Science.gov

Sample records for acute stress enhances

  1. Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation.

    PubMed

    Wang, Meina; Hill, Matthew N; Zhang, Longhua; Gorzalka, Boris B; Hillard, Cecilia J; Alger, Bradley E

    2012-01-01

    Exposure to behavioural stress normally triggers a complex, multilevel response of the hypothalamic-pituitary-adrenal (HPA) axis that helps maintain homeostatic balance. Although the endocannabinoid (eCB) system (ECS) is sensitive to chronic stress, few studies have directly addressed its response to acute stress. Here we show that acute restraint stress enhances eCB-dependent modulation of GABA release measured by whole-cell voltage clamp of inhibitory postsynaptic currents (IPSCs) in rat hippocampal CA1 pyramidal cells in vitro. Both Ca(2+)-dependent, eCB-mediated depolarization-induced suppression of inhibition (DSI), and muscarinic cholinergic receptor (mAChR)-mediated eCB mobilization are enhanced following acute stress exposure. DSI enhancement is dependent on the activation of glucocorticoid receptors (GRs) and is mimicked by both in vivo and in vitro corticosterone treatment. This effect does not appear to involve cyclooxygenase-2 (COX-2), an enzyme that can degrade eCBs; however, treatment of hippocampal slices with the L-type calcium (Ca(2+)) channel inhibitor, nifedipine, reverses while an agonist of these channels mimics the effect of in vivo stress. Finally, we find that acute stress produces a delayed (by 30 min) increase in the hippocampal content of 2-arachidonoylglycerol, the eCB responsible for DSI. These results support the hypothesis that the ECS is a biochemical effector of glucocorticoids in the brain, linking stress with changes in synaptic strength. PMID:21890595

  2. Acute stress blocks the caffeine-induced enhancement of contextual memory retrieval in mice.

    PubMed

    Pierard, Chistophe; Krazem, Ali; Henkous, Nadia; Decorte, Laurence; Béracochéa, Daniel

    2015-08-15

    This study investigated in mice the dose-effect of caffeine on memory retrieval in non-stress and stress conditions. C57 Bl/6 Jico mice learned two consecutive discriminations (D1 and D2) in a four-hole board which involved either distinct contextual (CSD) or similar contextual (SSD) cues. All mice received an i.p. injection of vehicle or caffeine (8, 16 or 32mg/kg) 30min before the test session. Results showed that in non-stress conditions, the 16mg/kg caffeine dose induced a significant enhancement of D1 performance in CSD but not in SSD. Hence, we studied the effect of an acute stress (electric footshocks) administered 15min before the test session on D1 performance in caffeine-treated mice. Results showed that stress significantly decreased D1 performance in vehicle-treated controls and the memory-enhancing effect induced by the 16mg/kg caffeine dose in non-stress condition is no longer observed. Interestingly, whereas caffeine-treated mice exhibited weaker concentrations of plasma corticosterone as compared to vehicles in non-stress condition, stress significantly increased plasma corticosterone concentrations in caffeine-treated mice which reached similar level to that of controls. Overall, the acute stress blocked both the endocrinological and memory retrieval enhancing effects of caffeine. PMID:25934571

  3. Exposure to acute stress enhances decision-making competence: Evidence for the role of DHEA.

    PubMed

    Shields, Grant S; Lam, Jovian C W; Trainor, Brian C; Yonelinas, Andrew P

    2016-05-01

    Exposure to acute stress can impact performance on numerous cognitive abilities, but little is known about how acute stress affects real-world decision-making ability. In the present study, we induced acute stress with a standard laboratory task involving uncontrollable socio-evaluative stress and subsequently assessed decision-making ability using the Adult Decision Making Competence index. In addition, we took baseline and post-test saliva samples from participants to examine associations between decision-making competence and adrenal hormones. Participants in the stress induction group showed enhanced decision-making competence, relative to controls. Further, although both cortisol and dehydroepiandrosterone (DHEA) reactivity predicted decision-making competence when considered in isolation, DHEA was a significantly better predictor than cortisol when both hormones were considered simultaneously. Thus, our results show that exposure to acute stress can have beneficial effects on the cognitive ability underpinning real-world decision-making and that this effect relates to DHEA reactivity more than cortisol. PMID:26874561

  4. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2

    PubMed Central

    Kirby, Elizabeth D; Muroy, Sandra E; Sun, Wayne G; Covarrubias, David; Leong, Megan J; Barchas, Laurel A; Kaufer, Daniela

    2013-01-01

    Stress is a potent modulator of the mammalian brain. The highly conserved stress hormone response influences many brain regions, particularly the hippocampus, a region important for memory function. The effect of acute stress on the unique population of adult neural stem/progenitor cells (NPCs) that resides in the adult hippocampus is unclear. We found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression. The effect of acute stress occurred independent of basolateral amygdala neural input and was mimicked by treating isolated NPCs with conditioned media from corticosterone-treated primary astrocytes. Neutralization of FGF2 revealed that astrocyte-secreted FGF2 mediated stress-hormone-induced NPC proliferation. 2 weeks, but not 2 days, after acute stress, rats also showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons. Our findings suggest a beneficial role for brief stress on the hippocampus and improve understanding of the adaptive capacity of the brain. DOI: http://dx.doi.org/10.7554/eLife.00362.001 PMID:23599891

  5. Acute restraint stress increases carotid reactivity in type-I diabetic rats by enhancing Nox4/NADPH oxidase functionality.

    PubMed

    Moreira, Josimar D; Pernomian, Larissa; Gomes, Mayara S; Pernomian, Laena; Moreira, Rafael P; do Prado, Alejandro F; da Silva, Carlos H T P; de Oliveira, Ana M

    2015-10-15

    Hyperglycemia increases the generation of reactive oxygen species and affects systems that regulate the vascular tone including renin-angiotensin system. Stress could exacerbate intracellular oxidative stress during Diabetes upon the activation of angiotensin AT1/NADPH oxidase pathway, which contributes to the development of diabetic cardiovascular complications. For this study, type-I Diabetes was induced in Wistar rats by intraperitoneal injection of streptozotocin. 28 days after streptozotocin injection, the animals underwent to acute restraint stress for 3 h. Cumulative concentration-response curves for angiotensin II were obtained in carotid rings pre-treated or not with Nox or cyclooxygenase inhibitors. Nox1 or Nox4 expression and activity were assessed by Western blotting and lucigenin chemiluminescence, respectively. The role of Nox1 and Nox4 on reactive oxygen species generation was evaluated by flow cytometry and Amplex Red assays. Cyclooxygenases expression was assessed by real-time polymerase chain reaction. The contractile response evoked by angiotensin II was increased in diabetic rat carotid. Acute restraint stress increased this response in this vessel by mechanisms mediated by Nox4, whose local expression and activity in generating hydrogen peroxide are increased. The contractile hyperreactivity to angiotensin II in stressed diabetic rat carotid is also mediated by metabolites derived from cyclooxygenase-2, whose local expression is increased. Taken together, our findings suggest that acute restraint stress exacerbates the contractile hyperreactivity to angiotensin II in diabetic rat carotid by enhancing Nox4-driven generation of hydrogen peroxide, which evokes contractile tone by cyclooxygenases-dependent mechanisms. Finally, these findings highlight the harmful role played by acute stress in modulating diabetic vascular complications. PMID:26387612

  6. Acute heat stress and thermal acclimation induce CCAAT/enhancer-binding protein delta in the goby Gillichthys mirabilis.

    PubMed

    Buckley, Bradley A

    2011-08-01

    Members of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors have regulatory control over numerous processes related to cell fate determination, including differentiation, proliferation, cell cycle arrest and apoptosis. In mammals, abnormalities in the expression of some isoforms of C/EBPs are pathogenic and are implicated as being involved in myeloid leukemia and breast cancers. Next to nothing is known about their regulation, function or stress-responsiveness in poikilotherms. Here, both acute heat stress and thermal acclimation were demonstrated to induce the expression of one isoform, C/EBP-δ, in the liver, white muscle and gill of the eurythermal estuarine goby, Gillichthys mirabilis. The established role of C/EBP-δ in causing cell cycle arrest and/or promoting apoptosis in other vertebrates suggests that the heat-inducibility of this protein in poikilotherms may be part of the conserved cellular stress response with the hypothesized role of causing temporary cessation of cell growth and/or programmed cell death during bouts of environmental stress. The observed regulation of c/ebp-δ during hyperthermia represents a novel, heat-inducible signaling pathway in fishes. PMID:21442321

  7. Antioxidant treatment enhances human mesenchymal stem cell anti-stress ability and therapeutic efficacy in an acute liver failure model

    PubMed Central

    Zeng, Wen; Xiao, Jia; Zheng, Gang; Xing, Feiyue; Tipoe, George L.; Wang, Xiaogang; He, Chengyi; Chen, Zhi-Ying; Liu, Yingxia

    2015-01-01

    One of the major problems influencing the therapeutic efficacy of stem cell therapy is the poor cell survival following transplantation. This is partly attributed to insufficient resistance of transplanted stem cells to oxidative and inflammatory stresses at the injured sites. In the current study, we demonstrated the pivotal role of antioxidant levels in human umbilical cord mesenchymal stem cells (hUCMSCs) dynamic in vitro anti-stress abilities against lipopolysaccharide (LPS)/H2O2 intoxication and in vivo therapeutic efficacy in a murine acute liver failure model induced by D-galactosamine/LPS (Gal/LPS) by either reducing the antioxidant levels with diethyl maleate (DEM) or increasing antioxidant levels with edaravone. Both the anti- and pro-oxidant treatments dramatically influenced the survival, apoptosis, and reactive oxygen species (ROS) production of hUCMSCs through the MAPK-PKC-Nrf2 pathway in vitro. When compared with untreated and DEM-treated cells, edaravone-treated hUCMSCs rescued NOD/SCID mice from Gal/LPS-induced death, significantly improved hepatic functions and promoted host liver regeneration. These effects were probably from increased stem cell homing, promoted proliferation, decreased apoptosis and enhanced secretion of hepatocyte growth factor (HGF) under hepatic stress environment. In conclusion, elevating levels of antioxidants in hUCMSCs with edaravone can significantly influence their hepatic tissue repair capacity. PMID:26057841

  8. An enhanced cAMP pathway is responsible for the colonic hyper-secretory response to 5-HT in acute stress rats.

    PubMed

    Li, Y; Li, L S; Zhang, X L; Zhang, Y; Xu, J D; Zhu, J X

    2015-01-01

    5-hydroxytryptamine (5-HT) is involved in the stress-induced alteration of colonic functions, specifically motility and secretion, but its precise mechanisms of regulation remain unclear. In the present study, we have investigated the effects of 5-HT on rat colonic mucosal secretion after acute water immersion restraint stress, as well as the underlying mechanism of this phenomenon, using short circuit current recording (I(SC)), real-time polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbance assays. After 2 h of water immersion restraint stress, the baseline I(SC) and 5-HT-induced I(SC) responses of the colonic mucosa were significantly increased. Pretreatment with selective 5-HT(4) receptor antagonist, SB204070, inhibited the 5-HT-induced colonic I(SC) response by 96 % in normal rats and 91.2 % in acute-stress rats. However, pretreatment with the selective antagonist of 5-HT(3) receptor, MDL72222 or Y-25130, had no obvious effect on 5-HT-induced I(SC) responses under either set of conditions. Total protein expression of both the mucosal 5-HT(3) receptors and the 5-HT(4) receptors underwent no significant changes following acute stress. Both colonic basal cAMP levels and foskolin-induced I(SC) responses were significantly enhanced in acute stress rats. 5-HT significantly enhanced the intracellular cAMP level via 5-HT(4) receptors in the colonic mucosa from both control and stressed animals, and 5-HT-induced cAMP increase in stressed rats was not more than that in control rats. Taken together, the present results indicate that acute water immersion restraint stress enhances colonic secretory responses to 5-HT in rats, a process in which increased cellular cAMP accumulation is involved. PMID:25536313

  9. Acute stress enhances the expression of neuroprotection- and neurogenesis-associated genes in the hippocampus of a mouse restraint model

    PubMed Central

    Sannino, Giuseppina; Pasqualini, Lorenza; Ricciardelli, Eugenia; Montilla, Patricia; Soverchia, Laura; Ruggeri, Barbara; Falcinelli, Silvia; Renzi, Alessandra; Ludka, Colleen; Kirchner, Thomas; Grünewald, Thomas G. P.; Ciccocioppo, Roberto; Ubaldi, Massimo; Hardiman, Gary

    2016-01-01

    Stress arises from an external demand placed on an organism that triggers physiological, cognitive and behavioural responses in order to cope with that request. It is thus an adaptive response useful for the survival of an organism. The objective of this study was to identify and characterize global changes in gene expression in the hippocampus in response to acute stress stimuli, by employing a mouse model of short-term restraint stress. In our experimental design mice were subjected to a one time exposure of restraint stress and the regulation of gene expression in the hippocampus was examined 3, 12 and 24 hours thereafter. Microarray analysis revealed that mice which had undergone acute restraint stress differed from non-stressed controls in global hippocampal transcriptional responses. An up-regulation of transcripts contributing directly or indirectly to neurogenesis and neuronal protection including, Ttr, Rab6, Gh, Prl, Ndufb9 and Ndufa6, was observed. Systems level analyses revealed a significant enrichment for neurogenesis, neuron morphogenesis- and cognitive functions-related biological process terms and pathways. This work further supports the hypothesis that acute stress mediates a positive action on the hippocampus favouring the formation and the preservation of neurons, which will be discussed in the context of current data from the literature. PMID:26863456

  10. Nandrolone-pretreatment enhances cardiac beta(2)-adrenoceptor expression and reverses heart contractile down-regulation in the post-stress period of acute-stressed rats.

    PubMed

    Penna, Claudia; Abbadessa, Giuliana; Mancardi, Daniele; Spaccamiglio, Angela; Racca, Silvia; Pagliaro, Pasquale

    2007-10-01

    To investigate whether nandrolone decanoate (ND)-pretreatment can modulate (1) beta-adrenoceptor expression and (2) myocardial contractility in response to beta-adrenoceptors stimulation with isoproterenol (ISO), in hearts of both normal and stressed rats. Rats were treated with 15 mg/(kgday) of Deca-Durabolin (ND, 1 ml i.m.) or with vehicle (oil) for 14 days. The day after the last injection, the dose-response to ISO (1 x 10(-8), 5 x 10(-8) and 10(-7)M), was studied in isolated rat hearts harvested from unstressed animals (unstressed+vehicle (control) or unstressed+ND) or from stressed animals (stressed+vehicle or stressed+ND): acute stress protocol consisted in restrain for 1h immediately before sacrifice. ND-pretreatment increased beta(2)-adrenoceptor expression. In baseline conditions all hearts had a similar left ventricular developed pressure (LVDP) and maximum rate of increase of LVDP (dP/dt(max)). In hearts of unstressed+vehicle or unstressed+ND, ISO caused a similar increase in LVDP (+90-100%) and dP/dt(max) (+120-150%). However, hearts of stressed+vehicle animals showed a marked depression of inotropic response to ISO (i.e. for ISO 1 x 10(-8),-55% in LVDP response versus unstressed). Yet, in hearts of stressed+ND-animals the effect of stress was reversed, showing the highest response to ISO (i.e. for ISO 1 x 10(-7), +30% LVDP response versus unstressed). The ND-induced beta(2)-adrenoceptor overexpression does not affect ISO-response in unstressed animals. However, acute stress induces a down-regulation of ISO-response, which is reversed by ND-pretreatment. Since the physiological post-stress down-regulation of adrenergic-response is absent after nandrolone treatment, the heart may be exposed to a sympathetic over-stimulation. This might represent a risk for cardiovascular incidents in anabolic steroid addicts under stressing conditions. PMID:17611100

  11. Enhancing the population impact of collaborative care interventions: Mixed method development and implementation of stepped care targeting posttraumatic stress disorder and related comorbidities after acute trauma

    PubMed Central

    Zatzick, Douglas; Rivara, Frederick; Jurkovich, Gregory; Russo, Joan; Trusz, Sarah Geiss; Wang, Jin; Wagner, Amy; Stephens, Kari; Dunn, Chris; Uehara, Edwina; Petrie, Megan; Engel, Charles; Davydow, Dimitri; Katon, Wayne

    2011-01-01

    Objective To develop and implement a stepped collaborative care intervention targeting PTSD and related co-morbidities to enhance the population impact of early trauma-focused interventions. Method We describe the design and implementation of the Trauma Survivors Outcomes & Support Study (TSOS II). An interdisciplinary treatment development team was comprised of trauma surgical, clinical psychiatric and mental health services “change agents” who spanned the boundaries between front-line trauma center clinical care and acute care policy. Mixed method clinical epidemiologic and clinical ethnographic studies informed the development of PTSD screening and intervention procedures. Results Two-hundred and seven acutely injured trauma survivors with high early PTSD symptom levels were randomized into the study. The stepped collaborative care model integrated care management (i.e., posttraumatic concern elicitation and amelioration, motivational interviewing, and behavioral activation) with cognitive behavioral therapy and pharmacotherapy targeting PTSD. The model was feasibly implemented by front-line acute care MSW and ARNP providers. Conclusions Stepped care protocols targeting PTSD may enhance the population impact of early interventions developed for survivors of individual and mass trauma by extending the reach of collaborative care interventions to acute care medical settings and other non-specialty posttraumatic contexts. PMID:21596205

  12. Acute stress may induce ovulation in women

    PubMed Central

    2010-01-01

    Background This study aims to gather information either supporting or rejecting the hypothesis that acute stress may induce ovulation in women. The formulation of this hypothesis is based on 2 facts: 1) estrogen-primed postmenopausal or ovariectomized women display an adrenal-progesterone-induced ovulatory-like luteinizing hormone (LH) surge in response to exogenous adrenocorticotropic hormone (ACTH) administration; and 2) women display multiple follicular waves during an interovulatory interval, and likely during pregnancy and lactation. Thus, acute stress may induce ovulation in women displaying appropriate serum levels of estradiol and one or more follicles large enough to respond to a non-midcycle LH surge. Methods A literature search using the PubMed database was performed to identify articles up to January 2010 focusing mainly on women as well as on rats and rhesus monkeys as animal models of interaction between the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. Results Whereas the HPA axis exhibits positive responses in practically all phases of the ovarian cycle, acute-stress-induced release of LH is found under relatively high plasma levels of estradiol. However, there are studies suggesting that several types of acute stress may exert different effects on pituitary LH release and the steroid environment may modulate in a different way (inhibiting or stimulating) the pattern of response of the HPG axis elicited by acute stressors. Conclusion Women may be induced to ovulate at any point of the menstrual cycle or even during periods of amenorrhea associated with pregnancy and lactation if exposed to an appropriate acute stressor under a right estradiol environment. PMID:20504303

  13. Acute psychological stress reduces plasma triglyceride clearance.

    PubMed

    Stoney, Catherine M; West, Sheila G; Hughes, Joel W; Lentino, Lisa M; Finney, Montenique L; Falko, James; Bausserman, Linda

    2002-01-01

    Acute stress elevates blood lipids, with the largest increases among men and postmenopausal women. The mechanisms for the effect are unknown, but may be due to altered lipid metabolism. This study investigated if acute stress induces transient reductions in triglyceride clearance in middle-aged men and women, and determined if gender and menopause affect triglyceride metabolism. Of the 35 women, half were premenopausal, and half were naturally postmenopausal; men (n = 35) were age matched. Clearance of an intravenously administered fat emulsion was assessed twice: once during a nonstress session, and again during a stress-testing session. During the stress session, a battery of behavioral stressors (serial subtraction, speech, mirror tracing, and Stroop) were performed for 40 min. The clearance rate of exogenous fat was significantly diminished during the stress, relative to the nonstress session. Women had more efficient clearance, relative to men, but there were no effects of menopausal status. The diminished ability to clear an intravenous fat emulsion during stress suggests one mechanism for stress-induced elevations in lipids. PMID:12206298

  14. Diminished heart rate reactivity to acute psychological stress is associated with enhanced carotid intima-media thickness through adverse health behaviors.

    PubMed

    Ginty, Annie T; Williams, Sarah E; Jones, Alexander; Roseboom, Tessa J; Phillips, Anna C; Painter, Rebecca C; Carroll, Douglas; de Rooij, Susanne R

    2016-06-01

    Recent evidence demonstrates that individuals with low heart rate (HR) reactions to acute psychological stress are more likely to be obese or smokers. Smoking and obesity are established risk factors for increased carotid intima-media thickness (IMT). The aim of this study was to examine the potential pathways linking intima-media thickness, smoking, body mass index (BMI), and HR stress reactivity. A total of 552 participants, 47.6% male, M (SD) age = 58.3 (0.94) years, were exposed to three psychological stress tasks (Stroop, mirror drawing, and speech) preceded by a resting baseline period; HR was recorded throughout. HR reactivity was calculated as the average response across the three tasks minus average baseline HR. Smoking status, BMI, and IMT were determined by trained personnel. Controlling for important covariates (e.g., socioeconomic status), structural equation modeling revealed that BMI and smoking mediated the negative relationship between HR reactivity and IMT. The hypothesized model demonstrated a good overall fit to the data, χ(2) (8) = 0.692, p = .403; CFI = 1.00; TLI = 1.00 SRMR = .01; RMSEA < .001 (90% CI < 0.01-0.11). HR reactivity was negatively related to BMI (β = -.16) and smoking (β = -.18), and these in turn were positively associated with IMT (BMI: β = .10; smoking: β = .17). Diminished HR stress reactivity appears to be a marker for enlarged IMT and appears to be exerting its impact through already established risks. Future research should examine this relationship longitudinally and aim to intervene early. PMID:27005834

  15. Acute posttraumatic stress: nonacceptance of early intervention.

    PubMed

    Weisaeth, L

    2001-01-01

    Psychological resistance may be of considerable importance in the posttraumatic stress disorder (PTSD) population, considering that researchers in the field of traumatic stress are frequently unsuccessful in achieving high response rates, that many subjects suffering from PTSD never seek help, and that dropouts from therapy are frequent. This article presents data on the main complaints reported in the acute aftermath of an industrial disaster by 246 employees who had been exposed to the disaster. The dominant concerns were symptomatic complaints related to posttraumatic stress reactions rather than external problems. Sleep disturbance, anxiety/fear responses, and physical symptoms were reported by individuals with complaints in the acute phase as most problematic, while irritability and depressive symptoms appeared very infrequently among the reported main complaints. A high specificity and sensitivity were achieved in predicting later PTSD (as defined by DSM-III criteria) by applying early response variables: thus, there were few false-positives and false-negatives. There was a considerable overlap between the PTSD predictors and the main symptom complaints. From a prevention point of view, this should be advantageous, since it would bring the right people to seek help. However, in a significant proportion of the acutely distressed, the reluctance to seek help was motivated by the very symptoms that predicted PTSD. Even a relatively high rate of subjects agreeing to be screened (82.8%) would have lost 42% of those who qualified for a diagnosis of PTSD, and more than half of the subjects with severe outcomes would not have been included. For primary and secondary prevention, the findings suggest that early screening and outreach should be very active. PMID:11495094

  16. Acute psychosocial stress reduces pain modulation capabilities in healthy men.

    PubMed

    Geva, Nirit; Pruessner, Jens; Defrin, Ruth

    2014-11-01

    Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system. PMID:25250721

  17. Acute Painful Stress and Inflammatory Mediator Production

    PubMed Central

    Griffis, Charles A.; Breen, Elizabeth Crabb; Compton, Peggy; Goldberg, Alyssa; Witarama, Tuff; Kotlerman, Jenny; Irwin, Michael R.

    2014-01-01

    Pro-inflammatory pathways may be activated under conditions of painful stress, which is hypothesized to worsen the pain experience and place medically-vulnerable populations at risk for increased morbidity. Objectives To evaluate the effects of pain and subjective pain-related stress on pro-inflammatory activity. Methods A total of 19 healthy control subjects underwent a single standard cold-pressor pain test (CPT) and a no-pain control condition. Indicators of pain and stress were measured and related to inflammatory immune responses (CD811a, IL-1RA, and IL-6) immediately following the painful stimulus, and compared to responses under non-pain conditions. Heart rate and mean arterial pressure were measured as indicators of sympathetic stimulation. Results CPT was clearly painful and generated an activation of the sympathetic nervous system. CD811a increased in both conditions, but with no statistically significant greater increase following CPT (p < .06). IL-1RA demonstrated a non-statistically significant increase following CPT (p < .07). The change in IL-6 following CPT differed significantly from the response seen in the control condition (p < .02). Conclusions These findings suggest that CP acute pain may affect proinflammatory pathways, possibly through mechanisms related to adrenergic activation. PMID:23407214

  18. Acute stress does not affect the impairing effect of chronic stress on memory retrieval

    PubMed Central

    Ozbaki, Jamile; Goudarzi, Iran; Salmani, Mahmoud Elahdadi; Rashidy-Pour, Ali

    2016-01-01

    Objective(s): Due to the prevalence and pervasiveness of stress in modern life and exposure to both chronic and acute stresses, it is not clear whether prior exposure to chronic stress can influence the impairing effects of acute stress on memory retrieval. This issue was tested in this study. Materials and Methods: Adult male Wistar rats were randomly assigned to the following groups: control, acute, chronic, and chronic + acute stress groups. The rats were trained with six trials per day for 6 consecutive days in the water maze. Following training, the rats were either kept in control conditions or exposed to chronic stress in a restrainer 6 hr/day for 21 days. On day 22, a probe test was done to measure memory retention. Time spent in target and opposite areas, platform location latency, and proximity were used as indices of memory retention. To induce acute stress, 30 min before the probe test, animals received a mild footshock. Results: Stressed animals spent significantly less time in the target quadrant and more time in the opposite quadrant than control animals. Moreover, the stressed animals showed significantly increased platform location latency and proximity as compared with control animals. No significant differences were found in these measures among stress exposure groups. Finally, both chronic and acute stress significantly increased corticosterone levels. Conclusion: Our results indicate that both chronic and acute stress impair memory retrieval similarly. Additionally, the impairing effects of chronic stress on memory retrieval were not influenced by acute stress.

  19. Acute Stress Symptoms in Young Children with Burns

    ERIC Educational Resources Information Center

    Stoddard, Frederick J.; Saxe, Glenn; Ronfeldt, Heidi; Drake, Jennifer E.; Burns, Jennifer; Edgren, Christy; Sheridan, Robert

    2006-01-01

    Objective: Posttraumatic stress disorder symptoms are a focus of much research with older children, but little research has been conducted with young children, who account for about 50% of all pediatric burn injuries. This is a 3-year study of 12- to 48-month-old acutely burned children to assess acute traumatic stress outcomes. The aims were to…

  20. Acute stress impairs the retrieval of extinction memory in humans

    PubMed Central

    Raio, Candace M.; Brignoni-Perez, Edith; Goldman, Rachel; Phelps, Elizabeth A.

    2014-01-01

    Extinction training is a form of inhibitory learning that allows an organism to associate a previously aversive cue with a new, safe outcome. Extinction does not erase a fear association, but instead creates a competing association that may or may not be retrieved when a cue is subsequently encountered. Characterizing the conditions under which extinction learning is expressed is important to enhancing the treatment of anxiety disorders that rely on extinction-based exposure therapy as a primary treatment technique. The ventromedial prefrontal cortex, which plays an important role in the expression of extinction memory, has been shown to be functionally impaired after stress exposure. Further, recent research in rodents found that exposure to stress led to deficits in extinction retrieval, although this has yet to be tested in humans. To explore how stress might influence extinction retrieval in humans, participants underwent a differential aversive learning paradigm, in which one image was probabilistically paired with an aversive shock while the other image denoted safety. Extinction training directly followed, at which point reinforcement was omitted. A day later, participants returned to the lab and either completed an acute stress manipulation (i.e., cold pressor), or a control task, before undergoing an extinction retrieval test. Skin conductance responses and salivary cortisol concentrations were measured throughout each session as indices of fear arousal and neuroendocrine stress responses, respectively. The efficacy of our stress induction was established by observing significant increases in cortisol for the stress condition only. We examined extinction retrieval by comparing conditioned responses during the last trial of extinction (day 1) with that of the first trial of re-extinction (day 2). Groups did not differ on initial fear acquisition or extinction, however, one day later participants in the stress group (n = 27) demonstrated significantly less

  1. Enhanced nitric oxide generation from nitric oxide synthases as the cause of increased peroxynitrite formation during acute restraint stress: Effects on carotid responsiveness to angiotensinergic stimuli in type-1 diabetic rats.

    PubMed

    Moreira, Josimar D; Pernomian, Larissa; Gomes, Mayara S; Moreira, Rafael P; do Prado, Alejandro F; da Silva, Carlos H T P; de Oliveira, Ana M

    2016-07-15

    Diabetes mellitus is associated with reactive oxygen and nitrogen species accumulation. Behavioral stress increases nitric oxide production, which may trigger a massive impact on vascular cells and accelerate cardiovascular complications under oxidative stress conditions such as Diabetes. For this study, type-1 Diabetes mellitus was induced in Wistar rats by intraperitoneal injection of streptozotocin. After 28 days, cumulative concentration-response curves for angiotensin II were obtained in endothelium-intact carotid rings from diabetic rats that underwent to acute restraint stress for 3h. The contractile response evoked by angiotensin II was increased in carotid arteries from diabetic rats. Acute restraint stress did not alter angiotensin II-induced contraction in carotid arteries from normoglycaemic rats. However acute stress combined with Diabetes increased angiotensin II-induced contraction in carotid rings. Western blot experiments and the inhibition of nitric oxide synthases in functional assays showed that neuronal, endothelial and inducible nitric oxide synthase isoforms contribute to the increased formation of peroxynitrite and contractile hyperreactivity to angiotensin II in carotid rings from stressed diabetic rats. In summary, these findings suggest that the increased superoxide anion generation in carotid arteries from diabetic rats associated to the increased local nitric oxide synthases expression and activity induced by acute restrain stress were responsible for exacerbating the local formation of peroxynitrite and the contraction induced by angiotensin II. PMID:27118175

  2. Inhibition of food intake induced by acute stress in rats is due to satiation effects.

    PubMed

    Calvez, J; Fromentin, G; Nadkarni, N; Darcel, N; Even, P; Tomé, D; Ballet, N; Chaumontet, C

    2011-10-24

    Acute mild stress induces an inhibition of food intake in rats. In most studies, the cumulative daily food intake is measured but this only provides a quantitative assessment of ingestive behavior. The present study was designed to analyze the reduction in food intake induced by acute stress and to understand which behavioral and central mechanisms are responsible for it. Two different stressors, restraint stress (RS) and forced swimming stress (FSS), were applied acutely to male Wistar rats. We first measured corticosterone and ACTH in plasma samples collected immediately after acute RS and FSS in order to validate our stress models. We measured food intake after RS and FSS and determined meal patterns and behavioral satiety sequences. The expressions of CRF, NPY and POMC in the hypothalamus were also determined immediately after acute RS and FSS. The rise in corticosterone and ACTH levels after both acute RS and FSS validated our models. Furthermore, we showed that acute stress induced a reduction in cumulative food intake which lasted the whole day for RS but only for the first hour after FSS. For both stressors, this stress-induced food intake inhibition was explained by a decrease in meal size and duration, but there was no difference in ingestion speed. The behavioral satiety sequence was preserved after RS and FSS but grooming was markedly increased, which thus competed with, and could reduce, other behaviors, including eating. Lastly, we showed that RS induced an increase in hypothalamic POMC expression. These results suggest that acute stress may affect ingestive behavior by increasing satiation and to some extent by enhancing grooming, and this may be due to stimulation of the hypothalamic POMC neurons. PMID:21787797

  3. Occupational Stress: Preventing Suffering, Enhancing Wellbeing †

    PubMed Central

    Quick, James Campbell; Henderson, Demetria F.

    2016-01-01

    Occupational stress is a known health risk for a range of psychological, behavioral, and medical disorders and diseases. Organizations and individuals can mitigate these disorders through preventive stress management and enhanced wellbeing. This article addresses, first, the known health risk evidence related to occupational stress; second, the use of preventive stress management in organizations as the framework for intervention; and third, the emerging domain of enhancing wellbeing, which strengthens the individual. Premature death and disability along with chronic suffering from occupational stress are not inevitable, despite being known outcome risks. PMID:27136575

  4. Hormonal, cardiovascular, and subjective responses to acute stress in smokers

    PubMed Central

    de Wit, Harriet

    2009-01-01

    Rationale There are complex relationships between stress and smoking; smoking may reduce the emotional discomfort of stress, yet nicotine activates stress systems and may alter responses to acute stress. It is important to understand how smoking affects physiological and psychological outcomes after stress and how these may interact to motivate smoking. Objectives This study aimed to examine the magnitude and time course of hormonal, cardiovascular, and psychological responses to acute psychosocial stress in smokers and non-smokers to investigate whether responses to acute stress are altered in smokers. Materials and methods Healthy male non-smokers (n=20) and smokers (n=15) participated in two experimental sessions involving a standardized public speaking stress procedure and a control non-stressful task. The outcome measures included self-reported mood, cardiovascular measures (heart rate and blood pressure), and plasma hormone levels (noradrenaline, cortisol, progesterone, and allopregnanolone). Results Smokers exhibited blunted increases in cortisol after the Trier Social Stress Test, and they reported greater and more prolonged subjective agitation than non-smokers. Stress-induced changes in progesterone were similar between smokers and non-smokers, although responses overall were smaller among smokers. Stress did not significantly alter levels of allopregnanolone, but smokers exhibited lower plasma concentrations of this neurosteroid. Conclusions These findings suggest that smoking dampens hormonal responses to stress and prolongs subjective discomfort. Dysregulated stress responses may represent a breakdown in the body’s ability to cope efficiently and effectively with stress and may contribute to smokers’ susceptibility to acute stress, especially during abstinence. PMID:18936915

  5. Ultrasound enhanced thrombolysis in acute arterial ischemia.

    PubMed

    Tsivgoulis, Georgios; Culp, William C; Alexandrov, Andrei V

    2008-08-01

    In vitro and animal studies have shown that thrombolysis with intravenous tissue plasminogen activator (tPA) can be enhanced with ultrasound. Ultrasound delivers mechanical pressure waves to the clot, thus exposing more thrombus surface to circulating drug. Moreover, intravenous gaseous microspheres with ultrasound have been shown to be a potential alternative to fibrinolytic agents to recanalize discrete peripheral thrombotic arterial occlusions or acute arteriovenous graft thromboses. Small phase I-II randomized and non-randomized clinical trials have shown promising results concerning the potential applications of ultrasound-enhanced thrombolysis in the setting of acute cerebral ischemia. CLOTBUST was an international four-center phase II trial, which demonstrated that, in patients with acute ischemic stroke, transcranial Doppler (TCD) monitoring augments tPA-induced arterial recanalization (sustained complete recanalization rates: 38% vs. 13%) with a non-significant trend toward an increased rate of clinical recovery from stroke, as compared with placebo. The rates of symptomatic intracerebral hemorrhage (sICH) were similar in the active and placebo group (4.8% vs. 4.8%). Smaller single-center clinical trials using transcranial color-coded sonography (TCCD) reported recanalization rates ranging from 27% to 64% and sICH rates of 0-18%. A separate clinical trial evaluating the safety and efficacy of therapeutic low-frequency ultrasound was discontinued because of a concerning sICH rate of 36% in the active group. To further enhance the ability of tPA to break up thrombi, current ongoing clinical trials include phase II studies of a single beam 2 MHz TCD with perflutren-lipid microspheres. Moreover, potential enhancement of intra-arterial tPA delivery is being clinically tested with 1.7-2.1 MHz pulsed wave ultrasound (EKOS catheter) in ongoing phase II-III clinical trials. Intravenous platelet-targeted microbubbles with low-frequency ultrasound are currently

  6. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  7. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents.

    PubMed

    Eisenmann, Eric D; Rorabaugh, Boyd R; Zoladz, Phillip R

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  8. The effects of acute and chronic stress on diabetes control.

    PubMed

    Marcovecchio, M Loredana; Chiarelli, Francesco

    2012-10-23

    Stress is an important contributor to pathological conditions in humans. Hormonal changes that occur during acute and chronic stress situations can affect glucose homeostasis in both healthy people and in those with diabetes. Several studies have reported a negative effect of acute stress on maintenance of blood glucose concentrations in patients with type 1 and type 2 diabetes. The effect of stress on glycemic control in people with diabetes may be related to a direct effect of stress hormones on blood glucose levels and an indirect effect of stress on patient behaviors related to diabetes treatment and monitoring and meal and exercise plans. In contrast, there is no clear evidence that stressful life events promote the development of diabetes in children or in adults. Stress hyperglycemia, the development of hyperglycemia during acute illness, represents another interesting connection between the stress system and glucose homeostasis. A large body of evidence supports an association between stress hyperglycemia and increased morbidity and mortality in critically ill patients. Interestingly, there is some evidence supporting a beneficial effect of insulin in reducing morbidity and mortality in patients admitted to intensive care units. Finally, stress can influence the development of type 2 diabetes indirectly by promoting obesity and metabolic syndrome. PMID:23092890

  9. The expression of thioredoxin-1 in acute epinephrine stressed mice.

    PubMed

    Jia, Jin-Jing; Zeng, Xian-Si; Li, Kun; Ma, Li-Fang; Chen, Lei; Song, Xin-Qiang

    2016-09-01

    Stress, a state of perceived threat to homeostasis, regulates a panel of important physiological functions. The human mind and body respond to stress by activating the sympathetic nervous system and secreting the catecholamines epinephrine and norepinephrine in the "fight-or-flight" response. However, the protective mechanism of acute stress is still unknown. In the present study, an acute stress mouse model was constructed by intraperitoneal injection of epinephrine (0.2 mg kg(-1)) for 4 h. Epinephrine treatment induced heat shock 70(Hsp70) expression in the stress responsive tissues, such as the cortex, hippocampus, thymus, and kidney. Further, the expression of thioredoxin-1(Trx-1), a cytoprotective protein, was also upregulated in these stress responsive tissues. In addition, the phosphorylation of cAMP-response element binding protein (CREB), a transcription factor of Trx-1, was increased after treatment with epinephrine. The block of CREB activation by H89 inhibited the acute epinephrine stress-induced Trx-1 and Hsp70 expression. Taken together, our data suggest that acute stimuli of epinephrine induced Trx-1 expression through activating CREB and may represent a protective role against stress. PMID:27511023

  10. Biogenic amines and acute thermal stress in the rat

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Moberg, G. P.

    1975-01-01

    A study is summarized which demonstrates that depletion of the biogenic amines 5-hydroxytryptamine (5-HT) or norepinephrine (NE) alters the normal thermoregulatory responses to acute temperature stress. Specifically, NE depletion caused a significant depression in equilibrium rectal temperature at 22 C and a greater depression in rectal temperature than controls in response to cold (6 C) stress; NE depletion also resulted in a significantly higher rectal temperature response to acute heat (38 C) stress. Depletion of 5-HT had less severe effects. It remains unclear whether the primary site of action of these agents is central or peripheral.

  11. Acute Stress Modulates Risk Taking in Financial Decision Making

    PubMed Central

    Porcelli, Anthony J.; Delgado, Mauricio R.

    2016-01-01

    People’s decisions are often susceptible to various demands exerted by the environment, leading to stressful conditions. Although a goal for researchers is to elucidate stress-coping mechanisms to facilitate decision-making processes, it is important to first understand the interaction between the state created by a stressful environment and how decisions are performed in such environments. The objective of this experiment was to probe the impact of exposure to acute stress on financial decision-making and examine the particular influence of stress on decisions with a positive or negative valence. Participants’ choices exhibited a stronger reflection effect when participants were under stress than when they were in the no-stress control phase. This suggests that stress modulates risk taking, potentially exacerbating behavioral bias in subsequent decision making. Consistent with dual-process approaches, decision makers fall back on automatized reactions to risk under the influence of disruptive stress. PMID:19207694

  12. Acute stress selectively impairs learning to act.

    PubMed

    de Berker, Archy O; Tirole, Margot; Rutledge, Robb B; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-01-01

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress. PMID:27436299

  13. Acute stress selectively impairs learning to act

    PubMed Central

    de Berker, Archy O.; Tirole, Margot; Rutledge, Robb B.; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress. PMID:27436299

  14. Glucocorticoids Protect Against the Delayed Behavioral and Cellular Effects of Acute Stress on the Amygdala

    PubMed Central

    Rao, Rajnish P.; Anilkumar, Shobha; McEwen, Bruce; Chattarji, Sumantra

    2013-01-01

    Background A single episode of acute immobilization stress has previously been shown to trigger a delayed onset of anxiety-like behavior and spinogenesis in the basolateral amygdala (BLA) of rats. Spurred on by a seemingly paradoxical observation in which even a modest increase in corticosterone (CORT), caused by a single vehicle injection before stress, could dampen the delayed effects of stress, we hypothesized a protective role for glucocorticoids against stress. Methods We tested this hypothesis by analyzing how manipulations in CORT levels modulate delayed increase in anxiety-like behavior of rats on the elevated plus-maze 10 days after acute stress. We also investigated the cellular correlates of different levels of anxiety under different CORT conditions by quantifying spine density on Golgi-stained BLA principal neurons. Results CORT in drinking water for 12 hours preceding acute stress prevented delayed increase in anxiety rather than exacerbating it. Conversely, vehicle injection failed to prevent the anxiogenic effect of stress in bilaterally adrenalectomized rats. However, when CORT was restored in adrenalectomized rats by injection, the delayed anxiogenic effect of stress was once again blocked. Finally, high and low anxiety states were accompanied by high and low levels of BLA spine density. Conclusions Our findings suggest that the presence of elevated levels of CORT at the time of acute stress confers protection against the delayed enhancing effect of stress on BLA synaptic connectivity and anxiety-like behavior. These observations are consistent with clinical reports on the protective effects of glucocorticoids against the development of posttraumatic symptoms triggered by traumatic stress. PMID:22572034

  15. Diazepam blocks striatal lipid peroxidation and improves stereotyped activity in a rat model of acute stress.

    PubMed

    Méndez-Cuesta, Luis A; Márquez-Valadez, Berenice; Pérez-De La Cruz, Verónica; Escobar-Briones, Carolina; Galván-Arzate, Sonia; Alvarez-Ruiz, Yarummy; Maldonado, Perla D; Santana, Ricardo A; Santamaría, Abel; Carrillo-Mora, Paul

    2011-11-01

    In this work, the effect of a single dose of diazepam was tested on different markers of oxidative damage in the striatum of rats in an acute model of immobilization (restraint) stress. In addition, the locomotor activity was measured at the end of the restraint period. Immobilization was induced to animals for 24 hr, and then, lipid peroxidation, superoxide dismutase activity and content, and mitochondrial function were all estimated in striatal tissue samples. Corticosterone levels were measured in serum. Diazepam was given to rats as a pre-treatment (1 mg/kg, i.p.) 20 min. before the initiation of stress. Our results indicate that acute stress produced enhanced striatal levels of lipid peroxidation (73% above the control), decreased superoxide dismutase activity (54% below the control), reduced levels of mitochondrial function (35% below the control) and increased corticosterone serum levels (86% above the control). Pre-treatment of stressed rats with diazepam decreased the striatal lipid peroxidation levels (68% below the stress group) and improved mitochondrial function (18% above the stress group), but only mild preservation of superoxide dismutase activity was detected (17% above the stress group). In regard to the motor assessment, only the stereotyped activity was increased in the stress group with respect to control (46% above the control), and this effect was prevented by diazepam administration (30% below the stress group). The preventive actions of diazepam in this acute model of stress suggest that drugs exhibiting anxiolytic and antioxidant properties might be useful for the design of therapies against early acute phases of physic stress. PMID:21645264

  16. Individual Differences in Delay Discounting Under Acute Stress: The Role of Trait Perceived Stress

    PubMed Central

    Lempert, Karolina M.; Porcelli, Anthony J.; Delgado, Mauricio R.; Tricomi, Elizabeth

    2012-01-01

    Delay discounting refers to the reduction of the value of a future reward as the delay to that reward increases. The rate at which individuals discount future rewards varies as a function of both individual and contextual differences, and high delay discounting rates have been linked with problematic behaviors, including drug abuse and gambling. The current study investigated the effects of acute anticipatory stress on delay discounting, while considering two important factors: individual perceptions of stress and whether the stressful situation is future-focused or present-focused. Half of the participants experienced acute stress by anticipating giving a videotaped speech. This stress was either future-oriented (speech about future job) or present-oriented (speech about physical appearance). They then performed a delay discounting task, in which they chose between smaller, immediate rewards, and larger, delayed rewards. Their scores on the Perceived Stress Scale were also collected. The way in which one appraises stressful situations interacts with acute stress to influence choices; under stressful conditions, delay discounting rate was highest in individuals with low trait perceived stress and lowest for individuals with high trait perceived stress. This result might be related to individual variation in reward responsiveness under stress. Furthermore, the time orientation of the task interacted with its stressfulness to affect the individual’s propensity to choose immediate rewards. These findings add to our understanding of the intermediary factors between stress and decision-making. PMID:22833731

  17. Acute stress affects risk taking but not ambiguity aversion

    PubMed Central

    Buckert, Magdalena; Schwieren, Christiane; Kudielka, Brigitte M.; Fiebach, Christian J.

