, and the enzymatic activity of the proinflammatory cytokine macrophage inhibitory factor (MIF). Our study examined systemic administration of SF in a rat model of contusion SCI, in an effort to utilize its indirect antioxidant and anti-inflammatory properties to decrease secondary injury. Two doses of SF (10 or 50 mg/kg) were administered at 10 min and 72 h after contusion SCI. SF (50 mg/kg) treatment resulted in both acute and long-term beneficial effects, including upregulation of the phase 2 antioxidant response at the injury site, decreased mRNA levels of inflammatory cytokines (i.e., MMP-9) in the injured spinal cord, inactivation of urinary MIF tautomerase activity, enhanced hindlimb locomotor function, and an increased number of serotonergic axons caudal to the lesion site. These findings demonstrate that SF provides neuroprotective effects in the spinal cord after injury, and could be a candidate for therapy of SCI.

  3. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

    PubMed Central

    Fabbiani, Gabriela; Rehermann, María I.; Aldecosea, Carina; Trujillo-Cenóz, Omar; Russo, Raúl E.

    2018-01-01

    Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI) in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT) and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+) increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU) and did not express the proliferating cell nuclear antigen (PCNA) indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process. PMID:29593503

  4. A critical appraisal of the reporting of the National Acute Spinal Cord Injury Studies (II and III) of methylprednisolone in acute spinal cord injury.

    PubMed

    Coleman, W P; Benzel, D; Cahill, D W; Ducker, T; Geisler, F; Green, B; Gropper, M R; Goffin, J; Madsen, P W; Maiman, D J; Ondra, S L; Rosner, M; Sasso, R C; Trost, G R; Zeidman, S

    2000-06-01

    From the beginning, the reporting of the results of National Acute Spinal Cord Injury Studies (NASCIS) II and III has been incomplete, leaving clinicians in the spinal cord injury (SCI) community to use or avoid using methylprednisolone in acute SCI on the basis of faith rather than a publicly developed scientific consensus. NASCIS II was initially reported by National Institutes of Health announcements, National Institutes of Health facsimiles to emergency room physicians, and the news media. The subsequent report in the New England Journal of Medicine implied that there was a positive result in the primary efficacy analysis for the entire 487 patient sample. However, this analysis was in fact negative, and the positive result was found only in a secondary analysis of the subgroup of patients who received treatment within 8 hours. In addition, that subgroup apparently had only 62 patients taking methylprednisolone and 67 receiving placebo. The NASCIS II and III reports embody specific choices of statistical methods that have strongly shaped the reporting of results but have not been adequately challenged or or even explained. These studies show statistical artifacts that call their results into question. In NASCIS II, the placebo group treated before 8 hours did poorly, not only when compared with the methylprednisolone group treated before 8 hours but even when compared with the placebo group treated after 8 hours. Thus, the positive result may have been caused by a weakness in the control group rather than any strength of methylprednisolone. In NASCIS III, a randomization imbalance occurred that allocated a disproportionate number of patients with no motor deficit (and therefore no chance for recovery) to the lower dose control group. When this imbalance is controlled for, much of the superiority of the higher dose group seems to disappear. The NASCIS group's decision to admit persons with minor SCIs with minimal or no motor deficit not only enables statistical

  5. Agmatine improves locomotor function and reduces tissue damage following spinal cord injury.

    PubMed

    Yu, C G; Marcillo, A E; Fairbanks, C A; Wilcox, G L; Yezierski, R P

    2000-09-28

    Clinically effective drug treatments for spinal cord injury (SCI) remain unavailable. Agmatine, an NMDA receptor antagonist and inhibitor of nitric oxide synthase (NOS), is an endogenous neuromodulator found in the brain and spinal cord. Evidence is presented that agmatine significantly improves locomotor function and reduces tissue damage following traumatic SCI in rats. The results suggest the importance of future therapeutic strategies encompassing the use of single drugs with multiple targets for the treatment of acute SCI. The therapeutic targets of agmatine (NMDA receptor and NOS) have been shown to be critically linked to the pathophysiological sequelae of CNS injury and this, combined with the non-toxic profile, lends support to agmatine being considered as a potential candidate for future clinical applications.

  6. The use of regression tree analysis for predicting the functional outcome following traumatic spinal cord injury.

    PubMed

    Facchinello, Yann; Beauséjour, Marie; Richard-Denis, Andreane; Thompson, Cynthia; Mac-Thiong, Jean-Marc

    2017-10-25

    Predicting the long-term functional outcome following traumatic spinal cord injury is needed to adapt medical strategies and to plan an optimized rehabilitation. This study investigates the use of regression tree for the development of predictive models based on acute clinical and demographic predictors. This prospective study was performed on 172 patients hospitalized following traumatic spinal cord injury. Functional outcome was quantified using the Spinal Cord Independence Measure collected within the first-year post injury. Age, delay prior to surgery and Injury Severity Score were considered as continuous predictors while energy of injury, trauma mechanisms, neurological level of injury, injury severity, occurrence of early spasticity, urinary tract infection, pressure ulcer and pneumonia were coded as categorical inputs. A simplified model was built using only injury severity, neurological level, energy and age as predictor and was compared to a more complex model considering all 11 predictors mentioned above The models built using 4 and 11 predictors were found to explain 51.4% and 62.3% of the variance of the Spinal Cord Independence Measure total score after validation, respectively. The severity of the neurological deficit at admission was found to be the most important predictor. Other important predictors were the Injury Severity Score, age, neurological level and delay prior to surgery. Regression trees offer promising performances for predicting the functional outcome after a traumatic spinal cord injury. It could help to determine the number and type of predictors leading to a prediction model of the functional outcome that can be used clinically in the future.

  7. DISCUSSION ON SPINAL INJURIES

    PubMed Central

    1928-01-01

    (1).—Varieties of spinal injuries, the three groups of common usage: fractures, dislocations, fracture-dislocations. Shall not refer in detail to fractures of the spinous or transverse processes. (2) Mechanics of injury to vertebræ. Two variables: (1) the nature of the bones; (2) the qualities of the force. Spinal injury usually caused by indirect violence. (3) The different results of injuries applied to the head; may break skull, failing that, the neck. Atlas fracture. Difference in qualities of the force causing atlas fracture and low cervical dislocation. (4) The compound nature of the vertebral body. The two columns, anterior, spongy; posterior, compact. The nature of wedge-compression of the vertebral body. Variations in the shape of the wedge. Reasons. Occur at all levels, including cervical spine. (5) Frequency of injury at different levels of vertebral column. “Localization” of injury. The two places of the graph of injury. The cervical at C. 5. Reason. The thoracic-lumbar peak at T. 12, L. 1 industrial. Is there a third peak at C. 2? (6) The effects of violent flexion of the spine: cervical flexion causes luxation at C. 5 or so. Extension causes fracture of odontoid. Violent flexion and extension therefore cause injury at very different levels. Thoracic region, why is there no “peak” of injury at T.6, 7? Lumbar region. (7) Displacement of fragments. Continuation of violence after the essential injury has been effected. Kümmell's disease, no inflammatory process involved. (8) Injury to the intervertebral discs, essential for displacement. Imperfect rupture a cause for difficulty in reducing luxations. The worst cases those in which it is most easily done, but most of these have cord damage. (9) Spinal injury from minimal violence. Examples of trivial cases, diving, brushing hair and so forth. Vertebral displacement in disease a much more serious thing. (10) Curious stability of many cervical luxations. Reasons. Locking of the inferior

  8. Changes in Afferent Activity After Spinal Cord Injury

    PubMed Central

    de Groat, William C.; Yoshimura, Naoki

    2010-01-01

    Aims To summarize the changes that occur in the properties of bladder afferent neurons following spinal cord injury. Methods Literature review of anatomical, immunohistochemical, and pharmacologic studies of normal and dysfunctional bladder afferent pathways. Results Studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through coordination centers (periaqueductal gray and pontine micturition center) located in the rostral brain stem. This reflex pathway, which is activated by small myelinated (Aδ) bladder afferent nerves, is in turn modulated by higher centers in the cerebral cortex involved in the voluntary control of micturition. Spinal cord injury at cervical or thoracic levels disrupts voluntary voiding, as well as the normal reflex pathways that coordinate bladder and sphincter function. Following spinal cord injury, the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. The recovery of bladder function after spinal cord injury is dependent in part on the plasticity of bladder afferent pathways and the unmasking of reflexes triggered by unmyelinated, capsaicin-sensitive, C-fiber bladder afferent neurons. Plasticity is associated with morphologic, chemical, and electrical changes in bladder afferent neurons and appears to be mediated in part by neurotrophic factors released in the spinal cord and the peripheral target organs. Conclusions Spinal cord injury at sites remote from the lumbosacral spinal cord can indirectly influence properties of bladder afferent neurons by altering the function and chemical environment in the bladder or the spinal cord. PMID:20025033

  9. Disruption of Locomotion in Response to Hindlimb Muscle Stretch at Acute and Chronic Time Points after a Spinal Cord Injury in Rats.

    PubMed

    Keller, Anastasia V P; Wainwright, Grace; Shum-Siu, Alice; Prince, Daniella; Hoeper, Alyssa; Martin, Emily; Magnuson, David S K

    2017-02-01

    After spinal cord injury (SCI) muscle contractures develop in the plegic limbs of many patients. Physical therapists commonly use stretching as an approach to avoid contractures and to maintain the extensibility of soft tissues. We found previously that a daily stretching protocol has a negative effect on locomotor recovery in rats with mild thoracic SCI. The purpose of the current study was to determine the effects of stretching on locomotor function at acute and chronic time points after moderately severe contusive SCI. Female Sprague-Dawley rats with 25 g-cm T10 contusion injuries received our standard 24-min stretching protocol starting 4 days (acutely) or 10 weeks (chronically) post-injury (5 days/week for 5 or 4 weeks, respectively). Locomotor function was assessed using the BBB (Basso, Beattie, and Bresnahan) Open Field Locomotor Scale, video-based kinematics, and gait analysis. Locomotor deficits were evident in the acute animals after only 5 days of stretching and increasing the perceived intensity of stretching at week 4 resulted in greater impairment. Stretching initiated chronically resulted in dramatic decrements in locomotor function because most animals had BBB scores of 0-3 for weeks 2, 3, and 4 of stretching. Locomotor function recovered to control levels for both groups within 2 weeks once daily stretching ceased. Histological analysis revealed no apparent signs of overt and persistent damage to muscles undergoing stretching. The current study extends our observations of the stretching phenomenon to a more clinically relevant moderately severe SCI animal model. The results are in agreement with our previous findings and further demonstrate that spinal cord locomotor circuitry is especially vulnerable to the negative effects of stretching at chronic time points. While the clinical relevance of this phenomenon remains unknown, we speculate that stretching may contribute to the lack of locomotor recovery in some patients.

  10. Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review.

    PubMed

    Maïmoun, Laurent; Fattal, Charles; Sultan, Charles

    2011-12-01

    Patients with spinal cord injury exhibit early and acute bone loss with the major functional consequence being a high incidence of pathological fractures. The bone status of these patients is generally investigated by dual-energy x-ray absorptiometry, but this technique does not reveal the pathophysiological mechanism underlying the bone loss. Bone cell activity can be indirectly evaluated by noninvasive techniques, including measurement of specific biochemical markers of bone formation (such as osteocalcin or bone-alkaline phosphatase) and resorption (such as procollagen type I N- or C-terminal propeptide). The bone loss in spinal cord injury is clearly due to an uncoupling of bone remodeling in favor of bone resorption, which starts just after the injury and peaks at about 1 to 4 months. Beyond 6 months, bone resorption activity decreases progressively but remains elevated for many years after injury. Conversely, bone formation is less affected. Antiresorptive treatment induces an early and acute reduction in bone resorption markers. Level of injury and health-related complications do not seem to be implicated in the intensity of bone resorption. During the acute phase, the hypercalcemic status is associated with the suppression of parathyroid hormone and vitamin D metabolites. The high sensitivity of these markers after treatment suggests that they can be used for monitoring treatment efficacy and patient compliance. The concomitant use of bone markers and dual-energy x-ray absorptiometry may improve the physician's ability to detect patients at risk of severe bone loss and subsequent fractures. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion.

    PubMed

    Barbour, Helen R; Plant, Christine D; Harvey, Alan R; Plant, Giles W

    2013-09-27

    It has been shown that olfactory ensheathing glia (OEG) and Schwann cell (SCs) transplantation are beneficial as cellular treatments for spinal cord injury (SCI), especially acute and sub-acute time points. In this study, we transplanted DsRED transduced adult OEG and SCs sub-acutely (14 days) following a T10 moderate spinal cord contusion injury in the rat. Behaviour was measured by open field (BBB) and horizontal ladder walking tests to ascertain improvements in locomotor function. Fluorogold staining was injected into the distal spinal cord to determine the extent of supraspinal and propriospinal axonal sparing/regeneration at 4 months post injection time point. The purpose of this study was to investigate if OEG and SCs cells injected sub acutely (14 days after injury) could: (i) improve behavioral outcomes, (ii) induce sparing/regeneration of propriospinal and supraspinal projections, and (iii) reduce tissue loss. OEG and SCs transplanted rats showed significant increased locomotion when compared to control injury only in the open field tests (BBB). However, the ladder walk test did not show statistically significant differences between treatment and control groups. Fluorogold retrograde tracing showed a statistically significant increase in the number of supraspinal nuclei projecting into the distal spinal cord in both OEG and SCs transplanted rats. These included the raphe, reticular and vestibular systems. Further pairwise multiple comparison tests also showed a statistically significant increase in raphe projecting neurons in OEG transplanted rats when compared to SCs transplanted animals. Immunohistochemistry of spinal cord sections short term (2 weeks) and long term (4 months) showed differences in host glial activity, migration and proteoglycan deposits between the two cell types. Histochemical staining revealed that the volume of tissue remaining at the lesion site had increased in all OEG and SCs treated groups. Significant tissue sparing was

  12. Brain protection by methylprednisolone in rats with spinal cord injury.

    PubMed

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  13. Optimizing Speech Production in the Ventilator-Assisted Individual Following Cervical Spinal Cord Injury: A Preliminary Investigation

    ERIC Educational Resources Information Center

    MacBean, Naomi; Ward, Elizabeth; Murdoch, Bruce; Cahill, Louise; Solley, Maura; Geraghty, Timothy; Hukins, Craig

    2009-01-01

    Background: Mechanical ventilation is commonly used during the acute management of cervical spinal cord injury, and is required on an ongoing basis in the majority of patients with injuries at or above C3. However, to date there have been limited systematic investigations of the options available to improve speech while ventilator-assisted…

  14. Brachial plexus injury mimicking a spinal-cord injury

    PubMed Central

    Macyszyn, Luke J.; Gonzalez-Giraldo, Ernesto; Aversano, Michael; Heuer, Gregory G.; Zager, Eric L.; Schuster, James M.

    2010-01-01

    Objective: High-energy impact to the head, neck, and shoulder can result in cervical spine as well as brachial plexus injuries. Because cervical spine injuries are more common, this tends to be the initial focus for management. We present a case in which the initial magnetic resonance imaging (MRI) was somewhat misleading and a detailed neurological exam lead to the correct diagnosis. Clinical presentation: A 19-year-old man presented to the hospital following a shoulder injury during football practice. The patient immediately complained of significant pain in his neck, shoulder, and right arm and the inability to move his right arm. He was stabilized in the field for a presumed cervical-spine injury and transported to the emergency department. Intervention: Initial radiographic assessment (C-spine CT, right shoulder x-ray) showed no bony abnormality. MRI of the cervical-spine showed T2 signal change and cord swelling thought to be consistent with a cord contusion. With adequate pain control, a detailed neurological examination was possible and was consistent with an upper brachial plexus avulsion injury that was confirmed by CT myelogram. The patient failed to make significant neurological recovery and he underwent spinal accessory nerve grafting to the suprascapular nerve to restore shoulder abduction and external rotation, while the phrenic nerve was grafted to the musculocutaneous nerve to restore elbow flexion. Conclusion: Cervical spinal-cord injuries and brachial plexus injuries can occur by the same high energy mechanisms and can occur simultaneously. As in this case, MRI findings can be misleading and a detailed physical examination is the key to diagnosis. However, this can be difficult in polytrauma patients with upper extremity injuries, head injuries or concomitant spinal-cord injury. Finally, prompt diagnosis and early surgical renerveration have been associated with better long-term recovery with certain types of injury. PMID:22956928

  15. Geomapping of Traumatic Spinal Cord Injury in Canada and Factors Related to Triage Pattern

    PubMed Central

    Noonan, Vanessa K.; Shurgold, Jayson; Chen, Jason; Rivers, Carly S.; Khaleghi Hamedani, Hamid; Humphreys, Suzanne; Bailey, Christopher S.; Attabib, Najmedden; Mac Thiong, Jean-Marc; Goytan, Michael; Paquet, Jerome; Fox, Richard; Ahn, Henry; Kwon, Brian K.; Fourney, Daryl R.

    2017-01-01

    Abstract Current research indicates that more than half of patients with traumatic spinal cord injury (tSCI) experience delays in transfer and receive surgery >24 h post-injury. The objectives of this study were to determine the geographic distribution of tSCI in Canada relative to specialized treatment facilities, to assess clinical and logistical factors at play for indirect admissions to those facilities, and to explore differences in current time to admission and simulated scenarios in an attempt to assess the potential impact of changes to triage protocols. This study included data from 876 patients with tSCI enrolled in the prospectively collected acute Rick Hansen Spinal Cord Injury Registry (RHSCIR) between January 1, 2010 and December 31, 2013 for whom there were data on the location of their injury. Patients transported directly to a RHSCIR acute facility were more likely to reach the facility within 1 h of injury, whereas those transported indirectly were more likely to arrive 7 h later. Considering the injuries occurring within 40 km of a RHSCIR acute facility (n = 323), 249 patients (77%) were directly and 74 (23%) were indirectly admitted. In the multivariate regression analysis, only older age and longer road distance remained significantly associated with being indirectly admitted to a RHSCIR facility. Compared with the current status, the median time to admission decreased by 20% (3.5 h) in the 100% direct admission scenario, and increased by 102% (8.9 h) in the 100% indirect admission scenario. PMID:28325105

  16. Electrical stimulation modulates injury potentials in rats after spinal cord injury

    PubMed Central

    Zhang, Guanghao; Huo, Xiaolin; Wang, Aihua; Wu, Changzhe; Zhang, Cheng; Bai, Jinzhu

    2013-01-01

    An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as well as injury current, can be modulated by direct current field stimulation; however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around –70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon illustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cell membrane and the reduction of cation influx. PMID:25206563

  17. New products tissue-engineering in the treatment of spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bolshakov, I. N.; Sergienko, V. I.; Kiselev, S. L.; Lagarkova, M. A.; Remigaylo, A. A.; Mihaylov, A. A.; Prokopenko, S. V.

    2015-11-01

    In the treatment of patients with complicated spinal cord injury the Russian Health spends about one million rubles for each patient in the acute and the interim period after the injury. The number of complicated spinal cord injury is different in geographical areas Russian Federation from 30 to 50 people per 1 million that is affected by the year 5600. Applied to the present surgical and pharmacological techniques provide unsatisfactory results or minimally effective treatment. Transplantation of 100 thousand neuronal mouse predecessors (24 rats) or human neuronal predecessors (18 rats) in the anatomical gap rat spinal cord, followed by analysis of neurological deficit. The neuro-matrix implantation in the rat spinal cord containing 100 thousand neuronal precursors hESC, repeatable control neuro-matrix transplantation, non-cell mass, eliminating neurological deficit for 14 weeks after transplantation about 5-9 points on the scale of the BBB. The cultivation under conditions in vitro human induced pluripotent stem cells on collagen-chitosan matrix (hIPSC) showed that neurons differentiated from induced pluripotent stem cells grown on scaffolds as compact groups and has no neurites. Cells do not penetrate into the matrix during long-term cultivation and formed near the surface of the spherical structures resembling neurospheres. At least 90% of the cells were positive for the neuronal marker tubulin b3. Further studies should be performed to examine the compatibility of neuronal cultures and matrices.

  18. [Review of the regeneration mechanism of complete spinal cord injury].

    PubMed

    Li, Jiayin; Li, Xing; Xiao, Zhifeng; Dai, Jianwu

    2018-06-01

    Spinal cord injury (SCI), especially the complete SCI, usually results in complete paralysis below the level of the injury and seriously affects the patient's quality of life. SCI repair is still a worldwide medical problem. In the last twenty years, Professor DAI Jianwu and his team pioneered complete SCI model by removing spinal tissue with varied lengths in rodents, canine, and non-human primates to verify therapeutic effect of different repair strategies. Moreover, they also started the first clinical study of functional collagen scaffold on patients with acute complete SCI on January 16th, 2015. This review mainly focusses on the possible mechanisms responsible for complete SCI. In common, recovery of some sensory and motor functions post complete SCI include the following three contributing reasons. ① Regeneration of long ascending and descending axons throughout the lesion site to re-connect the original targets; ② New neural circuits formed in the lesion site by newly generated neurons post injury, which effectively re-connect the transected stumps; ③ The combined effect of ① and ②. The numerous studies have confirmed that neural circuits rebuilt across the injury site by newborn neurons might be the main mechanisms for functional recovery of animals from rodents to dogs. In many SCI model, especially the complete spinal cord transection model, many studies have convincingly demonstrated that the quantity and length of regenerated long descending axons, particularly like CST fibers, are too few to across the lesion site that is millimeters in length to realize motor functional recovery. Hence, it is more feasible in guiding neuronal relays formation by bio-scaffolds implantation than directing long motor axons regeneration in improving motor function of animals with complete spinal cord transection. However, some other issues such as promoting more neuronal relays formation, debugging wrong connections, and maintaining adequate neural circuits for

  19. Exercise modulates chloride homeostasis after spinal cord injury.

    PubMed

    Côté, Marie-Pascale; Gandhi, Sapan; Zambrotta, Marina; Houlé, John D

    2014-07-02

    Activity-based therapies are routinely integrated in spinal cord injury (SCI) rehabilitation programs because they result in a reduction of hyperreflexia and spasticity. However, the mechanisms by which exercise regulates activity in spinal pathways to reduce spasticity and improve functional recovery are poorly understood. Persisting alterations in the action of GABA on postsynaptic targets is a signature of CNS injuries, including SCI. The action of GABA depends on the intracellular chloride concentration, which is determined largely by the expression of two cation-chloride cotransporters (CCCs), KCC2 and NKCC1, which serve as chloride exporters and importers, respectively. We hypothesized that the reduction in hyperreflexia with exercise after SCI relies on a return to chloride homeostasis. Sprague Dawley rats received a spinal cord transection at T12 and were assigned to SCI-7d, SCI-14d, SCI-14d+exercise, SCI-28d, SCI-28d+exercise, or SCI-56d groups. During a terminal experiment, H-reflexes were recorded from interosseus muscles after stimulation of the tibial nerve and the low-frequency-dependent depression (FDD) was assessed. We provide evidence that exercise returns spinal excitability and levels of KCC2 and NKCC1 toward normal levels in the lumbar spinal cord. Acutely altering chloride extrusion using the KCC2 blocker DIOA masked the effect of exercise on FDD, whereas blocking NKCC1 with bumetanide returned FDD toward intact levels after SCI. Our results indicate that exercise contributes to reflex recovery and restoration of endogenous inhibition through a return to chloride homeostasis after SCI. This lends support for CCCs as part of a pathway that could be manipulated to improve functional recovery when combined with rehabilitation programs. Copyright © 2014 the authors 0270-6474/14/348976-12$15.00/0.

  20. Spinal Injury Rehabilitation in Singapore.

    ERIC Educational Resources Information Center

    Yen, H. L.; Chua, K.; Chan, W.

    1998-01-01

    This study reviewed 231 cases of spinal cord injury treated in Singapore. Data on demographic characteristics, common causes (mostly falls and traffic accidents), types of spinal damage, and outcomes are reported. Following rehabilitation, 68 patients were able to ambulate independently and 45 patients achieved independence in activities of daily…

  1. Phosphorylated neurofilament heavy: A potential blood biomarker to evaluate the severity of acute spinal cord injuries in adults

    PubMed Central

    Singh, Ajai; Kumar, Vineet; Ali, Sabir; Mahdi, Abbas Ali; Srivastava, Rajeshwer Nath

    2017-01-01

    Aims: The aim of this study is to analyze the serial estimation of phosphorylated neurofilament heavy (pNF-H) in blood plasma that would act as a potential biomarker for early prediction of the neurological severity of acute spinal cord injuries (SCI) in adults. Settings and Design: Pilot study/observational study. Subjects and Methods: A total of 40 patients (28 cases and 12 controls) of spine injury were included in this study. In the enrolled cases, plasma level of pNF-H was evaluated in blood samples and neurological evaluation was performed by the American Spinal Injury Association Injury Scale at specified period. Serial plasma neurofilament heavy values were then correlated with the neurological status of these patients during follow-up visits and were analyzed statistically. Statistical Analysis Used: Statistical analysis was performed using GraphPad InStat software (version 3.05 for Windows, San Diego, CA, USA). The correlation analysis between the clinical progression and pNF-H expression was done using Spearman's correlation. Results: The mean baseline level of pNF-H in cases was 6.40 ± 2.49 ng/ml, whereas in controls it was 0.54 ± 0.27 ng/ml. On analyzing the association between the two by Mann–Whitney U–test, the difference in levels was found to be statistically significant. The association between the neurological progression and pNF-H expression was determined using correlation analysis (Spearman's correlation). At 95% confidence interval, the correlation coefficient was found to be 0.64, and the correlation was statistically significant. Conclusions: Plasma pNF-H levels were elevated in accordance with the severity of SCI. Therefore, pNF-H may be considered as a potential biomarker to determine early the severity of SCI in adult patients. PMID:29291173

  2. Motor vehicle crash-related injury causation scenarios for spinal injuries in restrained children and adolescents.

    PubMed

    Zonfrillo, Mark R; Locey, Caitlin M; Scarfone, Steven R; Arbogast, Kristy B

    2014-01-01

    Motor vehicle crash (MVC)-related spinal injuries result in significant morbidity and mortality in children. The objective was to identify MVC-related injury causation scenarios for spinal injuries in restrained children. This was a case series of occupants in MVCs from the Crash Injury Research and Engineering Network (CIREN) data set. Occupants aged 0-17 years old with at least one Abbreviated Injury Scale (AIS) 2+ severity spinal injury in vehicles model year 1990+ that did not experience a rollover were included. Unrestrained occupants, those not using the shoulder portion of the belt restraint, and those with child restraint gross misuse were excluded. Occupants with preexisting comorbidities contributing to spinal injury and occupants with limited injury information were also excluded. A multidisciplinary team retrospectively reviewed each case to determine injury causation scenarios (ICSs). Crash conditions, occupant and restraint characteristics, and injuries were qualitatively summarized. Fifty-nine cases met the study inclusion criteria and 17 were excluded. The 42 occupants included sustained 97 distinct AIS 2+ spinal injuries (27 cervical, 22 thoracic, and 48 lumbar; 80 AIS-2, 15 AIS-3, 1 AIS-5, and 1 AIS-6), with fracture as the most common injury type (80%). Spinal-injured occupants were most frequently in passenger cars (64%), and crash direction was most often frontal (62%). Mean delta-V was 51.3 km/h±19.4 km/h. The average occupant age was 12.4±5.3 years old, and 48% were 16- to 17-year-olds. Thirty-six percent were right front passengers and 26% were drivers. Most occupants were lap and shoulder belt restrained (88%). Non-spinal AIS 2+ injuries included those of the lower extremity and pelvis (n=56), head (n=43), abdomen (n=39), and thorax (n=36). Spinal injury causation was typically due to flexion or lateral bending over the lap and or shoulder belt or child restraint harness, compression by occupant's own seat back, or axial loading through

  3. Refractory orthostatic hypotension in a patient with a spinal cord injury: Treatment with droxidopa.

    PubMed

    Canosa-Hermida, Eva; Mondelo-García, Cristina; Ferreiro-Velasco, María Elena; Salvador-de la Barrera, Sebastián; Montoto-Marqués, Antonio; Rodríguez-Sotillo, Antonio; Vizoso-Hermida, José Ramón

    2018-01-01

    Orthostatic hypotension (OH) is a common complication in patients with a spinal cord injury, mainly affecting complete injuries above neurological level T6. It is generally more severe during the acute phase but can remain symptomatic for several years. A 65-year-old male with a grade ASIA A post-traumatic cervical spinal cord injury, at neurological level C4, presenting with symptomatic refractory OH. Increased blood pressure (BP) levels and an overall clinical improvement was observed after administering an increasing dose of droxidopa. Treatment was started at a dose of 100 mg twice daily (bid), one to be taken upon rising in the morning and another one in the afternoon, at least three hours before bedtime. According to the patient's symptomatic response, each individual dose was increased by 100 mg at 48-hour intervals. Both increased mean BP levels and a subjective symptomatic improvement were evidenced at a dose of 300 mg bid. Treatment with droxidopa increases BP levels and improves symptoms related to refractory OH using all physical and pharmacological measures available. It could therefore constitute an effective alternative treatment for OH in patients with a spinal cord injury.

  4. Catastrophic rugby injuries of the spinal cord: changing patterns of injury.

    PubMed Central

    Scher, A T

    1991-01-01

    In reports from the UK and New Zealand, it is noted that the incidence of rugby injuries to the cervical spinal cord has dropped and that the percentage of players injured in the tackle has similarly decreased. In contrast, this does not appear to be the pattern in South Africa and an analysis has therefore been made of 40 rugby players sustaining injuries to the spinal cord during the period 1985 to 1989. The radiological appearances on admission have been correlated with the circumstances of injury, associated orthopaedic injuries and neurological deficits. The tackle was responsible for the majority of injuries, causing more than the scrum. Tackles were also responsible for more cases of complete, permanent quadriplegia than the scrum. The commonest cause of injury in players being tackled was the high tackle around the neck, while the commonest cause of injury in players making the tackle was the dive tackle. This survey has shown that the tackle is now the major cause of spinal cord injury in South African rugby, in contrast to earlier analyses in which the scrum was identified as the most common cause. Images Figure 1 Figure 2 PMID:1913034

  5. Fertility and sexuality in the spinal cord injury patient.

    PubMed

    Stoffel, J T; Van der Aa, F; Wittmann, D; Yande, S; Elliott, S

    2018-06-14

    After a spinal cord injury, patients have different perceptions of sexuality, sexual function, and potential for fertility. These changes can greatly impact quality of life over a lifetime. The purpose of this workgroup was to identify common evidence based or expert opinion themes and recommendations regarding treatment of sexuality, sexual function and fertility in the spinal cord injury population. As part of the SIU-ICUD joint consultation of Urologic Management of the Spinal Cord Injury (SCI), a workgroup and comprehensive literature search of English language manuscripts regarding fertility and sexuality in the spinal cord injury patient were formed. Articles were compiled, and recommendations in the chapter are based on group discussion and follow the Oxford Centre for Evidence-based Medicine system for levels of evidence (LOEs) and grades of recommendation (GORs). Genital arousal, ejaculation, and orgasm are significantly impacted after spinal cord injury in both male and female SCI patients. This may have a more significant impact on potential for fertility in male spinal cord injury patients, particularly regarding ability of generate erection, semen quantity and quality. Female patients should be consulted that pregnancy is still possible after injury and a woman should expect resumption of normal reproductive function. As a result, sexual health teaching should be continued in women despite injury. Pregnancy in a SCI may cause complications such as autonomic dysreflexia, so this group should be carefully followed during pregnancy. By understanding physiologic changes after injury, patients and care teams can work together to achieve goals and maximize sexual quality of life after the injury.

  6. A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates

    PubMed Central

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D.; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-01-01

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational

  7. Acute deterioration in occult Chiari malformation following missile spinal trauma. Case report.

    PubMed

    Shahlaie, Kiarash; Hartman, Jonathan; Utter, Garth H; Schrot, Rudolph J

    2008-04-01

    Patients with Chiari malformation (CM) Type I typically experience chronic, slowly progressive symptoms. Rarely, however, do they suffer acute neurological deterioration following an iatrogenic decrease in caudal cerebrospinal fluid pressure due to, for example, a lumbar puncture. To our knowledge, acute neurological deterioration following missile spinal injury in CM has not been previously described. The authors report on a 16-year-old girl who was shot in the abdomen and lumbar spine. Although neurologically intact on initial workup, she developed precipitous quadriplegia and apnea in a delayed fashion. Tonsillar herniation with medullary compression and cerebellar infarction was diagnosed on magnetic resonance imaging. Suboccipital decompression resulted in significant neurological improvement. Well-formed tonsillar ectopia diagnosed at surgery suggested a preexisting CM. The authors conclude that missile spinal trauma can precipitate medullary compression and acute neurological decline, especially in patients with preexisting tonsillar ectopia. Immediate operative decompression to relieve impaction at the cervicomedullary junction can result in significant neurological recovery.

  8. [Spinal cord injury due to penetrating missiles].

    PubMed

    Ohry, Avi

    2003-10-01

    Gunshot wound of the spine is a major cause of spinal cord injury among US civilian population, members of the military armed conflict personnel, or civilians injured in terrorists attacks. The bullet fragments cause damage to the spinal cord even without penetrating the spinal canal. Concussive effects, heat, fractures or vascular injury may cause the neurological damage. Unfortunately, bullet or shrapnel removal or laminectomy do not change the prognosis. In this article we review the historical background, the Israeli experience, ballistic-forensic considerations, complications, treatment and prognosis.

  9. Spinal Motocross Injuries in the United Kingdom.

    PubMed

    Singh, Rohit; Bhalla, Amit; Ockendon, Matthew; Hay, Stuart

    2018-01-01

    Motocross is a form of motorcycle racing held on established off-road circuits and has been a recreational and competitive sport across the world for >100 years. In the United Kingdom alone, motocross has grown into a phenomenally ambitious and popular franchise. There are >200 motocross clubs across the country, permitting >900 events annually. To assess the current trend of spine-related motocross injuries over the past 5 years. Descriptive epidemiology study. Data were prospectively collected over 5 years (August 2010-August 2015) at our regional trauma and spine unit, regardless of whether the rider was performing the sport competitively or recreationally. During the study period, spine-related injuries were identified for 174 patients (age range, 6-75 years) who were directly referred to our department following recreational or competitive motocross, with most injuries being sustained within the early spring and summer months, representing the start of the motocross season. A significant number of injuries were in males (n = 203, 94%), with the majority of injuries occurring within the 21- to 30-year-old age group. A total of 116 (54%) injuries required operative treatment. The most common spinal injury was thoracolumbar burst fracture (n = 95), followed by chance fractures (n = 26). This data series emphasizes the prevalence and devastation of motocross-related spinal injuries in the United Kingdom and may serve in administering sanctions and guidelines to governing bodies of motocross. The spinal injuries that occur during motocross have significant capital connotations for regional spinal centers. The recent surge in motocross popularity is correlated with the number of injuries, which have increased over the past 5 years by almost 500%.

  10. Intractable Pruritus After Traumatic Spinal Cord Injury

    PubMed Central

    Crane, Deborah A; Jaffee, Kenneth M; Kundu, Anjana

    2009-01-01

    Background: This report describes a young woman with incomplete traumatic cervical spinal cord injury and intractable pruritus involving her dorsal forearm. Method: Case report. Findings: Anatomic distribution of the pruritus corresponded to the dermatomal distribution of her level of spinal cord injury and vertebral fusion. Symptoms were attributed to the spinal cord injury and possible cervical root injury. Pruritus was refractory to all treatments, including topical lidocaine, gabapentin, transcutaneous electrical nerve stimulation, intravenous Bier block, stellate ganglion block, and acupuncture. Conclusions: Further understanding of neuropathic pruritus is needed. Diagnostic workup of intractable pruritus should include advanced imaging to detect ongoing nerve root compression. If diagnostic studies suggest radiculopathy, epidural steroid injection should be considered. Because the autonomic nervous system may be involved in complex chronic pain or pruritic syndromes, sympatholysis via such techniques as stellate ganglion block might be effective. PMID:19777867

  11. Patients with Spinal Cord Injuries Favor Administration of Methylprednisolone

    PubMed Central

    Bowers, Christian A.; Kundu, Bornali; Rosenbluth, Jeffrey; Hawryluk, Gregory W. J.

    2016-01-01

    Methylprednisolone sodium succinate (MPSS) for treatment of acute spinal cord injury (SCI) has been associated with both benefits and adverse events. MPSS administration was the standard of care for acute SCI until recently when its use has become controversial. Patients with SCI have had little input in the debate, thus we sought to learn their opinions regarding administration of MPSS. A summary of the published literature to date on MPSS use for acute SCI was created and adjudicated by 28 SCI experts. This summary was then emailed to 384 chronic SCI patients along with a survey that interrogated the patients’ neurological deficits, communication with physicians and their views on MPSS administration. 77 out of 384 patients completed the survey. 28 respondents indicated being able to speak early after injury and of these 24 reported arriving at the hospital within 8 hours of injury. One recalled a physician speaking to them about MPSS and one patient reported choosing whether or not to receive MPSS. 59.4% felt that the small neurological benefits associated with MPSS were ‘very important’ to them (p<0.0001). Patients had ‘little concern’ for potential side-effects of MPSS (p = 0.001). Only 1.4% felt that MPSS should not be given to SCI patients regardless of degree of injury (p<0.0001). This is the first study to report SCI patients’ preferences regarding MPSS treatment for acute SCI. Patients favor the administration of MPSS for acute SCI, however few had input into whether or not it was administered. Conscious patients should be given greater opportunity to decide their treatment. These results also provide some guidance regarding MPSS administration in patients unable to communicate. PMID:26789007

  12. Motor Vehicle Crash–Related Injury Causation Scenarios for Spinal Injuries in Restrained Children and Adolescents

    PubMed Central

    ZONFRILLO, MARK R.; LOCEY, CAITLIN M.; SCARFONE, STEVEN R.; ARBOGAST, KRISTY B.

    2016-01-01

    Objective Motor vehicle crash (MVC)-related spinal injuries result in significant morbidity and mortality in children. The objective was to identify MVC-related injury causation scenarios for spinal injuries in restrained children. Methods This was a case series of occupants in MVCs from the Crash Injury Research and Engineering Network (CIREN) data set. Occupants aged 0–17 years old with at least one Abbreviated Injury Scale (AIS) 2+ severity spinal injury in vehicles model year 1990+ that did not experience a rollover were included. Unrestrained occupants, those not using the shoulder portion of the belt restraint, and those with child restraint gross misuse were excluded. Occupants with preexisting comorbidities contributing to spinal injury and occupants with limited injury information were also excluded. A multidisciplinary team retrospectively reviewed each case to determine injury causation scenarios (ICSs). Crash conditions, occupant and restraint characteristics, and injuries were qualitatively summarized. Results Fifty-nine cases met the study inclusion criteria and 17 were excluded. The 42 occupants included sustained 97 distinct AIS 2+ spinal injuries (27 cervical, 22 thoracic, and 48 lumbar; 80 AIS-2, 15 AIS-3, 1 AIS-5, and 1 AIS-6), with fracture as the most common injury type (80%). Spinal-injured occupants were most frequently in passenger cars (64%), and crash direction was most often frontal (62%). Mean delta-V was 51.3 km/h ± 19.4 km/h. The average occupant age was 12.4 ± 5.3 years old, and 48% were 16- to 17-year-olds. Thirty-six percent were right front passengers and 26% were drivers. Most occupants were lap and shoulder belt restrained (88%). Non-spinal AIS 2+ injuries included those of the lower extremity and pelvis (n = 56), head (n = 43), abdomen (n = 39), and thorax (n = 36). Spinal injury causation was typically due to flexion or lateral bending over the lap and or shoulder belt or child restraint harness, compression by occupant

  13. Impact of spinal cord injury on sexuality: Broad-based clinical practice intervention and practical application

    PubMed Central

    Hess, Marika J.; Hough, Sigmund

    2012-01-01

    This study focuses on the impact a spinal cord injury may have on achieving physical and emotional intimacy, and potential to maximize sexual ability and quality of life. Spinal cord injury is a traumatic, life-altering event that is usually associated with loss of motor and sensory function, as well as sexual impairment. At the time of injury, the individual is faced with devastating loss and an abundance of new information in a setting of extreme stress and challenge. In the acute rehabilitation setting, there is often a considerable void in providing education and resources regarding sexual concerns and needs. There is a positive relationship between sexual education and sexual activity. The impact of inadequate sexual counseling and education as a part of rehabilitation can be deleterious. PMID:22925747

  14. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    PubMed Central

    Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi

    2011-01-01

    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models. PMID:21436995

  15. Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury

    PubMed Central

    Ji, Yiming; Meng, Bin; Yuan, Chenxi; Yang, Huilin; Zou, Jun

    2013-01-01

    It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30–180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. PMID:25206629

  16. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord.

    PubMed

    Taccola, G; Margaryan, G; Mladinic, M; Nistri, A

    2008-08-13

    Acute spinal cord injury evolves rapidly to produce secondary damage even to initially spared areas. The result is loss of locomotion, rarely reversible in man. It is, therefore, important to understand the early pathophysiological processes which affect spinal locomotor networks. Regardless of their etiology, spinal lesions are believed to include combinatorial effects of excitotoxicity and severe stroke-like metabolic perturbations. To clarify the relative contribution by excitotoxicity and toxic metabolites to dysfunction of locomotor networks, spinal reflexes and intrinsic network rhythmicity, we used, as a model, the in vitro thoraco-lumbar spinal cord of the neonatal rat treated (1 h) with either kainate or a pathological medium (containing free radicals and hypoxic/aglycemic conditions), or their combination. After washout, electrophysiological responses were monitored for 24 h and cell damage analyzed histologically. Kainate suppressed fictive locomotion irreversibly, while it reversibly blocked neuronal excitability and intrinsic bursting induced by synaptic inhibition block. This result was associated with significant neuronal loss around the central canal. Combining kainate with the pathological medium evoked extensive, irreversible damage to the spinal cord. The pathological medium alone slowed down fictive locomotion and intrinsic bursting: these oscillatory patterns remained throughout without regaining their control properties. This phenomenon was associated with polysynaptic reflex depression and preferential damage to glial cells, while neurons were comparatively spared. Our model suggests distinct roles of excitotoxicity and metabolic dysfunction in the acute damage of locomotor networks, indicating that different strategies might be necessary to treat the various early components of acute spinal cord lesion.

  17. A Clinical Practice Guideline for the Management of Acute Spinal Cord Injury: Introduction, Rationale, and Scope.

    PubMed

    Fehlings, Michael G; Tetreault, Lindsay A; Wilson, Jefferson R; Kwon, Brian K; Burns, Anthony S; Martin, Allan R; Hawryluk, Gregory; Harrop, James S

    2017-09-01

    Acute spinal cord injury (SCI) is a traumatic event that results in disturbances to normal sensory, motor, or autonomic function and ultimately affects a patient's physical, psychological, and social well-being. The management of patients with SCI has drastically evolved over the past century as a result of increasing knowledge on injury mechanisms, disease pathophysiology, and the role of surgery. There still, however, remain controversial areas surrounding available management strategies for the treatment of SCI, including the use of corticosteroids such as methylprednisolone sodium succinate, the optimal timing of surgical intervention, the type and timing of anticoagulation prophylaxis, the role of magnetic resonance imaging, and the type and timing of rehabilitation. This lack of consensus has prevented the standardization of care across treatment centers and among the various disciplines that encounter patients with SCI. The objective of this guideline is to form evidence-based recommendations for these areas of controversy and outline how to best manage patients with SCI. The ultimate goal of these guidelines is to improve outcomes and reduce morbidity in patients with SCI by promoting standardization of care and encouraging clinicians to make evidence-informed decisions.

  18. Shriners Hospital Spinal Cord Injury Self Care Manual.

    ERIC Educational Resources Information Center

    Fox, Carol

    This manual is intended for young people with spinal cord injuries who are receiving rehabilitation services within the Spinal Cord Injury Unit at Shriners Hospital (San Francisco, California). An introduction describes the rehabilitation program, which includes family conferences, an individualized program, an independent living program,…

  19. Spinal Motocross Injuries in the United Kingdom

    PubMed Central

    Singh, Rohit; Bhalla, Amit; Ockendon, Matthew; Hay, Stuart

    2018-01-01

    Background: Motocross is a form of motorcycle racing held on established off-road circuits and has been a recreational and competitive sport across the world for >100 years. In the United Kingdom alone, motocross has grown into a phenomenally ambitious and popular franchise. There are >200 motocross clubs across the country, permitting >900 events annually. Purpose: To assess the current trend of spine-related motocross injuries over the past 5 years. Study Design: Descriptive epidemiology study. Methods: Data were prospectively collected over 5 years (August 2010–August 2015) at our regional trauma and spine unit, regardless of whether the rider was performing the sport competitively or recreationally. Results: During the study period, spine-related injuries were identified for 174 patients (age range, 6-75 years) who were directly referred to our department following recreational or competitive motocross, with most injuries being sustained within the early spring and summer months, representing the start of the motocross season. A significant number of injuries were in males (n = 203, 94%), with the majority of injuries occurring within the 21- to 30-year-old age group. A total of 116 (54%) injuries required operative treatment. The most common spinal injury was thoracolumbar burst fracture (n = 95), followed by chance fractures (n = 26). Conclusion: This data series emphasizes the prevalence and devastation of motocross-related spinal injuries in the United Kingdom and may serve in administering sanctions and guidelines to governing bodies of motocross. The spinal injuries that occur during motocross have significant capital connotations for regional spinal centers. The recent surge in motocross popularity is correlated with the number of injuries, which have increased over the past 5 years by almost 500%. PMID:29349095

  20. Spinal cord stress injury assessment (SCOSIA): clinical applications of mechanical modeling of the spinal cord and brainstem

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Choi, Jae; Wilson, William; Berry, Joel; Henderson, Fraser C., Sr.

    2009-02-01

    Abnormal stretch and strain is a major cause of injury to the spinal cord and brainstem. Such forces can develop from age-related degeneration, congenital malformations, occupational exposure, or trauma such as sporting accidents, whiplash and blast injury. While current imaging technologies provide excellent morphology and anatomy of the spinal cord, there is no validated diagnostic tool to assess mechanical stresses exerted upon the spinal cord and brainstem. Furthermore, there is no current means to correlate these stress patterns with known spinal cord injuries and other clinical metrics such as neurological impairment. We have therefore developed the spinal cord stress injury assessment (SCOSIA) system, which uses imaging and finite element analysis to predict stretch injury. This system was tested on a small cohort of neurosurgery patients. Initial results show that the calculated stress values decreased following surgery, and that this decrease was accompanied by a significant decrease in neurological symptoms. Regression analysis identified modest correlations between stress values and clinical metrics. The strongest correlations were seen with the Brainstem Disability Index (BDI) and the Karnofsky Performance Score (KPS), whereas the weakest correlations were seen with the American Spinal Injury Association (ASIA) scale. SCOSIA therefore shows encouraging initial results and may have wide applicability to trauma and degenerative disease involving the spinal cord and brainstem.

  1. Dose response and structural injury in the disability of spinal injury.

    PubMed

    Patel, Mohammed Shakil; Sell, Philip

    2013-03-01

    In traumatic injury there is a clear relationship between the dose of energy involved, structural tissue damage and resultant disability after recovery. This relationship is often absent in cases of non-specific chronic low back pain that is perceived by patients as attributed to a workplace injury. There are many studies assessing risk factors for non-specific low back pain. However, studies addressing causality of back pain are deficient. To establish whether there exists a causal relationship between structural injury, low back pain and spinal disability. Retrospective analysis of prospectively gathered validated spinal outcome measures [Oswestry disability index (ODI), low back outcome score (LBO), modified somatic perception (MSP), modified Zung depression index (MZD)] between patients with healed high energy thoracolumbar spinal fractures and patients with self-perceived work-related low back pain. Causality was established according to two of Bradford Hill's criteria of medical causality, temporal and dose-response relationships. Twenty-three patients with spinal fractures (group 1) of average age 44 years were compared to 19 patients with self-reported back pain in the workplace pursuing claims for compensation (group 2) of average age 48 years. Both groups were comparable in terms of age and sex. The average ODI in group 1 was 28 % (SD 19) compared to 42 % (SD 19) in group 2 (P < 0.05). Similarly, LBOS was 39.7 versus 24.3 (P < 0.05), MSP 4.3 versus 9.3 (P < 0.05) and MZD 20.2 versus 34.8 (P < 0.05) in groups 1 and 2, respectively. Despite high-energy trauma and significant structural damage to the spine, patients with the high energy injuries had better spinal outcome scores in all measures. There is no 'dose-response' relationship between structural injury, low back pain and spinal disability. This is the reverse of what would be anticipated if structural injury was the cause of disability in workplace reported onset of low back pain.

  2. Patients, doctors, and therapists perceptions of professional roles in spinal cord injury rehabilitation: do they agree?

    PubMed

    Pellatt, Glynis Collis

    2007-03-01

    Spinal cord injury is a devastating condition, requiring extensive rehabilitation from a range of health care professionals. However, it is unclear if patients view the professionals' input into their rehabilitation in the same way as those professionals. This paper presents findings from a qualitative study into patient participation in spinal cord injury rehabilitation. The aim of the part of the study reported here was to identify whether there is agreement between health care professionals and patients perceptions of professional roles in spinal cord injury rehabilitation. Results are presented from semi-structured interviews conducted with five doctors, five physiotherapists, three occupational therapists and 20 patients in a spinal cord injury unit in England. Findings suggest considerable agreement between professionals and patients about the role those professionals play in their rehabilitation. Physiotherapists are perceived to be key to rehabilitation, occupational therapists focus on hand function but physiotherapists and occupational therapists complement each other. Doctors coordinate the team yet reduce their input as patients move out of the acute phase into rehabilitation. There are some tensions but the early input of these professionals into patients' rehabilitation may help to develop understanding of roles. Congruence between patients and professionals may mean that patients have realistic expectations and encourage a more equal relationship between them.

  3. Stem cell clinical trials for spinal cord injury: readiness, reluctance, redefinition.

    PubMed

    Illes, J; Reimer, J C; Kwon, B K

    2011-11-01

    A wealth of scientific and clinical research has focused on the use of stem cells as a potential therapy for spinal cord injury (SCI), culminating most recently in the initiation of clinical trials. However, with the urgency that scientists and clinicians have undertaken to move forward with novel therapies for this devastating injury, the perspectives of stakeholders who live with a SCI have been left behind. Translational research in this rapidly growing field therefore overlooks a critically important viewpoint. We address this concern with a qualitative study of the perspectives on experimental stem cell treatments from individuals who have actually suffered a spinal cord injury. Using focus groups and interviews, we engaged individuals with thoracic and cervical SCIs at sub-acute and chronic stages post-injury. We found four major themes that inform the progression of stem cell research to clinical trials: 'readiness', 'the here and now', 'wait and see', and 'informed hope'. Taken together, the data suggest a profound difference related to target timing of stem cell clinical trials and the perspectives about timing from those who are the end-beneficiaries of therapy. To bridge this gap, we conclude with a number of considerations for the timing disparity of trials and recommendations for improving informed consent.

  4. Effect of nationwide injury prevention programme on serious spinal injuries in New Zealand rugby union: ecological study

    PubMed Central

    Gianotti, Simon M; Hopkins, Will G; Hume, Patria A

    2007-01-01

    Objective To investigate the effect of RugbySmart, a nationwide educational injury prevention programme, on the frequency of spinal cord injuries. Design Ecological study. Setting New Zealand rugby union. Participants Population at risk of injury comprised all New Zealand rugby union players. Intervention From 2001, all New Zealand rugby coaches and referees have been required to complete RugbySmart, which focuses on educating rugby participants about physical conditioning, injury management, and safe techniques in the contact phases of rugby. Main outcome measures Numbers of all spinal injuries due to participation in rugby union resulting in permanent disablement in 1976-2005, grouped into five year periods; observed compared with predicted number of spinal injuries in 2001-5. Results Eight spinal injuries occurred in 2001-5, whereas the predicted number was 18.9 (relative rate=0.46, 95% confidence interval 0.19 to 1.14). Only one spinal injury resulted from scrums over the period; the predicted number was 9.0 (relative rate=0.11, 0.02 to 0.74). Corresponding observed and predicted rates for spinal injuries resulting from other phases of play (tackle, ruck, and maul) were 7 and 9.0 (relative rate=0.83, 0.29 to 2.36). Conclusions The introduction of the RugbySmart programme coincided with a reduction in the rate of disabling spinal injuries arising from scrums in rugby union. This study exemplifies the benefit of educational initiatives in injury prevention and the need for comprehensive injury surveillance systems for evaluating injury prevention initiatives in sport. PMID:17513314

  5. Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury.

    PubMed

    Minassian, Karen; McKay, W Barry; Binder, Heinrich; Hofstoetter, Ursula S

    2016-04-01

    Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidurally over the posterior aspect of the lumbar spinal cord below a paralyzing injury. Current understanding is that such stimulation activates large-to-medium-diameter sensory fibers within the posterior roots. Those fibers then trans-synaptically activate various spinal reflex circuits and plurisegmentally organized interneuronal networks that control more complex contraction and relaxation patterns involving multiple muscles. The induced change in responsiveness of this spinal motor circuitry to any residual supraspinal input via clinically silent translesional neural connections that have survived the injury may be a likely explanation for rudimentary volitional control enabled by epidural stimulation in otherwise paralyzed muscles. Technological developments that allow dynamic control of stimulation parameters and the potential for activity-dependent beneficial plasticity may further unveil the remarkable capacity of spinal motor processing that remains even after severe spinal cord injuries.

  6. Training professionals' communication and motivation skills to improve spinal cord injury patients' satisfaction and clinical outcomes: Study protocol of the ESPELMA trial.

    PubMed

    Lusilla-Palacios, Pilar; Castellano-Tejedor, Carmina; Lucrecia-Ramírez-Garcerán; Navarro-Sanchís, José A; Rodríguez-Urrutia, Amanda; Parramon-Puig, Gemma; Valero-Ventura, Sergi; Cuxart-Fina, Ampar

    2015-10-01

    Acute spinal cord injury leaves patients severely impaired and generates high levels of psychological distress among them and their families, which can cause a less active role in rehabilitation, worse functional recovery, and less perceived satisfaction with the results. Additionally, rehabilitation professionals who deal with this psychological distress could ultimately experience higher stress and more risk of burnout. This article presents the study protocol of the ESPELMA project, aimed to train rehabilitation professionals in the clinical management of acute spinal cord injury-associated psychological distress, and to measure the impact of this training on the patients' perceived satisfaction with treatment. © The Author(s) 2013.

  7. The kinetics of autophagy in the lung following acute spinal cord injury in rats.

    PubMed

    Chu, Ruiliang; Wang, Jiuling; Bi, Yang; Nan, Guoxin

    2018-05-01

    Lung injury is a major cause of respiratory complications following an acute spinal cord injury (ASCI), which are associated with a high mortality rate. Autophagy has been shown to be involved in a variety of lung diseases; however, whether autophagy is activated in the lung following ASCI remains unknown. The objective of this study was to investigate the induction of autophagy in the lung after ASCI. This is an experimental animal study of ASCI investigating kinetics of autophagy in the lung following ASCI. One hundred and forty-four rats (N=144) were divided into two groups: (1) a sham (n=72) and (2) an injury group (n=72). Allen's method was used to induce an injury at the level of the 10th thoracic vertebra. Rats were sacrificed at 6, 12, 24, 48, and 72 hours, 1 week, and 2 weeks after surgery. Lung pathology and apoptosis were assessed to determine the level of damage in the lung. LC3, RAB7, P62, and Beclin 1 were used to detect the induction of autophagy. The study was funded by the Natural Science Foundation of China (NSFC,81272172); National Key Specialty Construction of Clinical Projects of China (#2013-544). The funder of the present study had no capacity to influence the scholarly conduct of the research, interpretation of results, or dissemination of study outcomes. In the injury group, pathologic changes (i.e., pulmonary congestion, hemorrhage, inflammatory exudation, and alveolar collapse) occurred within the lung tissue within 72 hours after ASCI. Apoptosis of the lung cells gradually increased and peaked 72 hours after ASCI. Within 24 hours of ASCI, LC3 expression decreased, recovered, and gradually increased from 24 hours to 72 hours. As RAB7 decreased, P62 increased, and the ratio of RAB7/LC3 significantly decreased. After ASCI, autophagy in the injured lung underwent dynamic changes, as early autophagosome formation decreased and late autophagosomes accumulated; thus, autophagy is in a state of inhibition. Copyright © 2018 Elsevier Inc. All

  8. Neuroprotection of locomotor networks after experimental injury to the neonatal rat spinal cord in vitro.

    PubMed

    Margaryan, G; Mattioli, C; Mladinic, M; Nistri, A

    2010-02-03

    Treatment to block the pathophysiological processes triggered by acute spinal injury remains unsatisfactory as the underlying mechanisms are incompletely understood. Using as a model the in vitro spinal cord of the neonatal rat, we investigated the feasibility of neuroprotection of lumbar locomotor networks by the glutamate antagonists 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and aminophosphonovalerate (APV) against acute lesions induced by either a toxic solution (pathological medium (PM) to mimic the spinal injury hypoxic-dysmetabolic perturbation) or excitotoxicity with kainate. The study outcome was presence of fictive locomotion 24 h after the insult and its correlation with network histology. Inhibition of fictive locomotion by PM was contrasted by simultaneous and even delayed (1 h later) co-application of CNQX and APV with increased survival of ventral horn premotoneurons and lateral column white matter. Neither CNQX nor APV alone provided neuroprotection. Kainate-mediated excitotoxicity always led to loss of fictive locomotion and extensive neuronal damage. CNQX and APV co-applied with kainate protected one-third of preparations with improved motoneuron and dorsal horn neuronal counts, although they failed with delayed application. Our data suggest that locomotor network neuroprotection was possible when introduced very early during the pathological process of spinal injury, but also showed how the borderline between presence or loss of locomotor activity was a very narrow one that depended on the survival of a certain number of neurons or white matter elements. The present report provides a model not only for preclinical testing of novel neuroprotective agents, but also for estimating the minimal network membership compatible with functional locomotor output. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Plasticity and Activation of Spared Intraspinal Respiratory Circuits Following Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    scheduled to present these data at the Spring 2016 Experimental Biology Meeting in San Diego, CA, and thus fully anticipate that analysis will be...that had been deprived of descending drive from the brainstem from an acute cervical spinal cord injury in an endogenous rhythmic manner. To address...epidural stimulation. Major Task 3: Analysis of Tissue Responses to Microwire Implantation These experiments, which were incorporated into the revised

  10. Worklife After Traumatic Spinal Cord Injury

    PubMed Central

    Pflaum, Christopher; McCollister, George; Strauss, David J; Shavelle, Robert M; DeVivo, Michael J

    2006-01-01

    Objective: To develop predictive models to estimate worklife expectancy after spinal cord injury (SCI). Design: Inception cohort study. Setting: Model SCI Care Systems throughout the United States. Participants: 20,143 persons enrolled in the National Spinal Cord Injury Statistical Center database since 1973. Intervention: Not applicable. Main Outcome Measure: Postinjury employment rates and worklife expectancy. Results: Using logistic regression, we found a greater likelihood of being employed in any given year to be significantly associated with younger age, white race, higher education level, being married, having a nonviolent cause of injury, paraplegia, ASIA D injury, longer time postinjury, being employed at injury and during the previous postinjury year, higher general population employment rate, lower level of Social Security Disability Insurance benefits, and calendar years after the passage of the Americans with Disabilities Act. Conclusions: The likelihood of postinjury employment varies substantially among persons with SCI. Given favorable patient characteristics, worklife should be considerably higher than previous estimates. PMID:17044388

  11. Timing of Decompression in Patients With Acute Spinal Cord Injury: A Systematic Review

    PubMed Central

    Wilson, Jefferson R.; Tetreault, Lindsay A.; Kwon, Brian K.; Arnold, Paul M.; Mroz, Thomas E.; Shaffrey, Christopher; Harrop, James S.; Chapman, Jens R.; Casha, Steve; Skelly, Andrea C.; Holmer, Haley K.; Brodt, Erika D.; Fehlings, Michael G.

    2017-01-01

    Study Design: Systematic review. Objective: To conduct a systematic review and synthesis of the literature to assess the comparative effectiveness, safety, and cost-effectiveness of early (≤24 hours) versus late decompression (>24 hours) in adults with acute spinal cord injury (SCI). Methods: A systematic search was conducted of Medline, EMBASE, the Cochrane Collaboration Library, and Google Scholar to identify studies published through November 6, 2014. Studies published in any language, in humans, and with an abstract were considered for inclusion. Included studies were critically appraised and the overall strength of evidence was determined using methods proposed by the Grading of Recommendation Assessment, Development and Evaluation working group. Results: The search yielded 449 potentially relevant citations. Sixteen additional primary studies were identified through other sources. Six studies met inclusion criteria. All but 2 studies were considered to have moderately high risk of bias. Across studies and injury levels, the impact of early surgical decompression (≤24 hours) on clinically important improvement in neurological status was variable. Isolated studies reported statistically significant and clinically important improvements at 6 months (cervical injury, low strength of evidence) and following discharge from inpatient rehabilitation (all levels, very low strength of evidence) but not at other time points; another study observed a statistically significant 6 point improvement in ASIA Impairment Scale (AIS) among patients with AIS B, C, or D, but not for those with AIS A (very low strength of evidence). In one study of acute central cord syndrome without instability, a clinically and statistically meaningful improvement in total motor scores was reported at 6 and 12 months in patients treated early (versus late). There were, however, no significant differences in AIS improvement between early and late surgical groups at 6- or 12-months (very low

  12. Observational study of the effectiveness of spinal cord injury rehabilitation using the Spinal Cord Injury-Ability Realization Measurement Index.

    PubMed

    Scivoletto, G; Bonavita, J; Torre, M; Baroncini, I; Tiberti, S; Maietti, E; Laurenza, L; China, S; Corallo, V; Guerra, F; Buscaroli, L; Candeloro, C; Brunelli, E; Catz, A; Molinari, M

    2016-06-01

    Retrospective observational study. The objective of this study was to determine the rehabilitation potential and the extent to which it is realized in a cohort of spinal cord injury patients using the Spinal Cord Injury-Ability Realization Measurement Index (SCI-ARMI) and to study the clinical factors that influence this realization. Two spinal units in Italy. Consecutive patients were assessed at the end of an in-patient rehabilitation program using the Spinal Cord Independence Measure and the International Standards for Neurological Classification of Spinal Cord Injury. On the basis of these data and of the age and gender of the patients, we calculated the SCI-ARMI score. Regression analyses were performed to study the relationship between clinical factors and the extent to which rehabilitation potential is realized. We examined the data for 306 patients. Most patients were discharged without having reached their rehabilitation potential, with an SCI-ARMI score <80%. SCI-ARMI scores at discharge were positively influenced by etiology and the lesion level and correlated negatively with lesion severity and the presence of complications during rehabilitation. The SCI-ARMI is an effective tool that can be used to measure the achievement of rehabilitation potential in SCI patients and to identify groups of patients who are at risk of not meeting their rehabilitative potential.