    2014-01-01

    Economic decisions are often made in stressful situations (e.g., at the trading floor), but the effects of stress on economic decision making have not been systematically investigated so far. The present study examines how acute stress influences economic decision making under uncertainty (risk and ambiguity) using financially incentivized lotteries. We varied the domain of decision making as well as the expected value of the risky prospect. Importantly, no feedback was provided to investigate risk taking and ambiguity aversion independent from learning processes. In a sample of 75 healthy young participants, 55 of whom underwent a stress induction protocol (Trier Social Stress Test for Groups), we observed more risk seeking for gains. This effect was restricted to a subgroup of participants that showed a robust cortisol response to acute stress (n = 26). Gambling under ambiguity, in contrast to gambling under risk, was not influenced by the cortisol response to stress. These results show that acute psychosocial stress affects economic decision making under risk, independent of learning processes. Our results further point to the importance of cortisol as a mediator of this effect. PMID:24834024

  18. Repeated Exposure to Conditioned Fear Stress Increases Anxiety and Delays Sleep Recovery Following Exposure to an Acute Traumatic Stressor

    PubMed Central

    Greenwood, Benjamin N.; Thompson, Robert S.; Opp, Mark R.; Fleshner, Monika

    2014-01-01

    Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep–wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by human beings, but whether exposure to repeated fear can prime the development of anxiety and sleep disturbances is unknown. In the current study, adult male F344 rats were exposed to either control conditions or repeated contextual fear conditioning for 22 days followed by exposure to no, mild (10), or severe (100) acute uncontrollable tail shock stress. Exposure to acute stress produced anxiety-like behavior as measured by a reduction in juvenile social exploration and exaggerated shock-elicited freezing in a novel context. Prior exposure to repeated fear enhanced anxiety-like behavior as measured by shock-elicited freezing, but did not alter social exploratory behavior. The potentiation of anxiety produced by prior repeated fear was temporary; exaggerated fear was present 1 day but not 4 days following acute stress. Interestingly, exposure to acute stress reduced rapid eye movement (REM) and non-REM (NREM) sleep during the hours immediately following acute stress. This initial reduction in sleep was followed by robust REM rebound and diurnal rhythm flattening of sleep/wake behavior. Prior repeated fear extended the acute stress-induced REM and NREM sleep loss, impaired REM rebound, and prolonged the flattening of the diurnal rhythm of NREM sleep following acute stressor exposure. These data suggest that impaired recovery of sleep/wake behavior following acute stress could contribute to the mechanisms by which a history of prior repeated stress increases vulnerability to subsequent novel stressors and stress-related disorders. PMID

  19. ACUTE MENTAL STRESS AND HEMOSTASIS: WHEN PHYSIOLOGY BECOMES VASCULAR HARM

    PubMed Central

    von Känel, Roland

    2015-01-01

    Stress-induced activation of the sympathoadrenal medullary system activates both the coagulation and fibrinolysis system resulting in net hypercoagulability. The evolutionary interpretation of this physiology is that stress-hypercoagulability protects a healthy organism from excess bleeding should injury occur in fight-or-flight situations. In turn, acute mental stress, negative emotions and psychological trauma also are triggering factors of atherothrombotic events and possibly of venous thromboembolism. Individuals with pre-existent atherosclerosis and impaired endothelial anticoagulant function are the most vulnerable to experience onset of acute coronary events within two hours of intense emotions. A range of sociodemographic and psychosocial factors (e.g., chronic stress and negative affect) might critically intensify and prolong stress-induced hypercoagulability. In contrast, several pharmacological compounds, dietary flavanoids, and positive affect mitigate the acute prothrombotic stress response. Studies are needed to investigate whether attenuation of stress-hypercoagulability through medications and biobehavioral interventions reduce the risk of thrombotic incidents in at-risk populations. PMID:25861135

  20. Computations of uncertainty mediate acute stress responses in humans

    PubMed Central

    de Berker, Archy O.; Rutledge, Robb B.; Mathys, Christoph; Marshall, Louise; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  1. EATING BEHAVIOR IN RESPONSE TO ACUTE STRESS.

    PubMed

    Mocanu, Veronica; Bontea, Amalia; Anton-Păduraru, Dana-teodora

    2016-01-01

    Obesity is a medical and social problem with a dramatically increasing prevalence. It is important to take action since childhood to prevent and treat obesity and metabolic syndrome. Infantile obesity affects all body systems starting in childhood and continuing to adulthood. Understanding the impact of stressors on weight status may be especially important for preventing obesity. The relationship between stress, eating behavior and obesity is not fully understood. However, there is evidence that stress causes disorders in hypothalamic-pituitary-adrenal (HPA) axis, system that regulates both stress and feeding responses. Also, the response is different depending on the type of stressors. Chronic stress, especially when people live in a palatable food environment, induces HPA stimulation, excess glucocorticoids, insulin resistance, which lead to inhibition of lipid mobilization, accumulation of triglyceride and retention of abdominal fat. PMID:27483696

  2. Does stress enhance or impair memory consolidation?

    PubMed

    Trammell, Janet P; Clore, Gerald L

    2014-01-01

    Three experiments examined the hypothesis that stress-induced arousal enhances long-term memory for experiences associated with arousing events. Contrary to expectations, in each experiment exposure to a stressor (arm immersion in ice water) interfered with, rather than enhanced, long-term memory for associated material. Despite varying the stimuli (words, pictures), their emotional value (positive, negative, neutral), the time between learning and stress inductions (0 to 1 minute), and opportunities for post-learning rehearsal, each experiment produced a significant reversal of the hypothesised effect. That is, in each experiment, exposure to a stressor interfered with, rather than enhanced, long-term memory for associated material. We conclude that the relationship between stress and memory consolidation is more bounded than previously believed. PMID:23895111

  3. Does Stress Enhance or Impair Memory Consolidation?

    PubMed Central

    Trammell, Janet P.; Clore, Gerald L.

    2014-01-01

    Three experiments examined the hypothesis that stress-induced arousal enhances long term memory for experiences associated with an arousing events. Contrary to expectations, in each experiment exposure to a stressor (arm immersion in ice water) interfered with, rather than enhanced, long term memory for associated material. Despite varying the stimuli (words, pictures), their emotional value (positive, negative, neutral), the time between learning and stress inductions (0 to 1 minute), and opportunities for post-learning rehearsal, each experiment produced a significant reversal of the hypothesized effect. That is, in each experiment, exposure to a stressor interfered with, rather than enhanced, long term memory for associated material. We conclude that the relationship between stress and memory consolidation is more bounded than previously believed. PMID:23895111

  4. Acute Stress Induces Selective Alterations in Cost/Benefit Decision-Making

    PubMed Central

    Shafiei, Naghmeh; Gray, Megan; Viau, Victor; Floresco, Stan B

    2012-01-01

    Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1–3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression. PMID:22569506

  5. Acute Stress Disorder: Conceptual Issues and Treatment Outcomes

    ERIC Educational Resources Information Center

    Koucky, Ellen M.; Galovski, Tara E.; Nixon, Reginald D. V.

    2012-01-01

    Acute stress disorder (ASD) was included as a diagnosis to the 4th edition of the "Diagnostic and Statistical Manual" (American Psychiatric Association, 1994) as a way of describing pathological reactions in the first month following a trauma. Since that time, ASD has been the focus of some controversy, particularly regarding the theoretical basis…

  6. Cognitive Load Undermines Thought Suppression in Acute Stress Disorder.

    PubMed

    Nixon, Reginald D V; Rackebrandt, Julie

    2016-05-01

    Thought suppression studies demonstrate that attempts to suppress can be undermined by cognitive load. We report the first instance in which this has been tested experimentally in a sample of recently traumatized individuals. Individuals with and without acute stress disorder (ASD) were recruited following recent trauma and randomized to load or no load conditions (N=56). They monitored intrusive memories during baseline, suppression, and think anything phases. The impact of suppression and load on self-reported intrusions, attention bias (dot-probe), and memory priming (word-stem task) was assessed. The ASD load group were less able to suppress memories (d=0.32, CI95 [-0.15, 0.83], p=.088) than the ASD no load group (d=0.63, CI95 [0.08, 1.24], p<.001). In the think anything phase, the ASD load group reported more intrusions than the ASD no load or non-ASD groups (with and without load). No consistent findings were observed in relation to attentional bias. ASD load individuals exhibited stronger priming responses for motor vehicle accident and assault words than all other groups (ds between 0.35-0.73). Working memory did not moderate any outcomes of interest. The findings indicate that cognitive load interferes with suppression and may enhance access to trauma memories and associated material. The study extends previous research by demonstrating these effects for the first time in a clinical sample of recent survivors of trauma. PMID:27157032

  7. Repeated, but Not Acute, Stress Suppresses Inflammatory Plasma Extravasation

    NASA Astrophysics Data System (ADS)

    Strausbaugh, Holly J.; Dallman, Mary F.; Levine, Jon D.

    1999-12-01

    Clinical findings suggest that inflammatory disease symptoms are aggravated by ongoing, repeated stress, but not by acute stress. We hypothesized that, compared with single acute stressors, chronic repeated stress may engage different physiological mechanisms that exert qualitatively different effects on the inflammatory response. Because inhibition of plasma extravasation, a critical component of the inflammatory response, has been associated with increased disease severity in experimental arthritis, we tested for a potential repeated stress-induced inhibition of plasma extravasation. Repeated, but not single, exposures to restraint stress produced a profound inhibition of bradykinin-induced synovial plasma extravasation in the rat. Experiments examining the mechanism of inhibition showed that the effect of repeated stress was blocked by adrenalectomy, but not by adrenal medullae denervation, suggesting that the adrenal cortex mediates this effect. Consistent with known effects of stress and with mediation by the adrenal cortex, restraint stress evoked repeated transient elevations of plasma corticosterone levels. This elevated corticosterone was necessary and sufficient to produce inhibition of plasma extravasation because the stress-induced inhibition was blocked by preventing corticosterone synthesis and, conversely, induction of repeated transient elevations in plasma corticosterone levels mimicked the effects of repeated stress. These data suggest that repetition of a mild stressor can induce changes in the physiological state of the animal that enable a previously innocuous stressor to inhibit the inflammatory response. These findings provide a potential explanation for the clinical association between repeated stress and aggravation of inflammatory disease symptoms and provide a model for study of the biological mechanisms underlying the stress-induced aggravation of chronic inflammatory diseases.

  8. Acute stress affects the physiology and behavior of allergic mice.

    PubMed

    Sutherland, M A; Shome, G P; Hulbert, L E; Krebs, N; Wachtel, M; McGlone, J J

    2009-09-01

    Physical and psychological stressors have been implicated in acute asthma exacerbation. The objective of the current study was to determine the effects of forced swimming stress (FST) on allergic pulmonary inflammation in BALB/c mice. Eighty female mice were allocated to one of four treatments arranged in a 2 x 2 factorial consisting of two levels of allergy and two levels of stress. The effects of stress and allergy were assessed by examination of cytokines and leukocyte differentials in the bronchoalveolar lavage fluid, corticosterone and immunoglobulin (Ig) E in the plasma, leukocyte differentials in the peripheral blood, natural killer cytotoxicity, and histopathology of the lungs. Behavior was recorded during the FST. Stress and allergy increased plasma corticosterone in mice. Allergy increased IgE concentrations and pulmonary inflammation. Interleukin-4 was greater among allergic stressed and non-stressed mice and stressed, non-allergic mice compared with non-stressed, non-allergic mice. Interleukin-5 (IL-5) and 6 (IL-6) were greater among allergic stressed and non-stressed mice compared with non-allergic mice. Interleukin-5 and 6 were reduced among stressed-allergic mice compared with non-stressed, allergic mice. Stress and allergy shifted mice towards a T-helper 2 response as shown by increased interleukin-4. Stress reduced IL-5 and IL-6 in allergic mice but not non-allergic mice. Pulmonary inflammation was not reduced among allergic stressed mice in spite of elevated glucocorticoids. Mice induced to be allergic responded to FST differently than non-allergic mice. Our findings suggest that stress induces a differential response among allergic and non-allergic mice. PMID:19527741

  9. Acute Stress Disorder as a Predictor of Post-Traumatic Stress Disorder in Physical Assault Victims

    ERIC Educational Resources Information Center

    Elklit, Ask; Brink, Ole

    2004-01-01

    The authors' objective was to examine the ability of acute stress disorder (ASD) and other trauma-related factors in a group of physical assault victims in predicting post-traumatic stress disorder (PTSD) 6 months later. Subjects included 214 victims of violence who completed a questionnaire 1 to 2 weeks after the assault, with 128 participating…

  10. Does Acute Stress Disorder Predict Posttraumatic Stress Disorder Following Bank Robbery?

    ERIC Educational Resources Information Center

    Hansen, Maj; Elklit, Ask

    2013-01-01

    Unfortunately, the number of bank robberies is increasing and little is known about the subsequent risk of posttraumatic stress disorder (PTSD). Several studies have investigated the prediction of PTSD through the presence of acute stress disorder (ASD). However, there have only been a few studies following nonsexual assault. The present study…

  11. The Relationship between Acute Stress Disorder and Posttraumatic Stress Disorder Following Cancer

    ERIC Educational Resources Information Center

    Kangas, Maria; Henry, Jane L.; Bryant, Richard A.

    2005-01-01

    In this study, the authors investigated the relationship between acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) following cancer diagnosis. Patients who were recently diagnosed with 1st onset head and neck or lung malignancy (N = 82) were assessed for ASD within the initial month following their diagnosis and reassessed (n =…

  12. Skin temperature reveals the intensity of acute stress.

    PubMed

    Herborn, Katherine A; Graves, James L; Jerem, Paul; Evans, Neil P; Nager, Ruedi; McCafferty, Dominic J; McKeegan, Dorothy E F

    2015-12-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  13. Skin temperature reveals the intensity of acute stress

    PubMed Central

    Herborn, Katherine A.; Graves, James L.; Jerem, Paul; Evans, Neil P.; Nager, Ruedi; McCafferty, Dominic J.; McKeegan, Dorothy E.F.

    2015-01-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  14. Dynamics of telomerase activity in response to acute psychological stress

    PubMed Central

    Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Wolkowitz, Owen M.; Puterman, E; Karan, Lori; Blackburn, Elizabeth H.

    2010-01-01

    Telomerase activity plays an essential role in cel0l survival, by lengthening telomeres and promoting cell growth and longevity. It is now possible to quantify the low levels of telomerase activity in human leukocytes. Low basal telomerase activity has been related to chronic stress in people and to chronic glucocorticoid exposure in vitro. Here we test whether leukocyte telomerase activity changes under acute psychological stress. We exposed 44 elderly women, including 22 high stress dementia caregivers and 22 matched low stress controls, to a brief laboratory psychological stressor, while examining changes in telomerase activity of peripheral blood mononuclear cells (PBMC). At baseline, caregivers had lower telomerase activity levels than controls, but during stress telomerase activity increased similarly in both groups. Across the entire sample, subsequent telomerase activity increased by 18% one hour after the end of the stressor (p<0.01). The increase in telomerase activity was independent of changes in numbers or percentages of monocytes, lymphocytes, and specific T cell types, although we cannot fully rule out some potential contribution from immune cell redistribution in the change in telomerase activity. Telomerase activity increases were associated with greater cortisol increases in response to the stressor. Lastly, psychological response to the tasks (greater threat perception) was also related to greater telomerase activity increases in controls. These findings uncover novel relationships of dynamic telomerase activity with exposure to an acute stressor, and with two classic aspects of the stress response -- perceived psychological stress and neuroendocrine (cortisol) responses to the stressor. PMID:20018236

  15. Baroreflex sensitivity is higher during acute psychological stress in healthy subjects under β-adrenergic blockade

    PubMed Central

    Truijen, Jasper; Davis, Shyrin C.A.T.; Stok, Wim J.; Kim, Yu-Sok; van Westerloo, David J.; Levi, Marcel; van der Poll, Tom; Westerhof, Berend E.; Karemaker, John M.; van Lieshout, Johannes J.

    2010-01-01

    Acute psychological stress challenges the cardiovascular system with an increase in BP (blood pressure), HR (heart rate) and reduced BRS (baroreflex sensitivity). β-adrenergic blockade enhances BRS during rest, but its effect on BRS during acute psychological stress is unknown. This study tested the hypothesis that BRS is higher during acute psychological stress in healthy subjects under β-adrenergic blockade. Twenty healthy novice male bungee jumpers were randomized and studied with (PROP, n=10) or without (CTRL, n=10) propranolol. BP and HR responses and BRS [cross-correlation time-domain (BRSTD) and cross-spectral frequency-domain (BRSFD) analysis] were evaluated from 30 min prior up to 2 h after the jump. HR, cardiac output and pulse pressure were lower in the PROP group throughout the study. Prior to the bungee jump, BRS was higher in the PROP group compared with the CTRL group [BRSTD: 28 (24–42) compared with 17 (16–28) ms·mmHg−1, P<0.05; BRSFD: 27 (20–34) compared with 14 (9–19) ms·mmHg−1, P<0.05; values are medians (interquartile range)]. BP declined after the jump in both groups, and post-jump BRS did not differ between the groups. In conclusion, during acute psychological stress, BRS is higher in healthy subjects treated with non-selective β-adrenergic blockade with significantly lower HR but comparable BP. PMID:20828371

  16. Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy

    PubMed Central

    Li, Haiying; Miao, Weiguo; Ma, Jingfen; Xv, Zhen; Li, Jianyu; Zhang, Yong; Ji, Li Li

    2016-01-01

    Increasing evidence has indicated that acute strenuous exercise can induce a range of adverse reactions including oxidative stress and tissue inflammation. However, little is currently known regarding the mechanisms that underlie the regulation of the inflammatory response in the myocardium during acute heavy exercise. This study evaluated the mitochondrial function, NLRP3 inflammasome activation, and mitochondrial autophagy-related proteins to investigate the regulation and mechanism of mitochondrial stress regarding the inflammatory response of the rat myocardium during acute heavy exercise. The results indicated that the mitochondrial function of the myocardium was adaptively regulated to meet the challenge of stress during acute exercise. The exercise-induced mitochondrial stress also enhanced ROS generation and triggered an inflammatory reaction via the NLRP3 inflammasome activation. Moreover, the mitochondrial autophagy-related proteins including Beclin1, LC3, and Bnip3 were all significantly upregulated during acute exercise, which suggests that mitophagy was stimulated in response to the oxidative stress and inflammatory response in the myocardium. Taken together, our data suggest that, during acute exercise, mitochondrial stress triggers the rat myocardial inflammatory response via NLRP3 inflammasome activation and activates mitophagy to minimize myocardial injury. PMID:26770647

  17. Salivary Markers of Inflammation in Response to Acute Stress

    PubMed Central

    Slavish, Danica C.; Graham-Engeland, Jennifer E.; Smyth, Joshua M.; Engeland, Christopher G.

    2014-01-01

    There is burgeoning interest in the ability to detect inflammatory markers in response to stress within naturally occurring social contexts and/or across multiple time points per day within individuals. Salivary collection is a less invasive process than current methods of blood collection and enables intensive naturalistic methodologies, such as those involving extensive repeated measures per day over time. Yet the reliability and validity of saliva-based to blood-based inflammatory biomarkers in response to stress remains unclear. We review and synthesize the published studies that have examined salivary markers of inflammation following exposure to an acute laboratory stressor. Results from each study are reviewed by analyte (IL-1β, TNF-α, IL-6, IL-2, IL-4, IL-10, IL-12, CRP) and stress type (social-cognitive and exercise-physical), after which methodological issues and limitations are addressed. Although the literature is limited, several inflammatory markers (including IL-1β, TNF-α, and IL-6) have been reliably determined from saliva and have increased significantly in response to stress across multiple studies, with effect sizes ranging from very small to very large. Although CRP from saliva has been associated with CRP in circulating blood more consistently than other biomarkers have been associated with their counterparts in blood, evidence demonstrating it reliably responds to acute stress is absent. Although the current literature is presently too limited to allow broad assertion that inflammatory biomarkers determined from saliva are valuable for examining acute stress responses, this review suggests that specific targets may be valid and highlights specific areas of need for future research. PMID:25205395

  18. Fluoxetine and diazepam acutely modulate stress induced-behavior.

    PubMed

    Giacomini, Ana Cristina V V; Abreu, Murilo S; Giacomini, Luidia V; Siebel, Anna M; Zimerman, Fernanda F; Rambo, Cassiano L; Mocelin, Ricieri; Bonan, Carla D; Piato, Angelo L; Barcellos, Leonardo J G

    2016-01-01

    Drug residue contamination in aquatic ecosystems has been studied extensively, but the behavioral effects exerted by the presence of these drugs are not well known. Here, we investigated the effects of acute stress on anxiety, memory, social interaction, and aggressiveness in zebrafish exposed to fluoxetine and diazepam at concentrations that disrupt the hypothalamic-pituitary-interrenal (HPI) axis. Stress increased the locomotor activity and time spent in the bottom area of the tank (novel tank). Fluoxetine and diazepam prevented these behaviors. We also observed that stress and fluoxetine and diazepam exposures decreased social interaction. Stress also increased aggressive behavior, which was not reversed by fluoxetine or diazepam. These data suggest that the presence of these drugs in aquatic ecosystems causes significant behavioral alterations in fish. PMID:26403161

  19. Acute stress is detrimental to heart regeneration in zebrafish

    PubMed Central

    Sallin, Pauline; Jaźwińska, Anna

    2016-01-01

    Psychological stress is one of the factors associated with human cardiovascular disease. Here, we demonstrate that acute perceived stress impairs the natural capacity of heart regeneration in zebrafish. Beside physical and chemical disturbances, intermittent crowding triggered an increase in cortisol secretion and blocked the replacement of fibrotic tissue with new myocardium. Pharmacological simulation of stress by pulse treatment with dexamethasone/adrenaline reproduced the regeneration failure, while inhibition of the stress response with anxiolytic drugs partially rescued the regenerative process. Impaired heart regeneration in stressed animals was associated with a reduced cardiomyocyte proliferation and with the downregulation of several genes, including igfbp1b, a modulator of IGF signalling. Notably, daily stress induced a decrease in Igf1r phosphorylation. As cardiomyocyte proliferation was decreased in response to IGF-1 receptor inhibition, we propose that the stress-induced cardiac regenerative failure is partially caused by the attenuation of IGF signalling. These findings indicate that the natural regenerative ability of the zebrafish heart is vulnerable to the systemic paracrine stress response. PMID:27030176

  20. Acute stress is detrimental to heart regeneration in zebrafish.

    PubMed

    Sallin, Pauline; Jaźwińska, Anna

    2016-03-01

    Psychological stress is one of the factors associated with human cardiovascular disease. Here, we demonstrate that acute perceived stress impairs the natural capacity of heart regeneration in zebrafish. Beside physical and chemical disturbances, intermittent crowding triggered an increase in cortisol secretion and blocked the replacement of fibrotic tissue with new myocardium. Pharmacological simulation of stress by pulse treatment with dexamethasone/adrenaline reproduced the regeneration failure, while inhibition of the stress response with anxiolytic drugs partially rescued the regenerative process. Impaired heart regeneration in stressed animals was associated with a reduced cardiomyocyte proliferation and with the downregulation of several genes, includingigfbp1b, a modulator of IGF signalling. Notably, daily stress induced a decrease in Igf1r phosphorylation. As cardiomyocyte proliferation was decreased in response to IGF-1 receptor inhibition, we propose that the stress-induced cardiac regenerative failure is partially caused by the attenuation of IGF signalling. These findings indicate that the natural regenerative ability of the zebrafish heart is vulnerable to the systemic paracrine stress response. PMID:27030176

  1. Severe physical exertion, oxidative stress, and acute lung injury.

    PubMed

    Shah, Nikunj R; Iqbal, M Bilal; Barlow, Andrew; Bayliss, John

    2011-11-01

    We report the case of a 27-year-old male athlete presenting with severe dyspnoea 24 hours after completing an "Ironman Triathlon." Subsequent chest radiology excluded pulmonary embolus but confirmed an acute lung injury (ALI). Echocardiography corroborated a normal brain natriuretic peptide level by demonstrating good biventricular systolic function with no regional wall motion abnormalities. He recovered well, without requiring ventilatory support, on supplemental oxygen therapy and empirical antibiotics. To date, ALI following severe physical exertion has never been described. Exercise is a form of physiological stress resulting in oxidative stress through generation of reactive oxygen/nitrogen species. In its extreme form, there is potential for an excessive oxidative stress response--one that overwhelms the body's protective antioxidant mechanisms. As our case demonstrated, oxidative stress secondary to severe physical exertion was the most likely factor in the pathogenesis of ALI. Further studies are necessary to explore the pathological consequences of exercise-induced oxidative stress. Although unproven as of yet, further research may be needed to demonstrate if antioxidant therapy can prevent or ameliorate potential life-threatening complications in the acute setting. PMID:22064719

  2. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    NASA Astrophysics Data System (ADS)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  3. Can Stress Enhance Phytoremediation of Polychlorinated Biphenyls?

    PubMed Central

    Kalinowski, Tomasz; Halden, Rolf U.

    2012-01-01

    Abstract Phytoremediation—plant-facilitated remediation of polluted soil and groundwater—is a potentially effective treatment technology for the remediation of heavy metals and certain organic compounds. However, contaminant attenuation rates are often not rapid enough to make phytoremediation a viable option when compared with alternative treatment approaches. Different strategies are being employed to enhance the efficacy of phytoremediation, including modification to the plant genome, inoculation of the rhizosphere with specialized and/or engineered bacteria, and treatment of the soil with supplementary chemicals, such as surfactants, chelators, or fertilizers. Despite these efforts, greater breakthroughs are necessary to make phytoremediation a viable technology. Here, we introduce and discuss the concept of integrating controlled environmental stresses as a strategy for enhancing phytoremediation. Plants have a diverse suite of defense mechanisms that are only induced in response to stress. Here, we examine some stress-response mechanisms in plants, focusing on defenses involving physiological changes that alter the soil microenvironment (rhizosphere), and outline how these defense mechanisms can be co-opted to enhance the effectiveness of phytoremediation of polychlorinated biphenyls and other contaminants. PMID:23236249

  4. Resilience as a correlate of acute stress disorder symptoms in patients with acute myocardial infarction

    PubMed Central

    Meister, Rebecca E; Weber, Tania; Princip, Mary; Schnyder, Ulrich; Barth, Jürgen; Znoj, Hansjörg; Schmid, Jean-Paul; von Känel, Roland

    2015-01-01

    Objectives Myocardial infarction (MI) may be experienced as a traumatic event causing acute stress disorder (ASD). This mental disorder has an impact on the daily life of patients and is associated with the development of post-traumatic stress disorder. Trait resilience has been shown to be a protective factor for post-traumatic stress disorder, but its association with ASD in patients with MI is elusive and was examined in this study. Methods We investigated 71 consecutive patients with acute MI within 48 h of having stable haemodynamic conditions established and for 3 months thereafter. All patients completed the Acute Stress Disorder Scale and the Resilience Scale to self-rate the severity of ASD symptoms and trait resilience, respectively. Results Hierarchical regression analysis showed that greater resilience was associated with lower symptoms of ASD independent of covariates (b=−0.22, p<0.05). Post hoc analysis revealed resilience level to be inversely associated with the ASD symptom clusters of re-experiencing (b=−0.05, p<0.05) and arousal (b=−0.09, p<0.05), but not with dissociation and avoidance. Conclusions The findings suggest that patients with acute MI with higher trait resilience experience relatively fewer symptoms of ASD during MI. Resilience was particularly associated with re-experiencing and arousal symptoms. Our findings contribute to a better understanding of resilience as a potentially important correlate of ASD in the context of traumatic situations such as acute MI. These results emphasise the importance of identifying patients with low resilience in medical settings and to offer them adequate support. PMID:26568834

  5. Chronic Desipramine Prevents Acute Stress-Induced Reorganization of Medial Prefrontal Cortex Architecture by Blocking Glutamate Vesicle Accumulation and Excitatory Synapse Increase

    PubMed Central

    Treccani, Giulia; Liebenberg, Nico; Chen, Fenghua; Popoli, Maurizio; Wegener, Gregers; Nyengaard, Jens Randel

    2015-01-01

    Background: Although a clear negative influence of chronic exposure to stressful experiences has been repeatedly demonstrated, the outcome of acute stress on key brain regions has only just started to be elucidated. Although it has been proposed that acute stress may produce enhancement of brain plasticity and that antidepressants may prevent such changes, we still lack ultrastructural evidence that acute stress-induced changes in neurotransmitter physiology are coupled with structural synaptic modifications. Methods: Rats were pretreated chronically (14 days) with desipramine (10mg/kg) and then subjected to acute foot-shock stress. By means of serial section electron microscopy, the structural remodeling of medial prefrontal cortex glutamate synapses was assessed soon after acute stressor cessation and stress hormone levels were measured. Results: Foot-shock stress induced a remarkable increase in the number of docked vesicles and small excitatory synapses, partially and strongly prevented by desipramine pretreatment, respectively. Acute stress-induced corticosterone elevation was not affected by drug treatment. Conclusions: Since desipramine pretreatment prevented the stress-induced structural plasticity but not the hormone level increase, we hypothesize that the preventing action of desipramine is located on pathways downstream of this process and/or other pathways. Moreover, because enhancement of glutamate system remodeling may contribute to overexcitation dysfunctions, this aspect could represent a crucial component in the pathophysiology of stress-related disorders. PMID:25522419

  6. Acute exercise and oxidative stress: a 30 year history

    PubMed Central

    Fisher-Wellman, Kelsey; Bloomer, Richard J

    2009-01-01

    The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years. PMID:19144121

  7. Glutamatergic Mechanisms of Comorbidity Between Acute Stress and Cocaine Self-administration

    PubMed Central

    Garcia-Keller, Constanza; Kupchik, Yonatan; Gipson, Cassandra D; Brown, Robyn M; Spencer, Sade; Bollati, Flavia; Esparza, Maria A; Roberts-Wolfe, Doug; Heinsbroek, Jasper; Bobadilla, Ana-Clara; Cancela, Liliana M; Kalivas, Peter W

    2015-01-01

    There is substantial comorbidity between stress disorders and substance use disorders (SUDs), and acute stress augments the locomotor stimulant effect of cocaine in animal models. Here we endeavor to understand the neural underpinnings of comorbid stress disorders and drug use by determining if the glutamatergic neuroadaptations that characterize cocaine self-administration are induced by acute stress. Rats were exposed to acute (2 h) immobilization stress and 3 weeks later the nucleus accumbens core was examined for changes in glutamate transport, glutamate mediated synaptic currents, and dendritic spine morphology. We also determined if acute stress potentiated the acquisition of cocaine self-administration. Acute stress produced an enduring reduction in glutamate transport, and potentiated excitatory synapses on medium spiny neurons. Acute stress also augmented the acquisition of cocaine self-administration. Importantly, by restoring glutamate transport in the accumbens core with ceftriaxone the capacity of acute stress to augment the acquisition of cocaine self-administration was abolished. Similarly, ceftriaxone treatment prevented stress-induced potentiation of cocaine-induced locomotor activity. However, ceftriaxone did not reverse stress-induced synaptic potentiation, indicating that this effect of stress exposure did not underpin the increased acquisition of cocaine self-administration. Reversing acute stress-induced vulnerability to self-administer cocaine by normalizing glutamate transport poses a novel treatment possibility for reducing comorbid SUDs in stress disorders. PMID:26821978

  8. Glutamatergic mechanisms of comorbidity between acute stress and cocaine self-administration.

    PubMed

    Garcia-Keller, C; Kupchik, Y M; Gipson, C D; Brown, R M; Spencer, S; Bollati, F; Esparza, M A; Roberts-Wolfe, D J; Heinsbroek, J A; Bobadilla, A-C; Cancela, L M; Kalivas, P W

    2016-08-01

    There is substantial comorbidity between stress disorders and substance use disorders (SUDs), and acute stress augments the locomotor stimulant effect of cocaine in animal models. Here we endeavor to understand the neural underpinnings of comorbid stress disorders and drug use by determining whether the glutamatergic neuroadaptations that characterize cocaine self-administration are induced by acute stress. Rats were exposed to acute (2 h) immobilization stress, and 3 weeks later the nucleus accumbens core was examined for changes in glutamate transport, glutamate-mediated synaptic currents and dendritic spine morphology. We also determined whether acute stress potentiated the acquisition of cocaine self-administration. Acute stress produced an enduring reduction in glutamate transport and potentiated excitatory synapses on medium spiny neurons. Acute stress also augmented the acquisition of cocaine self-administration. Importantly, by restoring glutamate transport in the accumbens core with ceftriaxone the capacity of acute stress to augment the acquisition of cocaine self-administration was abolished. Similarly, ceftriaxone treatment prevented stress-induced potentiation of cocaine-induced locomotor activity. However, ceftriaxone did not reverse stress-induced synaptic potentiation, indicating that this effect of stress exposure did not underpin the increased acquisition of cocaine self-administration. Reversing acute stress-induced vulnerability to self-administer cocaine by normalizing glutamate transport poses a novel treatment possibility for reducing comorbid SUDs in stress disorders. PMID:26821978

  9. Autobiographical memory after acute stress in healthy young men.

    PubMed

    Tollenaar, Marieke S; Elzinga, Bernet M; Spinhoven, Philip; Everaerd, Walter

    2009-04-01

    Autobiographical memories have been found to be less specific after hydrocortisone administration in healthy men, resembling memory deficits in, for example, depression. This is the first study to investigate the effects of stress-induced elevated cortisol levels on autobiographic memory specificity and experience in healthy young men. Autobiographical memories were elicited by neutral and negative cue words, with instructions to recall either recent or remote memories. No effect of psychosocial stress was found on memory specificity or experience, but cortisol increases tended to be related to less specific, recent memories elicited by neutral cue words, especially when participants were physically aroused during memory retrieval. These results indicate that autobiographical memories are fairly resistant to an acute stressor in healthy young men, but that endogenous cortisol increases might be related to autobiographical memory retrieval. More research into the relation between endogenous cortisol increases and autobiographic memory retrieval is needed, especially in stress-related disorders. PMID:19156564

  10. Think aloud: acute stress and coping strategies during golf performances.

    PubMed

    Nicholls, Adam R; Polman, Remco C J

    2008-07-01

    A limitation of the sport psychology coping literature is the amount of time between a stressful episode and the recall of the coping strategies used in the stressful event (Nicholls & Polman, 2007). The purpose of this study was to develop and implement a technique to measure acute stress and coping during performance. Five high-performance adolescent golfers took part in Level 2 verbalization think aloud trials (Ericsson & Simon, 1993), which involved participants verbalizing their thoughts, over six holes of golf. Verbal reports were audio-recorded during each performance, transcribed verbatim, and analyzed using protocol analysis (Ericsson & Simon, 1993). Stressors and coping strategies varied throughout the six holes, which support the proposition that stress and coping is a dynamic process that changes across phases of the same performance (Lazarus, 1999). The results also revealed information regarding the sequential patterning of stress and coping, suggesting that the golfers experienced up to five stressors before reporting a coping strategy. Think aloud appears a suitable method to collect concurrent stress and coping data. PMID:18612855

  11. Memory and executive dysfunctions associated with acute posttraumatic stress disorder.

    PubMed

    Lagarde, Geneviève; Doyon, Julien; Brunet, Alain

    2010-05-15

    Posttraumatic stress disorder (PTSD) in its chronic form has been associated with a number of neurocognitive impairments involving emotionally neutral stimuli. It remains unknown whether such impairments also characterize acute PTSD. In the present investigation, neurocognitive functions were examined in trauma exposed individuals with (n=21) and without (n=16) acute PTSD, as well as in a group of individuals never exposed to trauma (n=17) using specific and standardized tasks such as the Rey Auditory Verbal Learning Test, the Aggie's Figure Learning Test, the Autobiographical Memory Interview, the D2 test, the Stroop task, the digit and visual span tasks of the Wechsler Memory Scale-III, the Trail Making Test, the Tower of London and the vocabulary subtest of the Wechsler Adult Intelligence Scale-III. A number of deficits in the cognitive domains of memory, high-level attentional resources, executive function and working memory were found in the group with a diagnosis of acute PTSD only and not among the other groups. The findings, which point to the possibility of disturbed fronto-temporal system function in trauma-exposed individuals with acute PTSD, are particularly relevant for the early clinical management of this disorder. PMID:20381880

  12. Stress management as a component of occupational therapy in acute care settings.

    PubMed

    Affleck, A; Bianchi, E; Cleckley, M; Donaldson, K; McCormack, G; Polon, J

    1984-01-01

    The recent explosion of stress literature in the medical community has created a new awareness of "stress" as a potentially destructive force in itself. Contributing the physical and psychological dysfunction, stress has now been linked with a wide range of diagnoses including cancer, cardiac disease and arthritis. The importance of incorporating stress management activities into daily life is increasingly apparent. Occupational therapists concerned with patients' ability to achieve health enhancing independent living skills are in a key position to help patients master stress management skills and incorporate them into activities of daily living. This article will explore the incorporation of stress management into occupational therapy programming for a variety of acute care patients. It will review the components of stress, the stress cycle, the relaxation response, the occupational therapy role based on a model of human occupation, and will review current programs through case study of four patients: one diagnosed with cancer (leukemia), one with anorexia nervosa, one with chronic pain and the fourth, a patient in medical intensive care. PMID:23947299

  13. Role of Glia in Stress-Induced Enhancement and Impairment of Memory

    PubMed Central

    Pearson-Leary, Jiah; Osborne, Danielle Maria; McNay, Ewan C.

    2016-01-01

    Both acute and chronic stress profoundly affect hippocampally-dependent learning and memory: moderate stress generally enhances, while chronic or extreme stress can impair, neural and cognitive processes. Within the brain, stress elevates both norepinephrine and glucocorticoids, and both affect several genomic and signaling cascades responsible for modulating memory strength. Memories formed at times of stress can be extremely strong, yet stress can also impair memory to the point of amnesia. Often overlooked in consideration of the impact of stress on cognitive processes, and specifically memory, is the important contribution of glia as a target for stress-induced changes. Astrocytes, microglia, and oligodendrocytes all have unique contributions to learning and memory. Furthermore, these three types of glia express receptors for both norepinephrine and glucocorticoids and are hence immediate targets of stress hormone actions. It is becoming increasingly clear that inflammatory cytokines and immunomodulatory molecules released by glia during stress may promote many of the behavioral effects of acute and chronic stress. In this review, the role of traditional genomic and rapid hormonal mechanisms working in concert with glia to affect stress-induced learning and memory will be emphasized. PMID:26793072

  14. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. PMID:26476140

  15. Effects of chronic plus acute prolonged stress on measures of coping style, anxiety, and evoked HPA-axis reactivity.

    PubMed

    Roth, Megan K; Bingham, Brian; Shah, Aparna; Joshi, Ankur; Frazer, Alan; Strong, Randy; Morilak, David A

    2012-11-01

    Exposure to psychological trauma is the precipitating factor for PTSD. In addition, a history of chronic or traumatic stress exposure is a predisposing risk factor. We have developed a Chronic plus Acute Prolonged Stress (CAPS) treatment for rats that models some of the characteristics of stressful events that can lead to PTSD in humans. We have previously shown that CAPS enhances acute fear responses and impairs extinction of conditioned fear. Further, CAPS reduced the expression of glucocorticoid receptors in the medial prefrontal cortex. In this study we examined the effects of CAPS exposure on behavioral stress coping style, anxiety-like behaviors, and acute stress reactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Male Sprague-Dawley rats were exposed to CAPS treatment, consisting of chronic intermittent cold stress (4 °C, 6 h/day, 14 days) followed on day 15 by a single 1-h session of sequential acute stressors (social defeat, immobilization, swim). After CAPS or control treatment, different groups were tested for shock probe defensive burying, novelty suppressed feeding, or evoked activation of adrenocorticotropic hormone (ACTH) and corticosterone release by an acute immobilization stress. CAPS resulted in a decrease in active burying behavior and an increase in immobility in the shock probe test. Further, CAPS-treated rats displayed increases in the latency to feed in the novelty suppressed feeding test, despite an increase in food intake in the home cage. CAPS treatment also reduced the HPA response to a subsequent acute immobilization stress. These results further validate CAPS treatment as a rat model of relevance to PTSD, and together with results reported previously, suggest that CAPS impairs fear extinction, shifts coping behavior from an active to a more passive strategy, increases anxiety, and alters HPA reactivity, resembling many aspects of human PTSD. PMID:22842072

  16. Acute Anteroseptal Myocardial Infarction after a Negative Exercise Stress Test

    PubMed Central

    Al-Alawi, Abdullah M.; Janardan, Jyotsna; Peck, Kah Y.; Soward, Alan

    2016-01-01

    A myocardial infarction is a rare complication which can occur after an exercise stress test. We report a 48-year-old male who was referred to the Mildura Cardiology Practice, Victoria, Australia, in August 2014 with left-sided chest pain. He underwent an exercise stress test which was negative for myocardial ischaemia. However, the patient presented to the Emergency Department of the Mildura Base Hospital 30 minutes after the test with severe retrosternal chest pain. An acute anteroseptal ST segment elevation myocardial infarction was observed on electrocardiography. After thrombolysis, he was transferred to a tertiary hospital where coronary angiography subsequently revealed significant left anterior descending coronary artery stenosis. Thrombus aspiration and a balloon angioplasty were performed. The patient was discharged three days after the surgical procedure in good health. PMID:27226918

  17. Marble burying as a test of the delayed anxiogenic effects of acute immobilisation stress in mice.

    PubMed

    Kedia, Sonal; Chattarji, Sumantra

    2014-08-15

    A majority of rodent studies characterizing the anxiogenic effects of stress have utilized exploration-based models, such as the elevated plus-maze. An alternative strategy has relied on ethologically natural behavior such as defensive burying. One such paradigm, marble burying, has proven to be an effective behavioral assay of the anxiolytic effects of pharmacological manipulations, and of genetically modified mouse models. Relatively little, however, is known about the sensitivity of this test in assessing the anxiogenic effects of stress. Most of the earlier reports have examined the immediate, but not more long-term, effects of pharmacological or environmental manipulations in mice. Hence, we used the marble burying test to examine if acute immobilization stress leads to enhanced anxiety-like behavior in C57Bl/6 mice if the test is employed with a significant time delay. We find this test to be sensitive enough to detect the anxiogenic effects even 10 days after a single episode of 2-h immobilization stress. Our results suggest that the marble burying test could serve as a useful behavioral paradigm for not only estimating the gradual progression of the anxiogenic impact of stress over time, but also raises the possibility of using the temporal delay after stress to test the potential efficacy of post-stress interventions with anxiolytic drugs. PMID:24932962

  18. Increased oxidative stress following acute and chronic high altitude exposure.

    PubMed

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude. PMID:15072717

  19. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation. PMID:22300952

  20. Effects of acute restraint stress on set-shifting and reversal learning in male rats

    PubMed Central

    Thai, Chester A.; Zhang, Ying

    2015-01-01

    Exposure to acute stress alters cognition; however, few studies have examined the effects of acute stress on executive functions such as behavioral flexibility. The goal of the present experiments was to determine the effects of acute periods of stress on two distinct forms of behavioral flexibility: set-shifting and reversal learning. Male Sprague-Dawley rats were trained and tested in an operant-chamber-based task. Some of the rats were exposed to acute restraint stress (30 min) immediately before either the set-shifting test day or the reversal learning test day. Acute stress had no effect on set-shifting, but it significantly facilitated reversal learning, as assessed by both trials to criterion and total errors. In a second experiment, the roles of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the acute-stress-induced facilitation of reversal learning were examined. Systemic administration of the GR-selective antagonist RU38486 (10 mg/kg) or the MR-selective antagonist spironolactone (50 mg/kg) 30 min prior to acute stress failed to block the facilitation on reversal learning. The present results demonstrate a dissociable effect of acute stress on set-shifting and reversal learning and suggest that the facilitation of reversal learning by acute stress may be mediated by factors other than corticosterone. PMID:23055093

  1. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma

    PubMed Central

    Ha, Y; Liu, H; Xu, Z; Yokota, H; Narayanan, S P; Lemtalsi, T; Smith, S B; Caldwell, R W; Caldwell, R B; Zhang, W

    2015-01-01

    Acute glaucoma is a leading cause of irreversible blindness in East Asia. The mechanisms underlying retinal neuronal injury induced by a sudden rise in intraocular pressure (IOP) remain obscure. Here we demonstrate that the activation of CXCL10/CXCR3 axis, which mediates the recruitment and activation of inflammatory cells, has a critical role in a mouse model of acute glaucoma. The mRNA and protein expression levels of CXCL10 and CXCR3 were significantly increased after IOP-induced retinal ischemia. Blockade of the CXCR3 pathway by deleting CXCR3 gene significantly attenuated ischemic injury-induced upregulation of inflammatory molecules (interleukin-1β and E-selectin), inhibited the recruitment of microglia/monocyte to the superficial retina, reduced peroxynitrite formation, and prevented the loss of neurons within the ganglion cell layer. In contrast, intravitreal delivery of CXCL10 increased leukocyte recruitment and retinal cell apoptosis. Inhibition of endoplasmic reticulum (ER) stress with chemical chaperones partially blocked ischemic injury-induced CXCL10 upregulation, whereas induction of ER stress with tunicamycin enhanced CXCL10 expression in retina and primary retinal ganglion cells. Interestingly, deleting CXCR3 attenuated ER stress-induced retinal cell death. In conclusion, these results indicate that ER stress-medicated activation of CXCL10/CXCR3 pathway has an important role in retinal inflammation and neuronal injury after high IOP-induced ischemia. PMID:26448323

  2. The interaction of acute and chronic stress impairs model-based behavioral control.

    PubMed

    Radenbach, Christoph; Reiter, Andrea M F; Engert, Veronika; Sjoerds, Zsuzsika; Villringer, Arno; Heinze, Hans-Jochen; Deserno, Lorenz; Schlagenhauf, Florian

    2015-03-01

    It is suggested that acute stress shifts behavioral control from goal-directed, model-based toward habitual, model-free strategies. Recent findings indicate that interindividual differences in the cortisol stress response influence model-based decision-making. Although not yet investigated in humans, animal studies show that chronic stress also shifts decision-making toward more habitual behavior. Here, we ask whether acute stress and individual vulnerability factors, such as stress reactivity and previous exposure to stressful life events, impact the balance between model-free and model-based control systems. To test this, 39 male participants (21-30 years old) were exposed to a potent psychosocial stressor (Trier Social Stress Test) and a control condition in a within-subjects design before they performed a sequential decision-making task which evaluates the balance between the two systems. Physiological and subjective stress reactivity was assessed before, during, and after acute stress exposure. By means of computational modeling, we demonstrate that interindividual variability in stress reactivity predicts impairments in model-based decision-making. Whereas acute psychosocial stress did not alter model-based behavioral control, we found chronic and acute stress to interact in their detrimental effect on decision-making: subjects with high but not low chronic stress levels as indicated by stressful life events exhibited reduced model-based control in response to acute psychosocial stress. These findings emphasize that stress reactivity and chronic stress play an important role in mediating the relationship between stress and decision-making. Our results might stimulate new insights into the interplay between chronic and acute stress, attenuated model-based control, and the pathogenesis of various psychiatric diseases. PMID:25662093

  3. HIPPOCAMPAL MOSSY FIBER LEU-ENKEPHALIN IMMUNOREACTIVITY IN FEMALE RATS IS SIGNIFICANTLY ALTERED FOLLOWING BOTH ACUTE AND CHRONIC STRESS

    PubMed Central

    Pierce, Joseph P.; Kelter, David T.; McEwen, Bruce S.; Waters, Elizabeth M.; Milner, Teresa A.

    2013-01-01

    Research indicates that responses to stress are sexually dimorphic, particularly in regard to learning and memory processes: while males display impaired cognitive performance and hippocampal CA3 pyramidal cell dendritic remodeling following chronic stress, females exhibit enhanced performance and no remodeling. Leu-enkephalin, an endogenous opioid peptide found in the hippocampal mossy fiber pathway, plays a critical role in mediating synaptic plasticity at the mossy fiber-CA3 pyramidal cell synapse. Estrogen is known to influence the expression of leu-enkephalin in the mossy fibers of females, with leu-enkephalin levels being highest at proestrus and estrus, when estrogen levels are elevated. Since stress is also known to alter the expression of leu-enkephalin in various brain regions, this study was designed to determine whether acute or chronic stress had an effect on mossy fiber leu-enkephalin levels in females or males, through the application of correlated quantitative light and electron microscopic immunocytochemistry. Both acute and chronic stress eliminated the estrogen-dependence of leu-enkephalin levels across the estrous cycle in females, but had no effect on male levels. However, following acute stress leu-enkephalin levels in females were consistently lowered to values comparable to the lowest control values, while following chronic stress they were consistently elevated to values comparable to the highest control values. Ultrastructural changes in leu-enkephalin labeled dense core vesicles paralleled light microscopic observations, with acute stress inducing a decrease in leu-enkephalin labeled dense core vesicles, and chronic stress inducing an increase in leu-enkephalin labeled dense-core vesicles in females. These findings suggest that alterations in leu-enkephalin levels following stress could play an important role in the sex-specific responses that females display in learning processes, including those important in addiction. PMID:24275289

  4. Traumatic Memories in Acute Stress Disorder: An Analysis of Narratives before and after Treatment

    ERIC Educational Resources Information Center

    Moulds, Michelle L.; Bryant, Richard A.

    2005-01-01

    The dissociative reactions in acute stress disorder purportedly impede encoding and organization of traumatic memories and consequently impair the individual's ability to retrieve trauma-related details. A qualitative examination was conducted on trauma narratives of individuals with acute stress disorder (N = 15) prior to cognitive behavior…

  5. Factor Structure of the Acute Stress Disorder Scale in a Sample of Hurricane Katrina Evacuees

    ERIC Educational Resources Information Center

    Edmondson, Donald; Mills, Mary Alice; Park, Crystal L.

    2010-01-01

    Acute stress disorder (ASD) is a poorly understood and controversial diagnosis (A. G. Harvey & R. A. Bryant, 2002). The present study used confirmatory factor analysis (CFA) to test the factor structure of the most widely used self-report measure of ASD, the Acute Stress Disorder Scale (R. A. Bryant, M. L. Moulds, & R. M. Guthrie, 2000), in a…

  6. Acute Stress Symptoms in Children: Results From an International Data Archive

    ERIC Educational Resources Information Center

    Kassam-Adams, Nancy; Palmieri, Patrick A.; Rork, Kristine; Delahanty, Douglas L.; Kenardy, Justin; Kohser, Kristen L.; Landolt, Markus A.; Le Brocque, Robyne; Marsac, Meghan L.; Meiser-Stedman, Richard; Nixon, Reginald D.V.; Bui, Eric; McGrath, Caitlin

    2012-01-01

    Objective: To describe the prevalence of acute stress disorder (ASD) symptoms and to examine proposed "DSM-5" symptom criteria in relation to concurrent functional impairment in children and adolescents. Method: From an international archive, datasets were identified that included assessment of acute traumatic stress reactions and concurrent…

  7. Acute hypoxemia in humans enhances the neutrophil inflammatory response.

    PubMed

    Tamura, Douglas Y; Moore, Ernest E; Partrick, David A; Johnson, Jeffrey L; Offner, Patrick J; Silliman, Christopher C

    2002-04-01

    The neutrophil (PMN) is regarded as a key component in the hyperinflammatory response known as the systemic inflammatory response syndrome. Acute respiratory distress syndrome (ARDS) and subsequent multiple organ failure (MOF) are related to the severity of this hyperinflammation. ICU patients who are at highest risk of developing MOF may have acute hypoxic events that complicate their hospital course. This study was undertaken to evaluate the effects of acute hypoxia and subsequent hypoxemia on circulating PMNs in human volunteers. Healthy subjects were exposed to a changing O2/N2 mixture until their O2 saturation (SaO2) reached a level of 68% saturation. These subjects were then exposed to room air and then returned to their baseline SaO2. PMNs were isolated from pre- and post-hypoxemic arterial blood samples and were then either stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or PMA alone, or they were primed with L-alpha-phosphatidylcholine, beta-acetyl-gamma-O-alkyl (PAF) followed by fMLP activation. Reactive oxygen species generation as measured by superoxide anion production was enhanced in primed PMNs after hypoxemia. Protease degranulation as measured by elastase release was enhanced in both quiescent PMNs and primed PMNs after fMLP activation following the hypoxemic event. Adhesion molecule upregulation as measured by CD11b/CD18, however, was not significantly changed after hypoxemia. Apoptosis of quiescent PMNs was delayed after the hypoxemic event. TNFalpha, IL-1, IL-6, and IL-8 cytokine levels were unchanged following hypoxemia. These results indicate that relevant acute hypoxemic events observed in the clinical setting enhance several PMN cytotoxic functions and suggest that a transient hypoxemic insult may promote hyperinflammation. PMID:11954825

  8. REINFORCEMENT ENHANCING EFFECTS OF ACUTE NICOTINE VIA ELECTRONIC CIGARETTES

    PubMed Central

    Perkins, Kenneth A.; Karelitz, Joshua L.; Michael, Valerie C.

    2015-01-01

    Background Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. Methods We assessed acute effects of nicotine via electronic cigarettes (“e-cigarettes”) on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10 ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled “36 mg/ml”) or placebo (“0”) e-cigarette, or no e-cigarette use. A fourth session involved smoking one’s own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Results Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Conclusions Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. PMID:26070455

  9. Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise.

    PubMed

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2016-08-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation and acute aerobic exercise on the same cognitive tasks. We examined whether transcranial infrared laser stimulation of the prefrontal cortex, acute high-intensity aerobic exercise, or the combination may enhance performance in sustained attention and working memory tasks. Sixty healthy young adults were randomly assigned to one of the following four treatments: (1) low-level laser therapy (LLLT) with infrared laser to two forehead sites while seated (total 8 min, 1064 nm continuous wave, 250 mW/cm(2), 60 J/cm(2) per site of 13.6 cm(2)); (2) acute exercise (EX) of high-intensity (total 20 min, with 10-min treadmill running at 85-90 % VO2max); (3) combined treatment (LLLT + EX); or (4) sham control (CON). Participants were tested for prefrontal measures of sustained attention with the psychomotor vigilance task (PVT) and working memory with the delayed match-to-sample task (DMS) before and after the treatments. As compared to CON, both LLLT and EX reduced reaction time in the PVT [F(1.56) = 4.134, p = 0.01, η (2)  = 0.181] and increased the number of correct responses in the DMS [F(1.56) = 4.690, p = 0.005, η (2)  = 0.201], demonstrating a significant enhancing effect of LLLT and EX on cognitive performance. LLLT + EX effects were similar but showed no significantly greater improvement on PVT and DMS than LLLT or EX alone. The transcranial infrared laser stimulation and acute aerobic exercise treatments were similarly effective for cognitive enhancement, suggesting that they augment prefrontal cognitive functions similarly. PMID:27220529

  10. Effects of acute and chronic psychological stress on isolated islets' insulin release

    PubMed Central

    Zardooz, Homeira; Zahediasl, Saleh; Rostamkhani, Fatemeh; Farrokhi, Babak; Nasiraei, Shiva; Kazeminezhad, Behrang; Gholampour, Roohollah

    2012-01-01

    This study investigated the effects of acute and chronic psychological stress on glucose-stimulated insulin secretion from isolated pancreatic islets. Male Wistar rats were divided into two control and stressed groups; each further was allocated into fed and fasted groups. Stress was induced by communication box for one (acute), fifteen and thirty (chronic) days. After islet isolation, their number, size and insulin output were assessed. Plasma corticosterone level was determined. In fasted animals, acute stress increased basal and post stress plasma corticosterone level, while 30 days stress decreased it compared to day 1. In fed rats, acute stress increased only post stress plasma corticosterone concentration, however, after 15 days stress, it was decreased compared to day 1. Acute stress did not change insulin output; however, the insulin output was higher in the fed acutely stressed rats at 8.3 and 16.7 mM glucose than fasted ones. Chronic stress increased insulin output on day 15 in the fasted animals but decreased it on day 30 in the fed animals at 8.3 and 16.7 mM glucose. In the fasted control rats insulin output was lower than fed ones. In the chronic stressed rats insulin output at 8.3 and 16.7 mM glucose was higher in the fasted than fed rats. The number of islets increased in the fasted rats following 15 days stress. This study indicated that the response of the isolated islets from acute and chronically stressed rats are different and depends on the feeding status.

  11. Acute phase proteins in cattle after exposure to complex stress.

    PubMed

    Lomborg, S R; Nielsen, L R; Heegaard, P M H; Jacobsen, S

    2008-10-01

    Stressors such as weaning, mixing and transportation have been shown to lead to increased blood concentrations of acute phase proteins (APP), including serum amyloid A (SAA) and haptoglobin, in calves. This study was therefore undertaken to assess whether SAA and haptoglobin levels in blood mirror stress in adult cattle. Six clinically healthy Holstein cows and two Holstein heifers were transported for four to six hours to a research facility, where each animal was housed in solitary tie stalls. Blood samples for evaluation of leukocyte counts and serum SAA and haptoglobin concentrations were obtained before (0-sample) and at 8, 24 and 48 hours after the start of transportation. Upon arrival the animals gave the impression of being anxious, and they appeared to have difficulty coping with isolation and with being tied on the slippery floors of the research stable. Serum concentrations of SAA and haptoglobin increased significantly in response to the stressors (P < 0.01 and 0.05 at 48 hours, respectively). Additionally, the animals had transient neutrophilia at 8 and 24 hours (P < 0.05). In conclusion, the results of the study suggest that SAA and haptoglobin may serve as markers of stress in adult cattle. PMID:18461465

  12. Computer Models of Stress, Allostasis, and Acute and Chronic Diseases

    PubMed Central

    Goldstein, David S.

    2009-01-01

    The past century has seen a profound shift in diseases of humankind. Acute, unifactorial diseases are being replaced increasingly by multifactorial disorders that arise from complex interactions among genes, environment, concurrent morbidities and treatments, and time. According to the concept of allostasis, there is no single, ideal set of steady-state conditions in life. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators “homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of a home temperature control system, the temperature can be maintained at any of a variety of levels (allostatic states) by multiple means (effectors), regulated by a comparator thermostat (homeostat). Stress might exert adverse health consequences via allostatic load. This presentation describes models of homeostatic systems that incorporate negative feedback regulation, multiple effectors, effector sharing, environmental influences, intrinsic obsolescence, and destabilizing positive feedback loops. These models can be used to predict effects of environmental and genetic alterations on allostatic load and therefore on the development of multi-system disorders and failures. PMID:19120114

  13. TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice.

    PubMed

    Ohgidani, Masahiro; Kato, Takahiro A; Sagata, Noriaki; Hayakawa, Kohei; Shimokawa, Norihiro; Sato-Kasai, Mina; Kanba, Shigenobu

    2016-07-01

    The role of microglia in stress responses has recently been highlighted, yet the underlying mechanisms of action remain unresolved. The present study examined disruption in working memory due to acute stress using the water-immersion resistant stress (WIRS) test in mice. Mice were subjected to acute WIRS, and biochemical, immunohistochemical, and behavioral assessments were conducted. Spontaneous alternations (working memory) significantly decreased after exposure to acute WIRS for 2h. We employed a 3D morphological analysis and site- and microglia-specific gene analysis techniques to detect microglial activity. Morphological changes in hippocampal microglia were not observed after acute stress, even when assessing ramification ratios and cell somata volumes. Interestingly, hippocampal tumor necrosis factor (TNF)-α levels were significantly elevated after acute stress, and acute stress-induced TNF-α was produced by hippocampal-ramified microglia. Conversely, plasma concentrations of TNF-α were not elevated after acute stress. Etanercept (TNF-α inhibitor) recovered working memory deficits in accordance with hippocampal TNF-α reductions. Overall, results suggest that TNF-α from hippocampal microglia is a key contributor to early-stage stress-to-mental responses. PMID:26551431

  14. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    PubMed

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p < 0.001) and returned to baseline by 180 min, whereas H(2)O(2) increased at 120 min and remained increased at 240 min (p = 0.001). No changes in exhaled NO and NO(2)/NO(3) were observed, while decreases in FEV(1) (p < 0.001) and FEV(1)/FVC (p < 0.001) were observed after exposure and returned to baseline by 180 min. A 1-h exposure to secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28. PMID:23218453

  15. The stressed female brain: neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress.

    PubMed

    Maeng, Lisa Y; Shors, Tracey J

    2013-01-01

    Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD), indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA) is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC) during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL) and infralimbic (IL) subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. About 24 h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similarly to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful life

  16. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress.

    PubMed

    Tahara, Yu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Kuriki, Daisuke; Sasaki, Hiroyuki; Motohashi, Hiroaki; Sakai, Tomoko; Shibata, Shigenobu

    2015-01-01

    The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo. PMID:26073568

  17. Stress enhances reconsolidation of declarative memory.

    PubMed

    Bos, Marieke G N; Schuijer, Jantien; Lodestijn, Fleur; Beckers, Tom; Kindt, Merel

    2014-08-01

    Retrieval of negative emotional memories is often accompanied by the experience of stress. Upon retrieval, a memory trace can temporarily return into a labile state, where it is vulnerable to change. An unresolved question is whether post-retrieval stress may affect the strength of declarative memory in humans by modulating the reconsolidation process. Here, we tested in two experiments whether post-reactivation stress may affect the strength of declarative memory in humans. In both experiments, participants were instructed to learn neutral, positive and negative words. Approximately 24h later, participants received a reminder of the word list followed by exposure to the social evaluative cold pressor task (reactivation/stress group, nexp1=20; nexp2=18) or control task (reactivation/no-stress group, nexp1=23; nexp2=18). An additional control group was solely exposed to the stress task, without memory reactivation (no-reactivation/stress group, nexp1=23; nexp2=21). The next day, memory performance was tested using a free recall and a recognition task. In the first experiment we showed that participants in the reactivation/stress group recalled more words than participants in the reactivation/no-stress and no-reactivation/stress group, irrespective of valence of the word stimuli. Furthermore, participants in the reactivation/stress group made more false recognition errors. In the second experiment we replicated our observations on the free recall task for a new set of word stimuli, but we did not find any differences in false recognition. The current findings indicate that post-reactivation stress can improve declarative memory performance by modulating the process of reconsolidation. This finding contributes to our understanding why some memories are more persistent than others. PMID:24882163

  18. Acute social stress before the planning phase improves memory performance in a complex real life-related prospective memory task.

    PubMed

    Glienke, Katharina; Piefke, Martina

    2016-09-01

    Successful execution of intentions, but also the failure to recall are common phenomena in everyday life. The planning, retention, and realization of intentions are often framed as the scientific concept of prospective memory. The current study aimed to examine the influence of acute stress on key dimensions of complex "real life" prospective memory. To this end, we applied a prospective memory task that involved the planning, retention, and performance of intentions during a fictional holiday week. Forty healthy males participated in the study. Half of the subjects were stressed with the Socially Evaluated Cold Pressor Test (SECPT) before the planning of intentions, and the other half of the participants underwent a control procedure at the same time. Salivary cortisol was used to measure the effectiveness of the SECPT stress induction. Stressed participants did not differ from controls in planning accuracy. However, when we compared stressed participants with controls during prospective memory retrieval, we found statistically significant differences in PM across the performance phase. Participants treated with the SECPT procedure before the planning phase showed improved prospective memory retrieval over time, while performance of controls declined. Particularly, there was a significant difference between the stress and control group for the last two days of the holiday week. Interestingly, control participants showed significantly better performance for early than later learned items, which could be an indicator of a primacy effect. This differential effect of stress on performance was also found in time- and event-dependent prospective memory. Our results demonstrate for the first time, that acute stress induced before the planning phase may improve prospective memory over the time course of the performance phase in time- and event-dependent prospective memory. Our data thus indicate that prospective memory can be enhanced by acute stress. PMID:27370532

  19. Lower Electrodermal Activity to Acute Stress in Caregivers of People with Autism Spectrum Disorder: An Adaptive Habituation to Stress

    ERIC Educational Resources Information Center

    Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2015-01-01

    Caring for a relative with autism spectrum disorder (ASD) entails being under chronic stress that could alter body homeostasis. Electrodermal activity (EDA) is an index of the sympathetic activity of the autonomic nervous system related to emotionality and homeostasis. This study compares EDA in response to acute stress in the laboratory between…

  20. The effect of acute stress on memory depends on word valence.

    PubMed

    Smeets, Tom; Jelicic, Marko; Merckelbach, Harald

    2006-10-01

    The present study investigated the effect of acute stress on working memory and memory for neutral, emotionally negative, and emotionally positive words in healthy undergraduates. Participants (N=60) were exposed to either the Trier Social Stress Test (stress group) or a non-stressful task (control group). Analyses of salivary cortisol samples taken throughout the study showed elevated glucocorticoid levels after the experimental manipulation in the stress group, but not in the control group. Recall performance was impaired in the stress group, but only so for neutral words. No differences between the stress and control group were found on working memory measures. For the stress group, digit span forward and digit span total scores were associated with correct recall of neutral words. All in all, this study lends further support to the notion that the memory effects of exposure to acute stress depend on the valence of the memory material. PMID:16388863

  1. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by “Silencing” Central Glucagon-Like Peptide 1 Signaling in Rats

    PubMed Central

    Maniscalco, James W.; Zheng, Huiyuan; Gordon, Patrick J.

    2015-01-01

    Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stress-induced recruitment of these neurons and their downstream hypothalamic and limbic forebrain targets. A single overnight fast reduced anxiety-like behavior assessed in the elevated-plus maze and acoustic startle test, including marked attenuation of light-enhanced startle. Acute stress [i.e., 30 min restraint (RES) or 5 min elevated platform exposure] robustly activated c-Fos in GLP-1 and PrRP neurons in fed rats, but not in fasted rats. Fasting also significantly blunted the ability of acute stress to activate c-Fos expression within the anterior ventrolateral bed nucleus of the stria terminalis (vlBST). Acute RES stress suppressed dark-onset food intake in rats that were fed ad libitum, whereas central infusion of a GLP-1 receptor antagonist blocked RES-induced hypophagia, and reduced the ability of RES to activate PrRP and anterior vlBST neurons in ad libitum-fed rats. Thus, an overnight fast “silences” GLP-1 and PrRP neurons, and reduces both anxiety-like and hypophagic responses to acute stress. The partial mimicking of these fasting-induced effects in ad libitum-fed rats after GLP-1 receptor antagonism suggests a potential mechanism by which short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress. SIGNIFICANCE STATEMENT The results from this study reveal a potential central mechanism for the “metabolic tuning” of stress responsiveness. A single overnight fast, which markedly reduces anxiety-like behavior in rats

  2. Acute iron overload and oxidative stress in brain.

    PubMed

    Piloni, Natacha E; Fermandez, Virginia; Videla, Luis A; Puntarulo, Susana

    2013-12-01

    An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A)/ascorbate (AH(-)) ratio, taken as oxidative stress index, was assessed. The A/AH(-) ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6h after Fe administration. CAT activity was significantly increased after 8h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR generation rate after 6h of Fe overload

  3. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. PMID:27174311

  4. Effects of acute psychosocial stress exposure on endocrine and affective reactivity in college students differing in the 5-HTTLPR genotype and trait neuroticism.

    PubMed

    Verschoor, Ellen; Markus, C Rob

    2011-07-01

    Enhanced stress vulnerability has been implicated in the pathogenesis of affective disorders. Although both genetic (5-HTTLPR) and cognitive (neuroticism) factors are known to increase stress vulnerability, no experimental study has investigated the interaction between these two factors on psychobiological reactivity following acute stress exposure. This study used a balanced experimental design to examine the interaction between the 5-HTTLPR genotype and trait neuroticism in neuroendocrine and affective stress responses. From a large group of 771 students, 48 carriers of the short/short (S/S) allele and 48 carriers of the long/long (L/L) allele with the lowest and the highest neuroticism scores (77 females, 19 males; mean age ± SD: 20.6 ± 2 years) were selected and exposed to an acute psychosocial stressor. Mood was assessed before and after the stressor, and salivary cortisol concentrations were measured before and at 20, 30, and 60 min after stressor onset. Acute stress increased salivary cortisol concentration regardless of either 5-HTTLPR genotype or neuroticism, but it caused a less profound negative mood change in L/L compared to S/S-allele carriers with the lowest neuroticism scores. The 5-HTTLPR genotype influences affective reactivity to acute stress conditional upon neuroticism, improving resilience to acute stress in L/L-allele carriers if they do not already possess high cognitive-affective (neuroticism) vulnerability. PMID:21438771

  5. Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults

    PubMed Central

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W. E. M.; Merckelbach, Harald

    2013-01-01

    Background Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area. PMID:23671762

  6. Functional Genomic Analysis of Variation on Beef Tenderness Induced by Acute Stress in Angus Cattle

    PubMed Central

    Zhao, Chunping; Tian, Fei; Yu, Ying; Luo, Juan; Mitra, Apratim; Zhan, Fei; Hou, Yali; Liu, George; Zan, Linsen; Updike, M. Scott; Song, Jiuzhou

    2012-01-01

    Beef is one of the leading sources of protein, B vitamins, iron, and zinc in human food. Beef palatability is based on three general criteria: tenderness, juiciness, and flavor, of which tenderness is thought to be the most important factor. In this study, we found that beef tenderness, measured by the Warner-Bratzler shear force (WBSF), was dramatically increased by acute stress. Microarray analysis and qPCR identified a variety of genes that were differentially expressed. Pathway analysis showed that these genes were involved in immune response and regulation of metabolism process as activators or repressors. Further analysis identified that these changes may be related with CpG methylation of several genes. Therefore, the results from this study provide an enhanced understanding of the mechanisms that genetic and epigenetic regulations control meat quality and beef tenderness. PMID:22566754

  7. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress

    PubMed Central

    Moench, Kelly M.; Maroun, Mouna; Kavushansky, Alexandra; Wellman, Cara

    2015-01-01

    Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies. PMID:26844245

  8. Individual differences in early adolescents' latent trait cortisol (LTC): Relation to recent acute and chronic stress.

    PubMed

    Stroud, Catherine B; Chen, Frances R; Doane, Leah D; Granger, Douglas A

    2016-08-01

    Research suggests that environmental stress contributes to health by altering the regulation of the hypothalamic pituitary adrenal (HPA) axis. Recent evidence indicates that early life stress alters trait indicators of HPA axis activity, but whether recent stress alters such indicators is unknown. Using objective contextual stress interviews with adolescent girls and their mothers, we examined the impact of recent acute and chronic stress occurring during the past year on early adolescent girls' latent trait cortisol (LTC) level. We also examined whether associations between recent stress and LTC level: a) varied according to the interpersonal nature and controllability of the stress; and b) remained after accounting for the effect of early life stress. Adolescents (n=117;M age=12.39years) provided salivary cortisol samples three times a day (waking, 30min post-waking and bedtime) over 3days. Results indicated that greater recent interpersonal acute stress and greater recent independent (i.e., uncontrollable) acute stress were each associated with a higher LTC level, over and above the effect of early adversity. In contrast, greater recent chronic stress was associated with a lower LTC level. Findings were similar in the overall sample and a subsample of participants who strictly adhered to the timed schedule of saliva sample collection. Implications for understanding the impact of recent stress on trait-like individual differences in HPA axis activity are discussed. PMID:27155256

  9. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress.

    PubMed

    Moench, Kelly M; Maroun, Mouna; Kavushansky, Alexandra; Wellman, Cara

    2016-06-01

    Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies. PMID:26844245

  10. Child Anxiety Symptoms Related to Longitudinal Cortisol Trajectories and Acute Stress Responses: Evidence of Developmental Stress Sensitization

    PubMed Central

    Laurent, Heidemarie K.; Gilliam, Kathryn S.; Wright, Dorianne B.; Fisher, Philip A.

    2015-01-01

    Cross-sectional research suggests that individuals at risk for internalizing disorders show differential activation levels and/or dynamics of stress-sensitive physiological systems, possibly reflecting a process of stress sensitization. However, there is little longitudinal research to clarify how the development of these systems over time relates to activation during acute stress, and how aspects of such activation map onto internalizing symptoms. We investigated children’s (n=107) diurnal hypothalamic-pituitary-adrenal activity via salivary cortisol (morning and evening levels) across 29 assessments spanning 6+ years, and related longitudinal patterns to acute stress responses at the end of this period (age 9–10). Associations with child psychiatric symptoms at age 10 were also examined to determine internalizing risk profiles. Increasing morning cortisol levels across assessments predicted less of a cortisol decline following interpersonal stress at age 9, and higher cortisol levels during performance stress at age 10. These same profiles of high and/or sustained cortisol elevation during psychosocial stress were associated with child anxiety symptoms. Results suggest developmental sensitization to stress—reflected in rising morning cortisol and eventual hyperactivation during acute stress exposure—may distinguish children at risk for internalizing disorders. PMID:25688433

  11. Chronic and acute effects of stress on energy balance: are there appropriate animal models?

    PubMed Central

    2014-01-01

    Stress activates multiple neural and endocrine systems to allow an animal to respond to and survive in a threatening environment. The corticotropin-releasing factor system is a primary initiator of this integrated response, which includes activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. The energetic response to acute stress is determined by the nature and severity of the stressor, but a typical response to an acute stressor is inhibition of food intake, increased heat production, and increased activity with sustained changes in body weight, behavior, and HPA reactivity. The effect of chronic psychological stress is more variable. In humans, chronic stress may cause weight gain in restrained eaters who show increased HPA reactivity to acute stress. This phenotype is difficult to replicate in rodent models where chronic psychological stress is more likely to cause weight loss than weight gain. An exception may be hamsters subjected to repeated bouts of social defeat or foot shock, but the data are limited. Recent reports on the food intake and body composition of subordinate members of group-housed female monkeys indicate that these animals have a similar phenotype to human stress-induced eaters, but there are a limited number of investigators with access to the model. Few stress experiments focus on energy balance, but more information on the phenotype of both humans and animal models during and after exposure to acute or chronic stress may provide novel insight into mechanisms that normally control body weight. PMID:25519732

  12. Chronic caffeine treatment enhances the resilience to social defeat stress in mice.

    PubMed

    Yin, Yong-Qin; Zhang, Chun; Wang, Jian-Xin; Hou, Jia; Yang, Xu; Qin, Jing

    2015-02-01

    Strong evidence has shown that caffeine exerts antidepressant-like effects in chronic stress situations by increasing dopamine levels. However, whether caffeine mediates the dopaminergic system and interferes with the resilience to social defeat stress in mice is unknown. The aim of this study is to investigate the role of caffeine in the behavioral responses to social defeat stress and the possible regulatory role of the dopaminergic system. Mice experienced chronic social defeat stress for 10 days. Caffeine was administered intraperitoneally before, during and after social defeat stress. The time spent in interaction zone, social interaction ratio and sucrose preference test was used to measure the social avoidance and anhedonia in mice. The results showed that chronic pretreatment with caffeine for 14 days and for 10 days during stress reversed the avoidance of social behavior and anhedonia induced by social defeat stress in mice, suggesting the enhancement of the resilience to social defeat stress induced by caffeine. However, neither the treatment with caffeine only during the social defeat stress for 10 days nor the treatment with acute caffeine after defeat stress altered the resilience to stress. Furthermore, chronic caffeine treatment did not affect the normal locomotor activity and the desperate behavior in naïve mice. Moreover, the antagonism of dopamine D1 receptor and not D2 receptor reversed the effect of caffeine on the social avoidance and depressive-like behavior. Finally, pretreatment with higher doses of caffeine did not affect the behavioral response to social defeat stress. Taken together, our findings provide new insight into the effects of caffeine on social avoidance and anhedonia in mice. In addition, our results illustrated the value of measuring changes in depressive-like behavior before and after social defeat stress to determine the potential treatment of caffeine on depression through the regulation of dopaminergic system. PMID

  13. Acute stress and cardiovascular health: is there an ACE gene connection?

    PubMed

    Holman, E Alison

    2012-10-01

    Cardiovascular disorders (CVD) are associated with acute and posttraumatic stress responses, yet biological processes underlying this association are poorly understood. This study examined whether renin-angiotensin-aldosterone system activity, as indicated by a functional single nucleotide polymorphism (SNP) in the angiotensin converting enzyme (ACE) gene, is associated with both CVD and acute stress related to the September 11, 2001 (9/11) terrorist attacks. European-American respondents (N = 527) from a nationally representative longitudinal study of coping following 9/11 provided saliva for genotyping. Respondents had completed health surveys before 9/11 and annually for 3 years after, and acute stress assessments 9 to 23 days after 9/11. Respondents with rs4291 AA or TT genotypes reported high acute stress twice as often as those with the AT genotype. Individuals with the TT genotype were 43% more likely to report increased physician-diagnosed CVD over 3 years following 9/11, when the following variables were included in the model: (a) pre-9/11 CVD, mental health, and non-CVD ailments; (b) cardiac risk factors; (c) ongoing endocrine disorders; and (d) significant demographics. The ACE rs4291 TT genotype, which has been associated with HPA axis hyperactivity and higher levels of serum angiotensin converting enzyme (ACE), predicted acute stress response and reports of physician-diagnosed CVD in a national sample following collective stress. ACE gene function may be associated with both mental and physical health disorders following collective stress. PMID:23055331

  14. An experimental test of the capture-restraint protocol for estimating the acute stress response.

    PubMed

    Pakkala, Jesse J; Norris, D Ryan; Newman, Amy E M

    2013-01-01

    Stress-induced increases in glucocorticoids (GCs) modulate behavior and are key in directing energy reserves. The capture-restraint protocol was developed to experimentally stimulate and quantify the magnitude of the acute stress response by comparing baseline GC levels with those collected after restraining a subject for a period of time, typically 30 min. This protocol has been used extensively in the field and lab, yet few studies have investigated whether it parallels hypothalamic-pituitary-adrenal (HPA) activation under natural acute stressors. We examined the hypothesis that acute stress from the capture-restraint protocol accurately mimics the adrenocortical response induced by a natural acute stressor. Using wild-caught rock pigeons Columba livia in a repeated-measures design, we compared plasma corticosterone (CORT) concentrations at baseline, after exposure to acute capture-restraint (30 min in a cloth bag), after tethering in a harness (30 min), and after a real but nonlethal attack by a predatory raptor. As found in previous studies, the capture-restraint treatment significantly increased CORT levels of pigeons compared with baseline. However, we also found that when pigeons were exposed to an attack by a raptor, their CORT levels were more than twice as high compared with the capture-restraint treatment. Our results provide evidence that an authentic acute stressor can activate the HPA axis to a greater extent than the capture-restraint protocol and also suggest that real predation attempts can have a significant effect on acute stress levels of wild birds. PMID:23434787

  15. Acute stress, depression, and anxiety symptoms among English and Spanish speaking children with recent trauma exposure

    PubMed Central

    Barber, Beth A.; Kohl, Krista L.; Kassam-Adams, Nancy; Gold, Jeffrey I.

    2015-01-01

    A growing literature suggests the clinical importance of acute stress disorder (ASD) symptoms in youth following potentially traumatic events. A multisite sample of English and Spanish speaking children and adolescents (N=479) between the ages of 8 to 17, along with their caregivers completed interviews and self-report questionnaires between 2 days and one month following the event. The results indicate that children with greater total acute stress symptoms reported greater depressive (r = .41, p < .01), and anxiety symptoms (r = .53, p < .01). Examining specific acute stress subscales, re-experiencing was correlated with anxiety (r = .47, p < .01) and arousal was correlated with depression (r = .50, p < .01) and anxiety (r = .55, p < .01). Age was inversely associated with total acute stress symptoms (r = -.24, p < .01), re-experiencing (r = -.17, p < .01), avoidance (r = -.27, p < .01), and arousal (r = -.19, p < .01) and gender was related to total anxiety symptoms (Spearman's rho = .17, p < .01). The current study supports the importance of screening acute stress symptoms and other mental health outcomes following a potentially traumatic event in children and adolescents. Early screening may enable clinicians to identify and acutely intervene to support children's psychological and physical recovery. PMID:24337685

  16. Time profile of oxidative stress and neutrophil activation in ovine acute lung injury and sepsis.

    PubMed

    Lange, Matthias; Szabo, Csaba; Traber, Daniel L; Horvath, Eszter; Hamahata, Atsumori; Nakano, Yoshimitsu; Traber, Lillian D; Cox, Robert A; Schmalstieg, Frank C; Herndon, David N; Enkhbaatar, Perenlei

    2012-05-01

    The formation of oxidative stress in the lung and activation of neutrophils are major determinants in the development of respiratory failure after acute lung injury and sepsis. However, the time changes of these pathogenic factors have not been sufficiently described. Twenty-four chronically instrumented sheep were subjected to cotton smoke inhalation injury and instillation of live Pseudomonas aeruginosa into both lungs. The sheep were euthanized at 4, 8, 12, 18, and 24 h after injury. Additional sheep received sham injury and were euthanized after 24 h. Pulmonary function was assessed by determination of oxygenation index and pulmonary shunt fraction. In addition, lung tissue was harvested at the respective time points for the measurement of malondialdehyde, interleukin 6, poly(ADP ribose), myeloperoxidase, and alveolar polymorphonuclear neutrophil score. The injury induced severe respiratory failure that was associated with an early increase in lipid peroxidation and interleukin 6 expression. The injury further led to an increase in poly(ADP ribose) activity that reached its peak at 12 h after injury and declined afterward. In addition, progressive increases in markers of neutrophil accumulation in the lung were observed. The peak of neutrophil accumulation in the lung was associated with a severe depletion of circulating neutrophils. The results from our model may enhance the understanding of the pathophysiological alterations after acute lung injury and sepsis and thus be useful in exploring therapeutic interventions directed at modifying the expression or activation of inflammatory mediators. PMID:22266977

  17. Cognitive Processing Therapy for Acute Stress Disorder Resulting from an Anti-Gay Assault

    ERIC Educational Resources Information Center

    Kaysen, Debra; Lostutter, Ty W.; Goines, Marie A.

    2005-01-01

    This case study describes Cognitive Processing Therapy (CPT) with a 30-year-old gay man with symptoms of acute stress disorder (ASD) following a recent homophobic assault. Treatment addressed assault-related posttraumatic stress disorder symptoms and depressive symptoms. Also addressed were low self-esteem, helplessness, and high degrees of…

  18. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output.

    PubMed

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-01-01

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors. PMID:27511270

  19. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output

    PubMed Central

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-01-01

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors. PMID:27511270

  20. Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH.

    PubMed

    Engeland, William C; Yoder, J Marina; Karsten, Carley A; Kofuji, Paulo

    2016-01-01

    The adrenal cortex has a molecular clock that generates circadian rhythms in glucocorticoid production, yet it is unclear how the clock responds to acute stress. We hypothesized that stress-induced ACTH provides a signal that phase shifts the adrenal clock. To assess whether acute stress phase shifts the adrenal clock in vivo in a phase-dependent manner, mPER2:LUC mice on a 12:12-h light:dark cycle underwent restraint stress for 15 min or no stress at zeitgeber time (ZT) 2 (early subjective day) or at ZT16 (early subjective night). Adrenal explants from mice stressed at ZT2 showed mPER2:LUC rhythms that were phase-advanced by ~2 h, whereas adrenals from mice stressed at ZT16 showed rhythms that were phase-delayed by ~2 h. The biphasic response was also observed in mice injected subcutaneously either with saline or with ACTH at ZT2 or ZT16. Blockade of the ACTH response with the glucocorticoid, dexamethasone, prevented restraint stress-induced phase shifts in the mPER2:LUC rhythm both at ZT2 and at ZT16. The finding that acute stress results in a phase-dependent shift in the adrenal mPER2:LUC rhythm that can be blocked by dexamethasone indicates that stress-induced effectors, including ACTH, act to phase shift the adrenal clock rhythm. PMID:27445984

  1. Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH

    PubMed Central

    Engeland, William C.; Yoder, J. Marina; Karsten, Carley A.; Kofuji, Paulo

    2016-01-01

    The adrenal cortex has a molecular clock that generates circadian rhythms in glucocorticoid production, yet it is unclear how the clock responds to acute stress. We hypothesized that stress-induced ACTH provides a signal that phase shifts the adrenal clock. To assess whether acute stress phase shifts the adrenal clock in vivo in a phase-dependent manner, mPER2:LUC mice on a 12:12-h light:dark cycle underwent restraint stress for 15 min or no stress at zeitgeber time (ZT) 2 (early subjective day) or at ZT16 (early subjective night). Adrenal explants from mice stressed at ZT2 showed mPER2:LUC rhythms that were phase-advanced by ~2 h, whereas adrenals from mice stressed at ZT16 showed rhythms that were phase-delayed by ~2 h. The biphasic response was also observed in mice injected subcutaneously either with saline or with ACTH at ZT2 or ZT16. Blockade of the ACTH response with the glucocorticoid, dexamethasone, prevented restraint stress-induced phase shifts in the mPER2:LUC rhythm both at ZT2 and at ZT16. The finding that acute stress results in a phase-dependent shift in the adrenal mPER2:LUC rhythm that can be blocked by dexamethasone indicates that stress-induced effectors, including ACTH, act to phase shift the adrenal clock rhythm. PMID:27445984

  2. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    PubMed Central

    Delgado, Alejandra; Jaffé, Erica H.

    2011-01-01

    We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ. PMID:21785597

  3. The effect of obesity on inflammatory cytokine and leptin production following acute mental stress.

    PubMed

    Caslin, H L; Franco, R L; Crabb, E B; Huang, C J; Bowen, M K; Acevedo, E O

    2016-02-01

    Obesity may contribute to cardiovascular disease (CVD) risk by eliciting chronic systemic inflammation and impairing the immune response to additional stressors. There has been little assessment of the effect of obesity on psychological stress, an independent risk factor for CVD. Therefore, it was of interest to examine interleukin-6, tumor necrosis factor-α, interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), and leptin following an acute mental stress task in nonobese and obese males. Twenty college-aged males (21.3 ± 0.56 years) volunteered to participate in a 20-min Stroop color-word and mirror-tracing task. Subjects were recruited for obese (body mass index: BMI > 30) and nonobese (BMI < 25) groups, and blood samples were collected for enzyme-linked immunosorbent assay analysis. The acute mental stress task elicited an increase in heart rate, catecholamines, and IL-1β in all subjects. Additionally, acute mental stress increased cortisol concentrations in the nonobese group. There was a significant reduction in leptin in obese subjects 30 min posttask compared with a decrease in nonobese subjects 120 min posttask. Interestingly, the relationship between the percent change in leptin and IL-1Ra at 120 min posttask in response to an acute mental stress task was only observed in nonobese individuals. This is the first study to suggest that adiposity in males may impact leptin and inflammatory signaling mechanisms following acute mental stress. PMID:26511907

  4. Stress Enhancement of Craving During Sobriety: A Risk for Relapse

    PubMed Central

    Breese, George R.; Chu, Kathleen; Dayas, Christopher V.; Funk, Douglas; Knapp, Darin J.; Koob, George F.; Lê, Dzung Anh; O'Dell, Laura E.; Overstreet, David H.; Roberts, Amanda J.; Sinha, Rajita; Valdez, Glenn R.; Weiss, Friedbert

    2010-01-01

    This report of the proceedings of a symposium presented at the 2004 Research Society on Alcoholism Meeting provides evidence linking stress during sobriety to craving that increases the risk for relapse. The initial presentation by Rajita Sinha summarized clinical evidence for the hypothesis that there is an increased sensitivity to stress-induced craving in alcoholics. During early abstinence, alcoholics who were confronted with stressful circumstances showed increased susceptibility for relapse. George Breese presented data demonstrating that stress could substitute for repeated withdrawals from chronic ethanol to induce anxiety-like behavior. This persistent adaptive change induced by multiple withdrawals allowed stress to induce an anxiety-like response that was absent in animals that were not previously exposed to chronic ethanol. Subsequently, Amanda Roberts reviewed evidence that increased drinking induced by stress was dependent on corticotropin-releasing factor (CRF). In addition, rats that were stressed during protracted abstinence exhibited anxiety-like behavior that was also dependent on CRF. Christopher Dayas indicated that stress increases the reinstatement of an alcohol-related cue. Moreover, this effect was enhanced by previous alcohol dependence. These interactive effects between stress and alcohol-related environmental stimuli depended on concurrent activation of endogenous opioid and CRF systems. A.D. Lê covered information that indicated that stress facilitated reinstatement to alcohol responding and summarized the influence of multiple deprivations on this interaction. David Overstreet provided evidence that restraint stress during repeated alcohol deprivations increases voluntary drinking in alcohol-preferring (P) rats that results in withdrawal-induced anxiety that is not observed in the absence of stress. Testing of drugs on the stress-induced voluntary drinking implicated serotonin and CRF involvement in the sensitized response

  5. Prenatal stress enhances responsiveness to cocaine.

    PubMed

    Kippin, Tod E; Szumlinski, Karen K; Kapasova, Zuzana; Rezner, Betsy; See, Ronald E

    2008-03-01

    Early environmental events have profound influences on a wide range of adult behavior. In the current study, we assessed the influence of maternal stress during gestation on psychostimulant and neurochemical responsiveness to cocaine, cocaine self-administration, and reinstatement of cocaine-seeking in adult offspring. Pregnant, female Sprague-Dawley rats were subjected to either no treatment or to restraint stress three times per day for the last 7 days of gestation and cocaine-related behavior was assessed in offspring at 10 weeks of age. Relative to controls, a noncontingent cocaine injection elevated locomotor activity as well as nucleus accumbens levels of extracellular dopamine and glutamate to a greater extent in both cocaine-naive and cocaine-experienced prenatal stress (PNS) rats and elevated prefrontal cortex dopamine in cocaine-experienced PNS rats. To assess the impact of PNS on cocaine addiction-related behavior, rats were trained to lever press for intravenous (i.v.) infusions of cocaine (0.25, 0.5, or 1 mg/kg/infusion), with each infusion paired with a light+tone-conditioned stimulus. Lever-pressing was extinguished and cocaine-seeking reinstated by re-exposure to the conditioned cues or by intraperitoneal cocaine-priming injections (5 or 10 mg/kg). PNS elevated active lever responding both during extinction and cocaine-primed reinstatement, but not during self-administration or conditioned-cued reinstatement. PNS also did not alter intake during self-administration. These findings demonstrate that PNS produces enduring nervous system alterations that increase the psychomotor stimulant, motivational, and neurochemical responsiveness to noncontingent cocaine. Thus, early environmental factors contribute to an individual's initial responsiveness to cocaine and propensity to relapse to cocaine-seeking. PMID:17487224

  6. Stress enhanced diffusion of krypton ions in polycrystalline titanium

    SciTech Connect

    Nsengiyumva, S.; Raji, A. T.; Rivière, J. P.; Britton, D. T.; Härting, M.

    2014-07-14

    An experimental investigation on the mutual influence of pre-existing residual stress and point defect following ion implantation is presented. The study has been carried out using polycrystalline titanium samples energetically implanted with krypton ions at different fluences. Ion beam analysis was used to determine the concentration profile of the injected krypton ions, while synchrotron X-ray diffraction has been used for stress determination. Ion beam analysis and synchrotron X-ray diffraction stress profile measurements of the implanted titanium samples show a clear evidence of stress-enhanced diffusion of krypton ions in titanium. It is further observed that for the titanium samples implanted at low fluence, ion implantation modifies the pre-existing residual stress through the introduction of point and open volume defects. The stress fields resulting from the ion implantation act to drift the krypton inclusions towards the surface of titanium.

  7. Acute restraint stress and corticosterone transiently disrupts novelty preference in an object recognition task.

    PubMed

    Vargas-López, Viviana; Torres-Berrio, Angélica; González-Martínez, Lina; Múnera, Alejandro; Lamprea, Marisol R

    2015-09-15

    The object recognition task is a procedure based on rodents' natural tendency to explore novel objects which is frequently used for memory testing. However, in some instances novelty preference is replaced by familiarity preference, raising questions regarding the validity of novelty preference as a pure recognition memory index. Acute stress- and corticosterone administration-induced novel object preference disruption has been frequently interpreted as memory impairment; however, it is still not clear whether such effect can be actually attributed to either mnemonic disruption or altered novelty seeking. Seventy-five adult male Wistar rats were trained in an object recognition task and subjected to either acute stress or corticosterone administration to evaluate the effect of stress or corticosterone on an object recognition task. Acute stress was induced by restraining movement for 1 or 4h, ending 30 min before the sample trial. Corticosterone was injected intraperitoneally 10 min before the test trial which was performed either 1 or 24h after the sample trial. Four-hour, but not 1-h, stress induced familiar object preference during the test trial performed 1h after the sample trial; however, acute stress had no effects on the test when performed 24h after sample trial. Systemic administration of corticosterone before the test trial performed either 1 or 24h after the sample trial also resulted in familiar object preference. However, neither acute stress nor corticosterone induced changes in locomotor behaviour. Taken together, such results suggested that acute stress probably does not induce memory retrieval impairment but, instead, induces an emotional arousing state which motivates novelty avoidance. PMID:25986403

  8. Media's role in broadcasting acute stress following the Boston Marathon bombings.

    PubMed

    Holman, E Alison; Garfin, Dana Rose; Silver, Roxane Cohen

    2014-01-01

    We compared the impact of media vs. direct exposure on acute stress response to collective trauma. We conducted an Internet-based survey following the Boston Marathon bombings between April 29 and May 13, 2013, with representative samples of residents from Boston (n = 846), New York City (n = 941), and the remainder of the United States (n = 2,888). Acute stress symptom scores were comparable in Boston and New York [regression coefficient (b) = 0.43; SE = 1.42; 95% confidence interval (CI), -2.36, 3.23], but lower nationwide when compared with Boston (b = -2.21; SE = 1.07; 95% CI, -4.31, -0.12). Adjusting for prebombing mental health (collected prospectively), demographics, and prior collective stress exposure, six or more daily hours of bombing-related media exposure in the week after the bombings was associated with higher acute stress than direct exposure to the bombings (continuous acute stress symptom total: media exposure b = 15.61 vs. direct exposure b = 5.69). Controlling for prospectively collected prebombing television-watching habits did not change the findings. In adjusted models, direct exposure to the 9/11 terrorist attacks and the Sandy Hook School shootings were both significantly associated with bombing-related acute stress; Superstorm Sandy exposure wasn't. Prior exposure to similar and/or violent events may render some individuals vulnerable to the negative effects of collective traumas. Repeatedly engaging with trauma-related media content for several hours daily shortly after collective trauma may prolong acute stress experiences and promote substantial stress-related symptomatology. Mass media may become a conduit that spreads negative consequences of community trauma beyond directly affected communities. PMID:24324161

  9. Stress-enhanced swelling of metal during irradiation

    SciTech Connect

    Garner, F.A.; Gilbert, E.R.; Porter, D.L.