  13. Low-Grade Inflammation and Spinal Cord Injury: Exercise as Therapy?

    PubMed Central

    da Silva Alves, Eduardo; de Aquino Lemos, Valdir; Ruiz da Silva, Francieli; Lira, Fabio Santos; dos Santos, Ronaldo Vagner Thomathieli; Rosa, João Paulo Pereira; Caperuto, Erico; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    An increase in the prevalence of obesity in people with spinal cord injury can contribute to low-grade chronic inflammation and increase the risk of infection in this population. A decrease in sympathetic activity contributes to immunosuppression due to the lower activation of immune cells in the blood. The effects of physical exercise on inflammatory parameters in individuals with spinal cord injury have not been well described. We conducted a review of the literature published from 1974 to 2012. This review explored the relationships between low-grade inflammation, spinal cord injury, and exercise to discuss a novel mechanism that might explain the beneficial effects of exercise involving an increase in catecholamines and cytokines in people with spinal cord injury. PMID:23533315

  14. The management of spinal cord injury patients in Greece.

    PubMed

    Petropoulou, C B; Rapidi, C A; Beltsios, M; Karantonis, G; Lampiris, P E

    1992-02-01

    In Greece, spinal cord injury patients have serious problems concerning their treatment, social management and vocational integration. Unfortunately the treatment of such patients is usually limited to that offered in institutions for the chronically sick, after they have received their acute initial care in general hospitals. The large number of institutional beds (1287 in 1986) in relation to the small number of active rehabilitation beds (116 beds in 1989) is noteworthy. Generally speaking, the specialisation of health personnel is limited. In practice there is no programme of social rehabilitation, except for special concessions. Disabled individuals can refer to the Professional Integration Service for their vocational reintegration. We must note that vocational counsellors do not take part in the rehabilitation team. The idea of intervention for the adaptation of architectural barriers is now beginning to be considered in theory. Physicians are making efforts to establish 'basic' spinal cord units.

  15. Stress-resistant neural stem cells positively influence regional energy metabolism after spinal cord injury in mice.

    PubMed

    Schwerdtfeger, Karsten; Mautes, Angelika E M; Bernreuther, Christian; Cui, Yifang; Manville, Jérôme; Dihné, Marcel; Blank, Simon; Schachner, Melitta

    2012-02-01

    The importance of stem cells to ameliorate the devastating consequences of traumatic injuries in the adult mammalian central nervous system calls for improvements in the capacity of these cells to cope, in particular, with the host response to the injury. We have previously shown, however, that in the acutely traumatized spinal cord local energy metabolism led to decreased ATP levels after neural stem cell (NSC) transplantation. As this might counteract NSC-mediated regenerative processes, we investigated if NSC selected for increased oxidative stress resistance are better suited to preserve local energy content. For this purpose, we exposed wild-type (WT) NSC to hydrogen peroxide prior to transplantation. We demonstrate here that transplantation of WT-NSC into a complete spinal cord compression injury model even lowers the ATP content beyond the level detected in spinal cord injury-control animals. Compared to WT-NSC, stress-resistant (SR) NSC did not lead to a further decrease in ATP content. These differences between WT- and SR-NSC were observed 4 h after the lesion with subsequent transplantation. At 24 h after lesioning, these differences were no more as obvious. Thus, in contrast to native NSC, transplantation of NSC selected for oxidative stress resistance can positively influence local energy metabolism in the first hours after spinal cord compression. The functional relevance of this observation has to be tested in further experiments.

  16. Spinal cord injuries among paragliders in Norway.

    PubMed

    Rekand, T; Schaanning, E E; Varga, V; Schattel, U; Gronning, M

    2008-06-01

    A national retrospective descriptive study. To study the clinical effects of spinal cord injuries (SCIs) caused by paragliding accidents in Norway. Spinal cord units at Haukeland University Hospital, Sunnaas Rehabilitation Hospital and St Olav Hospital in Norway. We studied the medical files for nine patients with SCI caused by paragliding accidents to evaluate the circumstances of the accidents, and clinical effects of injury. We obtained the data from hospital patient files at all three spinal units in Norway and crosschecked them through the Norwegian Paragliding Association's voluntary registry for injuries. All patients were hospitalized from 1997 to 2006, eight men and one woman, with mean age 30.7 years. The causes of the accidents were landing problems combined with unexpected wind whirls, technical problems and limited experience with unexpected events. All patients contracted fractures in the thoracolumbal junction of the spine, most commonly at the L1 level. At clinical follow-up, all patients presented clinically incomplete SCI (American Spinal Injury Association impairment scores B-D). Their main health problems differed widely, ranging from urinary and sexual disturbances to neuropathic pain and loss of motor functioning. Only three patients returned to full-time employment after rehabilitation. Paragliding accidents cause spinal fractures predominantly in the thoracolumbal junction with subsequent SCIs and increased morbidity. All patients experienced permanent health problems that influenced daily activities and required long-time clinical follow-up and medical intervention. Better education in landing techniques and understanding of aerodynamics may reduce the risk of paragliding accidents.

  17. The change tendency of PI3K/Akt pathway after spinal cord injury

    PubMed Central

    Zhang, Peixun; Zhang, Luping; Zhu, Lei; Chen, Fangmin; Zhou, Shuai; Tian, Ting; Zhang, Yuqiang; Jiang, Xiaorui; Li, Xuekun; Zhang, Chuansen; Xu, Lin; Huang, Fei

    2015-01-01

    Spinal cord injury (SCI) refers to the damage of spinal cord’s structure and function due to a variety of causes. At present, many scholars have confirmed that apoptosis is the main method of secondary injury in spinal cord injury. In view of understanding the function of PI3K/Akt pathway on spinal cord injury, this study observed the temporal variation of key molecules (PI3K, Akt, p-Akt) in the PI3K/Akt pathway after spinal cord injury by immunohistochemistry and Western-blot. The results showed that the expression of PI3K, Akt and p-Akt display a sharp increase one day after the spinal cord injury, and then it decreased gradually with the time passing by, but the absolute expression was certainly higher than the normal group. These results indicate that the PI3K/Akt signaling pathway is involved in the spinal cord injury and the mechanism may be related to apoptosis. PMID:26807170

  18. Spinal injury in car crashes: crash factors and the effects of occupant age.

    PubMed

    Bilston, Lynne E; Clarke, Elizabeth C; Brown, Julie

    2011-08-01

    Motor vehicle crashes are the leading cause of serious spinal injury in most developed nations. However, since these injuries are rare, systematic analyses of the crash factors that are predictive of spinal injury have rarely been performed. This study aimed to use a population-reference crash sample to identify crash factors associated with moderate to severe spinal injury, and how these vary with occupant age. The US National Automotive Sampling System Crashworthiness Data System (NASS) data for 1993-2007 were analysed using logistic regression to identify crash factors associated with Abbreviated Injury Scale (AIS)2+ spinal injury among restrained vehicle passengers. Risk of moderate or severe spinal injury (AIS2+) was associated with higher severity crashes (OR=3.5 (95% CI 2.6 to 4.6)), intrusion into an occupant's seating position (OR=2.7 (95% CI 1.9 to 3.7)), striking a fixed object rather than another car (OR=1.7 (95% CI 1.3 to 2.1)), and use of a shoulder-only belt (OR=2.7 (95% CI 1.5 to 4.8)). Older occupants (65 years or older) were at higher risk of spinal injury than younger adults in frontal, side and rollover crashes. Children under 16 were at a lower risk of spinal injury than adults in all crash types except frontal crashes. While the risk of serious spinal injury in motor vehicle crashes is low, these injuries are more common in crashes of higher severity or into fixed objects, and in the presence of intrusion. There are elevated risks of spinal injury for older occupants compared with younger adults, which may reflect changes in biomechanical tolerances with age. Children appear to be at lower risk of serious spinal injury than adults except in frontal crashes.

  19. Spinal hyperostosis as an important sign indicating spine injuries on postmortem computed tomography.

    PubMed

    Oshima, Toru; Hayashida, Mitsumasa; Ohtani, Maki; Hashimoto, Manabu; Takahashi, Satoshi; Ishiyama, Koichi; Otani, Takahiro; Koga, Makoto; Sugawara, Makoto; Mimasaka, Sohtaro

    2014-07-01

    Although spine injuries are not always detectable on postmortem computed tomography (PMCT), spinal hyperostosis, an important risk factor for spine injury, is relatively easily detectable on PMCT. We therefore examined the utility of the detection of spinal hyperostosis on PMCT as an indicator of spine injury. Full-body PMCT images of 88 autopsy cases with a bruise on the face or forehead but no identifiable skull fracture were reviewed prior to autopsy for the identification and classification of spinal hyperostosis. Spine injuries were observed in 56.0% of cases with spinal hyperostosis and 1.6% of cases without spinal hyperostosis. Among the cases with spinal hyperostosis, spine injuries were observed in 66.7% of cases at stage 2 or 3 and in 88.9% of cases at stage 3. Spine injuries were diagnosed on PMCT in 33.3% of cases prior to autopsy. A significant association was found between spinal hyperostosis and presence of spine injury that cannot be detected on PMCT, indicating that the identification of spinal hyperostosis on PMCT may assist in detecting spine injuries. This finding suggests that investigation of the presence of spine injury based on the identification of spinal hyperostosis on PMCT may assist in determining the correct cause of death by autopsy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Rapamycin suppresses microglial activation and reduces the development of neuropathic pain after spinal cord injury.

    PubMed

    Tateda, Satoshi; Kanno, Haruo; Ozawa, Hiroshi; Sekiguchi, Akira; Yahata, Kenichiro; Yamaya, Seiji; Itoi, Eiji

    2017-01-01

    Rapamycin is an inhibitor of the mammalian target of rapamycin (mTOR) signaling pathway, plays an important role in multiple cellular functions. Our previous study showed rapamycin treatment in acute phase reduced the neural tissue damage and locomotor impairment after spinal cord injury (SCI). However, there has been no study to investigate the therapeutic effect of rapamycin on neuropathic pain after SCI. In this study, we examined whether rapamycin reduces neuropathic pain following SCI in mice. We used a mouse model of thoracic spinal cord contusion injury, and divided the mice into the rapamycin-treated and the vehicle-treated groups. The rapamycin-treated mice were intraperitoneally injected with rapamycin (1 mg/kg) 4 h after SCI. The rapamycin treatment suppressed phosphorylated-p70S6K in the injured spinal cord that indicated inhibition of mTOR. The rapamycin treatment significantly improved not only locomotor function, but also mechanical and thermal hypersensitivity in the hindpaws after SCI. In an immunohistochemical analysis, Iba-1-stained microglia in the lumbar spinal cord was significantly decreased in the rapamycin-treated mice. In addition, the activity of p38 MAPK in the lumbar spinal cord was significantly attenuated by rapamycin treatment. Furthermore, phosphorylated-p38 MAPK-positive microglia was relatively decreased in the rapamycin-treated mice. These results indicated rapamycin administration in acute phase to reduce secondary neural tissue damage can contribute to the suppression of the microglial activation in the lumbar spinal cord and attenuate the development of neuropathic pain after SCI. The present study first demonstrated that rapamycin has significant therapeutic potential to reduce the development of neuropathic pain following SCI. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:93-103, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Vocational outcome following spinal cord injury.

    PubMed

    Conroy, L; McKenna, K

    1999-09-01

    Non-experimental (ex post facto) survey research design involving the use of a fixed alternative format questionnaire. To investigate variables influencing vocational outcome, to identify barriers to gaining and sustaining employment and to identify the effects of variables on the type of work engaged in following spinal cord injury. The two sets of independent variables considered were, individual and injury-related factors (age at onset of injury, time since injury, extent/level of injury, highest educational qualification achieved pre-injury, and pre-injury occupation) and circumstantial factors (means of transport, access difficulties, perceived workplace discrimination, financial disincentives to work and perceived level of skill). The Princess Alexandra Hospital Spinal Injuries Unit, Queensland, Australia. Data on the variables and the vocational outcomes of having ever worked or studied post-injury, current employment status and post-injury occupation were obtained from survey responses. Demographical and medical data were gathered from medical records. Forward stepwise logistic regression revealed that having ever worked or studied post-injury was associated with all individual and injury-related factors except pre-injury occupation, and two circumstantial factors, namely means of transport and access difficulties. Current employment was associated with all circumstantial factors as well as age at injury and pre-injury occupation. Standard multiple regression analyses revealed that post-injury occupation was correlated with all individual and injury-related factors as well as means of transport and perceived workplace discrimination. Tailored rehabilitation programs for individuals with characteristics associated with less successful vocational outcomes may facilitate their employment status after injury.

  2. Spinal injuries in professional rugby union: a prospective cohort study.

    PubMed

    Fuller, Colin W; Brooks, John H M; Kemp, Simon P T

    2007-01-01

    To determine the incidence, severity, nature, and causes of cervical, thoracic, and lumbar spine injuries sustained during competition and training in professional rugby union. A 2 season prospective cohort design. Twelve English Premiership rugby union clubs. Five hundred and forty-six male rugby union players of whom 296 were involved in both seasons. Location, diagnosis, severity (number of days unavailable for training and matches), and cause of injury: incidence of match and training injuries (injuries/1000 player-hours). Player age, body mass, stature, playing position, use of headgear, and activity and period of season. The incidences of spinal injuries were 10.90 (9.43 to 12.60) per 1000 player match-hours and 0.37 (0.29 to 0.47) per 1000 player training-hours. No player sustained a catastrophic spinal injury, but 3 players sustained career-ending injuries. Overall, players were more likely to sustain a cervical injury during matches and a lumbar injury during training. Forwards were significantly more likely to sustain a spinal injury than backs during both matches (P < 0.01) and training (P = 0.02). During matches, injuries to the cervical (average: 13 days; P < 0.01) and lumbar (13 days; P < 0.01) spine were more severe than injuries to the thoracic (5 days) spine; during training, injuries to the lumbar spine (26 days) were more severe than injuries to the cervical (13 days; P = 0.10) or thoracic (12 days; P = 0.06) spine. A total of 4037 days were lost to competition and training through spinal injuries with lumbar disc injuries sustained during training accounting for 926 days (23%) and cervical nerve root injuries sustained during matches for 621 days (15%). During matches, more injuries were caused by tackles (37%), and during training more injuries were caused by weight-training (33%). The results showed that rugby union players were exposed to a high risk of noncatastrophic spinal injury during tackling, scrummaging, and weight-training activities

  3. Bimanual reach to grasp movements after cervical spinal cord injury.

    PubMed

    Britten, Laura; Coats, Rachel; Ichiyama, Ronaldo; Raza, Wajid; Jamil, Firas; Astill, Sarah

    2017-01-01

    Injury to the cervical spinal cord results in bilateral deficits in arm/hand function reducing functional independence and quality of life. To date little research has been undertaken to investigate control strategies of arm/hand movements following cervical spinal cord injury (cSCI). This study aimed to investigate unimanual and bimanual coordination in patients with acute cSCI using 3D kinematic analysis as they performed naturalistic reach to grasp actions with one hand, or with both hands together (symmetrical task), and compare this to the movement patterns of uninjured younger and older adults. Eighteen adults with a cSCI (mean 61.61 years) with lesions at C4-C8, with an American Spinal Injury Association (ASIA) grade B to D and 16 uninjured younger adults (mean 23.68 years) and sixteen uninjured older adults (mean 70.92 years) were recruited. Participants with a cSCI produced reach-to-grasp actions which took longer, were slower, and had longer deceleration phases than uninjured participants. These differences were exacerbated during bimanual reach-to-grasp tasks. Maximal grasp aperture was no different between groups, but reached earlier by people with cSCI. Participants with a cSCI were less synchronous than younger and older adults but all groups used the deceleration phase for error correction to end the movement in a synchronous fashion. Overall, this study suggests that after cSCI a level of bimanual coordination is retained. While there seems to be a greater reliance on feedback to produce both the reach to grasp, we observed minimal disruption of the more impaired limb on the less impaired limb. This suggests that bimanual movements should be integrated into therapy.

  4. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats.

    PubMed

    Renno, Waleed M; Al-Khaledi, Ghanim; Mousa, Alyaa; Karam, Shaima M; Abul, Habib; Asfar, Sami

    2014-02-01

    Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Intrathecal Morphine Attenuates Recovery of Function after a Spinal Cord Injury

    PubMed Central

    Moreno, Georgina; Woller, Sarah; Puga, Denise; Hoy, Kevin; Balden, Robyn; Grau, James W.

    2009-01-01

    Abstract Prior work has shown that a high dose (20 mg/kg) of systemic morphine, required to produce significant analgesia in the acute phase of a contusion injury, undermines the long-term health of treated subjects and increases lesion size. Moreover, a single dose of systemic morphine in the early stage of injury (24 h post-injury) led to symptoms of neuropathic pain 3 weeks later, in the chronic phase. The present study examines the locus of the effects using intrathecal morphine administration. Subjects were treated with one of three doses (0, 30, or 90 μg) of intrathecal morphine 24 h after a moderate contusion injury. The 90-μg dose produced significant analgesia when subjects were exposed to noxious stimuli (thermal and incremented shock) below the level of injury. Yet, despite analgesic efficacy, intrathecal morphine significantly attenuated the recovery of locomotor function and increased lesion size rostral to the injury site. A single dose of 30 or 90 μg of intrathecal morphine also decreased weight gain, and more than doubled the incidence of mortality and autophagia when compared to vehicle-treated controls. Morphine is one of the most effective pharmacological agents for the treatment of neuropathic pain and, therefore, is indispensable for the spinally injured. Treatment can, however, adversely affect the recovery process. A morphine-induced attenuation of recovery may result from increases in immune cell activation and, subsequently, pro-inflammatory cytokine concentrations in the contused spinal cord. PMID:19388818

  6. [Spanish validation of the International Spinal Cord Injury Pulmonary Function Basic Data Set questionnaire for the study of the repercussion of spinal cord injury in the respiratory system].

    PubMed

    Gómez Garrido, Alba; León Espitia, Ana María; Montesinos Magraner, Lluïsa; Ramirez Galceran, Lucrecia; Soler Canudes, Emilia; González Viejo, Miguel Angel

    2015-12-07

    The dysfunction of the respiratory system and the breathing complications in persons with injured spinal cord has an effect on the morbidity and the mortality of the disease. The objectives were: 1) to translate to Spanish and validate the questionnaire of international consensus: International Spinal Cord Injury Pulmonary Function Basic Data Set, and 2) to determine the influence of chronic spinal cord injury in the respiratory system in terms of respiratory functionalism. Translation to Spanish and validation of the questionnaire of international consensus intended for the study of the pulmonary function in spinal cord injury disease. We tested the reliability of that questionnaire. We conducted a descriptive transversal study to determine the degree of involvement of the respiratory system in spinal cord injury. A percentage of 91.9 did not have any respiratory pathology before spinal cord injury and 54.8% of patients smoked. A percentage of 27.4 of patients presented breathing complications one year after the injury. Results of the respiratory function tests were: FVC 67%, FEV1 72% and PEF 70%. Concordance and reliability were 98%. The Spanish version of the questionnaire of international consensus about the pulmonary function is a useful tool for the study of the respiratory involvement in spinal cord injury. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  7. Analysis of 78 patients with spinal injuries in the 2008 Sichuan, China, earthquake.

    PubMed

    Chen, Rigao; Song, Yuemin; Kong, Qingquan; Zhou, Chunguang; Liu, Limin

    2009-05-01

    To analyze the clinical features of patients with spinal injuries and to better cope with future disasters, we retrospectively reviewed 78 patients' medical records after the 2008 Sichuan, China, earthquake. All patients survived, and the mean time patients spent under rubble was 12.2 hours. The largest number of victims were in the 30- to 39-year age group (24.3%), followed by the 20- to 29-year age group (21.8%) and the 40- to 49-year age group (20.5%). Isolated spinal injuries occurred in 55 patients (71.5%). Multilevel spinal injuries occurred in 23 patients (29.5%). The most common region for spinal injuries was the lumbar spine (38.5%), followed by the thoracic spine and the cervical spine. Nearly 53.8% of these spinal injuries resulted in some form of neurologic disability. Thoracic injury contributed to the majority of the neurologic injury. Lumbar injury seldom resulted in neurologic damage. Almost all cervical injuries were associated with severe spinal cord injury. The majority of patients sustained injuries in addition to their spinal injuries. More than one-third of patients (35.7%) had upper extremity fractures, 12.1% had pelvic fractures, and 44.5% had lower extremity fractures. The most commonly injured bone in the upper extremity was the humerus and in the lower extremity, the femur. Other associated injuries included head (19.6%), thoracic (39.8%), abdominal (8.9%), and urologic (2.56%) injuries. The high frequency of multilevel injuries of the spine and additional injuries reaffirms the need for vigilance in patient assessment.

  8. Rehabilitation of spinal cord injuries

    PubMed Central

    Nas, Kemal; Yazmalar, Levent; Şah, Volkan; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-01

    Spinal cord injury (SCI) is the injury of the spinal cord from the foramen magnum to the cauda equina which occurs as a result of compulsion, incision or contusion. The most common causes of SCI in the world are traffic accidents, gunshot injuries, knife injuries, falls and sports injuries. There is a strong relationship between functional status and whether the injury is complete or not complete, as well as the level of the injury. The results of SCI bring not only damage to independence and physical function, but also include many complications from the injury. Neurogenic bladder and bowel, urinary tract infections, pressure ulcers, orthostatic hypotension, fractures, deep vein thrombosis, spasticity, autonomic dysreflexia, pulmonary and cardiovascular problems, and depressive disorders are frequent complications after SCI. SCI leads to serious disability in the patient resulting in the loss of work, which brings psychosocial and economic problems. The treatment and rehabilitation period is long, expensive and exhausting in SCI. Whether complete or incomplete, SCI rehabilitation is a long process that requires patience and motivation of the patient and relatives. Early rehabilitation is important to prevent joint contractures and the loss of muscle strength, conservation of bone density, and to ensure normal functioning of the respiratory and digestive system. An interdisciplinary approach is essential in rehabilitation in SCI, as in the other types of rehabilitation. The team is led by a physiatrist and consists of the patients’ family, physiotherapist, occupational therapist, dietician, psychologist, speech therapist, social worker and other consultant specialists as necessary. PMID:25621206

  9. Traumatic spinal injuries on farms: Patients treated in the national spinal unit of Ireland 2005-2015.

    PubMed

    Berney, Mark J; Horstmann, Ellen; Cassidy, Noelle

    2017-03-01

    Farming is a major industry in Ireland, employing 6% of the workforce but accounts for 40% of workplace fatalities (Meredith, 2008). 1 The use of machinery and proximity to large livestock poses significant risk for spinal injuries. This study reviews mechanism of injury, injuries sustained, and the treatment undertaken. Of 31 patients, 26 sustained high-energy injuries with machinery and livestock implicated in the majority of accidents. 77% sustained poly-trauma and 52% had permanent neurological injury. The proximity to heavy machinery and livestock pose significant risk for spinal injuries. This study should encourage increased efforts to improve farm safety.

  10. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat

    PubMed Central

    Kao, T; Shumsky, JS; Murray, M; Moxon, KA

    2009-01-01

    Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/day, 5days/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI, but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923

  11. Clinical interpretation of the Spinal Cord Injury Functional Index (SCI-FI).

    PubMed

    Fyffe, Denise; Kalpakjian, Claire Z; Slavin, Mary; Kisala, Pamela; Ni, Pengsheng; Kirshblum, Steven C; Tulsky, David S; Jette, Alan M

    2016-09-01

    To provide validation of functional ability levels for the Spinal Cord Injury - Functional Index (SCI-FI). Cross-sectional. Inpatient rehabilitation hospital and community settings. A sample of 855 individuals with traumatic spinal cord injury enrolled in 6 rehabilitation centers participating in the National Spinal Cord Injury Model Systems Network. Not Applicable. Spinal Cord Injury-Functional Index (SCI-FI). Cluster analyses identified three distinct groups that represent low, mid-range and high SCI-FI functional ability levels. Comparison of clusters on personal and other injury characteristics suggested some significant differences between groups. These results strongly support the use of SCI-FI functional ability levels to document the perceived functional abilities of persons with SCI. Results of the cluster analysis suggest that the SCI-FI functional ability levels capture function by injury characteristics. Clinical implications regarding tracking functional activity trajectories during follow-up visits are discussed.

  12. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury

    PubMed Central

    Benthall, Katelyn N.; Hough, Ryan A.

    2016-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the

  13. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury.

    PubMed

    Benthall, Katelyn N; Hough, Ryan A; McClellan, Andrew D

    2017-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3-5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results

  14. Secondary damage in the spinal cord after motor cortex injury in rats.

    PubMed

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  15. Progranulin expression is upregulated after spinal contusion in mice

    PubMed Central

    Naphade, Swati B.; Kigerl, Kristina A.; Jakeman, Lyn B.; Kostyk, Sandra K.; Popovich, Phillip G.

    2015-01-01

    Progranulin (proepithelin) is a pleiotropic growth factor associated with inflammation and wound repair in peripheral tissues. It also has been implicated in the response to acute traumatic brain injury as well as to chronic neurodegenerative diseases. To determine whether changes in progranulin expression also accompany acute spinal cord injury, C57BL/6 mice were subjected to mid-thoracic (T9 level) contusion spinal cord injury and analyzed by immunohistochemical and biochemical methods. Whereas spinal cord sections prepared from non-injured laminectomy control animals contained low basal levels of progranulin immunoreactivity in gray matter, sections from injured animals contained intense immunoreactivity throughout the injury epicenter that peaked 7–14 days post injury. Progranulin immunoreactivity colocalized with myeloid cell markers CD11b and CD68, indicating that expression increased primarily in activated microglia and macrophages. Immunoblot analysis confirmed that progranulin protein levels rose after injury. On the basis of quantitative polymerase chain reaction analysis, increased protein levels resulted from a 10-fold rise in progranulin transcripts. These data demonstrate that progranulin is dramatically induced in myeloid cells after experimental spinal cord injury and is positioned appropriately both spatially and temporally to influence recovery after injury. PMID:19946692

  16. Spinal cord injury in the emergency context: review of program outcomes of a spinal cord injury rehabilitation program in Sri Lanka

    PubMed Central

    2014-01-01

    Background The final months of the conflict in Sri Lanka in 2009 resulted in massive displacement of the civilian population and a high volume of orthopedic trauma including spinal cord injury. In response to this need, Médecins Sans Frontières implemented a multidisciplinary rehabilitation program. Methods Patients were admitted to the program if they had a spinal cord injury, a stable spine and absence of a high-grade pressure ulcer. All patients were assessed on admission with a standardized functional scale the Spinal Cord Independence Measure II (SCIM) and the American Spinal Injury Association Impairment Scale (ASIA). A multidisciplinary team provided nursing care, physiotherapy, bowel and bladder training, mental health care, and vocational rehabilitation. Patients were discharged from the program when medically stable and able to perform activities of daily living independently or with assistance of a caregiver. The primary outcome measures were discharge to the community, and change in SCIM score on discharge. Secondary outcome measures were measured at 6-12 weeks post-discharge, and included SCIM score and presence of complications (pressure ulcers, urinary tract infections and bowel problems). Results 89 patients were admitted. The majority of injuries were to the thoracic region or higher (89%). The injuries were classified as ASIA grade A in 37 (43%), grade B in 17(20%), grade C in 15 (17%) and grade D in 17(20%). 83.2% met the criteria for discharge, with a further 7.9% patients requiring transfer to hospital for surgical care of pressure ulcers. There was a significant change in SCIM score from 55 on admission to 71 on discharge (p < 0.01). 79.8% and 66.7% achieved a clinically significant and substantially significant SCIM score improvement, respectively. Amongst those with follow up data, there was a reduction in post spinal cord injury complications from those experienced either at or during admission. A further 79% of SCIM scores were

  17. Do Susceptibility Weighted Imaging and Multi-Shot Echo Planar Imaging Optimally Demonstrate and Predict Outcome for Spinal Cord Injury

    DTIC Science & Technology

    2017-03-27

    Mirvis SE, Shanmuganathan K, Chesler D, et al. Predictors of outcome in acute traumatic central cord syndrome due to spinal stenosis. J Neurosurg...Cowley Shock Trauma Center for SCIs between January 2013 and March 2015. All patients had an acute subaxial blunt cervical SCI resulting in an American...from 0 to 100, with a higher score indicating greater ability. 4.3 MRI Acquisition MRI imaging was performed acutely within 24 hours of injury

  18. The mechanism of Naringin-enhanced remyelination after spinal cord injury

    PubMed Central

    Rong, Wei; Pan, Yong-wei; Cai, Xu; Song, Fei; Zhao, Zhe; Xiao, Song-hua; Zhang, Cheng

    2017-01-01

    Our previous study revealed that intragastric administration of naringin improved remyelination in rats with spinal cord injury and promoted the recovery of neurological function of the injured spinal cord. This study sought to reveal the mechanisms by which naringin improves oligodendrocyte precursor cell differentiation and maturation, and promotes remyelination. Spinal cord injury was induced in rats by the weight-drop method. Naringin was intragastrically administered daily (20, 40 mg/kg) for 4 weeks after spinal cord injury induction. Behavioral assessment, histopathological staining, immunofluorescence spectroscopy, ultrastructural analysis and biochemical assays were employed. Naringin treatment remarkably mitigated demyelination in the white matter, increased the quality of myelinated nerve fibers and myelin sheath thickness, promoted oligodendrocyte precursor cell differentiation by upregulating the expression of NKx2.2 and 2′3′-cyclic nucleotide 3′-phosphodiesterase, and inhibited β-catenin expression and glycogen synthase kinase-3β (GSK-3β) phosphorylation. These findings indicate that naringin treatment regulates oligodendrocyte precursor cell differentiation and promotes remyelination after spinal cord injury through the β-catenin/GSK-3β signaling pathway. PMID:28469664

  19. Effects of Spinal Cord Injury in Heart Rate Variability After Acute and Chronic Exercise: A Systematic Review.

    PubMed

    Buker, Daniel Bueno; Oyarce, Cristóbal Castillo; Plaza, Raúl Smith

    2018-01-01

    Background: Spinal cord injury (SCI) above T6 is followed by a loss of sympathetic supraspinal control of the heart, disturbing the autonomic balance and increasing cardiovascular risk. Heart rate variability (HRV) is a widely used tool for assessing the cardiac autonomic nervous system and positive adaptations after regular exercise in able-bodied subjects. However, adaptations in SCI subjects are not well known. Objectives: To compare HRV between able-bodied and SCI subjects and analyze the effects of chronic and acute exercise on HRV in the SCI group. Methods: We searched MEDLINE, Embase, Web of Science, SciELO, and Google Scholar databases to July 2016. We selected English and Spanish observational or experimental studies reporting HRV after training or acute exercise in SCI patients. We also included studies comparing HRV in SCI individuals with able-bodied subjects. Animal studies and nontraumatic SCI studies were excluded. We screened 279 articles by title and abstract; of these, we fully reviewed 29 articles. Eighteen articles fulfilled criteria for inclusion in this study. Results: SCI individuals showed lower HRV values in the low frequency band compared to able-bodied subjects. Regular exercise improved HRV in SCI subjects, however time and intensity data were lacking. HRV decreases after an acute bout of exercise on SCI subjects, but recovery kinetics are unknown. Conclusion: HRV is affected following SCI. Able-bodied subjects and SCI individuals have different values of HRV. Acute bouts of exercise change HRV temporarily, and chronic exercise might improve autonomic balance in SCI.

  20. Spinal injuries in New Zealand rugby and rugby league--a twenty year survey.

    PubMed

    Armour, K S; Clatworthy, B J; Bean, A R; Wells, J E; Clarke, A M

    1997-12-12

    To establish trends in frequency of serious spinal cord injuries in rugby and rugby league over a 20 year period and to elucidate patterns of injury from retrospective analysis of cases admitted to New Zealand's two spinal injuries units. A detailed survey of unit records with follow-up of selected patients; statistical analysis of data. During the 20 years 1976 to 1995, 119 rugby and 22 rugby league players (total 141) were admitted to New Zealand's two spinal injuries units suffering serious spinal injuries and 47 of these became permanently confined to wheelchairs. There was a steady increase in frequency throughout the period studied. Of the injuries 83% occurred in forwards and 17% in backs. In rugby it was the scrum which produced most injuries, and in rugby league it was the tackle. The early season month of April produced most spinal injuries. In the eighteen months since intense compulsory educational programmes on safety were introduced by the New Zealand Rugby Union there have been no serious spinal cord injuries from rugby scrums. Contrary to widespread belief, there has not been a decrease in spinal cord injuries in rugby following rule changes in the mid 1980s. The information produced by this retrospective study has been an effective educational platform to make rugby and rugby league safer.

  1. Clinical interpretation of the Spinal Cord Injury Functional Index (SCI-FI)

    PubMed Central

    Fyffe, Denise; Kalpakjian, Claire Z.; Slavin, Mary; Kisala, Pamela; Ni, Pengsheng; Kirshblum, Steven C.; Tulsky, David S.; Jette, Alan M.

    2016-01-01

    Objective: To provide validation of functional ability levels for the Spinal Cord Injury – Functional Index (SCI-FI). Design: Cross-sectional. Setting: Inpatient rehabilitation hospital and community settings. Participants: A sample of 855 individuals with traumatic spinal cord injury enrolled in 6 rehabilitation centers participating in the National Spinal Cord Injury Model Systems Network. Interventions: Not Applicable. Main Outcome Measures: Spinal Cord Injury-Functional Index (SCI-FI). Results: Cluster analyses identified three distinct groups that represent low, mid-range and high SCI-FI functional ability levels. Comparison of clusters on personal and other injury characteristics suggested some significant differences between groups. Conclusions: These results strongly support the use of SCI-FI functional ability levels to document the perceived functional abilities of persons with SCI. Results of the cluster analysis suggest that the SCI-FI functional ability levels capture function by injury characteristics. Clinical implications regarding tracking functional activity trajectories during follow-up visits are discussed. PMID:26781769

  2. Spinal-cord injuries in Australian footballers, 1960-1985.

    PubMed

    Taylor, T K; Coolican, M R

    1987-08-03

    A review of 107 footballers who suffered a spinal-cord injury between 1960 and 1985 has been undertaken. Since 1977, the number of such injuries in Rugby Union, Rugby League and Australian Rules has increased, from an average of about two injuries a year before 1977 to over eight injuries a year since then. Rugby Union is clearly the most dangerous game, particularly for schoolboys; all of the injuries in schoolboy games for this code have occurred since 1977. This study has shown that collision at scrum engagement, and not at scrum collapse, is the way in which the majority of scrum injuries are sustained. These injuries are largely preventable, and suggestions for rule changes are made. Half the injured players recovered to Frankel grades D or E. The financial entitlements of those injured were grossly inadequate; this warrants action. A national register for spinal-cord injuries from football should be established to monitor the effects of desirable rule changes in Rugby Union and Rugby League.

  3. Return to work following spinal cord injury: a review.

    PubMed

    Lidal, Ingeborg Beate; Huynh, Tuan Khai; Biering-Sørensen, Fin

    2007-09-15

    To review literature on return to work (RTW) and employment in persons with spinal cord injury (SCI), and present employment rates, factors influencing employment, and interventions aimed at helping people with SCI to obtain and sustain productive work. A systematic review for 2000 - 2006 was carried out in PubMed/Medline, AMED, (ISI) Web of Science, EMBASE, CINAHL, PsycInfo and Sociological abstracts database. The keywords 'spinal cord injuries', 'spinal cord disorder', 'spinal cord lesion' or 'spinal cord disease' were cross-indexed with 'employment', 'return to work', 'occupation' or 'vocational'. Out of approximately 270 hits, 110 references were used, plus 13 more found elsewhere. Among individuals with SCI working at the time of injury 21 - 67% returned to work after injury. RTW was higher in persons injured at a younger age, had less severe injuries and higher functional independence. Employment rate improved with time after SCI. Persons with SCI employed ranged from 11.5% to 74%. Individuals who sustained SCI during childhood or adolescence had higher adult employment rates. Most common reported barriers to employment were problems with transportation, health and physical limitations, lack of work experience, education or training, physical or architectural barriers, discrimination by employers, and loss of benefits. Individuals with SCI discontinue working at younger age. This review confirmed low employment rates after SCI. Future research should explore interventions aimed at helping people with SCI to obtain and sustain productive work.

  4. Rugby union injuries to the cervical spine and spinal cord.

    PubMed

    Quarrie, Kenneth L; Cantu, Robert C; Chalmers, David J

    2002-01-01

    Injuries to the cervical spine are among the most serious injuries occurring as a result of participation in rugby. Outcomes of such injuries range from complete recovery to death, depending on the degree of spinal cord damage sustained. Much information has been gained regarding the mechanisms and frequency of such injuries, from case reports and case series studies. The most commonly reported mechanism of injury has been hyperflexion of the cervical spine, resulting in fracture dislocation of C4-C5 or C5-C6. Tracking both the trends of incidence of spinal injuries, and the effectiveness of injury prevention initiatives has proved difficult because of a lack of properly conducted epidemiological studies. Within the constraints of the research published to date, it appears that hookers and props have been at disproportionate risk of cervical spine injury, predominantly because of injuries sustained during scrummaging. While the scrum was the phase of play most commonly associated with spinal injuries throughout the 1980s in most rugby playing countries, there has been a trend through the 1990s of an increasing proportion of spinal injuries occurring in the tackle situation. The majority of injuries have occurred early in the season, when grounds tend to be harder, and players are lacking both practice and physical conditioning for the physical contact phases of the sport. A number of injury prevention measures have been launched, including changes to the laws of the game regarding scrummaging, and education programmes aimed at enforcing safe techniques and eliminating illegal play. Calls for case-registers and effective epidemiological studies have been made by researchers and physicians in most countries where rugby is widespread, but it appears to be only recently that definite steps have been made towards this goal. Well-designed epidemiological studies will be able to provide more accurate information about potential risk factors for injury such as age, grade

  5. Survey of spinal cord injury-induced neurogenic bladder studies using the Web of Science.

    PubMed

    Zou, Benjing; Zhang, Yongli; Li, Yucheng; Wang, Zantao; Zhang, Ping; Zhang, Xiyin; Wang, Bingdong; Long, Zhixin; Wang, Feng; Song, Guo; Wang, Yan

    2012-08-15

    To identify global trends in research on spinal cord injury-induced neurogenic bladder, through a bibliometric analysis using the Web of Science. We performed a bibliometric analysis of studies on spinal cord injury-induced neurogenic bladder using the Web of Science. Data retrieval was performed using key words "spinal cord injury", "spinal injury", "neurogenic bladder", "neuropathic bladder", "neurogenic lower urinary tract dysfunction", "neurogenic voiding dysfunction", "neurogenic urination disorder" and "neurogenic vesicourethral dysfunction". (a) published peer-reviewed articles on spinal cord injury-induced neurogenic bladder indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: no limitation. (a) articles that required manual searching or telephone access; (b) Corrected papers and book chapters. (1) Annual publication output; (2) distribution according to journals; (3) distribution according to subject areas; (4) distribution according to country; (5) distribution according to institution; and (6) top cited publications. There were 646 research articles addressing spinal cord injury-induced neurogenic bladder in the Web of Science. Research on spinal cord injury-induced neurogenic bladder was found in the Science Citation Index-Expanded as of 1946. The United States, Ireland and Switzerland were the three major countries contributing to studies in spinal cord injury-induced neurogenic bladder in the 1970s. However, in the 1990s, the United States, the United Kingdom, the Netherlands, Germany and Japan published more papers on spinal cord injury-induced neurogenic bladder than Switzerland, and Ireland fell off the top ten countries list. In this century, the United States ranks first in spinal cord injury-induced neurogenic bladder studies, followed by France, the United Kingdom, Germany, Switzerland and Japan. Subject categories including urology, nephrology and clinical neurology, as well as

  6. Rho Inhibitor VX-210 in Acute Traumatic Subaxial Cervical Spinal Cord Injury: Design of the SPinal Cord Injury Rho INhibition InvestiGation (SPRING) Clinical Trial.

    PubMed

    Fehlings, Michael G; Kim, Kee D; Aarabi, Bizhan; Rizzo, Marco; Bond, Lisa M; McKerracher, Lisa; Vaccaro, Alexander R; Okonkwo, David O

    2018-05-01

    Traumatic spinal cord injury (SCI) is associated with a lifetime of disability stemming from loss of motor, sensory, and autonomic functions; these losses, along with increased comorbid sequelae, negatively impact health outcomes and quality of life. Early decompression surgery post-SCI can enhance patient outcomes, but does not directly facilitate neural repair and regeneration. Currently, there are no U.S. Food and Drug Administration-approved pharmacological therapies to augment motor function and functional recovery in individuals with traumatic SCI. After an SCI, the enzyme, Rho, is activated by growth-inhibitory factors and regulates events that culminate in collapse of the neuronal growth cone, failure of axonal regeneration, and, ultimately, failure of motor and functional recovery. Inhibition of Rho activation is a potential treatment for injuries such as traumatic SCI. VX-210, an investigational agent, inhibits Rho. When administered extradurally after decompression (corpectomy or laminectomy) and stabilization surgery in a phase 1/2a study, VX-210 was well tolerated. Here, we describe the design of the SPRING trial, a multicenter, phase 2b/3, randomized, double-blind, placebo-controlled clinical trial to evaluate the efficacy and safety of VX-210 (NCT02669849). A subset of patients with acute traumatic cervical SCI is currently being enrolled in the United States and Canada. Medical, neurological, and functional changes are evaluated at 6 weeks and at 3, 6, and 12 months after VX-210 administration. Efficacy will be assessed by the primary outcome measure, change in upper extremity motor score at 6 months post-treatment, and by secondary outcomes that include question-based and task-based evaluations of functional recovery.

  7. Optical monitoring of spinal cord hemodynamics, a feasibility study

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Kwon, Brian K.; Streijger, Femke; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Cripton, Peter A.; Macnab, Andrew

    2017-02-01

    Background: After an acute traumatic spinal cord injury (SCI), the spinal cord is subjected to ischemia, hypoxia, and increased hydrostatic pressure which exacerbate further secondary damage and neuronal deficit. The purpose of this pilot study was to explore the use of near infrared spectroscopy (NIRS) for non-invasive and real-time monitoring of these changes within the injured spinal cord in an animal model. NIRS is a non-invasive optical technique that utilizes light in the near infrared spectrum to monitor changes in the concentration of tissue chromophores from which alterations in tissues oxygenation and perfusion can be inferred in real time. Methods: A custom-made miniaturized NIRS sensor was developed to monitor spinal cord hemodynamics and oxygenation noninvasively and in real time simultaneously with invasive, intraparenchymal monitoring in a pig model of SCI. The spinal cord around the T10 injury site was instrumented with intraparenchymal probes inserted directly into the spinal cord to measure oxygen pressure, blood flow, and hydrostatic pressure, and the same region of the spinal cord was monitored with the custom-designed extradural NIRS probe. We investigated how well the extradural NIRS probe detected intraparenchymal changes adjacent to the injury site after alterations in systemic blood pressure, global hypoxia, and traumatic injury generated by a weight-drop contusion. Results: The NIRS sensor successfully identified periods of systemic hypoxia, re-ventilation and changes in spinal cord perfusion and oxygenation during alterations of mean arterial pressure and following spinal cord injury. Conclusion: This pilot study indicates that extradural NIRS monitoring of the spinal cord is feasible as a non-invasive optical method to identify changes in spinal cord hemodynamics and oxygenation in real time. Further development of this technique would allow clinicians to monitor real-time physiologic changes within the injured spinal cord during the

  8. Bimanual reach to grasp movements after cervical spinal cord injury

    PubMed Central

    Raza, Wajid; Jamil, Firas

    2017-01-01

    Injury to the cervical spinal cord results in bilateral deficits in arm/hand function reducing functional independence and quality of life. To date little research has been undertaken to investigate control strategies of arm/hand movements following cervical spinal cord injury (cSCI). This study aimed to investigate unimanual and bimanual coordination in patients with acute cSCI using 3D kinematic analysis as they performed naturalistic reach to grasp actions with one hand, or with both hands together (symmetrical task), and compare this to the movement patterns of uninjured younger and older adults. Eighteen adults with a cSCI (mean 61.61 years) with lesions at C4-C8, with an American Spinal Injury Association (ASIA) grade B to D and 16 uninjured younger adults (mean 23.68 years) and sixteen uninjured older adults (mean 70.92 years) were recruited. Participants with a cSCI produced reach-to-grasp actions which took longer, were slower, and had longer deceleration phases than uninjured participants. These differences were exacerbated during bimanual reach-to-grasp tasks. Maximal grasp aperture was no different between groups, but reached earlier by people with cSCI. Participants with a cSCI were less synchronous than younger and older adults but all groups used the deceleration phase for error correction to end the movement in a synchronous fashion. Overall, this study suggests that after cSCI a level of bimanual coordination is retained. While there seems to be a greater reliance on feedback to produce both the reach to grasp, we observed minimal disruption of the more impaired limb on the less impaired limb. This suggests that bimanual movements should be integrated into therapy. PMID:28384247

  9. Effects of Enhanced Oxygen Delivery by Perfluorocarbons in Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    been established, linking post- traumatic ischemia to axonal dysfunction.8 Decreased oxygen level in severe traumatic injuries appears to be implicated...rodent weight drop traumatic spinal cord injury model; ( 2 ) determine if enhanced oxygen delivery in spinal cord injury spares cellular elements, white...shown that ischemia /hypoxia play crucial role in the devastating effects of the secondary injury following SCI which translates into worse neurological

  10. Interfacing peripheral nerve with macro-sieve electrodes following spinal cord injury.

    PubMed

    Birenbaum, Nathan K; MacEwan, Matthew R; Ray, Wilson Z

    2017-06-01

    Macro-sieve electrodes were implanted in the sciatic nerve of five adult male Lewis rats following spinal cord injury to assess the ability of the macro-sieve electrode to interface regenerated peripheral nerve fibers post-spinal cord injury. Each spinal cord injury was performed via right lateral hemisection of the cord at the T 9-10 site. Five months post-implantation, the ability of the macro-sieve electrode to interface the regenerated nerve was assessed by stimulating through the macro-sieve electrode and recording both electromyography signals and evoked muscle force from distal musculature. Electromyography measurements were recorded from the tibialis anterior and gastrocnemius muscles, while evoked muscle force measurements were recorded from the tibialis anterior, extensor digitorum longus, and gastrocnemius muscles. The macro-sieve electrode and regenerated sciatic nerve were then explanted for histological evaluation. Successful sciatic nerve regeneration across the macro-sieve electrode interface following spinal cord injury was seen in all five animals. Recorded electromyography signals and muscle force recordings obtained through macro-sieve electrode stimulation confirm the ability of the macro-sieve electrode to successfully recruit distal musculature in this injury model. Taken together, these results demonstrate the macro-sieve electrode as a viable interface for peripheral nerve stimulation in the context of spinal cord injury.

  11. Respiratory Plasticity Following Spinal Injury: Role of Chloride-Dependent Inhibitory Neurotransmission

    DTIC Science & Technology

    2016-12-01

    respiratory pathways following spinal cord injury. J Appl Physiol. 94(2):795-810. Raineteau O and Schwab ME (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci. 2(4):262-73. APPENDICES : None

  12. Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb.

    PubMed

    Dudley-Javoroski, S; Petrie, M A; McHenry, C L; Amelon, R E; Saha, P K; Shields, R K

    2016-03-01

    This study examined the effect of a controlled dose of vibration upon bone density and architecture in people with spinal cord injury (who eventually develop severe osteoporosis). Very sensitive computed tomography (CT) imaging revealed no effect of vibration after 12 months, but other doses of vibration may still be useful to test. The purposes of this report were to determine the effect of a controlled dose of vibratory mechanical input upon individual trabecular bone regions in people with chronic spinal cord injury (SCI) and to examine the longitudinal bone architecture changes in both the acute and chronic state of SCI. Participants with SCI received unilateral vibration of the constrained lower limb segment while sitting in a wheelchair (0.6g, 30 Hz, 20 min, three times weekly). The opposite limb served as a control. Bone mineral density (BMD) and trabecular micro-architecture were measured with high-resolution multi-detector CT. For comparison, one participant was studied from the acute (0.14 year) to the chronic state (2.7 years). Twelve months of vibration training did not yield adaptations of BMD or trabecular micro-architecture for the distal tibia or the distal femur. BMD and trabecular network length continued to decline at several distal femur sub-regions, contrary to previous reports suggesting a "steady state" of bone in chronic SCI. In the participant followed from acute to chronic SCI, BMD and architecture decline varied systematically across different anatomical segments of the tibia and femur. This study supports that vibration training, using this study's dose parameters, is not an effective anti-osteoporosis intervention for people with chronic SCI. Using a high-spatial-resolution CT methodology and segmental analysis, we illustrate novel longitudinal changes in bone that occur after spinal cord injury.

  13. Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb

    PubMed Central

    Dudley-Javoroski, S.; Petrie, M. A.; McHenry, C. L.; Amelon, R. E.; Saha, P. K.

    2015-01-01

    Summary This study examined the effect of a controlled dose of vibration upon bone density and architecture in people with spinal cord injury (who eventually develop severe osteoporosis). Very sensitive computed tomography (CT) imaging revealed no effect of vibration after 12 months, but other doses of vibration may still be useful to test. Introduction The purposes of this report were to determine the effect of a controlled dose of vibratory mechanical input upon individual trabecular bone regions in people with chronic spinal cord injury (SCI) and to examine the longitudinal bone architecture changes in both the acute and chronic state of SCI. Methods Participants with SCI received unilateral vibration of the constrained lower limb segment while sitting in a wheelchair (0.6g, 30 Hz, 20 min, three times weekly). The opposite limb served as a control. Bone mineral density (BMD) and trabecular micro-architecture were measured with high-resolution multi-detector CT. For comparison, one participant was studied from the acute (0.14 year) to the chronic state (2.7 years). Results Twelve months of vibration training did not yield adaptations of BMD or trabecular micro-architecture for the distal tibia or the distal femur. BMD and trabecular network length continued to decline at several distal femur sub-regions, contrary to previous reports suggesting a “steady state” of bone in chronic SCI. In the participant followed from acute to chronic SCI, BMD and architecture decline varied systematically across different anatomical segments of the tibia and femur. Conclusions This study supports that vibration training, using this study’s dose parameters, is not an effective antiosteoporosis intervention for people with chronic SCI. Using a high-spatial-resolution CT methodology and segmental analysis, we illustrate novel longitudinal changes in bone that occur after spinal cord injury. PMID:26395887

  14. Secondary intracranial subarachnoid hemorrhage due to spinal missile injury.

    PubMed

    Smialek, J E; Chason, J L; Kshirsagar, V; Spitz, W U

    1981-04-01

    Fresh intracranial subarachnoid hemorrhage may occur secondary to blast-type injury of the spinal cord. This phenomenon is demonstrated in four cases of gunshot and shotgun wounds involving the spinal column. The significance of such a finding is that the subarachnoid hemorrhage should not be construed to represent an independent injury. Such an erroneous conclusion could jeopardize a theory of self-defense in a homicidal shooting.

  15. Gene therapy approaches for spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  16. Cannabis use in persons with traumatic spinal cord injury in Denmark.

    PubMed

    Andresen, Sven R; Biering-Sørensen, Fin; Hagen, Ellen Merete; Nielsen, Jørgen F; Bach, Flemming W; Finnerup, Nanna B

    2017-01-31

    To evaluate recreational and medical cannabis use in individuals with traumatic spinal cord injury, including reasons and predictors for use, perceived benefits and negative consequences. Cross-sectional survey in Denmark. A 35-item questionnaire was sent to 1,101 patients with spinal cord injury who had been in contact with a rehabilitation centre between 1990 and 2012. A total of 537 participants completed the questionnaire. Of these, 36% had tried cannabis at least once and 9% were current users. Of current users, 79% had started to use cannabis before their spinal cord injury. The main reason for use was pleasure, but 65% used cannabis partly for spinal cord injury-related consequences and 59% reported at least good effect on pain and spasticity. Negative consequences of use were primarily inertia and feeling quiet/subdued. Lower age, living in rural areas/larger cities, tobacco-smoking, high alcohol intake and higher muscle stiffness were significantly associated with cannabis use. Those who had never tried cannabis reported that they would mainly use cannabis to alleviate pain and spasticity if it were legalized. Cannabis use is more frequent among individuals with spinal cord injury in Denmark than among the general population. High muscle stiffness and various demographic characteristics (lower age, living in rural areas/larger cities, tobacco-smoking and high alcohol intake) were associated with cannabis use. Most participants had started using cannabis before their spinal cord injury. There was considerable overlap between recreational and disability-related use.

  17. Characterizing Dysphagia and Swallowing Intervention in the Traumatic Spinal Injury Population

    PubMed Central

    Valenzano, Teresa J.; Waito, Ashley A.; Steele, Catriona M.

    2016-01-01

    Dysphagia is reported to be a common secondary complication for individuals with traumatic spinal injuries. Different etiologies of traumatic spinal injuries may lead to different profiles of swallowing impairment. We conducted a systematic review to determine the characteristics of dysphagia after traumatic spinal injury and to describe interventions currently used to improve swallowing function in this population. A comprehensive multi-engine literature search identified 137 articles of which 5 were judged to be relevant. These underwent review for study quality, rating for level of evidence, and data extraction. The literature describing dysphagia after traumatic spinal injury was comprised predominantly of low level evidence and single case reports. Aspiration, pharyngeal residue, and decreased/absent hyolaryngeal elevation were found to be common characteristics of dysphagia in this population. The most commonly used swallowing interventions included tube feeding, compensatory swallowing strategies, and steroids/antibiotics. Improvement in swallowing function following swallowing intervention was reported in all studies, however there was no control for spontaneous recovery. The results demonstrate a need for high-quality research to profile the pathophysiology of dysphagia after traumatic spinal injury and controlled studies to demonstrate the efficacy of swallowing interventions in this population. PMID:27412004

  18. Necrosulfonamide Attenuates Spinal Cord Injury via Necroptosis Inhibition.

    PubMed

    Wang, Yongxiang; Wang, Jingcheng; Wang, Hua; Feng, Xinmin; Tao, Yuping; Yang, Jiandong; Cai, Jun

    2018-06-01

    Spinal cord injury (SCI) is a serious trauma without efficient treatment currently. Necroptosis can be blocked post injury by special inhibitors. This study is to investigate the effects, mechanism, and potential benefit of necrosulfonamide (NSA) for SCI therapy. Pathologic condition was detected using hematoxylin-eosin staining on injured spinal cord and other major organs. Necroptosis-related factors-RIP1, RIP3, and MLKL-were detected using Western blot. Detections on mitochondrial functions such as adenosine triphosphate generation and activities of superoxide dismutase and caspase-3 were also performed. Finally, ethologic performance was detected using a 21-point open-field locomotion test. Reduced lesions and protected neurons were found in the injured spinal cord after treatment with NSA using hematoxylin-eosin staining for pathologic detection. No obvious toxicity on rat liver, kidney, heart, and spleen was detected. Rather than RIP1 and RIP3, MLKL was significantly inhibited by the NSA using Western blot detection. Adenosine triphosphate generation was obviously decreased post injury but slightly increased after the NSA treatment, especially 24 hours post injury. No significant changes were found on activities of superoxide dismutase and caspase-3 after the treatment of NSA. Ethologic performance was significantly improved using a 21-point, open-field locomotion test. Our research indicates NSA attenuates the spinal cord injury via necroptosis inhibition. It might be a potential and safe chemical benefit for SCI therapy. To our knowledge, this is the first study on the effects of NSA as treatment of traumatic SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. AN IL-1 RECEPTOR ANTAGONIST BLOCKS A MORPHINE-INDUCED ATTENUATION OF LOCOMOTOR RECOVERY AFTER SPINAL CORD INJURY

    PubMed Central

    Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.

    2010-01-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  20. Chronic Pain Following Spinal Cord Injury: The Role of Immunogenetics and Time of Injury Pain Treatment

    DTIC Science & Technology

    2013-10-01

    collection in underway. 15. SUBJECT TERMS Spinal Cord Injury, Immunogenetics, Chronic pain, Opioids 16. SECURITY CLASSIFICATION OF: 17...prototypic opioid , morphine, is capable of TLR4-mediated proinflammation6-8 . As such, exposure to morphine at the time of injury may result in...fashion to the spinal cord injury and/or to experience inflammation in response to opioid exposure. Critically, this genetic variability may

  1. Chronic Pain Following Spinal Cord Injury: The Role of Immunogenetics and Time of Injury Pain Treatment

    DTIC Science & Technology

    2014-10-01

    collection in underway. 15. SUBJECT TERMS Spinal Cord Injury, Immunogenetics, Chronic pain, Opioids 16. SECURITY CLASSIFICATION OF: 17...The prototypic opioid , morphine, is capable of TLR4-mediated proinflammation6-8. As such, exposure to morphine at the time of injury may result in...proinflammatory fashion to the spinal cord injury, and/or to experience inflammation in response to opioid exposure. Critically, this genetic variability

  2. The effect of whole-body resonance vibration in a porcine model of spinal cord injury.

    PubMed

    Streijger, Femke; Lee, Jae H T; Chak, Jason; Dressler, Dan; Manouchehri, Neda; Okon, Elena B; Anderson, Lisa M; Melnyk, Angela D; Cripton, Peter A; Kwon, Brian K

    2015-06-15

    Whole-body vibration has been identified as a potential stressor to spinal cord injury (SCI) patients during pre-hospital transportation. However, the effect that such vibration has on the acutely injured spinal cord is largely unknown, particularly in the frequency domain of 5 Hz in which resonance of the spine occurs. The objective of the study was to investigate the consequences of resonance vibration on the injured spinal cord. Using our previously characterized porcine model of SCI, we subjected animals to resonance vibration (5.7±0.46 Hz) or no vibration for a period of 1.5 or 3.0 h. Locomotor function was assessed weekly and cerebrospinal fluid (CSF) samples were collected to assess different inflammatory and injury severity markers. Spinal cords were evaluated histologically to quantify preserved white and gray matter. No significant differences were found between groups for CSF levels of monocyte chemotactic protein-1, interleukin 6 (IL-6) and lL-8. Glial fibrillary acidic protein levels were lower in the resonance vibration group, compared with the non-vibrated control group. Spared white matter tissue was increased within the vibrated group at 7 d post-injury but this difference was not apparent at the 12-week time-point. No significant difference was observed in locomotor recovery following resonance vibration of the spine. Here, we demonstrate that exposure to resonance vibration for 1.5 or 3 h following SCI in our porcine model is not detrimental to the functional or histological outcomes. Our observation that a 3.0-h period of vibration at resonance frequency induces modest histological improvement at one week post-injury warrants further study.

  3. Thoracic Unilateral Spinal Cord Injury After Spinal Anaesthesia for Total Hip Replacement: Fate or Mistake?

    PubMed Central

    Fabio, Costa; Romualdo, Del Buono; Eugenio, Agrò Felice; Vittoradolfo, Tambone; Massimiliano, Vitali Andrea; Giovanna, Ricci

    2017-01-01

    Spinal anaesthesia is the most preffered anesthesia technique for total hip replacement, and its complications range from low entity (insignificant) to life threatening. The incidence of neurologic complications after neuraxial anaesthesia is not perfectly clear, although there are several described cases of spinal cord ischaemia. We present a case of unilateral T8–T11 spinal cord ischaemia following L2–L3 spinal anaesthesia for total hip replacement. Magnetic resonance imaging showed a hyperintense T8–T11 signal alteration on the leftside of paramedian spinal cord. A temporal epidemiologic linkage between the damage and the surgery seems to be present. The injury occurred without anatomical proximity between the injury site and the spinal needle entry site. This may be due to multiple contributing factors, each of them is probably not enough to determine the damage by itself; however, acting simultaneously, they could have been responsible for the complication. The result was unpredictable and unavoidable and was caused by unforeseeable circumstances and not by inadequate medical practice. PMID:28439446

  4. Ablating spinal NK1-bearing neurons eliminates the development of pain & reduces spinal neuronal hyperexcitability & inflammation from mechanical joint injury in the rat

    PubMed Central

    Weisshaar, Christine L.; Winkelstein, Beth A.

    2014-01-01

    The facet joint is a common source of pain especially from mechanical injury. Although chronic pain is associated with altered spinal glial and neuronal responses, the contribution of specific spinal cells to joint pain are not understood. This study used the neurotoxin [Sar9,Met(O2)11]-substance P-saporin (SSP-SAP) to selectively eliminate spinal cells expressing neurokinin-1 receptor (NK1R) in a rat model of painful facet joint injury to determine the role of those spinal neurons in pain from facet injury. Following spinal administration of SSP-SAP or its control (blank-SAP), a cervical facet injury was imposed and behavioral sensitivity assessed. Spinal extracellular recordings were made on day 7 to classify neurons and quantify evoked firing. Spinal glial activation and IL1α expression also were evaluated. SSP-SAP prevented the development of mechanical hyperalgesia that is induced by joint injury and reduced NK1R expression and mechanically-evoked neuronal firing in the dorsal horn. SSP-SAP also prevented a shift toward wide dynamic range neurons that is seen after injury. Spinal astrocytic activation and IL1α expression were reduced to sham levels with SSP-SAP treatment. These results suggest that spinal NK1R-bearing cells are critical in initiating spinal nociception and inflammation associated with a painful mechanical joint injury. Perspective Results demonstrate that cells expressing NK1R in the spinal cord are critical for the development of joint pain and spinal neuroplasticity and inflammation after trauma to the joint. These findings have utility for understanding mechanisms of joint pain and developing potential targets to treat pain. PMID:24389017

  5. Costs and Length of Stay for the Acute Care of Patients with Motor-Complete Spinal Cord Injury Following Cervical Trauma: The Impact of Early Transfer to Specialized Acute SCI Center.

    PubMed

    Richard-Denis, Andréane; Ehrmann Feldman, Debbie; Thompson, Cynthia; Bourassa-Moreau, Étienne; Mac-Thiong, Jean-Marc

    2017-07-01

    Acute spinal cord injury (SCI) centers aim to optimize outcome following SCI. However, there is no timeframe to transfer patients from regional to SCI centers in order to promote cost-efficiency of acute care. Our objective was to compare costs and length of stay (LOS) following early and late transfer to the SCI center. A retrospective cohort study involving 116 individuals was conducted. Group 1 (n = 87) was managed in an SCI center promptly after the trauma, whereas group 2 (n = 29) was transferred to the SCI center only after surgery. Direct comparison and multivariate linear regression analyses were used to assess the relationship between costs, LOS, and timing to transfer to the SCI center. Length of stay was significantly longer for group 2 (median, 93.0 days) as compared with group 1 (median, 40.0 days; P < 10), and average costs were also higher (median, Canadian $17,920.0 vs. $10,521.6; P = 0.004) for group 2, despite similar characteristics. Late transfer to the SCI center was the main predictive factor of longer LOS and increased costs. Early admission to the SCI center was associated with shorter LOS and lower costs for patients sustaining tetraplegia. Early referral to an SCI center before surgery could lower the financial burden for the health care system. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) Determine the optimal timing for transfer of individuals with cervical traumatic spinal cord injury (SCI) in order to decrease acute care resource utilization; (2) Determine benefits of a complete perioperative management in a specialized SCI center; and (3) Identify factors that may influence resource utilization for acute care following motor-complete tetraplegia. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide

  6. Spinal Interneurons and Forelimb Plasticity after Incomplete Cervical Spinal Cord Injury in Adult Rats

    PubMed Central

    Rombola, Angela M.; Rousseau, Celeste A.; Mercier, Lynne M.; Fitzpatrick, Garrett M.; Reier, Paul J.; Fuller, David D.; Lane, Michael A.

    2015-01-01

    Abstract Cervical spinal cord injury (cSCI) disrupts bulbospinal projections to motoneurons controlling the upper limbs, resulting in significant functional impairments. Ongoing clinical and experimental research has revealed several lines of evidence for functional neuroplasticity and recovery of upper extremity function after SCI. The underlying neural substrates, however, have not been thoroughly characterized. The goals of the present study were to map the intraspinal motor circuitry associated with a defined upper extremity muscle, and evaluate chronic changes in the distribution of this circuit following incomplete cSCI. Injured animals received a high cervical (C2) lateral hemisection (Hx), which compromises supraspinal input to ipsilateral spinal motoneurons controlling the upper extremities (forelimb) in the adult rat. A battery of behavioral tests was used to characterize the time course and extent of forelimb motor recovery over a 16 week period post-injury. A retrograde transneuronal tracer – pseudorabies virus – was used to define the motor and pre-motor circuitry controlling the extensor carpi radialis longus (ECRL) muscle in spinal intact and injured animals. In the spinal intact rat, labeling was observed unilaterally within the ECRL motoneuron pool and within spinal interneurons bilaterally distributed within the dorsal horn and intermediate gray matter. No changes in labeling were observed 16 weeks post-injury, despite a moderate degree of recovery of forelimb motor function. These results suggest that recovery of the forelimb function assessed following C2Hx injury does not involve recruitment of new interneurons into the ipsilateral ECRL motor pathway. However, the functional significance of these existing interneurons to motor recovery requires further exploration. PMID:25625912

  7. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury

    PubMed Central

    McPherson, Jacob G.; Miller, Robert R.; Perlmutter, Steve I.

    2015-01-01

    Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural–computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury. PMID:26371306

  8. Delayed inflammatory mRNA and protein expression after spinal cord injury

    PubMed Central

    2011-01-01

    Background Spinal cord injury (SCI) induces secondary tissue damage that is associated with inflammation. We have previously demonstrated that inflammation-related gene expression after SCI occurs in two waves - an initial cluster that is acutely and transiently up-regulated within 24 hours, and a more delayed cluster that peaks between 72 hours and 7 days. Here we extend the microarray analysis of these gene clusters up to 6 months post-SCI. Methods Adult male rats were subjected to mild, moderate or severe spinal cord contusion injury at T9 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 hours, 24 hours, 7 days, 28 days, 3 months or 6 months post-injury and processed for microarray analysis and protein expression. Results Anchor gene analysis using C1qB revealed a cluster of genes that showed elevated expression through 6 months post-injury, including galectin-3, p22PHOX, gp91PHOX, CD53 and progranulin. The expression of these genes occurred primarily in microglia/macrophage cells and was confirmed at the protein level using both immunohistochemistry and western blotting. As p22PHOX and gp91PHOX are components of the NADPH oxidase enzyme, enzymatic activity and its role in SCI were assessed and NADPH oxidase activity was found to be significantly up-regulated through 6 months post-injury. Further, treating rats with the nonspecific, irreversible NADPH oxidase inhibitor diphenylene iodinium (DPI) reduced both lesion volume and expression of chronic gene cluster proteins one month after trauma. Conclusions These data demonstrate that inflammation-related genes are chronically up-regulated after SCI and may contribute to further tissue loss. PMID:21975064

  9. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    DTIC Science & Technology

    2014-10-01

    atrophy. Interestingly, there is a clinical phenomenon that stretching can lead to muscle fiber hypertrophy , but that doesn’t appear to be...specific muscle groups) on functional recovery after spinal cord injury in a rat model. We have undertaken these studies because of an observation we...spinal cord injury, locomotor recovery, physical therapy, muscle stretch, joint range- of-motion, rat. Overall Project Summary: In this, the

  10. Spinal Meninges and Their Role in Spinal Cord Injury: A Neuroanatomical Review.

    PubMed

    Grassner, Lukas; Grillhösl, Andreas; Griessenauer, Christoph J; Thomé, Claudius; Bühren, Volker; Strowitzki, Martin; Winkler, Peter A

    2018-02-01

    Current recommendations support early surgical decompression and blood pressure augmentation after traumatic spinal cord injury (SCI). Elevated intraspinal pressure (ISP), however, has probably been underestimated in the pathophysiology of SCI. Recent studies provide some evidence that ISP measurements and durotomy may be beneficial for individuals suffering from SCI. Compression of the spinal cord against the meninges in SCI patients causes a "compartment-like" syndrome. In such cases, intentional durotomy with augmentative duroplasty to reduce ISP and improve spinal cord perfusion pressure (SCPP) may be indicated. Prior to performing these procedures routinely, profound knowledge of the spinal meninges is essential. Here, we provide an in-depth review of relevant literature along with neuroanatomical illustrations and imaging correlates.

  11. Early elective colostomy following spinal cord injury.

    PubMed

    Boucher, Michelle

    Elective colostomy is an accepted method of bowel management for patients who have had a spinal cord injury (SCI). Approximately 2.4% of patients with SCI have a colostomy, and traditionally it is performed as a last resort several years after injury, and only if bowel complications persist when all other methods have failed. This is despite evidence that patients find a colostomy easier to manage and frequently report wishing it had been performed earlier. It was noticed in the author's spinal unit that increasing numbers of patients were requesting colostomy formation during inpatient rehabilitation following SCI. No supporting literature was found for this; it appears to be an emerging and untested practice. This article explores colostomy formation as a method of bowel management in patients with SCI, considers the optimal time for colostomy formation after injury and examines issues for health professionals.

  12. Spinal Injury: Regeneration, Recovery, and a Possible New Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Avis

    Spinal injury is most frequent in young healthy men, desperate to walk. Most treatments have focused on regeneration of the injured axons, but no one has as yet achieved success with this approach. However, in the lamprey, a primitive fish with a spinal cord having all the critical features of the human spinal cored, spinal injury is followed by complete regeneration of injured axons. Additionally, the animal recovers the ability to swim, and in many, the swimming is normal. Unfortunately, in most others, it is highly abnormal. This talk will review evidence from the abnormal regeneration, why it bespeaks difficultiesmore » heretofore not considered, and suggest an alternate approach for the near future. In so doing, the speaker will introduce the normal function of the spinal cord, what happens in normal and abnormal regeneration, and the new techniques that employ methods from neuromorphic engineering, a synthesis of neuroscience and engineering to engineer smart devices.« less

  13. Spinal Injury: Regeneration, Recovery, and a Possible New Approach

    ScienceCinema

    Cohen, Avis [University of Maryland, College Park, Maryland, United States

    2017-12-09

    Spinal injury is most frequent in young healthy men, desperate to walk. Most treatments have focused on regeneration of the injured axons, but no one has as yet achieved success with this approach. However, in the lamprey, a primitive fish with a spinal cord having all the critical features of the human spinal cored, spinal injury is followed by complete regeneration of injured axons. Additionally, the animal recovers the ability to swim, and in many, the swimming is normal. Unfortunately, in most others, it is highly abnormal. This talk will review evidence from the abnormal regeneration, why it bespeaks difficulties heretofore not considered, and suggest an alternate approach for the near future. In so doing, the speaker will introduce the normal function of the spinal cord, what happens in normal and abnormal regeneration, and the new techniques that employ methods from neuromorphic engineering, a synthesis of neuroscience and engineering to engineer smart devices.

  14. Natural Killer (NK) Cell Functionality after human Spinal Cord Injury (SCI): protocol of a prospective, longitudinal study.

    PubMed

    Laginha, Inês; Kopp, Marcel A; Druschel, Claudia; Schaser, Klaus-Dieter; Brommer, Benedikt; Hellmann, Rick C; Watzlawick, Ralf; Ossami-Saidi, Ramin-Raul; Prüss, Harald; Failli, Vieri; Meisel, Christian; Liebscher, Thomas; Prilipp, Erik; Niedeggen, Andreas; Ekkernkamp, Axel; Grittner, Ulrike; Piper, Sophie K; Dirnagl, Ulrich; Killig, Monica; Romagnani, Chiara; Schwab, Jan M

    2016-09-13

    Natural killer (NK) cells comprise the main components of lymphocyte-mediated nonspecific immunity. Through their effector function they play a crucial role combating bacterial and viral challenges. They are also thought to be key contributors to the systemic spinal cord injury-induced immune-deficiency syndrome (SCI-IDS). SCI-IDS increases susceptibility to infection and extends to the post-acute and chronic phases after SCI. The prospective study of NK cell function after traumatic SCI was carried out in two centers in Berlin, Germany. SCI patients and control patients with neurologically silent vertebral fracture also undergoing surgical stabilization were enrolled. Furthermore healthy controls were included to provide reference data. The NK cell function was assessed at 7 (5-9) days, 14 days (11-28) days, and 10 (8-12) weeks post-trauma. Clinical documentation included the American Spinal Injury Association (ASIA) impairment scale (AIS), neurological level of injury, infection status, concomitant injury, and medications. The primary endpoint of the study is CD107a expression by NK cells (cytotoxicity marker) 8-12 weeks following SCI. Secondary endpoints are the NK cell's TNF-α and IFN-γ production by the NK cells 8-12 weeks following SCI. The protocol of this study was developed to investigate the hypotheses whether i) SCI impairs NK cell function throughout the post-acute and sub-acute phases after SCI and ii) the degree of impairment relates to lesion height and severity. A deeper understanding of the SCI-IDS is crucial to enable strategies for prevention of infections, which are associated with poor neurological outcome and elevated mortality. DRKS00009855 .

  15. Naturally Occurring Disk Herniation in Dogs: An Opportunity for Pre-Clinical Spinal Cord Injury Research

    PubMed Central

    Levine, Gwendolyn J.; Porter, Brian F.; Topp, Kimberly; Noble-Haeusslein, Linda J.

    2011-01-01

    Abstract Traumatic spinal cord injuries represent a significant source of morbidity in humans. Despite decades of research using experimental models of spinal cord injury to identify candidate therapeutics, there has been only limited progress toward translating beneficial findings to human spinal cord injury. Thoracolumbar intervertebral disk herniation is a naturally occurring disease that affects dogs and results in compressive/contusive spinal cord injury. Here we discuss aspects of this disease that are analogous to human spinal cord injury, including injury mechanisms, pathology, and metrics for determining outcomes. We address both the strengths and weaknesses of conducting pre-clinical research in these dogs, and include a review of studies that have utilized these animals to assess efficacy of candidate therapeutics. Finally, we consider a two-species approach to pre-clinical data acquisition, beginning with a reproducible model of spinal cord injury in the rodent as a tool for discovery with validation in pet dogs with intervertebral disk herniation. PMID:21438715

  16. The volatile anesthetic methoxyflurane protects motoneurons against excitotoxicity in an in vitro model of rat spinal cord injury.

    PubMed

    Shabbir, A; Bianchetti, E; Nistri, A

    2015-01-29

    Neuroprotection of the spinal cord during the early phase of injury is an important goal to determine a favorable outcome by prevention of delayed pathological events, including excitotoxicity, which otherwise extend the primary damage and amplify the often irreversible loss of motor function. While intensive care and neurosurgical intervention are important treatments, effective neuroprotection requires further experimental studies focused to target vulnerable neurons, particularly motoneurons. The present investigation examined whether the volatile general anesthetic methoxyflurane might protect spinal locomotor networks from kainate-evoked excitotoxicity using an in vitro rat spinal cord preparation as a model. The protocols involved 1h excitotoxic stimulation on day 1 followed by electrophysiological and immunohistochemical testing on day 2. A single administration of methoxyflurane applied together with kainate (1h), or 30 or even 60 min later prevented any depression of spinal reflexes, loss of motoneuron excitability, and histological damage. Methoxyflurane per se temporarily decreased synaptic transmission and motoneuron excitability, effects readily reversible on washout. Spinal locomotor activity recorded as alternating electrical discharges from lumbar motor pools was fully preserved on the second day after application of methoxyflurane together with (or after) kainate. These data suggest that a volatile general anesthetic could provide strong electrophysiological and histological neuroprotection that enabled expression of locomotor network activity 1 day after the excitotoxic challenge. It is hypothesized that the benefits of early neurosurgery for acute spinal cord injury (SCI) might be enhanced if, in addition to injury decompression and stabilization, the protective role of general anesthesia is exploited. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. "Low-intensity laser therapy effect on the recovery of traumatic spinal cord injury".

    PubMed

    Paula, Alecsandra Araujo; Nicolau, Renata Amadei; Lima, Mario de Oliveira; Salgado, Miguel Angel Castillo; Cogo, José Carlos

    2014-11-01

    Scientific advances have been made to optimize the healing process in spinal cord injury. Studies have been developed to obtain effective treatments in controlling the secondary injury that occurs after spinal cord injury, which substantially changes the prognosis. Low-intensity laser therapy (LILT) has been applied in neuroscience due to its anti-inflammatory effects on biological tissue in the repairing process. Few studies have been made associating LILT to the spinal cord injury. The objective of this study was to investigate the effect of the LILT (GaAlAs laser-780 nm) on the locomotor functional recovery, histomorphometric, and histopathological changes of the spinal cord after moderate traumatic injury in rats (spinal cord injury at T9 and T10). Thirty-one adult Wistar rats were used, which were divided into seven groups: control without surgery (n = 3), control surgery (n = 3), laser 6 h after surgery (n = 5), laser 48 h after surgery (n = 5), medullar lesion (n = 5) without phototherapy, medullar lesion + laser 6 h after surgery (n = 5), and medullar lesion + laser 48 h after surgery (n = 5). The assessment of the motor function was performed using Basso, Beattie, and Bresnahan (BBB) scale and adapted Sciatic Functional Index (aSFI). The assessment of urinary dysfunction was clinically performed. After 21 days postoperative, the animals were euthanized for histological and histomorphometric analysis of the spinal cord. The results showed faster motor evolution in rats with spinal contusion treated with LILT, maintenance of the effectiveness of the urinary system, and preservation of nerve tissue in the lesion area, with a notorious inflammation control and increased number of nerve cells and connections. In conclusion, positive effects on spinal cord recovery after moderate traumatic spinal cord injury were shown after LILT.

  18. Experiences of Living with Pain after a Spinal Cord Injury

    DTIC Science & Technology

    2013-09-01

    AD_________________ Award Number: W81XWH-12-1-0465 TITLE: Experiences of Living with Pain after a...COVERED 01 September 2012 – 31 August 2013 4. TITLE AND SUBTITLE Experiences of Living with Pain after a Spinal Cord Injury 5a. CONTRACT NUMBER...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Persistent chronic pain is prevalent after a spinal cord injury (SCI), with

  19. Electrical field distribution within the injured cat spinal cord: injury potentials and field distribution.

    PubMed

    Khan, T; Myklebust, J; Swiontek, T; Sayers, S; Dauzvardis, M

    1994-12-01

    This study investigated the spontaneous injury potentials measured after contusion or transection injury to the cat spinal cord. In addition, the distribution of electrical field potentials on the surface and within the spinal cord were measured following applied electrical fields after transection and contusion injuries. After transection of the spinal cord, the injury potentials were -19.8 +/- 2.6 mV; after contusion of the spinal cord, the injury potentials were -9.5 +/- 2.2 mV. These potentials returned to control values within 2.5-4h after injury. The electrical field distribution measured on the dorsal surface, as well as within the spinal cord, after the application of a 10 microA current, showed little difference between contusion and transection injuries. Scalar potential fields were measured using two configurations of stimulating electrodes: dorsal to dorsal (D-D), in which both electrodes were placed epidurally on the dorsal surface of the spinal cord, and ventral to dorsal (V-D), in which one electrode was placed dorsally and one ventrally. As reported in normal uninjured cats, the total current in the midsagittal plane for the D-D configuration was largely confined to the dorsal portion of the spinal cord; with the V-D configuration, the current distribution was uniform throughout the spinal cord. In the injured spinal cord, the equipotential lines midway between the stimulating electrodes have a wider separation than in the uninjured spinal cord. Because the magnitude of the electrical field E is equal to the current density J multiplied by the resistivity r, this suggests that either the current density is reduced or that the resistivity is reduced.

  20. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.

    PubMed

    Fakhoury, Marc

    2015-01-01

    Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.

  1. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.

    PubMed

    Zhang, C; Zhang, G; Rong, W; Wang, A; Wu, C; Huo, X

    2015-04-16

    Injury potential, which refers to a direct current voltage between intact and injured nerve ends, is mainly caused by injury-induced Ca2+ influx. Our previous studies revealed that injury potential increased with the onset and severity of spinal cord injury (SCI), and an application of applied electric field stimulation (EFS) with the cathode distal to the lesion could delay and attenuate injury potential formation. As Ca2+ influx is also considered as a major trigger for secondary injury after SCI, we hypothesize that EFS would protect an injured spinal cord from secondary injury and consequently improve functional and pathological outcomes. In this study, rats were divided into three groups: (1) sham group, laminectomy only; (2) control group, subjected to SCI only; and (3) EFS group, received EFS immediately post-injury with the injury potential modulated to 0±0.5 mV by EFS. Functional recovery of the hind limbs was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results revealed that EFS-treated rats exhibited significantly better locomotor function recovery. Luxol fast blue staining was performed to assess the spared myelin area. Immunofluorescence was used to observe the number of myelinated nerve fibers. Ultrastructural analysis was performed to evaluate the size of myelinated nerve fibers. Findings showed that the EFS group rats exhibited significantly less myelin loss and had larger and more myelinated nerve fibers than the control group rats in dorsal corticospinal tract (dCST) 8 weeks after SCI. Furthermore, we found that EFS inhibited the activation of calpain and caspase-3, as well as the expression of Bax, as detected by Western blot analysis. Moreover, EFS decreased cellular apoptosis, as measured by TUNEL, within 4 weeks post-injury. Results suggest that early EFS could significantly reduce spinal cord degeneration and improve functional and historical recovery. Furthermore, these neuroprotective effects may be related to

  2. Cannabidiol-treated rats exhibited higher motor score after cryogenic spinal cord injury.

    PubMed

    Kwiatkoski, Marcelo; Guimarães, Francisco Silveira; Del-Bel, Elaine

    2012-04-01

    Cannabidiol (CBD), a non-psychoactive constituent of cannabis, has been reported to induce neuroprotective effects in several experimental models of brain injury. We aimed at investigating whether this drug could also improve locomotor recovery of rats submitted to spinal cord cryoinjury. Rats were distributed into five experimental groups. Animals were submitted to laminectomy in vertebral segment T10 followed or not by application of liquid nitrogen for 5 s into the spinal cord at the same level to cause cryoinjury. The animals received injections of vehicle or CBD (20 mg/kg) immediately before, 3 h after and daily for 6 days after surgery. The Basso, Beattie, and Bresnahan motor evaluation test was used to assess motor function post-lesion one day before surgery and on the first, third, and seventh postoperative days. The extent of injury was evaluated by hematoxylin-eosin histology and FosB expression. Cryogenic lesion of the spinal cord resulted in a significant motor deficit. Cannabidiol-treated rats exhibited a higher Basso, Beattie, and Bresnahan locomotor score at the end of the first week after spinal cord injury: lesion + vehicle, day 1: zero, day 7: four, and lesion + Cannabidiol 20 mg/kg, day 1: zero, day 7: seven. Moreover, at this moment there was a significant reduction in the extent of tissue injury and FosB expression in the ventral horn of the spinal cord. The present study confirmed that application of liquid nitrogen to the spinal cord induces reproducible and quantifiable spinal cord injury associated with locomotor function impairments. Cannabidiol improved locomotor functional recovery and reduced injury extent, suggesting that it could be useful in the treatment of spinal cord lesions.

  3. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-12-1-0587 TITLE: Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord...3. DATES COVERED (From - To) 30Sep2014 - 29Sep2015 4. TITLE AND SUBTITLE Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on...ABSTRACT Essentially all spinal cord injured patients receive stretching therapies beginning within the first few weeks post-injury. Despite this fact

  4. Bipedal locomotion of bonnet macaques after spinal cord injury.

    PubMed

    Babu, Rangasamy Suresh; Anand, P; Jeraud, Mathew; Periasamy, P; Namasivayam, A

    2007-10-01

    Experimental studies concerning the analysis of locomotor behavior in spinal cord injury research are widely performed in rodent models. The purpose of this study was to quantitatively evaluate the degree of functional recovery in reflex components and bipedal locomotor behavior of bonnet macaques (Macaca radiata) after spinal contusive injury. Six monkeys were tested for various reflex components (grasping, righting, hopping, extension withdrawal) and were trained preoperatively to walk in bipedal fashion on the simple and complex locomotor runways (narrow beam, grid, inclined plane, treadmill) of this investigation. The overall performance of the animals'motor behavior and the functional status of limb movements during bipedal locomotion were graded by the Combined Behavioral Score (CBS) system. Using the simple Allen weight-drop technique, a contusive injury was produced by dropping a 13-g weight from a height of 30 cm to the exposed spinal cord at the T12-L1 vertebral level of the trained monkeys. All the monkeys showed significant impairments in every reflex activity and in walking behavior during the early part of the postoperative period. In subsequent periods, the animals displayed mild alterations in certain reflex responses, such as grasping, extension withdrawal, and placing reflexes, which persisted through a 1-year follow-up. The contused animals traversed locomotor runways--narrow beam, incline plane, and grid runways--with more steps and few errors, as evaluated with the CBS system. Eventually, the behavioral performance of all spinal-contused monkeys recovered to near-preoperative level by the fifth postoperative month. The findings of this study reveal the recovery time course of various reflex components and bipedal locomotor behavior of spinal-contused macaques on runways for a postoperative period of up to 1 year. Our spinal cord research in primates is advantageous in understanding the characteristics of hind limb functions only, which possibly

  5. Training a Spinal Cord Injury Rehabilitation Team in Motivational Interviewing

    PubMed Central

    Lusilla-Palacios, Pilar; Castellano-Tejedor, Carmina

    2015-01-01

    Background. An acute spinal cord injury (ASCI) is a severe condition that requires extensive and very specialized management of both physical and psychological dimensions of injured patients. Objective. The aim of the part of the study reported here was twofold: (1) to describe burnout, empathy, and satisfaction at work of these professionals and (2) to explore whether a tailored program based on motivational interviewing (MI) techniques modifies and improves such features. Methods. This paper presents findings from an intervention study into a tailored training for professionals (N = 45) working in a spinal cord injury (SCI) unit from a general hospital. Rehabilitation professionals' empathy skills were measured with the Jefferson Scale of Physician Empathy (JSPE), burnout was measured with the Maslach Burnout Inventory (MBI), and additional numeric scales were used to assess the perceived job-related stress and perceived satisfaction with job. Results. Findings suggest that professionals are performing quite well and they refer to satisfactory empathy, satisfaction at work, and no signs of burnout or significant stress both before and after the training. Conclusions. No training effect was observed in the variables considered in the study. Some possible explanations for these results and future research directions are discussed in depth in this paper. The full protocol of this study is registered in ClinicalTrials.gov (identifier: NCT01889940). PMID:26770827

  6. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury

    PubMed Central

    Bandaru, Samira P.; Liu, Shujun; Waxman, Stephen G.

    2014-01-01

    Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI. PMID:25505110

  7. Breaking bad news in spinal cord injury; a qualitative study assessing the perspective of spinal cord injury survivors in Turkey.

    PubMed

    Ozyemisci-Taskiran, Ozden; Coskun, Ozlem; Budakoglu, Isil Irem; Demirsoy, Nesrin

    2018-05-01

    Prior abstract publication: 2 nd Medical Rehabilitation Congress; Nov 4-7, 2010; Ankara, Turkey Objective: This study aims to investigate the process of breaking bad news from the perspective of spinal cord injury survivors. A cross sectional, qualitative study. Community. Fourteen spinal cord injury survivors. Subjects participated in a semi-structured interview about 'when', 'where' 'by whom' and 'how' they received and 'would' prefer to receive bad news. Answers to 'how' questions were coded according to SPIKES protocol (Setting, Perception, Invitation, Knowledge, Empathizing, Summary). Eight participants (57%) reported that they received bad news from a physician, mostly during rehabilitation. All would prefer to be informed by a physician and majority preferred to be gradually informed during rehabilitation. Half were not satisfied with the content of information. Only half felt that his/her physiatrist understood his/her emotional distress. Majority of participants who received bad news from physicians reported that the setting was private and their family members accompanied them. Most spinal cord injury survivors were unsatisfied with knowledge and emotional support provided by rehabilitation physicians. Participants would prefer to receive bad news by a senior physiatrist in a planned meeting during rehabilitation.

  8. Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity.

    PubMed

    Calancie, Blair; Alexeeva, Natalia; Broton, James G; Molano, Maria R

    2005-01-01

    Previous reports from our laboratory have described short-latency contractions in muscles of the distal upper limb following stimulation of lower limb nerves or skin in persons with injury to the cervical spinal cord. It takes 6 or more months for interlimb reflexes (ILR) to appear following acute spinal cord injury (SCI), suggesting they might be due to new synaptic interconnections between lower limb sensory afferents and motoneurons in the cervical enlargement. In this study, we asked if once formed, the strength of these synaptic connections increased over time, a finding that would be consistent with the above hypothesis. We studied persons with sub-acute and/or chronic cervical SCI. ILR were elicited by brief trains of electrical pulses applied to the skin overlying the tibial nerve at the back of the knee. Responses were quantified based on their presence or absence in different upper limb muscles. We also generated peri-stimulus time histograms for single motor unit response latency, probability, and peak duration. Comparisons of these parameters were made in subjects at sub-acute versus chronic stages post-injury. In persons with sub-acute SCI, the probability of seeing ILR in a given muscle of the forearm or hand was low at first, but increased substantially over the next 1-2 years. Motor unit responses at this sub-acute stage had a prolonged and variable latency, with a lower absolute response probability, compared to findings from subjects with chronic (i.e. stable) SCI. Our findings demonstrate that interlimb reflex activity, once established after SCI, shows signs of strengthening synaptic contacts between afferent and efferent components, consistent with ongoing synaptic plasticity. Neurons within the adult human spinal cord caudal to a lesion site are not static, but appear to be capable of developing novel-yet highly efficacious-synaptic contacts following trauma-induced partial denervation. In this case, such contacts between ascending afferents

  9. Update and Overview of Spinal Injuries in Canadian Ice Hockey, 1943 to 2011: The Continuing Need for Injury Prevention and Education.

    PubMed

    Tator, Charles H; Provvidenza, Christine; Cassidy, J David

    2016-05-01

    To identify spinal injuries in Canadian ice hockey from 2006 to 2011 and to discuss data from 1943 to 2011 and impact of injury prevention programs. Data about spinal injuries with and without spinal cord injury in ice hockey have been collected by ThinkFirst's (now Parachute Canada) Canadian Ice Hockey Spinal Injuries Registry since 1981 through questionnaires from practitioners, ice hockey organizations, and media. All Canadian provinces and territories. All registered Canadian ice hockey players. Age, gender, level of play, location, mechanism of injury. Incidence, incidence rate, prevalence, and nature (morbidity) of the injuries. Between 2006 and 2011, 44 cases occurred, 4 (9.1%) of which were severe. The incidence in the recent years continues to be lower than the peak years. From 1943 to 2011, 355 cases have been documented, primarily males (97.7%) and cervical spine injuries (78.9%), resulting from impact with the boards (64.2%). Check or push from behind (36.0%) was still the most common cause of injury, although slightly lower during 2006 to 2011. From 1943 to 2011, Prince Edward Island, New Brunswick, and British Columbia/Yukon had the highest injury rates. Ontario and Quebec continued to show markedly different injury rates, with Ontario more than twice that of Quebec. Current data for 2006 to 2011 indicate that spinal injuries in ice hockey continue to occur, although still at lower rates than the peak years 1982 to 1995. It is imperative to continue educating players and team officials about spinal injury prevention and to reinforce the rules against checking or pushing from behind to reduce the incidence of these serious injuries.

  10. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury.

    PubMed

    Jia, Zhi-Qiang; Li, San-Qiang; Qiao, Wei-Qiang; Xu, Wen-Zhong; Xing, Jian-Wu; Liu, Jian-Tao; Song, Hui; Gao, Zhong-Yang; Xing, Bing-Wen; He, Xi-Jing

    2018-05-04

    Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na + -K + -ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Sexuality and sexual life in women with spinal cord injury: a controlled study.

    PubMed

    Kreuter, Margareta; Siösteen, Agneta; Biering-Sørensen, Fin

    2008-01-01

    To describe sexual life in women with spinal cord injury. Controlled cross-sectional, questionnaire. Women, 18-65 years, treated at spinal cord centres in Sweden, Denmark, Norway, Finland and Iceland. 545 women (57%) completed the questionnaires. The age-matched control group consisted of 507 women. The 104-item Spinal Cord Injury Women Questionnaire, was designed to assess different dimensions of sexuality. 80% of the women with spinal cord injury had engaged in sex after the injury. Reasons for not wanting or not having the courage to be intimate and sexual were physical problems, low sexual desire, low self-esteem and feelings of being unattractive. The motivations of both the women with spinal cord injury and controls to engage in sexual activity were intimacy-based rather than primarily sexual. Being in the right mood both before and during sex to become receptive to sexual stimulation was important. For women who are able to overcome the physical restrictions and mental obstacles due to injury, it is possible to regain an active and positive sexual life together with a partner. Sexual information and counselling should be available both during initial rehabilitation and later when the women have returned to their homes.

  12. Effects of wheelchair propulsion on neuropathic pain and resting electroencephalography after spinal cord injury.

    PubMed

    Sato, Gosuke; Osumi, Michihiro; Morioka, Shu

    2017-01-31

    To investigate the effects of wheelchair propulsion on neuropathic pain and to examine resting electroencephalography pre- and post-wheelchair propulsion after spinal cord injury. Cross-sectional study. Eleven individuals with spinal cord injury and pain and 10 healthy controls. Single-session 15-min wheelchair propulsion and measurement of resting electroence-phalography. Effects of wheelchair propulsion were investigated using numerical rating scale (NRS) for neuropathic pain and short-form Profile of Mood States-Brief for mood. Peak alpha frequency on electroencephalography was calculated in 4 regions of interest; frontal, central, parietal and occipital areas. These outcomes were compared between pre- and post-wheelchair propulsion. Ten participants with spinal cord injury and all healthy controls completed the wheelchair propulsion exercise. NRS scores and negative mood were significantly improved following the wheelchair propulsion exercise. Pre-wheelchair propulsion, parietal and occipital peak alpha frequencies were significantly lower in the spinal cord injury group compared with the healthy controls group. Post-wheelchair propulsion, central peak alpha frequency increased in the spinal cord injury group. Wheelchair propulsion exercise temporarily decreased neuropathic pain intensity, improved negative mood, and modified alpha activity in spinal cord injury.

  13. Alterations in the Genital Microbiota in Women With Spinal Cord Injury.

    PubMed

    Pires, Cristhiane V G; Linhares, Iara M; Serzedello, Felipe; Fukazawa, Eiko I; Baracat, Edmund C; Witkin, Steven S

    2016-02-01

    To evaluate the vaginal and cervical microbiota in women with spinal cord injury compared with mobile women. Fifty-two women with spinal cord injury (study group) and 57 mobile women (control group) were evaluated in a case-control study. All answered a structured questionnaire and were submitted to the following microbiological tests: microscopic examination of vaginal secretions for Trichomonas vaginalis and yeasts, Nugent score by Gram stain, bacterial culture, yeast culture, and endocervical sampling for Chlamydia trachomatis, Neisseria gonorrhoeae, and Mycoplasma species. Candida species detected by direct microscopic examination of vaginal fluid was more common in women with spinal cord injuries than in control women: 17.3% (9/52) compared with 3.5% (2/57), respectively (P=.017). However, the frequency of yeast-positive cultures was similar in both groups (21.2% [10/52] compared with 15.8% [14/57]). Women with spinal cord injury were more likely to have positive vaginal cultures for Escherichia coli (15.4% [8/52] compared with 0% [0/57], P=.002) and Corynebacterium species (25.0% [13/52] compared with 8.8% [5/57], P=.037) and less likely for Lactobacillus species (63.5% [33/52] compared with 94.7% [54/57], P<.001). Women with spinal cord injury were more likely to have intermediate flora by Gram stain (Nugent score 4-6) than did the women in the control group (13.5% [7/52] compared with 1.8% [1/57], P=.033). The frequency of Mycoplasma species detection was similar in both groups (36.9% [18/52] compared with 34.6% [21/57]). No woman in either group was positive for T vaginalis, C trachomatis, or N gonorrhoeae. Women with spinal cord injury have an alteration in their vaginal microbiota away from a Lactobacillus species-dominated flora and a higher concentration of vaginal Candida species than do mobile women.

  14. Oral erlotinib, but not rapamycin, causes modest acceleration of bladder and hindlimb recovery from spinal cord injury in rats.

    PubMed

    Kjell, J; Pernold, K; Olson, L; Abrams, M B

    2014-03-01

    Erlotinib and Rapamycin are both in clinical use and experimental inhibition of their respective molecular targets, EGFR and mTORC1, has improved recovery from spinal cord injury. Our aim was to determine if daily Erlotinib or Rapamycin treatment started directly after spinal contusion injury in rats improves locomotion function or recovery of bladder function. Stockholm, Sweden. Rats were subjected to contusion injuries and treated during the acute phase with either Erlotinib or Rapamycin. Recovery of bladder function was monitored by measuring residual urine volume and hindlimb locomotion assessed by open-field observations using the BBB rating scale as well as by automated registration of gait parameters. Body weights were monitored. To determine whether Erlotinib and Rapamycin inhibit the same signaling pathway, a cell culture system and western blots were used. Erlotinib accelerated locomotor recovery and slightly improved bladder recovery; however, we found no long-term improvements of locomotor function. Rapamycin did neither improved locomotor function nor bladder recovery. In vitro studies confirmed that Erlotinib and Rapamycin both inhibit the EGFR-mTORC1 signaling pathway. We conclude that none of these two drug regimes improved long-term functional outcome in our current model of spinal cord injury. Nevertheless, oral treatment with Erlotinib may offer modest temporary advantages, whereas treatment with Rapamycin does not.

  15. Longitudinal study of bone loss in chronic spinal cord injury patients

    PubMed Central

    Karapolat, Inanc; Karapolat, Hale Uzumcugil; Kirazli, Yesim; Capaci, Kazim; Akkoc, Yesim; Kumanlioglu, Kamil

    2015-01-01

    [Purpose] This prospective longitudinal study evaluated the changes in bone metabolism markers and bone mineral density of spinal cord injury patients over 3 years. We also assessed the relationships among the bone mineral density, bone metabolism, and clinical data of spinal cord injury patients. [Subjects and Methods] We assessed the clinical data (i.e., immobilization due to surgery, neurological status, neurological level, and extent of lesion) in 20 spinal cord injury patients. Bone mineral density, and hormonal and biochemical markers of the patients were measured at 0, 6, 12, and 36 months. [Results] Femoral neck T score decreased significantly at 36 months (p < 0.05). Among the hormonal markers, parathyroid hormone and vitamin D were significantly elevated, while bone turnover markers (i.e., deoxypyridinoline and osteocalcin) were significantly decreased at 12 and 36 months (p < 0.05). [Conclusion] Bone mineral density of the femoral neck decreases significantly during the long-term follow-up of patients with spinal cord injury due to osteoporosis. This could be due to changes in hormonal and bone turnover markers. PMID:26157234

  16. Distinguishing grief from depression during acute recovery from spinal cord injury.

    PubMed

    Klyce, Daniel W; Bombardier, Charles H; Davis, Trevor J; Hartoonian, Narineh; Hoffman, Jeanne M; Fann, Jesse R; Kalpakjian, Claire Z

    2015-08-01

    To examine whether grief is a psychometrically sound construct that is distinct from depression in individuals who have recently sustained a spinal cord injury (SCI). Cross-sectional survey. Inpatient rehabilitation units at 3 geographically diverse, university-affiliated medical centers. Patients with SCI (N=206) were recruited (163 men [79.1%]). Most patients were non-Hispanic whites (n=175 [85.0%]). Most patients sustained a cervical SCI (n=134 [64.4%]). Various injury etiologies were represented, with the majority being accounted for by falls (n=72 [31.5%]) and vehicle-related accidents (n=69 [33.5%]). The mean time since injury was 53.5±40.5 days. Not applicable. An adapted version of the 12-item structured clinical interview for Prolonged Grief Disorder was used to assess symptoms of grief, and the Patient Health Questionnaire-9 was used to measure depression. Demographic and injury-related data were also collected. A principal component analysis (with direct oblimin rotation) of the grief measure suggested a 2-component solution. The content of items loading on the separate components suggested 2 subscales: loss (6 items; Cronbach α=.810) and trauma (6 items; Cronbach α=.823). Follow-up principal component analyses including both grief and depression measures suggested clear differentiation of grief-related loss from depression. The prevalence of clinically significant levels of grief was low (6%), and levels of depression were consistent with previous findings related to inpatient rehabilitation (23.5%). The items used to assess grief symptoms in patients participating in inpatient rehabilitation for recently sustained SCI appear to capture a psychometrically reliable construct that is distinct from that of depression. Research is needed on the predictive validity of early grief symptoms after SCI and the relation of grief to other psychological constructs over time. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier

  17. [Spinal cord injuries caused by aviation accidents].

    PubMed

    Heim, M; Ohry, A; Zeilig, G; Gur, S

    1992-05-15

    During the past 15 years fewer than 1% of those treated in the National Spinal Cord Injury Center were injured as a result of aviation accidents. In addition to 9 such patients treated at the center since 1973, another 6 were found among the many hundreds receiving ambulatory care in our clinics. 3 patients had survived a helicopter crash, 2 were injured while ejecting from combat aircraft, 3 were injured in crashes of light aircraft, 1 fell from a hand glider and 6 were injured in parachute drops. Of the 15 reviewed, 6 use wheelchairs, 3 walk assisted by orthopedic devices, while 6 ambulate freely. Although initial hospitalization was not substantially longer than in other patients with spinal cord injuries, extended ambulatory psychological intervention was necessary.

  18. Cumulative effective dose associated with radiography and CT of adolescents with spinal injuries.

    PubMed

    Lemburg, Stefan P; Peters, Soeren A; Roggenland, Daniela; Nicolas, Volkmar; Heyer, Christoph M

    2010-12-01

    The purpose of this study was to analyze the quantity and distribution of cumulative effective doses in diagnostic imaging of adolescents with spinal injuries. At a level 1 trauma center from July 2003 through June 2009, imaging procedures during initial evaluation and hospitalization and after discharge of all patients 10-20 years old with spinal fractures were retrospectively analyzed. The cumulative effective doses for all imaging studies were calculated, and the doses to patients with spinal injuries who had multiple traumatic injuries were compared with the doses to patients with spinal injuries but without multiple injuries. The significance level was set at 5%. Imaging studies of 72 patients (32 with multiple injuries; average age, 17.5 years) entailed a median cumulative effective dose of 18.89 mSv. Patients with multiple injuries had a significantly higher total cumulative effective dose (29.70 versus 10.86 mSv, p < 0.001) mainly owing to the significantly higher CT-related cumulative effective dose to multiple injury patients during the initial evaluation (18.39 versus 2.83 mSv, p < 0.001). Overall, CT accounted for 86% of the total cumulative effective dose. Adolescents with spinal injuries receive a cumulative effective dose equal to that of adult trauma patients and nearly three times that of pediatric trauma patients. Areas of focus in lowering cumulative effective dose should be appropriate initial estimation of trauma severity and careful selection of CT scan parameters.

  19. Acute kidney injury: not just acute renal failure anymore?

    PubMed

    Dirkes, Susan

    2011-02-01

    Until recently, no uniform standard existed for diagnosing and classifying acute renal failure. To clarify diagnosis, the Acute Dialysis Quality Initiative group stated its consensus on the need for a clear definition and classification system of renal dysfunction with measurable criteria. Today the term acute kidney injury has replaced the term acute renal failure, with an understanding that such injury is a common clinical problem in critically ill patients and typically is predictive of an increase in morbidity and mortality. A classification system, known as RIFLE (risk of injury, injury, failure, loss of function, and end-stage renal failure), includes specific goals for preventing acute kidney injury: adequate hydration, maintenance of renal perfusion, limiting exposure to nephrotoxins, drug protective strategies, and the use of renal replacement therapies that reduce renal injury.

  20. Demographic and clinical characteristics of persons with spinal cord injury in Turkey: One-year experience of a primary referral rehabilitation center.

    PubMed

    Taşoğlu, Özlem; Koyuncu, Engin; Daylak, Rabia; Karacif, Derya Yumuşak; İnce, Zerrin; Yenigün, Didem; Özgirgin, Neşe

    2018-03-01

    To define the demographic and clinical characteristics of persons with spinal cord injury, rehabilitated in a primary referral rehabilitation center in Turkey. Retrospective study. Ankara Physical Medicine and Rehabilitation Training and Research Hospital, Ankara, Turkey. Medical records of all patients with spinal cord injury (acute-subacute-chronic) at a single academic referral center over the course of one year were reviewed. Variables of each patient were recorded, including: age, sex, etiology, length of rehabilitation stay, neurological level of injury, level of neurological impairment and severity of injury. Among 262 persons with spinal cord injury, 69.8% were male (male:female ratio is 2.31 : 1). Mean age was 38.3 ± 17.6 years. Falls were the most common cause of injury. The majority of falls were falls from a height (93.3%). More than 20% of falls from a height were related to occupational injury. The most common neurological level of injury was L1. Of all persons 46.2% had thoracic, 27.5% had lumbar and 26.3% had cervical lesions. The mean length of rehabilitation stay was 52.1 ± 25.5 days. Persons with motor complete injury and with a shorter (<12 months) time since injury had longer length of rehabilitation stay. The mean age of SCI population is increasing. Falls constitute the majority of etiologic factors and are more common in persons >60 years old. More than 20% of falls from a height are related to occupational injury. Male-female ratio is decreasing. Thoraco-lumbar injures are more common than cervical injuries.

  1. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.

    PubMed

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-05-01

    The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

  2. The Protective Effect of Curcumin on a Spinal Cord Ischemia-Reperfusion Injury Model.

    PubMed

    Akar, İlker; İnce, İlker; Arici, Akgül; Benli, İsmail; Aslan, Cemal; Şenol, Sefa; Demir, Osman; Altunkas, Fatih; Altındeger, Nuray; Akbas, Ali

    2017-07-01

    The purpose of this study is to investigate the neurological, biochemical, and histopathologic effects of both the acute and maintenance treatment of curcumin on an experimental spinal cord ischemia-reperfusion injury model in rats. The animals were randomly divided into 4 groups: (1) Sham, (2) ischemia-reperfusion (IR), (3) curcumin, and (4) solvent. Spinal cord ischemia was induced by clamping the aorta with minivascular clamps at a position just below the left renal artery and just proximal to the aortic bifurcation for 45 min. After 72 hr of reperfusion, neurological function was evaluated with a modified Tarlov score. In spinal cords, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and nitric oxide (NO) levels were detected biochemically. Immunohistochemical staining was performed by antibodies against interleukin-6 (IL-6) and myeloperoxidase. Histopathologic changes were examined with hematoxylin and eosin staining. Although MDA tissue levels were elevated significantly in the IR group compared with the sham group, SOD and GPx levels decreased. After the administration of curcumin, MDA levels in the spinal cord decreased, and SOD and GPx levels increased. Those changes were statistically significant. There was no significance at NO levels. Among all groups, there was no difference in IL-6 and myeloperoxidase immunostaining. Histopathological analysis showed that histopathological changes in the IR group were improved by curcumin treatment. In the curcumin group, neurological outcome scores were significantly better statistically when compared with the IR group. We believe that curcumin possesses antioxidant, antiproliferative, and anticarcinogenic properties and may be an effective drug for the prevention of spinal cord IR injury in light of the neurologic, biochemical, and histopathological data of this study and published scientific literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Current pregnancy among women with spinal cord injury: findings from the US national spinal cord injury database.

    PubMed

    Iezzoni, L I; Chen, Y; McLain, A B J

    2015-11-01

    Cross-sectional study. To examine the prevalence of pregnancy and associations with sociodemographic and clinical factors among women with spinal cord injury (SCI). US National Spinal Cord Injury Database, an SCI registry that interviews participants 1, 5 and then every 5 years post injury. Data include SCI clinical details, functional impairments, participation measures, depressive symptoms and life satisfaction. Women aged 18-49 are asked about hospitalizations in the last year relating to pregnancy or its complications. Data represent 1907 women, who completed 3054 interviews. We used generalized estimating equations to examine bivariable associations between pregnancy and clinical and psychosocial variables and to perform multivariable regressions predicting pregnancy. Across all women, 2.0% reported pregnancy during the prior 12 months. This annual prevalence differed significantly by the years elapsed since injury; the highest rate occurred 15 years post injury (3.7%). Bivariable analyses found that younger age at injury was significantly associated with current pregnancy (P<0.0001). Compared with nonpregnant women, those reporting current pregnancy were significantly more likely to be married or partnered, have sport-related SCI, have higher motor scores and have more positive psychosocial status scores. Multivariable analyses found significant associations between current pregnancy and age, marital status, motor score and mobility and occupation scale scores. Current pregnancy rates among reproductive-aged women with SCI are similar to rates of other US women with chronic mobility impairments. More information is needed about pregnancy experiences and outcomes to inform both women with SCI seeking childbearing and clinicians providing their care.

  4. Numb rats walk - a behavioural and fMRI comparison of mild and moderate spinal cord injury.

    PubMed

    Hofstetter, Christoph P; Schweinhardt, Petra; Klason, Tomas; Olson, Lars; Spenger, Christian

    2003-12-01

    Assessment of sensory function serves as a sensitive measure for predicting the functional outcome following spinal cord injury in patients. However, little is known about loss and recovery of sensory function in rodent spinal cord injury models as most tests of sensory functions rely on behaviour and thus motor function. We used functional magnetic resonance imaging (fMRI) to investigate cortical and thalamic BOLD-signal changes in response to limb stimulation following mild or moderate thoracic spinal cord weight drop injury in Sprague-Dawley rats. While there was recovery of close to normal hindlimb motor function as determined by open field locomotor testing following both degrees of injury, recovery of hindlimb sensory function as determined by fMRI and hot plate testing was only seen following mild injury and not following moderate injury. Thus, moderate injury can lead to near normal hindlimb motor function in animals with major sensory deficits. Recovered fMRI signals following mild injury had a partly altered cortical distribution engaging also ipsilateral somatosensory cortex and the cingulate gyrus. Importantly, thoracic spinal cord injury also affected sensory representation of the upper nonaffected limbs. Thus, cortical and thalamic activation in response to forelimb stimulation was significantly increased 16 weeks after spinal cord injury compared to control animals. We conclude that both forelimb and hindlimb cortical sensory representation is altered following thoracic spinal cord injury. Furthermore tests of sensory function that are independent of motor behaviour are needed in rodent spinal cord injury research.

  5. Fluoxetine and vitamin C synergistically inhibits blood-spinal cord barrier disruption and improves functional recovery after spinal cord injury.

    PubMed

    Lee, Jee Y; Choi, Hae Y; Yune, Tae Y

    2016-10-01

    Recently we reported that fluoxetine (10 mg/kg) improves functional recovery by attenuating blood spinal cord barrier (BSCB) disruption after spinal cord injury (SCI). Here we investigated whether a low-dose of fluoxetine (1 mg/kg) and vitamin C (100 mg/kg), separately not possessing any protective effect, prevents BSCB disruption and improves functional recovery when combined. After a moderate contusion injury at T9 in rat, a low-dose of fluoxetine and vitamin C, or the combination of both was administered intraperitoneally immediately after SCI and further treated once a day for 14 d. Co-treatment with fluoxetine and vitamin C significantly attenuated BSCB permeability at 1 d after SCI. When only fluoxetine or vitamin C was treated after injury, however, there was no effect on BSCB disruption. Co-treatment with fluoxetine and vitamin C also significantly inhibited the expression and activation of MMP-9 at 8 h and 1 d after injury, respectively, and the infiltration of neutrophils (at 1 d) and macrophages (at 5 d) and the expression of inflammatory mediators (at 2 h, 6 h, 8 h or 24 h after injury) were significantly inhibited by co-treatment with fluoxetine and vitamin C. Furthermore, the combination of fluoxetine and vitamin C attenuated apoptotic cell death at 1 d and 5 d and improved locomotor function at 5 weeks after SCI. These results demonstrate the synergistic effect combination of low-dose fluoxetine and vitamin C on BSCB disruption after SCI and furthermore support the effectiveness of the combination treatment regimen for the management of acute SCI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The effects of gender on clinical and neurological outcomes after acute cervical spinal cord injury.

    PubMed

    Furlan, Julio C; Krassioukov, Andrei V; Fehlings, Michael G

    2005-03-01

    The potential clinical relevance of gender on clinical and neurological outcome after spinal cord injury (SCI) has received little attention. In order to address this issue, we examined all consecutive cases of acute traumatic cervical SCI admitted to our institution from 1998 to 2000. There were 38 males (ages 17-89 years, mean of 51.6) and 17 females (ages 18-84 years, mean of 63.2). Both groups were comparable regarding level (C1 to C7) and severity of SCI (ASIA A to D) at admission. Age differences between the groups approached significance (p = 0.057), and thus this factor was treated as a covariate in the analysis. Co-morbidities were as frequent in men (86.8%) as in women (76.5%). The therapeutic approaches, length-of-stay in the acute care unit, mortality, and discharge disposition were similar in men and women. During hospitalization, 44.7% of men and 52.9% of women developed post-SCI secondary complications without any significant gender-related differences. Both groups showed a similar incidence of infections, cardiovascular complications, thromboembolism, and pressure sores. Univariate analysis revealed a trend for higher incidence of psychiatric complications (p = 0.054) and deep venous thrombosis (p = 0.092) in women, which was confirmed by multivariate analysis. Neurological outcome was not correlated with gender. A similar number of males and females (42.1%, 47.1%) showed evidence of neurological recovery as revealed by an improvement in ASIA scores. Moreover, 18.4% of males and 29.4% of females recovered to ASIA E status. Our data suggest a shift in the demographics of acute SCI with an increasing incidence in elderly women. Although neurological outcomes were not significantly related to gender, we observed a trend for higher rates of reactive depression and deep venous thrombosis in women. These issues may be of key clinical importance in developing improved management protocols for SCI so as to maximize functional recovery and quality-of-life.

  7. Methylene Blue Mitigates Acute Neuroinflammation after Spinal Cord Injury through Inhibiting NLRP3 Inflammasome Activation in Microglia.

    PubMed

    Lin, Zhi-Hang; Wang, Si-Yuan; Chen, Li-Li; Zhuang, Jia-Yuan; Ke, Qing-Feng; Xiao, Dan-Rui; Lin, Wen-Ping

    2017-01-01

    The spinal cord injury (SCI) is a detrimental neurological disease involving the primary mechanical injury and secondary inflammatory damage. Curtailing the detrimental neuroinflammation would be beneficial for spinal cord function recovery. Microglia reside in the spinal cord and actively participate in the onset, progression and perhaps resolution of post-SCI neuroinflammation. In the current study, we tested the effects of methylene blue on microglia both in vitro and in a rat SCI model. We found that methylene blue inhibited the protein levels of IL-1β and IL-18 rather than their mRNA levels in activated microglia. Further investigation indicated that methylene blue deceased the activation of NLRP3 inflammasome and NLRC4 inflammasome in microglia in vitro . Moreover, in the rat SCI model, the similar effect of methylene blue on post-SCI microglia was also observed, except that the activation of NLRC4 inflammasome was not seen. The inhibition of microglia NLRP3 inflammasome was associated with down-regulation of intracellular reactive oxygen species (ROS). The administration of methylene blue mitigated the overall post-SCI neuroinflammation, demonstrated by decreased pro-inflammatory cytokine production and leukocyte infiltrates. Consequently, the neuronal apoptosis was partially inhibited and the hind limb locomotor function was ameliorated by methylene blue treatment. Our research highlights the role of methylene blue in inhibiting post-SCI neuroinflammation, and suggests that methylene blue might be used for SCI therapy.

  8. [Urologic examination and treatment of patients with acute injuries of the spinal medulla].

    PubMed

    Jeppesen, L J; Krarup, T; Walter, S; Haase, J

    1989-08-07

    During a period of one year, nine patients with traumatic lesions of the spinal medulla were examined and treated urologically. The patients were followed-up for 24-36 months and follow-up will continue. All of the patients were treated primarily with sterile intermittent catheterization by the nursing staff. Exceptions from this were patients in whom indwelling catheters were necessary on account of complicating conditions. During the acute phase, the patients were examined by a urologist and bladder function investigations with cystometry + electromyographic registration from the pelvic floor were undertaken. When patients had recovered from the spinal shock phase, emptying of the bladder supplemented by alpha-adrenergic blocking preparations and clean intermittent catheterization were instituted in the patients with supra-sacral lesions. Patients with infra-sacral bladder paresis were trained in miction on abdominal pressure supplemented by clean intermittent catheterization. No complications from this treatment have occurred and renal function has remained stable. Only one patient has an indwelling catheter and it has not proved possible to persuade the patient to accept removal.

  9. Chronic spinal cord injury in the cervical spine of a young soccer player.

    PubMed

    Kato, Yoshihiko; Koga, Michiaki; Taguchi, Toshihiko

    2010-05-12

    A 17-year-old male soccer player presented with numbness in the upper- and lower-left extremities of 6 months' duration. He had no apparent history of trauma but experienced neck pain during heading of the ball 5 years prior. A high-signal intensity area was seen on T2-weighted magnetic resonance imaging (MRI) of the cervical spine. No muscle weakness was observed. Hypoesthesia was observed in bilateral forearms, hands, and extremities below the inguinal region. Plain radiographs in the neutral position showed local kyphosis at C3/4. A small protrusion of the C3/4 disk was observed on T1-weighted MRI. A high-signal area in the spinal cord at the C3/4 level was observed on T2-weighted MRI, but this was not enhanced by gadolinium. Multiple sclerosis, intramedullary spinal cord tumor, sarcoidosis and malignant lymphoma, and spinal cord injury were all considered in the differential diagnosis. However, in view of the clinical, laboratory, and radiological investigations, we concluded that repeated impacts to the neck caused by heading of the ball during soccer induced a chronic, minor spinal cord injury. This contributed to the high-signal intensity change of the spinal cord in T2-weighted MRI. The present case demonstrates that repeated impact may cause chronic spinal cord injury. Soccer, American football, or rugby players presenting with neck or extremity symptoms should not be overlooked for the possibility of latent spinal cord injury, as this could present later development of more severe or unrecoverable spinal cord injuries. Copyright 2010, SLACK Incorporated.

  10. The changing nature of admissions to a spinal cord injury center: violence on the rise.

    PubMed

    Farmer, J C; Vaccaro, A R; Balderston, R A; Albert, T J; Cotler, J

    1998-10-01

    The purpose of this study was to analyze changing etiologies for admission to a spinal cord injury center. This study was designed to retrospectively analyze the etiology of admissions to a spinal cord injury center during a 15-year period, specifically gunshot versus nongunshot wound injuries. Gunshot wounds are a well-recognized cause of spinal cord injury. In some centers, up to 52% of admissions are due to this, and these trends are believed to be increasing. All patients with spinal cord injury admitted to our center between 1979 and 1993 were analyzed. Frequencies of specific etiologies were determined and then comparisons were made between gunshot wound and nongunshot wound groups. Factors analyzed included age, male/female ratio, ethnic make-up, marital status, employment status, level of injury, and neurologic status. One thousand eight hundred seventeen patients were included. Overall, gunshot wound spinal cord injuries compromised 16.9% of injuries. A clear trend of increasing numbers of admissions was seen between 1984 and 1993 because of this. Gunshot wounds and nongunshot wounds differed dramatically in terms of age, ethnic make-up, marital status, employment status, and neurologic status. Cost attributed to treating gunshot wound injuries at our center for 1993 was 5.4 million dollars. Gunshot wounds as a cause of spinal cord injury are increasing at an alarming rate. The demographics of the gunshot wounds and nongunshot wound spine cord injuries differ significantly.

  11. Technique of spinal cord compression induced by inflation of epidural balloon catheter in rabbits (Oryctologus cuniculus): efficient and easy to use model.

    PubMed

    Fonseca, Antonio F B DA; Scheffer, Jussara P; Coelho, Barbara P; Aiello, Graciane; Guimarães, Arthur G; Gama, Carlos R B; Vescovini, Victor; Cabral, Paula G A; Oliveira, André L A

    2016-09-01

    The most common cause of spinal cord injury are high impact trauma, which often result in some motor impairment, sensory or autonomic a greater or lesser extent in the distal areas the level of trauma. In terms of survival and complications due to sequelae, veterinary patients have a poor prognosis unfavorable. Therefore justified the study of experimental models of spinal cord injury production that could provide more support to research potential treatments for spinal cord injuries in medicine and veterinary medicine. Preclinical studies of acute spinal cord injury require an experimental animal model easily reproducible. The most common experimental animal model is the rat, and several techniques for producing a spinal cord injury. The objective of this study was to describe and evaluate the effectiveness of acute spinal cord injury production technique through inflation of Fogarty(r) catheter using rabbits as an experimental model because it is a species that has fewer conclusive publications and contemplating. The main requirements of a model as low cost, handling convenience, reproducibility and uniformity. The technique was adequate for performing preclinical studies in neuro-traumatology area, effectively leading to degeneration and necrosis of the nervous tissue fostering the emergence of acute paraplegia.

  12. Sexual satisfaction in women with spinal cord injuries.

    PubMed

    Otero-Villaverde, S; Ferreiro-Velasco, M E; Montoto-Marqués, A; Salvador de la Barrera, S; Arias-Pardo, A I; Rodriguez-Sotillo, A

    2015-07-01

    Structured interview based on a predesigned survey. To examine the factors that affect the degree of sexual satisfaction in a sample of women with spinal cord injury (SCI). The study participants were women with SCIs, from the area of the SCI Unit of A Coruña, a reference unit for the Community of Galicia in the northwest of Spain. All study participants were selected consecutively in the outpatient clinic in 2013. The study included women with the American Spinal Injury Association (ASIA) A-D spinal injuries, between the ages of 18 and 65 years, who completed rehabilitation therapy and live in the community. A total of 32 women formed the final study group. When comparing the group of women who were sexually active with those who were not, variables such as age, neurological level, time since the SCI, ASIA or Spinal Cord Independence Measure score, urinary incontinence, chronic pain and spasticity were not related to sexual activity. The only factors that we found to be related to sexual activity were not having a stable partner (P=0.017) and a lack of sensation in the genital area (P=0.039). The only variables related to sexual activity were not having a partner and a lack of sensation in the genital area. Improving sexual satisfaction, information and specific programs during rehabilitation can help women with SCI explore and investigate new erotic possibilities, thereby improving their self-esteem and social relationships.

  13. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury.

    PubMed

    Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia

    2014-12-18

    Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. All-terrain vehicles and associated spinal injuries.

    PubMed

    Sanfilippo, James A; Winegar, Corbett D; Harrop, James S; Albert, Todd J; Vaccaro, Alexander R

    2008-08-15

    Case cohort. To illuminate factors associated with all-terrain vehicle (ATV) injuries and injury morphology. Traditionally thought of as safe, injuries associated with ATVs can be severe and life threatening. In 2005 alone, the US Consumer Product Safety Commission estimated 136,100 injuries and 767 deaths associated with ATVs use and misuse. A database of all spine related consults from one institution was reviewed and all patients with spine or spinal cord injuries associated with ATV use were identified. All pertinent demographic, clinical, and radiographic information were collected and analyzed. Thirty-six patients were identified from the spinal cord injury database. The male:female ratio was 11:1 of the ATV injured patient. This is statistically different from the general database population, with a males representing 70% of patients (P < 0.002). The average ATV injured patient was 13.7 years younger than the average database patient (P < 0.001). The incidence of an axial compression or burst type fracture morphology was significantly higher in the ATV injured patient population (50%) compared with the database population as a whole (12%). Factors predisposing patients to injury on ATVs include excessive speed, use of alcohol or controlled substances, use of machinery after dark, and inexperience. All-terrain vehicles (ATVs) are currently experiencing enormous popularity in the United States. These recreational vehicles are associated with a higher incidence of axial compression and burst-type fracture morphologies. In general, all-terrain vehicles although highly dangerous leading to death or serious injury can be fun, enjoyable, and safe if proper regulations and safety precautions are implemented and followed.

  15. Skeletal muscle mitochondrial health and spinal cord injury.

    PubMed

    O'Brien, Laura C; Gorgey, Ashraf S

    2016-10-18

    Mitochondria are the main source of cellular energy production and are dynamic organelles that undergo biogenesis, remodeling, and degradation. Mitochondrial dysfunction is observed in a number of disease states including acute and chronic central or peripheral nervous system injury by traumatic brain injury, spinal cord injury (SCI), and neurodegenerative disease as well as in metabolic disturbances such as insulin resistance, type II diabetes and obesity. Mitochondrial dysfunction is most commonly observed in high energy requiring tissues like the brain and skeletal muscle. In persons with chronic SCI, changes to skeletal muscle may include remarkable atrophy and conversion of muscle fiber type from oxidative to fast glycolytic, combined with increased infiltration of intramuscular adipose tissue. These changes contribute to a proinflammatory environment, glucose intolerance and insulin resistance. The loss of metabolically active muscle combined with inactivity predisposes individuals with SCI to type II diabetes and obesity. The contribution of skeletal muscle mitochondrial density and electron transport chain activity to the development of the aforementioned comorbidities following SCI is unclear. A better understanding of the mechanisms involved in skeletal muscle mitochondrial dynamics is imperative to designing and testing effective treatments for this growing population. The current editorial will review ways to study mitochondrial function and the importance of improving skeletal muscle mitochondrial health in clinical populations with a special focus on chronic SCI.