    1980-04-01

    Data are available which show that stress plays a major role in the development of radiation-induced void growth in AISI 316 and many other alloys. Earlier experiments came to the opposite conclusion and are shown to have investigated stress levels which inadvertantly cold-worked the material. Stress-affected swelling spans the entire temperature range in fast reactor irradiations and accelerates with increasing irradiatin temperature. It also appears to operate in all alloy starting conditions investigated. Two major microstructural mechanisms appear to be causing the enhancement of swelling, which for tensile stresses is manifested primarily as a decrease in the incubation period. These mechanisms are stress-induced changes in the interstitial capture efficiency of voids and stress-induced changes in the vacancy emission rate of various microstructural components. There also appears to be an enhancement of intermetallic phase formation with applied stress and this is shown to increase swelling by accelerating the microchemical evolution that precedes void growth at high temperature. This latter consideration complicates the extrapolation of these data to compressive stress states.

  10. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    PubMed Central

    Hacioglu, Gulay; Senturk, Ayse; Ince, Imran; Alver, Ahmet

    2016-01-01

    Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT) and superoxide dismutase (SOD) enzymes, and the amount of malondialdehyde (MDA) were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain. PMID:27279982

  11. The evolution of the painful sensitivity in acute and chronic stress.

    PubMed

    Cristea, A; Ciobanu, A; Stoenescu, M; Rusei, I

    1994-01-01

    The clinical research was made on two groups of young volunteer students. We considered stress consisting in chronic informational overexposure during the examination session and the acute stress from their emotions before a hard examination. The painful sensitivity was analysed by measuring the retraction time of the finger from water at 55 degrees C. The experimental research was made on a group of 100 male mice. The acute stress was performed by subjecting each mouse to swim (behavioral despair test). Painful sensitivity was determined by the test of the hot plate heated at 50 degrees C. Individuals with hyper (H) and hypo (h) painful sensitivity were selected for the tests. In chronic stress, the results proved increased painful sensitivity (hyperalgia) more important at "h" compared to "H" (p < 0.05). In acute stress decreased painful sensitivity (stress analgesia) was noticed more significant at "H" compared to h" (p < 0.05). All these results suggested that the extreme "H" and "h" are two different stress behaviors with opposite mechanisms involved in stress analgesia. This hypothesis is related with studies which demonstrate the involvement in stress analgesia of non-opioid monoaminergic mechanisms together with the opioid mechanisms (Lewis, 1980). PMID:8640371

  12. Acute pulmonary edema due to stress cardiomyopathy in a patient with aortic stenosis: a case report

    PubMed Central

    2009-01-01

    Introduction Stress cardiomyopathy is a condition of chest pain, breathlessness, abnormal heart rhythms and sometimes congestive heart failure or shock precipitated by intense mental or physical stress. Case presentation A 64-year-old male with a known diagnosis of moderate-to-severe aortic stenosis and advised that valve replacement was not urgent, presented with acute pulmonary edema following extraordinary mental distress. The patient was misdiagnosed as having a "massive heart attack" and died when managed by a traditional protocol for acute myocardial infarction/coronary artery disease, irrespective of his known aortic stenosis. Conclusion Intense mental stress poses a considerable risk, particularly to patients with significant aortic stenosis. As described here, it can precipitate acute pulmonary edema. Importantly, effective management of acute pulmonary edema due to stress cardiomyopathy in patients with known aortic stenosis requires its distinction from acute pulmonary edema caused by an acute myocardial infarction. Treatment options include primarily urgent rhythm and/or rate control, as well as cautious vasodilation. PMID:20062645

  13. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  14. Chronic stress increases the opioid-mediated inhibition of the pituitary-adrenocortical response to acute stress in pigs.

    PubMed

    Janssens, C J; Helmond, F A; Loyens, L W; Schouten, W G; Wiegant, V M

    1995-04-01

    The role of endogenous opioid mechanisms in the pituitary-adrenocortical response to acute stress was investigated in a longitudinal study in cyclic female pigs before and after exposure to chronic stress (long term tethered housing). Challenge of loose-housed pigs with acute nose-sling stress for 15 min induced an activation of the hypothalamic-pituitary-adrenocortical axis, evidenced by a transient increase in plasma ACTH (peak height above basal, 98 +/- 12 pg/ml; mean +/- SEM) and cortisol (54 +/- 3 ng/ml) concentrations. Pretreatment with the opioid receptor antagonist naloxone (0.5 mg/kg BW, iv bolus) increased the challenge-induced ACTH and cortisol responses to 244 +/- 36 pg/ml and 65 +/- 5 ng/ml, respectively. This indicates that during acute nose-sling stress, endogenous opioid systems are activated that inhibit the pituitary-adrenocortical response. After exposure of the pigs to chronic stress (10-11 weeks of tethered housing), the challenge-induced ACTH response was attenuated, whereas the cortisol response remained unchanged, suggesting an increased adrenocortical sensitivity to circulating ACTH. In addition, pretreatment with naloxone induced a greater increment in the ACTH and cortisol responses in tethered pigs than in loose-housed pigs. As no such changes were found in control animals housed loose during the entire experimental period, this indicates that the impact of opioid systems had increased due to chronic stress. The increased impact of opioid systems during chronic stress may prevent excessive hypothalamic-pituitary-adrenocortical responses to acute stressors and, thus, may be of adaptive value. PMID:7895656

  15. Aroclor 1254 disrupts liver glycogen metabolism and enhances acute stressor-mediated glycogenolysis in rainbow trout.

    PubMed

    Wiseman, Steve; Vijayan, Mathilakath M

    2011-09-01

    The objective of this study was to investigate the impact of short-term exposure to polychlorinated biphenyls on the acute stress response in rainbow trout. Fish were exposed to dietary Aroclor1254 (10mg kg(-1) body mass/day) for 3 days and then subjected to a 3-min handling disturbance and sampled over a 24h recovery after the stressor exposure. In the pre-stress fish, PCB exposure significantly elevated aryl hydrocarbon receptor (AhR) and cytochrome P4501A1 (Cyp1A1) mRNA abundance and Cyp1A protein expression confirming AhR activation. There was no significant effect of PCB on plasma cortisol and glucose levels, while plasma lactate levels were significantly elevated compared to the sham group. PCB exposure significantly elevated liver glycogen content and hexokinase activity, whereas lactate dehydrogenase activity was depressed. Short-term PCB exposure did not modify the acute stressor-induced plasma cortisol, glucose and lactate responses. Liver glycogen content dropped significantly after stressor exposure in the PCB group but not in the sham group. This was matched by a significantly higher liver LDH activity and a lower HK activity during recovery in the PCB group suggesting enhanced glycolytic capacity to fuel hepatic metabolism. Liver AhR, but not Cyp1A1, transcript levels were significantly reduced during recovery from handling stressor in the Aroclor fed fish. Collectively, this study demonstrates that short-term PCB exposure may impair the liver metabolic performance that is critical to cope with the enhanced energy demand associated with additional stressor exposure in rainbow trout. PMID:21745595

  16. The influence of acute stress on the regulation of conditioned fear

    PubMed Central

    Raio, Candace M.; Phelps, Elizabeth A.

    2014-01-01

    Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation), and briefly discuss other techniques (avoidance and reconsolidation) where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology. PMID:25530986

  17. Emmental Cheese Environment Enhances Propionibacterium freudenreichii Stress Tolerance.

    PubMed

    Gagnaire, Valérie; Jardin, Julien; Rabah, Houem; Briard-Bion, Valérie; Jan, Gwénaël

    2015-01-01

    Dairy propionibacteria are actinomycetales found in various fermented food products. The main species, Propionibacterium freudenreichii, is generally recognized as safe and used both as probiotic and as cheese starter. Its probiotic efficacy tightly depends on its tolerance towards digestive stresses, which can be largely modulated by the ingested delivery vehicle. Indeed, tolerance of this bacterium is enhanced when it is consumed within a fermented dairy product, compared to a dried probiotic preparation. We investigated both stress tolerance and protein neosynthesis upon growth in i) chemically defined or ii) aqueous phase of Emmental cheeses. Although the same final population level was reached in both media, a slower growth and an enhanced survival of CIRM BIA 1 strain of P. freudenreichii subsp. shermanii was observed in Emmental juice, compared to chemically defined medium. This was accompanied by differences in substrates used and products released as well as overexpression of various early stress adaptation proteins in Emmental juice, compared to chemically defined medium, implied in protein folding, in aspartate catabolism, in biosynthesis of valine, leucine and isoleucine, in pyruvate metabolism in citrate cycle, in the propionate metabolism, as well as in oxidoreductases. All these changes led to a higher digestive stress tolerance after growth in Emmental juice. Mechanisms of stress adaptation were induced in this environment, in accordance with enhanced survival. This opens perspectives for the use of hard and semi-hard cheeses as delivery vehicle for probiotics with enhanced efficacy. PMID:26275229

  18. Emmental Cheese Environment Enhances Propionibacterium freudenreichii Stress Tolerance

    PubMed Central

    Gagnaire, Valérie; Jardin, Julien; Rabah, Houem; Briard-Bion, Valérie; Jan, Gwénaël

    2015-01-01

    Dairy propionibacteria are actinomycetales found in various fermented food products. The main species, Propionibacterium freudenreichii, is generally recognized as safe and used both as probiotic and as cheese starter. Its probiotic efficacy tightly depends on its tolerance towards digestive stresses, which can be largely modulated by the ingested delivery vehicle. Indeed, tolerance of this bacterium is enhanced when it is consumed within a fermented dairy product, compared to a dried probiotic preparation. We investigated both stress tolerance and protein neosynthesis upon growth in i) chemically defined or ii) aqueous phase of Emmental cheeses. Although the same final population level was reached in both media, a slower growth and an enhanced survival of CIRM BIA 1 strain of P. freudenreichii subsp. shermanii was observed in Emmental juice, compared to chemically defined medium. This was accompanied by differences in substrates used and products released as well as overexpression of various early stress adaptation proteins in Emmental juice, compared to chemically defined medium, implied in protein folding, in aspartate catabolism, in biosynthesis of valine, leucine and isoleucine, in pyruvate metabolism in citrate cycle, in the propionate metabolism, as well as in oxidoreductases. All these changes led to a higher digestive stress tolerance after growth in Emmental juice. Mechanisms of stress adaptation were induced in this environment, in accordance with enhanced survival. This opens perspectives for the use of hard and semi-hard cheeses as delivery vehicle for probiotics with enhanced efficacy. PMID:26275229

  19. Stress enhanced shear yielding in aging polymer glasses

    NASA Astrophysics Data System (ADS)

    Rottler, Joerg; Liu, Amy Y.-H.

    2010-03-01

    The plastic response of polymer glasses is strongly dependent on the thermomechanical history of the material. We determine the molecular level origin of the enhancement of the shear yield stress reported in experiments of polymer glasses that undergo physical aging in the presence of a pre-stress. Molecular dynamics simulations are employed to show that the applied stress does not alter the physical aging rate, but instead induces a highly orientation-dependent mechanical response of the polymer glass. The change in yield stress with respect to polymers that have aged without pre-stress is directly proportional to the orientation of covalent bonds, which is proportional to strain and logarithmic aging time. We observe a pronounced Bauschinger effect, which amplifies or reduces the pressure dependence of shear yielding. Control simulations with a monovalent Lennard-Jones glass offer further evidence that these effects are distinct from other rejuvenation and overaging behavior reported for a broad class of amorphous solids.

  20. Enhanced vagal baroreflex response during 24 h after acute exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Adams, W. C.

    1991-01-01

    We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.

  1. Being a grump only makes things worse: a transactional account of acute stress on mind wandering

    PubMed Central

    Vinski, Melaina T.; Watter, Scott

    2013-01-01

    The current work investigates the influence of acute stress on mind wandering. Participants completed the Positive and Negative Affect Schedule as a measure of baseline negative mood, and were randomly assigned to either the high-stress or low-stress version of the Trier Social Stress Test. Participants then completed the Sustained Attention to Response Task as a measure of mind-wandering behavior. In Experiment 1, participants reporting a high degree of negative mood that were exposed to the high-stress condition were more likely to engage in a variable response time, make more errors, and were more likely to report thinking about the stressor relative to participants that report a low level of negative mood. These effects diminished throughout task performance, suggesting that acute stress induces a temporary mind-wandering state in participants with a negative mood. The temporary affect-dependent deficits observed in Experiment 1 were replicated in Experiment 2, with the high negative mood participants demonstrating limited resource availability (indicated by pupil diameter) immediately following stress induction. These experiments provide novel evidence to suggest that acute psychosocial stress briefly suppresses the availability of cognitive resources and promotes an internally oriented focus of attention in participants with a negative mood. PMID:24273520

  2. Amphetamine sensitization and cross-sensitization with acute restraint stress: impact of prenatal alcohol exposure in male and female rats

    PubMed Central

    Uban, Kristina A.; Comeau, Wendy L.; Bodnar, Tamara; Yu, Wayne K.; Weinberg, Joanne; Galea, Liisa A. M.

    2014-01-01

    Rationale Individuals with fetal alcohol spectrum disorder (FASD) are at increased risk for substance use disorders (SUD). In typically developing individuals, susceptibility to SUD is associated with alterations in dopamine and hypothalamic-pituitary-adrenal (HPA) systems, and their interactions. Prenatal alcohol exposure (PAE) alters dopamine and HPA systems, yet effects of PAE on dopamine-HPA interactions are unknown. Amphetamine-stress cross-sensitization paradigms were utilized to investigate sensitivity of dopamine and stress (HPA) systems, and their interactions following PAE. Methods Adult Sprague-Dawley offspring from PAE, pair-fed, and ad libitum-fed control groups were assigned to amphetamine-(1–2mg/kg) or saline-treated conditions, with injections every other day for 15 days. 14 days later, all animals received an amphetamine challenge (1mg/kg) and 5 days later, hormones were measured under basal or acute stress conditions. Amphetamine sensitization (augmented locomotion, days 1–29) and cross-sensitization with acute restraint stress (increased stress hormones, day 34) were assessed. Results PAE rats exhibited a lower threshold for amphetamine sensitization compared to controls, suggesting enhanced sensitivity of dopaminergic systems to stimulant-induced changes. Cross-sensitization between amphetamine (dopamine) and stress (HPA hormone) systems was evident in PAE, but not in control rats. PAE males exhibited increased dopamine receptor expression (mPFC) compared to controls. Conclusions PAE alters induction and expression of sensitization/cross-sensitization, as reflected in locomotor, neural, and endocrine changes, in a manner consistent with increased sensitivity of dopamine and stress systems. These results provide insight into possible mechanisms that could underlie increased prevalence of SUD, as well as the impact of widely prescribed stimulant medications among adolescents with FASD. PMID:25420606

  3. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress.

    PubMed

    Li, Sisi; Papale, Ligia A; Zhang, Qi; Madrid, Andy; Chen, Li; Chopra, Pankaj; Keleş, Sündüz; Jin, Peng; Alisch, Reid S

    2016-02-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders, including anxiety and post-traumatic stress disorder. While even acute stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, we found a hippocampal increase of 5hmC in the glucocorticoid receptor gene (Nr3c1) following acute stress, warranting a deeper investigation of stress-related 5hmC levels. Here we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate the first genome-wide profile of hippocampal 5hmC following exposure to acute restraint stress and a one-hour recovery. This approach found a genome-wide disruption in 5hmC associated with acute stress response, primarily in genic regions, and identified known and potentially novel stress-related targets that have a significant enrichment for neuronal ontological functions. Integration of these data with hippocampal gene expression data from these same mice found stress-related hydroxymethylation correlated to altered transcript levels and sequence motif predictions indicated that 5hmC may function by mediating transcription factor binding to these transcripts. Together, these data reveal an environmental impact on this newly discovered epigenetic mark in the brain and represent a critical step toward understanding stress-related epigenetic mechanisms that alter gene expression and can lead to the development of psychiatric disorders. PMID:26598390

  4. Overcoming the effects of acute stress through good teamwork practices

    SciTech Connect

    Harrington, D.K. ); Gaddy, C.D. )

    1992-01-01

    Two recent industry studies have taken a look at operators in stressful situations. In the context of severe-accident management, Mumaw et al. discussed four approaches to training operators for severe accidents: (1) training for knowledge or procedural skills; (2) training decision makers about goals and plans; (3) training to avoid cognitive biases; and (4) training within a realistic setting. These four approaches address directly the cognitive skills important for decision making. These types of training can also address indirectly the effects of stress on performance. First, effects of stress on decision making, such as reduced working memory, can be addressed by training cognitive skills. Second, exposure to realistically stressful situations can reduce the novelty and uncertainty, which is a primary cause of stress reactions. In a second study reported by Desaulniers, the stress of requalification exams was the focus. Desaulniers concluded that repeated changes in the exam process, inconsistency in interpretation of examiner guidelines, and some content and grading practices resulted in undue stress for the operators. The US Nuclear Regulatory Commission staff actions to remedy these sources of undue stress were described.

  5. Models and Methods to Investigate Acute Stress Responses in Cattle

    PubMed Central

    Chen, Yi; Arsenault, Ryan; Napper, Scott; Griebel, Philip

    2015-01-01

    There is a growing appreciation within the livestock industry and throughout society that animal stress is an important issue that must be addressed. With implications for animal health, well-being, and productivity, minimizing animal stress through improved animal management procedures and/or selective breeding is becoming a priority. Effective management of stress, however, depends on the ability to identify and quantify the effects of various stressors and determine if individual or combined stressors have distinct biological effects. Furthermore, it is critical to determine the duration of stress-induced biological effects if we are to understand how stress alters animal production and disease susceptibility. Common stress models used to evaluate both psychological and physical stressors in cattle are reviewed. We identify some of the major gaps in our knowledge regarding responses to specific stressors and propose more integrated methodologies and approaches to measuring these responses. These approaches are based on an increased knowledge of both the metabolic and immune effects of stress. Finally, we speculate on how these findings may impact animal agriculture, as well as the potential application of large animal models to understanding human stress. PMID:26633525

  6. Microorganisms having enhanced tolerance to inhibitors and stress

    DOEpatents

    Brown, Steven D.; Yang, Shihui

    2014-07-29

    The present invention provides genetically modified strains of microorganisms that display enhanced tolerance to stress and/or inhibitors such as sodium acetate and vanillin. The enhanced tolerance can be achieved by increasing the expression of a protein of the Sm-like superfamily such as a bacterial Hfq protein and a fungal Sm or Lsm protein. Further, the present invention provides methods of producing alcohol from biomass materials by using the genetically modified microorganisms of the present invention.

  7. Effects of Acute Laboratory Stress on Executive Functions

    PubMed Central

    Starcke, Katrin; Wiesen, Carina; Trotzke, Patrick; Brand, Matthias

    2016-01-01

    Recent research indicates that stress can affect executive functioning. However, previous results are mixed with respect to the direction and size of effects, especially when considering different subcomponents of executive functions. The current study systematically investigates the effects of stress on the five components of executive functions proposed by Smith and Jonides (1999): attention and inhibition; task management; planning; monitoring; and coding. Healthy participants (N = 40) were either exposed to the computerized version of the Paced Auditory Serial Addition Test as a stressor (N = 20), or to a rest condition (N = 20). Stress reactions were assessed with heart rate and subjective measures. After the experimental manipulation, all participants performed tasks that measure the different executive functions. The manipulation check indicates that stress induction was successful (i.e., the stress group showed a higher heart rate and higher subjective responses than the control group). The main results demonstrate that stressed participants show a poorer performance compared with unstressed participants in all executive subcomponents, with the exception of monitoring. Effect sizes for the tasks that reveal differences between stressed and unstressed participants are high. We conclude that the laboratory stressor used here overall reduced executive functioning. PMID:27065926

  8. Metabolic Changes in Masseter Muscle of Rats Submitted to Acute Stress Associated with Exodontia

    PubMed Central

    Iyomasa, Mamie Mizusaki; Fernandes, Fernanda Silva; Iyomasa, Daniela Mizusaki; Pereira, Yamba Carla Lara; Fernández, Rodrigo Alberto Restrepo; Calzzani, Ricardo Alexandre; Nascimento, Glauce Crivelaro; Leite-Panissi, Christie Ramos Andrade; Issa, João Paulo Mardegan

    2015-01-01

    Clinical evidence has shown that stress may be associated with alterations in masticatory muscle functions. Morphological changes in masticatory muscles induced by occlusal alterations and associated with emotional stress are still lacking in the literature. The objective of this study was to evaluate the influence of acute stress on metabolic activity and oxidative stress of masseter muscles of rats subjected to occlusal modification through morphological and histochemical analyses. In this study, adult Wistar rats were divided into 4 groups: a group with extraction and acute stress (E+A); group with extraction and without stress (E+C); group without extraction and with acute stress (NO+A); and control group without both extraction and stress (NO+C). Masseter muscles were analyzed by Succinate Dehydrogenase (SDH), Nicotinamide Adenine Dinucleotide Diaphorase (NADH) and Reactive Oxygen Species (ROS) techniques. Statistical analyses and two-way ANOVA were applied, followed by Tukey-Kramer tests. In the SDH test, the E+C, E+A and NO+A groups showed a decrease in high desidrogenase activities fibers (P < 0.05), compared to the NO+C group. In the NADH test, there was no difference among the different groups. In the ROS test, in contrast, E+A, E+C and NO+A groups showed a decrease in ROS expression, compared to NO+C groups (P < 0.05). Modified dental occlusion and acute stress - which are important and prevalent problems that affect the general population - are important etiologic factors in metabolic plasticity and ROS levels of masseter muscles. PMID:26053038

  9. Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude.

    PubMed

    Zhang, Ji; Friedman, Morton H

    2012-02-15

    The adaptation of vascular endothelial cells to shear stress alteration induced by global hemodynamic changes, such as those accompanying exercise or digestion, is an essential component of normal endothelial physiology in vivo. An understanding of the transient regulation of endothelial phenotype during adaptation to changes in mural shear will advance our understanding of endothelial biology and may yield new insights into the mechanism of atherogenesis. In this study, we characterized the adaptive response of arterial endothelial cells to an acute increase in shear stress magnitude in well-defined in vitro settings. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dyn/cm(2) at 1 Hz for 24 h, after which an acute increase in shear stress to 30 ± 15 dyn/cm(2) was applied. Endothelial permeability nearly doubled after 40-min exposure to the elevated shear stress and then decreased gradually. Transcriptomics studies using microarray techniques identified 86 genes that were sensitive to the elevated shear. The acute increase in shear stress promoted the expression of a group of anti-inflammatory and antioxidative genes. The adaptive response of the global gene expression profile is triphasic, consisting of an induction period, an early adaptive response (ca. 45 min) and a late remodeling response. Our results suggest that endothelial cells exhibit a specific phenotype during the adaptive response to changes in shear stress; this phenotype is different than that of fully adapted endothelial cells. PMID:22140046

  10. Acute stress and episodic memory retrieval: neurobiological mechanisms and behavioral consequences.

    PubMed

    Gagnon, Stephanie A; Wagner, Anthony D

    2016-04-01

    Episodic retrieval allows people to access memories from the past to guide current thoughts and decisions. In many real-world situations, retrieval occurs under conditions of acute stress, either elicited by the retrieval task or driven by other, unrelated concerns. Memory under such conditions may be hindered, as acute stress initiates a cascade of neuromodulatory changes that can impair episodic retrieval. Here, we review emerging evidence showing that dissociable stress systems interact over time, influencing neural function. In addition to the adverse effects of stress on hippocampal-dependent retrieval, we consider how stress biases attention and prefrontal cortical function, which could further affect controlled retrieval processes. Finally, we consider recent data indicating that stress at retrieval increases activity in a network of brain regions that enable reflexive, rapid responding to upcoming threats, while transiently taking offline regions supporting flexible, goal-directed thinking. Given the ubiquity of episodic memory retrieval in everyday life, it is critical to understand the theoretical and applied implications of acute stress. The present review highlights the progress that has been made, along with important open questions. PMID:26799371

  11. Acute psychosocial stress and emotion regulation skills modulate empathic reactions to pain in others.

    PubMed

    Buruck, Gabriele; Wendsche, Johannes; Melzer, Marlen; Strobel, Alexander; Dörfel, Denise

    2014-01-01

    Psychosocial stress affects resources for adequate coping with environmental demands. A crucial question in this context is the extent to which acute psychosocial stressors impact empathy and emotion regulation. In the present study, 120 participants were randomly assigned to a control group vs. a group confronted with the Trier Social Stress Test (TSST), an established paradigm for the induction of acute psychosocial stress. Empathy for pain as a specific subgroup of empathy was assessed via pain intensity ratings during a pain-picture task. Self-reported emotion regulation skills were measured as predictors using an established questionnaire. Stressed individuals scored significantly lower on the appraisal of pain pictures. A regression model was chosen to find variables that further predict the pain ratings. These findings implicate that acute psychosocial stress might impair empathic processes to observed pain in another person and the ability to accept one's emotion additionally predicts the empathic reaction. Furthermore, the ability to tolerate negative emotions modulated the relation between stress and pain judgments, and thus influenced core cognitive-affective functions relevant for coping with environmental challenges. In conclusion, our study emphasizes the necessity of reducing negative emotions in terms of empathic distress when confronted with pain of another person under psychosocial stress, in order to be able to retain pro-social behavior. PMID:24910626

  12. Acute psychosocial stress and emotion regulation skills modulate empathic reactions to pain in others

    PubMed Central

    Buruck, Gabriele; Wendsche, Johannes; Melzer, Marlen; Strobel, Alexander; Dörfel, Denise

    2014-01-01

    Psychosocial stress affects resources for adequate coping with environmental demands. A crucial question in this context is the extent to which acute psychosocial stressors impact empathy and emotion regulation. In the present study, 120 participants were randomly assigned to a control group vs. a group confronted with the Trier Social Stress Test (TSST), an established paradigm for the induction of acute psychosocial stress. Empathy for pain as a specific subgroup of empathy was assessed via pain intensity ratings during a pain-picture task. Self-reported emotion regulation skills were measured as predictors using an established questionnaire. Stressed individuals scored significantly lower on the appraisal of pain pictures. A regression model was chosen to find variables that further predict the pain ratings. These findings implicate that acute psychosocial stress might impair empathic processes to observed pain in another person and the ability to accept one's emotion additionally predicts the empathic reaction. Furthermore, the ability to tolerate negative emotions modulated the relation between stress and pain judgments, and thus influenced core cognitive-affective functions relevant for coping with environmental challenges. In conclusion, our study emphasizes the necessity of reducing negative emotions in terms of empathic distress when confronted with pain of another person under psychosocial stress, in order to be able to retain pro-social behavior. PMID:24910626

  13. Dual-task performance under acute stress in female adolescents with borderline personality disorder.

    PubMed

    Kaess, Michael; Parzer, Peter; Koenig, Julian; Resch, Franz; Brunner, Romuald

    2016-09-01

    Research to elucidate early alterations of higher cognitive processes in adolescents with BPD is rare. This study investigated differences in dual-task performance in adolescents with BPD during stress and non-stress conditions. The study sample comprised 30 female adolescents with BPD and 34 healthy controls. The impact of stress on dual-task performance was measured using a standardized stressor. Self-reports of distress and measures of heart rate (HR) were obtained to measure stress reactivity. There were no group differences in task performance. Under stress conditions, the performance on the auditory task decreased in both groups but without significant group differences. Healthy controls showed an increase of mean HR after stress induction compared to no change in the BPD group. The finding of attenuated HR response to acute stress in adolescent patients with BPD may contradict current theories that the affective hyperresponsivity in BPD is based on a biologically determined mechanism. PMID:26852226

  14. Acute Stress Increases Sex Differences in Risk Seeking in the Balloon Analogue Risk Task

    PubMed Central

    Lighthall, Nichole R.; Mather, Mara; Gorlick, Marissa A.

    2009-01-01

    Background Decisions involving risk often must be made under stressful circumstances. Research on behavioral and brain differences in stress responses suggest that stress might have different effects on risk taking in males and females. Methodology/Principal Findings In this study, participants played a computer game designed to measure risk taking (the Balloon Analogue Risk Task) fifteen minutes after completing a stress challenge or control task. Stress increased risk taking among men but decreased it among women. Conclusions/Significance Acute stress amplifies sex differences in risk seeking; making women more risk avoidant and men more risk seeking. Evolutionary principles may explain these stress-induced sex differences in risk taking behavior. PMID:19568417

  15. Acute Stress Induces Hyperacusis in Women with High Levels of Emotional Exhaustion

    PubMed Central

    Hasson, Dan; Theorell, Töres; Bergquist, Jonas; Canlon, Barbara

    2013-01-01

    Background Hearing problems is one of the top ten public health disorders in the general population and there is a well-established relationship between stress and hearing problems. The aim of the present study was to explore if an acute stress will increase auditory sensitivity (hyperacusis) in individuals with high levels of emotional exhaustion (EE). Methods Hyperacusis was assessed using uncomfortable loudness levels (ULL) in 348 individuals (140 men; 208 women; age 23–71 years). Multivariate analyses (ordered logistic regression), were used to calculate odds ratios, including interacting or confounding effects of age, gender, ear wax and hearing loss (PTA). Two-way ANCOVAs were used to assess possible differences in mean ULLs between EE groups pre- and post-acute stress task (a combination of cold pressor, emotional Stroop and Social stress/video recording). Results There were no baseline differences in mean ULLs between the three EE groups (one-way ANOVA). However, after the acute stress exposure there were significant differences in ULL means between the EE-groups in women. Post-hoc analyses showed that the differences in mean ULLs were between those with high vs. low EE (range 5.5–6.5 dB). Similar results were found for frequencies 0.5 and 1 kHz. The results demonstrate that women with high EE-levels display hyperacusis after an acute stress task. The odds of having hyperacusis were 2.5 (2 kHz, right ear; left ns) and 2.2 (4 kHz, right ear; left ns) times higher among those with high EE compared to those with low levels. All these results are adjusted for age, hearing loss and ear wax. Conclusion Women with high levels of emotional exhaustion become more sensitive to sound after an acute stress task. This novel finding highlights the importance of including emotional exhaustion in the diagnosis and treatment of hearing problems. PMID:23301005

  16. Stress among nurses working in an acute hospital in Ireland.

    PubMed

    Donnelly, Teresa

    Stress among nurses leads to absenteeism, reduced efficiency, long-term health problems and a decrease in the quality of patient care delivered. A quantitative cross-sectional study was conducted. The study's aim was to identify perceived stressors and influencing factors among nurses working in the critical and non-critical care practice areas. A convenience sample of 200 nurses were invited to complete the Bianchi Stress Questionnaire. Information was collected on demographics and daily nursing practice. Findings indicated that perceived stressors were similar in both groups. The most severe stressors included redeployment to work in other areas and staffing levels. Results from this study suggest that age, job title, professional experience and formal post-registration qualifications had no influence on stress perception. These results will increase awareness of nurses' occupational stress in Ireland. PMID:25072339

  17. Acute Psychological Stress Results in the Rapid Development of Insulin Resistance

    PubMed Central

    Li, Li; Li, Xiaohua; Zhou, Wenjun; Messina, Joseph L.

    2013-01-01

    In recent years, the roles of chronic stress and depression as an independent risk factor for decreased insulin sensitivity and the development of diabetes have been increasingly recognized. However, an understanding and the mechanisms linking insulin resistance and acute psychological stress are very limited. We hypothesized that acute psychological stress may cause the development of insulin resistance, which may be a risk factor in developing type 2 diabetes. We tested the hypothesis in a well-established mouse model using 180 episodes of inescapable foot shock (IES), followed by a behavioral escape test. In this study, mice that received IES treatment were tested for acute insulin resistance by measuring glucose metabolism and insulin signaling. When compared to normal and sham mice, mice that were exposed to IES resulting in escape failure (defined as IES with behavioral escape failure) displayed elevated blood glucose levels in both glucose tolerance and insulin tolerance tests. Furthermore, mice with IES exposure and behavioral escape failure exhibited impaired hepatic insulin signaling via the insulin-induced insulin receptor/insulin receptor substrate 1/Akt pathway, without affecting similar pathways in skeletal muscle, adipose tissue and brain. Additionally, a rise in murine growth-related oncogene KC/GRO was associated with impaired glucose metabolism in IES mice, suggesting a mechanism by which psychological stress by IES may influence glucose metabolism. The present results indicate that psychological stress induced by IES can acutely alter hepatic responsiveness to insulin and affect whole-body glucose metabolism. PMID:23444388

  18. Longitudinal platelet reactivity to acute psychological stress among older men and women.

    PubMed

    Aschbacher, Kirstin; von Känel, Roland; Mills, Paul J; Roepke, Susan K; Hong, Suzi; Dimsdale, Joel E; Mausbach, Brent T; Patterson, Thomas L; Ziegler, Michael G; Ancoli-Israel, Sonia; Grant, Igor

    2009-09-01

    Platelet reactivity to acute stress is associated with increased cardiovascular disease risk; however, little research exists to provide systematic methodological foundations needed to generate strong longitudinal research designs. Study objectives were: 1) to evaluate whether markers of platelet function increase in response to an acute psychological stress test among older adults, 2) to establish whether reactivity remains robust upon repeated administration (i.e. three occasions approximately 1 year apart), and 3) to evaluate whether two different acute speech stress tasks elicit similar platelet responses. The 149 subjects (mean age 71 years) gave a brief impromptu speech on one of two randomly assigned topics involving interpersonal conflict. Blood samples drawn at baseline and post-speech were assayed using flow cytometry for platelet responses on three outcomes (% aggregates, % P-selectin expression, and % fibrinogen receptor expression). Three-level hierarchical linear modeling analyses revealed significant stress-induced increases in platelet activation on all outcomes (p < 0.001). No significant habituation on any measure was found. Additional reactivity differences were associated with male gender, history of myocardial infarction, and use of aspirin, statins, and antidepressants. The results demonstrate that laboratory acute stress tests continued to produce robust platelet reactivity on three activation markers among older adults over 3 years. PMID:19096987

  19. Acute stress, depression, and anxiety symptoms among English and Spanish speaking children with recent trauma exposure.

    PubMed

    Barber, Beth A; Kohl, Krista L; Kassam-Adams, Nancy; Gold, Jeffrey I

    2014-03-01

    A growing literature suggests the clinical importance of acute stress disorder symptoms in youth following potentially traumatic events. A multisite sample of English and Spanish speaking children and adolescents (N = 479) between the ages of 8-17, along with their caregivers completed interviews and self-report questionnaires between 2 days and 1 month following the event. The results indicate that children with greater total acute stress symptoms reported greater depressive (r = .41, p < .01) and anxiety symptoms (r = .53, p < .01). Examining specific acute stress subscales, reexperiencing was correlated with anxiety (r = .47, p < .01) and arousal was correlated with depression (r = .50, p < .01) and anxiety (r = .55, p < .01). Age was inversely associated with total acute stress symptoms (r = -.24, p < .01), reexperiencing (r = -.17, p < .01), avoidance (r = -.27, p < .01), and arousal (r = -.19, p < .01) and gender was related to total anxiety symptoms (Spearman's ρ = .17, p < .01). The current study supports the importance of screening acute stress symptoms and other mental health outcomes following a potentially traumatic event in children and adolescents. Early screening may enable clinicians to identify and acutely intervene to support children's psychological and physical recovery. PMID:24337685

  20. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    PubMed Central

    Buechel, Heather M.; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L.; Thibault, Olivier; Blalock, Eric M.

    2013-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9–12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors. PMID:24575039

  1. Effects of acute handling stress on cerebral monoaminergic neurotransmitters in juvenile Senegalese sole Solea senegalensis.

    PubMed

    Weber, R A; Pérez Maceira, J J; Aldegunde, M J; Peleteiro, J B; García Martín, L O; Aldegunde, M

    2015-11-01

    Juvenile Senegalese sole Solea senegalensis were subjected for short periods to two different types of handling-related stress: air exposure stress and net handling stress. The S. senegalensis were sacrificed 2 and 24 h after the stress events and the levels of serotonin (5-HT), noradrenaline (NA), dopamine (DA) and their respective major metabolites, 5-hydroxyindoleacetic acid (5-HIAA), 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenylacetic acid (DOPAC), were measured in three brain regions (telencephalon, hypothalamus and optic tectum) and compared with those in control, non-stressed S. senegalensis. Neither type of stress caused any significant alteration of serotoninergic activity (5-HIAA:5-HT ratio) or NA levels. Dopaminergic activity (DOPAC:DA ratio) was lower in stressed fish in all of the brain regions studied. For both air exposure stress and net handling stress, DA levels were significantly higher (P < 0.05) than in the control S. senegalensis. In addition, the higher DA levels after net handling stress were always significantly higher (P < 0.05) than those observed after acute air exposure stress, except in the telencephalon after 24 h. The significantly lower DOPAC:DA ratio (P < 0.05) in all of the brain regions studied was only observed in response to net handling stress. PMID:26387448

  2. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress

    PubMed Central

    Farcy, Émilie; Voiseux, Claire; Lebel, Jean-Marc

    2008-01-01

    During the annual cycle, oysters are exposed to seasonal slow changes in temperature, but during emersion at low tide on sunny summer days, their internal temperature may rise rapidly, resulting in acute heat stress. We experimentally exposed oysters to a 1-h acute thermal stress and investigated the transcriptional expression level of some genes involved in cell stress defence mechanisms, including chaperone proteins (heat shock proteins Hsp70, Hsp72 and Hsp90 (HSP)), regulation of oxidative stress (Cu-Zn superoxide dismutase, metallothionein (MT)), cell detoxification (glutathione S-transferase sigma, cytochrome P450 and multidrug resistance (MDR1)) and regulation of the cell cycle (p53). Gene mRNA levels were quantified by reverse transcription-quantitative polymerase chain reaction and expressed as their ratio to actin mRNA, used as a reference. Of the nine genes studied, HSP, MT and MDR1 mRNA levels increased in response to thermal stress. We compared the responses of oysters exposed to acute heat shock in summer and winter and observed differences in terms of magnitude and kinetics. A larger increase was observed in September, with recovery within 48 h, whereas in March, the increase was smaller and lasted more than 2 days. The results were also compared with data obtained from the natural environment. Though the functional molecule is the protein and information at the mRNA level only has limitations, the potential use of mRNAs coding for cell stress defence proteins as early sensitive biomarkers is discussed. PMID:19002605

  3. Social stress modulates the cortisol response to an acute stressor in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Jeffrey, J D; Gollock, M J; Gilmour, K M

    2014-01-15

    In rainbow trout (Oncorhynchus mykiss) of subordinate social status, circulating cortisol concentrations were elevated under resting conditions but the plasma cortisol and glucose responses to an acute stressor (confinement in a net) were attenuated relative to those of dominant trout. An in vitro head kidney preparation, and analysis of the expression of key genes in the stress axis prior to and following confinement in a net were then used to examine the mechanisms underlying suppression of the acute cortisol stress response in trout experiencing chronic social stress. With porcine adrenocorticotropic hormone (ACTH) as the secretagogue, ACTH-stimulated cortisol production was significantly lower for head kidney preparations from subordinate trout than for those from dominant trout. Dominant and subordinate fish did not, however, differ in the relative mRNA abundance of melanocortin-2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) or cytochrome P450 side chain cleavage enzyme (P450scc) within the head kidney, although the relative mRNA abundance of these genes was significantly higher in both dominant and subordinate fish than in sham trout (trout that did not experience social interactions but were otherwise treated identically to the dominant and subordinate fish). The relative mRNA abundance of all three genes was significantly higher in trout exposed to an acute net stressor than under control conditions. Upstream of cortisol production in the stress axis, plasma ACTH concentrations were not affected by social stress, nor was the relative mRNA abundance of the binding protein for corticotropin releasing factor (CRF-BP). The relative mRNA abundance of CRF in the pre-optic area of subordinate fish was significantly higher than that of dominant or sham fish 1h after exposure to the stressor. Collectively, the results indicate that chronic social stress modulates cortisol production at the level of the interrenal cells, resulting in an attenuated

  4. Differential changes in platelet reactivity induced by acute physical compared to persistent mental stress.

    PubMed

    Hüfner, Katharina; Koudouovoh-Tripp, Pia; Kandler, Christina; Hochstrasser, Tanja; Malik, Peter; Giesinger, Johannes; Semenitz, Barbara; Humpel, Christian; Sperner-Unterweger, Barbara

    2015-11-01

    Platelets are important in hemostasis, but also contain adhesion molecules, pro-inflammatory and immune-modulatory compounds, as well as most of the serotonin outside the central nervous system. Dysbalance in the serotonin pathways is involved in the pathogenesis of depressive symptoms. Thus, changes in platelet aggregation and content of bioactive compounds are of interest when investigating physiological stress-related mental processes as well as stress-related psychiatric diseases such as depression. In the present study, a characterization of platelet reactivity in acute physical and persistent mental stress was performed (aggregation, serotonin and serotonin 2A-receptor, P-selectin, CD40 ligand, matrix metalloproteinase-2 and -9 (MMP-2 and -9), platelet/endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), β-thromboglobulin (β-TG) and platelet factor 4 (PF-4). Acute physical stress increased platelet aggregability while leaving platelet content of bioactive compounds unchanged. Persistent mental stress led to changes in platelet content of bioactive compounds and serotonin 2A-receptor only. The values of most bioactive compounds correlated with each other. Acute physical and persistent mental stress influences platelets through distinct pathways, leading to differential changes in aggregability and content of bioactive compounds. PMID:26192713

  5. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    PubMed Central

    Carvalho-Costa, P.G.; Branco, L.G.S.; Leite-Panissi, C.R.A.

    2014-01-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress. PMID:25387672

  6. Chemical composition of rainbow trout urine following acute hypoxic stress

    USGS Publications Warehouse

    Hunn, Joseph B.

    1969-01-01

    Rainbow trout (Salmo gairdnerii) were anesthetized with MS-222, catheterized, and introduced into urine collecting chambers. Twenty-four hours after introduction, a 4-hour accumulation of urine was collected to serve as the control. Water flow to the chambers was then discontinued for 30 minutes during which the oxygen content of the water exiting in the chamber dropped from 4.9 to 2.8 mg/l. Following this hypoxic stress fresh water was restored and accumulated urine samples were taken for analysis at 1, 4, and 20 hours post-hypoxic stress. Rainbow trout excrete abnormally high concentrations of Na, K, Mg, Cl, and inorganic PO4 following hypoxia.

  7. Effects of Prepubertal Acute Immobilization Stress on Serum Kisspeptin Level and Testis Histology in Rats.

    PubMed

    Maalhagh, Mehrnoosh; Jahromi, Abdolreza Sotoodeh; Yusefi, Alireza; Razeghi, Ali; Zabetiyan, Hassan; Karami, Mohammad Yasin; Madani, Abdol Hossein

    2016-01-01

    Stress has inhibitory effect on HPG axis through increasing cortisol serum level. In this study, the effect of acute prepubertal stress on kisspeptin, which plays essential role in puberty achievement is assessed. To do this experimental study thirty immature healthy male wistar rats of 4 weeks old and without any symptoms of puberty were selected randomly. These rats were divided into three groups, randomly. Two groups were chosen as control and pretest and one as stress (test) group. Immobilization stress was applied for 10 days and serum level of cortisol, testosterone and kisspeptin were measured. Primary and secondary spermatocyte and sertoli cell evaluated and compared among groups. Mean serum level of kisspeptin in pretest group, control group and stress (test) group were 0.0381 ± 0.0079, 91.0500 ± 4.87430 and 15.2156 ± 3.88135 pg mL(-1) respectively. Serum level of kisspeptin had significant differences between three groups (p < 0.001). Acute prepubertal immobilization stress led to decrease in serum level of kisspeptin and testosterone in stress (test) group compared to control groups. Also stress caused a significant decrease in the numbers of secondary spermatocytes of the test group. PMID:26930799

  8. Systolic blood pressure reactivity during submaximal exercise and acute psychological stress in youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Studies in youth show an association between systolic blood-pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). However, it has not yet been determined whether SBP reactivity during submaximal exercise is also associated with CIMT i...

  9. Symptom Differences in Acute and Chronic Presentation of Childhood Post-Traumatic Stress Disorder.

    ERIC Educational Resources Information Center

    Famularo, Richard; And Others

    1990-01-01

    Twenty-four child abuse victims, age 5-13, were diagnosed with posttraumatic stress disorder (PTSD). Children with the acute form of PTSD exhibited such symptoms as difficulty falling asleep, hypervigilance, nightmares, and generalized anxiety. Children exhibiting chronic PTSD exhibited increased detachment, restricted range of affect,…

  10. The Nature of Trauma Memories in Acute Stress Disorder in Children and Adolescents

    ERIC Educational Resources Information Center

    Salmond, C. H.; Meiser-Stedman, R.; Glucksman, E.; Thompson, P.; Dalgleish, T.; Smith, P.

    2011-01-01

    Background: There is increasing theoretical, clinical and research evidence for the role of trauma memory in the aetiology of acute pathological stress responses in adults. However, research into the phenomenology of trauma memories in young people is currently scarce. Methods: This study compared the nature of trauma narratives to narratives of…

  11. Family Stress Management Following Acute Myocardial Infarction: An Educational and Skills Training Intervention Program.

    ERIC Educational Resources Information Center

    Nelson, David V.; Cleveland, Sidney E.; Baer, Paul E.