  16. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury.

    PubMed

    Pomeshchik, Yuriy; Kidin, Iurii; Korhonen, Paula; Savchenko, Ekaterina; Jaronen, Merja; Lehtonen, Sarka; Wojciechowski, Sara; Kanninen, Katja; Koistinaho, Jari; Malm, Tarja

    2015-02-01

    Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family and highly expressed in the naïve mouse brain and spinal cord. Despite the fact that IL-33 is known to be inducible by various inflammatory stimuli, its cellular localization in the central nervous system and role in pathological conditions is controversial. Administration of recombinant IL-33 has been shown to attenuate experimental autoimmune encephalomyelitis progression in one study, yet contradictory reports also exist. Here we investigated for the first time the pattern of IL-33 expression in the contused mouse spinal cord and demonstrated that after spinal cord injury (SCI) IL-33 was up-regulated and exhibited a nuclear localization predominantly in astrocytes. Importantly, we found that treatment with recombinant IL-33 alleviated secondary damage by significantly decreasing tissue loss, demyelination and astrogliosis in the contused mouse spinal cord, resulting in dramatically improved functional recovery. We identified both central and peripheral mechanisms of IL-33 action. In spinal cord, IL-33 treatment reduced the expression of pro-inflammatory tumor necrosis factor-alpha and promoted the activation of anti-inflammatory arginase-1 positive M2 microglia/macrophages, which chronically persisted in the injured spinal cord for up to at least 42 days after the treatment. In addition, IL-33 treatment showed a tendency towards reduced T-cell infiltration into the spinal cord. In the periphery, IL-33 treatment induced a shift towards the Th2 type cytokine profile and reduced the percentage and absolute number of cytotoxic, tumor necrosis factor-alpha expressing CD4+ cells in the spleen. Additionally, IL-33 treatment increased expression of T-regulatory cell marker FoxP3 and reduced expression of M1 marker iNOS in the spleen. Taken together, these results provide the first evidence that IL-33 administration is beneficial after CNS trauma. Treatment with IL33 may offer a novel therapeutic

  17. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    PubMed

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury.

  18. Activity-dependent plasticity in spinal cord injury

    PubMed Central

    Lynskey, James V.; Belanger, Adam; Jung, Ranu

    2008-01-01

    The adult mammalian central nervous system (CNS) is capable of considerable plasticity, both in health and disease. After spinal neurotrauma, the degrees and extent of neuroplasticity and recovery depend on multiple factors, including the level and extent of injury, postinjury medical and surgical care, and rehabilitative interventions. Rehabilitation strategies focus less on repairing lost connections and more on influencing CNS plasticity for regaining function. Current evidence indicates that strategies for rehabilitation, including passive exercise, active exercise with some voluntary control, and use of neuroprostheses, can enhance sensorimotor recovery after spinal cord injury (SCI) by promoting adaptive structural and functional plasticity while mitigating maladaptive changes at multiple levels of the neuraxis. In this review, we will discuss CNS plasticity that occurs both spontaneously after SCI and in response to rehabilitative therapies. PMID:18566941

  19. Lifestyle and health conditions of adults with spinal cord injury.

    PubMed

    Xavier de França, Inacia Sátiro; Cruz Enders, Bertha; Silva Coura, Alexsandro; Pereira Cruz, Giovanna Karinny; da Silva Aragão, Jamilly; Carvalho de Oliveira, Déborah Raquel

    2014-01-01

    . To describe the lifestyle of adults with spinal cord injury and explore its relation with some health conditions. Cross sectional study, in which a questionnaire containing sociodemographic, habits and health conditions variables was used. Forty-seven people with spinal cord injury participated and answered the self-report questionnaire. The group under study was predominantly male (92%), under 40 years of age (47%), and had low educational level (76%). The most frequent risk factors related to the lifestyle were: smoking (28%), alcohol consumption (36%), coffee consumption (92%) and being physically inactive (64%). Association was found between having four or more risk factors related to lifestyle and the loss of appetite, as well as constipation. . The actual inadequate lifestyle is associated with the health conditions of patients, and the nursing team should pay special attention to the education and promotion of health related to people with spinal cord injury.

  20. Spinal injury after ejection in jet pilots: mechanism, diagnosis, followup, and prevention.

    PubMed

    Rotondo, G

    1975-06-01

    In order to contribute to the study of spinal injury after ejection., the author analyzed the results of 100 cases of ejections carried out by military and civil Italian jet pilots in a period of 20 years. Of this group, 47 successfully ejected from aircraft without injury; 11 ejections proved fatal. The remaining 42 pilots sutained vertebral fractures, while 27 sustained other traumatic injuries different from spinal fractures. There were 23 vertebral fractures in 15 pilots and the most frequently affected vertebrae were those of the thoraco-lumbar junction. Analysis was make of the pathology, the clinical and radiological profiles, the therapeutic treatment, and the relative aeromedico-legal aspects concerning the temporary unfitness for flying or permanent grounding of the personnel as well as the possible prevention of spinal injury after ejection

  1. Body composition of active persons with spinal cord injury and with poliomyelitis

    USDA-ARS?s Scientific Manuscript database

    This study sought to evaluate the body composition of subjects with active spinal cord injuries and polio. Two groups of males and females, active, free-living, of similar ages and body mass index (BMI), were distributed according to the source of deficiency: SCI – low spinal cord injury (T5-T12) an...

  2. Multilevel non-contiguous spinal injuries: incidence and patterns based on whole spine MRI.

    PubMed

    Kanna, Rishi Mugesh; Gaike, Chandrasekar V; Mahesh, Anupama; Shetty, Ajoy Prasad; Rajasekaran, S

    2016-04-01

    Multi-level non-contiguous spinal injuries are not uncommon and their incidence varies from 1.6 to 77% depending on the type of imaging modality used. Delayed diagnosis and missed spinal injuries in non-contiguous spine fractures have been frequently described which can result in significant pain, deformity and neurological deficit. The efficacy of whole spine MRI in detecting asymptomatic significant vertebral fractures is not known. Consecutive spinal injury patients treated between 2011 and 2013 were retrospectively evaluated based on clinical and radiographic records. Patients' demographics, mode of injury, presence of associated injuries, clinical symptoms and the presence of neurological deficit were studied. Radiographs of the fractured region and whole spine MRI were evaluated for the presence of multi-level injuries. Among 484 patients, 95 (19.62%) patients had multilevel injuries including 86 (17.76%) with non-contiguous injuries. Five common patterns of non-contiguous spinal injuries were observed. Pattern I: cervical and thoracic--29.1%, Pattern II: thoracolumbar and lumbosacral--22.1%, Pattern III: thoracic and thoracolumbar--12.8 %, Pattern IV: cervical and thoracolumbar--9.1% and Pattern V: lumbosacral and associated injuries--9.0 %. The incidence of intra-regional non-contiguous injuries was 17.4%. Whole spine MRI scan detected 24 (28.6%) missed secondary injuries of which 5 were unstable. The incidence of multilevel non-contiguous spine injury using whole spine MRI imaging is 17.76%. Five different patterns of multi-level non-contiguous injuries were found with the most common pattern being the cervical and thoracic level injuries. The incidence of unstable injuries can be as high as 21% of missed secondary injuries.

  3. Long-term paired associative stimulation can restore voluntary control over paralyzed muscles in incomplete chronic spinal cord injury patients

    PubMed Central

    Shulga, Anastasia; Lioumis, Pantelis; Zubareva, Aleksandra; Brandstack, Nina; Kuusela, Linda; Kirveskari, Erika; Savolainen, Sarianna; Ylinen, Aarne; Mäkelä, Jyrki P

    2016-01-01

    Emerging therapeutic strategies for spinal cord injury aim at sparing or restoring at least part of the corticospinal tract at the acute stage. Hence, approaches that strengthen the weak connections that are spared or restored are crucial. Transient plastic changes in the human corticospinal tract can be induced through paired associative stimulation, a noninvasive technique in which transcranial magnetic brain stimulation is synchronized with electrical peripheral nerve stimulation. A single paired associative stimulation session can induce transient plasticity in spinal cord injury patients. It is not known whether paired associative stimulation can strengthen neuronal connections persistently and have therapeutic effects that are clinically relevant. We recruited two patients with motor-incomplete chronic (one para- and one tetraplegic) spinal cord injuries. The patients received paired associative stimulation for 20–24 weeks. The paraplegic patient, previously paralyzed below the knee level, regained plantarflexion and dorsiflexion of the ankles of both legs. The tetraplegic patient regained grasping ability. The newly acquired voluntary movements could be performed by the patients in the absence of stimulation and for at least 1 month after the last stimulation session. In this unblinded proof-of-principle demonstration in two subjects, long-term paired associative stimulation induced persistent and clinically relevant strengthening of neural connections and restored voluntary movement in previously paralyzed muscles. Further study is needed to confirm whether long-term paired associative stimulation can be used in rehabilitation after spinal cord injury by itself and, possibly, in combination with other therapeutic strategies. PMID:28053760

  4. Acute effects of glossopharyngeal insufflation in people with cervical spinal cord injury.

    PubMed

    Nygren-Bonnier, Malin; Schiffer, Tomas A; Lindholm, Peter

    2018-01-01

    To evaluate acute effects of glossopharyngeal insufflation (GI) on lung function, airway pressure (P aw ), blood pressure and heart rate (HR) in people with cervical spinal cord injury (CSCI). Case-control design. Karolinska Institutet, Stockholm, Sweden. Ten participants with CSCI suffering from lesions between C4 and C8, and ASIA classification of A or B were recruited. Ten healthy particpants familiar with GI were recruited as a reference group. Spirometry, mean arterial blood pressure (MAP), P aw, and HR were measured in a sitting and a supine position before, during, and after GI. GI in the study group in a sitting position increased total lung capacity (TLC) by 712 ml: P < 0.001, vital capacity (VC) by 587 ml: P < 0.0001, P aw by 13 cm H 2 O: P < 0.01, and HR by 10 beats/min: P < 0.001. MAP decreased by 25 mmHg, P < 0.0001. Significant differences were observed between groups comparing baseline with GI. The reference group had a higher increase in; TLC (P < 0.01), VC (P < 0.001), P aw (P < 0.001) and HR (P < 0.05) and a higher decrease in MAP (P < 0.001). With GI in a sitting compared to a supine position, TLC, MAP, HR, P aw remained unchanged in the study group, while residual volume decreased in the supine position (P < 0.01). There was a difference between the groups in the increase in TLC; VC; P aw, HR and in the decrease in MAP with GI, however MAP, HR and P aw responded in similar way in both groups in a sitting as well as a supine position. If performed correctly, the risks of GI resulting in clinically significant hemodynamic changes is low, although syncope may still occur.

  5. Hindlimb Immobilization in a Wheelchair Alters Functional Recovery Following Contusive Spinal Cord Injury in the Adult Rat

    PubMed Central

    Caudle, Krista L.; Brown, Edward H.; Shum-Siu, Alice; Burke, Darlene A.; Magnuson, Trystan S. G.; Voor, Michael J.; Magnuson, David S. K.

    2015-01-01

    Background Locomotor training of rats with thoracic contusion spinal cord injuries can induce task-specific changes in stepping but rarely results in improved overground locomotion, possibly due to a ceiling effect. Thus, the authors hypothesize that incompletely injured rats maximally retrain themselves while moving about in their cages over the first few weeks postinjury. Objective To test the hypothesis using hindlimb immobilization after mild thoracic contusion spinal cord injury in adult female rats. A passive stretch protocol was included as an independent treatment. Methods Wheelchairs were used to hold the hindlimbs stationary in an extended position leaving the forelimbs free. The wheelchairs were used for 15 to 18 hours per day, 5 days per week for 8 weeks, beginning at 4 days postinjury. A 20-minute passive hindlimb stretch therapy was applied to half of the animals. Results Hindlimb locomotor function of the wheelchair group was not different from controls at 1 week postinjury but declined significantly over the next 4 weeks. Passive stretch had no influence on wheelchair animals but limited functional recovery of normally housed animals, preventing them from regaining forelimb–hindlimb coordination. Following 8 weeks of wheelchair immobilization and stretch therapy, only the wheelchair group displayed an improvement in function when returned to normal housing but retained significant deficits in stepping and coordination out to 16 weeks. Conclusion Hindlimb immobilization and passive stretch may hinder or conceal the normal course of functional recovery of spinal cord injured rats. These observations have implications for the management of acute clinical spinal cord injuries. PMID:21697451

  6. Incidence of Secondary Complications in Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Anson, C. A.; Shepherd, C.

    1996-01-01

    Data from 348 patients (mean age 37) with postacute spinal cord injury revealed that 95% reported at least 1 secondary problem, and 58% reported 3 or more. The number and severity of complications varied with time since the injury. Obesity, pain, spasticity, urinary tract infections, pressure sores, and lack of social integration were common…

  7. Resilience and the rehabilitation of adult spinal cord injury survivors: A qualitative systematic review.

    PubMed

    Kornhaber, Rachel; Mclean, Loyola; Betihavas, Vasiliki; Cleary, Michelle

    2018-01-01

    To synthesize the qualitative research evidence that explored how survivors of adult spinal cord injury experience and make sense of resilience. Spinal cord injury is often a sudden and unexpected life-changing event requiring complex and long-term rehabilitation. The development of resilience is essential in determining how spinal cord injury survivors negotiate this injury and rehabilitation. A qualitative systematic review and thematic synthesis of the research evidence. CINAHL, PubMed, Embase, Scopus and PsycINFO were searched, no restriction dates were used. Methodological quality was assessed using the Critical Appraisal Skills Programme checklist. Thematic synthesis focused on how survivors of adult spinal cord injury experience and make sense of resilience. Six qualitative research articles reported the experiences of 84 spinal cord injury survivors. Themes identified were: uncertainty and regaining independence; prior experiences of resilience; adopting resilient thinking; and strengthening resilience through supports. Recovery and rehabilitation following spinal cord survivors is influenced by the individual's capacity for resilience. Resilience may be influenced by previous life experiences and enhanced by supportive nursing staff encouraging self-efficacy. Survivors identified the need for active involvement in decision-making about their care to enable a sense of regaining control of their lives. This has the potential to have a significant impact on their self-efficacy and in turn health outcomes. © 2017 John Wiley & Sons Ltd.

  8. Effectiveness of pseudoephedrine as adjunctive therapy for neurogenic shock after acute spinal cord injury: a case series.

    PubMed

    Wood, G Christopher; Boucher, Andrew B; Johnson, Jessica L; Wisniewski, Jennifer N; Magnotti, Louis J; Croce, Martin A; Swanson, Joseph M; Boucher, Bradley A; Fabian, Timothy C

    2014-01-01

    To evaluate the effectiveness of pseudoephedrine as adjunctive therapy for neurogenic shock in patients with acute spinal cord injury (SCI). Case series. Academic medical center. Thirty-eight patients admitted to the trauma intensive care unit between September 2005 and October 2012 with an acute SCI and who received more than 1 day of pseudoephedrine for one or more of the following: treatment of bradycardia (heart rate ≤ 50 beats/min), treatment of hypotension (systolic blood pressure < 90 mm Hg), or were receiving intravenous vasopressor support. The effect of adjunctive pseudoephedrine (PSE) was categorized as a success if vasopressors were discontinued after the initiation of PSE or improvement in the number of episodes of bradycardia was noted after the initiation of PSE as evidenced by decreased use of atropine. The effect of pseudoephedrine was categorized as a failure if it did not meet one of the criteria for success. The effect of pseudoephedrine was categorized as inconclusive if there were confounding factors such as vasopressors being restarted for another indication after initial discontinuation. Pseudoephedrine was successful in 31/38 (82%) patients, failed in 2/38 (5%) patients, and had inconclusive results in 5/38 (13%) patients. The mean ± SD time to successful weaning of intravenous vasopressors was 7 ± 7 days. Daily maximum pseudoephedrine doses ranged from 60-720 mg. Mean ± SD duration of pseudoephedrine therapy was 32 ± 23 days (range 2-135 days), with 64.5% of surviving patients discharged while receiving pseudoephedrine. These data suggest that pseudoephedrine is an effective adjunctive therapy in facilitating the discontinuation of intravenous vasopressors and/or atropine in patients with acute SCI with neurogenic shock, although patients will typically require long durations of therapy. © 2013 Pharmacotherapy Publications, Inc.

  9. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  10. Current Pregnancy Among Women with Spinal Cord Injury: Findings from the U.S. National Spinal Cord Injury Database

    PubMed Central

    Iezzoni, Lisa I.; Chen, Yuying; McLain, Aime B. Jackson

    2015-01-01

    Study design Cross-sectional study Objective To examine prevalence of pregnancy and associations with sociodemographic and clinical factors among women with spinal cord injury (SCI) Setting U.S. National Spinal Cord Injury Database, an SCI registry that interviews participants 1, 5, and then every 5 years post-injury. Data include SCI clinical details, functional impairments, participation measures, depressive symptoms, and life satisfaction. Women ages 18-49 are asked about hospitalizations in the last year relating to pregnancy or its complications. Data represent 1,907 women, who completed 3,054 interviews. Methods We used generalized estimating equations to examine bivariable associations between pregnancy and clinical and psychosocial variables and to perform multivariable regressions predicting pregnancy. Results Across all women, 2.0% reported pregnancy during the prior 12 months. This annual prevalence differed significantly by years elapsed since injury; the highest rate occurred 15 years post-injury (3.7%). Bivariable analyses found that younger age at injury was significantly associated with current pregnancy (P < 0.0001). Compared with nonpregnant women, those reporting current pregancy were significantly more likely to be married or partnered, have sport-related SCI, have higher motor scores, and have more positive psychosocial status scores. Multivariable analyses found significant associations between current pregnancy and age, marital status, motor score, and mobility and occupation scale scores. Conclusions Current pregnancy rates among reproductive-aged women with SCI are similar to rates of other U.S. women with chronic mobility impairments. More information is needed about pregnancy experiences and outcomes to inform both women with SCI seeking childbearing and clinicians providing their care. PMID:25987000

  11. Methylene Blue Mitigates Acute Neuroinflammation after Spinal Cord Injury through Inhibiting NLRP3 Inflammasome Activation in Microglia

    PubMed Central

    Lin, Zhi-Hang; Wang, Si-Yuan; Chen, Li-Li; Zhuang, Jia-Yuan; Ke, Qing-Feng; Xiao, Dan-Rui; Lin, Wen-Ping

    2017-01-01

    The spinal cord injury (SCI) is a detrimental neurological disease involving the primary mechanical injury and secondary inflammatory damage. Curtailing the detrimental neuroinflammation would be beneficial for spinal cord function recovery. Microglia reside in the spinal cord and actively participate in the onset, progression and perhaps resolution of post-SCI neuroinflammation. In the current study, we tested the effects of methylene blue on microglia both in vitro and in a rat SCI model. We found that methylene blue inhibited the protein levels of IL-1β and IL-18 rather than their mRNA levels in activated microglia. Further investigation indicated that methylene blue deceased the activation of NLRP3 inflammasome and NLRC4 inflammasome in microglia in vitro. Moreover, in the rat SCI model, the similar effect of methylene blue on post-SCI microglia was also observed, except that the activation of NLRC4 inflammasome was not seen. The inhibition of microglia NLRP3 inflammasome was associated with down-regulation of intracellular reactive oxygen species (ROS). The administration of methylene blue mitigated the overall post-SCI neuroinflammation, demonstrated by decreased pro-inflammatory cytokine production and leukocyte infiltrates. Consequently, the neuronal apoptosis was partially inhibited and the hind limb locomotor function was ameliorated by methylene blue treatment. Our research highlights the role of methylene blue in inhibiting post-SCI neuroinflammation, and suggests that methylene blue might be used for SCI therapy. PMID:29311826

  12. Urinary 3-hydroxypropyl mercapturic acid (3-HPMA) concentrations in dogs with acute spinal cord injury due to intervertebral disc herniation.

    PubMed

    Sangster, A M; Zheng, L; Bentley, R T; Shi, R; Packer, R A

    2017-01-01

    The aim of this study was to investigate urinary 3-hydroxypropyl mercapturic acid (3-HPMA), a metabolite of acrolein, as a novel biomarker in acute spinal cord injury (ASCI) due to intervertebral disc herniation in dogs. Urine from 10 client-owned dogs with ASCI collected at presentation and 10 control dogs was analyzed for 3-HPMA. The median urinary 3-HPMA concentration in ASCI dogs was significantly higher than in control dogs, but was not correlated with the severity of ASCI. The median urinary 3-HPMA concentration in intact dogs was higher than in neutered dogs. Higher urinary 3-HPMA concentrations in dogs after ASCI support a role for acrolein, a cytotoxic by-product of lipid peroxidation, in canine ASCI. Urinary 3-HPMA could be used as a biomarker in future clinical trials to measure the effect of therapeutic intervention of reducing acrolein after ASCI. Copyright © 2016. Published by Elsevier Ltd.

  13. Preexisting severe cervical spinal cord compression is a significant risk factor for severe paralysis development in patients with traumatic cervical spinal cord injury without bone injury: a retrospective cohort study.

    PubMed

    Oichi, Takeshi; Oshima, Yasushi; Okazaki, Rentaro; Azuma, Seiichi

    2016-01-01

    The objective of this study is to investigate whether preexisting severe cervical spinal cord compression affects the severity of paralysis once patients develop traumatic cervical spinal cord injury (CSCI) without bone injury. We retrospectively investigated 122 consecutive patients with traumatic CSCI without bone injury. The severity of paralysis on admission was assessed by the American Spinal Injury Association impairment scale (AIS). The degree of preexisting cervical spinal cord compression was evaluated by the maximum spinal cord compression (MSCC) and was divided into three categories: minor compression (MSCC ≤ 20 %), moderate compression (20 % < MSCC ≤ 40 %), and severe compression (40 % < MSCC). We investigated soft-tissue damage on magnetic resonance imaging to estimate the external force applied. Other potential risk factors, including age, sex, fused vertebra, and ossification of longitudinal ligament, were also reviewed. A multivariate logistic regression analysis was performed to investigate the risk factors for developing severe paralysis (AIS A-C) on admission. Our study included 103 males and 19 females with mean age of 65 years. Sixty-one patients showed severe paralysis (AIS A-C) on admission. The average MSCC was 22 %. Moderate compression was observed in 41, and severe in 20. Soft-tissue damage was observed in 91. A multivariate analysis showed that severe cervical spinal cord compression significantly affected the severity of paralysis at the time of injury, whereas both mild and moderate compression did not affect it. Soft-tissue damage was also significantly associated with severe paralysis on admission. Preexisting severe cervical cord compression is an independent risk factor for severe paralysis once patients develop traumatic CSCI without bone injury.

  14. 76 FR 71623 - Agency Information Collection (Spinal Cord Injury Patient Care Survey) Under OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... Collection (Spinal Cord Injury Patient Care Survey) Under OMB Review AGENCY: Veterans Benefits Administration... INFORMATION: Title: Spinal Cord Injury Patient Care Survey, VA Form 10-0515. OMB Control Number: OMB Control... 10-0515 will be used to determine spinal cord patients' satisfaction with VA rehabilitation and...

  15. First-in-Man Intrathecal Application of Neurite Growth-Promoting Anti-Nogo-A Antibodies in Acute Spinal Cord Injury.

    PubMed

    Kucher, Klaus; Johns, Donald; Maier, Doris; Abel, Rainer; Badke, Andreas; Baron, Hagen; Thietje, Roland; Casha, Steven; Meindl, Renate; Gomez-Mancilla, Baltazar; Pfister, Christian; Rupp, Rüdiger; Weidner, Norbert; Mir, Anis; Schwab, Martin E; Curt, Armin

    2018-05-01

    Neutralization of central nervous system neurite growth inhibitory factors, for example, Nogo-A, is a promising approach to improving recovery following spinal cord injury (SCI). In animal SCI models, intrathecal delivery of anti-Nogo-A antibodies promoted regenerative neurite growth and functional recovery. This first-in-man study assessed the feasibility, safety, tolerability, pharmacokinetics, and preliminary efficacy of the human anti-Nogo-A antibody ATI355 following intrathecal administration in patients with acute, complete traumatic paraplegia and tetraplegia. Patients (N = 52) started treatment 4 to 60 days postinjury. Four consecutive dose-escalation cohorts received 5 to 30 mg/2.5 mL/day continuous intrathecal ATI355 infusion over 24 hours to 28 days. Following pharmacokinetic evaluation, 2 further cohorts received a bolus regimen (6 intrathecal injections of 22.5 and 45 mg/3 mL, respectively, over 4 weeks). ATI355 was well tolerated up to 1-year follow-up. All patients experienced ≥1 adverse events (AEs). The 581 reported AEs were mostly mild and to be expected following acute SCI. Fifteen patients reported 16 serious AEs, none related to ATI355; one bacterial meningitis case was considered related to intrathecal administration. ATI355 serum levels showed dose-dependency, and intersubject cerebrospinal fluid levels were highly variable after infusion and bolus injection. In 1 paraplegic patient, motor scores improved by 8 points. In tetraplegic patients, mean total motor scores increased, with 3/19 gaining >10 points, and 1/19 27 points at Week 48. Conversion from complete to incomplete SCI occurred in 7/19 patients with tetraplegia. ATI335 was well tolerated in humans; efficacy trials using intrathecal antibody administration may be considered in acute SCI.

  16. Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...Sept 2015 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury 5a...evaluate the restoration of bladder and bowel function using electrical stimulation and block after spinal cord injury in human subjects. All staff

  17. 'Crashing' the rugby scrum -- an avoidable cause of cervical spinal injury. Case reports.

    PubMed

    Scher, A T

    1982-06-12

    Deliberate crashing of the opposing packs prior to a rugby scrum is an illegal but commonly practised manoeuvre which can lead to abnormal flexion forces being applied to players in the front row, with resultant cervical spine and spinal cord injury. Two cases of cervical spinal cord injury sustained in this manner are presented. The mechanism of injury, the forces involved and preventive measures are discussed.

  18. Coronary heart disease is not significantly linked to acute kidney injury identified using Acute Kidney Injury Group criteria.

    PubMed

    Yayan, Josef

    2012-01-01

    Patients with unstable angina or myocardial infarction are at risk of acute kidney injury, which may be aggravated by the iodine-containing contrast agent used during coronary angiography; however, the relationship between these two conditions remains unclear. The current study investigated the relationship between acute kidney injury and coronary heart disease prior to coronary angiography. All patients were evaluated after undergoing coronary angiography in the cardiac catheterization laboratory of the Vinzentius Hospital in Landau, Germany, in 2011. The study group included patients with both acute coronary heart disease and acute kidney injury (as defined according to the classification of the Acute Kidney Injury Group); the control group included patients without acute coronary heart disease. Serum creatinine profiles were evaluated in all patients, as were a variety of demographic and health characteristics. Of the 303 patients examined, 201 (66.34%) had coronary artery disease. Of these, 38 (18.91%) also had both acute kidney injury and acute coronary heart disease prior to and after coronary angiography, and of which in turn 34 (16.91%) had both acute kidney injury and acute coronary heart disease only prior to the coronary angiography. However, the occurrence of acute kidney injury was not significantly related to the presence of coronary heart disease (P = 0.95, Chi-square test). The results of this study indicate that acute kidney injury is not linked to acute coronary heart disease. However, physicians should be aware that many coronary heart patients may develop kidney injury while hospitalized for angiography.

  19. Myelotomy promotes locomotor recovery in rats subjected to spinal cord injury: A meta-analysis of six randomized controlled trials.

    PubMed

    Qin, Chuan; Zhang, Wen-Hao; Yang, De-Gang; Yang, Ming-Liang; Du, Liang-Jie; Li, Jian-Jun

    2018-06-01

    To investigate the effects of myelotomy on locomotor recovery in rats subjected to spinal cord injury. Electronic databases including PubMed, Science Citation Index, Cochrane Library, China National Knowledge Infrastructure, Chinese Journals Full-text Database, China Biology Medicine disc, and Wanfang Database were searched to retrieve related studies published before September 2017. The MeSH terms (the Medical Subject Headings) such as "myelotomy", "spinal cord injuries", "rats", "randomized controlled trial" and all related entry terms were searched. Randomized controlled trials using myelotomy for the treatment of acute spinal cord injury in rats were included. Basso, Beattie, and Bresnahan scores were adopted as the evaluation method. RevMan Software (version 5.3) was used for data processing. The χ 2 and I 2 tests were used to assess heterogeneity. Using a random-effects model, a subgroup analysis was conducted to analyze the source of the heterogeneity. Basso, Beattie, and Bresnahan scores were observed 1-6 weeks after spinal cord injury. Six animal trials were included, using a total of 143 lab rats. The included trials were divided into two subgroups by injury degrees (moderate or severe). The pooled results showed that, 1-6 weeks after spinal cord injury, the overall Basso, Beattie, and Bresnahan score was significantly higher in the myelotomy group than in the contusion group (weighted mean difference (WMD) = 0.60; 95% confidence interval (CI): 0.23-0.97; P = 0.001; WMD = 2.10; 95% CI: 1.56-2.64; P < 0.001; WMD = 2.65; 95% CI: 1.73-3.57; P < 0.001; WMD = 1.66; 95% CI: 0.80-2.52; P < 0.001; WMD = 2.09; 95% CI: 0.92-3.26, P < 0.001; WMD = 2.25; 95% CI: 1.06-3.44, P < 0.001). The overall heterogeneity was high (I 2 = 85%; I 2 = 95%; I 2 = 94%; I 2 = 88%; I 2 = 91%; I 2 = 89%). The results in the moderate injury subgroup showed that Basso, Beattie, and Bresnahan scores were significantly higher in the myelotomy group than in the contusion group (WMD = 0

  20. Effects of glycine on motor performance in rats after traumatic spinal cord injury.

    PubMed

    Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto

    2007-01-01

    It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.

  1. Raman spectroscopic investigation of spinal cord injury in a rat model

    NASA Astrophysics Data System (ADS)

    Saxena, Tarun; Deng, Bin; Stelzner, Dennis; Hasenwinkel, Julie; Chaiken, Joseph

    2011-02-01

    Raman spectroscopy was used to study temporal molecular changes associated with spinal cord injury (SCI) in a rat model. Raman spectra of saline-perfused, injured, and healthy rat spinal cords were obtained and compared. Two injury models, a lateral hemisection and a moderate contusion were investigated. The net fluorescence and the Raman spectra showed clear differences between the injured and healthy spinal cords. Based on extensive histological and biochemical characterization of SCI available in the literature, these differences were hypothesized to be due to cell death, demyelination, and changes in the extracellular matrix composition, such as increased expression of proteoglycans and hyaluronic acid, at the site of injury where the glial scar forms. Further, analysis of difference spectra indicated the presence of carbonyl containing compounds, hypothesized to be products of lipid peroxidation and acid catalyzed hydrolysis of glycosaminoglycan moieties. These results compared well with in vitro experiments conducted on chondroitin sulfate sugars. Since the glial scar is thought to be a potent biochemical barrier to nerve regeneration, this observation suggests the possibility of using near infrared Raman spectroscopy to study injury progression and explore potential treatments ex vivo, and ultimately monitor potential remedial treatments within the spinal cord in vivo.

  2. Will stem cell therapies be safe and effective for treating spinal cord injuries?

    PubMed Central

    Thomas, Katharine E.; Moon, Lawrence D. F.

    2017-01-01

    Introduction A large number of different cells including embryonic and adult stem cells have been transplanted into animal models of spinal cord injury, and in many cases these procedures have resulted in modest sensorimotor benefits. In October 2010 the world’s first clinical trial using human embryonic stem cells began, using stem cells converted into oligodendrocyte precursor cells. Sources of data In this review we examine some of the publically-available pre-clinical evidence that some of these cell types improve outcome in animal models of spinal cord injury. Much evidence is not available for public scrutiny, however, being private commercial property of various stem cell companies. Areas of agreement Transplantation of many different types of stem and progenitor cell enhances spontaneous recovery of function when transplanted acutely after spinal cord injury in animal models. Areas of disagreement The common mechanism(s) whereby the generic procedure of cellular transplantation enhances recovery of function are not well understood, although a range of possibilities are usually cited (including preservation of tissue, remyelination, axon sprouting, glial cell replacement). Only in exceptional cases has it been shown that functional recovery depends causally on the survival and differentiation of the transplanted cells. There is no agreement about the optimal cell type for transplantation: candidate stem cells have not yet been compared with each other or with other cell types (e.g., autologous Schwann cells) in a single study. Areas timely for developing research Transplantation of cells into animals with a long lifespan is important to determine whether or not tumours will eventually form. It will also be important to determine whether long-term survival of cells is required for functional recovery, and if so, how many are optimal. PMID:21586446

  3. Brown-Sequard syndrome associated with unusual spinal cord injury by a screwdriver stab wound

    PubMed Central

    Beer-Furlan, André Luiz; Paiva, Wellingson Silva; Tavares, Wagner Malagó; de Andrade, Almir Ferreira; Teixeira, Manoel Jacobsen

    2014-01-01

    Introduction: Stab wounds resulting in spinal cord injuries are very rare. In direct central back stabbings, the layers of muscles and the spinal column tends to deflect blades, rarely causing injuries to the spinal cord. We report an unusual case of traumatic spinal cord injury by a screwdriver stab, presented as Brown-Séquard syndrome and discuss possible pitfalls on the surgical treatment. Case report: A 34 year-old man was brought to the emergency department after a group assault with a single screwdriver stab wound on the back. Neurological examination revealed an incomplete Brown-Sequard syndrome, with grade IV motor deficit on the left leg and contralateral hemihypoalgesia below T9 level. Radiological evaluation showed a retained 9 cm screwdriver that entered and trespassed the spinal canal at T6 level, reaching the posterior mediastinum with close relation to the thoracic aorta. Vascular injury could not be excluded. The joint decision between the neurosurgery and the vascular surgery teams was the surgical removal of the screwdriver under direct visualization. A left mini-thoracotomy was performed. Simultaneously, a careful dissection was done and screwdriver was firmly pulled back on the opposite path of entry under direct visualization of the aorta. The neurological deficit was maintained immediately after the surgical procedure. Follow-up visit after 1 year showed minor motor deficit and good healing. Conclusions: It is important to consider all aspects of secondary injury on the surgical planning of penetrating spinal cord injury. The secondary injury can be minimized with multidisciplinary planning of the surgical procedure. PMID:24482724

  4. Neuroprotective effects of Ganoderma lucidum polysaccharides against traumatic spinal cord injury in rats.

    PubMed

    Gokce, Emre Cemal; Kahveci, Ramazan; Atanur, Osman Malik; Gürer, Bora; Aksoy, Nurkan; Gokce, Aysun; Sargon, Mustafa Fevzi; Cemil, Berker; Erdogan, Bulent; Kahveci, Ozan

    2015-11-01

    Ganoderma lucidum (G. lucidum) is a mushroom belonging to the polyporaceae family of Basidiomycota and has widely been used as a traditional medicine for thousands of years. G. lucidum has never been studied in traumatic spinal cord injury. The aim of this study is to investigate whether G. lucidum polysaccharides (GLPS) can protect the spinal cord after experimental spinal cord injury. Rats were randomized into five groups of eight animals each: control, sham, trauma, GLPS, and methylprednisolone. In the control group, no surgical intervention was performed. In the sham group, only a laminectomy was performed. In all the other groups, the spinal cord trauma model was created by the occlusion of the spinal cord with an aneurysm clip. In the spinal cord tissue, caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, nitric oxide levels, and superoxide dismutase levels were analysed. Histopathological and ultrastructural evaluations were also performed. Neurological evaluation was performed using the Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test. After traumatic spinal cord injury, increases in caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels were detected. After the administration of GLPS, decreases were observed in tissue caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels. Furthermore, GLPS treatment showed improved results in histopathological scores, ultrastructural scores, and functional tests. Biochemical, histopathological, and ultrastructural analyses and functional tests reveal that GLPS exhibits meaningful neuroprotective effects against spinal cord injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Development of a Personalized Model for Pressure Ulcer Prevention Acutely Following Spinal Cord Injury: Biomarkers of Muscle Composition and Resilience

    DTIC Science & Technology

    2016-10-01

    SUBJECT TERMS Spinal cord injury, pressure ulcer prevention, biomarkers, personalized healthcare 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...ulcer prevention, biomarkers, personalized healthcare 3. Accomplishments Major Project Goals Task 1: Subject Recruitment and Data Collection

  6. A Review of Dysphagia Presentation and Intervention Following Traumatic Spinal Injury: An Understudied Population.

    PubMed

    Valenzano, Teresa J; Waito, Ashley A; Steele, Catriona M

    2016-10-01

    Dysphagia is reported to be a common secondary complication for individuals with traumatic spinal injuries. Different etiologies of traumatic spinal injuries may lead to different profiles of swallowing impairment. We conducted a systematic review to determine the characteristics of dysphagia after traumatic spinal injury and to describe interventions currently used to improve swallowing function in this population. A comprehensive multiengine literature search identified 137 articles of which five were judged to be relevant. These underwent review for study quality, rating for level of evidence, and data extraction. The literature describing dysphagia after traumatic spinal injury was comprised predominantly of low-level evidence and single case reports. Aspiration, pharyngeal residue, and decreased/absent hyolaryngeal elevation were found to be common characteristics of dysphagia in this population. The most commonly used swallowing interventions included tube feeding, compensatory swallowing strategies, and steroids/antibiotics. Improvement in swallowing function following swallowing intervention was reported in all studies; however, there was no control for spontaneous recovery. The results demonstrate a need for high-quality research to profile the pathophysiology of dysphagia after traumatic spinal injury and controlled studies to demonstrate the efficacy of swallowing interventions in this population.

  7. Changes in Body Temperature in Incomplete Spinal Cord Injury by Digital Infrared Thermographic Imaging

    PubMed Central

    Song, Yun-Gyu; Won, Yu Hui; Park, Sung-Hee; Ko, Myoung-Hwan

    2015-01-01

    Objective To investigate changes in the core temperature and body surface temperature in patients with incomplete spinal cord injuries (SCI). In incomplete SCI, the temperature change is difficult to see compared with complete spinal cord injuries. The goal of this study was to better understand thermal regulation in patients with incomplete SCI. Methods Fifty-six SCI patients were enrolled, and the control group consisted of 20 healthy persons. The spinal cord injuries were classified according to International Standards for Neurological Classification of Spinal Cord Injury. The patients were classified into two groups: upper (neurological injury level T6 or above) and lower (neurological injury level T7 or below) SCIs. Body core temperature was measured using an oral thermometer, and body surface temperature was measured using digital infrared thermographic imaging. Results Twenty-nine patients had upper spinal cord injuries, 27 patients had lower SCIs, and 20 persons served as the normal healthy persons. Comparing the skin temperatures of the three groups, the temperatures at the lower abdomen, anterior thigh and anterior tibia in the patients with upper SCIs were lower than those of the normal healthy persons and the patients with lower SCIs. No significant temperature differences were observed between the normal healthy persons and the patients with lower SCIs. Conclusion In our study, we found thermal dysregulation in patients with incomplete SCI. In particular, body surface temperature regulation was worse in upper SCIs than in lower injuries. Moreover, cord injury severity affected body surface temperature regulation in SCI patients. PMID:26605167

  8. Magnetic resonance imaging features of dogs with incomplete recovery after acute, severe spinal cord injury

    PubMed Central

    Lewis, Melissa J.; Cohen, Eli B.; Olby, Natasha J.

    2017-01-01

    Study Design Retrospective case series Objectives Describe the magnetic resonance imaging (MRI) features of dogs chronically impaired after severe spinal cord injury (SCI) and investigate associations between imaging variables and residual motor function. Setting United States of America Methods Thoracolumbar MRI from dogs with incomplete recovery months to years after clinically complete (paralysis with loss of pain perception) thoracolumbar SCI were reviewed. Lesion features were described and quantified. Gait was quantified using an ordinal, open field scale (OFS). Associations between imaging features and gait scores, duration of injury (DOI) or SCI treatment were determined. Results 35 dogs were included. Median OFS was 2 (0–6), median DOI was 13 months (3–83) and intervertebral disc herniation was the most common diagnosis (n=27). Myelomalacia was the most common qualitative feature followed by cystic change; syringomyelia and fibrosis were uncommon. Lesion length corrected to L2 length (LL:L2) was variable (median LL:L2=3.5 (1.34–11.54)). Twenty-nine dogs had 100% maximum cross-sectional spinal cord compromise (MSCC) at the lesion epicenter and the length of 100% compromised area varied widely (median length 100% MSCC:L2=1.29 (0.39–7.64). Length 100% MSCC:L2 was associated with OFS (p=0.012). OFS was not associated with any qualitative features. DOI or treatment type were not associated with imaging features or lesion quantification. Conclusions Lesion characteristics on MRI in dogs with incomplete recovery after severe SCI were established. Length of 100% MSCC was associated with hind limb motor function. Findings demonstrate a spectrum of injury severity on MRI amongst severely affected dogs which is related to functional status. PMID:29057987

  9. Quantifying the Risk of Spinal Injury in Motor Vehicle Collisions According to Ambulatory Status: A Prospective Analytical Study.

    PubMed

    McCoy, Christopher Eric; Loza-Gomez, Angelica; Lee Puckett, James; Costantini, Samantha; Penalosa, Patrick; Anderson, Craig; Schultz, Carl

    2017-02-01

    The association between ambulation at the scene of a motor vehicle collision (MVC) and spinal injury has never been quantified. To evaluate the association between ambulation and spinal injury in patients involved in a MVC. Prospective analytical-observational cohort study. Inclusion: patients sustaining traumatic injury in a MVC. Exclusion: < 18 years old, pregnancy. spinal injury defined as injury to the cervical, thoracic, or lumbar spinal cord, bones, or ligaments. Secondary outcome: Injury resulting in neurological deficit, need for surgery, or death. A generalized linear model was used to evaluate the association between outcome and predictor variables. Risk ratios [RR] were reported with a point estimate and 95% confidence interval (CI). A two-tailed alpha of < 0.05 was the threshold for statistical significance. There were 704 patients analyzed. Nonambulatory patients were 2.29 times more likely to sustain a spinal injury, compared to ambulatory patients (RR 2.29, 95% CI 1.34-3.91). Patients ≥ 65 years of age were 3.27 times more likely to sustain a spinal injury (RR 3.27, 95% CI 1.66-6.45). Patients with a Glasgow Coma Scale score ≤ 8 were 4.93 times more likely to sustain a spinal injury (RR 4.93, 95% CI 1.86-13.10). In this prospective analytical-observational study evaluating the association between ambulatory status and spinal injury in patients involved in MVCs, we observed that those patients who were nonambulatory were more than two times as likely to have a spinal injury compared to those patients who were ambulatory at the scene. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Management of chronic spinal cord dysfunction.

    PubMed

    Abrams, Gary M; Ganguly, Karunesh

    2015-02-01

    Both acute and chronic spinal cord disorders present multisystem management problems to the clinician. This article highlights key issues associated with chronic spinal cord dysfunction. Advances in symptomatic management for chronic spinal cord dysfunction include use of botulinum toxin to manage detrusor hyperreflexia, pregabalin for management of neuropathic pain, and intensive locomotor training for improved walking ability in incomplete spinal cord injuries. The care of spinal cord dysfunction has advanced significantly over the past 2 decades. Management and treatment of neurologic and non-neurologic complications of chronic myelopathies ensure that each patient will be able to maximize their functional independence and quality of life.

  11. Extracellular magnesium enhances the damage to locomotor networks produced by metabolic perturbation mimicking spinal injury in the neonatal rat spinal cord in vitro.

    PubMed

    Margaryan, G; Mladinic, M; Mattioli, C; Nistri, A

    2009-10-06

    An acute injury to brain or spinal cord produces profound metabolic perturbation that extends and exacerbates tissue damage. Recent clinical interventions to treat this condition with i.v. Mg(2+) to stabilize its extracellular concentration provided disappointing results. The present study used an in vitro spinal cord model from the neonatal rat to investigate the role of extracellular Mg(2+) in the lesion evoked by a pathological medium mimicking the metabolic perturbation (hypoxia, aglycemia, oxidative stress, and acid pH) occurring in vivo. Damage was measured by taking as outcome locomotor network activity for up to 24 h after the primary insult. Pathological medium in 1 mM Mg(2+) solution (1 h) largely depressed spinal reflexes and suppressed fictive locomotion on the same and the following day. Conversely, pathological medium in either Mg(2+)-free or 5 mM Mg(2+) solution evoked temporary network depression and enabled fictive locomotion the day after. While global cell death was similar regardless of extracellular Mg(2+) solution, white matter was particularly affected. In ventral horn the number of surviving neurons was the highest in Mg(2+) free solution and the lowest in 1 mM Mg(2+), while motoneurons were unaffected. Although the excitotoxic damage elicited by kainate was insensitive to extracellular Mg(2+), 1 mM Mg(2+) potentiated the effect of combining pathological medium with kainate at low concentrations. These results indicate that preserving Mg(2+) homeostasis rendered experimental spinal injury more severe. Furthermore, analyzing ventral horn neuron numbers in relation to fictive locomotion expression might provide a first estimate of the minimal size of the functional locomotor network.

  12. A comparison of catastrophic injury incidence rates by Provincial Rugby Union in South Africa.

    PubMed

    Badenhorst, Marelise; Verhagen, Evert A L M; van Mechelen, Willem; Lambert, Michael I; Viljoen, Wayne; Readhead, Clint; Baerecke, Gail; Brown, James C

    2017-07-01

    To compare catastrophic injury rates between the 14 South African Provincial Rugby Unions. A prospective, population-based study conducted among all South African Unions between 2008-2014. Player numbers in each Union were obtained from South African Rugby's 2013 Census. Catastrophic injuries were analysed from BokSmart's serious injury database. Incidence rates with 95% Confidence Intervals were calculated. Catastrophic injuries (Acute Spinal Cord Injuries and catastrophic Traumatic Brain Injuries) within Unions were compared statistically, using a Poisson regression with Incidence Rate Ratios (IRR) and a 95% confidence level (p<0.05). Catastrophic injury incidence rates per Union ranged from 1.8 per 100000 players (95% CI: 0.0-6.5) to 7.9 (95% CI: 0.0-28.5) per 100000 players per year. The highest incidence rate of permanent outcome Acute Spinal Cord Injuries was reported at 7.1 per 100000 players (95% CI: 0.0-17.6). Compared to this Union, five (n=5/14, 36%) of the Unions had significantly lower incidence rates of Acute Spinal Cord Injuries. Proportionately, three Unions had more Acute Spinal Cord Injuries and three other Unions had more catastrophic Traumatic Brain Injuries. There were significant differences in the catastrophic injury incidence rates amongst the Provincial Unions in South Africa. Future studies should investigate the underlying reasons contributing to these provincial differences. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Phosphorylated neurofilament subunit NF-H as a biomarker for evaluating the severity of spinal cord injury patients, a pilot study.

    PubMed

    Hayakawa, K; Okazaki, R; Ishii, K; Ueno, T; Izawa, N; Tanaka, Y; Toyooka, S; Matsuoka, N; Morioka, K; Ohori, Y; Nakamura, K; Akai, M; Tobimatsu, Y; Hamabe, Y; Ogata, T

    2012-07-01

    A pilot cross-sectional study of patients with acute cervical spinal cord injury (SCI). The precise evaluation of the severity of SCI is important for developing novel therapies. Although several biomarkers in cerebrospinal fluid have been tested, few analyses of blood samples have been reported. A novel biomarker for axonal injury, phosphorylated form of the high-molecular-weight neurofilament subunit NF-H (pNF-H), has been reported to be elevated in blood from rodent SCI model. The aim of this study is to investigate whether pNF-H values in blood can serve as a biomarker to evaluate the severity of patients with SCI. Tokyo Metropolitan Bokutoh Hospital and National Rehabilitation Center, Japan. This study enrolled 14 patients with acute cervical SCI. Sequential plasma samples were obtained from 6 h to 21 days after injury. Patients were classified according to American Spinal Injury Association impairment scale (AIS) at the end of the follow-up (average, 229.1 days). Plasma pNF-H values were compared between different AIS grades. In patients with complete SCI, pNF-H became detectable at 12 h after injury and remained elevated at 21 days after injury. There was a statistically significant difference between AIS A (complete paralysis) patients and AIS C (incomplete paralysis) patients. Plasma pNF-H was elevated in accordance with the severity of SCI and reflected a greater magnitude of axonal damage. Therefore, pNF-H is a potential biomarker to independently distinguish AIS A patients (complete SCI) from AIS C-E patients (incomplete SCI). However, further studies are required to evaluate its utility in predicting prognosis of patients in the incomplete category.

  14. Religiosity and Spirituality among Persons with Spinal Cord Injury: Attitudes, Beliefs, and Practices

    ERIC Educational Resources Information Center

    Marini, Irmo; Glover-Graf, Noreen M.

    2011-01-01

    A total of 157 persons with spinal cord injury completed the "Spirituality and Spinal Cord Injury Survey" in relation to their spiritual and/or religious attitudes, beliefs, and practices in terms of adapting to their disability. Factor analysis accounting for 69% of the variance revealed four factors related to Spiritual Help and Improvement…

  15. The Role of Hope in Spinal Cord Injury Rehabilitation.

    ERIC Educational Resources Information Center

    Heinemann, Allen; And Others

    Hope has motivational importance to individuals who have suffered a major physical loss. Theories of adjustment to a spinal cord injury take one of three approaches: (1) premorbid personality, which highlights the individual's past experiences, personal meanings, and body image; (2) typologies of injury reactions, which range from normal to…

  16. Preventive Effect of Intrathecal Paracetamol on Spinal Cord Injury in Rats

    PubMed Central

    Sahin, Murat; Sayar, Ilyas; Peker, Kemal; Gullu, Huriye; Yildiz, Huseyin

    2014-01-01

    Background: Ischemic injury of the spinal cord during the surgical repair of thoracoabdominal aortic aneurysms might lead to paraplegia. Although a number of different mechanisms have been proposed, the exact cause of paraplegia has remained unknown, hampering the development of effective pharmacologic or other strategies for prevention of this condition. A number of studies suggested that cyclooxygenases (COX) contribute to neural breakdown; thus, COX inhibitors might reduce injury. Objectives: We aimed to assess the preventive effect of intrathecal (IT) pretreatment with paracetamol on spinal cord injury in a rat model. Materials and Methods: This experimental study was performed in Ataturk University Animal Research Laboratory Center, Erzurum, Turkey. Adult male Wistar rats were randomly allocated to three experimental groups (n = 6) to receive IT physiologic saline (controls), 50 µg of paracetamol, or 100 µg paracetamol one hour before induction of spinal cord ischemia. Six other rats were considered as the sham group. For the assessment of ischemic injury, motor functions of the hind limbs and histopathologic changes of the lumbar spinal cord were evaluated. Additional 20 rats were divided into two equal groups for the second part of the study where the survival rates were recorded in controls and in animals receiving 100 µg of paracetamol during the 28-day observation period. Results: Pretreatment with 100 µg of paracetamol resulted in a significant improvement in motor functions and histopathologic findings (P < 0.05). Despite a higher rate of survival in 100 µg of paracetamol group (70%) at day 28, the difference was not statistically significant in comparison with controls. Conclusions: Our results suggest a protective effect of pretreatment with IT paracetamol on ischemic spinal cord injury during thoracolumbar aortic aneurysm surgery. PMID:25763224

  17. Serious neck injuries in U19 rugby union players: an audit of admissions to spinal injury units in Great Britain and Ireland.

    PubMed

    MacLean, James G B; Hutchison, James D

    2012-06-01

    To obtain data regarding admissions of U19 rugby players to spinal injury units in Great Britain and Ireland and to compare this with a recent peak in presentation in Scotland. To assess the current state of data collection and subsequent analysis of serious neck injuries. To analyse the mechanism of injury in this group of at-risk players. Retrospective case series. Spinal injury units in Great Britain and Ireland. Annual frequency of serious neck injuries. Analysis of injury types, neurological deficit and mechanism of injury. 36 Injuries were recorded. 10 Of these occurred in Scotland since 1996 of which six have occurred in the past 4 years. This compared with 14 in Ireland over the same period. 12 Cases were traced in England and Wales since 2000; records were not available before this date. No prospective collation of data is performed by the home unions and inconsistency of data collection exists. The mean age was 16.2 years. 16 Of the 36 admissions had complete neurological loss, 9 had incomplete neurological injury and 11 had cervical column injury without spinal cord damage. The mechanism of injury was tackle in 17 (47%), scrum in 13 (36%), two each due to the maul and collision, and one each due to a kick and a ruck. Some degree of spinal cord injury occurred in 92% of scrum injuries (61% complete) and 53% of tackle injuries (29% complete). U19 rugby players continue to sustain serious neck injuries necessitating admission to spinal injury units with a low but persistent frequency. The recent rate of admission in Scotland is disproportionately high when the respective estimated playing populations are considered. While more injuries were sustained in the tackle, spinal cord injury was significantly more common in neck injury sustained in the scrum (p<0.001). No register of catastrophic neck injuries exists despite repeated calls over the past three decades, and a study such as this has not been reported before. Data collection of this serious category of

  18. Acute Kidney Injury in the Elderly

    PubMed Central

    Abdel-Kader, Khaled; Palevsky, Paul

    2009-01-01

    Synopsis The aging kidney undergoes a number of important anatomic and physiologic changes that increase the risk of acute kidney injury (formerly acute renal failure) in the elderly. This article reviews these changes and discusses the diagnoses frequently encountered in the elderly patient with acute kidney injury. The incidence, staging, evaluation, management, and prognosis of acute kidney injury are also examined with special focus given to older adults. PMID:19765485

  19. Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery.

    PubMed

    Requejo-Aguilar, Raquel; Alastrue-Agudo, Ana; Cases-Villar, Marta; Lopez-Mocholi, Eric; England, Richard; Vicent, María J; Moreno-Manzano, Victoria

    2017-01-01

    Spinal cord injury (SCI) suffers from a lack of effective therapeutic strategies. Animal models of acute SCI have provided evidence that transplantation of ependymal stem/progenitor cells of the spinal cord (epSPCs) induces functional recovery, while systemic administration of the anti-inflammatory curcumin provides neuroprotection. However, functional recovery from chronic stage SCI requires additional enhancements in available therapeutic strategies. Herein, we report on a combination treatment for SCI using epSPCs and a pH-responsive polymer-curcumin conjugate. The incorporation of curcumin in a pH-responsive polymeric carrier mainchain, a polyacetal (PA), enhances blood bioavailability, stability, and provides a means for highly localized delivery. We find that PA-curcumin enhances neuroprotection, increases axonal growth, and can improve functional recovery in acute SCI. However, when combined with epSPCs, PA-curcumin also enhances functional recovery in a rodent model of chronic SCI. This suggests that combination therapy may be an exciting new therapeutic option for the treatment of chronic SCI in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    PubMed Central

    2010-01-01

    Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation

  1. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    PubMed

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be

  2. Intramedullary pressure changes in rats after spinal cord injury.

    PubMed

    Dong, X; Yang, D; Li, J; Liu, C; Yang, M; Du, L; Gu, R; Hu, A; Zhang, H

    2016-11-01

    The objectives of this study were to explore the change of intramedullary pressure over time in rats after different degrees of spinal cord contusion injury and to verify the hypothesis that the more serious the injury, the higher the intramedullary pressure. The control group rats underwent laminectomy only, whereas the rats in the three experimental groups were subjected to mild, moderate or severe 10th thoracic cord (T10) contusion injury after laminectomy. In addition, an intramedullary pressure of T10 was measured by a Millar Mikro-Tip pressure catheter (Millar Incorporated Company, Houston, TX, USA) immediately in the control group or at different time points after injury in the experimental groups. The average intramedullary pressure of the rats in the control group was 6.88±1.67 mm Hg, whereas that of the rats in any injury group was significantly higher (P=0.000). There was statistical difference among the different time points in the mild or moderate injury group (P=0.007/0.017), but no in the severe (P=0.374). The curves of intramedullary pressure over time in the mild and moderate injury group were bimodal, peaking at 1 and 48 h after the injury. The intramedullary pressure after injury was positively correlated with the injury degree (r=0.438, P=0.000). The intramedullary pressure of the rats increased after traumatic spinal cord injury. If the injury was not serious, the intramedullary pressure fluctuated with time and peaked at 1 and 48 h after injury. If the injury was serious, the intramedullary pressure remained high. The more serious the injury, the higher the intramedullary pressure.

  3. The human natural killer-1 (HNK-1) glycan mimetic ursolic acid promotes functional recovery after spinal cord injury in mouse.

    PubMed

    Sahu, Sudhanshu; Li, Rong; Kadeyala, Praveen Kumar; Liu, Shisong; Schachner, Melitta

    2018-05-01

    Human natural killer-1 (HNK-1) cell antigen is a glycan epitope involved in several neural events, such as neuritogenesis, myelination, synaptic plasticity and regeneration of the nervous system after injury. We have recently identified the small organic compound ursolic acid (UA) as a HNK-1 mimetic with the aim to test its therapeutic potential in the central nervous system. UA, a plant-derived pentacyclic triterpenoid, is well known for its multiple biological functions, including neuroprotective, antioxidant and anti-inflammatory activities. In the present study, we evaluated its functions in a mouse model of spinal cord injury (SCI) and explored the molecular mechanisms underlying its positive effects. Oral administration of UA to mice 1 h after SCI and thereafter once daily for 6 weeks enhanced the regaining of motor functions and axonal regrowth, and decreased astrogliosis. UA administration decreased levels of proinflammatory markers, including interleukin-6 and tumor necrosis factor-α, in the injured spinal cord at the acute phase of inflammation and activated the mitogen-activated protein kinase and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways in the injured spinal cord. Taken together, these results suggest that UA may be a candidate for treatment of nervous system injuries. Copyright © 2017. Published by Elsevier Inc.

  4. The adult spinal cord injury without radiographic abnormalities syndrome: magnetic resonance imaging and clinical findings in adults with spinal cord injuries having normal radiographs and computed tomography studies.

    PubMed

    Kasimatis, Georgios B; Panagiotopoulos, Elias; Megas, Panagiotis; Matzaroglou, Charalambos; Gliatis, John; Tyllianakis, Minos; Lambiris, Elias

    2008-07-01

    Spinal cord injury without radiographic abnormalities (SCIWORA) is thought to represent mostly a pediatric entity and its incidence in adults is rather underreported. Some authors have also proposed the term spinal cord injury without radiologic evidence of trauma, as more precisely describing the condition of adult SCIWORA in the setting of cervical spondylosis. The purpose of the present study was to evaluate adult patients with cervical spine injuries and radiological-clinical examination discrepancy, and to discuss their characteristics and current management. During a 16-year period, 166 patients with a cervical spine injury were admitted in our institution (Level I trauma center). Upper cervical spine injuries (occiput to C2, 54 patients) were treated mainly by a Halo vest, whereas lower cervical spine injuries (C3-T1, 112 patients) were treated surgically either with an anterior, or posterior procedure, or both. Seven of these 166 patients (4.2%) had a radiologic-clinical mismatch, i.e., they presented with frank spinal cord injury with no signs of trauma, and were included in the study. Magnetic resonance imaging was available for 6 of 7 patients, showing intramedullary signal changes in 5 of 6 patients with varying degrees of compression from the disc and/or the ligamentum flavum, whereas the remaining patient had only traumatic herniation of the intervertebral disc and ligamentum flavum bulging. Follow-up period was 6.4 years on average (1-10 years). This retrospective chart review provides information on adult patients with cervical spinal cord injuries whose radiographs and computed tomography studies were normal. It furthers reinforces the pathologic background of SCIWORA in an adult population, when evaluated by magnetic resonance imaging. Particularly for patients with cervical spondylosis, special attention should be paid with regard to vascular compromise by predisposing factors such as smoking or vascular disease, since they probably contribute in

  5. Functional MR imaging of the spinal cord in cervical spinal cord injury patients by acupuncture at LI 4 (Hegu) and LI 11(Quchi).

    PubMed

    Chen, Y X; Kong, K M; Wang, W D; Xie, C H; Wu, R H

    2007-01-01

    To investigate the cervical spinal cord mapping on acupuncture at LI 4 (Hegu) and LI 11 (Quchi) by using 'Signal Enhancement by Extravascular water Protons' (SEEP)-fMRI, and to establish the response of using acupuncture in the cervical spinal cord. This research may provide some laboratory evidences from the acupuncture treatment on the cervical spinal cord of injuried patients. Seven healthy volunteers (healthy group) and three cervical spinal cord injury patients (injury group) were underwent low-frequency electrical stimulation at LI 4 and LI 11. Meanwhile, a single-shot fast spin-echo (SSFSE) sequence was used to perform functional MR imaging on a 1.5 T GE Signa MR system. The signals from the cervical spinal cord activated was measured both in sagittal and transverse imaging planes and then analyzed by AFNI (Analysis of Functional Neuroimages) system. It was found that in the sagittal view, two groups had an fMRI response in the cervical spinal cord after given acupuncture treatments at LI 4 and LI 11. The localizations of the segmental fMRI activation were focused at C6 and C2 cervical spinal cord level. In the transverse imaging plane, significant fMRI responses could be measured from the four of seven healthy volunteers and from two of three cervical spinal cord injury patients. They were located at C6/7 segments. The cross-sectional localization of the activity measured in the spinal cord was most in terms of the ipsilateral posterior direction. The signal amplitude varied mainly between 6.8%17.8%. However, the difference found between the two groups had no statistical meaning. The fMRI technique had detected an activation focused at C6 and C2 cervical spinal cord levels by use of acupuncture at LI 4 and LI 11 on a 1.5T GE clinical system. This proved that the meridians and points are found to be in existence. The fMRI can be used as a harmless research method to discuss the mechanisms of acupuncture as well as study the mechanisms of spinal cord diseases

  6. Co-Ultramicronized Palmitoylethanolamide/Luteolin Promotes Neuronal Regeneration after Spinal Cord Injury

    PubMed Central

    Crupi, Rosalia; Impellizzeri, Daniela; Bruschetta, Giuseppe; Cordaro, Marika; Paterniti, Irene; Siracusa, Rosalba; Cuzzocrea, Salvatore; Esposito, Emanuela

    2016-01-01

    Spinal cord injury (SCI) stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultraPEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5–T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally) daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor, and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases. PMID:27014061

  7. Upregulation of PSMB4 is Associated with the Necroptosis after Spinal Cord Injury.

    PubMed

    Wu, Chunshuai; Chen, Jiajia; Liu, Yonghua; Zhang, Jinlong; Ding, Wensen; Wang, Song; Bao, Guofeng; Xu, Guanhua; Sun, Yuyu; Wang, Lingling; Chen, Limin; Gu, Haiyan; Cui, Baihong; Cui, Zhiming

    2016-11-01

    Spinal cord injury (SCI) is one of the most common and severe complications in spine injury. It is difficult to prevent cell necroptosis and promote the survival of residual neurons after SCI. Proteasome beta-4 subunit (PSMB4) is the first proteasomal subunit with oncogenic properties promoting cancer cell survival and tumor growth in vivo, and our previous study showed that PSMB4 is significantly associated with neuronal apoptosis in neuroinflammation. However, PSMB4 function in the necroptosis after SCI is unkown. RIP3, a key regulatory factor of necroptosis, correlates with the induction of necroptosis in various types of cells and signaling pathway. Upregulation of the RIP3 expression may play a role as a novel molecular mechanism in secondary neural tissue damage following SCI. In this study, we established an acute spinal cord contusion injury model in adult rats to investigate the potential role of PSMB4 during the pathological process of SCI. We found PSMB4 expression was significantly up-regulated 3 days after injury by western blot and immunohistochemical staining. Double immunofluorescent staining indicated obvious changes of PSMB4 expression occurred in neurons. Significant up-regulation of PSMB4 expression was observed in Rip3 positive neurons at 3 days after SCI, which indicated that PSMB4 might play a vital role in the regulation of Rip3. Overexpress and knockdown PSMB4 could intervene the RIP3 and Mixed lineage kinase domain-like protein (MLKL) pathway in Tumor necrosis factor-α (TNF-α) induced necroptosis cell model. Based on our experimental data, we boldly conclude that PSMB4 is associated with RIP3 involved necroptosis after SCI.