    1998-01-01

    Provides a conceptual background for specific behavioral-therapy approach to family stress management in dealing with the sequelae of acute myocardial infarction for all family members with the goal of reducing morbidity for all family members as they cope with ongoing survivorship issues. Describes the program and discusses its pilot…

  12. The Additive Benefit of Hypnosis and Cognitive-Behavioral Therapy in Treating Acute Stress Disorder

    ERIC Educational Resources Information Center

    Bryant, Richard A.; Moulds, Michelle L.; Guthrie, Rachel M.; Nixon, Reginald D. V.

    2005-01-01

    This research represents the first controlled treatment study of hypnosis and cognitive- behavioral therapy (CBT) of acute stress disorder (ASD). Civilian trauma survivors (N = 87) who met criteria for ASD were randomly allocated to 6 sessions of CBT, CBT combined with hypnosis (CBT-hypnosis), or supportive counseling (SC). CBT comprised exposure,…

  13. Cumulative exposure to prior collective trauma and acute stress responses to the Boston marathon bombings.

    PubMed

    Garfin, Dana Rose; Holman, E Alison; Silver, Roxane Cohen

    2015-06-01

    The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metropolitan Boston (n = 846) and New York City (n = 941) completed Internet-based surveys shortly after the Boston Marathon bombings. Cumulative direct exposure and indirect exposure to prior community trauma and acute stress symptoms were assessed. Acute stress levels did not differ between Boston and New York metropolitan residents. Cumulative direct and indirect, live-media-based exposure to 9/11, Superstorm Sandy, and the Sandy Hook shooting were positively associated with acute stress responses in the covariate-adjusted model. People who experience multiple community-based traumas may be sensitized to the negative impact of subsequent events, especially in communities previously exposed to similar disasters. PMID:25896419

  14. Experimental Observations of Permeability Enhancements by Dynamic Stresses

    NASA Astrophysics Data System (ADS)

    Elkhoury, J. E.; Niemeijer, A.; Brodsky, E. E.; Marone, C.

    2008-12-01

    Shaking produced by seismic faulting often triggers distant and nearby earthquakes. Seismic waves are also known to increase stream flow and spring discharge and enhance oil production; in some cases tripling the effective permeability of the natural system. These observations have been attributed to shaking-induced increases in permeability. However, the underlying mechanism is poorly understood. Here we present experimental evidence of permeability enhancement in fractured rock samples subject to dynamic stresses. We use Berea sandstone samples under triaxial stresses with confining pressure of 9 MPa and 20 MPa of normal stress. We flow deionized water through a fracture produced in-situ and find that oscillations in pore pressure, of 20 second period and 120 second duration, induce transient increases in permeability. Permeability increases scale with the amplitude of pore pressure oscillations. The maximum value of the permeability enhancement is 5x10-16 m2 over a background permeability of 1x10-15 m2. After the oscillations, permeability recovers as the inverse square root of time. The recovery indicates a reversible mechanism, such as clogging/unclogging of fractures, as opposed to an irreversible one, like micro-fracturing. Our result has clear consequences for earthquake triggering mediated by permeability enhancement. Moreover, our data point at the feasibility of dynamically controlling permeability of fractured systems with applications to hydrology and oil reservoir engineering.

  15. Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers.

    PubMed

    Rooks, Cherie R; McCully, Kevin K; Dishman, Rod K

    2011-09-01

    The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color-Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (∼50% VO₂ peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress. PMID:21457274

  16. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  17. [Ischemic stroke as reaction to an acute stressful event].

    PubMed

    Ibrahimagić, Omer C; Sinanović, Osman; Cickusić, Amra; Smajlović, Dzevdet

    2005-01-01

    The period following ischemic stroke can be considered as a reaction to a stressful event. Changes in cortisol secretion are one of the indicators of stress reaction. The aim of the study was to determine morning serum levels of cortisol in stroke patients within 48 hours and 15 days of ischemic stroke onset. Study group included 40 patients, 20 of them were females, mean age 65.3 +/- 10.3 years. The patients did not receive any corticosteroid agents or spironolactone, and did not suffer from Cushing's or Addison's syndrome. Ischemic stroke was verified by computed tomography of the brain. The fluorometric method with DELFIA Cortisol immunoassay was used to determine morning serum cortisol levels. Reference values of the measured hormone were 201-681 nmol/l. The mean level of serum cortisol within 48 hours of stroke was 560.9 +/- 318.9 nmol/l, and on day 15 it was 426.2 +/- 159.3 nmol/l, i.e. significantly lower (p < 0.02). On the first measurement, the level of serum cortisol was elevated in 32%, and on the second measurement in only 7.5% patients, which was also significantly lower (p < 0.001). It was concluded that the stress reaction in ischemic stroke patients was more pronounced within the first 48 hours of stroke onset. Judging from the morning cortisol levels, the reaction to stress was considerably less pronounced 15 days after stroke onset. PMID:15875466

  18. Effect of acute heat stress on plant nutrient metabolism proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  19. Acute stress affects free recall and recognition of pictures differently depending on age and sex.

    PubMed

    Hidalgo, Vanesa; Pulopulos, Matias M; Puig-Perez, Sara; Espin, Laura; Gomez-Amor, Jesus; Salvador, Alicia

    2015-10-01

    Little is known about age differences in the effects of stress on memory retrieval. Our aim was to perform an in-depth examination of acute psychosocial stress effects on memory retrieval, depending on age and sex. For this purpose, data from 52 older subjects (27 men and 25 women) were reanalyzed along with data from a novel group of 50 young subjects (26 men and 24 women). Participants were exposed to an acute psychosocial stress task (Trier Social Stress Test) or a control task. After the experimental manipulation, the retrieval of positive, negative and neutral pictures learned the previous day was tested. As expected, there was a significant response to the exposure to the stress task, but the older participants had a lower cortisol response to TSST than the younger ones. Stress impaired free recall of emotional (positive and negative) and neutral pictures only in the group of young men. Also in this group, correlation analyses showed a marginally significant association between cortisol and free recall. However, exploratory analyses revealed only a negative relationship between the stress-induced cortisol response and free recall of negative pictures. Moreover, stress impaired recognition memory of positive pictures in all participants, although this effect was not related to the cortisol or alpha-amylase response. These results indicate that both age and sex are critical factors in acute stress effects on specific aspects of long-term memory retrieval of emotional and neutral material. They also point out that more research is needed to better understand their specific role. PMID:26149415

  20. Sex-specific variation in brown-headed cowbird immunity following acute stress: a mechanistic approach.

    PubMed

    Merrill, Loren; Angelier, Frédéric; O'Loghlen, Adrian L; Rothstein, Stephen I; Wingfield, John C

    2012-09-01

    There is some discrepancy in the literature regarding whether acute stress is immunostimulatory or immunosuppressive. Studies of domesticated (laboratory and food) animals and humans typically indicate that acute stress is immunostimulatory, whereas studies of non-domesticated species document both immunostimulatory and immunosuppressive results. Few studies have examined the mechanisms responsible for changes in immune activity in species other than those classically used in laboratory research. We examined the effect of both acute stress and exogenous corticosterone (CORT) on the bactericidal capacity (BC) of blood plasma from captive, wild-caught brown-headed cowbirds (Molothrus ater) to determine if CORT is responsible for changes in levels of immune activity. We conducted "stress tests" in which we handled birds to elicit a stress response and then measured the birds' total CORT and BC at 30 or 90 min post-stressor. We also conducted non-invasive tests in which we administered exogenous CORT by injecting it into mealworms that were fed to the cowbirds remotely. Total, free, and bound CORT levels, corticosteroid binding globulins (CBGs), and BC at 7 or 90 min post-mealworm ingestion were measured. Both males and females exhibited significant increases in total CORT following handling stress and the administration of exogenous CORT. Experimental males and females also exhibited a significant increase in CBG capacity at 7 min post-mealworm ingestion compared to controls. Male cowbirds exhibited a significant decline in their BC following both handling stress and the administration of exogenous CORT whereas female cowbirds exhibited no decline under either condition. Female CBG levels were not different than those of males, suggesting that differences in BC could be due to differences between the sexes in the number of corticosteroid receptors which, along with CBGs, regulate the stress response. Female cowbirds may modulate their stress response as an adaptive

  1. Acute Ethanol Withdrawal Impairs Contextual Learning and Enhances Cued Learning

    PubMed Central

    Tipps, Megan E.; Raybuck, Jonathan D.; Buck, Kari J.; Lattal, K. Matthew

    2014-01-01

    Background Alcohol affects many of the brain regions and neural processes that support learning and memory, and these effects are thought to underlie, at least in part, the development of addiction. Although much work has been done regarding the effects of alcohol intoxication on learning and memory, little is known about the effects of acute withdrawal from a single alcohol exposure. Methods We assess the effects of acute ethanol withdrawal (6 h post-injection with 4 g/kg ethanol) on two forms of fear conditioning (delay and trace fear conditioning) in C57BL/6J and DBA/2J mice. The influence of a number of experimental parameters (pre- and post-training withdrawal exposure; foreground/background processing; training strength; non-associative effects) is also investigated. Results Acute ethanol withdrawal during training had a bidirectional effect on fear conditioned responses, decreasing contextual responses and increasing cued responses. These effects were apparent for both trace and delay conditioning in DBA/2J mice and for trace conditioning in C57BL/6J mice; however, C57BL/6J mice were selectively resistant to the effects of acute withdrawal on delay cued responses. Conclusions Our results show that acute withdrawal from a single, initial ethanol exposure is sufficient to alter long-term learning in mice. In addition, the differences between the strains and conditioning paradigms used suggest that specific learning processes can be differentially affected by acute withdrawal in a manner that is distinct from the reported effects of both alcohol intoxication and withdrawal following chronic alcohol exposure. Thus, our results suggest a unique effect of acute alcohol withdrawal on learning and memory processes. PMID:25684050

  2. Guilt is associated with acute stress symptoms in children after road traffic accidents

    PubMed Central

    Haag, Ann-Christin; Zehnder, Daniel; Landolt, Markus A.

    2015-01-01

    Background Although previous research has consistently found considerable rates of acute stress disorder (ASD) in children with accidental injuries, knowledge about determinants of ASD remains incomplete. Guilt is a common reaction among children after a traumatic event and has been shown to contribute to posttraumatic stress disorder. However, its relationship to ASD has never been examined. Objective This study assessed the prevalence of ASD in children and adolescents following road traffic accidents (RTAs). Moreover, the association between peritraumatic guilt and ASD was investigated relying on current cognitive theories of posttraumatic stress and controlling for female sex, age, socioeconomic status (SES), injury severity, inpatient treatment, pretrauma psychopathology, and maternal posttraumatic stress symptoms (PTSS). Methods One hundred and one children and adolescents (aged 7–16 years) were assessed by means of a clinical interview approximately 10 days after an RTA. Mothers were assessed by questionnaires. Results Three participants (3.0%) met diagnostic criteria for full ASD according to DSM-IV, and 17 (16.8%) for subsyndromal ASD. In a multivariate regression model, guilt was found to be a significant predictor of ASD severity. Female sex, outpatient treatment, and maternal PTSS also predicted ASD severity. Child age, SES, injury severity, and pretraumatic child psychopathology were not related to ASD severity. Conclusions Future research should examine the association between peritraumatic guilt and acute stress symptoms in more detail. Moreover, guilt appraisals in the acute phase after an accident might be a relevant target for clinical attention. PMID:26514158

  3. The implicit affiliation motive moderates cortisol responses to acute psychosocial stress in high school students.

    PubMed

    Wegner, Mirko; Schüler, Julia; Budde, Henning

    2014-10-01

    It has been previously shown that the implicit affiliation motive - the need to establish and maintain friendly relationships with others - leads to chronic health benefits. The underlying assumption for the present research was that the implicit affiliation motive also moderates the salivary cortisol response to acute psychological stress when some aspects of social evaluation and uncontrollability are involved. By contrast we did not expect similar effects in response to exercise as a physical stressor. Fifty-nine high school students aged M=14.8 years were randomly assigned to a psychosocial stress (publishing the results of an intelligence test performed), a physical stress (exercise intensity of 65-75% of HRmax), and a control condition (normal school lesson) each lasting 15min. Participants' affiliation motives were assessed using the Operant Motive Test and salivary cortisol samples were taken pre and post stressor. We found that the strength of the affiliation motive negatively predicted cortisol reactions to acute psychosocial but not to physical stress when compared to a control group. The results suggest that the affiliation motive buffers the effect of acute psychosocial stress on the HPA axis. PMID:25016451

  4. Effect of the acute crowding stress on the rat brown adipose tissue metabolic function.

    PubMed

    Djordjevic, Jelena; Cvijic, Gordana; Petrovic, Natasa; Davidovic, Vukosava

    2005-12-01

    Our previous results have shown that metabolic and thermal stressors influence interscapular brown adipose tissue (IBAT) metabolic activity by increasing oxygen consumption and, consequently, altering the toxic reactive oxygen species (ROS) production and the antioxidative system activity. Since there is not enough evidence about the effect of psychosocial stressors on these processes, we studied the effect of acute crowding stress on the IBAT and hypothalamic monoamine oxidase (MAO) activity as well as IBAT antioxidative enzymes, manganese (MnSOD), copper-zinc superoxide dismutase (CuZnSOD) and catalase (CAT), as the relevant indicators of IBAT metabolic alternations under the stress exposure and the returning of animals to control conditions. The results indicated that acute crowding stress did not change the hypothalamic and IBAT MAO activities, the generation of ROS and, consequently, the IBAT CuZnSOD and CAT activities. However, all three antioxidative enzymes were affected only after the recovery period. It seems that peripheral overheating of rats during acute crowding changes the stress nature, by becoming more thermal than psychosocial and by suppression the hypothalamic efferent pathways involved in the IBAT thermogenesis regulation. However, it seems that returning of the animals to the control conditions after the stress termination causes the reactivation of IBAT thermogenesis with tendency to normalise the body temperature. PMID:16309937

  5. Stress and adaptation responses to repeated acute acceleration.

    NASA Technical Reports Server (NTRS)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Study in which groups of adult male chickens (single-comb white leghorn) were exposed daily to acceleration (centrifugation) of 2 or 3 G for 10 min, 1, 4, 8, 12, 16, and 24 hr (continuously), or 0 time (controls). After approximately five months of this intermittent treatment (training), the birds were exposed to continuous accelerations of the same G force (intensity). The degree of stress and adaptation of each bird was determined by survival and relative lymphocyte count criteria. Intermittent training exposures of 2 G developed levels of adaptation in birds directly proportional to the duration of their daily exposure. Intermittent training periods at 3 G, however, produced a physiological deterioration in birds receiving daily exposures of 8 hr or more. Adaptive benefits were found only in the 1- and 4-hr-daily intermittent 3-G exposure groups. Exposure to 3 G produced an immediate stress response as indicated by a low relative lymphocyte count which returned to control (preexposed) values prior to the next daily acceleration period in the 10-min, 1-hr, and 4-hr groups. This daily recovery period from stress appeared to be necessary for adaptation as opposed to deterioration for the more severe environmental (3 G) alteration.

  6. Having your cake and eating it too: A habit of comfort food may link chronic social stress exposure and acute stress-induced cortisol hyporesponsiveness.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stress has been tied to changes in eating behavior and food choice. Previous studies in rodents have shown that chronic stress increases palatable food intake which, in turn, increases mesenteric fat and inhibits acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity. The effect of...

  7. Traumatic bereavement, acute dissociation, and posttraumatic stress: 14 years after the MS Estonia disaster.

    PubMed

    Arnberg, Filip K; Eriksson, Nils-Gustaf; Hultman, Christina M; Lundin, Tom

    2011-04-01

    This prospective longitudinal study aimed to examine posttraumatic stress in survivors 14 years after a ferry disaster, and estimate short- and long-term changes in stress associated with traumatic bereavement and acute dissociation. There were 852 people who perished in the disaster, 137 survived. The 51 Swedish survivors were surveyed with the Impact of Event Scale-Revised (IES-R) at 3 months, 1, 3, and 14 years (response rates 82%, 65%, 51%, and 69%). Symptoms decreased from 3 months to 1 year; no change was found thereafter. After 14 years, 27% reported significant symptoms. Traumatic bereavement, but not acute dissociation, was associated with long-term symptom elevation. Chronic posttraumatic stress can persist in a minority of survivors, and traumatic bereavement appears to hinder recovery. PMID:21442665

  8. Acute stress-related changes in eating in the absence of hunger.

    PubMed

    Rutters, Femke; Nieuwenhuizen, Arie G; Lemmens, Sofie G T; Born, Jurriaan M; Westerterp-Plantenga, Margriet S

    2009-01-01

    Obesity results from chronic deregulation of energy balance, which may in part be caused by stress. Our objective was to investigate the effect of acute and psychological stress on food intake, using the eating in the absence of hunger paradigm, in normal and overweight men and women (while taking dietary restraint and disinhibition into account). In 129 subjects (BMI = 24.5 +/- 3.4 kg/m(2) and age = 27.6 +/- 8.8 years), scores were determined on the Three Factor Eating Questionnaire (dietary restraint = 7.2 +/- 4.4; disinhibition = 4.5 +/- 2.6; feeling of hunger = 3.9 +/- 2.6) and State-Trait Anxiety Inventory (trait score = 31.7 +/- 24.2). In a randomized crossover design, the "eating in absence of hunger" protocol was measured as a function of acute stress vs. a control task and of state anxiety scores. Energy intake from sweet foods (708.1 kJ vs. 599.4 kJ, P < 0.03) and total energy intake (965.2 kJ vs. 793.8 kJ, P < 0.01) were significantly higher in the stress condition compared to the control condition. Differences in energy intake between the stress and control condition were a function of increase in state anxiety scores during the stress task (Delta state anxiety scores) (R(2) = 0.05, P < 0.01). This positive relationship was stronger in subjects with high disinhibition scores (R(2) = 0.12, P < 0.05). Differences in state anxiety scores were a function of trait anxiety scores (R(2) = 0.07, P < 0.05). We conclude that acute psychological stress is associated with eating in the absence of hunger, especially in vulnerable individuals characterized by disinhibited eating behavior and sensitivity to chronic stress. PMID:18997672

  9. FEMALE RESPONSES TO ACUTE AND REPEATED RESTRAINT STRESS DIFFER FROM THOSE IN MALES

    PubMed Central

    Zavala, Jaidee K.; Fernandez, Almendra A.; Gosselink, Kristin L.

    2011-01-01

    Chronic stress is implicated in diseases which differentially affect men and women. This study investigated how the activation of neuronal subpopulations contributes to changes in neuroendocrine regulation that predispose members of each sex to stress-related health challenges. Adult male and female rats were restrained in single (acute) or 14 consecutive daily (repeated) 30 min sessions; brain sections were immunohistochemically stained for Fos, arginine vasopressin (AVP) or glucocorticoid receptor (GR) within the paraventricular hypothalamic nucleus (PVH). Acute restraint increased the number of PVH cells expressing Fos, with greater increases in males than females. Habituated responses were seen following repeated stress in both sexes, with no sex differences between groups. No sex differences were found in the number of neurons co-expressing Fos and AVP. Absolute counts of cellular Fos and GR co-localization mirrored Fos expression. In contrast, when doubly-labeled cells were normalized to staining for Fos alone, females showed greater numbers of Fos- and GR-positive cells than males after both acute and repeated stress. These data demonstrate that sex-specific stress responses are evident at the level of neuronal activation, and may contribute to different consequences of chronic stress in females versus males. Females may be more sensitive to glucocorticoid negative feedback, suggesting that sex-dependent differences in the efficiency of initiating and terminating stress responses may exist. Understanding the neural and endocrine pathways that mediate these functions in males and females will inform targeted therapeutic strategies to alleviate stress and the sex-specific afflictions with which it is associated. PMID:21453715

  10. Radiation enhancement of stress-corrosion cracking of Zircaloy

    SciTech Connect

    Shann, S.H.

    1981-09-01

    In order to examine the cause of the reactor fuel pin pellet-cladding interaction phenomenon (PCI), stress corrosion cracking (SCC) experiments of Zircaloy under iodine, iron iodide, aluminum iodide, cesium iodide, and cadmium were undertaken. Radiation enhancement tests with CsI were also performed. Iodine, iron iodide, and aluminum iodide can reduce the failure times. Fractography is of cleavage type and is completely different from the ductile dimple type failure for control specimens. There exists a critical stress of 379 MPa for iodine and iron iodide above which burst type failure occurs. Pinhole type failure predominates for lower stresses. Both types showed brittle fracture surfaces. The presence of CsI did not have any influence on failure time of zircaloy. The failure is burst-type, and the fractography is ductile. Radiation enhancement tests with cesium iodide did not cause reduction in failure time either. Failure times were decreased for the tests under cadmium. All specimens failed under cadmium vapor by a burst mode, and fractography showed cleavage brittle characteristics. Chemical parameters such as reaction order, activation energy, and minimum pressure required for SCC were determined. A crack propagation more originally designed for brittle solids for the SCC experimental data well. Variable stresses and surface roughness test results can be correlated quantitatively by the model. 80 figures.

  11. Infection with Mycoplasma gallisepticum buffers the effects of acute stress on innate immunity in house finches.

    PubMed

    Fratto, Melanie; Ezenwa, Vanessa O; Davis, Andrew K

    2014-01-01

    When wild animals become infected, they still must cope with the rigors of daily life, and, thus, they still can be exposed to acute stressors. The suite of physiological responses to acute stress includes modifying the innate immune system, but infections can also cause similar changes. We examined the effects of an acute stressor (capture stress) on leukocyte abundance and bacteria-killing ability (BKA) in wild birds (house finches Haemorhous mexicanus) with and without a naturally occurring infection (Mycoplasma gallisepticum) to determine whether infection alters the typical immune response to stress. Birds were captured and bled within 3 min (baseline sample) and then held in paper bags for 2 h and bled again (stress sample). From blood smears made at both time points, we obtained estimates of total white blood cell (WBC) counts and relative numbers of each cell. We also measured BKA of plasma at both time points. In uninfected birds (n = 26), total WBC count decreased by 30% over time, while in infected birds (n = 9), it decreased by 6%. Relative numbers of heterophils did not change over time in uninfected birds but increased in infected birds. Combined with a reduction in lymphocyte numbers, this led to a threefold increase in heterophil-lymphocyte values in infected birds after the stressor, compared to a twofold increase in uninfected birds. There was a nonsignificant tendency for BKA to decline with stress in uninfected birds but not in diseased birds. Collectively, these results suggest that infections can buffer the negative effects of acute stress on innate immunity. PMID:24642543

  12. Dynamics of locomotor activity and heat production in rats after acute stress.

    PubMed

    Pertsov, S S; Alekseeva, I V; Koplik, E V; Sharanova, N E; Kirbaeva, N V; Gapparov, M M G

    2014-05-01

    The dynamics of locomotor activity and heat production were studied in rats demonstrating passive and active behavior in the open field test at different time after exposure to acute emotional stress caused by 12-h immobilization during dark hours. The most pronounced changes in behavior and heat production followed by disturbances in circadian rhythms of these parameters were detected within the first 2 days after stress. In contrast to behaviorally active rats, the most significant decrease in locomotor activity and heat production of passive animals subjected to emotional stress was observed during dark hours. Circadian rhythms of behavior and heat production in rats tended to recover on day 3 after immobilization stress. These data illustrate the specificity of metabolic and behavioral changes reflecting the shift of endogenous biological rhythms in individuals with different prognostic resistance to stress at different terms after exposure to negative emotiogenic stimuli. PMID:24906959

  13. Development and Psychometric Evaluation of Child Acute Stress Measures in Spanish and English

    PubMed Central

    Kassam-Adams, Nancy; Gold, Jeffrey I.; Montaño, Zorash; Kohser, Kristen L.; Cuadra, Anai; Muñoz, Cynthia; Armstrong, F. Daniel

    2015-01-01

    Clinicians and researchers need tools for accurate early assessment of children’s acute stress reactions and acute stress disorder (ASD). There is a particular need for independently validated Spanish-language measures. The current study reports on 2 measures of child acute stress (a self-report checklist and a semi-structured interview), describing the development of the Spanish version of each measure and psychometric evaluation of both the Spanish and English versions. Children between the ages of 8 to 17 years who had experienced a recent traumatic event completed study measures in Spanish (n = 225) or in English (n = 254). Results provide support for reliability (internal consistency of the measures in both languages ranges from .83 to .89; cross-language reliability of the checklist is .93) and for convergent validity (with later PTSD symptoms, and with concurrent anxiety symptoms). Comparing checklist and interview results revealed a strong association between severity scores within the Spanish and English samples. Checklist-interview differences in evaluating the presence of ASD appear to be linked to different content coverage for dissociation symptoms. Future studies should further assess the impact of differing assessment modes, content coverage, and the use of these measures in children with diverse types of acute trauma exposure in English- and Spanish-speaking children. PMID:23371337

  14. Clinical features of schizophrenia with enhanced carbonyl stress.

    PubMed

    Miyashita, Mitsuhiro; Arai, Makoto; Kobori, Akiko; Ichikawa, Tomoe; Toriumi, Kazuya; Niizato, Kazuhiro; Oshima, Kenichi; Okazaki, Yuji; Yoshikawa, Takeo; Amano, Naoji; Miyata, Toshio; Itokawa, Masanari

    2014-09-01

    Accumulating evidence suggests that advanced glycation end products, generated as a consequence of facilitated carbonyl stress, are implicated in the development of a variety of diseases. These diseases include neurodegenerative illnesses, such as Alzheimer disease. Pyridoxamine is one of the 3 forms of vitamin B6, and it acts by combating carbonyl stress and inhibiting the formation of AGEs. Depletion of pyridoxamine due to enhanced carbonyl stress eventually leads to a decrease in the other forms of vitamin B6, namely pyridoxal and pyridoxine. We previously reported that higher levels of plasma pentosidine, a well-known biomarker for advanced glycation end products, and decreased serum pyridoxal levels were found in a subpopulation of schizophrenic patients. However, there is as yet no clinical characterization of this subset of schizophrenia. In this study, we found that these patients shared many clinical features with treatment-resistant schizophrenia. These include a higher proportion of inpatients, low educational status, longer durations of hospitalization, and higher doses of antipsychotic medication, compared with patients without carbonyl stress. Interestingly, psychopathological symptoms showed a tendency towards negative association with serum vitamin B6 levels. Our results support the idea that treatment regimes reducing carbonyl stress, such as supplementation of pyridoxamine, could provide novel therapeutic benefits for this subgroup of patients. PMID:24062594

  15. Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge.

    PubMed

    Cheong, Dae-Yeol; Hansen, Conly L

    2006-10-01

    Methodology was evaluated to selectively enrich hydrogen-producing species present in biological sludge produced during organic wastewater treatment. The influence of bacterial stress enrichment on anaerobic hydrogen-producing microorganisms was investigated in batch tests using serum bottles. Enrichment conditions investigated included application of acute physical and chemical stresses: wet heat, dry heat and desiccation, use of a methanogen inhibitor, freezing and thawing, and chemical acidification with and without preacidification of the sludge at pH 3. For each enrichment sample, cultivation pH value was set at an initial value of 7. After application of selective enrichment (by bacterial stress), hydrogen production was significantly higher than that of untreated original sludge. Hydrogen production from the inocula with bacterial stress enrichment was 1.9-9.8 times greater when compared with control sludge. Chemical acidification using perchloric acid showed the best hydrogen production potential, irrespective of preacidification. Enhancement is due to the selective capture of hydrogen-producing sporeformers, which induces altered anaerobic fermentative metabolism. PMID:16525779

  16. Hostility and Physiological Responses to Acute Stress in People With Type 2 Diabetes

    PubMed Central

    Hackett, Ruth A.; Lazzarino, Antonio I.; Carvalho, Livia A.; Hamer, Mark; Steptoe, Andrew

    2015-01-01

    ABSTRACT Objective Hostility is associated with cardiovascular mortality and morbidity, and one of the mechanisms may involve heightened reactivity to mental stress. However, little research has been conducted in populations at high risk for cardiovascular disease. The aim of the present study was to assess the relationship between hostility and acute stress responsivity in individuals with Type 2 diabetes. Methods A total of 140 individuals (median age [standard deviation] 63.71 [7.00] years) with Type 2 diabetes took part in laboratory-based experimental stress testing. Systolic blood pressure, diastolic blood pressure, heart rate, plasma interleukin-6 (IL-6), and salivary cortisol were assessed at baseline, during two stress tasks, and 45 and 75 minutes later. Cynical hostility was assessed using the Cook Medley Cynical Hostility Scale. Results Participants with greater hostility scores had heightened increases in IL-6 induced by the acute stress tasks (B = 0.082, p = .002), independent of age, sex, body mass index, smoking, household income, time of testing, medication, and baseline IL-6. Hostility was inversely associated with cortisol output poststress (B = −0.017, p = .002), independent of covariates. No associations between hostility and blood pressure or heart rate responses were observed. Conclusions Hostile individuals with Type 2 diabetes may be susceptible to stress-induced increases in inflammation. Further research is needed to understand if such changes increase the risk of cardiovascular disease in this population. PMID:25886832

  17. Acute stress in adulthood impoverishes social choices and triggers aggressiveness in preclinical models

    PubMed Central

    Nosjean, Anne; Cressant, Arnaud; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Chauveau, Frédéric; Granon, Sylvie

    2015-01-01

    Adult C57BL/6J mice are known to exhibit high level of social flexibility while mice lacking the β2 subunit of nicotinic receptors (β2−/− mice) present social rigidity. We asked ourselves what would be the consequences of a restraint acute stress (45 min) on social interactions in adult mice of both genotypes, hence the contribution of neuronal nicotinic receptors in this process. We therefore dissected social interaction complexity of stressed and not stressed dyads of mice in a social interaction task. We also measured plasma corticosterone levels in our experimental conditions. We showed that a single stress exposure occurring in adulthood reduced and disorganized social interaction complexity in both C57BL/6J and β2−/− mice. These stress-induced maladaptive social interactions involved alteration of distinct social categories and strategies in both genotypes, suggesting a dissociable impact of stress depending on the functioning of the cholinergic nicotinic system. In both genotypes, social behaviors under stress were coupled to aggressive reactions with no plasma corticosterone changes. Thus, aggressiveness appeared a general response independent of nicotinic function. We demonstrate here that a single stress exposure occurring in adulthood is sufficient to impoverish social interactions: stress impaired social flexibility in C57BL/6J mice whereas it reinforced β2−/− mice behavioral rigidity. PMID:25610381

  18. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  19. Effects of acute and chronic administration of methylprednisolone on oxidative stress in rat lungs* **

    PubMed Central

    Torres, Ronaldo Lopes; Torres, Iraci Lucena da Silva; Laste, Gabriela; Ferreira, Maria Beatriz Cardoso; Cardoso, Paulo Francisco Guerreiro; Belló-Klein, Adriane

    2014-01-01

    Objective: To determine the effects of acute and chronic administration of methylprednisolone on oxidative stress, as quantified by measuring lipid peroxidation (LPO) and total reactive antioxidant potential (TRAP), in rat lungs. Methods: Forty Wistar rats were divided into four groups: acute treatment, comprising rats receiving a single injection of methylprednisolone (50 mg/kg i.p.); acute control, comprising rats i.p. injected with saline; chronic treatment, comprising rats receiving methylprednisolone in drinking water (6 mg/kg per day for 30 days); and chronic control, comprising rats receiving normal drinking water. Results: The levels of TRAP were significantly higher in the acute treatment group rats than in the acute control rats, suggesting an improvement in the pulmonary defenses of the former. The levels of lung LPO were significantly higher in the chronic treatment group rats than in the chronic control rats, indicating oxidative damage in the lung tissue of the former. Conclusions: Our results suggest that the acute use of corticosteroids is beneficial to lung tissue, whereas their chronic use is not. The chronic use of methylprednisolone appears to increase lung LPO levels. PMID:25029646

  20. Increased ANG II sensitivity following recovery from acute kidney injury: role of oxidant stress in skeletal muscle resistance arteries

    PubMed Central

    Phillips, Shane A.; Pechman, Kimberly R.; Leonard, Ellen C.; Friedrich, Jessica L.; Bian, Jing-Tan; Beal, Alisa G.

    2010-01-01

    Ischemia-reperfusion (I/R)-induced acute kidney injury (AKI) results in prolonged impairment of peripheral (i.e., nonrenal) vascular function since skeletal muscle resistance arteries derived from rats 5 wk post-I/R injury, show enhanced responses to ANG II stimulation but not other constrictors. Because vascular superoxide increases ANG II sensitivity, we hypothesized that peripheral responsiveness following recovery from AKI was attributable to vascular oxidant stress. Gracilis arteries (GA) isolated from post-I/R rats (∼5 wk recovery) showed significantly greater superoxide levels relative to sham-operated controls, as detected by dihydroeithidium, which was further augmented by acute ANG II stimulation in vitro. Hydrogen peroxide measured by dichlorofluorescein was not affected by ANG II. GA derived from postischemic animals manifested significantly greater constrictor responses in vitro to ANG II than GA from sham-operated controls. The addition of the superoxide scavenging reagent Tempol (10−5 M) normalized the response to values similar to sham-operated controls. Apocynin (10−6 M) and endothelial denudation nearly abrogated all ANG II-stimulated constrictor activity in GA from post-AKI rats, suggesting an important role for an endothelial-derived source of peripheral oxidative stress. Apocynin treatment in vivo abrogated GA oxidant stress and attenuated ANG II-induced pressor responses post-AKI. Interestingly, gene expression studies in GA vessels indicated a paradoxical reduction in NADPH oxidase subunit and AT1-receptor genes and no effect on several antioxidant genes. Taken together, this study demonstrates that AKI alters peripheral vascular responses by increasing oxidant stress, likely in the endothelium, via an undefined mechanism. PMID:20335375

  1. Innate immunity and testosterone rapidly respond to acute stress, but is corticosterone at the helm?

    PubMed

    Davies, S; Noor, S; Carpentier, E; Deviche, P

    2016-10-01

    When faced with a stressor, vertebrates can rapidly increase the secretion of glucocorticoids, which is thought to improve the chances of survival. Concurrent changes in other physiological systems, such as the reproductive endocrine or innate immune systems, have received less attention, particularly in wild vertebrates. It is often thought that glucocorticoids directly modulate immune performance during a stress response, but, in many species, androgens also rapidly respond to stress. However, to our knowledge, no study has simultaneously examined the interactions between the glucocorticoid, androgen, and innate immune responses to stress in a wild vertebrate. To address this issue, we tested the hypothesis that the change in plasma corticosterone (CORT) in response to the acute stress of capture and restraint is correlated with the concurrent changes in plasma testosterone (T) and innate immune performance (estimated by the capacity of plasma to agglutinate and lyse foreign cells) in the Abert's Towhee (Melozone aberti). Furthermore, to broaden the generality of the findings, we compared male and female towhees, as well as males from urban and non-urban populations. Acute stress increased plasma CORT, decreased plasma T in males, and decreased innate immune performance, but the increase in CORT during stress was not correlated with the corresponding decreases in either plasma T or innate immunity. By contrast, the plasma T stress response was positively correlated with the innate immune stress response. Collectively, our results challenge the proposition that the glucocorticoid stress response is correlated with the concurrent changes in plasma T, a key reproductive hormone, and innate immunity, as estimated by agglutination and lysis. PMID:27188192

  2. Depressive Symptoms Are Associated with Mental Stress-Induced Myocardial Ischemia after Acute Myocardial Infarction

    PubMed Central

    Wei, Jingkai; Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon A.; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Objectives Depression is an adverse prognostic factor after an acute myocardial infarction (MI), and an increased propensity toward emotionally-driven myocardial ischemia may play a role. We aimed to examine the association between depressive symptoms and mental stress-induced myocardial ischemia in young survivors of an MI. Methods We studied 98 patients (49 women and 49 men) age 38–60 years who were hospitalized for acute MI in the previous 6 months. Patients underwent myocardial perfusion imaging at rest, after mental stress (speech task), and after exercise or pharmacological stress. A summed difference score (SDS), obtained with observer-independent software, was used to quantify myocardial ischemia under both stress conditions. The Beck Depression Inventory-II (BDI-II) was used to measure depressive symptoms, which were analyzed as overall score, and as separate somatic and cognitive depressive symptom scores. Results There was a significant positive association between depressive symptoms and SDS with mental stress, denoting more ischemia. After adjustment for demographic and lifestyle factors, disease severity and medications, each incremental depressive symptom was associated with 0.14 points higher SDS. When somatic and cognitive depressive symptoms were examined separately, both somatic [β = 0.17, 95% CI: (0.04, 0.30), p = 0.01] and cognitive symptoms [β = 0.31, 95% CI: (0.07, 0.56), p = 0.01] were significantly associated with mental stress-induced ischemia. Depressive symptoms were not associated with ischemia induced by exercise or pharmacological stress. Conclusion Among young post-MI patients, higher levels of both cognitive and somatic depressive symptoms are associated with a higher propensity to develop myocardial ischemia with mental stress, but not with physical (exercise or pharmacological) stress. PMID:25061993

  3. Modeling Tidal Stresses on Planetary Bodies Using an Enhanced SatStress GUI

    NASA Astrophysics Data System (ADS)

    Patthoff, D. A.; Pappalardo, R. T.; Tang, L.; Kay, J.; Kattenhorn, S. A.

    2014-12-01

    Icy and rocky satellites of our solar system display a wide range of structural deformation on their surfaces. Some surfaces are old and heavily cratered showing little evidence for recent tectonism while other surfaces are sparsely cratered and young, with some moons showing geologically very recent or present-day activity. The young deformation can take the form of small cracks in the surface, large double ridges that can extend for thousands of km, and mountain ranges that can reach heights of several kilometers. Many of the potential sources of stress that can deform the surfaces are likely tied to the diurnal tidal deformation of the moons as they orbit their parent planets. Other secular sources of global-scale stress include: volume change induced by the melting or freezing of a subsurface liquid layer, change in the orbital parameters of the moon, or rotation of the outer shell of the satellite relative to the rest of the body (nonsynchronous rotation or true polar wander). We turn to computer modeling to correlate observed structural features to the possible stresses that created them. A variety of modeling programs exist and generally assume a thin ice shell and/or a multi-layered viscoelastic satellite. The program SatStress, which was developed by Zane Crawford and documented by Wahr et al. (2009), computes tidal and nonsynchronous rotation stresses on a satellite. It was later modified into a more user-friendly version with a graphical user interface (SatStress GUI) by Kay and Kattenhorn (2010). This implementation assumes a 4-layer viscoelastic body and is able to calculate stresses resulting from diurnal tides, nonsynchronous rotation, and ice shell thickening. Here we illustrate our recent enhancements to SatStress GUI and compare modeled stresses to example features observed on the surfaces of Ganymede, Europa, and Enceladus. Kay and Kattenhorn (2010) 41st LPSC, abs # 2046. Wahr et al. (2009) Icarus, 200, 188-206.

  4. Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress

    PubMed Central

    Pestke, Karin; Feeser, Melanie; Aust, Sabine; Weigand, Anne; Wang, Jue; Wingenfeld, Katja; Pruessner, Jens C.; La Marca, Roberto; Böker, Heinz; Bajbouj, Malek

    2014-01-01

    Early life stress (ELS) is associated with altered stress responsivity, structural and functional brain changes and an increased risk for the development of psychopathological conditions in later life. Due to its behavioral and physiological effects, the neuropeptide oxytocin (OXT) is a useful tool to investigate stress responsivity, even though the neurobiological underpinnings of its effects are still unknown. Here we investigate the effects of OXT on cortisol stress response and neural activity during psychosocial stress. Using functional magnetic resonance imaging in healthy subjects with and without a history of ELS, we found attenuated hormonal reactivity and significantly reduced limbic deactivation after OXT administration in subjects without a history of ELS. Subjects who experienced ELS showed both blunted stress reactivity and limbic deactivation during stress. Furthermore, in these subjects OXT had opposite effects with increased hormonal reactivity and increased limbic deactivation. Our results might implicate that reduced limbic deactivation and hypothalamic–pituitary–adrenal axis responsivity during psychosocial stress are markers for biological resilience after ELS. Effects of OXT in subjects with a history of maltreatment could therefore be considered detrimental and suggest careful consideration of OXT administration in such individuals. PMID:24478326

  5. Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress.

    PubMed

    Grimm, Simone; Pestke, Karin; Feeser, Melanie; Aust, Sabine; Weigand, Anne; Wang, Jue; Wingenfeld, Katja; Pruessner, Jens C; La Marca, Roberto; Böker, Heinz; Bajbouj, Malek

    2014-11-01

    Early life stress (ELS) is associated with altered stress responsivity, structural and functional brain changes and an increased risk for the development of psychopathological conditions in later life. Due to its behavioral and physiological effects, the neuropeptide oxytocin (OXT) is a useful tool to investigate stress responsivity, even though the neurobiological underpinnings of its effects are still unknown. Here we investigate the effects of OXT on cortisol stress response and neural activity during psychosocial stress. Using functional magnetic resonance imaging in healthy subjects with and without a history of ELS, we found attenuated hormonal reactivity and significantly reduced limbic deactivation after OXT administration in subjects without a history of ELS. Subjects who experienced ELS showed both blunted stress reactivity and limbic deactivation during stress. Furthermore, in these subjects OXT had opposite effects with increased hormonal reactivity and increased limbic deactivation. Our results might implicate that reduced limbic deactivation and hypothalamic-pituitary-adrenal axis responsivity during psychosocial stress are markers for biological resilience after ELS. Effects of OXT in subjects with a history of maltreatment could therefore be considered detrimental and suggest careful consideration of OXT administration in such individuals. PMID:24478326

  6. [Hormonal markers of stress in acute cerebrovascular pathology].

    PubMed

    Miralles, F; Sanz, R; Martin, R; Falip, R; Antem, M; Matías-Guiu, J

    1995-01-01

    Various studies carried out over the last decade have shown that high glucose levels in the blood foster ischaemic brain damage associated with a worse evolution of such pathologies. The aim of the study we performed was to try to shed some light on whether stress in these patients raised their glucose levels adding to a worsening of the patient's clinical picture. We studied 318 consecutive patients suffering from stroke. We determined fasting glucose levels, prolactin and cortisol within the first few hours of hospitalization and afterwards at seven to ten days and again at one month after the stroke. Clinical severity was evaluated using Toronto and Mathew neurological scales and the degree of incapacity was measured using the Barthel functional scale on the three aforementioned occasions and Rankin's modified scale six and twelve months after the stroke. Clinical severity the first hours after stroke was significantly related to glucose levels, such relationship not being observed with prolactin and cortisol. Nor did we observe any significant association between glucose and these hormones. Likewise the anxiety scale had no relationship with any hormone. Studying medium and long term functional incapacity, glucose significantly correlated with the Rankin scale although with low dependence, such a relationship not being found either with prolactin or cortisol. Our work would seem to indicate that blood glucose behaviour is independent of prolactin and cortisol levels since we found no such relationship between them. PMID:8556609

  7. Yield Stress Enhancement in Glassy-Polyethylene Block Copolymers

    NASA Astrophysics Data System (ADS)

    Mulhearn, William; Register, Richard

    Polyethylene (PE) has the highest annual production volume of all synthetic polymers worldwide, and is valuable across many applications due to its low cost, toughness, processability, and chemical resistance. However, PE is not well suited to certain applications due to its modest yield stress and Young's modulus (approximately 30 MPa and 1 GPa, respectively for linear, high-density PE). Irreversible deformation of PE results from dislocation of crystal stems and eventual crystal fragmentation under applied stress. The liquid-like amorphous fraction provides no useful mechanical support to the crystal fold surface in a PE homopolymer, so the only method to enhance the force required for crystal slip, and hence the yield stress, is crystal thickening via thermal treatment. An alternative route towards modifying the mechanical properties of PE involves copolymerization of a minority high-glass transition temperature block into a majority-PE block copolymer. In this work, we investigate a system of glassy/linear-PE block copolymers prepared via ring-opening metathesis polymerization of cyclopentene and substituted norbornene monomers followed by hydrogenation. We demonstrate that a large change in mechanical properties can be achieved with the addition of a short glassy block (e.g. a doubling of the yield stress and Young's modulus versus PE homopolymer with the addition of 25 percent glassy block). Furthermore, owing to the low interaction energy between PE and the substituted polynorbornene blocks employed, these high-yield PE block copolymers can exhibit single-phase melts for ease of processability.

  8. A Study of Oxidative Stress Biomarkers and Effect of Oral Antioxidant Supplementation in Severe Acute Malnutrition

    PubMed Central

    Ghone, Rahul A.; Suryakar, Adinath N.; Kulhalli, P. M.; Bhagat, Sonali S.; Padalkar, Ramchandra K.; Karnik, Aarti C.; Hundekar, Prakash S.; Sangle, D. A.

    2013-01-01

    Background: Malnutrition represents one of the most severe health problems in India. Free radicals play an important role in immunological response, which induces the oxidative surplus in severe acute malnutrition. Severe dietary deficiency of nutrients leads to increased oxidative stress in cellular compartments. Aim: The goal of this study was to inspect impact of oxidative stress in the form of serum malondialdehyde as product of lipid peroxidation, vitamin E, zinc and erythrocyte superoxide dismutase in patients with severe acute malnutrition. Material and Methods: Sixty severe acute malnutrition patients were studied before and after supplementation of antioxidants for one month, and their status were compared with those of 60 age and sex matched healthy controls. The level of serum MDA was analyzed by the Kei Satoh method, serum vitamin E concentration was measured by Baker and Frank Method, serum zinc was measured by using Atomic Absorption Spectrophotometer (AAS) and erythrocyte superoxide dismutase was measured by Kajari Das Method. Results: Significantly increased levels of serum malondialdehyde (p<0.001) were found in the patients as compared to those in controls, and significant depletions were found in the levels of serum vitamin E, zinc and erythrocyte superoxide dismutase in patients with severe acute malnutrition as compared to those in controls. After supplementation of antioxidants for one month, the levels of malondialdehyde were found to be decreased significantly (p<0.001) and zinc and erythrocyte superoxide dismutase capacity levels were increased significantly (p<0.05). Also, there was a non–significant (p>0.05) increase in vitamin E levels as compared to those before supplementation results. Conclusion: Harsh deficiency of various nutrients in severe acute malnutrition leads to generation of heavy oxidative stress. These effects may be minimized with supplementation of antioxidants. PMID:24298460

  9. Acute stress symptoms during the second Lebanon war in a random sample of Israeli citizens.

    PubMed

    Cohen, Miri; Yahav, Rivka

    2008-02-01

    The aims of this study were to assess prevalence of acute stress disorder (ASD) and acute stress symptoms (ASS) in Israel during the second Lebanon war. A telephone survey was conducted in July 2006 of a random sample of 235 residents of northern Israel, who were subjected to missile attacks, and of central Israel, who were not subjected to missile attacks. Results indicate that ASS scores were higher in the northern respondents; 6.8% of the northern sample and 3.9% of the central sample met ASD criteria. Appearance of each symptom ranged from 15.4% for dissociative to 88.4% for reexperiencing, with significant differences between northern and central respondents only for reexperiencing and arousal. A low ASD rate and a moderate difference between areas subjected and not subjected to attack were found. PMID:18302184

  10. Factor structure of the Acute Stress Disorder Scale in a Sample of Hurricane Katrina evacuees

    PubMed Central

    Edmondson, Donald; Mills, Mary Alice; Park, Crystal L.