  8. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl

    PubMed Central

    Sabin, Keith; Santos-Ferreira, Tiago; Essig, Jaclyn; Rudasill, Sarah; Echeverri, Karen

    2016-01-01

    Salamanders, such as the Mexican axolotl, are some of the few vertebrates fortunate in their ability to regenerate diverse structures after injury. Unlike mammals they are able to regenerate a fully functional spinal cord after injury. However, the molecular circuitry required to initiate a pro-regenerative response after spinal cord injury is not well understood. To address this question we developed a spinal cord injury model in axolotls and used in vivo imaging of labeled ependymoglial cells to characterize the response of these cells to injury. Using in vivo imaging of ion sensitive dyes we identified that spinal cord injury induces a rapid and dynamic change in the resting membrane potential of ependymoglial cells. Prolonged depolarization of ependymoglial cells after injury inhibits ependymoglial cell proliferation and subsequent axon regeneration. Using transcriptional profiling we identified c-Fos as a key voltage sensitive early response gene that is expressed specifically in the ependymoglial cells after injury. This data establishes that dynamic changes in the membrane potential after injury are essential for regulating the specific spatiotemporal expression of c-Fos that is critical for promoting faithful spinal cord regeneration in axolotl. PMID:26477559

  9. Chronic Spinal Injury Repair by Olfactory Bulb Ensheathing Glia and Feasibility for Autologous Therapy

    PubMed Central

    Muñoz-Quiles, Cintia; Santos-Benito, Fernando F.; Llamusí, M. Beatriz; Ramón-Cueto, Almudena

    2009-01-01

    Olfactory bulb ensheathing glia (OB-OEG) promote repair of spinal cord injury (SCI) in rats after transplantation at acute or subacute (up to 45 days) stages. The most relevant clinical scenario in humans, however, is chronic SCI, in which no more major cellular or molecular changes occur at the injury site; this occurs after the third month in rodents. Whether adult OB-OEG grafts promote repair of severe chronic SCI has not been previously addressed. Rats with complete SCI that were transplanted with OB-OEG 4 months after injury exhibited progressive improvement in motor function and axonal regeneration from different brainstem nuclei across and beyond the SCI site. A positive correlation between motor outcome and axonal regeneration suggested a role for brainstem neurons in the recovery. Functional and histological outcomes did not differ at subacute or chronic stages. Thus, autologous transplantation is a feasible approach as there is time for patient stabilization and OEG preparation in human chronic SCI; the healing effects of OB-OEG on established injuries may offer new therapeutic opportunities for chronic SCI patients. PMID:19915486

  10. Mechanical ventilation weaning and extubation after spinal cord injury: a Western Trauma Association multicenter study.

    PubMed

    Kornblith, Lucy Z; Kutcher, Matthew E; Callcut, Rachael A; Redick, Brittney J; Hu, Charles K; Cogbill, Thomas H; Baker, Christopher C; Shapiro, Mark L; Burlew, Clay C; Kaups, Krista L; DeMoya, Marc A; Haan, James M; Koontz, Christopher H; Zolin, Samuel J; Gordy, Stephanie D; Shatz, David V; Paul, Doug B; Cohen, Mitchell J

    2013-12-01

    Respiratory failure after acute spinal cord injury (SCI) is well recognized, but data defining which patients need long-term ventilator support and criteria for weaning and extubation are lacking. We hypothesized that many patients with SCI, even those with cervical SCI, can be successfully managed without long-term mechanical ventilation and its associated morbidity. Under the auspices of the Western Trauma Association Multi-Center Trials Group, a retrospective study of patients with SCI at 14 major trauma centers was conducted. Comprehensive injury, demographic, and outcome data on patients with acute SCI were compiled. The primary outcome variable was the need for mechanical ventilation at discharge. Secondary outcomes included the use of tracheostomy and development of acute lung injury and ventilator-associated pneumonia. A total of 360 patients had SCI requiring mechanical ventilation. Sixteen patients were excluded for death within the first 2 days of hospitalization. Of the 344 patients included, 222 (64.5%) had cervical SCI. Notably, 62.6% of the patients with cervical SCI were ventilator free by discharge. One hundred forty-nine patients (43.3%) underwent tracheostomy, and 53.7% of them were successfully weaned from the ventilator, compared with an 85.6% success rate among those with no tracheostomy (p < 0.05). Patients who underwent tracheostomy had significantly higher rates of ventilator-associated pneumonia (61.1% vs. 20.5%, p < 0.05) and acute lung injury (12.8% vs. 3.6%, p < 0.05) and fewer ventilator-free days (1 vs. 24 p < 0.05). When controlled for injury severity, thoracic injury, and respiratory comorbidities, tracheostomy after cervical SCI was an independent predictor of ventilator dependence with an associated 14-fold higher likelihood of prolonged mechanical ventilation (odds ratio, 14.1; 95% confidence interval, 2.78-71.67; p < 0.05). While many patients with SCI require short-term mechanical ventilation, the majority can be successfully

  11. Patient-focused goal planning process and outcome after spinal cord injury rehabilitation: quantitative and qualitative audit.

    PubMed

    Byrnes, Michelle; Beilby, Janet; Ray, Patricia; McLennan, Renee; Ker, John; Schug, Stephan

    2012-12-01

    To evaluate the process and outcome of a multidisciplinary inpatient goal planning rehabilitation programme on physical, social and psychological functioning for patients with spinal cord injury. Clinical audit: quantitative and qualitative analyses. Specialist spinal injury unit, Perth, Australia. Consecutive series of 100 newly injured spinal cord injury inpatients. MAIN MEASURE(S): The Needs Assessment Checklist (NAC), patient-focused goal planning questionnaire and goal planning progress form. The clinical audit of 100 spinal cord injured patients revealed that 547 goal planning meetings were held with 8531 goals stipulated in total. Seventy-five per cent of the goals set at the first goal planning meeting were achieved by the second meeting and the rate of goal achievements at subsequent goal planning meetings dropped to 56%. Based on quantitative analysis of physical, social and psychological functioning, the 100 spinal cord injury patients improved significantly from baseline to discharge. Furthermore, qualitative analysis revealed benefits consistently reported by spinal cord injury patients of the goal planning rehabilitation programme in improvements to their physical, social and psychological adjustment to injury. The findings of this clinical audit underpin the need for patient-focused goal planning rehabilitation programmes which are tailored to the individual's needs and involve a comprehensive multidisciplinary team.

  12. Bilateral spinal anterior horn lesions in acute motor axonal neuropathy.

    PubMed

    Sawada, Daisuke; Fujii, Katsunori; Misawa, Sonoko; Shiohama, Tadashi; Fukuhara, Tomoyuki; Fujita, Mayuko; Kuwabara, Satoshi; Shimojo, Naoki

    2018-05-28

    Guillain-Barré syndrome is an acute immune-mediated peripheral polyneuropathy. Neuroimaging findings from patients with this syndrome have revealed gadolinium enhancement in the cauda equina and in the anterior and posterior nerve roots, but intra-spinal lesions have never been described. Herein, we report, for the first time, bilateral spinal anterior horn lesions in a patient with an acute motor axonal neuropathy form of Guillain-Barré syndrome. The patient was a previously healthy 13-year-old Japanese girl, who exhibited acute-onset flaccid tetraplegia and loss of tendon reflexes. Nerve conduction studies revealed motor axonal damage, leading to the diagnosis of acute motor axonal neuropathy. Notably, spinal magnetic resonance imaging revealed bilateral anterior horn lesions on T2-weighted imaging at the Th11-12 levels, as well as gadolinium enhancement of the cauda equina and anterior and posterior nerve roots. The anterior horn lesions were most prominent on day 18, and their signal intensity declined thereafter. Although intravenous treatment with immunoglobulins was immediately administered, the motor function was not completely regained. We propose that anterior spinal lesions might be responsible for the prolonged neurological disability of patients with Guillain-Barré syndrome, possibly produced by retrograde progression from the affected anterior nerve roots to the intramedullary roots, and the anterior horn motor neurons. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  13. Effect of acute lateral hemisection of the spinal cord on spinal neurons of postural networks

    PubMed Central

    Zelenin, P. V.; Lyalka, V. F.; Orlovsky, G. N.; Deliagina, T. G.

    2016-01-01

    In quadrupeds, acute lateral hemisection of the spinal cord (LHS) severely impairs postural functions, which recover over time. Postural limb reflexes (PLRs) represent a substantial component of postural corrections in intact animals. The aim of the present study was to characterize the effects of acute LHS on two populations of spinal neurons (F and E) mediating PLRs. For this purpose, in decerebrate rabbits, responses of individual neurons from L5 to stimulation causing PLRs were recorded before and during reversible LHS (caused by temporal cold block of signal transmission in lateral spinal pathways at L1), as well as after acute surgical (Sur) LHS at L1. Results obtained after Sur-LHS were compared to control data obtained in our previous study. We found that acute LHS caused disappearance of PLRs on the affected side. It also changed a proportion of different types of neurons on that side. A significant decrease and increase in the proportion of F- and non-modulated neurons, respectively, was found. LHS caused a significant decrease in most parameters of activity in F-neurons located in the ventral horn on the lesioned side and in E-neurons of the dorsal horn on both sides. These changes were caused by a significant decrease in the efficacy of posture-related sensory input from the ipsilateral limb to F-neurons, and from the contralateral limb to both F- and E-neurons. These distortions in operation of postural networks underlie the impairment of postural control after acute LHS, and represent a starting point for the subsequent recovery of postural functions. PMID:27702647

  14. The Investigation of the Cox-2 Selective Inhibitor Parecoxib Effects in Spinal Cord Injury in Rat.

    PubMed

    Yuksel, Ulas; Bakar, Bulent; Dincel, Gungor Cagdas; Budak Yildiran, Fatma Azize; Ogden, Mustafa; Kisa, Ucler

    2018-01-22

    Today, spinal cord injury (SCI) can be rehabilitated but cannot be treated adequately. This experimental study was conducted to investigate possible beneficial effects of methylprednisolone and parecoxib in treatment of SCI. Forty-eight male Wistar albino rats were assigned into CONTROL, acute (MP-A, PX-A, and PXMP-A), and subacute (MP-S, PX-S, and PXMP-S) stage groups. Then, to induce SCI, a temporary aneurysm clip was applied to the spinal cord following T7-8 laminectomy, except in the CONTROL group. Four hours later parecoxib, methylprednisolone, or their combination was administered to rats intraperitoneally except CONTROL, SHAM-A, and SHAM-S groups. Rats in the acute stage group were sacrificed 72 h later, and whereas rats in the subacute stage were sacrificed 7 days later for histopathological and biochemical investigation and for gene-expression analyses. Parecoxib and methylprednisolone and their combination could not improve histopathological grades in any stage. They also could not decrease malondialdehyde or caspase-3, myeloperoxidase levels in any stage. Parecoxib and methylprednisolone could decrease the TNF-α gene expression in subacute stage. Methylprednisolone could increase TGF-1β gene-expression level in acute stage. Neither of the experimental drugs, either alone or in combination, did not show any beneficial effects in SCI model in rats.

  15. Childhood onset of spinal cord injury: self-esteem and self-perception.

    PubMed

    Kennedy, P; Gorsuch, N; Marsh, N

    1995-11-01

    The effects of spinal cord injury in childhood upon later psychological adjustment were investigated by comparing a group of 86 people injured as children with a control group (matched for time since injury and level of injury) of people injured as adults. It was hypothesized that adolescence is a crucial period in psychological development and that the effect of spinal cord injury on body image, self-concept and social relationships during adolescence will have a long-term negative effect on psychological well-being. However, on overall measures of depression, self-esteem and self-perception, there were no significant differences between the experimental and control groups. Furthermore, there were no significant differences between paraplegics and tetraplegics, between men women, or between those who were involved in a significant intimate relationship and those who were not. These findings support previous research which has suggested that organic variables, such as age at injury and level of injury, are not predictive of long-term psychological adjustment.

  16. International spinal cord injury cardiovascular function basic data set.

    PubMed

    Krassioukov, A; Alexander, M S; Karlsson, A-K; Donovan, W; Mathias, C J; Biering-Sørensen, F

    2010-08-01

    To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets. An international working group. The draft of the data set was developed by a working group comprising members appointed by the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the executive committee of the International SCI Standards and Data Sets. The final version of the data set was developed after review by members of the executive committee of the International SCI Standards and Data Sets, the ISCoS scientific committee, ASIA board, relevant and interested international organizations and societies, individual persons with specific interest and the ISCoS Council. To make the data set uniform, each variable and each response category within each variable have been specifically defined in a way that is designed to promote the collection and reporting of comparable minimal data. The variables included in the International SCI Cardiovascular Function Basic Data Set include the following items: date of data collection, cardiovascular history before the spinal cord lesion, events related to cardiovascular function after the spinal cord lesion, cardiovascular function after the spinal cord lesion, medications affecting cardiovascular function on the day of examination; and objective measures of cardiovascular functions, including time of examination, position of examination, pulse and blood pressure. The complete instructions for data collection and the data sheet itself are freely available on the websites of both ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org).

  17. Clinical Response of 277 Patients with Spinal Cord Injury to Stem Cell Therapy in Iraq

    PubMed Central

    Hammadi, Abdulmajeed Alwan; Marino, Andolina; Farhan, Saad

    2012-01-01

    Background and Objectives: Spinal cord injury is a common neurological problem secondary to car accidents, war injuries and other causes, it may lead to varying degrees of neurological disablement, and apart from physiotherapy there is no available treatment to regain neurological function loss. Our aim is to find a new method using autologous hematopoietic stem cells to gain some of the neurologic functions lost after spinal cord injury. Methods and Results: 277 patients suffering from spinal cord injury were submitted to an intrathecally treatment with peripheral stem cells. The cells were harvested from the peripheral blood after a treatment with G-CSF and then concentrated to 4∼ 6 ml. 43% of the patients improved; ASIA score shifted from A to B in 88 and from A to C in 32. The best results were achieved in patients treated within one year from the injury. Conclusions: Since mesenchymal cells increase in the peripheral blood after G-CSF stimulation, a peripheral blood harvest seems easier and cheaper than mesenchymal cell cultivation prior to injection. It seems reasonable treatment for spinal cord injury. PMID:24298358

  18. The impact of pain on spiritual well-being in people with a spinal cord injury.

    PubMed

    Siddall, P J; McIndoe, L; Austin, P; Wrigley, P J

    2017-01-01

    The study uses a cross-sectional, group comparison, questionnaire-based design. To determine whether spinal cord injury and pain have an impact on spiritual well-being and whether there is an association between spiritual well-being and measures of pain and psychological function. University teaching hospital in Sydney, New South Wales, Australia. Questionnaires evaluating pain, psychological and spiritual well-being were administered to a group of people with a spinal cord injury (n=53) and a group without spinal cord injury (n=37). Spiritual well-being was assessed using the Functional Assessment of Chronic Illness and Therapy - Spirituality Extended Scale (FACIT-Sp-Ex). Pain and psychological function were also assessed using standard, validated measures of pain intensity, pain interference, mood and cognition. Levels of spiritual well-being in people with a spinal cord injury were significantly lower when compared with people without a spinal cord injury. In addition, there was a moderate but significant negative correlation between spiritual well-being and pain intensity. There was also a strong and significant negative correlation between depression and spiritual well-being and a strong and significant positive correlation between spiritual well-being and both pain self-efficacy and satisfaction with life. Consequences of a spinal cord injury include increased levels of spiritual distress, which is associated, with higher levels of pain and depression and lower levels of pain self-efficacy and satisfaction with life. These findings indicate the importance of addressing spiritual well-being as an important component in the long-term rehabilitation of any person following spinal cord injury. This study was supported by grant funding from the Australian and New Zealand College of Anaesthetists, and the National Health and Medical Research Council of Australia.

  19. Transplants of Neurotrophin-Producing Autologous Fibroblasts Promote Recovery of Treadmill Stepping in the Acute, Sub-Chronic, and Chronic Spinal Cat.

    PubMed

    Krupka, Alexander J; Fischer, Itzhak; Lemay, Michel A

    2017-05-15

    Adult cats show limited spontaneous locomotor capabilities following spinal transection, but recover treadmill stepping with body-weight-supported training. Delivery of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and neurotrophic factor 3 (NT-3) can substitute for body-weight-supported training, and promotes a similar recovery in a shorter period of time. Autologous cell grafts would negate the need for the immunosuppressive agents currently used with most grafts, but have not shown functional benefits in incomplete spinal cord injury models and have never been tested in complete transection or chronic injury models. In this study, we explored the effects of autologous fibroblasts, prepared from the individual cats and modified to produce BDNF and NT-3, on the recovery of locomotion in acute, sub-chronic and chronic full-transection models of spinal injury. Fourteen female cats underwent complete spinal transection at T11/T12. Cats were separated into four groups: sham graft at the time of injury, and BDNF and NT-3 producing autologous fibroblasts grafted at the time of injury, 2 weeks after injury, or 6 weeks after injury. Kinematics were recorded 3 and 5 weeks after cell graft. Additional kinematic recordings were taken for some cats until 12 weeks post-graft. Eleven of 12 cats with neurotrophin-producing grafts recovered plantar weight-bearing stepping at treadmill speeds from 0.3 to 0.8 m/sec within 5 weeks of grafting, whereas control cats recovered poor quality stepping at low speeds only (≤ 0.4 m/sec). Further, kinematic measures in cats with grafts were closer to pre-transection values than those for controls, and recovery was maintained up to 12 weeks post-grafting. Our results show that not only are autologous neurotrophin-producing grafts effective at promoting recovery of locomotion, but that delayed delivery of neurotrophins does not diminish the therapeutic effect, and may improve outcome.

  20. Transplants of Neurotrophin-Producing Autologous Fibroblasts Promote Recovery of Treadmill Stepping in the Acute, Sub-Chronic, and Chronic Spinal Cat

    PubMed Central

    Krupka, Alexander J.; Fischer, Itzhak

    2017-01-01

    Abstract Adult cats show limited spontaneous locomotor capabilities following spinal transection, but recover treadmill stepping with body-weight-supported training. Delivery of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and neurotrophic factor 3 (NT-3) can substitute for body-weight-supported training, and promotes a similar recovery in a shorter period of time. Autologous cell grafts would negate the need for the immunosuppressive agents currently used with most grafts, but have not shown functional benefits in incomplete spinal cord injury models and have never been tested in complete transection or chronic injury models. In this study, we explored the effects of autologous fibroblasts, prepared from the individual cats and modified to produce BDNF and NT-3, on the recovery of locomotion in acute, sub-chronic and chronic full-transection models of spinal injury. Fourteen female cats underwent complete spinal transection at T11/T12. Cats were separated into four groups: sham graft at the time of injury, and BDNF and NT-3 producing autologous fibroblasts grafted at the time of injury, 2 weeks after injury, or 6 weeks after injury. Kinematics were recorded 3 and 5 weeks after cell graft. Additional kinematic recordings were taken for some cats until 12 weeks post-graft. Eleven of 12 cats with neurotrophin-producing grafts recovered plantar weight-bearing stepping at treadmill speeds from 0.3 to 0.8 m/sec within 5 weeks of grafting, whereas control cats recovered poor quality stepping at low speeds only (≤ 0.4 m/sec). Further, kinematic measures in cats with grafts were closer to pre-transection values than those for controls, and recovery was maintained up to 12 weeks post-grafting. Our results show that not only are autologous neurotrophin-producing grafts effective at promoting recovery of locomotion, but that delayed delivery of neurotrophins does not diminish the therapeutic effect, and may improve outcome. PMID:27829315

  1. Nitric oxide in microgravity-induced orthostatic intolerance: relevance to spinal cord injury

    NASA Technical Reports Server (NTRS)

    Vaziri, N. D.; Purdy, R. E. (Principal Investigator)

    2003-01-01

    Prolonged exposure to microgravity results in cardiovascular deconditioning which is marked by orthostatic intolerance in the returning astronauts and recovering bed-ridden patients. Recent studies conducted in our laboratories at University of California, Irvine have revealed marked elevation of nitric oxide (NO) production in the kidney, heart, brain, and systemic arteries coupled with significant reduction of NO production in the cerebral arteries of microgravity-adapted animals. We have further demonstrated that the observed alteration of NO metabolism is primarily responsible for the associated cardiovascular deconditioning. Recovery from acute spinal cord injury (SCI) is frequently complicated by orthostatic intolerance that is due to the combined effects of the disruption of efferent sympathetic pathway and cardiovascular deconditioning occasioned by prolonged confinement to bed. In this presentation, I will review the nature of altered NO metabolism and its role in the pathogenesis of microgravity-induced cardiovascular deconditioning. The possible relevance of the new findings to orthostatic intolerance in patients with acute SCI and its potential therapeutic implications will be discussed.

  2. The international spinal cord injury pain basic data set.

    PubMed

    Widerström-Noga, E; Biering-Sørensen, F; Bryce, T; Cardenas, D D; Finnerup, N B; Jensen, M P; Richards, J S; Siddall, P J

    2008-12-01

    To develop a basic pain data set (International Spinal Cord Injury Basic Pain Data Set, ISCIPDS:B) within the framework of the International spinal cord injury (SCI) data sets that would facilitate consistent collection and reporting of pain in the SCI population. International. The ISCIPDS:B was developed by a working group consisting of individuals with published evidence of expertise in SCI-related pain regarding taxonomy, psychophysics, psychology, epidemiology and assessment, and one representative of the Executive Committee of the International SCI Standards and Data Sets. The members were appointed by four major organizations with an interest in SCI-related pain (International Spinal Cord Society, ISCoS; American Spinal Injury Association, ASIA; American Pain Society, APS and International Association for the Study of Pain, IASP). The initial ISCIPDS:B was revised based on suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the ISCoS Scientific Committee, ASIA and APS Boards, and the Neuropathic Pain Special Interest Group of the IASP, individual reviewers and societies and the ISCoS Council. The final ISCIPDS:B contains core questions about clinically relevant information concerning SCI-related pain that can be collected by health-care professionals with expertise in SCI in various clinical settings. The questions concern pain severity, physical and emotional function and include a pain-intensity rating, a pain classification and questions related to the temporal pattern of pain for each specific pain problem. The impact of pain on physical, social and emotional function, and sleep is evaluated for each pain.

  3. Spasticity therapy reacts to astrocyte GluA1 receptor upregulation following spinal cord injury

    PubMed Central

    Gómez-Soriano, Julio; Goiriena, Eider; Taylor, Julian

    2010-01-01

    For almost three decades intrathecal baclofen therapy has been the standard treatment for spinal cord injury spasticity when oral medication is ineffective or produces serious side effects. Although intrathecal baclofen therapy has a good clinical benefit-risk ratio for spinal spasticity, tolerance and the life-threatening withdrawal syndrome present serious problems for its management. Now, in an experimental model of spinal cord injury spasticity, AMPA receptor blockade with NGX424 (Tezampanel) has been shown to reduce stretch reflex activity alone and during tolerance to intrathecal baclofen therapy. These results stem from the observation that GluA1 receptors are overexpressed on reactive astrocytes following experimental ischaemic spinal cord injury. Although further validation is required, the appropriate choice of AMPA receptor antagonists for treatment of stretch hyperreflexia based on our recent understanding of reactive astrocyte neurobiology following spinal cord injury may lead to the development of a better adjunct clinical therapy for spasticity without the side effects of intrathecal baclofen therapy. LINKED ARTICLE This article is a commentary on Oshiro et al., pp. 976–985 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2010.00954.x PMID:20662840

  4. The Lesioned Spinal Cord Is a “New” Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey

    PubMed Central

    Parker, David

    2017-01-01

    Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where

  5. Ancient observation of spinal cord injury: the case of the Assiryan lion.

    PubMed

    Luvizutto, Gustavo J; Siqueira, Emerson G; Hamamoto Filho, Pedro Tadao; Zétola, Viviane F; Lange, Marcos C; Theive, Hélio A; Resende, Luiz A; Bazan, Rodrigo

    2018-05-19

    The description of paraplegia is considered a milestone in the history of neurology. The Egyptians provided excellent descriptions of spinal cord injuries, the Bible has several references to paraplegia, and, more recently, the pioneers of neurology described the classic syndromes related to spinal injuries and paraplegia. Here, we describe an ancient observation by the Assyrian people of paraplegia in an animal. In ancient Assyria, lion hunting was a ritualized activity conducted for political and religious purposes. The Lion Hunt of Ashurbanipal, a series of Assyrian palace reliefs from the North Palace at Nineveh dating from approximately 645 BCE, which is now in the British Museum in London, UK, shows King Ashurbanipal hunting lions. Applying modern knowledge of mammalian dermatomes to the images, we reveal a detailed and precise observation of paraplegia following spinal cord injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Factors predicting publication of spinal cord injury trials registered on www.ClinicalTrials. gov.

    PubMed

    DePasse, J Mason; Park, Sara; Eltorai, Adam E M; Daniels, Alan H

    2018-02-06

    Treatment options for spinal cord injuries are currently limited, but multiple clinical trials are underway for a variety of interventions, drugs, and devices. The Food and Drug Administration website www.ClinicalTrials.gov catalogues these trials and includes information on the status of the trial, date of initiation and completion, source of funding, and region. This investigation assesses the factors associated with publication and the publication rate of spinal cord injury trials. Retrospective analysis of publically available data on www.ClinicalTrials.gov. The www.ClinicalTrials.gov was queried for all trials on patients with spinal cord injury, and these trials were assessed for status, type of intervention, source of funding, and region. Multiple literature searches were performed on all completed trials to determine publication status. There were 626 studies identified concerning the treatment of patients with spinal cord injury, of which 250 (39.9%) were completed. Of these, only 119 (47.6%) were published. There was no significant difference in the rate of publication between regions (p> 0.16) or by study type (p> 0.29). However, trials that were funded by the NIH were more likely to be published than trials funded by industry (p= 0.01). The current publication rate of spinal cord injury trials is only 47.6%, though this rate is similar to the publication rate for trials in other fields. NIH-funded trials are significantly more likely to become published than industry-funded trials, which could indicate that some trials remain unpublished due to undesirable results. However, it is also likely that many trials on spinal cord injury yield negative results, as treatments are often ineffective.

  7. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a National Institutes of Health-Sponsored clinical trial. Part II: clinical outcomes.

    PubMed

    DiMarco, Anthony F; Kowalski, Krzysztof E; Geertman, Robert T; Hromyak, Dana R; Frost, Fredrick S; Creasey, Graham H; Nemunaitis, Gregory A

    2009-05-01

    To evaluate the clinical effects of spinal cord stimulation (SCS) to restore cough in subjects with cervical spinal cord injury. Clinical trial assessing the clinical outcomes and side effects associated with the cough system. Outpatient hospital or residence. Subjects (N=9; 8 men, 1 woman) with cervical spinal cord injury. SCS was performed at home by either the subjects themselves or caregivers on a chronic basis and as needed for secretion management. Ease in raising secretions, requirement for trained caregiver support related to secretion management, and incidence of acute respiratory tract infections. The degree of difficulty in raising secretions improved markedly, and the need for alternative methods of secretion removal was virtually eliminated. Subject life quality related to respiratory care improved, with subjects reporting greater control of breathing problems and enhanced mobility. The incidence of acute respiratory tract infections fell from 2.0+/-0.5 to 0.7+/-0.4 events/subject year (P<.01), and mean level of trained caregiver support related to secretion management measured over a 2-week period decreased from 16.9+/-7.9 to 2.1+/-1.6 and 0.4+/-0.3 times/wk (P<.01) at 28 and 40 weeks after implantation of the device, respectively. Three subjects developed mild hemodynamic effects that abated completely with continued SCS. Subjects experienced mild leg jerks during SCS, which were well tolerated. There were no instances of bowel or bladder leakage. Restoration of cough via SCS is safe and efficacious. This method improves life quality and has the potential to reduce the morbidity and mortality associated with recurrent respiratory tract infections in this patient population.

  8. Imaging of acute cervical spine injuries: review and outlook.

    PubMed

    Tins, B J; Cassar-Pullicino, V N

    2004-10-01

    Advances in imaging technology have been successfully applied in the emergency trauma setting with great benefit providing early, accurate and efficient diagnoses. Gaps in the knowledge of imaging acute spinal injury remain, despite a vast wealth of useful research and publications on the role of CT and MRI. This article reviews in a balanced manner the main questions that still face the attending radiologist by embracing the current and evolving concepts to help define and provide answers to the following; Imaging techniques -- strengths and weaknesses; what are the implications of a missed cervical spine injury?; who should be imaged?; how should they be imaged?; spinal immobilisation -- help or hazard?; residual open questions; what does all this mean?; and what are the implications for the radiologist? Although there are many helpful guidelines, the residual gaps in the knowledge base result in incomplete answers to the questions posed. The identification of these gaps in knowledge however should act as the initiating stimulus for further research. All too often there is a danger that the performance and productivity of the imaging modalities is the main research focus and not enough attention is given to the two fundamental prerequisites to the assessment of any imaging technology -- the clinical selection criteria for imaging and the level of expertise of the appropriate clinician interpreting the images.

  9. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury.

    PubMed

    Wenger, Nikolaus; Moraud, Eduardo Martin; Raspopovic, Stanisa; Bonizzato, Marco; DiGiovanna, Jack; Musienko, Pavel; Morari, Manfred; Micera, Silvestro; Courtine, Grégoire

    2014-09-24

    Neuromodulation of spinal sensorimotor circuits improves motor control in animal models and humans with spinal cord injury. With common neuromodulation devices, electrical stimulation parameters are tuned manually and remain constant during movement. We developed a mechanistic framework to optimize neuromodulation in real time to achieve high-fidelity control of leg kinematics during locomotion in rats. We first uncovered relationships between neuromodulation parameters and recruitment of distinct sensorimotor circuits, resulting in predictive adjustments of leg kinematics. Second, we established a technological platform with embedded control policies that integrated robust movement feedback and feed-forward control loops in real time. These developments allowed us to conceive a neuroprosthetic system that controlled a broad range of foot trajectories during continuous locomotion in paralyzed rats. Animals with complete spinal cord injury performed more than 1000 successive steps without failure, and were able to climb staircases of various heights and lengths with precision and fluidity. Beyond therapeutic potential, these findings provide a conceptual and technical framework to personalize neuromodulation treatments for other neurological disorders. Copyright © 2014, American Association for the Advancement of Science.

  10. A study of burden of care and its correlates among family members supporting relatives and loved ones with traumatic spinal cord injuries.

    PubMed

    Castellano-Tejedor, Carmina; Lusilla-Palacios, Pilar

    2017-07-01

    To understand and describe in a sample of caregivers of persons with spinal cord injury, their burden of care, resilience and life satisfaction and to explore the relationship between these variables. Cross-sectional design. One Spinal Cord Injury Acute Inpatient Unit from a general hospital. Seventy-five relatives of persons with spinal cord injuries (84% women) with a mean age of 48.55 ( SD = 12.55) years. None. Demographics (neurological loss and severity according to the American Spinal Injury Association criteria), the Zarit Burden Interview, the Resilience Scale and the Life Satisfaction Checklist. All caregivers experienced feelings of different intensities of burden (52% mild-to-moderate, 43% moderate-to-severe and 5% severe), and none of them expressed little or no burden at the assessment moment. Caregivers' main worries were "dependence" and "the future of the injured." Resilience was medium-to-high (mean = 141.93, SD = 23.44) for the whole sample with just a minority of them revealing low (15%) or very low resilience (7%). The highest scores were obtained in relation to "caregivers' independence" and "meaning of their lives." Life satisfaction scores were medium-to-high (mean = 36.6, SD = 6). These scores were not related to demographics or the severity of the injury. Zarit Burden Interview scores were negatively correlated to Resilience Scale ( r = -.370, P = .001) and Life Satisfaction Checklist scores ( r = -.412, P < .001). More resilient and satisfied caregivers experienced lower burden. Burden is moderate-to-high and mainly related to uncertainty about the future, caregivers' insecurity with caregiving and dependence of the injured.

  11. Effectiveness of minocycline and FK506 alone and in combination on enhanced behavioral and biochemical recovery from spinal cord injury in rats.

    PubMed

    Ahmad, Mohammad; Zakaria, Abdulrahim; Almutairi, Khalid M

    2016-06-01

    Injury to the spinal cord results in immediate physical damage (primary injury) followed by a prolonged posttraumatic inflammatory disorder (secondary injury). The present study aimed to investigate the neuroprotective effects of minocycline and FK506 (Tacrolimus) individually and in combination on recovery from experimental spinal cord injury (SCI). Young adult male rats were subjected to experimental SCI by weight compression method. Minocycline (50mg/kg) and FK506 (1mg/kg) were administered orally in combination and individually to the SCI group daily for three weeks. During these three weeks, the recovery was measured using behavioral motor parameters (including BBB, Tarlov and other scorings) every other day for 29days after SCI. Thereafter, the animals were sacrificed and the segment of the spinal cord centered at the injury site was removed for the histopathological studies as well as for biochemical analysis of monoamines such as 5-hydroxytryptamine (5-HT) and 5-hydroxy-indolacetic acid (5-HIAA) and some oxidative stress indices, such as thiobarbituric acid-reactive substances (TBARS), total glutathione (GSH) and myeloperoxidase (MPO). All behavioral results indicated that both drugs induced significant recovery from SCI with respect to time. The biochemical and histopathological results supported the behavioral findings, revealing significant recovery in the regeneration of the injured spinal tissues, the monoamine levels, and the oxidative stress indices. Overall, the effects of the tested drugs for SCI recovery were as follows: FK506+minocycline>minocycline>FK506 in all studied parameters. Thus, minocycline and FK506 may prove to be a potential therapy cocktail to treat acute SCI. However, further studies are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A Systematic Review of Mesenchymal Stem Cells in Spinal Cord Injury, Intervertebral Disc Repair and Spinal Fusion.

    PubMed

    Khan, Shujhat; Mafi, Pouya; Mafi, Reza; Khan, Wasim

    2018-01-01

    Spinal surgery presents a challenge for both neurosurgery and orthopaedic surgery. Due to the heterogeneous differentiation potential of mesenchymal stem cells, there is much interest in the treatment of spine surgery. Animal and human trials focussing on the efficacy of mesenchymal stem cells in spinal cord injury, spine fusion and disc degeneration were included in this systematic review. Published articles up to January 2016 from MEDLINE, PubMed and Ovid were used by searching for specific terms. Of the 2595 articles found, 53 met the selection criteria and were included for analysis (16 on spinal cord injury, 28 on intervertebral disc repair and 9 on spinal fusion). Numerous studies reported better results when the mesenchymal stem cells were used in co-culture with other cells or used in scaffolds. Mesenchymal stem cells were also found to have an immune-modulatory role, which can improve surgical outcome. This systematic review suggests that mesenchymal stem cells can be used safely and effectively for these spinal surgery treatments. Whilst, in certain studies, mesenchymal stem cells did not necessarily show improved results from existing treatments, they provide an alternative option. This can reduce morbidity that arises from current surgical treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Pain following Spinal Cord Injury: The Impact on Community Reintegration

    PubMed Central

    Donnelly, Catherine; Eng, Janice J

    2011-01-01

    Study Design Prospective, correlational Objectives 1) describe how pain changes over recovery from admission to spinal cord injury (SCI) rehabilitation, discharge and after 6 months of community living and 2) examine the relationship between pain and community integration at 6 months of community living. Setting Tertiary rehabilitation centre, spinal cord injury unit, Vancouver, Canada. Methods Subjects from 66 consecutive admissions to the Spinal Cord Injury Program of a tertiary rehabilitation centre for the treatment of a traumatic spinal cord injury during the years 2000 to 2002 were followed using data from the National Rehabilitation Reporting System (NRRS). Information was obtained from NRRS standardized assessments performed on admission, discharge and 6 month community living. Early community living was defined as 6-months post-discharge. Community re-integration was assessed by the Reintegration to Normal Living Index (RNL). Pain presence, pain impact and pain intensity were assessed using single item Likhert type scales. Results 86% of individuals with a SCI reported pain at 6-months post discharge, with 27% of these individuals reporting pain that impacted on many or most activities. Pain impact and pain intensity were related to the community re-integration (r=−0.39 and r=−0.55, p<.001), with pain intensity accounting for 25% of the variance in RNL scores. Conclusions Pain is a major consequence of a SCI, impacting on an individual’s activities and perception of how well they are integrated into the community. The results of this study highlight the need to address pain during both the rehabilitation phase of treatment and the early transition into the community. PMID:15570317

  14. Anatomy and Pathophysiology of Spinal Cord Injury Associated With Regional Anesthesia and Pain Medicine: 2015 Update.

    PubMed

    Neal, Joseph M; Kopp, Sandra L; Pasternak, Jeffrey J; Lanier, William L; Rathmell, James P

    2015-01-01

    In March 2012, the American Society of Regional Anesthesia and Pain Medicine convened its second Practice Advisory on Neurological Complications in Regional Anesthesia and Pain Medicine. This update is based on the proceedings of that conference and relevant information published since its conclusion. This article updates previously described information on the pathophysiology of spinal cord injury and adds new material on spinal stenosis, blood pressure control during neuraxial blockade, neuraxial injury subsequent to transforaminal procedures, cauda equina syndrome/local anesthetic neurotoxicity/arachnoiditis, and performing regional anesthetic or pain medicine procedures in patients concomitantly receiving general anesthesia or deep sedation. Recommendations are based on extensive review of research on humans or employing animal models, case reports, pathophysiology research, and expert opinion. The pathophysiology of spinal cord injury associated with regional anesthetic techniques is reviewed in depth, including that related to mechanical trauma from direct needle/catheter injury or mass lesions, spinal cord ischemia or vascular injury from direct needle/catheter trauma, and neurotoxicity from local anesthetics, adjuvants, or antiseptics. Specific recommendations are offered that may reduce the likelihood of spinal cord injury associated with regional anesthetic or interventional pain medicine techniques. The practice advisory's recommendations may, in select cases, reduce the likelihood of injury. However, many of the described injuries are neither predictable nor preventable based on our current state of knowledge. Since publication of initial recommendations in 2008, new information has enhanced our understanding of 5 specific entities: spinal stenosis, blood pressure control during neuraxial anesthesia, neuraxial injury subsequent to transforaminal techniques, cauda equina syndrome/local anesthetic neurotoxicity/arachnoiditis, and performing regional

  15. Activation of spinal and supraspinal cannabinoid-1 receptors lead to antinociception in a rat model of neuropathic spinal cord injury pain

    PubMed Central

    Hama, Aldric; Sagen, Jacqueline

    2011-01-01

    Activation of CNS cannabinoid subtype-1 (CB1) receptors has been shown to mediate the antinociceptive and other effects of systemically administered CB receptor agonists. The endogenous peptide CB receptor ligand hemopressin (HE) has previously demonstrated an antinociceptive effect in rats with a hind paw inflammation, without exhibiting characteristic CB1 receptor-mediated side-effects. The current study evaluated the effect of intrathecal (i.t.) and intracerebroventricular (i.c.v.) injection of HE in a rat model of neuropathic spinal cord injury (SCI) pain. The non-subtype selective CB receptor agonist WIN 55,212-2 was also centrally administered in SCI rats as a comparator. Four weeks following an acute compression of the mid-thoracic spinal cord, rats displayed markedly decreased hind paw withdrawal thresholds, indicative of below-level neuropathic pain. Central administration of WIN 55,212-2 significantly increased withdrawal thresholds, whereas HE did not. Hemopressin has been reported to block CB1 receptors in vitro, similar to the CB1 receptor antagonist rimonabant. Pretreatment with rimonabant completely blocked the antinociceptive effect of centrally administered WIN 55,212-2, but pretreatment with HE did not. While the data confirm that activation of either supraspinal or spinal CB1 receptors leads to significant antinociception in SCI rats, the current data do not support an antinociceptive effect from an acute blockade of central CB1 receptors, HE’s putative antinociceptive mechanism, in neuropathic SCI rats. Although such a mechanism could be useful in other models of pain with a significant inflammatory component, the current data indicate that activation of CB1 receptors is needed to ameliorate neuropathic SCI pain. PMID:21813113

  16. [A robotic system for gait re-education in patients with an incomplete spinal cord injury].

    PubMed

    Esclarín-De Ruz, A; Alcobendas-Maestro, M; Casado-López, R; Muñoz-Gonzalez, A; Florido-Sánchez, M A; González-Valdizán, E

    A spinal cord injury involves the loss or alteration of motor patterns in walking, the recovery of which depends partly on the rearrangement of the preserved neural circuits. AIM. To evaluate the changes that take place in the gait of patients with incomplete spinal cord injuries who were treated with a robotic walking system in association with conventional therapy. The study conducted was an open-label, prospective, descriptive trial with statistical inference in patients with C2-L3 spinal cord injuries that were classified as degrees C and D according to the American Spinal Injury Association (ASIA) scale. The variables that were analysed on the first and the last day of the study were: number of walkers, 10-m gait test, the Walking Index for Spinal Cord Injury scale revision, technical aids, muscle balance in the lower limbs, locomotor subscale of the measure of functional independence, modified Ashworth scale for spasticity and the visual analogue scale for pain. At the end, data were recorded from the impression of change scale. The analysis was conducted by means of Student's t, chi squared and Pearson's correlation; p < or = 0.05. Forty-five patients, with a mean age of 44 +/- 14.3 years, finished the study; 76% were males, injury was caused by trauma in 58% of cases, and the time of progression was 139 +/- 70 days. Statistically significant increases were observed in the number of subjects capable of walking, walking speed, less need for technical aids, strength in the lower limbs and independence in activities of daily living. Treatment using the robotic system in association with conventional therapy improves walking capacity in patients with incomplete spinal cord injuries.

  17. Acute repair of traumatic pan-brachial plexus injury: technical considerations and approaches.

    PubMed

    Abou-Al-Shaar, Hussam; Karsy, Michael; Ravindra, Vijay; Joyce, Evan; Mahan, Mark A

    2018-01-01

    Particularly challenging after complete brachial plexus avulsion is reestablishing effective hand function, due to limited neurological donors to reanimate the arm. Acute repair of avulsion injuries may enable reinnervation strategies for achieving hand function. This patient presented with pan-brachial plexus injury. Given its irreparable nature, the authors recommended multistage reconstruction, including contralateral C-7 transfer for hand function, multiple intercostal nerves for shoulder/triceps function, shoulder fusion, and spinal accessory nerve-to-musculocutaneous nerve transfer for elbow flexion. The video demonstrates distal contraction from electrical stimulation of the avulsed roots. Single neurorrhaphy of the contralateral C-7 transfer was performed along with a retrosternocleidomastoid approach. The video can be found here: https://youtu.be/GMPfno8sK0U .

  18. The process of confrontation with disability in patients with spinal cord injury

    PubMed Central

    Ahmadzadeh, Gholamhossein; Kouchaki, Anahita; Malekian, Azadeh; Aminorro’aya, Mahin; Boroujeni, Ali Zargham

    2010-01-01

    BACKGROUND: Spinal injury can establish severe psychological outcomes for the patient and his/her family which requires high adjustment. Health system staff would be able to play their roles well in caring these patients provided with knowing what steps spinal injured people should pass to handle their disability and also what assistance they need in what stages from what sources. This study aimed to explain the process of confrontation with disability in spinal cord injured patients. METHODS: This was a qualitative study with grounded theory approach which was performed in Strauss and Corbin proposed method on twenty people with spinal cord injury who had past at least three months from their spinal injury. Sampling was done in purposive and theoretical method, and analysis of the results was also performed during constant comparative process. RESULTS: Central concept in the data was support which was associated with other concepts and affected them. The patients, with the help of internal and external support could overcome their main problem that was disability feeling and dependency on others and find a new definition for the self, and ultimately achieve the sense of independence and autonomy. CONCLUSIONS: Knowing the process of confrontation with disability along with better understanding of spinal cord injured people would help health system staff to actualize and support their potentials much better through strengthening internal resources and providing appropriate supportive services of each individual. PMID:22069411

  19. Cell therapy for spinal cord injury informed by electromagnetic waves.

    PubMed

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  20. Exploring Facilitators of Post-traumatic Growth in Patients with Spinal Cord Injury: A Qualitative Study

    PubMed Central

    Khanjani, Mohammad Saeed; Younesi, Seyed Jalal; Khankeh, Hamid Reza; Azkhosh, Manouchehr

    2017-01-01

    Introduction There is increasing evidence regarding people’s reactions to life stressors in which people also may show positive experiences following a traumatic event. The aim of the present study was to explain the facilitators of post-traumatic growth based on the experiences of patients with a spinal cord injury. Methods This was a qualitative study conducted on 16 Iranian patients with a spinal cord injury using semistructured, in-depth interviews, and content analysis in 2015. These participants, despite their spinal cord injury, were successful in their lives and were considered successful members of society. A purposive sampling method was used until reaching data saturation, and then the collected data were analyzed using a content analysis method. Results The study revealed several factors as facilitators of post-traumatic growth in the patients. The extracted facilitators were put into seven categories of main concepts, including existence of support resources, contact with spinal cord injury associations, spiritual beliefs, positive attitude toward injury, access to proper facilities, enhancement of knowledge and awareness, and active presence in society. Conclusion Different factors may facilitate post-traumatic growth in patients with a spinal cord injury. Understanding these facilitators may help us in designing educational, support, and consulting programs for patients and their families as well as to the correct the support programs. PMID:28243405

  1. Mediators of disability and hope for people with spinal cord injury.

    PubMed

    Phillips, Brian N; Smedema, Susan M; Fleming, Allison R; Sung, Connie; Allen, Michael G

    2016-08-01

    To test potential strength-based mediators of functional disability and hope in adults with spinal cord injury. Two hundred and forty-two participants with spinal cord injury were recruited for this study. The mean age of participants was 44.6 years (standard deviation = 13.2), and 66.1% were men. Participants completed a survey containing a demographic questionnaire, as well as measures of functional disability, hope, self-esteem, proactive coping, perceived social support and disability acceptance. Mediation analysis was conducted using a bootstrap test for multiple mediators. Proactive coping, self-esteem and perceived social support significantly mediated the relationship between functional disability and hope, while disability acceptance did not. The combination of mediators resulted in functional disability no longer being a significant predictor of hope. The strength-based constructs of proactive coping, self-esteem and social support appear effective in predicting hope regardless of severity of spinal cord injury. Functional disability was no longer predictive of hope after controlling for these strength-based constructs. Disability acceptance did not significantly add to the mediation model. These results provide further evidence for strength-based interventions in rehabilitation. Implications for Rehabilitation Strength-based constructs of proactive coping, self-esteem and social support are important factors for addressing hope following spinal cord injury, regardless of level of severity. Rehabilitation services providers should focus efforts on supporting clients in the accurate appraisal of predictable stressors and then generate means for addressing them as a form of proactive coping. Rehabilitation services providers must be cautious when addressing self-esteem to focus on perceived competence and learning processes rather than self-esteem directly or through the accomplishment of goals that may not be achieved. Knowing that social supports are

  2. Therapeutic Effect of Platelet-Rich Plasma in Rat Spinal Cord Injuries

    PubMed Central

    Chen, Nan-Fu; Sung, Chun-Sung; Wen, Zhi-Hong; Chen, Chun-Hong; Feng, Chien-Wei; Hung, Han-Chun; Yang, San-Nan; Tsui, Kuan-Hao; Chen, Wu-Fu

    2018-01-01

    Platelet-rich plasma (PRP) is prepared by centrifuging fresh blood in an anticoagulant state, and harvesting the platelet-rich portion or condensing platelets. Studies have consistently demonstrated that PRP concentrates are an abundant source of growth factors, such as platelet-derived growth factor (PDGF), transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), and epithelial growth factor (EGF). The complex mechanisms underlying spinal cord injury (SCI) diminish intrinsic repair and neuronal regeneration. Several studies have suggested that growth factor-promoted axonal regeneration can occur for an extended period after injury. More importantly, the delivery of exogenous growth factors contained in PRP, such as EGF, IGF-1, and TGF-β, has neurotrophic effects on central nervous system (CNS) injuries and neurodegenerative diseases. However, only a few studies have investigated the effects of PRP on CNS injuries or neurodegenerative diseases. According to our review of relevant literature, no study has investigated the effect of intrathecal (i.t.) PRP injection into the injured spinal cord and activation of intrinsic mechanisms. In the present study, we directly injected i.t. PRP into rat spinal cords and examined the effects of PRP on normal and injured spinal cords. In rats with normal spinal cords, PRP induced microglia and astrocyte activation and PDGF-B and ICAM-1 expression. In rats with SCIs, i.t. PRP enhanced the locomotor recovery and spared white matter, promoted angiogenesis and neuronal regeneration, and modulated blood vessel size. Furthermore, a sustained treatment (a bolus of PRP followed by a 1/3 dose of initial PRP concentration) exerted more favorable therapeutic effects than a single dose of PRP. Our findings suggest by i.t. PRP stimulate angiogenesis, enhancing neuronal regeneration after SCI in rats. Although PRP induces minor inflammation in normal and injured spinal cords, it has many advantages. It is an autologous

  3. Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation

    PubMed Central

    Budde, Matthew D.; Skinner, Nathan P.; Muftuler, L. Tugan; Schmit, Brian D.; Kurpad, Shekar N.

    2017-01-01

    Diffusion tensor imaging (DTI) is a promising biomarker of spinal cord injury (SCI). In the acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and prognostic performance, yet translation of DTI to acute human SCI has been limited. In addition to technical challenges, interpretation of the resulting metrics is ambiguous, with contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI acquisition strategies such as double diffusion encoding (DDE) have recently enabled detection of features not available with DTI or similar methods. In this work, we perform a systematic optimization of DDE using simulations and an in vivo rat model of SCI and subsequently implement the protocol to the healthy human spinal cord. First, two complementary DDE approaches were evaluated using an orientationally invariant or a filter-probe diffusion encoding approach. While the two methods were similar in their ability to detect acute SCI, the filter-probe DDE approach had greater predictive power for functional outcomes. Next, the filter-probe DDE was compared to an analogous single diffusion encoding (SDE) approach, with the results indicating that in the spinal cord, SDE provides similar contrast with improved signal to noise. In the SCI rat model, the filter-probe SDE scheme was coupled with a reduced field of view (rFOV) excitation, and the results demonstrate high quality maps of the spinal cord without contamination from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity. The optimized protocol was demonstrated in the healthy human spinal cord using the commercially-available diffusion MRI sequence with modifications only to the diffusion encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were obtained in a clinically feasible imaging time with a straightforward analysis and variability comparable to axial diffusivity derived from DTI. Overall, the

  4. Effect of acute lateral hemisection of the spinal cord on spinal neurons of postural networks.

    PubMed

    Zelenin, P V; Lyalka, V F; Orlovsky, G N; Deliagina, T G

    2016-12-17

    In quadrupeds, acute lateral hemisection of the spinal cord (LHS) severely impairs postural functions, which recover over time. Postural limb reflexes (PLRs) represent a substantial component of postural corrections in intact animals. The aim of the present study was to characterize the effects of acute LHS on two populations of spinal neurons (F and E) mediating PLRs. For this purpose, in decerebrate rabbits, responses of individual neurons from L5 to stimulation causing PLRs were recorded before and during reversible LHS (caused by temporal cold block of signal transmission in lateral spinal pathways at L1), as well as after acute surgical LHS at L1. Results obtained after Sur-LHS were compared to control data obtained in our previous study. We found that acute LHS caused disappearance of PLRs on the affected side. It also changed a proportion of different types of neurons on that side. A significant decrease and increase in the proportion of F- and non-modulated neurons, respectively, was found. LHS caused a significant decrease in most parameters of activity in F-neurons located in the ventral horn on the lesioned side and in E-neurons of the dorsal horn on both sides. These changes were caused by a significant decrease in the efficacy of posture-related sensory input from the ipsilateral limb to F-neurons, and from the contralateral limb to both F- and E-neurons. These distortions in operation of postural networks underlie the impairment of postural control after acute LHS, and represent a starting point for the subsequent recovery of postural functions. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Methylprednisolone Administration Following Spinal Cord Injury Reduces Aquaporin 4 Expression and Exacerbates Edema

    PubMed Central

    Martínez-Cruz, Angelina; Reyes-Sánchez, Alejandro; Guizar-Sahagún, Gabriel

    2017-01-01

    Spinal cord injury (SCI) is an incapacitating condition that affects motor, sensory, and autonomic functions. Since 1990, the only treatment administered in the acute phase of SCI has been methylprednisolone (MP), a synthetic corticosteroid that has anti-inflammatory effects; however, its efficacy remains controversial. Although MP has been thought to help in the resolution of edema, there are no scientific grounds to support this assertion. Aquaporin 4 (AQP4), the most abundant component of water channels in the CNS, participates in the formation and elimination of edema, but it is not clear whether the modulation of AQP4 expression by MP plays any role in the physiopathology of SCI. We studied the functional expression of AQP4 modulated by MP following SCI in an experimental model in rats along with the associated changes in the permeability of the blood-spinal cord barrier. We analyzed these effects in male and female rats and found that SCI increased AQP4 expression in the spinal cord white matter and that MP diminished such increase to baseline levels. Moreover, MP increased the extravasation of plasma components after SCI and enhanced tissue swelling and edema. Our results lend scientific support to the increasing motion to avoid MP treatment after SCI. PMID:28572712

  6. The Spinal Cord Injury- Functional Index: Item Banks to Measure Physical Functioning of Individuals with Spinal Cord Injury

    PubMed Central

    Tulsky, David S.; Jette, Alan; Kisala, Pamela A.; Kalpakjian, Claire; Dijkers, Marcel P.; Whiteneck, Gale; Ni, Pengsheng; Kirshblum, Steven; Charlifue, Susan; Heinemann, Allen W.; Forchheimer, Martin; Slavin, Mary; Houlihan, Bethlyn; Tate, Denise; Dyson-Hudson, Trevor; Fyffe, Denise; Williams, Steve; Zanca, Jeanne

    2012-01-01

    Objective To develop a comprehensive set of patient reported items to assess multiple aspects of physical functioning relevant to the lives of people with spinal cord injury (SCI) and to evaluate the underlying structure of physical functioning. Design Cross-sectional Setting Inpatient and community Participants Item pools of physical functioning were developed, refined and field tested in a large sample of 855 individuals with traumatic spinal cord injury stratified by diagnosis, severity, and time since injury Interventions None Main Outcome Measure SCI-FI measurement system Results Confirmatory factor analysis (CFA) indicated that a 5-factor model, including basic mobility, ambulation, wheelchair mobility, self care, and fine motor, had the best model fit and was most closely aligned conceptually with feedback received from individuals with SCI and SCI clinicians. When just the items making up basic mobility were tested in CFA, the fit statistics indicate strong support for a unidimensional model. Similar results were demonstrated for each of the other four factors indicating unidimensional models. Conclusions Though unidimensional or 2-factor (mobility and upper extremity) models of physical functioning make up outcomes measures in the general population, the underlying structure of physical function in SCI is more complex. A 5-factor solution allows for comprehensive assessment of key domain areas of physical functioning. These results informed the structure and development of the SCI-FI measurement system of physical functioning. PMID:22609299

  7. Characterization of the Antibody Response after Cervical Spinal Cord Injury

    PubMed Central

    Ulndreaj, Antigona; Tzekou, Apostolia; Mothe, Andrea J.; Siddiqui, Ahad M.; Dragas, Rachel; Tator, Charles H.; Torlakovic, Emina E.

    2017-01-01

    Abstract The immune system plays a critical and complex role in the pathobiology of spinal cord injury (SCI), exerting both beneficial and detrimental effects. Increasing evidence suggests that there are injury level–dependent differences in the immune response to SCI. Patients with traumatic SCI have elevated levels of circulating autoantibodies against components of the central nervous system, but the role of these antibodies in SCI outcomes remains unknown. In rodent models of mid-thoracic SCI, antibody-mediated autoimmunity appears to be detrimental to recovery. However, whether autoantibodies against the spinal cord are generated following cervical SCI (cSCI), the most common level of injury in humans, remains undetermined. To address this knowledge gap, we investigated the antibody responses following cSCI in a rat model of injury. We found increased immunoglobulin G (IgG) and IgM antibodies in the spinal cord in the subacute phase of injury (2 weeks), but not in more chronic phases (10 and 20 weeks). At 2 weeks post-cSCI, antibodies were detected at the injury epicenter and co-localized with the astroglial scar and neurons of the ventral horn. These increased levels of antibodies corresponded with enhanced activation of immune responses in the spleen. Higher counts of antibody-secreting cells were observed in the spleen of injured rats. Further, increased levels of secreted IgG antibodies and enhanced proliferation of T-cells in splenocyte cultures from injured rats were found. These findings suggest the potential development of autoantibody responses following cSCI in the rat. The impact of the post-traumatic antibody responses on functional outcomes of cSCI is a critical topic that requires further investigation. PMID:27775474

  8. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury.

    PubMed

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-08-15

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  9. Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat.

    PubMed

    Jin, Ying; Bouyer, Julien; Haas, Christopher; Fischer, Itzhak

    2014-07-01

    Moderate and severe spinal cord contusion injuries have been extensively studied, yet much less is known about mild injuries. Mild contusions result in transient functional deficits, proceeding to near-complete recovery, but they may render the spinal cord vulnerable to future injuries. However, to date there have been no appropriate models to study the behavioral consequences, anatomical changes, and susceptibility of a mild contusion to repeated injuries, which may occur in children as well as adults during competitive sport activities. We have developed a novel mild spinal cord contusion injury model characterized by a sequence of transient functional deficits after the first injury and restoration to near-complete motor and sensory function, which is then followed up by a second injury. This model can serve not only to study the effects of repeated injuries on behavioral and anatomical changes, but also to examine the relationship between successive tissue damage and recovery of function. In the present study, we confirmed that mild thoracic spinal cord contusion, utilizing the NYU impactor device, resulted in localized tissue damage, characterized by a cystic cavity and peripheral rim of spared white matter at the injury epicenter, and rapid functional recovery to near-normal levels utilizing several behavioral tests. Repeated injury after 3weeks, when functional recovery has been completed, resulted in worsening of both motor and sensory function, which did not recover to prior levels. Anatomical analyses showed no differences in the volumes of spared white matter, lesion, or cyst, but revealed modest extension of lesion area rostral to the injury epicenter as well as an increase in inflammation and apoptosis. These studies demonstrate that a mild injury model can be used to test efficacy of treatments for repeated injuries and may serve to assist in the formulation of policies and clinical practice regarding mild SCI injury and spinal concussion. Copyright

  10. Should suspected cervical spinal cord injury be immobilised?: a systematic review.

    PubMed

    Oteir, Ala'a O; Smith, Karen; Stoelwinder, Johannes U; Middleton, James; Jennings, Paul A

    2015-04-01

    Spinal cord injuries occur worldwide; often being life-threatening with devastating long term impacts on functioning, independence, health, and quality of life. Systematic review of the literature to determine the efficacy of cervical spinal immobilisation (vs no immobilisation) in patients with suspected cervical spinal cord injury (CSCI); and to provide recommendations for prehospital spinal immobilisation. Searches were conducted of the Cochrane library, CINAHL, EMBASE, Pubmed, Scopus, Web of science, Google scholar, and OvidSP (MEDLINE, PsycINFO, and DARE) databases. Studies were included if they were relevant to the research question, published in English, based in the prehospital setting, and included adult patients with traumatic injury. The search identified 1471 citations, of which eight observational studies of variable quality were included. Four studies were retrospective cohorts, three were case series and one a case report. Cervical collar application was reported in penetrating trauma to be associated with unadjusted increased risk of mortality in two studies [(OR, 8.82; 95% CI, 1.09-194; p=0.038) & (OR, 2.06; 95% CI, 1.35-3.13)], concealment of neck injuries in one study and increased scene time in another study. While, in blunt trauma, one study indicated that immobilisation might be associated with worsened neurological outcome (OR, 2.03; 95% CI, 1.03-3.99; p=0.04, unadjusted). We did not attempt to combine study results due to significant heterogeneity of study design and outcome measures. There is a lack of high-level evidence on the effect of prehospital cervical spine immobilisation on patient outcomes. There is a clear need for large prospective studies to determine the clinical benefit of prehospital spinal immobilisation as well as to identify the subgroup of patients most likely to benefit. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Return to work after spinal cord injury in Malaysia.

    PubMed

    Ramakrishnan, K; Chung, T Y; Hasnan, N; Abdullah, S J F

    2011-07-01

    Cross-sectional survey. To determine the employment outcomes of persons with spinal cord injury (SCI) and to investigate the impact of various demographic, injury-related and work-related variables on these outcomes. People living with SCI in Malaysia who are members of a disability support organization. A total of 84 members of the Malaysian Spinal Injury Association, who have had traumatic SCI for at least 2 years and were between 15 and 64 years of age at the time of study, were interviewed through phone using a questionnaire to identify the association between demographic, injury-related and work-related variables and employment outcomes. The return to work rate in this study was 57.1% (employed at the time of study). The overall employment rate after SCI was 76.2% (worked at some point after injury). Those who were younger at time of injury (<20 years of age), able to drive a modified vehicle, independent in personal care and mobility were positively related to being employed. On the other hand, being hospitalized in the preceding 1 year and receiving financial incentives were negatively related to employment. Functional independence, especially ability to drive, was strongly associated with return to work and should be one of the priority goals of comprehensive rehabilitation of persons with SCI. The negative impact of recent hospitalization as well as financial compensation needs to be probed further.