    2010-01-01

    Acute stress disorder (ASD) is a poorly understood and controversial diagnosis (Harvey & Bryant, 2002). The present study used confirmatory factor analysis (CFA) to test the factor structure of the most widely used self-report measure of ASD, the Acute Stress Disorder Scale, in a sample of Hurricane Katrina evacuees relocated to a Red Cross emergency shelter in Austin, Texas. Results indicated that the proposed four-factor structure did not fit the data well. However, an alternate 2-factor model did fit the data well. This model included a second-order Distress factor (onto which the Reexperiencing, Arousal, and Avoidance factors loaded strongly) that was positively correlated with the Dissociation factor. Implications for the ASD construct and its measurement are discussed. PMID:20528054

  11. Structure-Enhanced Yield Shear Stress in Electrorheological Fluids

    NASA Astrophysics Data System (ADS)

    Tao, R.; Lan, Y. C.; Xu, X.

    A new technology, compression-assisted aggregation, is developed to enhance the strength of electrorheological (ER) fluids. The yield shear stress of ER fluids depends on the fluid microstructure. The unassisted electric-field induced ER structure mainly consists of single chains, whose weak points are at their ends. This new technology produces a structure consisting of robust thick columns with strong ends. As the weak points of the original ER structure are greatly enforced, the new structure makes ER fluids super-strong: At a moderate electric field and moderate pressure the yield shear stress of ER fluids at 35% volume fraction exceeds 100 kPa, well above any requirement for major industrial applications.

  12. Use of surface-enhanced Raman scattering as a prognostic indicator of acute kidney transplant rejection

    PubMed Central

    Chi, Jingmao; Zaw, Thet; Cardona, Iliana; Hosnain, Mujtaba; Garg, Neha; Lefkowitz, Heather R.; Tolias, Peter; Du, Henry

    2015-01-01

    We report an early, noninvasive and rapid prognostic method of predicting potential acute kidney dysfunction using surface-enhanced Raman scattering (SERS). Our analysis was performed on urine samples collected prospectively from 58 kidney transplant patients using a He-Ne laser (632.8 nm) as the excitation source. All abnormal kidney function episodes (three acute rejections and two acute kidney failures that were eventually diagnosed independently by clinical biopsy) consistently exhibited unique SERS spectral features in just one day following the transplant surgery. These results suggested that SERS analysis provides an early and more specific indication to kidney function than the clinically used biomarker, serum creatinine (sCr). PMID:25798301

  13. Critical job events, acute stress, and strain: a multiple interrupted time series.

    PubMed

    Eden, D

    1982-12-01

    A critical job event (CJE) is defined as a time-bounded peak of performance demand made on the individual as an integral part of his job. Though such events are an important source of acute job stress and are amenable to longitudinal study, relevant research has been scant. In the present study, the effects of acute objective stress on subjective stress and on psychological and physiological strain were assessed among 39 first-year nursing students in an interrupted time series with multiple replications. Strain was measured five times, twice in anticipation of CJE interspersed by three low-stress occasions. The CJEs were providing the first comprehensive patient care and the final exam in nursing. A consistently confirmatory pattern of significantly rising and falling strain was found for anxiety, systolic blood pressure, and pulse rate: qualitative overload and serum uric acid changed as predicted four times out of five. CJE research can redress past overemphasis on chronic organizational stress and strengthen causal interpretation. PMID:10257633

  14. Sleep quality but not sleep quantity effects on cortisol responses to acute psychosocial stress.

    PubMed

    Bassett, Sarah M; Lupis, Sarah B; Gianferante, Danielle; Rohleder, Nicolas; Wolf, Jutta M

    2015-01-01

    Given the well-documented deleterious health effects, poor sleep has become a serious public health concern and increasing efforts are directed toward understanding underlying pathways. One potential mechanism may be stress and its biological correlates; however, studies investigating the effects of poor sleep on a body's capacity to deal with challenges are lacking. The current study thus aimed at testing the effects of sleep quality and quantity on cortisol responses to acute psychosocial stress. A total of 73 college-aged adults (44 females) were investigated. Self-reported sleep behavior was assessed via the Pittsburgh Sleep Quality Index and salivary cortisol responses to the Trier Social Stress Test were measured. In terms of sleep quality, we found a significant three-way interaction, such that relative to bad sleep quality, men who reported fairly good or very good sleep quality showed blunted or exaggerated cortisol responses, respectively, while women's stress responses were less dependent on their self-reported sleep quality. Contrarily, average sleep duration did not appear to impact cortisol stress responses. Lastly, participants who reported daytime dysfunctions (i.e. having trouble staying awake or keeping up enthusiasm) also showed a trend to blunted cortisol stress responses compared to participants who did not experience these types of daytime dysfunctions. Overall, the current study suggests gender-specific stress reactivity dysfunctions as one mechanism linking poor sleep with detrimental physical health outcomes. Furthermore, the observed differential sleep effects may indicate that while the body may be unable to maintain normal hypothalamic-pituitary-adrenal functioning in an acute psychosocial stress situation after falling prey to low sleep quality, it may retain capacities to deal with challenges during extended times of sleep deprivation. PMID:26414625

  15. The psychological effects of Intifada Al Aqsa: acute stress disorder and distress in Palestinian-Israeli students.

    PubMed

    Musallam, Naiera; Ginzburg, Karni; Lev-Shalem, Liat; Solomon, Zahava

    2005-01-01

    The study assesses the effects of exposure to nationality-related and personal stressful events, threat appraisal and coping strategies on level of distress of Palestinian Israeli students. One hundred forty-eight Palestinian Israeli students filled out a battery of questionnaires that tapped their exposure to stressful life events, terrorism and political related violence, their primary and secondary appraisals, and coping strategies. Level of distress was evaluated by (1) acute stress disorder, and (2) psychiatric symptomatology. Results reveal relatively low exposure to terrorism-related traumatic events, yet considerable exposure (35.8%) to nationality-related stressful events during the last two years. Twenty-five percent of the students suffered from acute stress disorder, and their levels of psychiatric symptomatology exceeded norms for the general population. Primary appraisal processes and emotion-focused coping strategies made unique contribution to the respondents' level of (1) acute stress disorder and (2) psychiatric symptomatology. The implications of these findings are discussed. PMID:16342606

  16. Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study.

    PubMed

    Ranjbar, Akram; Solhi, Hasan; Mashayekhi, Farideh Jalali; Susanabdi, Alireza; Rezaie, Ali; Abdollahi, Mohammad

    2005-07-01

    Free radicals play an important role in toxicity of pesticides and environmental chemicals. Organophosphorus insecticides (OPIs) may induce oxidative stress leading to generation of free radicals and alteration in antioxidant system. To complete the previous surveys, this study was conducted to evaluate the existence of oxidative stress, balance between total antioxidant capacity and oxygen free radicals in patients with acute OPI exposure. In this case control study, a total of 22 acute OPI poisoning patients were included and blood samples were analyzed for lipid peroxidation, total antioxidant capacity, total thiol groups, and cholinesterase levels. The results showed significant lipid peroxidation accompanied with decreased levels of total antioxidant capacity, total thiols, and cholinesterase activity. A significant correlation existed between cholinesterase depression and reduced total antioxidant capacity. It is concluded that oxygen free radicals and their related interactions like lipid peroxidation are present in acute OPI poisoning. Use of antioxidants may be beneficial in treatment of OPIs acute poisoning which remains to be elucidated by further clinical trials. PMID:21783573

  17. Acute stress and working memory: The role of sex and cognitive stress appraisal.

    PubMed

    Zandara, M; Garcia-Lluch, M; Pulopulos, M M; Hidalgo, V; Villada, C; Salvador, A

    2016-10-01

    Sex is considered a moderating factor in the relationship between stress and cognitive performance. However, sex differences and the impact of cognitive stress appraisal on working memory performance have not received much attention. The aim of this study was to investigate the role of physiological responses (heart rate and salivary cortisol) and cognitive stress appraisal in Working Memory (WM) performance in males and females. For this purpose, we subjected a comparable number of healthy young adult males (N=37) and females (N=45) to a modified version of the Trier Social Stress Test (TSST), and we evaluated WM performance before and after the stress task. Females performed better on attention and maintenance after the TSST, but males did not. Moreover, we found that attention and maintenance performance presented a negative relationship with cortisol reactivity in females, but not in males. Nevertheless, we observed that only the females who showed a cortisol decrease after the TSST performed better after the stress task, whereas females and males who showed an increase or no change in cortisol levels, and males who showed a cortisol decrease, did not change their performance over time. In females, we also found that the global indexes of cognitive stress appraisal and cognitive threat appraisal were negatively related to attention and maintenance performance, whereas the Self-concept of Own Competence was positively related to it. However, these relationships were not found in males. PMID:27321755

  18. Response and habituation of pro and anti inflammatory gene expression to repeated acute stress

    PubMed Central

    McInnis, Christine M.; Wang, Diana; Gianferante, Danielle; Hanlin, Luke; Chen, Xuejie; Thoma, Myriam V.; Rohleder, Nicolas

    2015-01-01

    Introduction Acute stress induces increases in plasma inflammatory mediators, which do not habituate to repeated stress. Inflammation is a risk factor for age-related illnesses, highlighting the need to understand factors controlling inflammation. No studies have examined changes in pro- and anti-inflammatory gene expression in response to repeated acute stress in humans. Methods RNA was isolated from peripheral blood before, 30 and 120 minutes after exposure of n=32 healthy human participants to the Trier Social Stress Test (TSST) on two days. Gene expression of interleukin (IL)-6, IL-1β, nuclear factor (NF)-κB and IκB was measured repeatedly on both days. We further assessed leukocyte numbers, plasma IL-6, and salivary cortisol. Results Stress induced IL-6 (F=44.7; p<0.001) and cortisol responses (F=18.6; p<0.001). Cortisol responses habituated (F=5.1, p=0.003), but IL-6 responses did not (n.s.). All genes increased in response to initial stress (IL-6: F=3.8; p=0.029; IL-1β: F=7.1; p=0.008; NF-κB: F=5.1; p=0.009; IκB; F=4.7; p=0.013) and showed habituation to repeated stress (IL-6: t=2.3; p=0.03; IL-1β: t=3.9; p=0.001; NF-κB: t=2.1; p=0.041; IκB: t=3.1; p=0.005). Day 1 responses of IL-1β and IκB were not explained by changes in leukocyte populations, but IL-6 and NF-κB, as well as most day 2 changes were not independent of leukocyte populations. Conclusions Stress response and habituation of pro- and anti-inflammatory gene expression as found here might indicate that even on an intracellular level, inflammatory responses to acute stress are adaptive in that they respond to initial, but habituate to repeated, similar stress. Future studies will need to test whether non-habituation is predictive of disease. PMID:25683696

  19. The effects of acute stress on Pavlovian-instrumental transfer in rats.

    PubMed

    Pielock, Steffi M; Braun, Stephanie; Hauber, Wolfgang

    2013-03-01

    Pavlovian stimuli invigorate ongoing instrumental action, a phenomenon termed the Pavlovian-instrumental transfer (PIT) effect. Acute stressors can markedly enhance the release of corticotropin-releasing factor (CRF), and CRF injection into the nucleus accumbens increases the PIT effect. However, it is unknown whether acute stressors by themselves would amplify the PIT effect. Here, we examined the effects of acute stressors on PIT. Rats first received Pavlovian and instrumental training, and then the impact of the Pavlovian stimuli on instrumental responding was analyzed in the subsequent PIT test. Acute stressors were applied prior to the PIT test. Because the effects of acute stressors critically depend on stressor type and time of day, we used two acute stressors that involved one or several distinct stressors (denoted here as "single" vs. "multiple" stressors) applied either in the light or the dark period of the light:dark cycle. The results revealed that single and multiple stressors applied in the light period did not alter the PIT effect--that is, the ability of an appetitive Pavlovian stimulus to enhance leverpressing--or the basal leverpress rate. When applied in the dark period, single and multiple stressors also did not alter the PIT effect, but they did markedly reduce the basal leverpress rate. Diazepam pretreatment did not counteract the declines in basal instrumental responding in the PIT test that were induced by either a single or multiple stressors. Our findings suggest that acute stressors were unable to amplify the incentive salience of reward-predictive Pavlovian stimuli to activate instrumental responding, but, depending on the time of day of stressor exposure, they did reduce basal instrumental responding. PMID:23065681

  20. A physical/psychological and biological stress combine to enhance endoplasmic reticulum stress.

    PubMed

    Mondal, Tapan Kumar; Emeny, Rebecca T; Gao, Donghong; Ault, Jeffrey G; Kasten-Jolly, Jane; Lawrence, David A

    2015-12-01

    The generation of an immune response against infectious and other foreign agents is substantially modified by allostatic load, which is increased with chemical, physical and/or psychological stressors. The physical/psychological stress from cold-restraint (CR) inhibits host defense against Listeria monocytogenes (LM), due to early effects of the catecholamine norepinephrine (NE) from sympathetic nerves on β1-adrenoceptors (β1AR) of immune cells. Although CR activates innate immunity within 2h, host defenses against bacterial growth are suppressed 2-3 days after infection (Cao and Lawrence 2002). CR enhances inducible nitric oxide synthase (iNOS) expression and NO production. The early innate activation leads to cellular reduction-oxidation (redox) changes of immune cells. Lymphocytes from CR-treated mice express fewer surface thiols. Splenic and hepatic immune cells also have fewer proteins with free thiols after CR and/or LM, and macrophages have less glutathione after the in vivo CR exposure or exposure to NE in vitro. The early induction of CR-induced oxidative stress elevates endoplasmic reticulum (ER) stress, which could interfere with keeping phagocytized LM within the phagosome or re-encapsuling LM by autophagy once they escape from the phagosome. ER stress-related proteins, such as glucose-regulated protein 78 (GRP78), have elevated expression with CR and LM. The results indicate that CR enhances the unfolded protein response (UPR), which interferes with host defenses against LM. Thus, it is postulated that increased stress, as exists with living conditions at low socioeconomic conditions, can lower host defenses against pathogens because of oxidative and ER stress processes. PMID:26391182

  1. The dopaminergic response to acute stress in health and psychopathology: A systematic review.

    PubMed

    Vaessen, Thomas; Hernaus, Dennis; Myin-Germeys, Inez; van Amelsvoort, Thérèse

    2015-09-01

    Previous work in animals has shown that dopamine (DA) in cortex and striatum plays an essential role in stress processing. For the first time, we systematically reviewed the in vivo evidence for DAergic stress processing in health and psychopathology in humans. All studies included (n studies=25, n observations=324) utilized DA D2/3 positron emission tomography and measured DAergic activity during an acute stress challenge. The evidence in healthy volunteers (HV) suggests that physiological, but not psychological, stress consistently increases striatal DA release. Instead, increased medial prefrontal cortex (mPFC) DAergic activity in HV was observed during psychological stress. Across brain regions, stress-related DAergic activity was correlated with the physiological and psychological intensity of the stressor. The magnitude of stress-induced DA release was dependent on rearing conditions, personality traits and genetic variations in several SNPs. In psychopathology, preliminary evidence was found for stress-related dorsal striatal DAergic hyperactivity in psychosis spectrum and a blunted response in chronic cannabis use and pain-related disorders, but results were inconsistent. Physiological stress-induced DAergic activity in striatum in HV may reflect somatosensory properties of the stressor and readiness for active fight-or-flight behavior. DAergic activity in HV in the ventral striatum and mPFC may be more related to expectations about the stressor and threat evaluation, respectively. Future studies with increased sample size in HV and psychopathology assessing the functional relevance of stress-induced DAergic activity, the association between cortical and subcortical DAergic activity and the direct comparison of different stressors are necessary to conclusively elucidate the role of the DA system in the stress response. PMID:26196459

  2. Stronger cortisol response to acute psychosocial stress is correlated with larger decrease in temporal sensitivity

    PubMed Central

    Yao, Zhuxi; Jiang, Caihong; Zhang, Kan; Wu, Jianhui

    2016-01-01

    As a fundamental dimension of cognition and behavior, time perception has been found to be sensitive to stress. However, how one’s time perception changes with responses to stress is still unclear. The present study aimed to investigate the relationship between stress-induced cortisol response and time perception. A group of 40 healthy young male adults performed a temporal bisection task before and after the Trier Social Stress Test for a stress condition. A control group of 27 male participants completed the same time perception task without stress induction. In the temporal bisection task, participants were first presented with short (400 ms) and long (1,600 ms) visual signals serving as anchor durations and then required to judge whether the intermediate probe durations were more similar to the short or the long anchor. The bisection point and Weber ratio were calculated and indicated the subjective duration and the temporal sensitivity, respectively. Data showed that participants in the stress group had significantly increased salivary cortisol levels, heart rates, and negative affects compared with those in the control group. The results did not show significant group differences for the subjective duration or the temporal sensitivity. However, the results showed a significant positive correlation between stress-induced cortisol responses and decreases in temporal sensitivity indexed by increases in the Weber ratio. This correlation was not observed for the control group. Changes in subjective duration indexed by temporal bisection points were not correlated with cortisol reactivity in both the groups. In conclusion, the present study found that although no significant change was observed in time perception after an acute stressor on the group-level comparison (i.e., stress vs. nonstress group), individuals with stronger cortisol responses to stress showed a larger decrease in temporal sensitivity. This finding may provide insight into the understanding of

  3. Effects of acute stress on cardiac endocannabinoids, lipogenesis, and inflammation in rats

    PubMed Central

    Lim, James; Piomelli, Daniele

    2014-01-01

    Objective Trauma exposure can precipitate acute/post-traumatic stress responses (AS/PTSD) and disabling cardiovascular disorders (CVD). Identifying acute stress-related physiologic changes that may increase CVD risk could inform development of early CVD-prevention strategies. The endocannabinoid system (ECS) regulates hypothalamic-pituitary-adrenal (HPA) axis response and stress-related cardiovascular function. We examine stress-related endocannabinoid system (ECS) activity and its association with cardiovascular biochemistry/function following acute stress. Methods Rodents (n=8-16/group) were exposed to predator odor or saline; elevated plus maze (EPM), blood pressure (BP), serum and cardiac tissue ECS markers, and lipid metabolism were assessed at 24h and 2wks post-exposure. Results At 24h the predator odor group demonstrated anxiety-like behavior and had (a) elevated serum markers of cardiac failure/damage (brain natriuretic peptide [BNP]: 275.1 vs. 234.6, p=0.007; troponin-I: 1.50 vs. 0.78, p=0.076), lipogenesis (triacylglycerols [TAG]: 123.5 vs. 85.93, p=0.018), and inflammation (stearoyl delta-9 desaturase activity [SCD-16]: 0.21 vs. 0.07, p<0.001); (b) significant decrease in cardiac endocannabinoid (2-arachidonoyl-sn-glycerol, 2-AG: 29.90 vs. 65.95, p<0.001) and fatty acid ethanolamides (FAE: oleoylethanolamide, OEA: 114.3 vs. 125.4, p=0.047; palmitoylethanolamide, PEA: 72.96 vs. 82.87, p=0.008); and (c) increased cardiac inflammation (IL-1β/IL-6 ratio: 19.79 vs.13.57, p=0.038; TNF-α/IL-6 ratio: 1.73 vs. 1.03, p=0.019) and oxidative stress (thiobarbituric acid reactive substances [TBARS]: 7.81 vs. 7.05, p=0.022), that were associated with cardiac steatosis (higher TAG: 1.09 vs. 0.72, p<0.001). Cardiac lipogenesis persisted, and elevated BP emerged two weeks after exposure. Conclusions Acute psychological stress elicits ECS-related cardiac responses associated with persistent, potentially-pathological changes in rat cardiovascular biochemistry

  4. Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible.

    PubMed

    Heine, Vivi M; Maslam, Suharti; Zareno, Jessica; Joëls, Marian; Lucassen, Paul J

    2004-01-01

    Acute stress suppresses new cell birth in the hippocampus in several species. Relatively little is known, however, on how chronic stress affects the turnover, i.e. proliferation and apoptosis, of the rat dentate gyrus (DG) cells, and whether the stress effects are lasting. We investigated how 3 weeks of chronic unpredictable stress would influence the structural dynamic plasticity of the rat DG, and studied newborn cell proliferation, survival, apoptosis, volume and cell number in 10-week-old animals. To study lasting effects, another group of animals was allowed to recover for 3 weeks. Based on two independent parameters, bromodeoxyuridine (BrdU) and Ki-67 immunocytochemistry, our results show that both chronic and acute stress decrease new cell proliferation rate. The reduced proliferation after acute stress normalized within 24 h. Interestingly, chronically stressed animals showed recovery after 3 weeks, albeit with still fewer proliferating cells than controls. Apoptosis, by contrast, increased after acute but decreased after chronic stress. These results demonstrate that, although chronic stress suppresses proliferation and apoptosis, 3 weeks of recovery again normalized most of these alterations. This may have important implications for our understanding of the reversibility of stress-related hippocampal volume changes, such as occur, for example, in depression. PMID:14750971

  5. Cumulative Adversity Sensitizes Neural Response to Acute Stress: Association with Health Symptoms

    PubMed Central

    Seo, Dongju; Tsou, Kristen A; Ansell, Emily B; Potenza, Marc N; Sinha, Rajita

    2014-01-01

    Cumulative adversity (CA) increases stress sensitivity and risk of adverse health outcomes. However, neural mechanisms underlying these associations in humans remain unclear. To understand neural responses underlying the link between CA and adverse health symptoms, the current study assessed brain activity during stress and neutral-relaxing states in 75 demographically matched, healthy individuals with high, mid, and low CA (25 in each group), and their health symptoms using the Cornell Medical Index. CA was significantly associated with greater adverse health symptoms (P=0.01) in all participants. Functional magnetic resonance imaging results indicated significant associations between CA scores and increased stress-induced activity in the lateral prefrontal cortex, insula, striatum, right amygdala, hippocampus, and temporal regions in all 75 participants (p<0.05, whole-brain corrected). In addition to these regions, the high vs low CA group comparison revealed decreased stress-induced activity in the medial orbitofrontal cortex (OFC) in the high CA group (p<0.01, whole-brain corrected). Specifically, hypoactive medial OFC and hyperactive right hippocampus responses to stress were each significantly associated with greater adverse health symptoms (p<0.01). Furthermore, an inverse correlation was found between activity in the medial OFC and right hippocampus (p=0.01). These results indicate that high CA sensitizes limbic–striatal responses to acute stress and also identifies an important role for stress-related medial OFC and hippocampus responses in the effects of CA on increasing vulnerability to adverse health consequences. PMID:24051900

  6. The Effect of Acute and Chronic Social Stress on the Hippocampal Transcriptome in Mice.

    PubMed

    Stankiewicz, Adrian M; Goscik, Joanna; Majewska, Alicja; Swiergiel, Artur H; Juszczak, Grzegorz R

    2015-01-01

    Psychogenic stress contributes to the formation of brain pathology. Using gene expression microarrays, we analyzed the hippocampal transcriptome of mice subjected to acute and chronic social stress of different duration. The longest period of social stress altered the expression of the highest number of genes and most of the stress-induced changes in transcription were reversible after 5 days of rest. Chronic stress affected genes involved in the functioning of the vascular system (Alas2, Hbb-b1, Hba-a2, Hba-a1), injury response (Vwf, Mgp, Cfh, Fbln5, Col3a1, Ctgf) and inflammation (S100a8, S100a9, Ctla2a, Ctla2b, Lcn2, Lrg1, Rsad2, Isg20). The results suggest that stress may affect brain functions through the stress-induced dysfunction of the vascular system. An important issue raised in our work is also the risk of the contamination of brain tissue samples with choroid plexus. Such contamination would result in a consistent up- or down-regulation of genes, such as Ttr, Igf2, Igfbp2, Prlr, Enpp2, Sostdc1, 1500015O10RIK (Ecrg4), Kl, Clic6, Kcne2, F5, Slc4a5, and Aqp1. Our study suggests that some of the previously reported, supposedly specific changes in hippocampal gene expression, may be a result of the inclusion of choroid plexus in the hippocampal samples. PMID:26556046

  7. BEHAVIORAL CHARACTERISTICS OF RATS ON VARIOUS HIERARCHICAL LEVEL CAUSED BY ACUTE INFORMATIONAL STRESS.

    PubMed

    Matitaishvili, T; Domianidze, T; Emukhvari, N; Khananashvili, M

    2016-03-01

    The aim of our research was to study behavioral indices of rats standing on various hierarchical level in the conditions of acute informational stress as well as their resistance to stress taking into account their social status. The Animal's behavior has been studied in conflict and agonist conditions against the background of high food and thirst motivation. After determination of hierarchical relations the stressing procedure of two active avoidance reactions was performed simultaneously during one trial (14 days). During the experiment, behavioral indices of rats induced by stressing procedure were registered. We used "open field" test in order to assess animals' emotional state. The studies performed by us demonstrated behavioral characteristics of animals standing on various hierarchical level. The obtained results showed that after stressing all the animals of the group under stressogenic influence of equal strength, behavior of rats did nor reliably differ in conflict situations. Dominants standing on high hierarchical level remained active in both conflict situations. The impact of stress on their behavior was less detected. Dominant animal maintained its hierarchical status. Submissive rats were more greatly influenced by stress. The obtained results confirmed that dominant animals were characterized with more comprehensively developed self-regulating mechanisms of brain. PMID:27119838

  8. The Effect of Acute and Chronic Social Stress on the Hippocampal Transcriptome in Mice

    PubMed Central

    Stankiewicz, Adrian M.; Goscik, Joanna; Majewska, Alicja; Swiergiel, Artur H.; Juszczak, Grzegorz R.

    2015-01-01

    Psychogenic stress contributes to the formation of brain pathology. Using gene expression microarrays, we analyzed the hippocampal transcriptome of mice subjected to acute and chronic social stress of different duration. The longest period of social stress altered the expression of the highest number of genes and most of the stress-induced changes in transcription were reversible after 5 days of rest. Chronic stress affected genes involved in the functioning of the vascular system (Alas2, Hbb-b1, Hba-a2, Hba-a1), injury response (Vwf, Mgp, Cfh, Fbln5, Col3a1, Ctgf) and inflammation (S100a8, S100a9, Ctla2a, Ctla2b, Lcn2, Lrg1, Rsad2, Isg20). The results suggest that stress may affect brain functions through the stress-induced dysfunction of the vascular system. An important issue raised in our work is also the risk of the contamination of brain tissue samples with choroid plexus. Such contamination would result in a consistent up- or down-regulation of genes, such as Ttr, Igf2, Igfbp2, Prlr, Enpp2, Sostdc1, 1500015O10RIK (Ecrg4), Kl, Clic6, Kcne2, F5, Slc4a5, and Aqp1. Our study suggests that some of the previously reported, supposedly specific changes in hippocampal gene expression, may be a result of the inclusion of choroid plexus in the hippocampal samples. PMID:26556046

  9. Biomarkers for oxidative stress in acute lung injury induced in rabbits submitted to different strategies of mechanical ventilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative damage has been said to play an important role in pulmonary injury, which is associated with the development and progression of acute respiratory distress syndrome (ARDS). We aimed to identify biomarkers to determine the oxidative stress in an animal model of acute lung injury (ALI) using ...

  10. Enhanced stress durability of nano resonators with scandium doped electrodes

    SciTech Connect

    Nuessl, R.; Jewula, T.; Binninger, C.; Drozd, R.; Ruile, W.; Beckmeier, D.; Sulima, T.; Eisele, I.; Hansch, W.

    2010-11-15

    To explore mechanical stress durability of thin aluminum-scandium (AlSc) films, 0.86 GHz nano resonators with AlSc electrodes have been manufactured. Four different samples have been prepared altering the Sc content in the alloy between 0.0% and 2.5%. A final lift-off step accomplished manufacture procedure of the devices. The resonators have been operated with heavy load to determine power durability. The resonators with AlSc electrodes show increased power durability compared to conventional Al metallized devices. Texture and grain structure of all films have been investigated by means of electron backscatter diffraction (EBSD) and atomic force microscopy (AFM). Material fatigue of electrodes has been visualized by scanning electron microscopy (SEM). The refined grain structure of these alloys can explain the enhanced mechanical stress durability of AlSc electrodes. - Research Highlights: {yields}Enhanced power durability of SAW devices with Sc doped electrodes. {yields}Refined grain structure of Sc doped Al films. {yields}Sudden device breakdown of highly Sc doped devices.

  11. Effect of acute stresses on zebra fish (Danio rerio) metabolome measured by NMR-based metabolomics.

    PubMed

    Mushtaq, Mian Yahya; Marçal, Rosilene Moretti; Champagne, Danielle L; van der Kooy, Frank; Verpoorte, Robert; Choi, Young Hae

    2014-09-01

    We applied an acute stress model to zebra fish in order to measure the changes in the metabolome due to biological stress. This was done by submitting the fish to fifteen minutes of acute confinement (netting) stress, and then five minutes for the open field and light/dark field tests. A polar extract of the zebra fish was then subjected to (1)H nuclear magnetic spectroscopy. Multivariate data analysis of the spectra showed a clear separation associated to a wide range of metabolites between zebra fish that were submitted to open field and light/dark field tests. Alanine, taurine, adenosine, creatine, lactate, and histidine were high in zebra fish to which the light/dark field test was applied, regardless of stress, while acetate and isoleucine/lipids appeared to be higher in zebra fish exposed to the open field test. These results show that any change in the environment, even for a small period of time, has a noticeable physiological impact. This research provides an insight of how different mechanisms are activated under different environments to maintain the homeostasis of the body. It should also contribute to establish zebra fish as a model for metabolomics studies. PMID:25098933

  12. A brief retrospective method for identifying longitudinal trajectories of adjustment following acute stress.

    PubMed

    Mancini, Anthony D; Bonanno, George A; Sinan, Beyza

    2015-06-01

    Research increasingly indicates that prototypical trajectories of resilience, recovery, delayed, and chronic distress characterize reactions to acute adversity. However, trajectory research has been limited by the practical and methodological difficulties of obtaining pre-event and longitudinal data. In two studies, we employed a novel method in which trained interviewers provided a graphical depiction of prototypical stress trajectories to participants and asked them to select the one that best described their experience. In Study 1, self-identified trajectories from 21 high-exposure survivors of the September 11th World Trade Center attacks distinguished variation in posttraumatic stress disorder and depression symptoms at 7 and 18 months, and were consistent with trajectories based on longitudinal outcomes and friend/relative ratings. In Study 2, we examined self-identified trajectories from 115 bereaved spouses at 1.5 to 3 years. Persons who identified a resilient trajectory, compared with recovery and chronic distress trajectories, had fewer interviewer-rated symptoms of grief, depression, and posttraumatic stress disorder were rated as functioning more effectively by friends, reported higher life satisfaction, and had fewer somatic complaints. The present results provide initial evidence for the construct validity of a cross-sectional and less demanding method for identifying acute stress trajectories. PMID:25288824

  13. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain

    PubMed Central

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-01-01

    Abstract The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress. PMID:26445572

  14. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain.

    PubMed

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-09-01

    The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress. PMID:26445572

  15. Changes of central haemodynamic parameters during mental stress and acute bouts of static and dynamic exercise.

    PubMed

    Lydakis, C; Momen, A; Blaha, C; Gugoff, S; Gray, K; Herr, M; Leuenberger, U A; Sinoway, L I

    2008-05-01

    Chronic dynamic (aerobic) exercise decreases central arterial stiffness, whereas chronic resistance exercise evokes the opposite effect. Nevertheless, there is little information available on the effects of acute bouts of exercise. Also, there is limited data showing an increase of central arterial stiffness during acute mental stress. This study aimed to determine the effect of acute mental and physical (static and dynamic exercise) stress on indices of central arterial stiffness. Fifteen young healthy volunteers were studied. The following paradigms were performed: (1) 2 min of mental arithmetic, (2) short bouts (20 s) of static handgrip at 20 and 70% of maximal voluntary contraction (MVC), (3) fatiguing handgrip at 40% MVC and (4) incremental dynamic knee extensor exercise. Central aortic waveforms were assessed using SphygmoCor software. As compared to baseline, pulse wave transit time decreased significantly for all four interventions indicating that central arterial stiffness increased. During fatiguing handgrip there was a fall in the ratio of peripheral to central pulse pressure from 1.69+/-0.02 at baseline to 1.56+/-0.05 (P<0.05). In the knee extensor protocol a non-significant trend for the opposite effect was noted. The augmentation index increased significantly during the arithmetic, short static and fatiguing handgrip protocols, whereas there was no change in the knee extensor protocol. We conclude that (1) during all types of acute stress tested in this study (including dynamic exercise) estimated central stiffness increased, (2) during static exercise the workload posed on the left ventricle (expressed as change in central pulse pressure) is relatively higher than that posed during dynamic exercise (given the same pulse pressure change in the periphery). PMID:18273040

  16. The Effects of Hemodynamic Shear Stress on Stemness of Acute Myelogenous Leukemia (AML)

    NASA Astrophysics Data System (ADS)

    Raddatz, Andrew; Triantafillu, Ursula; Kim, Yonghyun (John)

    2015-11-01

    Cancer stem cells (CSCs) have recently been identified as the root cause of tumors generated from cancer cell populations. This is because these CSCs are drug-resistant and have the ability to self-renew and differentiate. Current methods of culturing CSCs require much time and money, so cancer cell culture protocols, which maximize yield of CSCs are needed. It was hypothesized that the quantity of Acute myelogenous leukemia stem cells (LSCs) would increase after applying shear stress to the leukemia cells based on previous studies with breast cancer in bioreactors. The shear stress was applied by pumping the cells through narrow tubing to mimic the in vivo bloodstream environment. In support of the hypothesis, shear stress was found to increase the amount of LSCs in a given leukemia population. This work was supported by NSF REU Site Award 1358991.

  17. Echocardiography, nuclear scintigraphy, and stress testing in the emergency department evaluation of acute coronary syndrome.

    PubMed

    Mather, P J; Shah, R

    2001-05-01

    open after review of all these analytical modalities is the duration of time these test results remain valid; when does an individual patient need to be reevaluated as to their specific pretest probability? The answer to this question lies in the presenting clinical scenario. If the patient presents with a similar inciting trigger for his or her symptoms, and the cardiac risk profile has not changed appreciably, then the previous study (whether a provocative stress test or even a cardiac catheterization) probably can be reliably counted. If the patient's risk profile has changed or the symptoms are new or more intense, the physician is compelled to pursue this encounter as a new, acute event. This can be true even in the setting of a previous cardiac catheterization that showed nonobstructive coronary disease, because plaque rupture can be acute and unpredictable. Ultimately, optimal care calls for each institution to develop a specific approach, in conjunction with their consultative cardiologist or critical care specialist, to enhance patient care, safety, and diagnostic outcome, while maintaining cost efficiency. PMID:11373982

  18. Behavioral economic analysis of stress effects on acute motivation for alcohol.

    PubMed

    Owens, Max M; Ray, Lara A; MacKillop, James

    2015-01-01

    Due to issues of definition and measurement, the heavy emphasis on subjective craving in the measurement of acute motivation for alcohol and other drugs remains controversial. Behavioral economic approaches have increasingly been applied to better understand acute drug motivation, particularly using demand curve modeling via purchase tasks to characterize the perceived reinforcing value of the drug. This approach has focused on using putatively more objective indices of motivation, such as units of consumption, monetary expenditure, and price sensitivity. To extend this line of research, the current study used an alcohol purchase task to determine if, compared to a neutral induction, a personalized stress induction would increase alcohol demand in a sample of heavy drinkers. The stress induction significantly increased multiple measures of the reinforcing value of alcohol to the individual, including consumption at zero price (intensity), the maximum total amount of money spent on alcohol (Omax), the first price where consumption was reduced to zero (breakpoint), and the general responsiveness of consumption to increases in price (elasticity). These measures correlated only modestly with craving and mood. Self-reported income was largely unrelated to demand but moderated the influence of stress on Omax. Moderation based on CRH-BP genotype (rs10055255) was present for Omax, with T allele homozygotes exhibiting more pronounced increases in response to stress. These results provide further support for a behavioral economic approach to measuring acute drug motivation. The findings also highlight the potential relevance of income and genetic factors in understanding state effects on the perceived reinforcing value of alcohol. PMID:25413719

  19. The Effects of Social Context and Acute Stress on Decision Making Under Uncertainty.

    PubMed

    FeldmanHall, Oriel; Raio, Candace M; Kubota, Jennifer T; Seiler, Morgan G; Phelps, Elizabeth A

    2015-12-01

    Uncertainty preferences are typically studied in neutral, nonsocial contexts. This approach, however, fails to capture the dynamic factors that influence choices under uncertainty in the real world. Our goal was twofold: to test whether uncertainty valuation is similar across social and nonsocial contexts, and to investigate the effects of acute stress on uncertainty preferences. Subjects completed matched gambling and trust games following either a control or a stress manipulation. Those who were not under stress exhibited no differences between the amount of money gambled and the amount of money entrusted to partners. In comparison, stressed subjects gambled more money but entrusted less money to partners. We further found that irrespective of stress, subjects were highly attuned to irrelevant feedback in the nonsocial, gambling context, believing that every loss led to a greater chance of winning (the gamblers' fallacy). However, when deciding to trust a stranger, control subjects behaved rationally, treating each new interaction as independent. Stress compromised this adaptive behavior, increasing sensitivity to irrelevant social feedback. PMID:26546080

  20. Hippocampal increase of 5-hmC in the glucocorticoid receptor gene following acute stress

    PubMed Central

    Kintner, Douglas B.; Sabat, Grzegorz; Barrett-Wilt, Gregory A.; Cengiz, Pelin; Alisch, Reid S.

    2015-01-01

    5-hydroxymethylcytosine (5-hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, 5-hmC was functionally linked to learning and cognition and these studies revealed an accumulation of 5-hmC in the prefrontal cortex of mice undergoing fear extinction. These studies led us to hypothesize a role for 5-hmC in response to stress. To test this hypothesis, we combined immunohistochemistry, tandem mass spectrometry, and tet-assisted sodium bisulfite sequencing (TAB-seq) analyses on tissue and DNA from the hippocampus of 7-week old male mice exposed to a single thirty-minute restraint stress. After first identifying that the broad neuronal distribution of 5-hmC is not disrupted by acute stress, we used TAB-seq to find a stress-induced increase of 5-hmC in the 3’UTR of the glucocorticoid receptor gene (Nr3c1). Nr3c1 has a well-defined role in the stress pathway and these data suggest that 5-hmC contributes to these processes. Together, these data indicate that a deeper investigation of stress-related 5-hmC levels may reveal an environmental impact on this newly discovered epigenetic mark in the brain. PMID:25746451

  1. Hippocampal increase of 5-hmC in the glucocorticoid receptor gene following acute stress.

    PubMed

    Li, Sisi; Papale, Ligia A; Kintner, Douglas B; Sabat, Grzegorz; Barrett-Wilt, Gregory A; Cengiz, Pelin; Alisch, Reid S

    2015-06-01

    5-Hydroxymethylcytosine (5-hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, 5-hmC was functionally linked to learning and cognition and these studies revealed an accumulation of 5-hmC in the prefrontal cortex of mice undergoing fear extinction. These studies led us to hypothesize a role for 5-hmC in response to stress. To test this hypothesis, we combined immunohistochemistry, tandem mass spectrometry, and tet-assisted sodium bisulfite sequencing (TAB-seq) analyses on tissue and DNA from the hippocampus of 7-week old male mice exposed to a single 30-min restraint stress. After first identifying that the broad neuronal distribution of 5-hmC is not disrupted by acute stress, we used TAB-seq to find a stress-induced increase of 5-hmC in the 3'UTR of the glucocorticoid receptor gene (Nr3c1). Nr3c1 has a well-defined role in the stress pathway and these data suggest that 5-hmC contributes to these processes. Together, these data indicate that a deeper investigation of stress-related 5-hmC levels may reveal an environmental impact on this newly discovered epigenetic mark in the brain. PMID:25746451

  2. Acute stress reduces intraparenchymal lung natural killer cells via beta-adrenergic stimulation

    PubMed Central

    Kanemi, O; Zhang, X; Sakamoto, Y; Ebina, M; Nagatomi, R

    2005-01-01

    There are lines of evidence that natural killer (NK) cells are sensitive to physical and psychological stress. Alterations in the immune system including NK cells are known to differ among tissues and organs. The effect of stress on the lung immune system, however, has not been well documented in spite of the fact that the lungs always confront viral or bacterial attacks as well as tumour cell metastasis. In this study, we intended to investigate the effect of restraint stress on lung lymphocytes including NK cells. C57BL/6 mice were exposed to 2 h restraint stress. The concentration of plasma epinephrine significantly rose immediately after the release from restraint as compared to home-cage control mice. Flow cytometric analysis revealed that the numbers of most lymphocyte subsets including NK cells were decreased in the lungs and blood but not in the spleen, immediately after restraint stress. Immunohistochemical examination revealed that the number of NK cells was decreased in the intraparenchymal region of the lungs, while the number of alveolar macrophages did not change. The decrease in the number of NK cells in the lungs and blood was reversed by the administration of propranolol, a nonselective beta adrenergic antagonist. Taken together, our findings suggest that acute stress reduces the number of intraparenchymal lung NK cells via activation of beta adrenergic receptors. PMID:15606610

  3. Six habits to enhance MET performance under stress: A discussion paper reviewing team mechanisms for improved patient outcomes.

    PubMed

    Fein, Erich C; Mackie, Benjamin; Chernyak-Hai, Lily; O'Quinn, C Richard V; Ahmed, Ezaz

    2016-05-01

    Effective team decision making has the potential to improve the quality of health care outcomes. Medical Emergency Teams (METs), a specific type of team led by either critical care nurses or physicians, must respond to and improve the outcomes of deteriorating patients. METs routinely make decisions under conditions of uncertainty and suboptimal care outcomes still occur. In response, the development and use of Shared Mental Models (SMMs), which have been shown to promote higher team performance under stress, may enhance patient outcomes. This discussion paper specifically focuses on the development and use of SMMs in the context of METs. Within this process, the psychological mechanisms promoting enhanced team performance are examined and the utility of this model is discussed through the narrative of six habits applied to MET interactions. A two stage, reciprocal model of both nonanalytic decision making within the acute care environment and analytic decision making during reflective action learning was developed. These habits are explored within the context of a MET, illustrating how applying SMMs and action learning processes may enhance team-based problem solving under stress. Based on this model, we make recommendations to enhance MET decision making under stress. It is suggested that the corresponding habits embedded within this model could be imparted to MET members and tested by health care researchers to assess the efficacy of this integrated decision making approach in respect to enhanced team performance and patient outcomes. PMID:26320090

  4. Opioid activity in behavioral and heart rate responses of tethered pigs to acute stress.

    PubMed

    Loijens, L W S; Janssens, C J J G; Schouten, W G P; Wiegant, V M

    2002-04-15

    In a longitudinal experiment, effects of long-term tether housing on heart rate and behavioral responses to an acute stressor (a 15-min challenge with a nosesling) were investigated in pigs. The animals were challenged during loose housing and again after 10-11 weeks of tether housing. To detect possible changes in endogenous opioid systems modifying these responses, the pigs were pretreated with the opioid receptor antagonist naloxone (0.5 mg/kg body weight, iv). In response to the nosesling challenge, the animals showed pronounced resistance behavior and a sharp rise in heart rate. Following this initial phase of resistance, the heart rate dropped to prechallenge levels or below this line, and the pigs seemed to become sedated. Pretreatment with naloxone increased the heart rate response in animals that were long-term tether housed (n=12). No such effect was found in the control group (n=5) that was loose-housed during the entire experiment, indicating that the impact of endogenous opioid systems mitigating heart rate responses to acute stress had increased as a result of long-term tether housing. Changes in the effect of naloxone on the behavioral response were not found. Adaptive changes in opioid systems may prevent excessive physiological reactions to acute stress and, thus, may serve as a coping mechanism. PMID:12020727

  5. Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation.

    PubMed

    Zhang, Weixin; Yin, Lianhong; Tao, Xufeng; Xu, Lina; Zheng, Lingli; Han, Xu; Xu, Youwei; Wang, Changyuan; Peng, Jinyong

    2016-07-01

    In our previous study, the effects of dioscin against alcohol-, carbon tetrachloride- and acetaminophen-induced liver damage have been found. However, the activity of it against dimethylnitrosamine (DMN)-induced acute liver injury remained unknown. In the present study, dioscin markedly decreased serum ALT and AST levels, significantly increased the levels of SOD, GSH-Px, GSH, and decreased the levels of MDA, iNOS and NO. Mechanism study showed that dioscin significantly decreased the expression levels of IL-1β, IL-6, TNF-α, IκBα, p50 and p65 through regulating TLR4/MyD88 pathway to rehabilitate inflammation. In addition, dioscin markedly up-regulated the expression levels of SIRT1, HO-1, NQO1, GST and GCLM through increasing nuclear translocation of Nrf2 against oxidative stress. Furthermore, dioscin significantly decreased the expression levels of FasL, Fas, p53, Bak, Caspase-3/9, and upregulated Bcl-2 level through decreasing IRF9 level against apoptosis. In conclusion, dioscin showed protective effect against DMN-induced acute liver injury via ameliorating apoptosis, oxidative stress and inflammation, which should be developed as a new candidate for the treatment of acute liver injury in the future. PMID:27317992

  6. The effect of acute stress and long-term corticosteroid administration on plasma metabolites in an urban and desert songbird.

    PubMed

    Davies, Scott; Rodriguez, Natalie S; Sweazea, Karen L; Deviche, Pierre

    2013-01-01

    In response to stressful stimuli, animals activate the hypothalamic-pituitary-adrenal axis, which can result in transition to the "emergency life history stage." A key adaptive characteristic of this life history stage is the mobilization of energy stores. However, few data are available on the metabolic response to acute stress in wild-caught, free-ranging birds. We quantified the effect of acute capture and restraint stress on plasma glucose, free fatty acid, and uric acid in free-ranging Abert's towhees Melozone aberti. Furthermore, birds were caught from urban and desert localities of Phoenix, Arizona, to investigate potential effects of urban versus desert habitats on the corticosterone (CORT) and metabolic response to acute stress. Complementing work on free-ranging birds, captive towhees received CORT-filled Silastic capsules to investigate the response of urban and desert conspecifics to long-term CORT administration. We quantified the effect of CORT administration on baseline plasma glucose and uric acid, liver and pectoralis muscle glycogen stores, kidney phosphoenolpyruvate carboxykinase (PEPCK-C, a key gluconeogenic enzyme), and body mass. Acute stress increased plasma CORT and glucose and decreased plasma uric acid but had no effect on plasma free fatty acid. There was no difference between urban and desert localities in body mass, fat scores, and the response to acute stress. CORT administration decreased body mass but had no effect on glucose and uric acid, pectoral muscle glycogen, or kidney PEPCK-C. However, liver glycogen of CORT-treated urban birds increased compared with corresponding controls, whereas glycogen decreased in CORT-treated desert birds. This study suggests that Abert's towhees principally mobilize glucose during acute stress but urban and desert towhees do not differ in their CORT and metabolic response to acute stress or long-term CORT administration. PMID:23303320

  7. Adenosine protects Sprague Dawley rats from high-fat diet and repeated acute restraint stress-induced intestinal inflammation and altered expression of nutrient transporters.

    PubMed

    Lee, C Y

    2015-04-01

    This study investigated the effect of repeated acute restraint stress and high-fat diet (HFD) on intestinal expression of nutrient transporters, concomitant to intestinal inflammation. The ability of adenosine to reverse any change was examined. Six-week-old male Sprague Dawley rats were divided into eight groups: control or non-stressed (C), rats exposed to restraint stress for 6 h per day for 14 days (S), control rats fed with HFD (CHF) and restraint-stressed rats fed with HFD (SHF); four additional groups received the same treatments and were also given 50 mg/l adenosine dissolved in drinking water. Fasting blood glucose, plasma insulin, adiponectin and corticosterone were measured. Intestinal expression of SLC5A1, SLC2A2, NPC1L1 and TNF-α was analysed. Histological evaluation was conducted to observe for morphological and anatomical changes in the intestinal tissues. Results showed that HFD feeding increased glucose and insulin levels, and repeated acute restraint stress raised the corticosterone level by 22%. Exposure to both stress and HFD caused a further increase in corticosterone to 41%, while decreasing plasma adiponectin level. Restraint stress altered intestinal expression of SLC5A1, SLC2A2 and NPC1L1. These changes were enhanced in SHF rats. Adenosine was found to alleviate HFD-induced increase in glucose and insulin levels, suppress elevation of corticosterone in S rats and improve the altered nutrient transporters expression profiles. It also prevented upregulation of TNF-α in the intestine of SHF rats. In summary, a combination of stress and HFD exaggerated stress- and HFD-induced pathophysiological changes in the intestine, and biochemical parameters related to obesity. Adenosine attenuated the elevation of corticosterone and altered expression of SLC5A1, NPC1L1 and TNF-α. PMID:25196093

  8. The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart

    PubMed Central

    Correll, Robert N.; Schwanekamp, Jennifer A.; Vagnozzi, Ronald J.; Sargent, Michelle A.; York, Allen J.; Zhang, Jianyi; Bers, Donald M.; Molkentin, Jeffery D.

    2015-01-01

    SUMMARY In the heart, augmented Ca2+ fluxing drives contractility and ATP generation through mitochondrial Ca2+ loading. Pathologic mitochondrial Ca2+ overload with ischemic injury triggers mitochondrial permeability transition pore (MPTP) opening and cardiomyocyte death. Mitochondrial Ca2+ uptake is primarily mediated by the mitochondrial Ca2+ uniporter (MCU). Here we generated mice with adult and cardiomyocyte-specific deletion of Mcu, which produced mitochondria refractory to acute Ca2+ uptake, augmented ATP production and MPTP opening upon acute Ca2+ challenge. Mice lacking Mcu in the adult heart were also protected from acute ischemia-reperfusion injury. However, resting/basal mitochondrial Ca2+ levels were normal in hearts of Mcu-deleted mice and mitochondria lacking MCU eventually loaded with Ca2+ after stress stimulation. Indeed, Mcu-deleted mice were unable to immediately sprint on a treadmill unless warmed-up for 30 minutes. Hence, MCU is a dedicated regulator of short-term mitochondrial Ca2+ loading underlying a “fight-or-flight” response that acutely matches cardiac workload with ATP production. PMID:26119742

  9. The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart.

    PubMed

    Kwong, Jennifer Q; Lu, Xiyuan; Correll, Robert N; Schwanekamp, Jennifer A; Vagnozzi, Ronald J; Sargent, Michelle A; York, Allen J; Zhang, Jianyi; Bers, Donald M; Molkentin, Jeffery D

    2015-07-01

    In the heart, augmented Ca(2+) fluxing drives contractility and ATP generation through mitochondrial Ca(2+) loading. Pathologic mitochondrial Ca(2+) overload with ischemic injury triggers mitochondrial permeability transition pore (MPTP) opening and cardiomyocyte death. Mitochondrial Ca(2+) uptake is primarily mediated by the mitochondrial Ca(2+) uniporter (MCU). Here, we generated mice with adult and cardiomyocyte-specific deletion of Mcu, which produced mitochondria refractory to acute Ca(2+) uptake, with impaired ATP production, and inhibited MPTP opening upon acute Ca(2+) challenge. Mice lacking Mcu in the adult heart were also protected from acute ischemia-reperfusion injury. However, resting/basal mitochondrial Ca(2+) levels were normal in hearts of Mcu-deleted mice, and mitochondria lacking MCU eventually loaded with Ca(2+) after stress stimulation. Indeed, Mcu-deleted mice were unable to immediately sprint on a treadmill unless warmed up for 30 min. Hence, MCU is a dedicated regulator of short-term mitochondrial Ca(2+) loading underlying a "fight-or-flight" response that acutely matches cardiac workload with ATP production. PMID:26119742

  10. Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2015-01-01

    The expression of testicular genes following acute heat stress has been reported in layer-type roosters, but few similar studies have been conducted on broilers. This study investigated the effect of acute heat stress on the gene expression in the testes of a broiler-type strain of Taiwan country chickens. Roosters were subjected to acute heat stress (38°C) for 4 h, and then exposed to 25°C, with testes collected 0, 2, and 6 h after the cessation of heat stress, using non-heat-stressed roosters as controls (n = 3 roosters per group). The body temperature and respiratory rate increased significantly (p<0.05) during the heat stress. The numbers of apoptotic cells increased 2 h after the acute heat stress (79 ± 7 vs. 322 ± 192, control vs. heat stress; p<0.05), which was earlier than the time of increase in layer-type roosters. Based on a chicken 44 K oligo microarray, 163 genes were found to be expressed significantly different in the testes of the heat-stressed chickens from those of the controls, including genes involved in the response to stimulus, protein metabolism, signal transduction, cell adhesion, transcription, and apoptosis. The mRNA expressions of upregulated genes, including HSP25, HSP90AA1, HSPA2, and LPAR2, and of downregulated genes, including CDH5, CTNNA3, EHF, CIRBP, SLA, and NTF3, were confirmed through quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, numerous transcripts in the testes exhibited distinct expressions between the heat-stressed broiler-type and layer-type chickens. We concluded that the transcriptional responses of testes to acute heat stress may differ between the broiler-type and layer-type roosters. Whether the differential expression patterns associate with the heat-tolerance in the strains require a further exploration. PMID:25932638

  11. Isoflurane Suppresses Stress-Enhanced Fear Learning in a Rodent Model of Posttraumatic Stress Disorder

    PubMed Central

    Rau, Vinuta; Oh, Irene; Laster, Michael; Eger, Edmond I; Fanselow, Michael S.

    2009-01-01

    Background A minority of patients who experience awareness and/or pain during surgery subsequently develop posttraumatic stress disorder. In a rodent model of posttraumatic stress disorder, stress-enhanced fear learning (SEFL), rats are pre-exposed to a stressor of 15 footshocks. Subsequent exposure to a single footshock produces an enhanced fear response. This effect is akin to sensitized reactions shown by some posttraumatic stress disorder patients to cues previously associated with the traumatic event. Methods We studied the effect of isoflurane and nitrous oxide on SEFL. Rats were exposed to the inhaled anesthetic during or after a 15-footshock stressor. Then rats were given a single footshock in a different environment. Their fear response was quantified in response to the 15-footshock and single-footshock environments. SEFL longevity was tested by placing a 90-day period between the 15 footshocks and the single footshock. In addition, the intensity of the footshock was increased to evaluate treatment effectiveness. Results Increasing isoflurane concentrations decreased SEFL when given during, but not after, the stressor. At 0.40 minimum alveolar concentration, isoflurane given during the stressor blocked SEFL 90 days later. A three-fold increase in the stressor intensity increased the isoflurane concentration required to block SEFL to no more than 0.67 minimum alveolar concentration. As with isoflurane, nitrous oxide suppressed SEFL at a similar minimum alveolar concentration fraction. Conclusions These results suggest that sufficient concentrations (perhaps 0.67 minimum alveolar concentration or less) of an inhaled anesthetic may prevent SEFL. PMID:19212264

  12. Chronic stress differentially affects antioxidant enzymes and modifies the acute stress response in liver of Wistar rats.

    PubMed

    Djordjevic, J; Djordjevic, A; Adzic, M; Niciforovic, A; Radojcic, M B

    2010-01-01

    Clinical reports suggest close interactions between stressors, particularly those of long duration, and liver diseases, such as hepatic inflammation, that is proposed to occur via reactive oxygen species. In the present study we have used 21-day social isolation of male Wistar rats as a model of chronic stress to investigate protein expression/activity of liver antioxidant enzymes: superoxide dismutases (SODs), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GLR), and protein expression of their upstream regulators: glucocorticoid receptor (GR) and nuclear factor kappa B (NFkB). We have also characterized these parameters in either naive or chronically stressed animals that were challenged by 30-min acute immobilization. We found that chronic isolation caused decrease in serum corticosterone (CORT) and blood glucose (GLU), increase in NFkB signaling, and disproportion between CuZnSOD, peroxidases (CAT, GPx) and GLR, thus promoting H2O2 accumulation and prooxidative state in liver. The overall results suggested that chronic stress exaggerated responsiveness to subsequent stressor at the level of CORT and GLU, and potentiated GLR response, but compromised the restoration of oxido-reductive balance due to irreversible alterations in MnSOD and GPx. PMID:20406049

  13. Immune status influences fear and anxiety responses in mice after acute stress exposure.

    PubMed

    Clark, Sarah M; Sand, Joseph; Francis, T Chase; Nagaraju, Anitha; Michael, Kerry C; Keegan, Achsah D; Kusnecov, Alexander; Gould, Todd D; Tonelli, Leonardo H

    2014-05-01

    Significant evidence suggests that exposure to traumatic and/or acute stress in both mice and humans results in compromised immune function that in turn may affect associated brain processes. Additionally, recent studies in mouse models of immune deficiency have suggested that adaptive immunity may play a role during traumatic stress exposure and that impairments in lymphocyte function may contribute to increased susceptibility to various psychogenic stressors. However, rodent studies on the relationship between maladaptive stress responses and lymphocyte deficiency have been complicated by the fact that genetic manipulations in these models may also result in changes in CNS function due to the expression of targeted genes in tissues other than lymphocytes, including the brain. To address these issues we utilized mice with a deletion of recombination-activating gene 2 (Rag2), which has no confirmed expression in the CNS; thus, its loss should result in the absence of mature lymphocytes without altering CNS function directly. Stress responsiveness of immune deficient Rag2(-/-) mice on a BALB/c background was evaluated in three different paradigms: predator odor exposure (POE), fear conditioning (FC) and learned helplessness (LH). These models are often used to study different aspects of stress responsiveness after the exposure to an acute stressor. In addition, immunoblot analysis was used to assess hippocampal BDNF expression under both stressed and non-stressed conditions. Subsequent to POE, Rag2(-/-) mice exhibited a reduced acoustic startle response compared to BALB/c mice; no significant differences in behavior were observed in either FC or LH. Furthermore, analysis of hippocampal BDNF indicated that Rag2(-/-) mice have elevated levels of the mature form of BDNF compared to BALB/c mice. Results from our studies suggest that the absence of mature lymphocytes is associated with increased resilience to stress exposure in the POE and does not affect behavioral

  14. Rising to the Challenge: Acute Stress Appraisals and Selection Centre Performance in Applicants to Postgraduate Specialty Training in Anaesthesia

    ERIC Educational Resources Information Center

    Roberts, Martin J.; Gale, Thomas C. E.; McGrath, John S.; Wilson, Mark R.

    2016-01-01

    The ability to work under pressure is a vital non-technical skill for doctors working in acute medical specialties. Individuals who evaluate potentially stressful situations as challenging rather than threatening may perform better under pressure and be more resilient to stress and burnout. Training programme recruitment processes provide an…

  15. Chronic and Acute Stress, Gender, and Serotonin Transporter Gene-Environment Interactions Predicting Depression Symptoms in Youth

    ERIC Educational Resources Information Center

    Hammen, Constance; Brennan, Patricia A.; Keenan-Miller, Danielle; Hazel, Nicholas A.; Najman, Jake M.

    2010-01-01

    Background: Many recent studies of serotonin transporter gene by environment effects predicting depression have used stress assessments with undefined or poor psychometric methods, possibly contributing to wide variation in findings. The present study attempted to distinguish between effects of acute and chronic stress to predict depressive…

  16. Pharmacological enhancement of behavioral therapy: focus on posttraumatic stress disorder.

    PubMed

    Choi, Dennis C; Rothbaum, Barbara O; Gerardi, Maryrose; Ressler, Kerry J

    2010-01-01

    Improved efficacy in the treatment of posttraumatic stress disorder (PTSD) and other anxiety disorders is urgently needed. Traditional anxiety treatments of hypnosis and psychodynamic therapy may be of some help, but uncontrolled studies lead to inconclusive results on the efficacy of these treatment techniques. There is a larger literature supporting the efficacy of cognitive-behavioral procedures with PTSD, including prolonged exposure therapy, eye movement desensitization and reprocessing, and anxiety management techniques. The cutting-edge technology of virtual reality-based exposure therapy for PTSD is particularly exciting. To further build on effective psychosocial treatments, current pharmacological augmentation approaches to emotional learning are being combined with psychotherapy. In particular, D-cycloserine, a partial NMDA agonist, has shown to be effective in facilitating the exposure/extinction therapy to improve the efficacy of treating anxiety disorders, and may guide the way for new pharmacological enhancements of behavioral therapy. PMID:21309114

  17. Freeze, flight, fight, fright, faint: adaptationist perspectives on the acute stress response spectrum.

    PubMed

    Bracha, H Stefan

    2004-09-01

    This article reviews the existing evolutionary perspectives on the acute stress response habitual faintness and blood-injection-injury type-specific phobia (BIITS phobia). In this article, an alternative evolutionary perspective, based on recent advances in evolutionary psychology, is proposed. Specifically, that fear-induced faintness (eg, fainting following the sight of a syringe, blood, or following a trivial skin injury) is a distinct Homo sapiens-specific extreme-stress survival response to an inescapable threat. The article suggests that faintness evolved in response to middle paleolithic intra-group and inter-group violence (of con-specifics) rather than as a pan-mammalian defense response, as is presently assumed. Based on recent literature, freeze, flight, fight, fright, faint provides a more complete description of the human acute stress response sequence than current descriptions. Faintness, one of three primary physiological reactions involved in BIITS phobia, is extremely rare in other phobias. Since heritability estimates are higher for faintness than for fears or phobias, the author suggests that trait-faintness may be a useful complement to trait-anxiety as an endophenotype in research on the human fear circuitry. Some implications for the forthcoming Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition as well as for clinical, health services, and transcriptomic research are briefly discussed. PMID:15337864

  18. Effect of Acute Mental Stress on Heart Rate and QT Variability in Postmyocardial Infarction Patients

    PubMed Central

    Magrì, Damiano; Piccirillo, Gianfranco; Quaglione, Raffaele; Dell'Armi, Annalaura; Mitra, Marilena; Velitti, Stefania; Di Barba, Daniele; Lizio, Andrea; Maisto, Damiana; Barillà, Francesco

    2012-01-01

    Emotionally charged events are associated with an increased risk of sudden cardiac death (SCD). In this study we assessed RR and QT variability index (QTVI) at baseline during anger recall test (AR). We calculated QTVI from a 5-min ECG recording and from a 10-beats segment around the presumed maximum sympathetic activation in thirty post-myocardial infarction patients under β-blocker therapy and 10 controls underwent. In all groups, the low-frequency component of RR and SBP increased during AR. In all recordings, the QTVI calculated on a 5-min ECG recording and the QTVI10 beats were higher in patients than in controls (P < 0.05). The QTVI during AR remained unchanged from baseline within each group. Conversely, during AR, the QTVI10 beats in controls diminished significantly (P < 0.05) from baseline whereas in patients remained unchanged. The inability to buffer an acute stress-induced increase in sympathetic activity could explain why events charged with acute stress are associated with an increased risk of ventricular arrhythmias in this setting of patients and support the role of cognitive behavior stress management strategies. PMID:22844616

  19. Urinary 1-hydroxypyrene is associated with oxidative stress and inflammatory biomarkers in acute Myocardial Infarction.

    PubMed

    Freitas, Fernando; Brucker, Natália; Durgante, Juliano; Bubols, Guilherme; Bulcão, Rachel; Moro, Angela; Charão, Mariele; Baierle, Marília; Nascimento, Sabrina; Gauer, Bruna; Sauer, Elisa; Zimmer, Marcelo; Thiesen, Flávia; Castro, Iran; Saldiva, Paulo; Garcia, Solange C

    2014-09-01

    Several studies have associated exposure to environmental pollutants, especially polycyclic aromatic hydrocarbons (PAHs), with the development of cardiovascular diseases. Considering that 1-hydroxypyrene (1-OHP) is the major biomarker of exposure to pyrenes, the purpose of this study was to evaluate the potential association between 1-OHP and oxidative stress/inflammatory biomarkers in patients who had suffered an acute myocardial infarction (AMI). After adopting the exclusion criteria, 58 post-infarction patients and 41 controls were sub-divided into smokers and non-smokers. Urinary 1-OHP, hematological and biochemical parameters, oxidative stress biomarkers (MDA, SOD, CAT, GPx and exogenous antioxidants) and the inflammatory biomarker (hs-CRP) were analyzed. 1-OHP levels were increased in post-infarct patients compared to controls (p < 0.05) and were correlated to MDA (r = 0.426, p < 0.01), CAT (r = 0.474, p < 0.001) and β-carotene (r = -0.309; p < 0.05) in non-smokers. Furthermore, post-infarction patients had elevated hs-CRP, MDA, CAT and GPx levels compared to controls for both smokers and non-smokers. Besides, β-carotene levels and SOD activity were decreased in post-infarction patients. In summary, our findings indicate that the exposure to pyrenes was associated to lipid damage and alterations of endogenous and exogenous antioxidants, demonstrating that PAHs contribute to oxidative stress and are associated to acute myocardial infarction. PMID:25257356

  20. Urinary 1-Hydroxypyrene is Associated with Oxidative Stress and Inflammatory Biomarkers in Acute Myocardial Infarction

    PubMed Central

    Freitas, Fernando; Brucker, Natália; Durgante, Juliano; Bubols, Guilherme; Bulcão, Rachel; Moro, Angela; Charão, Mariele; Baierle, Marília; Nascimento, Sabrina; Gauer, Bruna; Sauer, Elisa; Zimmer, Marcelo; Thiesen, Flávia; Castro, Iran; Saldiva, Paulo; Garcia, Solange C.

    2014-01-01

    Several studies have associated exposure to environmental pollutants, especially polycyclic aromatic hydrocarbons (PAHs), with the development of cardiovascular diseases. Considering that 1-hydroxypyrene (1-OHP) is the major biomarker of exposure to pyrenes, the purpose of this study was to evaluate the potential association between 1-OHP and oxidative stress/inflammatory biomarkers in patients who had suffered an acute myocardial infarction (AMI). After adopting the exclusion criteria, 58 post-infarction patients and 41 controls were sub-divided into smokers and non-smokers. Urinary 1-OHP, hematological and biochemical parameters, oxidative stress biomarkers (MDA, SOD, CAT, GPx and exogenous antioxidants) and the inflammatory biomarker (hs-CRP) were analyzed. 1-OHP levels were increased in post-infarct patients compared to controls (p < 0.05) and were correlated to MDA (r = 0.426, p < 0.01), CAT (r = 0.474, p < 0.001) and β-carotene (r = −0.309; p < 0.05) in non-smokers. Furthermore, post-infarction patients had elevated hs-CRP, MDA, CAT and GPx levels compared to controls for both smokers and non-smokers. Besides, β-carotene levels and SOD activity were decreased in post-infarction patients. In summary, our findings indicate that the exposure to pyrenes was associated to lipid damage and alterations of endogenous and exogenous antioxidants, demonstrating that PAHs contribute to oxidative stress and are associated to acute myocardial infarction. PMID:25257356

  1. Role of Tyrosine Isomers in Acute and Chronic Diseases Leading to Oxidative Stress - A Review.

    PubMed

    Molnár, Gergő A; Kun, Szilárd; Sélley, Eszter; Kertész, Melinda; Szélig, Lívia; Csontos, Csaba; Böddi, Katalin; Bogár, Lajos; Miseta, Attila; Wittmann, István

    2016-01-01

    Oxidative stress plays a major role in the pathogenesis of a variety of acute and chronic diseases. Measurement of the oxidative stress-related end products may be performed, e.g. that of structural isomers of the physiological para-tyrosine, namely meta- and ortho-tyrosine, that are oxidized derivatives of phenylalanine. Recent data suggest that in sepsis, serum level of meta-tyrosine increases, which peaks on the 2(nd) and 3(rd) days (p<0.05 vs. controls), and the kinetics follows the intensity of the systemic inflammation correlating with serum procalcitonin levels. In a similar study subset, urinary meta-tyrosine excretion correlated with both need of daily insulin dose and the insulin-glucose product in non-diabetic septic cases (p<0.01 for both). Using linear regression model, meta-tyrosine excretion, urinary meta-tyrosine/para-tyrosine, urinary ortho-tyrosine/para-tyrosine and urinary (meta- + orthotyrosine)/ para-tyrosine proved to be markers of carbohydrate homeostasis. In a chronic rodent model, we tried to compensate the abnormal tyrosine isomers using para-tyrosine, the physiological amino acid. Rats were fed a standard high cholesterol-diet, and were given para-tyrosine or vehicle orally. High-cholesterol feeding lead to a significant increase in aortic wall meta-tyrosine content and a decreased vasorelaxation of the aorta to insulin and the glucagon-like peptide-1 analogue, liraglutide, that both could be prevented by administration of para-tyrosine. Concluding, these data suggest that meta- and ortho-tyrosine are potential markers of oxidative stress in acute diseases related to oxidative stress, and may also interfere with insulin action in septic humans. Competition of meta- and ortho-tyrosine by supplementation of para-tyrosine may exert a protective role in oxidative stress-related diseases. PMID:26785996

  2. Role of Tyrosine Isomers in Acute and Chronic Diseases Leading to Oxidative Stress - A Review

    PubMed Central

    Molnár, Gergő A.; Kun, Szilárd; Sélley, Eszter; Kertész, Melinda; Szélig, Lívia; Csontos, Csaba; Böddi, Katalin; Bogár, Lajos; Miseta, Attila; Wittmann, István

    2016-01-01

    Oxidative stress plays a major role in the pathogenesis of a variety of acute and chronic diseases. Measurement of the oxidative stress-related end products may be performed, e.g. that of structural isomers of the physiological para-tyrosine, namely meta- and ortho-tyrosine, that are oxidized derivatives of phenylalanine. Recent data suggest that in sepsis, serum level of meta-tyrosine increases, which peaks on the 2nd and 3rd days (p<0.05 vs. controls), and the kinetics follows the intensity of the systemic inflammation correlating with serum procalcitonin levels. In a similar study subset, urinary meta-tyrosine excretion correlated with both need of daily insulin dose and the insulin-glucose product in non-diabetic septic cases (p<0.01 for both). Using linear regression model, meta-tyrosine excretion, urinary meta-tyrosine/para-tyrosine, urinary ortho-tyrosine/para-tyrosine and urinary (meta- + ortho-tyrosine)/para-tyrosine proved to be markers of carbohydrate homeostasis. In a chronic rodent model, we tried to compensate the abnormal tyrosine isomers using para-tyrosine, the physiological amino acid. Rats were fed a standard high cholesterol-diet, and were given para-tyrosine or vehicle orally. High-cholesterol feeding lead to a significant increase in aortic wall meta-tyrosine content and a decreased vasorelaxation of the aorta to insulin and the glucagon-like peptide-1 analogue, liraglutide, that both could be prevented by administration of para-tyrosine. Concluding, these data suggest that meta- and ortho-tyrosine are potential markers of oxidative stress in acute diseases related to oxidative stress, and may also interfere with insulin action in septic humans. Competition of meta- and ortho-tyrosine by supplementation of para-tyrosine may exert a protective role in oxidative stress-related diseases. PMID:26785996

  3. Cortisol Awakening Response Prospectively Predicts Peritraumatic and Acute Stress Reactions in Police Officers

    PubMed Central

    Inslicht, Sabra S.; Otte, Christian; McCaslin, Shannon E.; Apfel, Brigitte A.; Henn-Haase, Clare; Metzler, Thomas; Yehuda, Rachel; Neylan, Thomas C.; Marmar, Charles R.

    2011-01-01

    Background The hypothalamic pituitary adrenal (HPA) axis is a major stress response system hypothesized to be involved in the pathogenesis of posttraumatic stress disorder (PTSD). However, few studies have prospectively examined the relationships among pre-exposure HPA activity, acute stress reactions and PTSD symptoms. Methods Two hundred and ninety-six police recruits were assessed during academy training prior to duty-related critical incident exposure and provided salivary cortisol at first awakening and after 30 minutes. A measure of cortisol awakening response (CAR) was computed as the change in cortisol level from the first to the second collection. At 12, 24, and 36 months following the start of active police service, officers were assessed for peritraumatic distress, peritraumatic dissociation, ASD symptoms, and PTSD symptoms to their self-identified worst duty-related critical incident. Mixed models for repeated measures were used to analyze the effects of CAR on the outcome variables pooled across the three follow-up assessments. Results Mixed model analyses indicated that after controlling for time of awakening, first awakening cortisol levels, and cumulative critical incident stress exposure, CAR during academy training was associated with greater peritraumatic dissociation, β=.14, z=3.49, p<.0001, and greater acute stress disorder (ASD) symptoms during police service assessed at 12, 24, and 36 months, β=.09, z=2.03, p<.05, but not with peritraumatic distress β=.03, z=.81, p=.42 or PTSD symptoms β=−.004, z=−.09, p=.93. Conclusions These findings suggest that greater cortisol response to awakening is a pre-exposure risk factor for peritraumatic dissociation and ASD symptoms during police service. PMID:21906725

  4. Decreased reaction time variability is associated with greater cardiovascular responses to acute stress.

    PubMed

    Wawrzyniak, Andrew J; Hamer, Mark; Steptoe, Andrew; Endrighi, Romano

    2016-05-01

    Cardiovascular (CV) responses to mental stress are prospectively associated with poor CV outcomes. The association between CV responses to mental stress and reaction times (RTs) in aging individuals may be important but warrants further investigation. The present study assessed RTs to examine associations with CV responses to mental stress in healthy, older individuals using robust regression techniques. Participants were 262 men and women (mean age = 63.3 ± 5.5 years) from the Whitehall II cohort who completed a RT task (Stroop) and underwent acute mental stress (mirror tracing) to elicit CV responses. Blood pressure, heart rate, and heart rate variability were measured at baseline, during acute stress, and through a 75-min recovery. RT measures were generated from an ex-Gaussian distribution that yielded three predictors: mu-RT, sigma-RT, and tau-RT, the mean, standard deviation, and mean of the exponential component of the normal distribution, respectively. Decreased intraindividual RT variability was marginally associated with greater systolic (B = -.009, SE = .005, p = .09) and diastolic (B = -.004, SE = .002, p = .08) blood pressure reactivity. Decreased intraindividual RT variability was associated with impaired systolic blood pressure recovery (B = -.007, SE = .003, p = .03) and impaired vagal tone (B = -.0047, SE = .0024, p = .045). Study findings offer tentative support for an association between RTs and CV responses. Despite small effect sizes and associations not consistent across predictors, these data may point to a link between intrinsic neuronal plasticity and CV responses. PMID:26894967

  5. Decreased reaction time variability is associated with greater cardiovascular responses to acute stress

    PubMed Central

    Hamer, Mark; Steptoe, Andrew; Endrighi, Romano

    2016-01-01

    Abstract Cardiovascular (CV) responses to mental stress are prospectively associated with poor CV outcomes. The association between CV responses to mental stress and reaction times (RTs) in aging individuals may be important but warrants further investigation. The present study assessed RTs to examine associations with CV responses to mental stress in healthy, older individuals using robust regression techniques. Participants were 262 men and women (mean age = 63.3 ± 5.5 years) from the Whitehall II cohort who completed a RT task (Stroop) and underwent acute mental stress (mirror tracing) to elicit CV responses. Blood pressure, heart rate, and heart rate variability were measured at baseline, during acute stress, and through a 75‐min recovery. RT measures were generated from an ex‐Gaussian distribution that yielded three predictors: mu‐RT, sigma‐RT, and tau‐RT, the mean, standard deviation, and mean of the exponential component of the normal distribution, respectively. Decreased intraindividual RT variability was marginally associated with greater systolic (B = −.009, SE = .005, p = .09) and diastolic (B = −.004, SE = .002, p = .08) blood pressure reactivity. Decreased intraindividual RT variability was associated with impaired systolic blood pressure recovery (B = −.007, SE = .003, p = .03) and impaired vagal tone (B = −.0047, SE = .0024, p = .045). Study findings offer tentative support for an association between RTs and CV responses. Despite small effect sizes and associations not consistent across predictors, these data may point to a link between intrinsic neuronal plasticity and CV responses. PMID:26894967

  6. Acute stress alters autonomic modulation during sleep in women approaching menopause.

    PubMed

    de Zambotti, Massimiliano; Sugarbaker, David; Trinder, John; Colrain, Ian M; Baker, Fiona C

    2016-04-01

    Hot flashes, hormones, and psychosocial factors contribute to insomnia risk in the context of the menopausal transition. Stress is a well-recognized factor implicated in the pathophysiology of insomnia; however the impact of stress on sleep and sleep-related processes in perimenopausal women remains largely unknown. We investigated the effect of an acute experimental stress (impending Trier Social Stress Task in the morning) on pre-sleep measures of cortisol and autonomic arousal in perimenopausal women with and without insomnia that developed in the context of the menopausal transition. In addition, we assessed the macro- and micro-structure of sleep and autonomic functioning during sleep. Following adaptation to the laboratory, twenty two women with (age: 50.4 ± 3.2 years) and eighteen women without (age: 48.5 ± 2.3 years) insomnia had two randomized in-lab overnight recordings: baseline and stress nights. Anticipation of the task resulted in higher pre-sleep salivary cortisol levels and perceived tension, faster heart rate and lower vagal activity, based on heart rate variability measures, in both groups of women. The effect of the stress manipulation on the autonomic nervous system extended into the first 4 h of the night in both groups. However, vagal tone recovered 4-6 h into the stress night in controls but not in the insomnia group. Sleep macrostructure was largely unaltered by the stress, apart from a delayed latency to REM sleep in both groups. Quantitative analysis of non-rapid eye movement sleep microstructure revealed greater electroencephalographic (EEG) power in the beta1 range (15-≤23 Hz), reflecting greater EEG arousal during sleep, on the stress night compared to baseline, in the insomnia group. Hot flash frequency remained similar on both nights for both groups. These results show that pre-sleep stress impacts autonomic nervous system functioning before and during sleep in perimenopausal women with and without insomnia. Findings also indicate

  7. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury.

    PubMed

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation. PMID:26617279

  8. Trait Hostility and Acute Inflammatory Responses to Stress in the Laboratory.

    PubMed

    Girard, Dominique; Tardif, Jean-Claude; Boisclair Demarble, Julie; D'Antono, Bianca

    2016-01-01

    Hostility has been associated with higher basal levels of inflammation. The present study evaluated the association of hostility with acute stress-induced changes in inflammatory activity. One hundred and ninety-nine healthy men and women, aged 19-64 years, were exposed to a stress protocol involving four interpersonal stressors. Participants completed the Cook-Medley Hostility questionnaire and provided two blood samples for the measurement of inflammatory biomarkers (CRP, Il-6, MPO, TNF-α, MCP-1, Il-8, Il-10, and Il-18), prior to and following exposure to a standardized stress protocol. In univariate analyses, hostility was associated with significantly higher TNF-α, but lower Il-8 and Il-18 values post-stress, though only Il-8 remained significant after controlling for baseline differences. In multivariate analyses, a significant Age by Hostility interaction emerged for Il-6, while sex moderated the relation between hostility and Il-10 reactivity. Following stress, hostility was associated with greater pro-inflammatory Il-6 activity among younger individuals and to decreased anti-inflammatory Il-10 activity in women. Future research is needed to replicate these findings and to evaluate their implication for disease. PMID:27270459

  9. Effects of intracisternal administration of cannabidiol on the cardiovascular and behavioral responses to acute restraint stress.

    PubMed

    Granjeiro, Erica M; Gomes, Felipe V; Guimarães, Francisco S; Corrêa, Fernando M A; Resstel, Leonardo B M

    2011-10-01

    Systemic administration of cannabidiol (CBD), a non-psychotomimetic compound from Cannabis sativa, attenuates the cardiovascular and behavioral responses to restraint stress. Although the brain structures related to CBD effects are not entirely known, they could involve brainstem structures responsible for cardiovascular control. Therefore, to investigate this possibility the present study verified the effects of CBD (15, 30 and 60 nmol) injected into the cisterna magna on the autonomic and behavioral changes induced by acute restraint stress. During exposure to restraint stress (1h) there was a significant increase in mean arterial pressure (MAP) and heart rate (HR). Also, 24h later the animals showed a decreased percentage of entries onto the open arms of the elevated plus-maze. These effects were attenuated by CBD (30 nmol). The drug had no effect on MAP and HR baseline values. These results indicate that intracisternal administration of CBD can attenuate autonomic responses to stress. However, since CBD decreased the anxiogenic consequences of restraint stress, it is possible that the drug is also acting on forebrain structures. PMID:21771609

  10. Trait Hostility and Acute Inflammatory Responses to Stress in the Laboratory

    PubMed Central

    Girard, Dominique; Tardif, Jean-Claude; Boisclair Demarble, Julie; D’Antono, Bianca

    2016-01-01

    Hostility has been associated with higher basal levels of inflammation. The present study evaluated the association of hostility with acute stress-induced changes in inflammatory activity. One hundred and ninety-nine healthy men and women, aged 19–64 years, were exposed to a stress protocol involving four interpersonal stressors. Participants completed the Cook-Medley Hostility questionnaire and provided two blood samples for the measurement of inflammatory biomarkers (CRP, Il-6, MPO, TNF-α, MCP-1, Il-8, Il-10, and Il-18), prior to and following exposure to a standardized stress protocol. In univariate analyses, hostility was associated with significantly higher TNF-α, but lower Il-8 and Il-18 values post-stress, though only Il-8 remained significant after controlling for baseline differences. In multivariate analyses, a significant Age by Hostility interaction emerged for Il-6, while sex moderated the relation between hostility and Il-10 reactivity. Following stress, hostility was associated with greater pro-inflammatory Il-6 activity among younger individuals and to decreased anti-inflammatory Il-10 activity in women. Future research is needed to replicate these findings and to evaluate their implication for disease. PMID:27270459

  11. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  12. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2015-11-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  13. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli.

    PubMed

    Oei, Nicole Y L; Both, Stephanie; van Heemst, Diana; van der Grond, Jeroen

    2014-01-01

    Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain's "reward system", and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in NAcc responsiveness toward reward cues. Results from both animal and human PET studies indicate that the stress hormone cortisol may be crucial in the interaction between stress and dopaminergic actions. In the present study we therefore investigated whether cortisol mediated the effect of stress on DA-related responses to -subliminal-presentation of reward cues using the Trier Social Stress Test (TSST), which is known to reliably enhance cortisol levels. Young healthy males (n = 37) were randomly assigned to the TSST or control condition. After stress induction, brain activation was assessed using fMRI during a backward-masking paradigm in which potentially rewarding (sexual), emotionally negative and neutral stimuli were presented subliminally, masked by pictures of inanimate objects. A region of interest analysis showed that stress decreased activation in the NAcc in response to masked sexual cues (voxel-corrected, p<05). Furthermore, with mediation analysis it was found that high cortisol levels were related to stronger NAcc activation, showing that cortisol acted as a suppressor variable in the negative relation between stress and NAcc activation. The present findings indicate that cortisol is crucially involved in the relation between stress and the responsiveness of the reward system. Although generally stress decreases activation in the NAcc in response to rewarding stimuli, high stress-induced cortisol levels suppress this relation, and are associated with stronger NAcc activation. Individuals with a high cortisol response to stress might on one hand be protected against reductions in reward sensitivity, which has been linked to anhedonia and depression, but

  14. Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress

    PubMed Central

    Liu, Li; Goldberg, Ira J.

    2015-01-01

    Elevated cardiac triacylglycerol (TAG) content is traditionally equated with cardiolipotoxicity and suggested to be a culprit in cardiac dysfunction. However, previous work demonstrated that myosin heavy-chain–mediated cardiac-specific overexpression of diacylglycerol transferase 1 (MHC-DGAT1), the primary enzyme for TAG synthesis, preserved cardiac function in two lipotoxic mouse models despite maintaining high TAG content. Therefore, we examined whether increased cardiomyocyte TAG levels due to DGAT1 overexpression led to changes in cardiac TAG turnover rates under normoxia and ischemia-reperfusion conditions. MHC-DGAT1 mice had elevated TAG content and synthesis rates, which did not alter cardiac function, substrate oxidation, or myocardial energetics. MHC-DGAT1 hearts had ischemia-induced lipolysis; however, when a physiologic mixture of long-chain fatty acids was provided, enhanced TAG turnover rates were associated with improved functional recovery from low-flow ischemia. Conversely, exogenous supply of palmitate during reperfusion suppressed elevated TAG turnover rates and impaired recovery from ischemia in MHC-DGAT1 hearts. Collectively, this study shows that elevated TAG content, accompanied by enhanced turnover, does not adversely affect cardiac function and, in fact, provides cardioprotection from ischemic stress. In addition, the results highlight the importance of exogenous supply of fatty acids when assessing cardiac lipid metabolism and its relationship with cardiac function. PMID:25858561

  15. Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress.

    PubMed

    Kolwicz, Stephen C; Liu, Li; Goldberg, Ira J; Tian, Rong

    2015-08-01

    Elevated cardiac triacylglycerol (TAG) content is traditionally equated with cardiolipotoxicity and suggested to be a culprit in cardiac dysfunction. However, previous work demonstrated that myosin heavy-chain-mediated cardiac-specific overexpression of diacylglycerol transferase 1 (MHC-DGAT1), the primary enzyme for TAG synthesis, preserved cardiac function in two lipotoxic mouse models despite maintaining high TAG content. Therefore, we examined whether increased cardiomyocyte TAG levels due to DGAT1 overexpression led to changes in cardiac TAG turnover rates under normoxia and ischemia-reperfusion conditions. MHC-DGAT1 mice had elevated TAG content and synthesis rates, which did not alter cardiac function, substrate oxidation, or myocardial energetics. MHC-DGAT1 hearts had ischemia-induced lipolysis; however, when a physiologic mixture of long-chain fatty acids was provided, enhanced TAG turnover rates were associated with improved functional recovery from low-flow ischemia. Conversely, exogenous supply of palmitate during reperfusion suppressed elevated TAG turnover rates and impaired recovery from ischemia in MHC-DGAT1 hearts. Collectively, this study shows that elevated TAG content, accompanied by enhanced turnover, does not adversely affect cardiac function and, in fact, provides cardioprotection from ischemic stress. In addition, the results highlight the importance of exogenous supply of fatty acids when assessing cardiac lipid metabolism and its relationship with cardiac function. PMID:25858561

  16. Enhancing critical thinking in clinical practice: implications for critical and acute care nurses.

    PubMed

    Shoulders, Bridget; Follett, Corrinne; Eason, Joyce

    2014-01-01

    The complexity of patients in the critical and acute care settings requires that nurses be skilled in early recognition and management of rapid changes in patient condition. The interpretation and response to these events can greatly impact patient outcomes. Nurses caring for these complex patients are expected to use astute critical thinking in their decision making. The purposes of this article were to explore the concept of critical thinking and provide practical strategies to enhance critical thinking in the critical and acute care environment. PMID:24895950

  17. Acute stress exposure preceding transient global brain ischemia exacerbates the decrease in cortical remodeling potential in the rat retrosplenial cortex.

    PubMed

    Kutsuna, Nobuo; Yamashita, Akiko; Eriguchi, Takashi; Oshima, Hideki; Suma, Takeshi; Sakatani, Kaoru; Yamamoto, Takamitsu; Yoshino, Atsuo; Katayama, Yoichi

    2014-01-01

    Doublecortin (DCX)-immunoreactive (-ir) cells are candidates that play key roles in adult cortical remodeling. We have previously reported that DCX-ir cells decrease after stress exposure or global brain ischemia (GBI) in the cingulate cortex (Cg) of rats. Herein, we investigate whether the decrease in DCX-ir cells is exacerbated after GBI due to acute stress exposure preconditioning. Twenty rats were divided into 3 groups: acute stress exposure before GBI (Group P), non-stress exposure before GBI (Group G), and controls (Group C). Acute stress or GBI was induced by a forced swim paradigm or by transient bilateral common carotid artery occlusion, respectively. DCX-ir cells were investigated in the anterior cingulate cortex (ACC) and retrosplenial cortex (RS). The number of DCX-ir cells per unit area (mm(2)) decreased after GBI with or without stress preconditioning in the ACC and in the RS (ANOVA followed by a Tukey-type test, P<0.001). Moreover, compared to Group G, the number in Group P decreased significantly in RS (P<0.05), though not significantly in ACC. Many of the DCX-ir cells were co-localized with the GABAergic neuronal marker parvalbumin. The present study indicates that cortical remodeling potential of GABAergic neurons of Cg decreases after GBI, and moreover, the ratio of the decrease is exacerbated by acute stress preconditioning in the RS. PMID:24257103

  18. Heart rate and heart-rate variability responses to acute and chronic stress in a wild-caught passerine bird.

    PubMed

    Cyr, Nicole E; Dickens, Molly J; Romero, L Michael

    2009-01-01

    The cardiovascular-stress response has been studied extensively in laboratory animals but has been poorly studied in naturally selected species. We determined the relative roles of the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS) in regulating stress-induced changes in heart rate (HR) in wild-caught European starlings (Sturnus vulgaris). In both heart-rate variability (HRV) analysis and receptor blockade (atropine and propranolol) experiments, baseline HR was controlled predominantly by the PNS, whereas the increase in HR resulting from acute restraint stress was controlled predominantly by the SNS. These results indicate similar cardiac control of baseline and acute-stress-induced HR in wild-caught starlings and mammals. We further investigated HR responses during chronic stress. Driven primarily by changes in PNS regulation, baseline HR increased during the day but decreased at night. In addition, elevated HRs during acute restraint stress were attenuated throughout chronic stress and were accompanied by decreased HRV. This suggested that increased SNS drive elevated HR, but the attenuated HR response combined with resistance to the SNS blocker propranolol suggested that the sympathetic signal was less effective during chronic stress. Overall, chronic stress in wild-caught starlings elicited profound changes in cardiac function that were primarily regulated by changes in the PNS. PMID:19115847

  19. Protective Effect of Metformin against Acute Inflammation and Oxidative Stress in Rat.

    PubMed

    Pandey, Abhimanu; Kumar, Vijay L

    2016-09-01

    Preclinical Research The antidiabetic drug, metformin, can inhibit the release of inflammatory mediators in several disease conditions. The present study was carried out to evaluate the efficacy of metformin in ameliorating edema formation, oxidative stress, mediator release and vascular changes associated with acute inflammation in the rat carrageenan model. Metformin dose-dependently inhibited paw swelling induced by carrageenan and normalized the tissue levels of the inflammatory markers myeloperoxidase and nitrite. It also maintained oxidative homeostasis as indicated by near normal levels of the oxidative stress markers glutathione, thiobarbituric acid reactive substances, catalase and superoxide dismutase. The histopathology of the paw tissue in metformin-treated animals was similar to that in normal paw and had similar effects to diclofenac. In a rat peritonitis model, metformin reduced vascular permeability and cellular infiltration. In conclusion, this study shows that metformin has a potential for use in treating various inflammatory conditions. PMID:27510757

  20. Impact of acute and chronic stress hormone on male albino rat brain

    PubMed Central

    Han, Li-Li; Chen, Ling; Dong, Zhi-Ling

    2015-01-01

    The present investigation aimed to evaluate the acute and chronic effect of stress (stress hormone) in male albino rat brain. Nor-epinephrine was used for the treatment and saline used for the control. Nor-epinephrine was dissolved in the saline and administered orally to the rats. Following nor-epinephrine administration, the brain was removed surgically at 6 h, 12 h and 45 days. Alanine tansaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) were significantly altered in the rats. Lipid peroxidation was measured as malondialdehyde (MDA), showed altered lipid peroxidation. Hematological markers such as packed cell volume (PCV), white blood cells (WBC), neutrophil, lymphocytes and hemoglobin were significantly altered compared to controls. Altered serum biochemical and hematological markers, lipid peroxidation and enzyme activities leads to adverse effect in the cellular metabolism and physiological activities of rats. PMID:26261571

  1. Endoplasmic Reticulum Stress Regulator XBP-1 Contributes to Effector CD8+ T Cell Differentiation during Acute Infection1

    PubMed Central

    Kamimura, Daisuke; Bevan, Michael J.