  12. Longitudinal study of body composition in spinal cord injury patients.

    PubMed

    Singh, Roop; Rohilla, Rajesh K; Saini, Gaurav; Kaur, Kiranpreet

    2014-03-01

    Bone mass loss and muscle atrophy are the frequent complications occurring after spinal cord injury (SCI). The potential risks involved with these changes in the body composition have implications for the health of the SCI individual. Thus, there is a need to quantitate and monitor body composition changes accurately in an individual with SCI. Very few longitudinal studies have been reported in the literature to assess body composition and most include relatively small number of patients. The present prospective study aimed to evaluate the body composition changes longitudinally by DEXA in patients with acute SCI. Ninety five patients with acute SCI with neurological deficits were evaluated for bone mineral content (BMC), body composition [lean body mass (LBM) and fat mass] by dual-energy X-ray absorptiometry during the first year of SCI. There was a significant decrease in BMC (P < 0.05) and LBM (P < 0.05) and increase in total body fat mass (TBFM) and percentage fat at infra-lesional sites. The average decrease was 14.5% in BMC in lower extremities, 20.5% loss of LBM in legs and 15.1% loss of LBM in trunk, and increase of 0.2% in fat mass in legs and 17.3% increased fat in the lower limbs at 1 year. The tetraplegic patients had significant decrease in arm BMC (P < 0.001), arm LBM (P < 0.01) and fat percentage (P < 0.01) compared to paraplegics. Patients with complete motor injury had higher values of TBFM and fat percentage, but comparable values of BMC and LBM to patients with incomplete motor injury. Our findings suggest that there is a marked decrease in BMC and LBM with increase in adiposity during the first year of SCI. Although these changes depend on the level and initial severity of lesions, they are also influenced by the neurological recovery after SCI.

  13. Psychological well-being after spinal cord injury: perception of loss and meaning making.

    PubMed

    deRoon-Cassini, Terri A; de St Aubin, Ed; Valvano, Abbey; Hastings, James; Horn, Patricia

    2009-08-01

    This study examined the influence of medical injury severity, perceived loss of physical functioning (conceptualized as physical resource loss), and global meaning making on psychological well-being among 79 veterans living with a spinal cord injury. Structured interviews were completed to assess perceived loss of physical abilities using the Conservation of Resources-Evaluation and SF-36 Health Survey, global meaning making (Purpose in Life scale), and psychological well-being (Sense of Well-Being Inventory). Medical injury severity was calculated from medical records. Medical injury severity was not related to psychological well-being, whereas perceived loss of physical functioning was inversely associated. Global meaning making was significantly related to and accounted for a large portion of the variance in psychological well-being. Results suggest that global meaning making partially mediates perceived loss of physical resources and psychological well-being. The perceived loss of physical abilities and the generation of meaning and purpose in life are important variables that relate to positive adaptation following spinal cord injury. Treatment implications related to factors that increase quality of life following spinal cord injury are discussed. (c) 2009 APA

  14. Risk and Protective Factors for Cause-Specific Mortality After Spinal Cord Injury.

    PubMed

    Krause, James S; Cao, Yue; DeVivo, Michael J; DiPiro, Nicole D

    2016-10-01

    To investigate the association of multiple sets of risk and protective factors (biographic and injury, socioeconomic, health) with cause-specific mortality after spinal cord injury (SCI). Retrospective analysis of a prospectively created cohort. Spinal Cord Injury Model Systems facilities. Adults (N=8157) with traumatic SCI who were enrolled in a model systems facility after 1973 and received follow-up evaluation that included all study covariates (between November 1, 1995 and October 31, 2006). Not applicable. All-cause mortality was determined using the Social Security Death Index as of January 1, 2014. Causes of death were obtained from the National Death Index and classified as infective and parasitic diseases, neoplasms, respiratory system diseases, heart and blood vessel diseases, external causes, and other causes. Competing risk analysis, with time-dependent covariates, was performed with hazard ratios (HRs) for each cause of death. The HRs for injury severity indicators were highest for deaths due to respiratory system diseases (highest HR for injury level C1-4, 4.84) and infective and parasitic diseases (highest HR for American Spinal Injury Association Impairment Scale grade A, 5.70). In contrast, injury level and American Spinal Injury Association Impairment Scale grade were relatively unrelated to death due to neoplasms and external causes. Of the socioeconomic indicators, education and income were significantly predictive of a number of causes of death. Pressure ulcers were the only 1 of 4 secondary health condition indicators consistently related to cause of death. Injury severity was related to mortality due to infective disease and respiratory complications, suggesting that those with the most severe SCI should be targeted for prevention of these causes. Socioeconomic and health factors were more broadly related to a number of causes of death. Intervention strategies that enhance socioeconomic status and health may also result in reduced mortality

  15. Muscle activity and mood state during simulated plant factory work in individuals with cervical spinal cord injury

    PubMed Central

    Okahara, Satoshi; Kataoka, Masataka; Okuda, Kuniharu; Shima, Masato; Miyagaki, Keiko; Ohara, Hitoshi

    2016-01-01

    [Purpose] The present study investigated the physical and mental effects of plant factory work in individuals with cervical spinal cord injury and the use of a newly developed agricultural working environment. [Subjects] Six males with C5–C8 spinal cord injuries and 10 healthy volunteers participated. [Methods] Plant factory work involved three simulated repetitive tasks: sowing, transplantation, and harvesting. Surface electromyography was performed in the dominant upper arm, upper trapezius, anterior deltoid, and biceps brachii muscles. Subjects’ moods were monitored using the Profile of Mood States. [Results] Five males with C6–C8 injuries performed the same tasks as healthy persons; a male with a C5 injury performed fewer repetitions of tasks because it took longer. Regarding muscle activity during transplantation and harvesting, subjects with spinal cord injury had higher values for the upper trapezius and anterior deltoid muscles compared with healthy persons. The Profile of Mood States vigor scores were significantly higher after tasks in subjects with spinal cord injury. [Conclusion] Individuals with cervical spinal cord injury completed the plant factory work, though it required increased time and muscle activity. For individuals with C5–C8 injuries, it is necessary to develop an appropriate environment and assistive devices to facilitate their work. PMID:27134377

  16. Spinal cord injuries in South African Rugby Union (1980 - 2007).

    PubMed

    Hermanus, Fiona J; Draper, Catherine E; Noakes, Timothy D

    2010-03-30

    To address an apparent increase in the number of rugby-related spinal cord injuries (SCIs) in South Africa, a retrospective case-series study was conducted on injuries that occurred between 1980 and 2007. We aimed to identify preventable causes to reduce the overall rate of SCIs in South African rugby. We identified 264 rugby-related SCIs. A structured questionnaire was used, and it was possible to obtain information on a total of 183 players, including 30 who had died. SCIs increased in number in the 1980s and in 2006. Forwards sustained 76% of all SCIs, and club players 60%. Players aged 17 had the highest number of SCIs. In only 50% of cases were medical personnel present at the time of injury, and 49% of injured players waited longer than 6 hours for acute management. Of players with an SCI, 61% had a catastrophic outcome after 12 months, including 8% who died during that time; 65% received no financial compensation; and only 29% of players had medical aid or health insurance. A register of all rugby-related SCIs in South Africa is essential to monitor the magnitude of the problem, identify potential risk factors, and formulate appropriate preventive interventions. The lack of reliable denominator data limits calculation of incident rates. Players from previously disadvantaged communities in particular suffered the consequences of limited public health care resources and no financial compensation.

  17. Baclofen dosage after traumatic spinal cord injury: a multi-decade retrospective analysis.

    PubMed

    Veerakumar, Ashan; Cheng, Jennifer J; Sunshine, Abraham; Ye, Xiaobu; Zorowitz, Richard D; Anderson, William S

    2015-02-01

    To perform an analysis of oral baclofen dosage in patients with traumatic spinal cord injuries over time and to ascertain the clinical determinants of long-term baclofen dosage trends. Retrospective cohort study of patient records from the PM&R units at the Johns Hopkins Bayview Medical Center and the Johns Hopkins Hospital. A total of 115 PM&R patients suffering spinal cord injury due to trauma leading to either complete or incomplete paralysis. The modes of injury included were motor vehicle accidents (MVA) (n=39), gunshot wounds (GSW) (n=55), falls (n=17), diving (n=2), workplace (n=1) and swimming (n=1) accidents. The location of injury in the spinal cord was categorized into either cervical (n=52), thoracic (n=59), lumbar (n=2), or unspecified (n=2). From time of injury, an aggregate of all dosage assignments for each patient demonstrated a significant yearly increase in baclofen dosage (1.26 mg/year, p<0.01). Baclofen dosage for MVA cases were seen to rise at 4.99 mg/year (p<0.0001). Kaplan-Meier analysis revealed that GSW patients received their first baclofen dosage earlier than MVA patients (log-rank p<0.05, unadjusted). We observed a marginal increase in baclofen dosage over nearly 25 years in a single provider's patient database and observed different timings of first dose between two causes of traumatic SCI. These results provide an estimate of baclofen dosage trends over time after spinal cord injury and may be useful for patient counseling or as a method to assess costs of providing SCI patient care. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. "My body was my temple": a narrative revealing body image experiences following treatment of a spinal cord injury.

    PubMed

    Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy; Ditor, David S

    2017-09-01

    This narrative explores the lived experience of a young woman, Rebecca, and her transitioned body image after sustaining and being treated for a spinal cord injury. Data were collected from a single semi-structured in-depth interview. Rebecca disclosed her transitioned body image experiences after sustaining a spinal cord injury and being treated by medical staff immediately following her injury. Before her injury, she described a holistic body experience and named this experience her "temple". During intensive care in the hospital, she explained her body was treated as an object. The disconnected treatment of her body led to a loss of the private self, as she described her sacred body being stripped away - her "temple" lost and in ruins. Body image may be an overlooked component of health following a spinal cord injury. This narrative emphasizes the importance of unveiling body image experiences after the treatment of a spinal cord injury to medical professionals. Lessons of the importance of considering the transitioned body experiences after a spinal cord injury may help prevent body-related depression and other subsequent health impacts. Recommendations for best practice are provided. Implications for Rehabilitation    Spinal Cord Injury   • A spinal cord injury may drastically change a person's body image, thereby significantly impacting psychological health   • More effective screening for body image within the medical/rehabilitation context is needed to help practitioners recognize distress   • Practitioners should be prepared to refer clients to distress hotlines they may need once released from treatment.

  19. The Relationship between Productivity and Adjustment Following Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Krause, James S.

    1990-01-01

    Examined adjustment and productivity of persons (N=344) with spinal cord injuries. Found 45 percent of subjects gainfully employed, 14 percent engaged in unpaid productive activities, 41 percent not engaged in any productive activities. Employed subjects had best overall adjustment. Injury level was not related to level of productive activity,…

  20. [Ascites and acute kidney injury].

    PubMed

    Piano, Salvatore; Tonon, Marta; Angeli, Paolo

    2016-07-01

    Ascites is the most common complication of cirrhosis. Ascites develops as a consequence of an abnormal splanchnic vasodilation with reduction of effecting circulating volume and activation of endogenous vasoconstrictors system causing salt and water retention. Patients with ascites have a high risk to develop further complications of cirrhosis such as hyponatremia, spontaneous bacterial peritonitis and acute kidney injury resulting in a poor survival. In recent years, new studies helped a better understanding of the pathophysiology of ascites and acute kidney injury in cirrhosis. Furthermore, new diagnostic criteria have been proposed for acute kidney injury and hepatorenal syndrome and a new algorithm for their management has been recommended with the aim of an early diagnosis and treatment. Herein we will review the current knowledge on the pathophysiology, diagnosis and treatment of ascites and acute kidney injury in patients with cirrhosis and we will identify the unmet needs that should be clarified in the next years.

  1. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    NASA Astrophysics Data System (ADS)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  2. In-vivo spinal cord deformation in flexion

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.

    1997-05-01

    Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.

  3. Differences in Affect, Life Satisfaction, and Depression between Successfully and Unsuccessfully Rehabilitated Persons with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Chapin, Martha H.; Holbert, Donald

    2009-01-01

    This study assessed whether persons with spinal cord injuries who were successfully rehabilitated differed from those who were not with regard to positive and negative affect, life satisfaction, and depression. An ex post facto research design compared persons with spinal cord injuries who were previously employed with persons with spinal cord…

  4. Assessment of Depression in a Rodent Model of Spinal Cord Injury

    PubMed Central

    Luedtke, Kelsey; Bouchard, Sioui Maldonado; Woller, Sarah A.; Funk, Mary Katherine; Aceves, Miriam

    2014-01-01

    Abstract Despite an increased incidence of depression in patients after spinal cord injury (SCI), there is no animal model of depression after SCI. To address this, we used a battery of established tests to assess depression after a rodent contusion injury. Subjects were acclimated to the tasks, and baseline scores were collected before SCI. Testing was conducted on days 9–10 (acute) and 19–20 (chronic) postinjury. To categorize depression, subjects' scores on each behavioral measure were averaged across the acute and chronic stages of injury and subjected to a principal component analysis. This analysis revealed a two-component structure, which explained 72.2% of between-subjects variance. The data were then analyzed with a hierarchical cluster analysis, identifying two clusters that differed significantly on the sucrose preference, open field, social exploration, and burrowing tasks. One cluster (9 of 26 subjects) displayed characteristics of depression. Using these data, a discriminant function analysis was conducted to derive an equation that could classify subjects as “depressed” on days 9–10. The discriminant function was used in a second experiment examining whether the depression-like symptoms could be reversed with the antidepressant, fluoxetine. Fluoxetine significantly decreased immobility in the forced swim test (FST) in depressed subjects identified with the equation. Subjects that were depressed and treated with saline displayed significantly increased immobility on the FST, relative to not depressed, saline-treated controls. These initial experiments validate our tests of depression, generating a powerful model system for further understanding the relationships between molecular changes induced by SCI and the development of depression. PMID:24564232

  5. Integral multidisciplinary approach in a patient with chronic complete spinal cord injury and hip disarticulation.

    PubMed

    Quinzaños-Fresnedo, J; Rodríguez-Reyes, G; Mendoza-Cosío, C; Pérez-Zavala, R; Márquez-Guitérrez, E A; Hernández-Sandoval, S

    2015-01-01

    Case report. To highlight the importance of the integral multidisciplinary management of a patient with complete chronic spinal cord injury and hip disarticulation secondary to pressure ulcers (PU). Mexico City. The case of a 40-year-old male violinist with a spinal cord injury, American Spinal Injury Association Impairment Scale A and neurological level T4, is reported. The patient initiated with bilateral ischiatic, left trochanteric and sacral PU. The ulcers were complicated with infection with sluggish evolution. Thus, it was decided a multidisciplinary management by means of left hip disarticulation and elaboration of a cosmetic prosthesis and the manufacture of a viscous elastic foam cushion for the prevention of new PU. The patient was quickly included in his professional and social activities. This study proves that multidisciplinary management of patients with spinal cord injury with complications such as the presence of PU that are resistant to noninvasive treatment can be the solution for the patient's reintegration into their normal life with adequate quality of life.

  6. Cardiac surgery-associated acute kidney injury.

    PubMed

    Vives, Marc; Wijeysundera, Duminda; Marczin, Nandor; Monedero, Pablo; Rao, Vivek

    2014-05-01

    Acute kidney injury develops in up to 30% of patients who undergo cardiac surgery, with up to 3% of patients requiring dialysis. The requirement for dialysis after cardiac surgery is associated with an increased risk of infection, prolonged stay in critical care units and long-term need for dialysis. The development of acute kidney injury is independently associated with substantial short- and long-term morbidity and mortality. Its pathogenesis involves multiple pathways. Haemodynamic, inflammatory, metabolic and nephrotoxic factors are involved and overlap each other leading to kidney injury. Clinical studies have identified predictors for cardiac surgery-associated acute kidney injury that can be used effectively to determine the risk for acute kidney injury in patients undergoing cardiac surgery. High-risk patients can be targeted for renal protective strategies. Nonetheless, there is little compelling evidence from randomized trials supporting specific interventions to protect or prevent acute kidney injury in cardiac surgery patients. Several strategies have shown some promise, including less invasive procedures in those at greatest risk, natriuretic peptide, fenoldopam, preoperative hydration, preoperative optimization of anaemia and postoperative early use of renal replacement therapy. The efficacy of larger-scale trials remains to be confirmed.

  7. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats

    PubMed Central

    Song, Zhaojun; Wang, Zhigang; Shen, Jieliang; Xu, Shengxi; Hu, Zhenming

    2017-01-01

    Background Spinal cord injuries (SCIs) can cause severe disability or death. Treatment options include surgical intervention, drug therapy, and stem cell transplantation. However, the efficacy of these methods for functional recovery remains unsatisfactory. Purpose This study was conducted to explore the effect of ultrasound (US)-mediated destruction of poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs) expressing nerve growth factor (NGF) (NGF/PLGA NBs) on nerve regeneration in rats following SCI. Materials and methods Adult male Sprague Dawley rats were randomly divided into four treatment groups after Allen hit models of SCI were established. The groups were normal saline (NS) group, NGF and NBs group, NGF and US group, and NGF/PLGA NBs and US group. Histological changes after SCI were observed by hematoxylin and eosin staining. Neuron viability was determined by Nissl staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining was used to examine cell apoptosis. NGF gene and protein expressions were detected by quantitative reverse transcription polymerase chain reaction and Western blotting. Green fluorescent protein expression in the spinal cord was examined using an inverted fluorescence microscope. The recovery of neural function was determined using the Basso, Beattie, and Bresnahan test. Results NGF therapy using US-mediated NGF/PLGA NBs destruction significantly increased NGF expression, attenuated histological injury, decreased neuron loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in rats with SCI. Conclusion US-mediated NGF/PLGA NBs destruction effectively transfects the NGF gene into target tissues and has a significant effect on the injured spinal cord. The combination of US irradiation and gene therapy through NGF/PLGA NBs holds great promise for the future of nanomedicine and the development of noninvasive treatment options for SCI and other diseases. PMID:28280337

  8. Performance of Serum Creatinine and Kidney Injury Biomarkers for Diagnosing Histologic Acute Tubular Injury.

    PubMed

    Moledina, Dennis G; Hall, Isaac E; Thiessen-Philbrook, Heather; Reese, Peter P; Weng, Francis L; Schröppel, Bernd; Doshi, Mona D; Wilson, F Perry; Coca, Steven G; Parikh, Chirag R

    2017-12-01

    The diagnosis of acute kidney injury (AKI), which is currently defined as an increase in serum creatinine (Scr) concentration, provides little information on the condition's actual cause. To improve phenotyping of AKI, many urinary biomarkers of tubular injury are being investigated. Because AKI cases are not frequently biopsied, the diagnostic accuracy of concentrations of Scr and urinary biomarkers for histologic acute tubular injury is unknown. Cross-sectional analysis from multicenter prospective cohort. Hospitalized deceased kidney donors on whom kidney biopsies were performed at the time of organ procurement for histologic evaluation. (1) AKI diagnosed by change in Scr concentration during donor hospitalization and (2) concentrations of urinary biomarkers (neutrophil gelatinase-associated lipocalin [NGAL], liver-type fatty acid-binding protein [L-FABP], interleukin 18 [IL-18], and kidney injury molecule 1 [KIM-1]) measured at organ procurement. Histologic acute tubular injury. Of 581 donors, 98 (17%) had mild acute tubular injury and 57 (10%) had severe acute tubular injury. Overall, Scr-based AKI had poor diagnostic performance for identifying histologic acute tubular injury and 49% of donors with severe acute tubular injury did not have AKI. The area under the receiver operating characteristic curve (AUROC) of change in Scr concentration for diagnosing severe acute tubular injury was 0.58 (95% CI, 0.49-0.67) and for any acute tubular injury was 0.52 (95% CI, 0.45-0.58). Compared with Scr concentration, NGAL concentration demonstrated higher AUROC for diagnosing both severe acute tubular injury (0.67; 95% CI, 0.60-0.74; P=0.03) and any acute tubular injury (0.60; 95% CI, 0.55-0.66; P=0.005). In donors who did not have Scr-based AKI, NGAL concentrations were higher with increasing severities of acute tubular injury (subclinical AKI). However, compared with Scr concentration, AUROCs for acute tubular injury diagnosis were not significantly higher for urinary L

  9. What are the Causes of Spinal Cord Injury?

    MedlinePlus

    ... in a New Light An Honest Wheelchair Love Story Seven Helpful Smart Home Devices for People With Disabilities Can’t Work Because of a Spinal Cord Injury? Tags accessibility accident ADA adaptive adaptive equipment Adaptive technology Americans with Disabilities Act Ben Mattlin caregiver Cerebral ...

  10. Advances in the management of infertility in men with spinal cord injury

    PubMed Central

    Ibrahim, Emad; Brackett, Nancy L; Lynne, Charles M

    2016-01-01

    Couples with a spinal cord injured male partner require assisted ejaculation techniques to collect semen that can then be further used in various assisted reproductive technology methods to achieve a pregnancy. The majority of men sustaining a spinal cord injury regardless of the cause or the level of injury cannot ejaculate during sexual intercourse. Only a small minority can ejaculate by masturbation. Penile vibratory stimulation and electroejaculation are the two most common methods used to retrieve sperm. Other techniques such as prostatic massage and the adjunct application of other medications can be used, but the results are inconsistent. Surgical sperm retrieval should be considered as a last resort if all other methods fail. Special attention must be paid to patients with T6 and rostral levels of injury due to the risk of autonomic dysreflexia resulting from stimulation below the level of injury. Bladder preparation should be performed before stimulation if retrograde ejaculation is anticipated. Erectile dysfunction is ubiquitous in the spinal cord injured population but is usually easily managed and does not pose a barrier to semen retrieval in these men. Semen analysis parameters of men with spinal cord injury are unique for this population regardless of the method of retrieval, generally presenting as normal sperm concentration but abnormally low sperm motility and viability. When sperm retrieval is desired in this population, emphasis should be placed on initially trying the simple methods of penile vibratory stimulation or electroejaculation before resorting to more advanced and invasive surgical procedures. PMID:27048781

  11. Spinal cord injury and women's sexual life: case-control study.

    PubMed

    Merghati-Khoei, E; Emami-Razavi, S H; Bakhtiyari, M; Lamyian, M; Hajmirzaei, S; Ton-Tab Haghighi, S; Korte, J E; Maasoumi, R

    2017-03-01

    Study design :This is a case-control study. The objective of this study was to estimate the magnitude of association between spinal cord injury (SCI) and women's quality of sexual life and sexual function. This study was conducted in the Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran. From the referral university-based clinics, we used simple random sampling to recruit 62 women: 31 women with SCI and 31 women without SCI. Socio-demographic and reproductive traits questionnaire, Sexual Quality of life-Female (SQOL-F), Female Sexual Function Index (FSFI) and Spinal Cord Independence Measure (SCIM) were completed using telephone and face-to-face interviews in the cases and controls. After univariate analyses, multivariate linear and proportional odds regression models were conducted to investigate the relation between SCI and women's quality of sexual life, as well as sexual function. The mean age of cases and controls was 35.42±6.51 and 33.77±4.02 years. Most women were high school-educated and housewives. Adjusting for probable confounders, the proportional odds regression model showed a significant relationship between the spinal cord injury (AOR=4.2, 95% CI: 1.8-9.2), non-college-educated (AOR=3.1, 95% CI: 1.2-5.9) and employed (AOR=1.8, 95% CI: 1.1-1.8) variables and being in one of the moderate or poor quality of life classes. Scores of SQOL-F and FSFI domains, except satisfaction, were significantly worse in cases versus controls (P<0.001). Although our participants showed low sexual dysfunction, they tended to report moderate to poor quality of sexual life. Our findings support the implication that sexual rehabilitation must be provided for women with SCI soon after injury.

  12. Mean Arterial Blood Pressure Correlates with Neurological Recovery after Human Spinal Cord Injury: Analysis of High Frequency Physiologic Data

    PubMed Central

    Hawryluk, Gregory; Whetstone, William; Saigal, Rajiv; Ferguson, Adam; Talbott, Jason; Bresnahan, Jacqueline; Dhall, Sanjay; Pan, Jonathan; Beattie, Michael

    2015-01-01

    Abstract Current guidelines for the care of patients with acute spinal cord injuries (SCIs) recommend maintaining mean arterial pressure (MAP) values of 85–90 mm Hg for 7 days after an acute SCI however, little evidence supports this recommendation. We sought to better inform the relationship between MAP values and neurological recovery. A computer system automatically collected and stored q1 min physiological data from intensive care unit monitors on patients with SCI over a 6-year period. Data for 100 patients with acute SCI were collected. 74 of these patients had American Spinal Injury Association Impairment Scale (AIS) grades determined by physical examination on admission and at time of hospital discharge. Average MAP values as well as the proportion of MAP values below thresholds were explored for values from 120 mm Hg to 40 mm Hg in 1 mm Hg increments; the relationship between these measures and outcome was explored at various time points up to 30 days from the time of injury. A total of 994,875 q1 min arterial line blood pressure measurements were recorded for the included patients amid 1,688,194 min of recorded intensive care observations. A large proportion of measures were below 85 mm Hg despite generally acceptable average MAP values. Higher average MAP values correlated with improved recovery in the first 2–3 days after SCI while the proportion of MAP values below the accepted threshold of 85 mm Hg seemed a stronger correlate, decreasing in strength over the first 5–7 days after injury. This study provides strong evidence supporting a correlation between MAP values and neurological recovery. It does not, however, provide evidence of a causal relationship. Duration of hypotension may be more important than average MAP. It provides support for the notion of MAP thresholds in SCI recovery, and the highest MAP values correlated with the greatest degree of neurological recovery. The results are concordant with current guidelines

  13. The neuropathological foundations for the restorative neurology of spinal cord injury.

    PubMed

    Kakulas, Byron A; Kaelan, Cahyono

    2015-02-01

    An appreciation of the neuropathology of human spinal cord injury (SCI) is a basic requirement for all concerned with the medical treatment of patients with SCI as well as for the many neuroscientists devoted to finding a "cure". An understanding of the neuropathology of SCI is a necessary guide to those concerned at all levels of treatment, whether they are doctors or other health professionals. The underlying changes in the spinal cord are especially relevant to the restorative neurology (RN) of SCI. The new discipline of RN seeks to enhance the function of residual spinal cord elements which have survived the injury and so improve the patient's rehabilitative status. This is in contrast to the conventional approach in rehabilitation which works around the clinical neurological deficiencies. Following the injury a series of changes take place in the spinal cord and surrounding tissues which continue to evolve throughout the life of the patient. In flexion and extension injuries resulting from motor vehicle trauma, diving and sporting accidents the spinal cord is compressed and disrupted but usually with some continuity remaining in the white matter columns. The brunt of the injury is usually centrally placed where there is bleeding into the disrupted grey matter involving one two segments, usually cervical. The loss of central grey matter is nowhere near as important as is the tearing apart of the white matter tracts in determining the patient's clinical state. The central grey matter supplies one two overlapping segmental myotomes and sensory fields. In contrast loss of continuity in the long white matter tracts is catastrophic because all functions below the level of injury are affected, autonomic or voluntary either by paralysis or anaesthesia, usually both. It is important to determine the exact nature of the injury in every patient as a preliminary to treatment by RN. This assessment is both clinical and neurophysiological with special attention given to any

  14. The NAv1.7 blocker protoxin II reduces burn injury-induced spinal nociceptive processing.

    PubMed

    Torres-Pérez, Jose Vicente; Adamek, Pavel; Palecek, Jiri; Vizcaychipi, Marcela; Nagy, Istvan; Varga, Angelika

    2018-01-01

    Controlling pain in burn-injured patients poses a major clinical challenge. Recent findings suggest that reducing the activity of the voltage-gated sodium channel Na v 1.7 in primary sensory neurons could provide improved pain control in burn-injured patients. Here, we report that partial thickness scalding-type burn injury on the rat paw upregulates Na v 1.7 expression in primary sensory neurons 3 h following injury. The injury also induces upregulation in phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB), a marker for nociceptive activation in primary sensory neurons. The upregulation in p-CREB occurs mainly in Na v 1.7-immunopositive neurons and exhibits a peak at 5 min and, following a decline at 30 min, a gradual increase from 1 h post-injury. The Na v 1.7 blocker protoxin II (ProTxII) or morphine injected intraperitoneally 15 min before or after the injury significantly reduces burn injury-induced spinal upregulation in phosphorylated serine 10 in histone H3 and phosphorylated extracellular signal-regulated kinase 1/2, which are both markers for spinal nociceptive processing. Further, ProTxII significantly reduces the frequency of spontaneous excitatory post-synaptic currents in spinal dorsal horn neurons following burn injury. Together, these findings indicate that using Na v 1.7 blockers should be considered to control pain in burn injury. • Burn injury upregulates Na v 1.7 expression in primary sensory neurons. • Burn injury results in increased activity of Na v 1.7-expressing primary sensory neurons. • Inhibiting Na v 1.7 by protoxin II reduces spinal nociceptive processing. • Na v 1.7 represents a potential target to reduce pain in burn injury.

  15. Anejaculation following spinal cord injury does not induce sperm-agglutinating antibodies.

    PubMed

    Dahlberg, A; Hovatta, O

    1989-02-01

    Antisperm antibodies were tested for by the MAR-test and the tray agglutination test in 16 men with spinal cord injury. None of these men could ejaculate without artificial methods. Seven men ejaculated externally by vibrator stimulation or electroejaculation, while seven exhibited retrograde ejaculation; in two cases no semen was obtained. Sperm density in the external ejaculations was high (average = 405 x 10(6)/ml), with 10-45% motility. None of these 16 men had antisperm antibodies. This result indicates that anejaculation and sperm retention in men with spinal cord injury, even of 30 years duration, does not result in antisperm antibody formation.

  16. International spinal cord injury pulmonary function basic data set.

    PubMed

    Biering-Sørensen, F; Krassioukov, A; Alexander, M S; Donovan, W; Karlsson, A-K; Mueller, G; Perkash, I; Sheel, A William; Wecht, J; Schilero, G J

    2012-06-01

    To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population. International. The SCI Pulmonary Function Data Set was developed by an international working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Pulmonary Function Data Set contains questions on the pulmonary conditions diagnosed before spinal cord lesion,if available, to be obtained only once; smoking history; pulmonary complications and conditions after the spinal cord lesion, which may be collected at any time. These data include information on pneumonia, asthma, chronic obstructive pulmonary disease and sleep apnea. Current utilization of ventilator assistance including mechanical ventilation, diaphragmatic pacing, phrenic nerve stimulation and Bi-level positive airway pressure can be reported, as well as results from pulmonary function testing includes: forced vital capacity, forced expiratory volume in one second and peak expiratory flow. The complete instructions for data collection and the data sheet itself are freely available on the website of ISCoS (http://www.iscos.org.uk).

  17. A phase 2 autologous cellular therapy trial in patients with acute, complete spinal cord injury: pragmatics, recruitment, and demographics.

    PubMed

    Jones, L A T; Lammertse, D P; Charlifue, S B; Kirshblum, S C; Apple, D F; Ragnarsson, K T; Poonian, D; Betz, R R; Knoller, N; Heary, R F; Choudhri, T F; Jenkins, A L; Falci, S P; Snyder, D A

    2010-11-01

    Post hoc analysis from a randomized controlled cellular therapy trial in acute, complete spinal cord injury (SCI). Description and quantitative review of study logistics, referral patterns, current practice patterns and subject demographics. Subjects were recruited to one of six international study centers. Data are presented from 1816 patients pre-screened, 75 participants screened and 50 randomized. Of the 1816 patients pre-screened, 53.7% did not meet initial study criteria, primarily due to an injury outside the time window (14 days) or failure to meet neurological criteria (complete SCI between C5 motor/C4 sensory and T11). MRIs were obtained on 339 patients; 51.0% were ineligible based on imaging criteria. Of the 75 participants enrolled, 25 failed screening (SF), leaving 50 randomized. The primary reason for SF was based on the neurological exam (51.9%), followed by failure to meet MRI criteria (22.2%). Of the 50 randomized subjects, there were no significant differences in demographics in the active versus control arms. In those participants for whom data was available, 93.8% (45 of 48) of randomized participants received steroids before study entry, whereas 94.0% (47 of 50) had spine surgery before study enrollment. The 'funnel effect' (large numbers of potentially eligible participants with a small number enrolled) impacts all trials, but was particularly challenging in this trial due to eligibility criteria and logistics. Data collected may provide information on current practice patterns and the issues encountered and addressed may facilitate design of future trials.

  18. Spinal cord injury-induced immunodeficiency is mediated by a sympathetic-neuroendocrine adrenal reflex.

    PubMed

    Prüss, Harald; Tedeschi, Andrea; Thiriot, Aude; Lynch, Lydia; Loughhead, Scott M; Stutte, Susanne; Mazo, Irina B; Kopp, Marcel A; Brommer, Benedikt; Blex, Christian; Geurtz, Laura-Christin; Liebscher, Thomas; Niedeggen, Andreas; Dirnagl, Ulrich; Bradke, Frank; Volz, Magdalena S; DeVivo, Michael J; Chen, Yuying; von Andrian, Ulrich H; Schwab, Jan M

    2017-11-01

    Acute spinal cord injury (SCI) causes systemic immunosuppression and life-threatening infections, thought to result from noradrenergic overactivation and excess glucocorticoid release via hypothalamus-pituitary-adrenal axis stimulation. Instead of consecutive hypothalamus-pituitary-adrenal axis activation, we report that acute SCI in mice induced suppression of serum norepinephrine and concomitant increase in cortisol, despite suppressed adrenocorticotropic hormone, indicating primary (adrenal) hypercortisolism. This neurogenic effect was more pronounced after high-thoracic level (Th1) SCI disconnecting adrenal gland innervation, compared with low-thoracic level (Th9) SCI. Prophylactic adrenalectomy completely prevented SCI-induced glucocorticoid excess and lymphocyte depletion but did not prevent pneumonia. When adrenalectomized mice were transplanted with denervated adrenal glands to restore physiologic glucocorticoid levels, the animals were completely protected from pneumonia. These findings identify a maladaptive sympathetic-neuroendocrine adrenal reflex mediating immunosuppression after SCI, implying that therapeutic normalization of the glucocorticoid and catecholamine imbalance in SCI patients could be a strategy to prevent detrimental infections.

  19. Rock Climbing Injuries: Acute and Chronic Repetitive Trauma.

    PubMed

    Chang, Connie Y; Torriani, Martin; Huang, Ambrose J

    2016-01-01

    Rock climbing has increased in popularity as a sport, and specific injuries related to its practice are becoming more common. Chronic repetitive injuries are more common than acute injuries, although acute injuries tend to be more severe. We review both acute and chronic upper and lower extremity injuries. Understanding the injury pattern in rock climbers is important for accurate diagnosis. Copyright © 2015 Mosby, Inc. All rights reserved.

  20. Characterization of spinal injuries sustained by American service members killed in Iraq and Afghanistan: a study of 2,089 instances of spine trauma.

    PubMed

    Schoenfeld, Andrew J; Newcomb, Ronald L; Pallis, Mark P; Cleveland, Andrew W; Serrano, Jose A; Bader, Julia O; Waterman, Brian R; Belmont, Philip J

    2013-04-01

    This study sought to characterize spine injuries among soldiers killed in Iraq or Afghanistan whose autopsy results were stored by the Armed Forces Medical Examiner System. The Armed Forces Medical Examiner System data set was queried to identify American military personnel who sustained a spine injury in conjunction with wounds that resulted in death during deployment in Iraq or Afghanistan from 2003 to 2011. Demographic and injury-specific characteristics were abstracted for each individual identified. The raw incidence of spinal injuries was calculated and correlations were drawn between the presence of spinal trauma and military specialty, mechanism and manner of injury, and wounds in other body regions. Significant associations were also sought for specific injury patterns, including spinal cord injury, atlantooccipital injury, low lumbar vertebral fractures, and lumbosacral dissociation. Statistical calculations were performed using χ statistic, z test, t test with Satterthwaite correction, and multivariate logistic regression. Among 5,424 deceased service members, 2,089 (38.5%) were found to have sustained at least one spinal injury. Sixty-seven percent of all fatalities with spinal injury were caused by explosion, while 15% occurred by gunshot. Spinal fracture was the most common type of injury (n = 2,328), while spinal dislocations occurred in 378, and vertebral column transection occurred in 223. Fifty-two percent sustained at least one cervical spine injury, and spinal cord injury occurred in 40%. Spinal cord injuries were more likely to occur as a result of gunshot (p < 0.001), while atlantooccipital injuries (p < 0.001) and low lumbar fractures (p = 0.01) were significantly higher among combat specialty soldiers. No significant association was identified between spinal injury risk and the periods 2003 to 2007 and 2008 to 2011, although atlantooccipital injuries and spinal cord injury were significantly reduced beginning in 2008 (p < 0.001). The

  1. Lower Thoracic Spinal Cord Stimulation to Restore Cough in Patients with Spinal Cord Injury: Results of a National Institutes of Health-Sponsored Clinical Trial. Part II: Clinical Outcomes

    PubMed Central

    DiMarco, Anthony F.; Kowalski, Krzysztof E.; Geertman, Robert T.; Hromyak, Dana R.; Frost, Fredrick S.; Creasey, Graham H.; Nemunaitis, Gregory A.

    2009-01-01

    Objective To evaluate the clinical effects of spinal cord stimulation (SCS) to restore cough in subjects with cervical spinal cord injury. Design Clinical trial assessing the clinical outcomes and side effects associated with the cough system. Setting Out-patient hospital or residence Participants Subjects (N = 9; 8 men, 1 woman) with cervical spinal cord injury Intervention(s) SCS was performed at home by either the subjects themselves or caregivers on a chronic basis and as needed for secretion management. Main Outcome Measure(s) Ease in raising secretions, requirement for trained caregiver support related to secretion management and incidence of acute respiratory tract infections. Results The degree of difficulty in raising secretions improved markedly, and the need for alternative methods of secretion removal was virtually eliminated. Subject life quality related to respiratory care improved with subjects reporting greater control of breathing problems and enhanced mobility. The incidence of acute respiratory tract infections fell from 2.0 ± 0.5 to 0.7 ± 0.4 events/subject year (p < 0.01), and mean level of trained caregiver support related to secretion management measured over a 2 week period decreased from 16.9 ± 7.9 to 2.1 ± 1.6 and 0.4 ± 0.3 times/week (p < 0.01) at 28 and 40 weeks following implantation of the device, respectively. Three subjects developed mild hemodynamic effects which abated completely with continued SCS. Subjects experienced mild leg jerks during SCS, which were well tolerated. There were no instances of bowel or bladder leakage. Conclusion(s) Restoration of cough via SCS is safe and efficacious. This method improves life quality and has the potential to reduce the morbidity and mortality associated with recurrent respiratory tract infections in this patient population. PMID:19406290

  2. Breaking the News in Spinal Cord Injury

    PubMed Central

    Kirshblum, Steven; Fichtenbaum, Joyce

    2008-01-01

    Summary: Breaking the bad news in terms of prognosis for significant motor recovery following a neurologically complete spinal cord injury (SCI) is one of the most difficult tasks for the spinal cord medicine specialist. Learning the skills to facilitate this communication is extremely important to better assist patients to understand their prognosis as well as foster hope for their future. If bad news is delivered poorly it can cause confusion and long-lasting distress and resentment; if done well, it may assist understanding, adjustment, and acceptance. This article provides the physician who cares for patients with SCI with some concepts to consider when discussing prognosis with patients and their families. PMID:18533406

  3. Central glucocorticoid receptors regulate the upregulation of spinal cannabinoid-1 receptors after peripheral nerve injury in rats.

    PubMed

    Wang, Shuxing; Lim, Grewo; Mao, Ji; Sung, Backil; Yang, Liling; Mao, Jianren

    2007-09-01

    Previous studies have shown that peripheral nerve injury upregulated both glucocorticoid receptors (GR) and cannabinoid-1 receptors (CB1R) within the spinal cord dorsal horn in rats. However, the relationship between the expression of spinal GR and CB1R after nerve injury remains unclear. Here, we examined the hypothesis that the upregulation of spinal CB1R induced by chronic constriction nerve injury (CCI) in rats would be regulated by spinal GR. CCI induced the upregulation of spinal CB1R primarily within the ipsilateral spinal cord dorsal horn as revealed by Western blot and immunohistochemistry. The expression of CB1R in CCI rats was substantially attenuated by intrathecal treatment with either the GR antagonist RU38486 or a GR antisense oligonucleotide given twice daily for postoperative day 1-6, whereas the expression of spinal CB1R was enhanced following intrathecal administration of a GR sense oligonucleotide twice daily for postoperative day 1-6. Furthermore, the upregulation of spinal CB1R after nerve injury was prevented in adrenalectomized rats, which was at least partially restored with the intrathecal administration of an exogenous GR agonist dexamethasone, indicating that corticosteroids (endogenous GR agonists) were critical to spinal GR actions. Since the development of neuropathic pain behaviors in CCI rats was attenuated by either RU38486 or a GR antisense oligonucleotide, these results suggest that CB1R is a downstream target for spinal GR actions contributory to the mechanisms of neuropathic pain.

  4. Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Heng-Jun; Wang, Li-Qing; Xu, Qing-Sheng

    Inflammatory response played an important role in the progression of spinal cord injury (SCI). Several miRNAs were associated with the pathology of SCI. However, the molecular mechanism of miRNA involving in inflammatory response in acute SCI (ASCI) was poorly understood. Sprague-Dawley (SD) rats were divided into 2 groups: control group (n=6) and acute SCI (ASCI) group (n=6). The expression of miR-199b and IκB kinase β-nuclear factor-kappa B (IKKβ-NF-κB) signaling pathway were evaluated by quantitative reverse transcription-PCR (qRT-PCR) in rats with ASCI and in primary microglia activated by lipopolysaccharide (LPS). We found that downregulation of miR-199b and activation of IKKβ/NF-κB weremore » observed in rats after ASCI and in activated microglia. miR-199b negatively regulated IKKβ by targeting its 3′- untranslated regions (UTR) through using luciferase reporter assay. Overexpression of miR-199b reversed the up-regulation of IKKβ, p-p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in LPS-treated BV2 cells assessed by western blotting analysis. In addition, BMS-345541 reversed the up-regulation effects of miR-199b inhibitor on the expression of TNF-α and IL-1β. In the SCI rats, overexpression of miR-199b attenuated ASCI and decreased the expression of IKKβ-NF-κB signaling pathway and TNF-α and IL-1β. These results indicated that miR-199b attenuated ASCI at least partly through IKKβ-NF-κB signaling pathway and affecting the function of microglia. Our findings suggest that miR-199b may be employed as therapeutic for spinal cord injury. - Highlights: • Downregulation of miR-199b and activation of IKKβ/NF-κB were observed in rat after SCI. • miR-199b negatively regulated IKKβ by targeting its 3′-UTR. • miR-199b overexpression reversed the increasing IKKβ, p-p65, TNF-α and IL-1β in LPS-treated BV2. • BMS-345541 reversed the up-regulation of TNF-α and IL-1β induced by miR-199b inhibitor. • Overexpression of

  5. Emotional Intelligence in Patients with Spinal Cord Injury (SCI).

    PubMed

    Saberi, Hooshang; Ghajarzadeh, Mahsa

    2017-05-01

    Spinal Cord Injury (SCI) is a devastating situation. Spinal Cord Injury affects functional, psychological and socioeconomic aspects of patients' lives. The ability to accomplish and explicate the one's own and other's feelings and emotions to spread over appropriate information for confirming thoughts and actions is defined as emotional intelligence (EI). The goal of this study was to evaluate depression and EI in SCI patients in comparison with healthy subjects. One-hundred-ten patients with SCI and 80 healthy subjects between Aug 2014 and Aug 2015 were enrolled. The study was conducted in Imam Hospital, Tehran, Iran. All participants were asked to fill valid and reliable Persian version Emotional Quotient inventory (EQ-i) and Beck Depression Inventory (BDI). All data were analyzed using SPSS. Data were presented as Mean±SD for continuous or frequencies for categorical variables. Continuous variables compared by means of independent sample t -test. P -values less than 0.05 were considered as significant. Mean age of patients was 28.7 and mean age of controls was 30.2 yr. Spinal cord injury in 20 (18.3%) were at cervical level, in 83 (75.4%) were thoracic and in 7 (6.3%) were lumbar. Mean values of independence, stress tolerance, self-actualization, emotional Self-Awareness, reality testing, Impulse Control, flexibility, responsibility, and assertiveness were significantly different between cases and controls. Mean values of stress tolerance, optimism, self-regard, and responsibility were significantly different between three groups with different injury level. Most scales were not significantly different between male and female cases. Emotional intelligence should be considered in SCI cases as their physical and psychological health is affected by their illness.

  6. Magnetic resonance imaging tractography as a diagnostic tool in patients with spinal cord injury treated with human embryonic stem cells.

    PubMed

    Shroff, Geeta

    2017-02-01

    Introduction Spinal cord injury is a cause of severe disability and mortality. The pharmacological and non-pharmacological methods used, are unable to improve the quality of life in spinal cord injury. Spinal disorders have been treated with human embryonic stem cells. Magnetic resonance imaging and tractography were used as imaging modality to document the changes in the damaged cord, but the magnetic resonance imaging tractography was seen to be more sensitive in detecting the changes in the spinal cord. The present study was conducted to evaluate the diagnostic modality of magnetic resonance imaging tractography to determine the efficacy of human embryonic stem cells in chronic spinal cord injury. Materials and methods The study included the patients with spinal cord injury for whom magnetic resonance imaging tractography was performed before and after the therapy. Omniscan (gadodiamide) magnetic resonance imaging tractography was analyzed to assess the spinal defects and the improvement by human embryonic stem cell treatment. The patients were also scored by American Spinal Injury Association scale. Results Overall, 15 patients aged 15-44 years with clinical manifestations of spinal cord injury had magnetic resonance imaging tractography performed. The average treatment period was nine months. The majority of subjects ( n = 13) had American Spinal Injury Association score A, and two patients were at score C at the beginning of therapy. At the end of therapy, 10 patients were at score A, two patients were at score B and three patients were at score C. Improvements in patients were clearly understood through magnetic resonance imaging tractography as well as in clinical signs and symptoms. Conclusion Magnetic resonance imaging tractography can be a crucial diagnostic modality to assess the improvement in spinal cord injury patients.

  7. High incidence of falls and fall-related injuries in wheelchair users with spinal cord injury: A prospective study of risk indicators.

    PubMed

    Forslund, Emelie Butler; Jørgensen, Vivien; Franzén, Erika; Opheim, Arve; Seiger, Åke; Ståhle, Agneta; Hultling, Claes; Stanghelle, Johan K; Roaldsen, Kirsti Skavberg; Wahman, Kerstin

    2017-01-31

    To identify risk indicators for, and incidence of, recurrent falls and fall-related injuries in wheelchair users with traumatic spinal cord injury. Prospective multi-centre study. One hundred and forty-nine wheelchair users with spinal cord injury attending follow-up in Sweden and Norway. Inclusion criteria: wheelchair users ≥ 18 years old with traumatic spinal cord injury ≥ 1 year post-injury. individuals with motor complete injuries above C5. Falls were prospectively reported by text message every second week for one year and were followed-up by telephone interviews. Outcomes were: fall incidence, risk indicators for recurrent (> 2) falls and fall-related injuries. Independent variables were: demographic data, quality of life, risk willingness, functional independence, and exercise habits. Of the total sample (n = 149), 96 (64%) participants fell, 45 (32%) fell recurrently, 50 (34%) were injured, and 7 (5%) severely injured. Multivariate logistic regression analysis showed that reporting recurrent falls the previous year increased the odds ratio (OR) of recurrent falls (OR 10.2, p < 0.001). Higher quality of life reduced the OR of fall-related injuries (OR 0.86, p = 0.037). Previous recurrent falls was a strong predictor of future falls. The incidence of falls, recurrent falls and fall-related injuries was high. Hence, prevention of falls and fall-related injuries is important.

  8. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm.

    PubMed

    Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S

    2006-07-01

    Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.

  9. Predictors of outcome in acute traumatic central cord syndrome due to spinal stenosis.

    PubMed

    Aarabi, Bizhan; Alexander, Melvin; Mirvis, Stuart E; Shanmuganathan, Kathirkamanathan; Chesler, David; Maulucci, Christopher; Iguchi, Mark; Aresco, Carla; Blacklock, Tiffany

    2011-01-01

    the objective of this study was to elucidate the relationship between admission demographic data, validated injury severity measures on imaging studies, and clinical indicators on the American Spinal Injury Association (ASIA) motor score, Functional Independence Measure (FIM), manual dexterity, and dysesthetic pain at least 12 months after surgery for acute traumatic central cord syndrome (ATCCS) due to spinal stenosis. over a 100-month period (January 2000 to April 2008), of 211 patients treated for ATCCS, 59 cases were due to spinal stenosis, and these patients underwent surgical decompression. Five of these patients died, 2 were lost to follow-up, 10 were not eligible for the study, and the remaining 42 were followed for at least 12 months. in the cohort of 42 patients, mean age was 58.3 years, 83% of the patients were men, and 52.4% of the accidents were due to falls. Mean admission ASIA motor score was 63.8 (upper extremities score, 25.8 and lower extremities score, 39.8), the spinal cord was most frequently compressed at skeletal segments C3-4 and C4-5 (71%), mean midsagittal diameter at the point of maximum compression was 5.6 mm, maximum canal compromise (MCC) was 50.5%, maximum spinal cord compression was 16.5%, and length of parenchymal damage on T2-weighted MR imaging was 29.4 mm. Time after injury until surgery was within 24 hours in 9 patients, 24-48 hours in 10 patients, and more than 48 hours in 23 patients. At the 1-year follow-up, the mean ASIA motor score was 94.1 (upper extremities score, 45.7 and lower extremities score, 47.6), FIM was 111.1, manual dexterity was 64.4% of baseline, and pain level was 3.5. Stepwise regression analysis of 10 independent variables indicated significant relationships between ASIA motor score at follow-up and admission ASIA motor score (p = 0.003), MCC (p = 0.02), and midsagittal diameter (p = 0.02); FIM and admission ASIA motor score (p = 0.03), MCC (p = 0.02), and age (p = 0.02); manual dexterity and admission ASIA

  10. Spinal cord injury following operative shoulder intervention: A case report.

    PubMed

    Cleveland, Christine; Walker, Heather

    2015-07-01

    Cervical myelopathy is a spinal cord dysfunction that results from extrinsic compression of the spinal cord, its blood supply, or both. It is the most common cause of spinal cord dysfunction in patients greater than 55 years of age. A 57-year-old male with right shoulder septic arthritis underwent surgical debridement of his right shoulder and sustained a spinal cord injury intraoperatively. The most likely etiology is damage to the cervical spinal cord during difficult intubation requiring multiple attempts in this patient with underlying asymptomatic severe cervical stenosis. Although it is not feasible to perform imaging studies on all patients undergoing intubation for surgery, this patient's outcome would suggest consideration of inclusion of additional pre-surgical screening examination techniques, such as testing for a positive Hoffman's reflex, is appropriate to detect asymptomatic patients who may have underlying cervical stenosis.

  11. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.

    PubMed

    Zareen, N; Shinozaki, M; Ryan, D; Alexander, H; Amer, A; Truong, D Q; Khadka, N; Sarkar, A; Naeem, S; Bikson, M; Martin, J H

    2017-11-01

    Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Ex Vivo Diffusion Tensor Imaging of Spinal Cord Injury in Rats of Varying Degrees of Severity

    PubMed Central

    Jirjis, Michael B.; Kurpad, Shekar N.

    2013-01-01

    Abstract The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague–Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm2. Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r2=0.80). The diffusivity of water significantly decreased throughout “uninjured” portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury. PMID:23782233

  13. Therapeutic Hypothermia Following Traumatic Spinal Injury: Morphological and Functional Correlates.

    DTIC Science & Technology

    1999-01-01

    oxide synthase inhibitor ( agmatine ) following traumatic spinal cord injury. The major findings of these studies have shown that significant...Similarly, significant differences were observed following systemic administration of agmatine for 14 days post-injury. Unfortunately, no synergistic or...additive effects were achieved when agmatine and hypothermia were combined. Overall, the results support the original hypothesis of this proposal that

  14. DARPA challenge: developing new technologies for brain and spinal injuries

    NASA Astrophysics Data System (ADS)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  15. Activation of p38 MAP Kinase is Involved in Central Neuropathic Pain Following Spinal Cord Injury

    PubMed Central

    Crown, Eric D; Gwak, Young Seob; Ye, Zaiming; Johnson, Kathia M; Hulsebosch, Claire E

    2008-01-01

    Recent work regarding chronic central neuropathic pain (CNP) following spinal cord injury (SCI) suggests that activation of key signaling molecules such as members of the mitogen activated protein kinase (MAPK) family play a role in the expression of at-level mechanical allodynia. Specifically, Crown and colleagues (2005, 2006) have shown that the development of at-level CNP following moderate spinal cord injury is correlated with increased expression of the activated (and thus phosphorylated) forms of the MAPKs extracellular signal related kinase and p38 MAPK. The current study extends this work by directly examining the role of p38 MAPK in the maintenance of at-level CNP following spinal cord injury. Using a combination of behavioral, immunocytochemical, and electrophysiological measures we demonstrate that increased activation of p38 MAPK occurs in the spinal cord just rostral to the site of injury in rats that develop at-level mechanical allodynia after moderate SCI. Immunocytochemical analyses indicate that the increases in p38 MAPK activation occurred in astrocytes, microglia, and dorsal horn neurons in the spinal cord rostral to the site of injury. Inhibiting the enzymatic activity of p38 MAPK dose dependently reverses the behavioral expression of at-level mechanical allodynia and also decreases the hyperexcitability seen in thoracic dorsal horn neurons after moderate SCI. Taken together, these novel data are the first to demonstrate causality that increased activation of p38 MAPK in multiple cell types play an important role in the maintenance of at-level CNP following spinal cord injury. PMID:18590729

  16. Cardiovascular dysfunction following spinal cord injury

    PubMed Central

    Partida, Elizabeth; Mironets, Eugene; Hou, Shaoping; Tom, Veronica J.

    2016-01-01

    Both sensorimotor and autonomic dysfunctions often occur after spinal cord injury (SCI). Particularly, a high thoracic or cervical SCI interrupts supraspinal vasomotor pathways and results in disordered hemodynamics due to deregulated sympathetic outflow. As a result of the reduced sympathetic activity, patients with SCI may experience hypotension, cardiac dysrhythmias, and hypothermia post-injury. In the chronic phase, changes within the CNS and blood vessels lead to orthostatic hypotension and life-threatening autonomic dysreflexia (AD). AD is characterized by an episodic, massive sympathetic discharge that causes severe hypertension associated with bradycardia. The syndrome is often triggered by unpleasant visceral or sensory stimuli below the injury level. Currently the only treatments are palliative – once a stimulus elicits AD, pharmacological vasodilators are administered to help reduce the spike in arterial blood pressure. However, a more effective means would be to mitigate AD development by attenuating contributing mechanisms, such as the reorganization of intraspinal circuits below the level of injury. A better understanding of the neuropathophysiology underlying cardiovascular dysfunction after SCI is essential to better develop novel therapeutic approaches to restore hemodynamic performance. PMID:27073353

  17. Exercise and Health-Related Risks of Physical Deconditioning After Spinal Cord Injury

    PubMed Central

    McMillan, David W.; Nash, Mark S.

    2017-01-01

    A sedentary lifestyle occurring soon after spinal cord injury (SCI) may be in contrast to a preinjury history of active physical engagement and is thereafter associated with profound physical deconditioning sustained throughout the lifespan. This physical deconditioning contributes in varying degrees to lifelong medical complications, including accelerated cardiovascular disease, insulin resistance, osteopenia, and visceral obesity. Unlike persons without disability for whom exercise is readily available and easily accomplished, exercise options for persons with SCI are more limited. Depending on the level of injury, the metabolic responses to acute exercise may also be less robust than those accompanying exercise in persons without disability, the training benefits more difficult to achieve, and the risks of ill-considered exercise both greater and potentially irreversible. For exercise to ultimately promote benefit and not impose additional impairment, an understanding of exercise opportunities and risks if exercise is undertaken by those with SCI is important. The following monograph will thus address common medical challenges experienced by persons with SCI and typical modes and benefits of voluntary exercise conditioning. PMID:29339894

  18. Serum leptin, bone mineral density and the healing of long bone fractures in men with spinal cord injury.

    PubMed

    Wang, Lei; Liu, Linjuan; Pan, Zhanpeng; Zeng, Yanjun

    2015-11-16

    Previously reported fracture rates in patients with spinal cord injury range from 1% to 20%. However, the exact role of spinal cord injury in bone metabolism has not yet been clarified. In order to investigate the effects of serum leptin and bone mineral density on the healing of long bone fractures in men with spinal cord injury, 15 male SCI patients and 15 matched controls were involved in our study. The outcome indicated that at 4 and 8 weeks after bone fracture, callus production in patients with spinal cord injury was lower than that in controls. Besides, bone mineral density was significantly reduced at 2, 4 and 8 weeks. In addition, it was found that at each time point, patients with spinal cord injury had significantly higher serum leptin levels than controls and no association was found between serum leptin level and bone mineral density of lumbar vertebrae. Moreover, bone mineral density was positively correlated with bone formation in both of the groups. These findings suggest that in early phases i.e. week 4 and 8, fracture healing was impaired in patients with spinal cord injury and that various factors participated in the complicated healing process, such as hormonal and mechanical factors.

  19. Estimating the global incidence of traumatic spinal cord injury.

    PubMed

    Fitzharris, M; Cripps, R A; Lee, B B

    2014-02-01

    Population modelling--forecasting. To estimate the global incidence of traumatic spinal cord injury (TSCI). An initiative of the International Spinal Cord Society (ISCoS) Prevention Committee. Regression techniques were used to derive regional and global estimates of TSCI incidence. Using the findings of 31 published studies, a regression model was fitted using a known number of TSCI cases as the dependent variable and the population at risk as the single independent variable. In the process of deriving TSCI incidence, an alternative TSCI model was specified in an attempt to arrive at an optimal way of estimating the global incidence of TSCI. The global incidence of TSCI was estimated to be 23 cases per 1,000,000 persons in 2007 (179,312 cases per annum). World Health Organization's regional results are provided. Understanding the incidence of TSCI is important for health service planning and for the determination of injury prevention priorities. In the absence of high-quality epidemiological studies of TSCI in each country, the estimation of TSCI obtained through population modelling can be used to overcome known deficits in global spinal cord injury (SCI) data. The incidence of TSCI is context specific, and an alternative regression model demonstrated how TSCI incidence estimates could be improved with additional data. The results highlight the need for data standardisation and comprehensive reporting of national level TSCI data. A step-wise approach from the collation of conventional epidemiological data through to population modelling is suggested.

  20. A simplified method of walking track analysis to assess short-term locomotor recovery after acute spinal cord injury caused by thoracolumbar intervertebral disc extrusion in dogs.

    PubMed

    Song, R B; Oldach, M S; Basso, D M; da Costa, R C; Fisher, L C; Mo, X; Moore, S A

    2016-04-01

    The purpose of this study was to evaluate a simplified method of walking track analysis to assess treatment outcome in canine spinal cord injury. Measurements of stride length (SL) and base of support (BS) were made using a 'finger painting' technique for footprint analysis in all limbs of 20 normal dogs and 27 dogs with 28 episodes of acute thoracolumbar spinal cord injury (SCI) caused by spontaneous intervertebral disc extrusion. Measurements were determined at three separate time points in normal dogs and on days 3, 10 and 30 following decompressive surgery in dogs with SCI. Values for SL, BS and coefficient of variance (COV) for each parameter were compared between groups at each time point. Mean SL was significantly shorter in all four limbs of SCI-affected dogs at days 3, 10, and 30 compared to normal dogs. SL gradually increased toward normal in the 30 days following surgery. As measured by this technique, the COV-SL was significantly higher in SCI-affected dogs than normal dogs in both thoracic limbs (TL) and pelvic limbs (PL) only at day 3 after surgery. BS-TL was significantly wider in SCI-affected dogs at days 3, 10 and 30 following surgery compared to normal dogs. These findings support the use of footprint parameters to compare locomotor differences between normal and SCI-affected dogs, and to assess recovery from SCI. Additionally, our results underscore important changes in TL locomotion in thoracolumbar SCI-affected dogs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Advanced Restoration Therapies in Spinal Cord Injury

    DTIC Science & Technology

    2016-05-01

    project. In addition, Dr. Belegu has performed SCI surgeries , electrode implantations, FES stimulation, and neurological assays. Name: Ali...month worked: 10.2 Contribution to Project: Dr. Liu has assisted Dr. Belegu in performing SCI surgeries , electrode implantation. In addition, she...training-based rehabilitation. Arch Phys Med Rehabil 93, 1508-1517. Karimi, M.T. (2013). Robotic rehabilitation of spinal cord injury individual

  2. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury

    NASA Astrophysics Data System (ADS)

    Khaing, Zin Z.; Milman, Brian D.; Vanscoy, Jennifer E.; Seidlits, Stephanie K.; Grill, Raymond J.; Schmidt, Christine E.

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI.

  3. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury.

    PubMed

    Khaing, Zin Z; Milman, Brian D; Vanscoy, Jennifer E; Seidlits, Stephanie K; Grill, Raymond J; Schmidt, Christine E

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI.

  4. Responses of the Acutely Injured Spinal Cord to Vibration that Simulates Transport in Helicopters or Mine-Resistant Ambush-Protected Vehicles.

    PubMed

    Streijger, Femke; Lee, Jae H T; Manouchehri, Neda; Melnyk, Angela D; Chak, Jason; Tigchelaar, Seth; So, Kitty; Okon, Elena B; Jiang, Shudong; Kinsler, Rachel; Barazanji, Khalid; Cripton, Peter A; Kwon, Brian K

    2016-12-15

    In the military environment, injured soldiers undergoing medical evacuation via helicopter or mine-resistant ambush-protected vehicle (MRAP) are subjected to vibration and shock inherent to the transport vehicle. We conducted the present study to assess the consequences of such vibration on the acutely injured spinal cord. We used a porcine model of spinal cord injury (SCI). After a T10 contusion-compression injury, animals were subjected to 1) no vibration (n = 7-8), 2) whole body vibration at frequencies and amplitudes simulating helicopter transport (n = 8), or 3) whole body vibration simulating ground transportation in an MRAP ambulance (n = 7). Hindlimb locomotor function (using Porcine Thoracic Injury Behavior Scale [PTIBS]), Eriochrome Cyanine histochemistry and biochemical analysis of inflammatory and neural damage markers were analyzed. Cerebrospinal fluid (CSF) expression levels for monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, IL-8, and glial fibrillary acidic protein (GFAP) were similar between the helicopter or MRAP group and the unvibrated controls. Spared white/gray matter tended to be lower in the MRAP-vibrated animals than in the unvibrated controls, especially rostral to the epicenter. However, spared white/gray matter in the helicopter-vibrated group appeared normal. Although there was a relationship between the extent of sparing and the extent of locomotor recovery, no significant differences were found in PTIBS scores between the groups. In summary, exposures to vibration in the context of ground (MRAP) or aeromedical (helicopter) transportation did not significantly impair functional outcome in our large animal model of SCI. However, MRAP vibration was associated with increased tissue damage around the injury site, warranting caution around exposure to vehicle vibration acutely after SCI.

  5. Pharmacodynamic evaluation of Lys5, MeLeu9, Nle10-NKA(4–10) prokinetic effects on bladder and colon activity in acute spinal cord transected and spinally intact rats

    PubMed Central

    Kullmann, F. Aura; Katofiasc, M.; Thor, K.B.; Marson, L.

    2017-01-01

    Purpose To determine feasibility of a novel therapeutic approach to drug-induced voiding after spinal cord injury (SCI) using a well-characterized, peptide, neurokinin 2 receptor (NK2 receptor) agonist, Lys5, MeLeu9, Nle10-NKA(4–10) (LMN-NKA). Methods Cystometry and colorectal pressure measurements were performed in urethane anesthetized, intact and acutely spinalized, female rats. Bladder pressure and voiding were monitored in response to intravenous LMN-NKA given with the bladder filled to 70% capacity. Results LMN-NKA (0.1–300 µg/kg) produced dose dependent, rapid (< 60 s), short duration (< 15 min) increases in bladder pressure. In intact rats, doses above 0.3–1 µg/kg induced urine release (voiding efficiency of ~ 70% at ≥ 1 µg/kg). In spinalized rats, urine release required higher doses (≥ 10 µg/kg) and was less efficient (30–50%). LMN-NKA (0.1–100 µg/kg) also produced dose dependent increases in colorectal pressure. No tachyphylaxis was observed, and the responses were blocked by an NK2 receptor antagonist (GR159897, 1 mg/kg i.v.). No obvious cardiorespiratory effects were noted. Conclusions These results suggest that rapid-onset, short duration, drug-induced voiding is possible in acute spinal and intact rats with intravenous administration of an NK2 receptor agonist. Future challenges remain in regards to finding alternative routes of administration that produce clinically significant voiding, multiple times per day, in animal models of chronic SCI. PMID:27889808

  6. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target

    PubMed Central

    Scholpa, Natalie E.

    2017-01-01

    Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI. PMID:28935700

  7. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target.

    PubMed

    Scholpa, Natalie E; Schnellmann, Rick G

    2017-12-01

    Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI. U.S. Government work not protected by U.S. copyright.

  8. The cell cycle and acute kidney injury

    PubMed Central

    Price, Peter M.; Safirstein, Robert L.; Megyesi, Judit

    2009-01-01

    Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute kidney injury. PMID:19536080

  9. Artificial Gravity as a Countermeasure of Cardiovascular Deconditioning in Spinal Cord Injury

    NASA Technical Reports Server (NTRS)

    Cardus, David

    1999-01-01

    An essential item in the development of this project was the availability of the artificial gravity simulator (AGS). At the termination of that grant in 1994, the AGS was dismantled and transferred to NASA Johnson Space Center. It took over two years for the AGS to be re-assembled and re-certified for use. As a consequence of the non-availability of the AGS for two years, there was a considerable delay in implementing the various phases of the project. The subjects involved in the study were eight healthy able bodied subjects and twelve with spinal cord injury. After analysis of the data collected on these subjects, six of the healthy able bodied subjects and three of the sub ects with spinal cord injury were found to qualify for the study. This report gives the results of four subjects only, two healthy able bodied and two spinal cord injured subjects because the period of the grant (1 year) and its extension (1 year) expired before additional subjects could be studied. The principal objective of the study was to conduct a series of experiments to demonstrate the feasibility of utilizing artificial gravity to assist in the physical rehabilitation of persons with spinal cord injuries.

  10. How important is resilience among family members supporting relatives with traumatic brain injury or spinal cord injury?

    PubMed

    Simpson, Grahame; Jones, Kate

    2013-04-01

    To investigate the relationship between resilience and affective state, caregiver burden and caregiving strategies among family members of people with traumatic brain or spinal cord injury. An observational prospective cross-sectional study. Inpatient and community rehabilitation services. Convenience sample of 61 family respondents aged 18 years or older at the time of the study and supporting a relative with severe traumatic brain injury (n = 30) or spinal cord injury (n= 31). Resilience Scale, Positive And Negative Affect Schedule, Caregiver Burden Scale, Functional Independence Measure, Carer's Assessment of Managing Index. Correlational analyses found a significant positive association between family resilience scores and positive affect (r(s) = 0.67), and a significant negative association with negative affect (r(s) = -0.47) and caregiver burden scores (r(s) = -0.47). No association was found between family resilience scores and their relative's severity of functional impairment. Family members with high resilience scores rated four carer strategies as significantly more helpful than family members with low resilience scores. Between-groups analyses (families supporting relative with traumatic brain injury vs. spinal cord injury) found no significant differences in ratings of the perceived helpfulness of carer strategies once Bonferroni correction for multiple tests was applied. Self-rated resilience correlated positively with positive affect, and negatively with negative affect and caregiver burden. These results are consistent with resilience theories which propose that people with high resilience are more likely to display positive adaptation when faced by significant adversity.

  11. Hypopituitarism after acute brain injury.

    PubMed

    Urban, Randall J

    2006-07-01

    Acute brain injury has many causes, but the most common is trauma. There are 1.5-2.0 million traumatic brain injuries (TBI) in the United States yearly, with an associated cost exceeding 10 billion dollars. TBI is the most common cause of death and disability in young adults less than 35 years of age. The consequences of TBI can be severe, including disability in motor function, speech, cognition, and psychosocial and emotional skills. Recently, clinical studies have documented the occurrence of pituitary dysfunction after TBI and another cause of acute brain injury, subarachnoid hemorrhage (SAH). These studies have consistently demonstrated a 30-40% occurrence of pituitary dysfunction involving at least one anterior pituitary hormone following a moderate to severe TBI or SAH. Growth hormone (GH) deficiency is the most common pituitary hormone disorder, occurring in approximately 20% of patients when multiple tests of GH deficiency are used. Within 7-21 days of acute brain injury, adrenal insufficiency is the primary concern. Pituitary function can fluctuate over the first year after TBI, but it is well established by 1 year. Studies are ongoing to assess the effects of hormone replacement on motor function and cognition in TBI patients. Any subject with a moderate to severe acute brain injury should be screened for pituitary dysfunction.

  12. Integral multidisciplinary approach in a patient with chronic complete spinal cord injury and hip disarticulation

    PubMed Central

    Quinzaños-Fresnedo, J; Rodríguez-Reyes, G; Mendoza-Cosío, C; Pérez-Zavala, R; Márquez-Guitérrez, E A; Hernández-Sandoval, S

    2015-01-01

    Study design: Case report. Objectives: To highlight the importance of the integral multidisciplinary management of a patient with complete chronic spinal cord injury and hip disarticulation secondary to pressure ulcers (PU). Setting: Mexico City. Methods: The case of a 40-year-old male violinist with a spinal cord injury, American Spinal Injury Association Impairment Scale A and neurological level T4, is reported. The patient initiated with bilateral ischiatic, left trochanteric and sacral PU. The ulcers were complicated with infection with sluggish evolution. Thus, it was decided a multidisciplinary management by means of left hip disarticulation and elaboration of a cosmetic prosthesis and the manufacture of a viscous elastic foam cushion for the prevention of new PU. The patient was quickly included in his professional and social activities. Conclusion: This study proves that multidisciplinary management of patients with spinal cord injury with complications such as the presence of PU that are resistant to noninvasive treatment can be the solution for the patient’s reintegration into their normal life with adequate quality of life. PMID:28053719

  13. Activity-Based Therapies To Promote Forelimb Use after a Cervical Spinal Cord Injury

    PubMed Central

    Dai, Haining; MacArthur, Linda; McAtee, Marietta; Hockenbury, Nicole; Tidwell, J. Lille; McHugh, Brian; Mansfield, Kevin; Finn, Tom; Hamers, Frank P.T.

    2009-01-01

    Abstract Significant interest exists in strategies for improving forelimb function following spinal cord injury. We investigated the effect of enriched housing combined with skilled training on the recovery of skilled and automatic forelimb function after a cervical spinal cord injury in adult rats. All animals were pretrained in skilled reaching, gridwalk crossing, and overground locomotion. Some received a cervical over-hemisection lesion at C4-5, interrupting the right side of the spinal cord and dorsal columns bilaterally, and were housed in standard housing alone or enriched environments with daily training. A subset of animals received rolipram to promote neuronal plasticity. Animals were tested weekly for 4 weeks to measure reaching, errors on the gridwalk, locomotion, and vertical exploration. Biotinylated dextran amine was injected into the cortex to label the corticospinal tract. Enriched environments/daily training significantly increased the number and success of left reaches compared to standard housing. Animals also made fewer errors on the gridwalk, a measure of coordinated forelimb function. However, there were no significant improvements in forelimb use during vertical exploration or locomotion. Likewise, rolipram did not improve any of the behaviors tested. Both enriched housing and rolipram increased plasticity of the corticospinal tract rostral to the lesion. These studies indicate that skilled training after a cervical spinal cord injury improves recovery of skilled forelimb use (reaching) and coordinated limb function (gridwalk) but does not improve automatic forelimb function (locomotion and vertical exploration). These studies suggest that rehabilitating forelimb function after spinal cord injury will require separate strategies for descending and segmental pathways. PMID:19317604

  14. An exploration of cognitive appraisals following spinal cord injury.

    PubMed

    Kaiser, Sally; Kennedy, Paul

    2011-12-01

    This study explored the cognitive appraisals that people make following spinal cord injury (SCI) about their situation and their ability to cope with it. Appraisals are thought to be important in determining individual responses to different events and have been shown to predict psychological well-being following injury. A cross-sectional interview study was used. Ten individuals who had recently started rehabilitation at the National Spinal Injuries Centre following an SCI were interviewed. Eight men and two women with a variety of injury level and completeness participated. Interviews were semi-structured and aimed to elicit participants' appraisals of their experiences and their ability to cope. Interviews were analysed qualitatively using interpretative phenomenological analysis. Four super-ordinate themes emerged from the interviews. These were making sense of a traumatic experience, impact of the SCI, coping and altered view of self and life. The interviews revealed that appraisals following SCI are complex and relate not only to the individual but also to their context, life stage, roles and relationships. The study adds to the theoretical understanding of the appraisal process following SCI. Ideas for further research are generated and clinical implications for improving patient experiences and developing appraisal-focused interventions are considered.

  15. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.

    PubMed

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-11-10

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for

  16. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.

    PubMed

    Keirstead, Hans S; Nistor, Gabriel; Bernal, Giovanna; Totoiu, Minodora; Cloutier, Frank; Sharp, Kelly; Steward, Oswald

    2005-05-11

    Demyelination contributes to loss of function after spinal cord injury, and thus a potential therapeutic strategy involves replacing myelin-forming cells. Here, we show that transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into adult rat spinal cord injuries enhances remyelination and promotes improvement of motor function. OPCs were injected 7 d or 10 months after injury. In both cases, transplanted cells survived, redistributed over short distances, and differentiated into oligodendrocytes. Animals that received OPCs 7 d after injury exhibited enhanced remyelination and substantially improved locomotor ability. In contrast, when OPCs were transplanted 10 months after injury, there was no enhanced remyelination or locomotor recovery. These studies document the feasibility of predifferentiating hESCs into functional OPCs and demonstrate their therapeutic potential at early time points after spinal cord injury.

  17. Effects of serotonergic medications on locomotor performance in humans with incomplete spinal cord injury.

    PubMed

    Leech, Kristan A; Kinnaird, Catherine R; Hornby, T George

    2014-08-01

    Incomplete spinal cord injury (iSCI) often results in significant motor impairments that lead to decreased functional mobility. Loss of descending serotonergic (5HT) input to spinal circuits is thought to contribute to motor impairments, with enhanced motor function demonstrated through augmentation of 5HT signaling. However, the presence of spastic motor behaviors in SCI is attributed, in part, to changes in spinal 5HT receptors that augment their activity in the absence of 5HT, although data demonstrating motor effects of 5HT agents that deactivate these receptors are conflicting. The effects of enhancement or depression of 5HT signaling on locomotor function have not been thoroughly evaluated in human iSCI. Therefore, the aim of the current study was to investigate acute effects of 5HT medications on locomotion in 10 subjects with chronic (>1 year) iSCI. Peak overground and treadmill locomotor performance, including measures of gait kinematics, electromyographic (EMG) activity, and oxygen consumption, were assessed before and after single-dose administration of either a selective serotonin reuptake inhibitor (SSRI) or a 5HT antagonist using a double-blinded, randomized, cross-over design. Results indicate that neither medication led to improvements in locomotion, with a significant decrease in peak overground gait speed observed after 5HT antagonists (from 0.8±0.1 to 0.7±0.1 m/s; p=0.01). Additionally, 5-HT medications had differential effects on EMG activity, with 5HT antagonists decreasing extensor activity and SSRIs increasing flexor activity. Our data therefore suggest that acute manipulation of 5HT signaling, despite changes in muscle activity, does not improve locomotor performance after iSCI.

  18. Through Clinical Observation: The History of Priapism After Spinal Cord Injuries.

    PubMed

    Turliuc, Mihaela Dana; Turliuc, Serban; Cucu, Andrei Ionut; Tamas, Camelia; Carauleanu, Alexandru; Buzduga, Catalin; Sava, Anca; Dumitrescu, Gabriela Florenta; Costea, Claudia Florida

    2018-01-01

    Since ancient times, physicians of antiquity noted the occurrence of priapism in some spinal cord injuries. Although priests saw it as a consequence of curses and witchcraft, after clinical observations of the Middle Ages and Renaissance, the first medical hypotheses emerged in the 17th-19th centuries completed and argued by neuroscience and neurology developed in the European laboratories and hospitals. This study aims to present a short overview of the history of clinical observations of posttraumatic male priapism after spinal cord injuries since antiquity until the beginning of the 20th century. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Effects of polarization in low-level laser therapy of spinal cord injury in rats

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru

    2012-03-01

    Low-level laser therapy (LLLT) is a promising approach to treat the spinal cord injury (SCI). Since nerve fibers have optical anisotropy, propagation of light in the spinal tissue might be affected by its polarization direction. However, the effect of polarization on the efficacy of LLLT has not been elucidated. In the present study, we investigated the effect of polarization on the efficacy of near-infrared LLLT for SCI. Rat spinal cord was injured with a weight-drop device. The lesion site was irradiated with an 808-nm diode laser beam that was transmitted through a polarizing filter immediately after injury and daily for five consecutive days. The laser power at the injured spinal cord surface was 25 mW, and the dosage per day was 9.6 J/cm2 (spot diameter, 2 cm; irradiation duration, 1200 s). Functional recovery was assessed daily by an open-field test. The results showed that the functional scores of the SCI rats that were treated with 808-nm laser irradiation were significantly higher than those of the SCI alone group (Group 1) from day 5 after injury, regardless of the polarization direction. Importantly, as compared to the locomotive function of the SCI rats that were treated with the perpendicularly-polarized laser parallel to the spinal column (Group 2), that of the SCI rats that were irradiated with the linearly aligned polarization (Group 3) was significantly improved from day 10 after injury. In addition, the ATP contents in the injured spinal tissue of Group 3, which were measured immediately after laser irradiation, were moderately higher than those of Group 2. These observations are attributable to the deeper penetration of the parallelpolarized light in the anisotropic spinal tissue, suggesting that polarization direction significantly affects the efficacy of LLLT for SCI.

  20. Lower thoracic spinal cord injury without radiographic abnormality in an amateur rugby player.

    PubMed

    Smith, Hannah K; Durnford, Andrew J; Sherlala, Khaled; Merriam, William F

    2012-10-26

    A 37-year-old man, amateur rugby player sustained a hyperextension injury to his lower thoracic spine during a scrum collapse. The patient developed extreme hyperpathia in the T10-12 dermatome, and parasthesia from T12 to S1 in the left lower limb. Medical Research Council grade 5 power was regained rapidly within minutes of the accident, and the hyperpathia resolved within a week. MRI showed contusion of the spinal cord at T10 level but no associated osseoligamentous injury. Six months later, parasthesia and subjective weakness remained in the left lower limb. To our knowledge, this is the first description of a lower thoracic spinal cord injury without radiographic abnormality following an isolated low-energy injury in a skeletally mature patient.

  1. Lower thoracic spinal cord injury without radiographic abnormality in an amateur rugby player

    PubMed Central

    Smith, Hannah K; Durnford, Andrew J; Sherlala, Khaled; Merriam, William F

    2012-01-01

    A 37-year-old man, amateur rugby player sustained a hyperextension injury to his lower thoracic spine during a scrum collapse. The patient developed extreme hyperpathia in the T10-12 dermatome, and parasthesia from T12 to S1 in the left lower limb. Medical Research Council grade 5 power was regained rapidly within minutes of the accident, and the hyperpathia resolved within a week. MRI showed contusion of the spinal cord at T10 level but no associated osseoligamentous injury. Six months later, parasthesia and subjective weakness remained in the left lower limb. To our knowledge, this is the first description of a lower thoracic spinal cord injury without radiographic abnormality following an isolated low-energy injury in a skeletally mature patient. PMID:23104628

  2. Neurogenic bladder in spinal cord injury patients

    PubMed Central

    Taweel, Waleed Al; Seyam, Raouf

    2015-01-01

    Neurogenic bladder dysfunction due to spinal cord injury poses a significant threat to the well-being of patients. Incontinence, renal impairment, urinary tract infection, stones, and poor quality of life are some complications of this condition. The majority of patients will require management to ensure low pressure reservoir function of the bladder, complete emptying, and dryness. Management typically begins with anticholinergic medications and clean intermittent catheterization. Patients who fail this treatment because of inefficacy or intolerability are candidates for a spectrum of more invasive procedures. Endoscopic managements to relieve the bladder outlet resistance include sphincterotomy, botulinum toxin injection, and stent insertion. In contrast, patients with incompetent sphincters are candidates for transobturator tape insertion, sling surgery, or artificial sphincter implantation. Coordinated bladder emptying is possible with neuromodulation in selected patients. Bladder augmentation, usually with an intestinal segment, and urinary diversion are the last resort. Tissue engineering is promising in experimental settings; however, its role in clinical bladder management is still evolving. In this review, we summarize the current literature pertaining to the pathology and management of neurogenic bladder dysfunction in patients with spinal cord injury. PMID:26090342

  3. International urodynamic basic spinal cord injury data set.

    PubMed

    Biering-Sørensen, F; Craggs, M; Kennelly, M; Schick, E; Wyndaele, J-J

    2008-07-01

    To create the International Urodynamic Basic Spinal Cord Injury (SCI) Data Set within the framework of the International SCI Data Sets. International working group. The draft of the data set was developed by a working group consisting of members appointed by the Neurourology Committee of the International Continence Society, the European Association of Urology, the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the Executive Committee of the International SCI Standards and Data Sets. The final version of the data set was developed after review and comments by members of the Executive Committee of the International SCI Standards and Data Sets, the ISCoS Scientific Committee, ASIA Board, relevant and interested (international) organizations and societies (around 40) and persons and the ISCoS Council. Endorsement of the data set by relevant organizations and societies will be obtained. To make the data set uniform, each variable and each response category within each variable have been specifically defined in a way that is designed to promote the collection and reporting of comparable minimal data. Variables included in the International Urodynamic Basic SCI Data Set are date of data collection, bladder sensation during filling cystometry, detrusor function, compliance during filing cystometry, function during voiding, detrusor leak point pressure, maximum detrusor pressure, cystometric bladder capacity and post-void residual volume.

  4. MANAGEMENT OF ACUTE SPORTS INJURIES AND MEDICAL CONDITIONS BY PHYSICAL THERAPISTS: ASSESSMENT VIA CASE SCENARIOS

    PubMed Central

    Karges, Joy Renae; Salsbery, Mitchell A.; Smith, Danna; Stanley, Erica J.

    2011-01-01

    Purpose/Background: Some physical therapists (PTs) provide services at sporting events, but there are limited studies investigating whether PTs are properly prepared to provide such services. The purpose of this study was to assess acute sports injury and medical condition management decision-making skills of PTs. Methods: A Web-based survey presented 17 case scenarios related to acute medical conditions and sport injuries. PTs from the Sports Physical Therapy Section of The American Physical Therapy Association were e-mailed a cover letter/Web link to the survey and invited to participate over a 30-day period. Data were analyzed using SPSS 18.0. Results: A total of 411 of 5158 PTs who were members of the Sports Physical Therapy Association in 2009 and had valid e-mail addresses completed the survey, of which 389 (7.5%) were appropriate for analysis. Over 75.0% of respondents felt “prepared” or “somewhat prepared” to provide immediate care for 13 out of 16 medical conditions, with seizures, spinal cord injuries, and internal organ injuries having the lowest percentages. Over 75.0% of the respondents made “appropriate” or “overly cautious” decisions for 11 of the 17 acute injury or medical condition cases. Conclusions: Results of the current study indicate that PTs felt more “prepared” and tended to make “appropriate” return to play decisions on the acute sports injury and medical condition case studies more often than coaches who participated in a similar study, regardless of level of importance of the game or whether the athlete was a starter vs. non-starter. However, for PTs who plan on assisting at sporting events, additional preparation/education may be recommended, such as what is taught in an emergency responder course. PMID:21904695

  5. Changes in Gene Expression and Metabolism in the Testes of the Rat following Spinal Cord Injury

    PubMed Central

    Fortune, Ryan D.; Grill, Raymond J.; Beeton, Christine; Tanner, Mark; Huq, Redwan

    2017-01-01

    Abstract Spinal cord injury (SCI) results in devastating changes to almost all aspects of a patient's life. In addition to a permanent loss of sensory and motor function, males also will frequently exhibit a profound loss of fertility through poorly understood mechanisms. We demonstrate that SCI causes measureable pathology in the testis both acutely (24 h) and chronically up to 1.5 years post-injury, leading to loss in sperm motility and viability. SCI has been shown in humans and rats to induce leukocytospermia, with the presence of inflammatory cytokines, anti-sperm antibodies, and reactive oxygen species found within the ejaculate. Using messenger RNA and metabolomic assessments, we describe molecular and cellular changes that occur within the testis of adult rats over an acute to chronic time period. From 24 h, 72 h, 28 days, and 90 days post-SCI, the testis reveal a distinct time course of pathological events. The testis show an acute drop in normal sexual organ processes, including testosterone production, and establishment of a pro-inflammatory environment. This is followed by a subacute initiation of an innate immune response and loss of cell cycle regulation, possibly due to apoptosis within the seminiferous tubules. At 1.5 years post-SCI, there is a chronic low level immune response as evidenced by an elevation in T cells. These data suggest that SCI elicits a wide range of pathological processes within the testes, the actions of which are not restricted to the acute phase of injury but rather extend chronically, potentially through the lifetime of the subject. The multiplicity of these pathological events suggest a single therapeutic intervention is unlikely to be successful. PMID:27750479

  6. Pain severity and mobility one year after spinal cord injury: a multicenter, cross-sectional study.

    PubMed

    Marcondes, Bianca F; Sreepathi, Shruti; Markowski, Justin; Nguyen, Dung; Stock, Shannon R; Carvalho, Sandra; Tate, Denise; Zafonte, Ross; Morse, Leslie R; Fregni, Felipe

    2016-10-01

    Following a spinal cord injury, patients are often burdened by chronic pain. Preliminary research points to activation of the motor cortex through increased mobility as a potential means of alleviating postinjury chronic pain. The aim of this study was to assess the relationship between pain severity and mobility among patients who have sustained a traumatic spinal cord injury while controlling for clinically-relevant covariates. A multi-center, cross-sectional study. The SCIMS is composed of 14 centers, all located in the United States and funded by the National Institute on Disability and Rehabilitation Research (NIDRR). The study cohort included 1980 patients who completed the one-year SCIMS follow-up assessment between October 2000- December 2013. A multi-center, cross-sectional study was performed to assess the impact of mobility on self-reported pain using information from 1980 subjects who sustained a traumatic spinal cord injury and completed a year-one follow-up interview between October 2000 and December 2013. Patient information was acquired using the Spinal Cord Injury National Database, compiled by the affiliated Spinal Cord Injury Model Systems. Analyses included a multivariable linear regression of patients' self-reported pain scores on mobility, quantified using the CHART-SF mobility total score, and other clinically relevant covariates. After controlling for potential confounders, a significant quadratic relationship between mobility and patients' self-reported pain was observed (P=0.016). Furthermore, female gender, "unemployed" occupational status, paraplegia, and the presence of depressive symptoms were associated with significantly higher pain scores (P<0.02 for all variables). Statistically significant quadratic associations between pain scores and age at injury, life satisfaction total score, and the CHART-SF occupational total subscale were also observed (P≤0.03 for all variables). Among patients with moderate to high levels of mobility

  7. Psychosocial correlates of depression following spinal injury: A systematic review

    PubMed Central

    Kraft, Rebekah

    2015-01-01

    Objectives Spinal cord injury (SCI) studies have identified a range of psychosocial risk and protective factors for depression post-injury. This study presents the first systematic and quantitative review of this body of research. Methods Twenty-four studies (N = 3172 participants) were identified through electronic database searches. Studies were evaluated according to recommended guidelines on Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). The significance and magnitude of the relationships between standardised measures of depression and psychosocial outcome were examined using Pearson's effect size r, 95% confidence intervals and fail-safe Ns. Effect sizes were categorised according to the ICF psychosocial domains. Results STROBE ratings indicated discrepancies in procedural detail and statistical analyses. Individual personal variables including affective feelings, and thoughts and beliefs specific to SCI demonstrated the strongest relationship with depression self-ratings. Life satisfaction, disability acceptance, environmental supports and community participation had a medium to strong association, helping to reduce vulnerability to depression. Longitudinal studies revealed that symptoms of depression continued to impact on psychosocial outcome up to 10 years post-injury, although this was based on limited data. Conclusions Assessment of psychosocial factors in the acute stages of SCI rehabilitation can inform evidence-based interventions to treat and manage depressive symptomatology in the short to longer-term. Future studies would benefit from adopting a unified approach to the measurement of depression post-SCI to help inform targeted treatment. PMID:25691222

  8. Patterns of morbidity and rehospitalisation following spinal cord injury.

    PubMed

    Middleton, J W; Lim, K; Taylor, L; Soden, R; Rutkowski, S

    2004-06-01

    Longitudinal, descriptive design. The aim of this study was to investigate the frequency, cause and duration of rehospitalisations in individuals with spinal cord injury (SCI) living in the community. Australian spinal cord injury unit in collaboration with State Health Department. A data set was created by linking records from the NSW Department of Health Inpatient Statistics Collection between 1989-1990 and 1999-2000 with data from the Royal North Shore Hospital (RNSH) Spinal Cord Injuries Database using probabilistic record linkage techniques. Records excluded were nontraumatic injuries, age <16 years, spinal column injury without neurological deficit, full recovery (ASIA Grade E) and index admission not at RNSH. Descriptive statistics and time to readmission using survival analysis, stratified by ASIA impairment grade, were calculated. Over the 10-year period, 253 persons (58.6%) required one or more spinal-related readmissions, accounting for 977 rehospitalisations and 15,127 bed-days (average length of stay (ALOS) 15.5 days; median 5 days). The most frequent causes for rehospitalisation were genitourinary (24.1% of readmissions), gastrointestinal (11.0%), further rehabilitation (11.0%), skin-related (8.9%), musculoskeletal (8.6%) and psychiatric disorders (6.8%). Pressure sores accounted for only 6.6% of all readmissions, however, contributed a disproportionate number of bed-days (27.9%), with an ALOS of 65.9 (median 49) days and over 50% of readmissions (33 out of 64) occurred in only nine individuals aged under 30 years. Age, level and completeness of neurological impairment, all influenced differential rates of readmission depending on the type of complication. Overall rehospitalisation rates were high in the first 4 years after initial treatment episode, averaging 0.64 readmissions (12.6 bed-days) per person at risk in the first year and fluctuating between 0.52 and 0.61 readmissions (5.1-8.3 bed-days) per person at risk per year between the second to

  9. Effect of Robotic-Assisted Gait Training in Patients With Incomplete Spinal Cord Injury

    PubMed Central

    Shin, Ji Cheol; Kim, Ji Yong; Park, Han Kyul

    2014-01-01

    Objective To determine the effect of robotic-assisted gait training (RAGT) compared to conventional overground training. Methods Sixty patients with motor incomplete spinal cord injury (SCI) were included in a prospective, randomized clinical trial by comparing RAGT to conventional overground training. The RAGT group received RAGT three sessions per week at duration of 40 minutes with regular physiotherapy in 4 weeks. The conventional group underwent regular physiotherapy twice a day, 5 times a week. Main outcomes were lower extremity motor score of American Spinal Injury Association impairment scale (LEMS), ambulatory motor index (AMI), Spinal Cord Independence Measure III mobility section (SCIM3-M), and walking index for spinal cord injury version II (WISCI-II) scale. Results At the end of rehabilitation, both groups showed significant improvement in LEMS, AMI, SCIM3-M, and WISCI-II. Based on WISCI-II, statistically significant improvement was observed in the RAGT group. For the remaining variables, no difference was found. Conclusion RAGT combined with conventional physiotherapy could yield more improvement in ambulatory function than conventional therapy alone. RAGT should be considered as one additional tool to provide neuromuscular reeducation in patient with incomplete SCI. PMID:25566469

  10. Analgesia or addiction?: implications for morphine use after spinal cord injury.

    PubMed

    Woller, Sarah A; Moreno, Georgina L; Hart, Nigel; Wellman, Paul J; Grau, James W; Hook, Michelle A

    2012-05-20

    Opioid analgesics are among the most effective agents for treatment of moderate to severe pain. However, the use of morphine after a spinal cord injury (SCI) can potentiate the development of paradoxical pain symptoms, and continuous administration can lead to dependence, tolerance, and addiction. Although some studies suggest that the addictive potential of morphine decreases when it is used to treat neuropathic pain, this has not been studied in a SCI model. Accordingly, the present studies investigated the addictive potential of morphine in a rodent model of SCI using conditioned place preference (CPP) and intravenous self-administration paradigms. A contusion injury significantly increased the expression of a CPP relative to sham and intact controls in the acute phase of injury. However, contused animals self-administered significantly less morphine than sham and intact controls, but this was dose-dependent; at a high concentration, injured rats exhibited an increase in drug-reinforced responses over time. Exposure to a high concentration of morphine impeded weight gain and locomotor recovery. We suggest that the increased preference observed in injured rats reflects a motivational effect linked in part to the drug's anti-nociceptive effect. Further, although injured rats exhibited a suppression of opiate self-administration, when given access to a high concentration, addictive-like behavior emerged and was associated with poor recovery.

  11. Pre-Hospital Care Management of a Potential Spinal Cord Injured Patient: A Systematic Review of the Literature and Evidence-Based Guidelines

    PubMed Central

    Ahn, Henry; Singh, Jeffrey; Nathens, Avery; MacDonald, Russell D.; Travers, Andrew; Tallon, John; Fehlings, Michael G.

    2011-01-01

    Abstract An interdisciplinary expert panel of medical and surgical specialists involved in the management of patients with potential spinal cord injuries (SCI) was assembled. Four key questions were created that were of significant interest. These were: (1) what is the optimal type and duration of pre-hospital spinal immobilization in patients with acute SCI?; (2) during airway manipulation in the pre-hospital setting, what is the ideal method of spinal immobilization?; (3) what is the impact of pre-hospital transport time to definitive care on the outcomes of patients with acute spinal cord injury?; and (4) what is the role of pre-hospital care providers in cervical spine clearance and immobilization? A systematic review utilizing multiple databases was performed to determine the current evidence about the specific questions, and each article was independently reviewed and assessed by two reviewers based on inclusion and exclusion criteria. Guidelines were then created related to the questions by a national Canadian expert panel using the Delphi method for reviewing the evidence-based guidelines about each question. Recommendations about the key questions included: the pre-hospital immobilization of patients using a cervical collar, head immobilization, and a spinal board; utilization of padded boards or inflatable bean bag boards to reduce pressure; transfer of patients off of spine boards as soon as feasible, including transfer of patients off spinal boards while awaiting transfer from one hospital institution to another hospital center for definitive care; inclusion of manual in-line cervical spine traction for airway management in patients requiring intubation in the pre-hospital setting; transport of patients with acute traumatic SCI to the definitive hospital center for care within 24 h of injury; and training of emergency medical personnel in the pre-hospital setting to apply criteria to clear patients of cervical spinal injuries, and immobilize patients

  12. Emotional Intelligence in Patients with Spinal Cord Injury (SCI)

    PubMed Central

    SABERI, Hooshang; GHAJARZADEH, Mahsa

    2017-01-01

    Background: Spinal Cord Injury (SCI) is a devastating situation. Spinal Cord Injury affects functional, psychological and socioeconomic aspects of patients’ lives. The ability to accomplish and explicate the one’s own and other’s feelings and emotions to spread over appropriate information for confirming thoughts and actions is defined as emotional intelligence (EI). The goal of this study was to evaluate depression and EI in SCI patients in comparison with healthy subjects. Methods: One-hundred-ten patients with SCI and 80 healthy subjects between Aug 2014 and Aug 2015 were enrolled. The study was conducted in Imam Hospital, Tehran, Iran. All participants were asked to fill valid and reliable Persian version Emotional Quotient inventory (EQ-i) and Beck Depression Inventory (BDI). All data were analyzed using SPSS. Data were presented as Mean±SD for continuous or frequencies for categorical variables. Continuous variables compared by means of independent sample t-test. P-values less than 0.05 were considered as significant. Results: Mean age of patients was 28.7 and mean age of controls was 30.2 yr. Spinal cord injury in 20 (18.3%) were at cervical level, in 83 (75.4%) were thoracic and in 7 (6.3%) were lumbar. Mean values of independence, stress tolerance, self-actualization, emotional Self-Awareness, reality testing, Impulse Control, flexibility, responsibility, and assertiveness were significantly different between cases and controls. Mean values of stress tolerance, optimism, self-regard, and responsibility were significantly different between three groups with different injury level. Most scales were not significantly different between male and female cases. Conclusion: Emotional intelligence should be considered in SCI cases as their physical and psychological health is affected by their illness. PMID:28560199

  13. Examining the relationship between post-traumatic stress disorder and social participation among Veterans with spinal cord injuries and disorders.

    PubMed

    Etingen, Bella; Locatelli, Sara M; Miskevics, Scott; LaVela, Sherri L

    2017-07-26

    The objectives of this study were to examine differences in social participation among Veterans with spinal cord injuries/disorders with and without post-traumatic stress disorder, and determine if lower social participation was independently associated with having post-traumatic stress disorder. A cross-sectional mailed national survey was sent to a national sample of Veterans with spinal cord injuries/disorders who received prior-year Veterans Affairs healthcare. Surveys provided data on: demographics, health conditions, injury characteristics, and social participation. Analyses included bivariate comparisons, and multivariate logistic regression to determine if lower social participation was independently associated with post-traumatic stress disorder. Veterans with (vs. without) post-traumatic stress disorder (n = 896) reported lower social participation (40.2 vs. 43.9, p < 0.0001). Multivariate analyses showed that longer duration of injury (OR = 0.98, 95% CI: 0.97-1.00, p = 0.04) and white race (OR = 0.62, 95% CI: 0.38-1.01, p = 0.05) were associated with lower odds of post-traumatic stress disorder, while a greater number of health conditions (OR = 1.43, 95% CI: 1.25-1.64, p < 0.0001) was associated with greater odds. When controlling for covariates, lower social participation was independently associated with post-traumatic stress disorder (OR = 0.94, 95% CI: 0.90-0.98, p = 0.003). Results indicate post-traumatic stress disorder is associated with lower social participation in Veterans with spinal cord injuries/disorders, independent of other factors that may impact participation. Efforts to screen for and treat post-traumatic stress disorder among persons with spinal cord injuries/disorders, regardless of injury-specific factors, are needed to improve participation. Implications for Rehabilitation Individuals with spinal cord injuries/disorders often have post-traumatic stress disorder; in Veterans with spinal cord

  14. History of the treatment of spinal injuries.

    PubMed

    Silver, J R

    2005-02-01

    Injury of the spinal cord has been known since antiquity. There is no cure for the injury and until modern times patients died rapidly from a combination of pressure sores and urinary tract infection. Treatment consists of preventing complications until the spine has stabilised and the patient can be rehabilitated to an independent life. This article explores how this treatment developed in the ancient world, the middle ages, in Europe, Great Britain, and latterly in the United States. It describes how these principles of treatment were recognised particularly in Germany, the United States, and Great Britain and evaluates the relative contributions made by the different pioneers.

  15. Spinal microglia are required for long-term maintenance of neuropathic pain.

    PubMed

    Echeverry, Stefania; Shi, Xiang Qun; Yang, Mu; Huang, Hao; Wu, YiChen; Lorenzo, Louis-Etienne; Perez-Sanchez, Jimena; Bonin, Robert P; De Koninck, Yves; Zhang, Ji

    2017-09-01

    While spinal microglia play a role in early stages of neuropathic pain etiology, whether they are useful targets to reverse chronic pain at late stages remains unknown. Here, we show that microglia activation in the spinal cord persists for >3 months following nerve injury in rodents, beyond involvement of proinflammatory cytokine and chemokine signalling. In this chronic phase, selective depletion of spinal microglia in male rats with the targeted immunotoxin Mac1-saporin and blockade of brain-derived neurotrophic factor-TrkB signalling with intrathecal TrkB Fc chimera, but not cytokine inhibition, almost completely reversed pain hypersensitivity. By contrast, local spinal administration of Mac1-saporin did not affect nociceptive withdrawal threshold in control animals nor did it affect the strength of afferent-evoked synaptic activity in the spinal dorsal horn in normal conditions. These findings show that the long-term, chronic phase of nerve injury-induced pain hypersensitivity is maintained by microglia-neuron interactions. The findings also effectively separate the central signalling pathways underlying the maintenance phase of the pathology from the early and peripheral inflammatory reactions to injury, pointing to different targets for the treatment of acute vs chronic injury-induced pain.

  16. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    PubMed Central

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  17. Anthropometric and biomechanical characteristics of body segments in persons with spinal cord injury.

    PubMed

    Fang, Y; Morse, L R; Nguyen, N; Tsantes, N G; Troy, K L

    2017-04-11

    People with spinal cord injury (SCI) experience bone and muscle loss in their paralyzed limbs that is most rapid and severe in the first 3years after injury. Restoration of mechanical loading through therapeutic physical activity may potentially slow or reverse post-SCI bone loss, however, therapeutic targets cannot be developed without accurate biomechanical models. Obesity is prevalent among SCI population, and it alters body composition and further affects parameters of these models. Here, clinical whole body dual-energy X-ray absorptiometry data from people with acute (n=39) and chronic (n=61) SCI were analyzed to obtain anthropometric parameters including segment masses, center of mass location, and radius of gyration for both obese and non-obese individuals. Chronic SCI was associated with higher normalized trunk mass of 3.2%BW and smaller normalized leg mass of 1.8%BW in males, but no significant changes in segment centers of mass or radius of gyration. People with chronic SCI had 58.6% lean mass in the trunk, compared to 66.6% lean mass in those with acute SCI (p=0.01), with significant changes in all segments. Obesity was associated with an increase in trunk mass proportion of 3.1%BW, proximal shifts in thigh and upper arm center of mass, and changes to thigh and shank radius of gyration. The data presented here can be used to accurately represent the anthropometrics of SCI population in biomechanical studies, considering obesity and injury duration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Alpha-2 agonist attenuates ischemic injury in spinal cord neurons.

    PubMed

    Freeman, Kirsten A; Puskas, Ferenc; Bell, Marshall T; Mares, Joshua M; Foley, Lisa S; Weyant, Michael J; Cleveland, Joseph C; Fullerton, David A; Meng, Xianzhong; Herson, Paco S; Reece, T Brett

    2015-05-01

    Paraplegia secondary to spinal cord ischemia-reperfusion injury remains a devastating complication of thoracoabdominal aortic intervention. The complex interactions between injured neurons and activated leukocytes have limited the understanding of neuron-specific injury. We hypothesize that spinal cord neuron cell cultures subjected to oxygen-glucose deprivation (OGD) would simulate ischemia-reperfusion injury, which could be attenuated by specific alpha-2a agonism in an Akt-dependent fashion. Spinal cords from perinatal mice were harvested, and neurons cultured in vitro for 7-10 d. Cells were pretreated with 1 μM dexmedetomidine (Dex) and subjected to OGD in an anoxic chamber. Viability was determined by MTT assay. Deoxyuridine-triphosphate nick-end labeling staining and lactate dehydrogenase (LDH) assay were used for apoptosis and necrosis identification, respectively. Western blot was used for protein analysis. Vehicle control cells were only 59% viable after 1 h of OGD. Pretreatment with Dex significantly preserves neuronal viability with 88% viable (P < 0.05). Dex significantly decreased apoptotic cells compared with that of vehicle control cells by 50% (P < 0.05). Necrosis was not significantly different between treatment groups. Mechanistically, Dex treatment significantly increased phosphorylated Akt (P < 0.05), but protective effects of Dex were eliminated by an alpha-2a antagonist or Akt inhibitor (P < 0.05). Using a novel spinal cord neuron cell culture, OGD mimics neuronal metabolic derangement responsible for paraplegia after aortic surgery. Dex preserves neuronal viability and decreases apoptosis in an Akt-dependent fashion. Dex demonstrates clinical promise for reducing the risk of paraplegia after high-risk aortic surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The Edwin Smith papyrus: a clinical reappraisal of the oldest known document on spinal injuries

    PubMed Central

    Sanchez, Gonzalo M.; Burridge, Alwyn L.

    2010-01-01

    Dating from the seventeenth century b.c. the Edwin Smith papyrus is a unique treatise containing the oldest known descriptions of signs and symptoms of injuries of the spinal column and spinal cord. Based on a recent “medically based translation” of the Smith papyrus, its enclosed treasures in diagnostic, prognostic and therapeutic reasoning are revisited. Although patient demographics, diagnostic techniques and therapeutic options considerably changed over time, the documented rationale on spinal injuries can still be regarded as the state-of-the-art reasoning for modern clinical practice. PMID:20697750

  20. Neuroprotective effects of perflurocarbon (oxycyte) after contusive spinal cord injury.

    PubMed

    Yacoub, Adly; Hajec, Marygrace C; Stanger, Richard; Wan, Wen; Young, Harold; Mathern, Bruce E

    2014-02-01

    Spinal cord injury (SCI) often results in irreversible and permanent neurological deficits and long-term disability. Vasospasm, hemorrhage, and loss of microvessels create an ischemic environment at the site of contusive or compressive SCI and initiate the secondary injury cascades leading to progressive tissue damage and severely decreased functional outcome. Although the initial mechanical destructive events cannot be reversed, secondary injury damage occurs over several hours to weeks, a time frame during which therapeutic intervention could be achieved. One essential component of secondary injury cascade is the reduction in spinal cord blood flow with resultant decrease in oxygen delivery. Our group has recently shown that administration of fluorocarbon (Oxycyte) significantly increased parenchymal tissue oxygen levels during the usual postinjury hypoxic phase, and fluorocarbon has been shown to be effective in stroke and head injury. In the current study, we assessed the beneficial effects of Oxycyte after a moderate-to-severe contusion SCI was simulated in adult Long-Evans hooded rats. Histopathology and immunohistochemical analysis showed that the administration of 5 mL/kg of Oxycyte perfluorocarbon (60% emulsion) after SCI dramatically reduced destruction of spinal cord anatomy and resulted in a marked decrease of lesion area, less cell death, and greater white matter sparing at 7 and 42 days postinjury. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining showed a significant reduced number of apoptotic cells in Oxycyte-treated animals, compared to the saline group. Collectively, these results demonstrate the potential neuroprotective effect of Oxycyte treatment after SCI, and its beneficial effects may be, in part, a result of reducing apoptotic cell death and tissue sparing. Further studies to determine the most efficacious Oxycyte dose and its mechanisms of protection are warranted.

  1. Component analysis of somatosensory evoked potentials for identifying spinal cord injury location.

    PubMed

    Wang, Yazhou; Li, Guangsheng; Luk, Keith D K; Hu, Yong

    2017-05-24

    This study aims to determine whether the time-frequency components (TFCs) of somatosensory evoked potentials (SEPs) can be used to identify the specific location of a compressive spinal cord injury using a classification technique. Waveforms of SEPs after compressive injuries at various locations (C4, C5 and C6) in rat spinal cords were decomposed into a series of TFCs using a high-resolution time-frequency analysis method. A classification method based on support vector machine (SVM) was applied to the distributions of these TFCs among different pathological locations. The difference among injury locations manifests itself in different categories of SEP TFCs. High-energy TFCs of normal-state SEPs have significantly higher power and frequency than those of injury-state SEPs. The location of C5 is characterized by a unique distribution pattern of middle-energy TFCs. The difference between C4 and C6 is evidenced by the distribution pattern of low-energy TFCs. The proposed classification method based on SEP TFCs offers a discrimination accuracy of 80.2%. In this study, meaningful information contained in various SEP components was investigated and used to propose a new application of SEPs for identification of the location of pathological changes in the cervical spinal cord.

  2. The experience of attempting to return to work following spinal cord injury: a systematic review of the qualitative literature.

    PubMed

    Hilton, Gillean; Unsworth, Carolyn; Murphy, Gregory

    2018-07-01

    This review sought to answer the question "What are the barriers and facilitators influencing people's experience of return to work following spinal cord injury?" Studies that met the selection criteria were identified, presented and critically appraised using National Institute for Health and Care Excellence guidelines. Thematic synthesis was completed with studies possessing strong methodological rigor. Synthesis and interpretation involved three stages; coding of primary data; development of descriptive themes reflective of the primary data; and establishment of analytical themes to answer the review question. Data from nine papers were included in the thematic synthesis. Several descriptive themes and three analytical themes were drawn from the data to answer the research question. Analytical themes included: a matrix of personal and environmental factors exists requiring complex navigation in order to create possibilities and opportunities for postinjury employment; the process of seeking or gaining employment shares a reciprocal relationship with the temporal nature of adjustment to spinal cord injury; and there is an intrinsic need for occupational engagement through paid employment. Returning to or gaining employment after spinal cord injury is a fundamentally difficult experience for people. Multiple strategies are required to support the navigation of the process. There is, however, a need in people with spinal cord injury, to be a worker, and with that comes the inherent benefits of being employed. Implications for rehabilitation Returning to work should be a significant focus of spinal cord injury rehabilitation. Employment is both possible and health promoting following spinal cord injury. Multiple strategies are required to support people to navigate the return to work process. It is important to be cognizant of the individual motivations for being a worker and the complexity of the adjustment process. Spinal cord injury centers can provide a

  3. The international spinal cord injury endocrine and metabolic function basic data set.

    PubMed

    Bauman, W A; Biering-Sørensen, F; Krassioukov, A

    2011-10-01

    To develop the International Spinal Cord Injury (SCI) Endocrine and Metabolic Function Basic Data Set within the framework of the International SCI Data Sets that would facilitate consistent collection and reporting of basic endocrine and metabolic findings in the SCI population. International. The International SCI Endocrine and Metabolic Function Data Set was developed by a working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies, and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Endocrine and Metabolic Function Data Set contains questions on the endocrine and metabolic conditions diagnosed before and after spinal cord lesion. If available, information collected before injury is to be obtained only once, whereas information after injury may be collected at any time. These data include information on diabetes mellitus, lipid disorders, osteoporosis, thyroid disease, adrenal disease, gonadal disease and pituitary disease. The question of gonadal status includes stage of sexual development and that for females also includes menopausal status. Data will be collected for body mass index and for the fasting serum lipid profile. The complete instructions for data collection and the data sheet itself are freely available on the websites of ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org).

  4. Agar-based bridges as biocompatible candidates to provide guide cues in spinal cord injury repair.

    PubMed

    Martín-López, Eduardo; Darder, Margarita; Ruiz-Hitzky, Eduardo; Nieto Sampedro, Manuel

    2013-01-01

    Spinal bridge implants are strategic to provide growth surfaces for axonal regeneration after spinal cord injuries. The design of an appropriate substrate, one that is suitable for implantation, must involve careful testing of the biomaterial properties both in vitro and in vivo. The goal of this work was to test the structure, stability and biological response after spinal bridges implantation of several biopolymers, composed of mixtures of agar (AG), as structural matrix scaffold, with κ-carrageenan (Kc), gelatin (G), xanthan gum (Xn) and polysulfone (PS). Biopolymer structures were studied by environmental scanning electron microscopy, whereas the stability of gels was analyzed by in vitro degradation and swelling tests. The biocompatibility of these materials and their ability to promote cell growth and axonal regeneration were studied by implantation of spinal bridges containing empty linear channels in an acute rat spinal cord transection model at thoracic level (T8). All gel mixtures gave rise to porous structures and they were stables to degradation, excepting the AG+G mixture. Spinal bridges constructed from all mixtures were implanted during a month in adult rats. After this time a low host reaction occurred to all bridge materials as well as neurite and cell ingrowths through the empty channels. Neurites within the bridges were mostly peripheral sensory fibers such as those positive for CGRP, whereas there was a lack of regeneration of central axons crossing from the spinal tissue to bridges. Many of these neurites established closed contacts with non-myelin Schwann cells. The histological analysis revealed a high accumulation of collagen fibers within the channels. Unexpected was the apparent loss of channels linearity which affected the growth of neurites and cells, indicating the need for additional regeneration strategies and vertebrae bridge fixing.

  5. Intrathecal ketorolac does not improve acute or chronic pain after hip arthroplasty: a randomized controlled trial

    PubMed Central

    Wang, Lu; Bauer, Maria; Curry, Regina; Larsson, Anders; Sessler, Daniel I.; Eisenach, James C.

    2014-01-01

    Hypersensitivity to mechanical stimuli following surgery has been reported in patients who subsequently develop chronic pain after surgery. In animals, peripheral injury increases prostaglandin production in the spinal cord, and spinal cyclooxygenase inhibitors reduce hypersensitivity after injury. We therefore tested the hypothesis that spinal ketorolac reduces hypersensitivity and acute and chronic pain after hip arthroplasty (www.clinicaltrials.gov NCT 00621530). Sixty-two patients having total hip arthroplasty with spinal anesthesia were randomized to receive 13.5 mg hyperbaric bupivacaine with spinal saline or 13.5 mg hyperbaric bupivacaine with 2 mg preservative-free ketorolac. The primary outcome was area of hypersensitivity surrounding the wound 48 hr after surgery, but this only occurred in 4 patients, precluding assessment of this outcome. The groups did not differ in acute pain, acute opioid use, or pain incidence or severity 2 and 6 months after surgery. There were no serious adverse events. Our results suggest that a single spinal dose of ketorolac does not substantially reduce acute surgical pain, and is thus unlikely to reduce the risk of persistent incisional pain. PMID:24535482

  6. Cine phase-contrast MRI measurement of CSF flow in the cervical spine: a pilot study in patients with spinal cord injury

    NASA Astrophysics Data System (ADS)

    Negahdar, MJ; Shakeri, M.; McDowell, E.; Wells, J.; Vitaz, T.; Harkema, S.; Amini, A.

    2011-03-01

    MRI velocimetry (also known as phase-contrast MRI) is a powerful tool for quantification of cerebrospinal fluid (CSF) flow in various regions of the brain and craniospinal junction and has been accepted as a diagnostic tool to assist with the diagnosis of certain conditions such as hydrocephalus and chiari malformations. Cerebrospinal fluid is continually produced in the ventricles of the brain, flows through the ventricular system and then out and around the brain and spinal cord and is reabsorbed over the convexity of the brain. Any disease process which either impedes the normal pattern of flow or restricts the area where flow occurs can change the pattern of these waveforms with the direction and velocity of flow being determined by the pressure transmitted from the pulsation of the heart and circulation of blood within the central nervous system. Therefore, we hypothesized that phase-contrast MRI could eventually be used as a diagnostic aid in determining the degree of spinal cord compression following injury to the cervical or thoracic spine. In this study, we examined CSF flow in 3 normal subjects and 2 subjects with non-acute injuries in the cervical spine using Cine phasecontrast MRI. CSF flow analysis was performed using an in-house developed software. The flow waveform was calculated in both normal subjects (n=3) as well as subjects with spinal cord injury in the cervical spine (n=2). The bulk flow at C2 was measured to be 0.30 +/- 0.05 cc, at 5 cm distal to C2, it was 0.19+/- 0.07 cc, and at 10 cm distal to C2, it was 0.17+/- 0.05 cc. These results were in good agreement with previously published results. In patients with spinal cord injury, at the site of injury in the cervical spine, bulk flow was found to be 0.08 +/- 0.12 cc, at 5 cm proximal to the site of injury it was found to be 0.18 +/- 0.07 cc, and at 5 cm distal to the site of injury, it was found to be 0.12 +/- 0.01 cc.

  7. Aging with spinal cord injury: changes in selected health indices and life satisfaction.

    PubMed

    Charlifue, Susan; Lammertse, Daniel P; Adkins, Rodney H

    2004-11-01

    To document the impact of age, age at injury, years postinjury, and injury severity on changes over time in selected physical and psychosocial outcomes of people aging with spinal cord injury (SCI), and to identify the best predictors of these outcomes. Retrospective cross-sectional and longitudinal examination of people with SCI. Follow-up of people who received initial rehabilitation in a regional Model Spinal Cord Injury System. People who meet the inclusion criteria for the National Spinal Cord Injury Database were studied at 5, 10, 15, 20, and 25 years postinjury. Not applicable. Number of pressure ulcers, number of times rehospitalized, number of days rehospitalized, perceived health status, satisfaction with life, and pain during the most recent follow-up year. The number of days rehospitalized and frequency of rehospitalizations decreased and the number of pressure ulcers increased as time passed. For the variables of pressure ulcers, poor perceived health, the perception of pain and lower life satisfaction, the best predictor of each outcome was the previous existence or poor rating of that same outcome. Common complications of SCI often herald the recurrence of those same complications at a later point in time, highlighting the importance of early intervention to prevent future health and psychosocial difficulties.

  8. Multifaceted effects of rapamycin on functional recovery after spinal cord injury in rats through autophagy promotion, anti-inflammation, and neuroprotection.

    PubMed

    Chen, Hsien-Chih; Fong, Tsorng-Harn; Hsu, Peng-Wei; Chiu, Wen-Ta

    2013-01-01

    Spinal cord injuries (SCIs) are serious and debilitating health problems that lead to severe and permanent neurological deficits resulting from the primary mechanical impact followed by secondary tissue injury. During the acute stage after an SCI, the expression of autophagy and inflammatory responses contribute to the development of secondary injury. In the present study, we examined the multifaceted effects of rapamycin on outcomes of rats after an SCI. We used 72 female Sprague-Dawley rats for this study. In the SCI group, we performed a laminectomy at T10, followed by impact-contusion of the spinal cord. In the control group, we performed only a laminectomy without contusion. We evaluated the effects of rapamycin using the Basso, Beattie, and Bresnahan scale for functional outcomes, Western blot analyses for analyzing LC3-II, tumor necrosis factor expression, and p70S6K phosphorylation, and an immunostaining technique for localization and enumeration of microglial and neuronal cells. Basso, Beattie, and Bresnahan scores after injury significantly improved in the rapamycin-treated group compared with the vehicle group (on Day 28 after the SCI; P < .05). The Western blot analysis demonstrated that rapamycin enhanced LC3-II expression and decreased p70S6K phosphorylation compared with the vehicle (P < .01), which implies promotion of autophagy through mammalian target of rapamycin inhibition. Furthermore, rapamycin treatment significantly attenuated tumor necrosis factor production and microglial expression (P < .05). Immunohistochemistry of NeuN (antibodies specific to neurons) showed remarkable neuronal cell preservation in the rapamycin-treated group compared with the vehicle-treated group (P < .05), which suggests a neuroprotective effect of rapamycin. Rapamycin is a novel neuroprotectant with multifaceted effects on the rat spinal cord after injury. Use of such a clinically established drug could facilitate early clinical trials in selected cases of human

  9. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.

    PubMed

    Wong, Jamie K; Steward, Oswald

    2012-02-01

    It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury

  10. The triple monoamine re-uptake inhibitor DOV 216,303 promotes functional recovery after spinal cord contusion injury in mice.

    PubMed

    Chu, Tak-Ho; Cummins, Karen; Stys, Peter K

    2018-05-14

    Serotonin, noradrenaline and dopamine are important neuromodulators for locomotion in the spinal cord. Disruption of descending axons after spinal cord injury resulted in reduction of excitatory and neuromodulatory inputs to spinal neurons for locomotion. Receptor agonists or reuptake inhibitors for these neuromodulators have been shown to be beneficial in incomplete spinal cord injury. In this study, we tested a triple re-uptake inhibitor, DOV 216,303, for its ability to affect motor function recovery after spinal cord injury in mice. We impacted C57 mouse spinal cord at the T11 vertebral level and administered vehicle or DOV 216,303 at 10 mg/kg, b.i.d via intraperitoneal injections for 7 days. We monitored motor function with the Basso Mouse Scale for locomotion for 4 weeks. Spinal cords were harvested and histological examinations were performed to assess tissue sparing and lesion severity. Results showed that DOV 216,303-treated mice recovered significantly better than vehicle treated mice starting at 14 days post injury until the end of the survival period. Lesion size of the DOV 216,303 treated mice was also smaller compared to that of vehicle treated mice. This study suggests DOV 216,303 as a potential therapeutic after spinal cord injury warrants further investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Profile, risk factors and outcome of acute kidney injury in paediatric acute-on-chronic liver failure.

    PubMed

    Lal, Bikrant B; Alam, Seema; Sood, Vikrant; Rawat, Dinesh; Khanna, Rajeev

    2018-01-11

    There are no studies on acute kidney injury in paediatric acute-on-chronic liver failure. This study was planned with aim to describe the clinical presentation and outcome of acute kidney injury among paediatric acute-on-chronic liver failure patients. Data of all children 1-18 years of age presenting with acute chronic liver failure (Asia pacific association for the study of the liver definition) was reviewed. Acute kidney injury was defined as per Kidney Diseases-Improving Global Outcomes guidelines. Poor outcome was defined as death or need for liver transplant within 3 months of development of acute kidney injury. A total of 84 children with acute-on-chronic liver failure were presented to us in the study period. Acute kidney injury developed in 22.6% of patients with acute-on-chronic liver failure. The median duration from acute-on-chronic liver failure to development of acute kidney injury was 4 weeks (Range: 2-10 weeks). The causes of acute kidney injury were hepatorenal syndrome (31.6%), sepsis (31.6%), nephrotoxic drugs (21%), dehydration (10.5%) and bile pigment related acute tubular necrosis in one patient. On univariate analysis, higher baseline bilirubin, higher international normalized ratio, higher paediatric end stage liver disease, presence of systemic inflammatory response syndrome and presence of spontaneous bacterial peritonitis had significant association with presence of acute kidney injury. On logistic regression analysis, presence of systemic inflammatory response syndrome (adjusted OR: 8.659, 95% CI: 2.18-34.37, P = .002) and higher baseline bilirubin (adjusted OR: 1.07, 95% CI: 1.008-1.135, P = .025) were independently associated with presence of acute kidney injury. Of the patients with acute kidney injury, 5(26.3%) survived with native liver, 10(52.6%) died and 4 (21.1%) underwent liver transplantation. Acute kidney injury developed in 22.6% of children with acute-on-chronic liver failure. Bilirubin more than 17.7 mg/dL and

  12. Evaluation of the Walking Index for Spinal Cord Injury II (WISCI-II) in children with Spinal Cord Injury (SCI).

    PubMed

    Calhoun Thielen, C; Sadowsky, C; Vogel, L C; Taylor, H; Davidson, L; Bultman, J; Gaughan, J; Mulcahey, M J

    2017-05-01

    Mixed methods were used in this study. The appropriateness of the levels of the Walking Index for Spinal Cord Injury II (WISCI-II) for application in children was critically reviewed by physical therapists using the Modified Delphi Technique, and the inter- and intra-rater reliability of the WISCI-II in children was evaluated. To examine the construct validity, and to establish reliability of the WISCI-II related to its use in children with spinal cord injury (SCI). United States of America. Using a Modified Delphi Technique, physical therapists critically reviewed the WISCI-II levels for pediatric utilization. Concurrently, ambulatory children under age 18 years with SCI were evaluated using the WISCI-II on two occasions by the same therapist to establish intra-rater reliability. One trial was photographed and de-identified. Each photograph was reviewed by four different physical therapists who gave WISCI-II scores to establish inter-rater reliability. Summary and descriptive statistics were used to calculate the frequency of yes/no responses for each WISCI-II level question and to determine the percent agreement for each question. Inter- and intra-rater reliability was calculated using interclass correlation coefficients (ICCs) with 95% confidence intervals (CI). Construct validity was confirmed after one Delphi round during which at least 80% agreement was established by 51 physical therapists on the appropriateness of the WISCI-II levels for children. Fifty-two children with SCI aged 2-17 years completed repeated WISCI-II assessments and 40 de-identified photographs were scored by four physical therapists. Intra- and inter-rater reliability was high (ICC=0.997, CI=0.995-0.998 and ICC=0.97, CI=0.95-0.98, respectively). This study demonstrates support for the use of the WISCI-II in ambulatory children with SCI. This study was funded by the Craig H Neilsen Foundation, Spinal Cord Injury Research on the Translation Spectrum, Senior Research Award #282592 (Mulcahey

  13. Men's adjustment to spinal cord injury: the unique contributions of conformity to masculine gender norms.

    PubMed

    Burns, Shaun Michael; Hough, Sigmund; Boyd, Briana L; Hill, Justin

    2010-06-01

    Men constitute 82% of the approximately 250,000 people in the United States living with a spinal cord injury. Unfortunately, however, little is known about the impact of men's adherence to gender norms on their adjustment to such injuries. The present investigation examined the utility of masculine norms in explaining variance in depression beyond that accounted for by commonly identified predictors of men's adjustment following spinal cord injury. As hypothesized, results suggested that men's adherence to masculine norms accounted for unique variance in their depression scores beyond that contributed by social support, environmental barriers/access, and erectile functioning. Respondents who adhered to norms stressing the primacy of men's work demonstrated lower rates of depression, whereas those who conformed to norms for self-reliance demonstrated higher depression scores. The authors discuss future research directions and potential psychotherapeutic strategies for working with men with spinal cord injuries.

  14. Young Children's Acute Stress After a Burn Injury: Disentangling the Role of Injury Severity and Parental Acute Stress.

    PubMed

    Haag, Ann-Christin; Landolt, Markus A

    2017-09-01

    Although injury severity and parental stress are strong predictors of posttraumatic adjustment in young children after burns, little is known about the interplay of these variables. This study aimed at clarifying mediation processes between injury severity and mother's, father's, and young child's acute stress. Structural equation modeling was used to examine the relationships between injury severity and parental and child acute stress. Parents of 138 burn-injured children (ages 1-4 years) completed standardized questionnaires on average 19 days postinjury. Sixteen children (11.7%) met Diagnostic and Statistical Manual of Mental Disorders, 5th edition, preschool criteria for posttraumatic stress disorder (excluding time criterion). The model revealed a significant mediation of maternal acute stress, with the effect of injury severity on a child's acute stress mediated by maternal acute stress. Paternal acute stress failed to serve as a mediating variable. Our findings confirm mothers' crucial role in the posttraumatic adjustment of young children. Clinically, mothers' acute stress should be monitored. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  15. OPERANT CONDITIONING OF A SPINAL REFLEX CAN IMPROVE LOCOMOTION AFTER SPINAL CORD INJURY IN HUMANS

    PubMed Central

    Thompson, Aiko K.; Pomerantz, Ferne; Wolpaw, Jonathan R.

    2013-01-01

    Operant conditioning protocols can modify the activity of specific spinal cord pathways and can thereby affect behaviors that use these pathways. To explore the therapeutic application of these protocols, we studied the impact of down-conditioning the soleus H-reflex in people with impaired locomotion caused by chronic incomplete spinal cord injury. After a baseline period in which soleus H-reflex size was measured and locomotion was assessed, subjects completed either 30 H-reflex down-conditioning sessions (DC subjects) or 30 sessions in which the H-reflex was simply measured (Unconditioned (UC) subjects), and locomotion was reassessed. Over the 30 sessions, the soleus H-reflex decreased in two-thirds of the DC subjects (a success rate similar to that in normal subjects) and remained smaller several months later. In these subjects, locomotion became faster and more symmetrical, and the modulation of EMG activity across the step-cycle increased bilaterally. Furthermore, beginning about halfway through the conditioning sessions, all of these subjects commented spontaneously that they were walking faster and farther in their daily lives, and several noted less clonus, easier stepping, and/or other improvements. The H-reflex did not decrease in the other DC subjects or in any of the UC subjects; and their locomotion did not improve. These results suggest that reflex conditioning protocols can enhance recovery of function after incomplete spinal cord injuries and possibly in other disorders as well. Because they are able to target specific spinal pathways, these protocols could be designed to address each individual’s particular deficits, and might thereby complement other rehabilitation methods. PMID:23392666

  16. Systemic effects induced by intralesional injection of ω-conotoxin MVIIC after spinal cord injury in rats

    PubMed Central

    2014-01-01

    Background Calcium channel blockers such as conotoxins have shown a great potential to reduce brain and spinal cord injury. MVIIC neuroprotective effects analyzed in in vitro models of brain and spinal cord ischemia suggest a potential role of this toxin in preventing injury after spinal cord trauma. However, previous clinical studies with MVIIC demonstrated that clinical side effects might limit the usefulness of this drug and there is no research on its systemic effects. Therefore, the present study aimed to investigate the potential toxic effects of MVIIC on organs and to evaluate clinical and blood profiles of rats submitted to spinal cord injury and treated with this marine toxin. Rats were treated with placebo or MVIIC (at doses of 15, 30, 60 or 120 pmol) intralesionally following spinal cord injury. Seven days after the toxin administration, kidney, brain, lung, heart, liver, adrenal, muscles, pancreas, spleen, stomach, and intestine were histopathologically investigated. In addition, blood samples collected from the rats were tested for any hematologic or biochemical changes. Results The clinical, hematologic and biochemical evaluation revealed no significant abnormalities in all groups, even in high doses. There was no significant alteration in organs, except for degenerative changes in kidneys at a dose of 120 pmol. Conclusions These findings suggest that MVIIC at 15, 30 and 60 pmol are safe for intralesional administration after spinal cord injury and could be further investigated in relation to its neuroprotective effects. However, 120 pmol doses of MVIIC may provoke adverse effects on kidney tissue. PMID:24739121

  17. International Standards for Neurological Classification of Spinal Cord Injury: cases with classification challenges.

    PubMed

    Kirshblum, S C; Biering-Sorensen, F; Betz, R; Burns, S; Donovan, W; Graves, D E; Johansen, M; Jones, L; Mulcahey, M J; Rodriguez, G M; Schmidt-Read, M; Steeves, J D; Tansey, K; Waring, W

    2014-03-01

    The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) is routinely used to determine the levels of injury and to classify the severity of the injury. Questions are often posed to the International Standards Committee of the American Spinal Injury Association regarding the classification. The committee felt that disseminating some of the challenging questions posed, as well as the responses, would be of benefit for professionals utilizing the ISNCSCI. Case scenarios that were submitted to the committee are presented with the responses as well as the thought processes considered by the committee members. The importance of this documentation is to clarify some points as well as update the SCI community regarding possible revisions that will be needed in the future based upon some rules that require clarification.

  18. MiR-137 inhibited inflammatory response and apoptosis after spinal cord injury via targeting of MK2.

    PubMed

    Gao, Lin; Dai, Chenfei; Feng, Zhiping; Zhang, Lixin; Zhang, Zhiqiang

    2018-04-01

    Spinal cord injuries are common and troublesome disorder, which is mediated by various signal pathways and mechanisms. MK2 is also involved in numerous inflammatory diseases including spinal cord injury. The role of microRNA-137 (miR-137) and its detailed working mechanism in spinal cord injuries remain unclear. In the present study, we found that an elevated MK2 but a decreased miR-137 was expressed in serum specimens of patients with spinal cord injury and in hydrogen peroxide-treated C8-D1A and C8-B4 cells. Meanwhile, we suggested that upregulation of miR-137 could inhibit the expression of TNF-α and IL-6, two markers of inflammatory response after SCI, and apoptosis in hydrogen peroxide-treated C8-D1A and C8-B4 cells. Furthermore, we verified that MK2 was a direct target of miR-137 thorough a constructed luciferase assay. Even further, we elucidated that miR-137 could suppress the inflammatory response and apoptosis via negative regulation of MK2. Finally, through an animal model trial performed using mice, we demonstrated the protective effect of how miR-137 works on inflammatory response and apoptosis after spinal cord injury. Considering all the forementioned, our findings revealed that miR-137 inhibited inflammatory response and apoptosis after spinal cord injury via the targeting of MK2. The outcomes of the present study might indicate a new target in molecular treatment of SCI. © 2017 Wiley Periodicals, Inc.

  19. Improvement in initial survival of spinal injuries: a 10-year audit.

    PubMed

    Tan, H B; Sloan, J P; Barlow, I F

    2005-08-01

    A 10-year retrospective study of all spinal injuries presenting to the Leeds Teaching Hospitals between 1991 and 2001. The hospitals provide secondary care to a population of 750,000 and tertiary care to a population of 2-3 million. In total 1119 spinal injuries were studied. The overall survival rate was 89%. The commonest age group for presentation was 25-29 years with a secondary peak in the seventh decade, a mean overall of 43 years. 66% of injuries occurred in males. The commonest cause was a fall from a height (44%), with road traffic accidents (RTA) causing 43%. Pedestrians were most at risk within the road traffic group, making up 63% of cases. Isolated cervical spine injuries made up 37% of all cases. Cervical fractures were most associated with neurological injury (50%). Immediate survival has increased over the decade from 83% in 1991 to 93% in 2001. The probability of survival was significant at P = 0.006 and actual survival at P = 0.012 (Pearson correlation). The causal analysis has not been carried out but it is thought likely that improved quality of care is responsible.

  20. CHARACTERIZATION OF INFLAMMATORY GENE EXPRESSION AND GALECTIN-3 FUNCTION AFTER SPINAL CORD INJURY IN MICE

    PubMed Central

    Pajoohesh-Ganji, Ahdeah; Knoblach, Susan M.; Faden, Alan I.; Byrnes, Kimberly R.

    2012-01-01

    Inflammation has long been implicated in secondary tissue damage after spinal cord injury (SCI). Our previous studies of inflammatory gene expression in rats after SCI revealed two temporally correlated clusters: the first was expressed early after injury and the second was up-regulated later, with peak expression at 1–2 weeks and persistent up-regulation through 6 months. To further address the role of inflammation after SCI, we examined inflammatory genes in a second species, mice, through 28 days after SCI. Using anchor gene clustering analysis, we found similar expression patterns for both the acute and chronic gene clusters previously identified after rat SCI. The acute group returned to normal expression levels by 7 days post-injury. The chronic group, which included C1qB, p22phox and galectin-3, showed peak expression at 7 days and remained up-regulated through 28 days. Immunohistochemistry and western blot analysis showed that the protein expression of these genes was consistent with the mRNA expression. Further exploration of the role of one of these genes, galectin-3, suggests that galectin-3 may contribute to secondary injury. In summary, our findings extend our prior gene profiling data by demonstrating the chronic expression of a cluster of microglial associated inflammatory genes after SCI in mice. Moreover, by demonstrating that inhibition of one such factor improves recovery, the findings suggest that such chronic up-regulation of inflammatory processes may contribute to secondary tissue damage after SCI, and that there may be a broader therapeutic window for neuroprotection than generally accepted. PMID:22884909

  1. Autonomic cardiovascular control and sports classification in Paralympic athletes with spinal cord injury.

    PubMed

    West, Christopher R; Krassioukov, Andrei V

    2017-01-01

    Purpose To investigate the relationship between the classification systems used in wheelchair sports and cardiovascular function in Paralympic athletes with spinal cord injury (SCI). Methods 26 wheelchair rugby (C3-C8) and 14 wheelchair basketball (T3-L1) were assessed for their International Wheelchair Rugby and Basketball Federation sports classification. Next, athletes were assessed for resting and reflex cardiovascular and autonomic function via the change (delta) in systolic blood pressure (SBP) and heart rate (HR) in response to sit-up, and sympathetic skin responses (SSRs), respectively. Results There were no differences in supine, seated, or delta SBP and HR between different sport classes in rugby or basketball (all p > 0.23). Athletes with autonomically complete injuries (SSR score 0-1) exhibited a lower supine SBP, seated SBP and delta SBP compared to those with autonomically incomplete injuries (SSR score >1; all p < 0.010), independent of sport played. There was no association between self-report OH and measured OH (χ 2  =   1.63, p = 0.20). Conclusion We provide definitive evidence that sports specific classification is not related to the degree of remaining autonomic cardiovascular control in Paralympic athletes with SCI. We suggest that testing for remaining autonomic function, which is closely related to the degree of cardiovascular control, should be incorporated into sporting classification. Implications for Rehabilitation Spinal cord injury is a debilitating condition that affects the function of almost every physiological system. It is becoming increasingly apparent that spinal cord injury induced changes in autonomic and cardiovascular function are important determinants of sports performance in athletes with spinal cord injury. This study shows that the current sports classification systems used in wheelchair rugby and basketball do not accurately reflect autonomic and cardiovascular function and thus are placing some

  2. Attachment Style, Social Support, and Coping as Psychosocial Correlates of Happiness in Persons with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Wilson, Lisa; Catalano, Denise; Sung, Connie; Phillips, Brian; Chou, Chih-Chin; Chan, Jacob Yui Chung; Chan, Fong

    2013-01-01

    Objective: To examine the roles of attachment, social support, and coping as psychosocial correlates in predicting happiness in people with spinal cord injuries. Design: Quantitative descriptive research design using multiple regression and correlation techniques. Participants: 274 individuals with spinal cord injuries. Outcome Measures: Happiness…

  3. A multimedia guide to spinal cord injury: empowerment through self instruction.

    PubMed

    Van Biervliet, A; Gest, T R

    1995-01-01

    The Spinal Cord Injury (SCI) Project is developing a series of instructional modules on SCI that will be distributed via CD-ROM for patient and family education. The modules are based on an instructional program and patient manual distributed by the Paralyzed Veterans of America. The program includes topics ranging from the anatomy and physiology of spinal cord injuries to legal rights established under the Americans With Disabilities Act. The SCI project expands on the instructional manual by combining digital multimedia techniques with motivational features such as games and personal guides. The user selects a personal guide from among a selection of individuals with spinal cord injuries to guide them through tutorials that include accounts of personal experiences. The guides appear in small video windows at various points throughout the tutorials and give personal insight into the topic at hand. The user can also query the other guides to hear their views on a topic. The user interface incorporates 'seamless access' features, which enable persons with a wide range of disabilities to use the program. Innovative features of these modules are the use of personal instructional guides, motivational games and activities, incorporation of alternative input or access strategies, and the use of high quality, low cost, multimedia production strategies.

  4. Physical Activity and Quality of Life in Adults With Spinal Cord Injury

    PubMed Central

    Stevens, Sandy L; Caputo, Jennifer L; Fuller, Dana K; Morgan, Don W

    2008-01-01

    Background/Objective: To document the relationship between level of physical activity and quality of life in persons with spinal cord injury. Design: Cross-sectional investigation. Participants/Methods: Men (n = 32) and women (n = 30) with complete and incomplete spinal cord lesions below C6 volunteered to participate in this study. The average length of time since the onset of disability was 9 years (range, 1.5–40 years). Using an interview-formatted survey (Quality of Well-Being Scale), a measure of quality of life was obtained for each participant. Physical activity levels were determined using the Physical Activity Scale for Individuals with Physical Disabilities. Results: A strong positive association (r = 0.75; P < 0.05) was observed between level of physical activity and quality of life. Multiple regression analysis also showed that when level of physical activity, anatomical location of the injury, completeness of injury, and time since injury were used as explanatory variables, level of physical activity was the only significant predictor of quality of life, accounting for 56% of the total variation in quality of life. Conclusions: Results from this study show that a significant and moderately strong positive relationship exists between level of physical activity and quality of life in adults with spinal cord injury. From a clinical perspective, these findings suggest that interventions aimed at promoting physical activity may be effective in improving quality of life in this population. PMID:18959354

  5. Constitutively active 5-HT2/α1 receptors facilitate muscle spasms after human spinal cord injury

    PubMed Central

    D'Amico, Jessica M.; Murray, Katherine C.; Li, Yaqing; Chan, K. Ming; Finlay, Mark G.; Bennett, David J.

    2013-01-01

    In animals, the recovery of motoneuron excitability in the months following a complete spinal cord injury is mediated, in part, by increases in constitutive serotonin (5-HT2) and norepinephrine (α1) receptor activity, which facilitates the reactivation of calcium-mediated persistent inward currents (CaPICs) without the ligands serotonin and norepinephrine below the injury. In this study we sought evidence for a similar role of constitutive monoamine receptor activity in the development of spasticity in human spinal cord injury. In chronically injured participants with partially preserved sensory and motor function, the serotonin reuptake inhibitor citalopram facilitated long-lasting reflex responses (spasms) previously shown to be mediated by CaPICs, suggesting that in incomplete spinal cord injury, functional descending sources of monoamines are present to activate monoamine receptors below the lesion. However, in participants with motor or motor/sensory complete injuries, the inverse agonist cyproheptadine, which blocks both ligand and constitutive 5-HT2/α1 receptor activity, decreased long-lasting reflexes, whereas the neutral antagonist chlorpromazine, which only blocks ligand activation of these receptors, had no effect. When tested in noninjured control participants having functional descending sources of monoamines, chlorpromazine was effective in reducing CaPIC-mediated motor unit activity. On the basis of these combined results, it appears that in severe spinal cord injury, facilitation of persistent inward currents and muscle spasms is mainly mediated by the activation of constitutive 5-HT2 and α1 receptor activity. Drugs that more selectively block these constitutively active monoamine receptors may provide better oral control of spasticity, especially in motor complete spinal cord injury where reducing motoneuron excitability is the primary goal. PMID:23221402

  6. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish

    PubMed Central

    Mokalled, Mayssa H.; Patra, Chinmoy; Dickson, Amy L.; Endo, Toyokazu; Stainier, Didier Y. R.; Poss, Kenneth D.

    2016-01-01

    Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration, a relatively unexplored process. Here, we performed a genome-wide profiling screen for secreted factors that are upregulated during zebrafish spinal cord regeneration. We find that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupt spinal cord repair, while transgenic ctgfa overexpression and local human CTGF recombinant protein delivery accelerate bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration. PMID:27811277

  7. Readmission after spinal cord injury: analysis of an institutional cohort of 795 patients.

    PubMed

    Yarbrough, Chester K; Gamble, Paul G; Burhan Janjua, Muhammad; Tang, Mengxuan; Ghenbot, Rahel; Zhang, Andrew J; Juknis, Neringa; Hawasli, Ammar H; Kelly, Michael P; Ray, Wilson Z

    2018-06-01

    Recent studies in other fields have suggested that healthcare on the weekend may have worse outcomes. In particular, patients with stroke and acute cardiovascular events have shown worse outcomes with weekend treatment. It is unclear whether this extends to patients with spinal cord injury. This study was designed to evaluate factors for readmission after index hospitalization for spinal cord injury. A total of 795 consecutive patients over an 11-year period were analyzed. After excluding patients with chronic spinal cord injury and surgical care at an outside hospital, 745 patients remained. The primary outcome measure evaluated was 30-day readmission. Secondary measures include perioperative complications, readmission rate when discharged on the weekend, and the effect of race and insurance status on readmission rate. Univariate and multivariate analysis were utilized to evaluate the covariates collected. The χ2 test, Fisher's exact test, and linear and logistic regression methods were utilized for statistical analysis. A total of 745 patients were analyzed after exclusions. Payer status did not affect length of stay, ICU length of stay, or perioperative complications. Neither weekend admission nor weekend operation affected length of stay, ICU length of stay, or readmission by 30 days. Patients undergoing weekend surgical treatment had lower perioperative complication rates (2.2% vs. 6.5% on weekday, P<0.01). Discharge on the weekend was associated with a significantly lower rate of readmission by 30 days (OR=0.07, 95% CI: 0.009-0.525, P<0.005). Payer status was associated with 30-day readmission (P<0.005). Patients with Medicare (20.8%) and Medicaid (20.1%) showed higher rates of readmission than patients with other payers. 21.1% of African-American patients were readmitted, versus 10.2% of other patients (Odds ratio: 2.2, 95% confidence interval 1.36-3.27, P<0.001). Correcting for payer status lessened but did not eliminate the effect of race on readmission

  8. Local delivery of thyroid hormone enhances oligodendrogenesis and myelination after spinal cord injury

    NASA Astrophysics Data System (ADS)

    Shultz, Robert B.; Wang, Zhicheng; Nong, Jia; Zhang, Zhiling; Zhong, Yinghui

    2017-06-01

    Objective. Traumatic spinal cord injury (SCI) causes apoptosis of myelin-forming oligodendrocytes (OLs) and demyelination of surviving axons, resulting in conduction failure. Remyelination of surviving denuded axons provides a promising therapeutic target for spinal cord repair. While cell transplantation has demonstrated efficacy in promoting remyelination and functional recovery, the lack of ideal cell sources presents a major obstacle to clinical application. The adult spinal cord contains oligodendrocyte precursor cells and multipotent neural stem/progenitor cells that have the capacity to differentiate into mature, myelinating OLs. However, endogenous oligodendrogenesis and remyelination processes are limited by the upregulation of remyelination-inhibitory molecules in the post-injury microenvironment. Multiple growth factors/molecules have been shown to promote OL differentiation and myelination. Approach. In this study we screened these therapeutics and found that 3, 3‧, 5-triiodothyronine (T3) is the most effective in promoting oligodendrogenesis and OL maturation in vitro. However, systemic administration of T3 to achieve therapeutic doses in the injured spinal cord is likely to induce hyperthyroidism, resulting in serious side effects. Main results. In this study we developed a novel hydrogel-based drug delivery system for local delivery of T3 to the injury site without eliciting systemic toxicity. Significance. Using a clinically relevant cervical contusion injury model, we demonstrate that local delivery of T3 at doses comparable to safe human doses promoted new mature OL formation and myelination after SCI.

  9. Study protocol for the G-SPIRIT trial: a randomised, placebo-controlled, double-blinded phase III trial of granulocyte colony-stimulating factor-mediated neuroprotection for acute spinal cord injury

    PubMed Central

    Koda, Masao; Hanaoka, Hideki; Sato, Takatoshi; Fujii, Yasuhisa; Hanawa, Michiko; Takahashi, Sho; Furuya, Takeo; Ijima, Yasushi; Saito, Junya; Kitamura, Mitsuhiro; Ohtori, Seiji; Matsumoto, Yukei; Abe, Tetsuya; Watanabe, Kei; Hirano, Toru; Ohashi, Masayuki; Shoji, Hirokazu; Mizouchi, Tatsuki; Takahashi, Ikuko; Kawahara, Norio; Kawaguchi, Masahito; Orita, Yugo; Sasamoto, Takeshi; Yoshioka, Masahito; Fujii, Masafumi; Yonezawa, Katsutaka; Soma, Daisuke; Taneichi, Hiroshi; Takeuchi, Daisaku; Inami, Satoshi; Moridaira, Hiroshi; Ueda, Haruki; Asano, Futoshi; Shibao, Yosuke; Aita, Ikuo; Takeuchi, Yosuke; Mimura, Masaya; Shimbo, Jun; Someya, Yukio; Ikenoue, Sumio; Sameda, Hiroaki; Takase, Kan; Ikeda, Yoshikazu; Nakajima, Fumitake; Hashimoto, Mitsuhiro; Ozawa, Tomoyuki; Hasue, Fumio; Fujiyoshi, Takayuki; Kamiya, Koshiro; Watanabe, Masahiko; Katoh, Hiroyuki; Matsuyama, Yukihiro; Yamamoto, Yu; Togawa, Daisuke; Hasegawa, Tomohiko; Kobayashi, Sho; Yoshida, Go; Oe, Shin; Banno, Tomohiro; Arima, Hideyuki; Akeda, Koji; Kawamoto, Eiji; Imai, Hiroshi; Sakakibara, Toshihiko; Sudo, Akihiro; Ito, Yasuo; Kikuchi, Tsuyoshi; Osaki, Shuhei; Tanaka, Nobuhiro; Nakanishi, Kazuyoshi; Kamei, Naosuke; Kotaka, Shinji; Baba, Hideo; Okudaira, Tsuyoshi; Konishi, Hiroaki; Yamaguchi, Takayuki; Ito, Keigo; Katayama, Yoshito; Matsumoto, Taro; Matsumoto, Tomohiro; Idota, Masaru; Kanno, Haruo; Aizawa, Toshimi; Hashimoto, Ko; Eto, Toshimitsu; Sugaya, Takehiro; Matsuda, Michiharu; Fushimi, Kazunari; Nozawa, Satoshi; Iwai, Chizuo; Taguchi, Toshihiko; Kanchiku, Tsukasa; Suzuki, Hidenori; Nishida, Norihiro; Funaba, Masahiro; Yamazaki, Masashi

    2018-01-01

    Introduction Granulocyte colony-stimulating factor (G-CSF) is generally used for neutropaenia. Previous experimental studies revealed that G-CSF promoted neurological recovery after spinal cord injury (SCI). Next, we moved to early phase of clinical trials. In a phase I/IIa trial, no adverse events were observed. Next, we conducted a non-randomised, non-blinded, comparative trial, which suggested the efficacy of G-CSF for promoting neurological recovery. Based on those results, we are now performing a phase III trial. Methods and analysis The objective of this study is to evaluate the efficacy of G-CSF for acute SCI. The study design is a prospective, multicentre, randomised, double-blinded, placebo-controlled comparative study. The current trial includes cervical SCI (severity of American Spinal Injury Association (ASIA) Impairment Scale B/C) within 48 hours after injury. Patients are randomly assigned to G-CSF and placebo groups. The G-CSF group is administered 400 µg/m2/day×5 days of G-CSF in normal saline via intravenous infusion for 5 consecutive days. The placebo group is similarly administered a placebo. Our primary endpoint is changes in ASIA motor scores from baseline to 3 months. Each group includes 44 patients (88 total patients). Ethics and dissemination The study will be conducted according to the principles of the World Medical Association Declaration of Helsinki and in accordance with the Japanese Medical Research Involving Human Subjects Act and other guidelines, regulations and Acts. Results of the clinical study will be submitted to the head of the respective clinical study site as a report after conclusion of the clinical study by the sponsor-investigator. Even if the results are not favourable despite conducting the clinical study properly, the data will be published as a paper. Trial registration number UMIN000018752. PMID:29730616

  10. DTI and pathological changes in a rabbit model of radiation injury to the spinal cord after 125I radioactive seed implantation

    PubMed Central

    Cao, Xia; Fang, Le; Cui, Chuan-yu; Gao, Shi; Wang, Tian-wei

    2018-01-01

    Excessive radiation exposure may lead to edema of the spinal cord and deterioration of the nervous system. Magnetic resonance imaging can be used to judge and assess the extent of edema and to evaluate pathological changes and thus may be used for the evaluation of spinal cord injuries caused by radiation therapy. Radioactive 125I seeds to irradiate 90% of the spinal cord tissue at doses of 40–100 Gy (D90) were implanted in rabbits at T10 to induce radiation injury, and we evaluated their safety for use in the spinal cord. Diffusion tensor imaging showed that with increased D90, the apparent diffusion coefficient and fractional anisotropy values were increased. Moreover, pathological damage of neurons and microvessels in the gray matter and white matter was aggravated. At 2 months after implantation, obvious pathological injury was visible in the spinal cords of each group. Magnetic resonance diffusion tensor imaging revealed the radiation injury to the spinal cord, and we quantified the degree of spinal cord injury through apparent diffusion coefficient and fractional anisotropy. PMID:29623940

  11. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury

    PubMed Central

    Wenger, Nikolaus; Moraud, Eduardo Martin; Gandar, Jerome; Musienko, Pavel; Capogrosso, Marco; Baud, Laetitia; Le Goff, Camille G.; Barraud, Quentin; Pavlova, Natalia; Dominici, Nadia; Minev, Ivan R.; Asboth, Leonie; Hirsch, Arthur; Duis, Simone; Kreider, Julie; Mortera, Andrea; Haverbeck, Oliver; Kraus, Silvio; Schmitz, Felix; DiGiovanna, Jack; van den Brand, Rubia; Bloch, Jocelyne; Detemple, Peter; Lacour, Stéphanie P.; Bézard, Erwan; Micera, Silvestro; Courtine, Grégoire

    2016-01-01

    Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited this therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here, we developed novel stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real–time control software that modulate extensor versus flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight–bearing capacities, endurance and skilled locomotion in multiple rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans. PMID:26779815

  12. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury

    PubMed Central

    Hou, Shaoping; Carson, David M.; Wu, Di; Klaw, Michelle C.; Houlé, John D.; Tom, Veronica J.

    2016-01-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)+ neurons in the autonomic nuclei and superficial dorsal horn in L6–S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)− and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH+ neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH+ neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH+ cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH+ neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. PMID:26655672

  13. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury.

    PubMed

    Hou, Shaoping; Carson, David M; Wu, Di; Klaw, Michelle C; Houlé, John D; Tom, Veronica J

    2016-11-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH) + neurons in the autonomic nuclei and superficial dorsal horn in L6-S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH) - and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH + neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D 2 -like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH + neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH + cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH + neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. Published by Elsevier Inc.

  14. Spine and Spinal Cord Injuries After Falls From Tree Stands During the Wisconsin Deer Hunting Season.

    PubMed

    Hamilton, Kimberly; Rocque, Brandon; Brooks, Nathaniel

    2017-11-01

    Deer hunting is popular in much of the United States. In Wisconsin, use of tree stands for hunting is common. Spine surgeons at a Level 1 Trauma Center observed a high incidence of spine and spinal cord injury due to falls from tree stands while hunting. This study's purpose is to systematically characterize and classify those injuries. We reviewed the University of Wisconsin Hospital and Clinics' trauma database for tree stand-related injuries from 1999 to 2013. We collected and analyzed data pertaining to hunters' demographics, comorbidities, type and mechanism of injury, injury severity, and management. We identified 117 patients evaluated after a tree stand fall. Sixty-five (ages 16-76) suffered spine fractures that occurred at all levels, from occipital condyle to sacrum, with thoracolumbar compression and burst fractures being most common. Fractures occurred in the following locations: cranio-cervical junction (8.7%), cervical spine (7.6%), cervical-thoracic junction (6.5%), thoracic spine (32.6%), thoracolumbar junction (33.7%), and lumbar spine (10.9%). Twenty-one patients (32%) experienced a single spinal fracture; 44 patients (68%) suffered multiple spinal fractures. Twenty-five patients (38%) required surgical fixation; 19 patients experienced loss of neurologic function: 5 complete spinal cord injuries (SCI), 5 incomplete SCI, 2 central cord syndromes, and 8 radiculopathies. Two mortalities, both of cardiopulmonary etiology, were noted-one in a patient without a spine fracture and the other in a patient with a complete spinal cord injury at T4. The majority of spine fractures are treated nonoperatively. However, enough patients require surgical intervention that consultation with a neurosurgical or orthopedic spine surgeon is prudent. It is more common to have multiple spine fractures from a tree stand fall, therefore, it is recommended that if 1 fracture is identified the entire spine be evaluated for additional fractures. For safety, it is recommended

  15. Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help.

    PubMed

    Thompson, Aiko K; Wolpaw, Jonathan R

    2015-04-01

    People with incomplete spinal cord injury (SCI) frequently suffer motor disabilities due to spasticity and poor muscle control, even after conventional therapy. Abnormal spinal reflex activity often contributes to these problems. Operant conditioning of spinal reflexes, which can target plasticity to specific reflex pathways, can enhance recovery. In rats in which a right lateral column lesion had weakened right stance and produced an asymmetrical gait, up-conditioning of the right soleus H-reflex, which increased muscle spindle afferent excitation of soleus, strengthened right stance and eliminated the asymmetry. In people with hyperreflexia due to incomplete SCI, down-conditioning of the soleus H-reflex improved walking speed and symmetry. Furthermore, modulation of electromyographic activity during walking improved bilaterally, indicating that a protocol that targets plasticity to a specific pathway can trigger widespread plasticity that improves recovery far beyond that attributable to the change in the targeted pathway. These improvements were apparent to people in their daily lives. They reported walking faster and farther, and noted less spasticity and better balance. Operant conditioning protocols could be developed to modify other spinal reflexes or corticospinal connections; and could be combined with other therapies to enhance recovery in people with SCI or other neuromuscular disorders. © The Author(s) 2014.

  16. Nestin- and Doublecortin-Positive Cells Reside in Adult Spinal Cord Meninges and Participate in Injury-Induced Parenchymal Reaction

    PubMed Central

    Decimo, Ilaria; Bifari, Francesco; Rodriguez, Francisco Javier; Malpeli, Giorgio; Dolci, Sissi; Lavarini, Valentina; Pretto, Silvia; Vasquez, Sandra; Sciancalepore, Marina; Montalbano, Alberto; Berton, Valeria; Krampera, Mauro; Fumagalli, Guido

    2011-01-01

    Adult spinal cord has little regenerative potential, thus limiting patient recovery following injury. In this study, we describe a new population of cells resident in the adult rat spinal cord meninges that express the neural stem/precursor markers nestin and doublecortin. Furthermore, from dissociated meningeal tissue a neural stem cell population was cultured in vitro and subsequently shown to differentiate into functional neurons or mature oligodendrocytes. Proliferation rate and number of nestin- and doublecortin-positive cells increased in vivo in meninges following spinal cord injury. By using a lentivirus-labeling approach, we show that meningeal cells, including nestin- and doublecortin-positive cells, migrate in the spinal cord parenchyma and contribute to the glial scar formation. Our data emphasize the multiple roles of meninges in the reaction of the parenchyma to trauma and indicate for the first time that spinal cord meninges are potential niches harboring stem/precursor cells that can be activated by injury. Meninges may be considered as a new source of adult stem/precursor cells to be further tested for use in regenerative medicine applied to neurological disorders, including repair from spinal cord injury. Stem Cells 2011;29:2062–2076. PMID:22038821

  17. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction.

    PubMed

    Decimo, Ilaria; Bifari, Francesco; Rodriguez, Francisco Javier; Malpeli, Giorgio; Dolci, Sissi; Lavarini, Valentina; Pretto, Silvia; Vasquez, Sandra; Sciancalepore, Marina; Montalbano, Alberto; Berton, Valeria; Krampera, Mauro; Fumagalli, Guido

    2011-12-01

    Adult spinal cord has little regenerative potential, thus limiting patient recovery following injury. In this study, we describe a new population of cells resident in the adult rat spinal cord meninges that express the neural stem/precursor markers nestin and doublecortin. Furthermore, from dissociated meningeal tissue a neural stem cell population was cultured in vitro and subsequently shown to differentiate into functional neurons or mature oligodendrocytes. Proliferation rate and number of nestin- and doublecortin-positive cells increased in vivo in meninges following spinal cord injury. By using a lentivirus-labeling approach, we show that meningeal cells, including nestin- and doublecortin-positive cells, migrate in the spinal cord parenchyma and contribute to the glial scar formation. Our data emphasize the multiple roles of meninges in the reaction of the parenchyma to trauma and indicate for the first time that spinal cord meninges are potential niches harboring stem/precursor cells that can be activated by injury. Meninges may be considered as a new source of adult stem/precursor cells to be further tested for use in regenerative medicine applied to neurological disorders, including repair from spinal cord injury. Copyright © 2011 AlphaMed Press.

  18. Long term follow up of spinal cord injury caused by penetrating missiles.

    PubMed

    Brooks, M E; Brouner, R; Ohry, A

    1992-02-01

    Eighty-four spinal cord injured patients (SCIP) injured as a result of penetrating missiles were categorised according to: neurological level of injury, age at time of injury, circumstances of injury, missile type, initial treatment, duration of injury, and ethnic background. Evaluations and comparisons were made concerning: life habits, family status, education, employment, and mental well being. A discussion of complicating factors, both physical and psychological, and their relation to the final rehabilitation result is presented.

  19. U.S. Veterans Hospital, Jefferson Barracks, Spinal Cord Injury Unit and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Veterans Hospital, Jefferson Barracks, Spinal Cord Injury Unit and Tuberculosis Neuropsychiatric Building, VA Medical Center, Jefferson Barracks Division 1 Jefferson Barracks Drive, Saint Louis, Independent City, MO

  20. [Robotic systems for gait re-education in cases of spinal cord injury: a systematic review].

    PubMed

    Gandara-Sambade, T; Fernandez-Pereira, M; Rodriguez-Sotillo, A

    2017-03-01

    The evidence underlying robotic body weight supported treadmill training in patients with spinal cord injury remains poorly characterized. To perform a qualitative systematic review on the efficacy of this therapy. A search on PubMed, CINAHL, Cochrane Library and PEDro was performed from January 2005 to April 2016. The references in these articles were also reviewed to find papers not identified with the initial search strategy. The methodological level of the articles was evaluated with PEDro and Downs and Black scales. A total of 129 potentially interesting articles were found, of which 10 fulfilled the inclusion criteria. Those studies included 286 patients, who were predominantly young and male. Most of them had an incomplete spinal cord injury and were classified as C or D in ASIA scale. Robotic devices employed in these studies were Lokomat, Gait Trainer and LOPES. Improvement in walking parameters evaluated was more evident in young patients, those with subacute spinal cord injury, and those with high ASIA or LEMS scores. Conversely, factors such as etiology, level of injury or sex were less predictive of improvement. The methodological level of these studies was fair according to PEDro and Downs and Black scales. The evidence of gait training with robotic devices in patients with spinal cord injury is positive, although limited and with fair methodological quality.

  1. Management of Sub-axial Cervical Spine Injuries

    PubMed Central

    Zaveri, Gautam; Das, Gurdip

    2017-01-01

    Sub-axial cervical spine injuries are commonly seen in patients with blunt trauma. They may be associated with spinal cord injury resulting in tetraplegia and severe permanent disability. Immobilization of the neck, maintenance of blood pressure and oxygenation, rapid clinical and radiological assessment of all injuries, and realignment of the spinal column are the key steps in the emergency management of these injuries. The role of intravenous methylprednisolone administration in acute spinal cord injuries remains controversial. The definitive management of these injuries is based upon recognition of the fracture pattern, assessment of the degree of instability, the presence or absence of neurologic deficit, and other patient related factors that may influence the outcome. Nonoperative treatment comprises of some form of external immobilization for 8 to 12 weeks, followed by imaging to assess fracture healing, and to rule out instability. The goals of surgery are realignment of the vertebral column, decompression of the neural elements and instrumented stabilization. PMID:29200479

  2. A Grading System To Evaluate Objectively the Strength of Pre-Clinical Data of Acute Neuroprotective Therapies for Clinical Translation in Spinal Cord Injury

    PubMed Central

    Okon, Elena B.; Tsai, Eve; Beattie, Michael S.; Bresnahan, Jacqueline C.; Magnuson, David K.; Reier, Paul J.; McTigue, Dana M.; Popovich, Phillip G.; Blight, Andrew R.; Oudega, Martin; Guest, James D.; Weaver, Lynne C.; Fehlings, Michael G.; Tetzlaff, Wolfram

    2011-01-01

    Abstract The past three decades have seen an explosion of research interest in spinal cord injury (SCI) and the development of hundreds of potential therapies that have demonstrated some promise in pre-clinical experimental animal models. A growing number of these treatments are seeking to be translated into human clinical trials. Conducting such a clinical trial, however, is extremely costly, not only for the time and money required to execute it, but also for the limited resources that will then no longer be available to evaluate other promising therapies. The decision about what therapies have sufficient pre-clinical evidence of efficacy to justify testing in humans is therefore of utmost importance. Here, we have developed a scoring system for objectively grading the body of pre-clinical literature on neuroprotective treatments for acute SCI. The components of the system include an evaluation of a number of factors that are thought to be important in considering the “robustness” of a therapy's efficacy, including the animal species and injury models that have been used to test it, the time window of efficacy, the types of functional improvements effected by it, and whether efficacy has been independently replicated. The selection of these factors was based on the results of a questionnaire that was performed within the SCI research community. A modified Delphi consensus-building exercise was then conducted with experts in pre-clinical SCI research to refine the criteria and decide upon how to score them. Finally, the grading system was applied to a series of potential neuroprotective treatments for acute SCI. This represents a systematic approach to developing an objective method of evaluating the extent to which the pre-clinical literature supports the translation of a particular experimental treatment into human trials. PMID:20507235

  3. Diffusion-Weighted Magnetic Resonance Imaging Characterization of White Matter Injury Produced by Axon-Sparing Demyelination and Severe Contusion Spinal Cord Injury in Rats

    PubMed Central

    Nout-Lomas, Yvette S.; Wendland, Michael F.; Mukherjee, Pratik; Huie, J. Russell; Hess, Christopher P.; Mabray, Marc C.; Bresnahan, Jacqueline C.; Beattie, Michael S.

    2016-01-01

    Abstract Alterations in magnetic resonance imaging (MRI)–derived measurements of water diffusion parallel (D∥) and perpendicular (D⊥) to white matter tracts have been specifically attributed to pathology of axons and myelin, respectively. We test the hypothesis that directional diffusion measurements can distinguish between axon-sparing chemical demyelination and severe contusion spinal cord white matter injury. Adult rats received either unilateral ethidium bromide (EB) microinjections (chemical demyelination) into the lateral funiculus of the spinal cord at C5 or were subjected to unilateral severe contusion spinal cord injury (SCI). Diffusion MRI metrics in the lateral funiculus were analyzed at early and late time-points following injury and correlated with histology. Early EB-demyelination resulted in a significant elevation in D⊥ and significant reduction in D∥ at the injury epicenter, with histological evidence of uniform axon preservation. Alterations in D⊥ and D∥ at the epicenter of early EB-demyelination were not significantly different from those observed with severe contusion at the epicenter, where histology demonstrated severe combined axonal and myelin injury. Diffusion abnormalities away from the injury epicenter were seen with contusion injury, but not with EB-demyelination. Chronic EB lesions underwent endogenous remyelination with normalization of diffusion metrics, whereas chronic contusion resulted in persistently altered diffusivities. In the early setting, directional diffusion measurements at the injury epicenter associated with chemical demyelination are indistinguishable from those seen with severe contusive SCI, despite dramatic pathologic differences between injury models. Caution is advised in interpretation of diffusion metrics with respect to specific white matter structural alterations. Diffusion analysis should not be limited to the epicenter of focal spinal lesions as alterations marginal to the epicenter are useful

  4. 6-Shogaol, a natural product, reduces cell death and restores motor function in rat spinal cord injury.

    PubMed

    Kyung, Kang Soo; Gon, Jeon Hyo; Geun, Kim Yong; Sup, Jung Jin; Suk, Woo Jae; Ho, Kim Jae

    2006-08-01

    Spinal cord injury (SCI) results in progressive waves of secondary injuries, which via the activation of a barrage of noxious pathological mechanisms exacerbate the injury to the spinal cord. Secondary injuries are associated with edema, inflammation, excitotoxicity, excessive cytokine release, caspase activation and cell apoptosis. This study was aimed at investigating the possible neuroprotective effects of 6-shogaol purified from Zingiber officinale by comparing an experimental SCI rat group with SCI control rats. Shogaol attenuated apoptotic cell death, including poly(ADP-ribose) polymerase activity, and reduced astrogliosis and hypomyelination which occurs in areas of active cell death in the spinal cords of SCI rats. The foremost protective effect of shogaol in SCI would therefore be manifested in the suppression of the acute secondary apoptotic cell death. However, it does not attenuate active microglia and macrophage infiltration. This finding is supported by a lack of histopathological changes in the areas of the lesion in the shogaol-treated SCI rats. Moreover, shogaol-mediated neuroprotection has been linked with shogaol's attenuation of p38 mitogen-activated protein kinase, p-SAPK/JNK and signal transducer, and with transcription-3 activation. Our results demonstrate that shogaol administrated immediately after SCI significantly diminishes functional deficits. The shogaol-treated group recovered hindlimb reflexes more rapidly and a higher percentage of these rats regained responses compared with the untreated injured rats. The overall hindlimb functional improvement of hindlimbs, as measured by the Basso, Beattie and Bresnahan scale, was significantly enhanced in the shogaol-treated group relative to the SCI control rats. Our data show that the therapeutic outcome of shogaol probably results from its comprehensive effects of blocking apoptotic cell death, resulting in the protection of white matter, oligodendrocytes and neurons, and inhibiting

  5. Measurement Structure of the Trait Hope Scale in Persons with Spinal Cord Injury: A Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    Smedema, Susan Miller; Pfaller, Joseph; Moser, Erin; Tu, Wei-Mo; Chan, Fong

    2013-01-01

    Objective: To evaluate the measurement structure of the Trait Hope Scale (THS) among individuals with spinal cord injury. Design: Confirmatory factor analysis and reliability and validity analyses were performed. Participants: 242 individuals with spinal cord injury. Results: Results support the two-factor measurement model for the THS with agency…

  6. Impact of CrossFit-Related Spinal Injuries.

    PubMed

    Hopkins, Benjamin S; Cloney, Michael B; Kesavabhotla, Kartik; Yamaguchi, Jonathon; Smith, Zachary A; Koski, Tyler R; Hsu, Wellington K; Dahdaleh, Nader S

    2017-11-16

    Exercise-related injuries (ERIs) are a common cause of nonfatal emergency department and hospital visits. CrossFit is a high-intensity workout regimen whose popularity has grown rapidly. However, ERIs due to CrossFit remained under investigated. All patients who presented to the main hospital at a major academic center complaining of an injury sustained performing CrossFit between June 2010 and June 2016 were identified. Injuries were classified by anatomical location (eg, knee, spine). For patients with spinal injuries, data were collected including age, sex, body mass index (BMI), CrossFit experience level, symptom duration, type of symptoms, type of clinic presentation, cause of injury, objective neurological examination findings, imaging type, number of clinic visits, and treatments prescribed. Four hundred ninety-eight patients with 523 CrossFit-related injuries were identified. Spine injuries were the most common injuries identified, accounting for 20.9%. Among spine injuries, the most common location of injury was the lumbar spine (83.1%). Average symptom duration was 6.4 months ± 15.1, and radicular complaints were the most common symptom (53%). A total of 30 (32%) patients had positive findings on neurologic examination. Six patients (6.7%) required surgical intervention for treatment after failing an average of 9.66 months of conservative treatment. There was no difference in age, sex, BMI, or duration of symptoms of patients requiring surgery with those who did not. CrossFit is a popular, high-intensity style workout with the potential to injure its participants. Spine injuries were the most common type of injury observed and frequently required surgical intervention.

  7. Assessing forelimb function after unilateral cervical spinal cord injury: novel forelimb tasks predict lesion severity and recovery.

    PubMed

    Khaing, Zin Z; Geissler, Sydney A; Jiang, Shan; Milman, Brian D; Aguilar, Sandra V; Schmidt, Christine E; Schallert, Timothy

    2012-02-10

    Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. Recently there has been increasing interest in cervical spinal cord injury models because the majority of spinal cord injuries are at cervical levels. Here we examined spontaneous functional recovery of adult rats with either laminectomy or lateral hemisection of the cervical spinal cord at C3-C4. Behavioral tests were carried out, including the forelimb locomotor scale (FLS), a postural instability test (PIT), a pasta-handling test that has been used to assess forepaw digit function and latency to eat, forelimb use during vertical-lateral wall exploration in a cylindrical enclosure, and vibrissae-elicited forelimb placing tests. In addition, a forelimb step-alternation test was developed to assess functional recovery at 12 weeks post-injury. All tests detected cSCI-induced deficits relative to laminectomy. Interestingly, the severity of deficits in the forelimb step-alternation test was associated with more extensive spinal damage, greater impairment, and less recovery in the FLS and other tests. For the pasta-handling test we found that rats with a milder cervical injury (alternators) were more likely to use both forepaws together compared to rats with a more severe injury (non-alternators). In addition, using the PIT, we detected enhanced function of the good limb, suggesting that neural plasticity on the unaffected side of the spinal cord may have occurred to compensate for deficits in the impaired forelimb. These outcome measures should be useful for investigating neural events associated with cSCI, and for developing novel treatment strategies.

  8. Spinal Cord Injury After Extremity Surgery in Children With Thoracic Kyphosis.

    PubMed

    Pruszczynski, Blazej; Mackenzie, William G; Rogers, Kenneth; White, Klane K

    2015-10-01

    Spinal cord injury is a rare complication after lower extremity surgery in children with skeletal dysplasia and thoracic kyphosis. We encountered two patients who had this complication, from among 51 (39 from Nemours/Alfred I. duPont Hospital for Children and 12 from Seattle Children's Hospital) who underwent lower extremity surgery during an 8.5-year period (June 2004 to December 2012). Because spinal cord injury is a devastating complication likely not known to most physicians treating patients with skeletal dysplasias, we sought to examine factors that may contribute to this rare complication. We performed a retrospective review of two patients with skeletal dysplasia who had paraplegia develop after extremity surgery. Outcome measures included operative time, vital signs, and postsurgery recovery of neurologic deficit. MR images were reviewed. Two patients were found-an 8.5-year-old boy with spondyloepiphyseal dysplasia congenita with a 76°-thoracic kyphosis apex at T4 and a 6.5-year-old boy with mucopolysaccharidosis type 1-H with an 80°-thoracic kyphosis apex at T2. Bilateral proximal femoral osteotomies or bilateral innominate and proximal femoral osteotomies had been performed. The spinal cord injuries occurred at the apex of the kyphosis as determined by clinical examination and MRI assessment. In both patients, the mean arterial blood pressure decreased below 50 mm Hg and might be a factor in the etiology of the paralysis. The first patient recovered motor function in 5 months; the second had no recovery. Paraplegia is extremely rare after nonspine operations. Many factors contribute to the risk for a spinal cord event: low mean arterial pressure, duration of the surgery, position on the operating table, the kyphotic spine deformity, or unappreciated vascular disease. Motor-evoked potentials and somatosensory-evoked potentials together potentially provide high sensitivity and specificity for predicting a postoperative neurologic deficit. Based on our

  9. Symptoms of major depression in people with spinal cord injury: implications for screening.

    PubMed

    Bombardier, Charles H; Richards, J Scott; Krause, James S; Tulsky, David; Tate, Denise G

    2004-11-01

    To provide psychometric data on a self-report measure of major depressive disorder (MDD) and to determine whether somatic symptoms are nonspecific or count toward the diagnosis. Survey. Data from the National Spinal Cord Injury Statistical Center representing 16 Model Spinal Cord Injury Systems. Eight hundred forty-nine people with spinal cord injury who completed a standardized follow-up evaluation 1 year after injury. Not applicable. The Patient Health Questionnaire-9 (PHQ-9), a measure of MDD as defined by the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition . We computed descriptive statistics on rates of depressive symptoms and probable MDD, evaluated internal consistency and construct validity, and analyzed the accuracy of individual items as predictors of MDD. Exactly 11.4% of participants met criteria for probable MDD. Probable MDD was associated with poorer subjective health, lower satisfaction with life, and more difficulty in daily role functioning. Probable MDD was not related to most demographic or injury-related variables. Both somatic and psychologic symptoms predicted probable MDD. The PHQ-9 has promise as a tool with which to identify probable MDD in people with SCI. Somatic symptoms should be counted toward the diagnosis and should alert health care providers to the likelihood of MDD. More efficient screening is only one of the quality improvement efforts needed to enhance management of MDD.

  10. Spinal Injuries in the Aquatics Environment, Part I: Prevention.

    ERIC Educational Resources Information Center

    Dworkin, Gerald M.

    1987-01-01

    Water-related activities are the number one cause of spinal cord injuries resulting from sports and recreation activities. This article discusses principles of safe diving; principles of safe water sliding; ways to reduce springboard diving accidents; factors contributing to springboard diving accidents; and safety recommendations for open water…

  11. The Process of Adjustment among Caregivers of Individuals with Spinal Cord Injury: A Qualitative Study

    DTIC Science & Technology

    2015-10-01

    Paralyzed Veterans of America Summit highlighting caregiver quality of life and social support. 10 What was the...1 AWARD NUMBER: W81XWH-14-1-0621 TITLE: The Process of Adjustment among Caregivers of Individuals with Spinal Cord Injury: A Qualitative Study...among Caregivers of Individuals with Spinal Cord Injury: A Qualitative Study 5b. GRANT NUMBER W81XWH-14-1-0621 5c. PROGRAM ELEMENT NUMBER 6

  12. Multiplex array proteomics detects increased MMP-8 in CSF after spinal cord injury.

    PubMed

    Light, Matthew; Minor, Kenneth H; DeWitt, Peter; Jasper, Kyle H; Davies, Stephen J A

    2012-06-11

    A variety of methods have been used to study inflammatory changes in the acutely injured spinal cord. Recently novel multiplex assays have been used in an attempt to overcome limitations in numbers of available targets studied in a single experiment. Other technical challenges in developing pre-clinical rodent models to investigate biomarkers in cerebrospinal fluid (CSF) include relatively small volumes of sample and low concentrations of target proteins. The primary objective of this study was to characterize the inflammatory profile present in CSF at a subacute time point in a clinically relevant rodent model of traumatic spinal cord injury (SCI). Our other aim was to test a microarray proteomics platform specifically for this application. A 34 cytokine sandwich ELISA microarray was used to study inflammatory changes in CSF samples taken 12 days post-cervical SCI in adult rats. The difference between the median foreground signal and the median background signal was measured. Bonferroni and Benjamini-Hochburg multiple testing corrections were applied to limit the False Discovery Rate (FDR), and a linear mixed model was used to account for repeated measures in the array. We report a novel subacute SCI biomarker, elevated levels of matrix metalloproteinase-8 protein in CSF, and discuss application of statistical models designed for multiplex testing. Major advantages of this assay over conventional methods include high-throughput format, good sensitivity, and reduced sample consumption. This method can be useful for creating comprehensive inflammatory profiles, and biomarkers can be used in the clinic to assess injury severity and to objectively grade response to therapy.

  13. Evaluation and management of combat-related spinal injuries: a review based on recent experiences.

    PubMed

    Schoenfeld, Andrew J; Lehman, Ronald A; Hsu, Joseph R

    2012-09-01

    The current approach to the evaluation and treatment of military casualties in the Global War on Terror is informed by medical experience from prior conflicts and combat encounters from the last 10 years. In an effort to standardize the care provided to military casualties in the ongoing conflicts, the Department of Defense (DoD) has published Clinical Practice Guidelines (CPGs) that deal specifically with the combat casualty sustaining a spinal injury. However, the combat experience with spine injuries in the present conflicts remains incompletely described. To describe the CPGs for the care of the combat casualty with suspected spine injuries and discuss them in light of the published military experience with combat-related spinal trauma. Literature review. A literature review was conducted regarding published works that discussed the incidence, epidemiology, and management of combat-related spinal trauma. The CPGs, established by the DoD, are discussed in light of actual military experiences with spine trauma, the present situation in the forward surgical teams and combat support hospitals treating casualties in theater, and recent publications in the field of spine surgery. In the conventional wars fought by the United States between 1950 and 1991 (Korea, Vietnam, Gulf War I), the incidence of spine injuries remained close to 1% of all combat casualties. However, in the Global War on Terror, the enemy has relied on implements of asymmetric warfare, including sniper attacks, ambush, roadside bombs, and improvised explosive devices. The increase in explosive mechanisms of injury has elevated the number of soldiers exposed to blunt force trauma and, consequently, recent publications reported the highest incidence of combat-related spinal injuries in American military history. Wounded soldiers are expeditiously evacuated through the echelons of care but typically do not receive surgical management in theater. The current CPGs for the care of soldiers with combat

  14. Hollow-organ perforation following thoracolumbar spinal injuries of fall from height

    PubMed Central

    Yudoyono, Farid; Dahlan, Rully Hanafi; Tjahjono, Firman Priguna; Imron, Akhmad; Arifin, Muhammad Zafrullah

    2015-01-01

    Introduction Spinal trauma is the cause of high mortality and morbidity, the fall from height as mechanism that can cause a wide variety of lesions, associated both with the direct impact on the ground and with the deceleration. In such fall cases greater heights and higher mortality are involved. Presentation of case We report the successful management of life-threatening hollow-organ perforation following thoracolumbar spinal injury. Discussion Perforation of the hollow-organ in the setting of thoracolumbar trauma may delay the diagnosis and can have devastating consequences. Conclusions This case supports the recommendation for neurosurgeon in the setting of thoracolumbar injury that perforation of the hollow-organ can have devastating consequences. It is vital to achieve an early diagnosis to improve survival rate. PMID:25967553

  15. Acute tolerance to spinally administered morphine compares mechanistically with chronically induced morphine tolerance.

    PubMed

    Fairbanks, C A; Wilcox, G L

    1997-09-01

    The mechanistic similarity between acutely and chronically induced morphine tolerance has been previously proposed but remains largely unexplored. Our experiments examined the modulation of acutely induced tolerance to spinally administered morphine by agonists that affect the N-methyl-D-aspartate receptor and nitric oxide synthase systems. Antinociception was detected via the hot water (52.5 degrees C) tail flick test in mice. Intrathecal pretreatment with morphine (40 nmol) produced a 9.6-fold rightward shift in the morphine dose-response curve. This shift confirmed the induction of acute spinal morphine tolerance. Intrathecal copretreatment with the receptor antagonists (competitive and noncompetitive, respectively) dizolcipine (MK801, 3 nmol) or LY235959 (4 pmol) and morphine [40 nmol, intrathecally (i.t.)] attenuated acute tolerance to morphine measured 8 hr later. A 60-min pretreatment of 7-nitroindazole (6 nmol, i.t.), a selective neuronal NOS inhibitor, followed by administration of morphine (40 nmol, i.t.) blocked the induction of morphine tolerance. Intrathecal copretreatment with morphine (40 nmol, i.t.) and agmatine (4 nmol, i.t.), an imidazoline, receptor agonist and putative nitric oxide synthase inhibitor, almost completely abolished acute spinal morphine tolerance. The results of these experiments agree with previous reports using models of chronically induced morphine tolerance. This evidence supports the proposal that the mechanisms responsible for acute morphine tolerance parallel those underlying chronic morphine tolerance. This study attests to the powerful predictive value of acute induction as a model for morphine tolerance.

  16. Targeting Translational Successes through CANSORT-SCI: Using Pet Dogs To Identify Effective Treatments for Spinal Cord Injury.

    PubMed

    Moore, Sarah A; Granger, Nicolas; Olby, Natasha J; Spitzbarth, Ingo; Jeffery, Nick D; Tipold, Andrea; Nout-Lomas, Yvette S; da Costa, Ronaldo C; Stein, Veronika M; Noble-Haeusslein, Linda J; Blight, Andrew R; Grossman, Robert G; Basso, D Michele; Levine, Jonathan M

    2017-06-15

    Translation of therapeutic interventions for spinal cord injury (SCI) from laboratory to clinic has been historically challenging, highlighting the need for robust models of injury that more closely mirror the human condition. The high prevalence of acute, naturally occurring SCI in pet dogs provides a unique opportunity to evaluate expeditiously promising interventions in a population of animals that receive diagnoses and treatment clinically in a manner similar to persons with SCI, while adhering to National Institutes of Health guidelines for scientific rigor and transparent reporting. In addition, pet dogs with chronic paralysis are often maintained long-term by their owners, offering a similarly unique population for study of chronic SCI. Despite this, only a small number of studies have used the clinical dog model of SCI. The Canine Spinal Cord Injury Consortium (CANSORT-SCI) was recently established by a group of veterinarians and basic science researchers to promote the value of the canine clinical model of SCI. The CANSORT-SCI group held an inaugural meeting November 20 and 21, 2015 to evaluate opportunities and challenges to the use of pet dogs in SCI research. Key challenges identified included lack of familiarity with the model among nonveterinary scientists and questions about how and where in the translational process the canine clinical model would be most valuable. In light of these, we review the natural history, outcome, and available assessment tools associated with canine clinical SCI with emphasis on their relevance to human SCI and the translational process.

  17. Managing the stigma: Exploring body image experiences and self-presentation among people with spinal cord injury.

    PubMed

    Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy; Ditor, David S

    2016-01-01

    Using modified constructivist grounded theory, the purpose of this study was to explore body image experiences in people with spinal cord injury. Nine participants (five women, four men) varying in age (21-63 years), type of injury (C3-T7; complete and incomplete), and years post-injury (4-36 years) took part in semi-structured in-depth interviews. The following main categories were found: appearance, weight concerns, negative functional features, impact of others, body disconnection, hygiene and incontinence, and self-presentation. Findings have implications for the health and well-being of those living with a spinal cord injury.

  18. Lumbar muscle inflammation alters spinally mediated locomotor recovery induced by training in a mouse model of complete spinal cord injury.

    PubMed

    Jeffrey-Gauthier, Renaud; Piché, Mathieu; Leblond, Hugues

    2017-09-17

    Locomotor networks after spinal cord injury (SCI) are shaped by training-activated proprioceptive and cutaneous inputs. Nociception from injured tissues may alter these changes but has largely been overlooked. The objective of the present study was to ascertain whether lumbar muscle inflammation hinders locomotion recovery in a mouse model of complete SCI. Lower limb kinematics during treadmill training was assessed before and after complete SCI at T8 (2, 7, 14, 21 and 28days post-injury). Locomotor recovery was compared in 4 groups of CD1 mice: control spinal mice; spinal mice with daily locomotor training; spinal mice with lumbar muscle inflammation (Complete Freund's Adjuvant (CFA) injection); and spinal mice with locomotor training and CFA. On day 28, H-reflex excitability and its inhibition at high-frequency stimulation (frequency-dependent depression: FDD) were compared between groups, all of which showed locomotor recovery. Recovery was enhanced by training, whereas lumbar muscle inflammation hindered these effects (knee angular excursion and paw drag: p's<0.05). In addition, lumbar muscle inflammation impaired hind limb coupling during locomotion (p<0.05) throughout recovery. Also, H-reflex disinhibition was prevented by training, with or without CFA injection (p's<0.05). Altogether, these results indicate that back muscle inflammation modulates spinally mediated locomotor recovery in mice with complete SCI, in part, by reducing adaptive changes induced by training. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Injury perceptions, hope for recovery, and psychological status after spinal cord injury.

    PubMed

    Krause, James S; Edles, Philip A

    2014-05-01

    The purpose of this study was to investigate the relationship of injury perceptions and hope for recovery with life satisfaction, purpose in life, and depressive symptoms measured during inpatient rehabilitation after spinal cord injury (SCI). Participants included adults hospitalized for SCI inpatient rehabilitation (N = 208), each of whom completed a modified version of the Illness Perception Questionnaire and three outcome measures: the Purpose in Life Scale, the Satisfaction with Life Scale, and the abbreviated version of the Patient Health Questionnaire. Principal components analysis indicated an SCI perceptions factor regarding severity, permanence, and cure control of SCI, and a second factor related to hope for recovery. Whereas hope for recovery was nearly universal, injury perceptions were more varied. Favorable injury perceptions of SCI were predictive of purpose in life, whereas hope for recovery was predictive of life satisfaction. Hope for recovery and favorable SCI perceptions were related to positive psychological outcomes during inpatient rehabilitation, although the strength of the relationship was limited. (c) 2014 APA, all rights reserved.

  20. Exploring narratives of resilience among seven males living with spinal cord injury: a qualitative study.

    PubMed

    Geard, Anne; Kirkevold, Marit; Løvstad, Marianne; Schanke, Anne-Kristine

    2018-01-04

    It is a challenge for both individuals and families when an illness or traumatic injury results in a severe spinal cord injury. The on-going physical impairments experienced by persons with spinal cord injury play themselves out over time. Few qualitative studies have explored how health, resilience and wellbeing interplay across time among persons living with the consequences of severe physical injuries. Thus, the aim of this study was to obtain a deeper understanding of how individuals with spinal cord injury reflect upon the efforts, strategies and agency they perform to sustain long term resilience and wellbeing. In this exploratory qualitative study, we conducted a thematic analysis of in-depth interviews with seven men who had lived with spinal cord injury for 2-32 years and who previously had undergone medical rehabilitation. The efforts revealed by the participants in normalising life with a spinal cord injury required continued flexibility, persistency and solution-focused adjustment, interpreted as processes documenting resilience. The participants were marshalling personal resources to handle challenges over time. They explained that they succeeded in maintaining health and wellbeing by manoeuvring between different strategies such as being self-protective and flexible as well as staying active and maintaining a positive attitude. Further, support from relational resources were of utmost importance emotionally, socially and when in need of practical assistance. When harnessing relational resources when needed, the participants underlined that balancing dependence and autonomy to remain a part of ordinary life was essential in staying emotionally stable. The findings of the present study show similarities to those of previous studies with regard to the participants' attribution of their resilience and wellbeing to their innate personal abilities and strong connection to their family and friends. In addition, the current participants provide enlightening