    2009-01-01

    The transcription factor X-box-binding protein-1 (XBP-1) plays an essential role in activating the unfolded protein response in the endoplasmic reticulum (ER). Transcribed XBP-1 mRNA is converted to its active form by unconventional cytoplasmic splicing mediated by inositol-requiring enzyme-1 (IRE-1) upon ER stress. We report activation of the IRE-1/XBP-1 pathway in effector CD8+ T cells during the response to acute infection. Transcription of unspliced XBP-1 mRNA is up-regulated by IL-2 signals, while its splicing is induced after TCR ligation. Splicing of XBP-1 mRNA was evident during the expansion of Ag-specific CD8+ T cells in response to viral or bacterial infection. An XBP-1 splicing reporter revealed that splicing activity was enriched in terminal effector cells expressing high levels of killer cell lectin-like receptor G1 (KLRG1). Overexpression of the spliced form of XBP-1 in CD8+ T cells enhanced KLRG1 expression during infection, whereas XBP-1−/− CD8+ T cells or cells expressing a dominant-negative form of XBP-1 showed a decreased proportion of KLRG1high effector cells. These results suggest that, in the response to pathogen, activation of ER stress sensors and XBP-1 splicing contribute to the differentiation of end-stage effector CD8+ T cells. PMID:18832700

  2. Acute stress and hippocampal output: exploring dorsal CA1 and subicular synaptic plasticity simultaneously in anesthetized rats

    PubMed Central

    MacDougall, Matthew J; Howland, John G

    2013-01-01

    The Cornu Ammonis-1 (CA1) subfield and subiculum (SUB) serve as major output structures of the hippocampal formation. Exploring forms of synaptic plasticity simultaneously within these two output regions may improve understanding of the dynamics of hippocampal circuitry and information transfer between hippocampal and cortical brain regions. Using a novel dual-channel electrophysiological preparation in urethane-anesthetized adult male Sprague-Dawley rats in vivo, we examined the effects of acute restraint stress (30 min) on short- and long-term forms of synaptic plasticity in both CA1 and SUB by stimulating the CA3 region. Paired-pulse facilitation was disrupted in SUB but not CA1 in the dual-channel experiments following exposure to acute stress. Disruptions in CA1 PPF were evident in subsequent single-channel experiments with a more anterior recording site. Acute stress disrupted long-term potentiation induced by high-frequency stimulation (10 bursts of 20 pulses at 200 Hz) in both CA1 and SUB. Low-frequency stimulation (900 pulses at 1 Hz) did not alter CA1 plasticity while a late-developing potentiation was evident in SUB that was disrupted following exposure to acute stress. These findings highlight differences in the sensitivity to acute stress for distinct forms of synaptic plasticity within synapses in hippocampal output regions. The findings are discussed in relation to normal and aberrant forms of hippocampal-cortical information processing. PMID:24303119

  3. Early changes in oxidative stress markers in a rat model of acute stress: effect of l-carnitine on the striatum.

    PubMed

    Méndez-Cuesta, Luis A; Márquez-Valadez, Berenice; Pérez-De la Cruz, Verónica; Maldonado, Perla D; Santana, Ricardo A; Escobar-Briones, Carolina; Galván-Arzate, Sonia; Carrillo-Mora, Paul; Santamaría, Abel

    2011-08-01

    This work focuses on the effect of acute stress on different markers of oxidative stress and mitochondrial dysfunction in the rat striatum. In addition, the effect of a single dose of l-carnitine (l-CAR, 300 mg/kg, i.p.) was evaluated in these animals. Immobilization (restraint) stress was induced to rats for 24 hr. The levels of lipid peroxidation (LP) and mitochondrial function (MF), as well as the superoxide dismutase (SOD) activity and content and reduced glutathione (GSH) levels, were all measured in striatal samples of animals subjected to stress. Our results indicate that acute stress is able to increase the striatal LP and reduced the levels of MF, while significantly lowered the manganese superoxide dismutase (Mn-SOD) activity. No changes were observed in the total striatal content of SOD, nor in GSH levels, but serum corticosterone content was increased by stress. l-CAR exhibited partial protective effects on the immobilized group, reducing the striatal LP and recovering the striatal MF and Mn-SOD activity. Our results suggest that acute restraint stress brings an accurate model for early pro-oxidant responses that can be targeted by broad-spectrum antioxidants like l-CAR. PMID:21371264

  4. Ablation of aldehyde reductase aggravates carbon tetrachloride-induced acute hepatic injury involving oxidative stress and endoplasmic reticulum stress.

    PubMed

    Akihara, Ryusuke; Homma, Takujiro; Lee, Jaeyong; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2016-09-16

    Aldehyde reductase (Akr1a) has been reported to be involved in the biosynthesis of ascorbic acid (AsA) in the mouse liver. Because Akr1a is expressed at high levels in the liver, we aimed to investigate the role of Akr1a in liver homeostasis by employing a carbon tetrachloride (CCl4)-induced hepatotoxicity model. Akr1a-deficient (Akr1a(-/-)) and wild-type (WT) mice were injected intraperitoneally with CCl4 and the extent of hepatic injury in the acute phase was assessed. Liver damage was heavier in the Akr1a(-/-) mice than in the WT mice. Furthermore, severe hepatic steatosis was observed in the livers of Akr1a(-/-) mice compared to WT mice and was restored to the levels in WT mice by AsA supplementation. Since the presence or absence of AsA had no effect on the decrease in CYP2E1 activity after the CCl4 treatment, it appears that AsA plays a role in the process after the bioactivation of CCl4. Biomarkers for oxidative stress and ER stress were markedly increased in the livers of Akr1a(-/-) mice and were effectively suppressed by AsA supplementation. Based on these collective results, we conclude that Akr1a exerts a protective effect against CCl4-induced hepatic steatosis by replenishing AsA via its antioxidative properties. PMID:27501753

  5. Microemboli alter the acute stress response and cause prolonged expression of MCP-1 in the hippocampus.

    PubMed

    Nemeth, Christina L; Neigh, Gretchen N

    2015-04-01

    Microvascular ischemia is linked to cardiovascular disease pathology, as well as alterations in mood and cognition. Ischemia activates the hypothalamic-pituitary-adrenal (HPA) axis and through chronic activation, alters HPA axis function. Dysregulation of the HPA axis can lead to the chronic release of glucocorticoids, a hyper-inflammatory cerebral response, cell damage, and changes in behavior. Although the interactions between injury and HPA axis activity have been established in global ischemia, HPA-related repercussions of diffuse ischemic damage and subsequent inflammation have not been assessed. The current study used a rat model of microsphere embolism (ME) ischemia to test the hypothesis that microvascular ischemia would lead to long term alterations in HPA axis function and inflammatory activity. Furthermore, given the pro-inflammatory nature of chronic stress, we assessed the implications of chronic stress for gene expression of inflammatory factors and key components of the glucocorticoid receptor response, following microvascular ischemia. Results indicated that ME altered the response to an acute stress fourteen days following ME injury and increased hippocampal expression of monocyte chemoattractant protein 1 (Mcp-1) as long as 4 weeks following ME injury, without concomitant effects on gene expression of the glucocorticoid receptor or its co-chaperones. Furthermore, no exacerbative effects of chronic stress exposure were observed following ME injury beyond the effects of ME injury alone. Together, these results indicate that ME injury is sufficient to alter both HPA axis activity and cerebral inflammation for a prolonged period of time following injury. PMID:25697594

  6. Domestication effects on behavioural and hormonal responses to acute stress in chickens.

    PubMed

    Ericsson, Maria; Fallahsharoudi, Amir; Bergquist, Jonas; Kushnir, Mark M; Jensen, Per

    2014-06-22

    Comparative studies have shown that alterations in physiology, morphology and behaviour have arisen due to the domestication. A driving factor behind many of the changes could be a shift in stress responses, with modified endocrine and behavioural profiles. In the present study we compared two breeds of chicken (Gallus gallus), the domestic White Leghorn (WL) egg laying breed and its ancestor, the Red Junglefowl (RJF). Birds were exposed to an acute stress event, invoked by 3 or 10 min of physical restraint. They were then continuously monitored for the effects on a wide range of behaviours during a 60 min recovery phase. Blood samples were collected from the chicken at baseline, and after 10 and 60 min following a similar restraint stress, and the samples were analyzed for nine endogenous steroids of the HPA and HPG axes. Concentration of the steroids was determined using validated liquid chromatography tandem mass spectrometry methods. In RJF, an immediate behavioural response was observed after release from restraint in several behaviours, with a relatively fast return to baseline within 1h. In WL, some behaviours were affected for a longer period of time, and others not at all. Concentrations of corticosterone increased more in RJF, but returned faster to baseline compared to WL. A range of baseline levels for HPG-related steroids differed between the breeds, and they were generally more affected by the stress in WL than in RJF. In conclusion, RJF reacted stronger both behaviourally and physiologically to the restraint stress, but also recovered faster. This would appear to be adaptive under natural conditions, whereas the stress recovery of domesticated birds has been altered by domestication and breeding for increased reproductive output. PMID:24878317

  7. Acute Stress Alters Auditory Selective Attention in Humans Independent of HPA: A Study of Evoked Potentials

    PubMed Central

    Elling, Ludger; Steinberg, Christian; Bröckelmann, Ann-Kathrin; Dobel, Christan; Bölte, Jens; Junghofer, Markus

    2011-01-01

    Background Acute stress is a stereotypical, but multimodal response to a present or imminent challenge overcharging an organism. Among the different branches of this multimodal response, the consequences of glucocorticoid secretion have been extensively investigated, mostly in connection with long-term memory (LTM). However, stress responses comprise other endocrine signaling and altered neuronal activity wholly independent of pituitary regulation. To date, knowledge of the impact of such “paracorticoidal” stress responses on higher cognitive functions is scarce. We investigated the impact of an ecological stressor on the ability to direct selective attention using event-related potentials in humans. Based on research in rodents, we assumed that a stress-induced imbalance of catecholaminergic transmission would impair this ability. Methodology/Principal Findings The stressor consisted of a single cold pressor test. Auditory negative difference (Nd) and mismatch negativity (MMN) were recorded in a tonal dichotic listening task. A time series of such tasks confirmed an increased distractibility occuring 4–7 minutes after onset of the stressor as reflected by an attenuated Nd. Salivary cortisol began to rise 8–11 minutes after onset when no further modulations in the event-related potentials (ERP) occurred, thus precluding a causal relationship. This effect may be attributed to a stress-induced activation of mesofrontal dopaminergic projections. It may also be attributed to an activation of noradrenergic projections. Known characteristics of the modulation of ERP by different stress-related ligands were used for further disambiguation of causality. The conjuncture of an attenuated Nd and an increased MMN might be interpreted as indicating a dopaminergic influence. The selective effect on the late portion of the Nd provides another tentative clue for this. Conclusions/Significance Prior studies have deliberately tracked the adrenocortical influence on cognition

  8. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss.

    PubMed

    Rodrigues, S; Antunes, S C; Correia, A T; Nunes, B

    2016-03-01

    Erythromycin (ERY) is a macrolide antibiotic used in human and veterinary medicine, and has been detected in various aquatic compartments. Recent studies have indicated that this compound can exert biological activity on non-target organisms environmentally exposed. The present study aimed to assess the toxic effects of ERY in Oncorhynchus mykiss after acute and chronic exposures. The here adopted strategy involved exposure to three levels of ERY, the first being similar to concentrations reported to occur in the wild, thus ecologically relevant. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by performing analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and of erythrocytic nuclear abnormalities (ENAs). The results suggest the occurrence of a mild, but significant, oxidative stress scenario in gills. For acutely exposed organisms, significant alterations were observed in CAT and GRed activities, and also in TBARS levels, which however are modifications with uncertain biological interpretation, despite indicating involvement of an oxidative effect and response. After chronic exposure, a significant decrease of CAT activity, increase of GPx activity and TBARS levels in gills was noticed. In liver, significant decrease in TBARS levels were observed in both exposures. Comet and ENAs assays indicated significant increases on genotoxic damage of O. mykiss, after erythromycin exposures. This set of data (acute and chronic) suggests that erythromycin has the potential to induce DNA strand breaks in blood cells, and demonstrate the induction of chromosome breakage and/or segregational abnormalities. Overall results indicate that both DNA damaging effects induced by

  9. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats.

    PubMed

    Schuck, P F; Alves, L; Pettenuzzo, L F; Felisberto, F; Rodrigues, L B; Freitas, B W; Petronilho, F; Dal-Pizzol, F; Streck, E L; Ferreira, G C

    2013-03-01

    Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues. PMID:23297832

  10. Enhancing the detection and management of acute hepatitis C virus infection.

    PubMed

    Martinello, Marianne; Matthews, Gail V

    2015-10-01

    Acute HCV infection refers to the 6-month period following infection acquisition, although this definition is somewhat arbitrary. While spontaneous clearance occurs in approximately 25%, the majority will develop chronic HCV infection with the potential for development of cirrhosis, end stage liver disease and hepatocellular carcinoma. Detection of acute HCV infection has been hampered by its asymptomatic or non-specific presentation, lack of specific diagnostic tests and the inherent difficulties in identifying and following individuals at highest risk of transmitting and acquiring HCV infection, such as people who inject drugs (PWID). However, recognition of those with acute infection may have individual and population level benefits and could represent an ideal opportunity for intervention. Despite demonstration that HCV treatment is feasible and successful in PWID, treatment uptake remains low with multiple barriers to care at an individual and systems level. Given the burden of HCV-related disease among PWID, strategies to enhance HCV assessment, treatment and prevention in this group are urgently needed. As the therapeutic landscape of chronic HCV management is revolutionised by the advent of simple, highly effective directly-acting antiviral (DAA) therapy, similar opportunities may exist in acute infection. This review will discuss issues surrounding improving the detection and management of acute HCV infection, particularly in PWID. PMID:26254495

  11. Association of statin use and stress-induced hyperglycemia in patients with acute ST-elevation myocardial infarction

    PubMed Central

    Yan, Chen; Qin, Ma; Juan, Yang S; Tao, Li Y; dong, Gao M; Zechun, Zeng; Chun, Yang X; Liang, Cong H; Yin, Liu

    2016-01-01

    Background Only a few information is available on the risk of stress hyperglycemia following acute myocardial infarction after statin use. We investigate the association of stress-induced hyperglycemia following statin use in patients with acute myocardial infarction. Methods An observational analysis of 476 consecutive patients who suffered acute myocardial infarction was carried out. All selected patients were divided into diabetes mellitus and non-diabetes based on the presence or absence of diabetes. The cardiac incidence of in-hospital and stress-induced hyperglycemia was recorded. Results Among patients with stress hyperglycemia in non-diabetes mellitus subgroups, the average fasting plasma glucose values in statin users were higher than in non-statin users (P < 0.05). But in diabetes mellitus subgroups, the average fasting plasma glucose did not have a significant difference between statin users and non-statin users (P > 0.05). In non-diabetes mellitus patients, the incidence of stress hyperglycemia with statin therapy was significantly higher than with non-statin therapy (P = 0.003). But in diabetes mellitus patients group, there is no significant difference in incidence of stress hyperglycemia between patients with statin therapy and patients without statin therapy (P = 0.902).The incidence of heart failure and in-hospital mortality of acute myocardial infarction in patients with stress-induced hyperglycemia was significantly higher than in non-hyperglycemia patients (P < 0.05). Conclusion Statins are related to higher stress hyperglycemia and cardiac incidences after acute myocardial infarction. PMID:27158481

  12. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.

    PubMed

    Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle

    2015-09-29

    CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID

  13. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    PubMed Central

    Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle

    2015-01-01

    CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192

  14. Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat.

    PubMed

    Souli, Abdelaziz; Sebai, Hichem; Chehimi, Latifa; Rtibi, Kaïs; Tounsi, Haifa; Boubaker, Samir; Sakly, Mohsen; El-Benna, Jamel; Amri, Mohamed

    2015-09-01

    The present study was undertaken to determine whether subacute treatment with aqueous extract of carob (Ceratonia siliqua L.) pods (AECPs) protects against ethanol (EtOH)-induced oxidative stress in rat liver. Animals were divided into four groups: control, carob, EtOH and EtOH + carob. Wistar rats were intraperitoneally pretreated with AECP (600 mg/kg body weight (bw)) during 7 days and intoxicated for 6 h by acute oral administration of EtOH (6 g/kg bw) 24 h after the last injection. We found that acute administration of EtOH leads to hepatotoxicity as monitored by the increase in the levels of hepatic marker aspartate aminotransferase and alanine aminotransferase as well as hepatic tissue injury. EtOH also increased the formation of malondialdehyde in the liver, indicating an increase in lipid peroxidation and depletion of antioxidant enzyme activities as superoxide dismutase, catalase and glutathione peroxidase. Subacute carob pretreatment prevented all the alterations induced by EtOH and returned their levels to near normal. Importantly, we showed that acute alcohol increased hepatic and plasmatic hydrogen peroxide and free iron levels. The carob pretreatment reversed EtOH effects to near control levels. These data suggest that carob could have a beneficial effect in inhibiting the oxidative damage induced by acute EtOH administration and that its mode of action may involve an opposite effect on plasma and tissue-free iron accumulation. Indeed, carob can be offered as a food additive to protect against EtOH-induced oxidative damage. PMID:23363576

  15. Acute and Chronic Plasma Metabolomic and Liver Transcriptomic Stress Effects in a Mouse Model with Features of Post-Traumatic Stress Disorder

    PubMed Central

    Gautam, Aarti; D’Arpa, Peter; Donohue, Duncan E.; Muhie, Seid; Chakraborty, Nabarun; Luke, Brian T.; Grapov, Dmitry; Carroll, Erica E.; Meyerhoff, James L.; Hammamieh, Rasha; Jett, Marti

    2015-01-01

    Acute responses to intense stressors can give rise to post-traumatic stress disorder (PTSD). PTSD diagnostic criteria include trauma exposure history and self-reported symptoms. Individuals who meet PTSD diagnostic criteria often meet criteria for additional psychiatric diagnoses. Biomarkers promise to contribute to reliable phenotypes of PTSD and comorbidities by linking biological system alterations to behavioral symptoms. Here we have analyzed unbiased plasma metabolomics and other stress effects in a mouse model with behavioral features of PTSD. In this model, C57BL/6 mice are repeatedly exposed to a trained aggressor mouse (albino SJL) using a modified, resident-intruder, social defeat paradigm. Our recent studies using this model found that aggressor-exposed mice exhibited acute stress effects including changed behaviors, body weight gain, increased body temperature, as well as inflammatory and fibrotic histopathologies and transcriptomic changes of heart tissue. Some of these acute stress effects persisted, reminiscent of PTSD. Here we report elevated proteins in plasma that function in inflammation and responses to oxidative stress and damaged tissue at 24 hrs post-stressor. Additionally at this acute time point, transcriptomic analysis indicated liver inflammation. The unbiased metabolomics analysis showed altered metabolites in plasma at 24 hrs that only partially normalized toward control levels after stress-withdrawal for 1.5 or 4 wks. In particular, gut-derived metabolites were altered at 24 hrs post-stressor and remained altered up to 4 wks after stress-withdrawal. Also at the 4 wk time point, hyperlipidemia and suppressed metabolites of amino acids and carbohydrates in plasma coincided with transcriptomic indicators of altered liver metabolism (activated xenobiotic and lipid metabolism). Collectively, these system-wide sequelae to repeated intense stress suggest that the simultaneous perturbed functioning of multiple organ systems (e.g., brain, heart

  16. A precursor-inducible zebrafish model of acute protoporphyria with hepatic protein aggregation and multiorganelle stress.

    PubMed

    Elenbaas, Jared S; Maitra, Dhiman; Liu, Yang; Lentz, Stephen I; Nelson, Bradley; Hoenerhoff, Mark J; Shavit, Jordan A; Omary, M Bishr

    2016-05-01

    Protoporphyria is a metabolic disease that causes excess production of protoporphyrin IX (PP-IX), the final biosynthetic precursor to heme. Hepatic PP-IX accumulation may lead to end-stage liver disease. We tested the hypothesis that systemic administration of porphyrin precursors to zebrafish larvae results in protoporphyrin accumulation and a reproducible nongenetic porphyria model. Retro-orbital infusion of PP-IX or the iron chelator deferoxamine mesylate (DFO), with the first committed heme precursor α-aminolevulinic acid (ALA), generates high levels of PP-IX in zebrafish larvae. Exogenously infused or endogenously produced PP-IX accumulates preferentially in the liver of zebrafish larvae and peaks 1 to 3 d after infusion. Similar to patients with protoporphyria, PP-IX is excreted through the biliary system. Porphyrin accumulation in zebrafish liver causes multiorganelle protein aggregation as determined by mass spectrometry and immunoblotting. Endoplasmic reticulum stress and induction of autophagy were noted in zebrafish larvae and corroborated in 2 mouse models of protoporphyria. Furthermore, electron microscopy of zebrafish livers from larvae administered ALA + DFO showed hepatocyte autophagosomes, nuclear membrane ruffling, and porphyrin-containing vacuoles with endoplasmic reticulum distortion. In conclusion, systemic administration of the heme precursors PP-IX or ALA + DFO into zebrafish larvae provides a new model of acute protoporphyria with consequent hepatocyte protein aggregation and proteotoxic multiorganelle alterations and stress.-Elenbaas, J. S., Maitra, D., Liu, Y., Lentz, S. I., Nelson, B., Hoenerhoff, M. J., Shavit, J. A., Omary, M. B. A precursor-inducible zebrafish model of acute protoporphyria with hepatic protein aggregation and multiorganelle stress. PMID:26839379

  17. Acute kidney injury mediated by oxidative stress in Egyptian horses with exertional rhabdomyolysis.

    PubMed

    el-Ashker, Maged R

    2011-06-01

    The present study was carried out to evaluate the role of oxidative stress in the pathophysiologic process of acute renal failure associated with exertional rhabdomyolysis (ER) in Egyptian horses. ER was tentatively diagnosed in 31 Baladi horses based on case history, physical examination findings and confirmed by elevation of plasma creatine kinase (CK) and urine myoglobin concentrations. According to severity of the condition, the diseased horses were categorized into two main groups; the first group included 18 horses with minimal clinical signs and plasma CK <60 000 IU/L; whereas, the second group included 13 horses with overt clinical signs and plasma CK >100 000 IU/L). It was found that plasma creatol (CTL) was positively correlated (p < 0.01) with plasma malondialdehyde (MDA) (r = 0.775), nitric oxide (NO) (r = 0.768), methyguanididne (MG) (r = 0.995), CK (r = 0.768), urine glucose (r = 0.778), urine protein (r = 0.767), renal failure index (RFI) (r = 0.814) and urine sodium (r = 0.799) and negatively correlated (p < 0.01) with total antioxidant capacity (TAC) (r = -0.795), superoxide dismutase (SOD) (r = -0.815), glutathione peroxidase (GSH-Px) (r = -0.675), Vitamin C (r = -0.830), urine creatinine (r = -0.800), urine/plasma creatinine ratio (r = -0.827) and urine/plasma urea ratio (r = -0.807). The correlation between these biochemical variables might suggest a possible role of oxidative stress in renal injury associated with severe rhabdomyolysis in horses. It is suggested that exaggeration of oxidative stress associated with increased muscle membrane leakage plays a key role in acute kidney injury in Baladi horses with severe rhabdomyolysis. PMID:21461642

  18. Acute lipopolysaccharide exposure facilitates epileptiform activity via enhanced excitatory synaptic transmission and neuronal excitability in vitro

    PubMed Central

    Gao, Fei; Liu, Zhiqiang; Ren, Wei; Jiang, Wen

    2014-01-01

    Growing evidence indicates brain inflammation has been involved in the genesis of seizures. However, the direct effect of acute inflammation on neuronal circuits is not well known. Lipopolysaccharide (LPS) has been used extensively to stimulate brain inflammatory responses both in vivo and in vitro. Here, we observed the contribution of inflammation induced by 10 μg/mL LPS to the excitability of neuronal circuits in acute hippocampal slices. When slices were incubated with LPS for 30 minutes, significant increased concentration of tumor necrosis factor α and interleukin 1β were detected by enzyme-linked immunosorbent assay. In electrophysiological recordings, we found that frequency of epileptiform discharges and spikes per burst increased 30 minutes after LPS application. LPS enhanced evoked excitatory postsynaptic currents but did not modify evoked inhibitory postsynaptic currents. In addition, exposure to LPS enhanced the excitability of CA1 pyramidal neurons, as demonstrated by a decrease in rheobase and an increase in action potential frequency elicited by depolarizing current injection. Our observations suggest that acute inflammation induced by LPS facilitates epileptiform activity in vitro and that enhancement of excitatory synaptic transmission and neuronal excitability may contribute to this facilitation. These results may provide new clues for treating seizures associated with brain inflammatory disease. PMID:25170268

  19. Acute effects of traditional Thai massage on cortisol levels, arterial blood pressure and stress perception in academic stress condition: A single blind randomised controlled trial.

    PubMed

    Bennett, Surussawadi; Bennett, Michael John; Chatchawan, Uraiwon; Jenjaiwit, Patcharaporn; Pantumethakul, Rungthip; Kunhasura, Soontorn; Eungpinichpong, Wichai

    2016-04-01

    Traditional Thai massage (TTM) has been applied widely to promote relaxation. However, there is little evidence to support its efficacy on academic stress. A randomised controlled trial was performed to examine the acute effects of TTM on cortisol level, blood pressure, heart rate and stress perception in academic stress. This prospective trial included 36 physiotherapy students with a self perceived stress score of between 3 and 5. They were randomly allocated into the TTM (18 people) group or the control group (18 people). Saliva cortisol level, blood pressure, heart rate and stress perception rating were measured before and after the intervention. Both groups showed a significant reduction in cortisol level and heart rate when compared with baseline (p < 0.001). There were no significant differences in cortisol level between the two groups. The results suggest the need for further study into other possible physiological effects on stress of TTM. PMID:27210845

  20. Neuroendocrine, metabolic, and immune functions during the acute phase response of inflammatory stress in monosodium L-glutamate-damaged, hyperadipose male rat.

    PubMed

    Castrogiovanni, Daniel; Gaillard, Rolf C; Giovambattista, Andrés; Spinedi, Eduardo

    2008-01-01

    In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity. PMID:18382067

  1. Influence on prognosis and prevalence of stress hyperglycemia in a cohort of patients with acute coronary syndrome

    PubMed Central

    Modenesi, Renata de Faria; Pena, Felipe Montes; de Faria, Carlos Augusto Cardoso; Carvalho, Ricardo Viana; de Souza, Nelson Robson Mendes; Soares, Jamil da Silva; Mesquita, Evandro Tinoco

    2012-01-01

    Objective To demonstrate the prevalence of stress hyperglycemia in a cohort of patients with acute coronary syndrome and to determine the correlation of stress hyperglycemia with death, heart failure and/or left ventricular systolic dysfunction during the intrahospital phase. Methods A prospective initial cohort study of hospitalized patients with acute coronary syndrome with or without ST segment elevation. The groups were compared to demonstrate the correlation between stress hyperglycemia and cardiovascular events. The chi-square test or Fisher's exact test and student's t-test were used to compare the groups with and without stress hyperglycemia. The variables with p<0.20 in the univariate analysis were submitted to logistic regression. Results In total, 363 patients with an average age of 12.45 ± 62.06 were studied. There was a predominance of males (64.2%). In total, 96 patients (26.4%) presented with stress hyperglycemia. There were no differences between the groups with or without stress hyperglycemia. The area under the ROC curve was 0.67 for the relationship between stress hyperglycemia and the composite outcome heart failure, left ventricular systolic dysfunction or death at the end of the hospital admission. The ROC curve proved that stress hyperglycemia was the predictor of the composite outcome (death, heart failure and/or ventricular dysfunction). The multivariate analysis did not indicate age, stress hyperglycemia or admission heart rate as risk factors. Conclusion Stress hyperglycemia was common in the studied sample. In the univariate analysis, the presence of stress hyperglycemia was associated with such events as death, heart failure and/or intrahospital ventricular dysfunction in patients with acute coronary syndrome. PMID:23917932

  2. Pre-natal stress amplifies the immediate behavioural responses to acute pain in piglets.

    PubMed

    Rutherford, Kenneth M D; Robson, Sheena K; Donald, Ramona D; Jarvis, Susan; Sandercock, Dale A; Scott, E Marian; Nolan, Andrea M; Lawrence, Alistair B

    2009-08-23

    Pre-natal stress (PNS) or undernutrition can have numerous effects on an individual's biology throughout their lifetime. Some of these effects may be adaptive by allowing individuals to tailor their phenotype to environmental conditions. Here we investigated, in the domestic pig Sus scrofa, whether one possible consequence of a predicted adverse environment could be altered pain perception. The behavioural response of piglets to the surgical amputation ('docking') of their tail or a sham procedure was measured for 1 min in piglets born to mothers who either experienced mid-gestation social stress or were left undisturbed throughout pregnancy. A behavioural pain score was found to predict the docked status of piglets with high discriminant accuracy. Piglets exposed to PNS had a significantly higher pain score than controls, and for each litter of tail-docked piglets, the average pain score was correlated with mid-gestation maternal cortisol levels. The data presented here provide evidence that the experience of stress in utero can result in a heightened acute response to injury in early life. Speculatively, this may represent an adaptive alteration occurring as a consequence of a pre-natal 'early warning' of environmental adversity. PMID:19411272

  3. Acute ER stress regulates amyloid precursor protein processing through ubiquitin-dependent degradation.

    PubMed

    Jung, Eun Sun; Hong, HyunSeok; Kim, Chaeyoung; Mook-Jung, Inhee

    2015-01-01

    Beta-amyloid (Aβ), a major pathological hallmark of Alzheimer's disease (AD), is derived from amyloid precursor protein (APP) through sequential cleavage by β-secretase and γ-secretase enzymes. APP is an integral membrane protein, and plays a key role in the pathogenesis of AD; however, the biological function of APP is still unclear. The present study shows that APP is rapidly degraded by the ubiquitin-proteasome system (UPS) in the CHO cell line in response to endoplasmic reticulum (ER) stress, such as calcium ionophore, A23187, induced calcium influx. Increased levels of intracellular calcium by A23187 induces polyubiquitination of APP, causing its degradation. A23187-induced reduction of APP is prevented by the proteasome inhibitor MG132. Furthermore, an increase in levels of the endoplasmic reticulum-associated degradation (ERAD) marker, E3 ubiquitin ligase HRD1, proteasome activity, and decreased levels of the deubiquitinating enzyme USP25 were observed during ER stress. In addition, we found that APP interacts with USP25. These findings suggest that acute ER stress induces degradation of full-length APP via the ubiquitin-proteasome proteolytic pathway. PMID:25740315

  4. Newly Diagnosed Diabetes and Stress Glycaemia and Its’ Association with Acute Coronary Syndrome

    PubMed Central

    Kamceva, Gordana; Vavlukis, Marija; Kitanoski, Darko; Kedev, Sashko

    2015-01-01

    BACKGROUND: Diabetes is diagnosed in 10-20% of patients with acute coronary syndrome (ACS) not known to be diabetics. Elevated blood glucose is an independent risk factor for cardiac events, regardless of presence of diabetes. AIM: Evaluating the prevalence of new-diagnosed DM among patients with ACS, and assessing the relationship between stress glycaemia and new diagnosed DM with in-hospital cardiac events. METHODS: Prospective observational study, in patients with ACS, in whom we analyzed parameters of glycemic metabolism, clinical data, and in-hospital cardiac events. We comparatively analyzed patients according to the HgbA1C and known DM in five groups: non-DM (< 5.6%), new pre-DM (5.6-6.5%), new DM (≥ 6.5%), controlled (<7%) and uncontrolled (≥7%) known DM. RESULTS: 150 patients, (93 male and 57 female) were included. Impaired glucose metabolism was detected in 44.5% of patients, 7.9% of whom were newly-diagnosed DM. The highest levels of stress glycaemia were found in new and uncontrolled known DM. The in-hospital event rate was 20.7%, the mortality rate 7.3%, being the highest in new diagnosed and uncontrolled known DM patients. CONCLUSIONS: The prevalence of unknown DM was high among patients with ACS. Stress glycaemia and failure to achieve glycemic controlee, were an independent predictors of in-hospital cardiac events.

  5. Pressor recovery after acute stress is impaired in high fructose-fed Lean Zucker rats.

    PubMed

    Thompson, Jennifer A; D'Angelo, Gerard; Mintz, James D; Fulton, David J; Stepp, David W

    2016-06-01

    Insulin resistance is a powerful predictor of cardiovascular disease; however, the mechanistic link remains unclear. This study aims to determine if early cardiovascular changes associated with short-term fructose feeding in the absence of obesity manifest as abnormal blood pressure control. Metabolic dysfunction was induced in Lean Zucker rats by short-term high-fructose feeding. Rats were implanted with telemetry devices for the measurement of mean arterial blood pressure (MAP) and subjected to air jet stress at 5 and 8 weeks after feeding. Additional animals were catheterized under anesthesia for the determination of MAP and blood flow responses in the hind limb and mesenteric vascular beds to intravenous injection of isoproterenol (0.001-0.5 μm), a β-adrenergic agonist. Metabolic dysfunction in high-fructose rats was not accompanied by changes in 24-h MAP Yet, animals fed a high-fructose diet for 8 weeks exhibited a marked impairment in blood pressure recovery after air-jet stress. Dose-dependent decreases in MAP and peripheral blood flow in response to isoproterenol treatment were significantly attenuated in high-fructose rats. These data suggest that impaired blood pressure recovery to acute mental stress precedes the onset of hypertension in the early stages of insulin resistance. Further, blunted responses to isoproterenol implicate β2-adrenergic sensitivity as a possible mechanism responsible for altered blood pressure control after short-term high-fructose feeding. PMID:27335430

  6. Citrus peel extract attenuates acute cyanide poisoning-induced seizures and oxidative stress in rats.

    PubMed

    Abdel Moneim, Ahmed E

    2014-01-01

    The primary aimed of this study was to investigate the potential protective effects of methanolic extract of citrus peel (MECP) on acute cyanide (KCN) poisoning-induced seizures and oxidative stress in rats. The intraperitoneal LD50 value of KCN (6.3 mg/Kg bwt), based on 24 hrs mortality, was significantly increased by 9, 52 or 113% by oral administration of MECP (500 mg/Kg bwt) pre-administered for 1, 2 and 3 days, respectively, in rats in a time-dependent manner. Intraperitoneal injection of the sublethal dose of KCN (3 mg/Kg bwt) into rats increased, 24 hrs later, lipid peroxidation (LPO), nitric oxide (NO), glutamate levels and acetylcholinesterase (AChE) activity in hippocampus, striatum and cerebral cortex. KCN also decreased brain glutathione (GSH) level and superoxide dismutase (SOD) and catalase (CAT) activities in these animals. Pre-treatment of rats with MECP inhibited KCN-induced increases in LPO, NO, and glutamate levels and AChE activity as well as decreases in brain GSH level and SOD and CAT activities. In addition, KCN significantly decreased norepinephrine, dopamine and serotonin levels in different brain regions which were resolved by MECP. From the present results, it can be concluded that the neuroprotective effects of MECP against KCN-induced seizures and oxidative stress may be due to the inhibition of oxidative stress overproduction and maintenance of antioxidant defense mechanisms. PMID:24308563

  7. Evaluation of the prevalence of stress and its phases in acute myocardial infarction in patients active in the labor market

    PubMed Central

    Lucinda, Luciane Boreki; Prosdócimo, Ana Claudia Merchan Giaxa; de Carvalho, Katherine Athayde Teixeira; Francisco, Julio Cesar; Baena, Cristina Pellegrino; Olandoski, Marcia; do Amaral, Vivian Ferreira; Faria, José Rocha; Guarita-Souza, Luiz César

    2015-01-01

    Introduction Acute myocardial infarction is a social health problem of epidemiological relevance, with high levels of morbidity and mortality. Stress is one of the modifiable risk factors that triggers acute myocardial infarction. Stress is a result of a set of physiological reactions, which when exaggerated in intensity or duration can lead to imbalances in one's organism, resulting in vulnerability to diseases. Objective To identify the presence of stress and its phases in hospitalized and active labor market patients with unstable myocardial infarction and observe its correlation with the life of this population with stress. Methods The methodology used was a quantitative, descriptive and transversal research approach conducted with a total of 43 patients, who were still active in the labor market, presenting or not morbidities. Data collection occurred on the fourth day of their hospitalization and patients responded to Lipp's Stress Symptom Inventory for adults. Results Thirty-one patients (72.1%) presented stress and twelve (27.8%) did not. In patients with stress, the identified phases were: alert - one patient (3.2%); resistance -twenty-two patients (71.0%); quasi-exhaustion - six patients (19.4%) and exhaustion - two patients (6.5%). All women researched presented stress. Conclusion The results suggest a high level of stress, especially in the resistance phase, in the male infarcted population, hospitalized and active in the labor market. PMID:25859863

  8. Single acute stress-induced progesterone and ovariectomy alter cardiomyocyte contractile function in female rats

    PubMed Central

    Kalász, Judit; Tóth, Enikő Pásztor; Bódi, Beáta; Fagyas, Miklós; Tóth, Attila; Pal, Bhattoa Harjit; Vári, Sándor G.; Balog, Marta; Blažetić, Senka; Heffer, Marija; Papp, Zoltán; Borbély, Attila

    2014-01-01

    Aim To assess how ovarian-derived sex hormones (in particular progesterone) modify the effects of single acute stress on the mechanical and biochemical properties of left ventricular cardiomyocytes in the rat. Methods Non-ovariectomized (control, n = 8) and ovariectomized (OVX, n = 8) female rats were kept under normal conditions or were exposed to stress (control-S, n = 8 and OVX-S, n = 8). Serum progesterone levels were measured using a chemiluminescent immunoassay. Left ventricular myocardial samples were used for isometric force measurements and protein analysis. Ca2+-dependent active force (Factive), Ca2+-independent passive force (Fpassive), and Ca2+-sensitivity of force production were determined in single, mechanically isolated, permeabilized cardiomyocytes. Stress- and ovariectomy-induced alterations in myofilament proteins (myosin-binding protein C [MyBP-C], troponin I [TnI], and titin) were analyzed by sodium dodecyl sulfate gel electrophoresis using protein and phosphoprotein stainings. Results Serum progesterone levels were significantly increased in stressed rats (control-S, 35.6 ± 4.8 ng/mL and OVX-S, 21.9 ± 4.0 ng/mL) compared to control (10 ± 2.9 ng/mL) and OVX (2.8 ± 0.5 ng/mL) groups. Factive was higher in the OVX groups (OVX, 25.9 ± 3.4 kN/m2 and OVX-S, 26.3 ± 3.0 kN/m2) than in control groups (control, 16.4 ± 1.2 kN/m2 and control-S, 14.4 ± 0.9 kN/m2). Regarding the potential molecular mechanisms, Factive correlated with MyBP-C phosphorylation, while myofilament Ca2+-sensitivity inversely correlated with serum progesterone levels when the mean values were plotted for all animal groups. Fpassive was unaffected by any treatment. Conclusion Stress increases ovary-independent synthesis and release of progesterone, which may regulate Ca2+-sensitivity of force production in left ventricular cardiomyocytes. Stress and female hormones differently alter Ca2+-dependent cardiomyocyte contractile

  9. Comparative transcriptome analysis reveals molecular strategies of oriental river prawn Macrobrachium nipponense in response to acute and chronic nitrite stress.

    PubMed

    Xu, Zhixin; Li, Tongyu; Li, Erchao; Chen, Ke; Ding, Zhili; Qin, Jian G; Chen, Liqiao; Ye, Jinyun

    2016-01-01

    Macrobrachium nipponense is an economically and nutritionally important species threatened by ambient superfluous nitrite. De novo RNA-Seq was used to explore the molecular mechanism in M. nipponense exposed to the acute nitrite stress (26.05 mg/L nitrite-N) for 24 h and the chronic nitrite stress (1.38 mg/L nitrite-N) for 28 d A total of 175.13 million reads were obtained and assembled into 58,871 unigenes with an average length of 1028.7 bp and N50 of 1294 bp. Under the acute and chronic nitrite stress trials, 2824 and 2610 unigenes were significantly expressed. In GO analysis and KEGG pathway analysis, 30 pathways were significantly different between the two treatments while four pathways were in common and the markedly altered pathways were divided into four sections as immunity, metabolism, cell and others. The immunity section revealing the different depth of immunity provoked by nitrite stress contained the most pathways including the important pathways as phagosome, folate biosynthesis, glycerolipid metabolism, glycine, serine and threonine metabolism, amino sugar and nucleotide sugar metabolism under the acute nitrite stress, and lysosome, alanine, aspartate and glutamate metabolism, arginine and proline metabolism under the chronic nitrite stress. This is the first report of responses of M. nipponense under acute and chronic nitrite stress through de novo transcriptome sequencing on the transcriptome level. The results of transcriptome analysis improve our understanding on the underlying molecular mechanisms coping with nitrite stress in crustacean species. PMID:26687531

  10. Chronic Psychosocial Factors and Acute Physiological Responses to Laboratory-Induced Stress in Healthy Populations: A Quantitative Review of 30 Years of Investigations

    ERIC Educational Resources Information Center

    Chida, Yoichi; Hamer, Mark

    2008-01-01

    This meta-analysis included 729 studies from 161 articles investigating how acute stress responsivity (including stress reactivity and recovery of hypothalamic-pituitary-adrenal [HPA] axis, autonomic, and cardiovascular systems) changes with various chronic psychosocial exposures (job stress; general life stress; depression or hopelessness;…

  11. Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax

    PubMed Central

    2010-01-01

    Background Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. Results We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. Conclusion The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man. PMID:20074340

  12. Different profiles of acute stress disorder differentially predict posttraumatic stress disorder in a large sample of female victims of sexual trauma.

    PubMed

    Shevlin, Mark; Hyland, Philip; Elklit, Ask

    2014-12-01

    This study aimed to test the dimensional structure of acute stress disorder (ASD). Latent profile analysis was conducted on scores from the Acute Stress Disorder Scale (Bryant, Moulds, & Guthrie, 2000) using a large sample of female victims of sexual trauma. Four distinct classes were found. Two of the classes represented high and low levels of ASD, and the high ASD class was associated with a high probability of subsequent posttraumatic stress disorder (PTSD). There were 2 intermediate classes that were differentiated by the number of arousal symptoms, and the class with high levels of arousal symptoms had a higher risk of PTSD. The results suggested that ASD is best described by qualitatively and quantitatively differing subgroups in this sample, whereas previous research has assumed ASD to be dimensional. This may explain the limited success of using ASD to predict subsequent PTSD. (PsycINFO Database Record (c) 2014 APA, all rights reserved). PMID:24978131

  13. Peritraumatic dissociation mediates the relationship between acute panic and chronic posttraumatic stress disorder.

    PubMed

    Bryant, Richard A; Brooks, Robert; Silove, Derrick; Creamer, Mark; O'Donnell, Meaghan; McFarlane, Alexander C

    2011-05-01

    Although peritraumatic dissociation predicts subsequent posttraumatic stress disorder (PTSD), little is understood about the mechanism of this relationship. This study examines the role of panic during trauma in the relationship between peritraumatic dissociation and subsequent PTSD. Randomized eligible admissions to 4 major trauma hospitals across Australia (n=244) were assessed during hospital admission and within one month of trauma exposure for panic, peritraumatic dissociation and PTSD symptoms, and subsequently re-assessed for PTSD three months after the initial assessment (n=208). Twenty (9.6%) patients met criteria for PTSD at 3-months post injury. Structural equation modeling supported the proposition that peritraumatic derealization (a subset of dissociation) mediated the effect of panic reactions during trauma and subsequent PTSD symptoms. The mediation model indicated that panic reactions are linked to severity of subsequent PTSD via derealization, indicating a significant indirect relationship. Whereas peritraumatic derealization is associated with chronic PTSD symptoms, this relationship is influenced by initial acute panic responses. PMID:21457945

  14. Khat use and trait anger: effects on affect regulation during an acute stressful challenge.

    PubMed

    Bongard, Stephan; al'Absi, Mustafa; Khalil, Najat Sayem; Al Habori, Molham

    2011-01-01

    Khat (Catha edulis) is a widely used stimulating drug often consumed in daily routine in Yemen and East African countries. Chewing khat acutely elicits states of euphoria and feelings of well-being which later shift into emotional instability and low mood. Little is known about emotional regulation in habitual khat chewers. In this study, we compared self-reports on trait anger as well as positive and negative affect responses to a mental arithmetic challenge. Participants included 135 men and women from Yemen who chew khat regularly, occasionally or not at all. Participants attended a laboratory session that involved resting periods and performing a math challenge. Analyses of variance and regression show that regular khat chewing is associated with higher trait anger, more pronounced negative responses during stress and less pronounced positive emotional states. These results suggest that regular khat chewing is associated with disturbances in emotion regulation processes. PMID:21860244

  15. Femoral diaphyseal stress fracture as the initial presentation of acute leukaemia in an adolescent.

    PubMed

    Chase, Helen Emily; Pang, Joe Hwong; Sanghrajka, Anish Pradip

    2016-01-01

    A 14-year-old boy was referred to the orthopaedic clinic by his general practitioner, reporting of a 6-week history of left thigh pain. Clinical examination was unremarkable. Radiographs demonstrated a periosteal reaction at the proximal femur. MRI scans demonstrated a stress fracture of the femur, with no associated sinister features and no evidence of a pathological lesion. As the fracture healed and symptoms improved, the patient became unwell with weight loss, lethargy, chest and jaw pain and fevers. After multiple blood tests over a 25-day period, including five full blood counts and two normal blood films, a third blood film finally demonstrated blasts in keeping with acute leukaemia. We discuss a literature review of musculoskeletal manifestations of leukaemia and the often atypical presentations found. PMID:27353177

  16. Acute Effects of Normobaric Hypoxia on Hand-Temperature Responses During and After Local Cold Stress

    PubMed Central

    Kölegård, Roger; Mekjavic, Igor B.; Eiken, Ola

    2014-01-01

    Abstract Keramidas, Michail E, Roger Kölegård, Igor B. Mekjavic, and Ola Eiken. Acute effects of normobaric hypoxia on hand-temperature responses during and after local cold stress. High Alt Med Biol. 15:183–191, 2014.—The purpose was to investigate acute effects of normobaric hypoxia on hand-temperature responses during and after a cold-water hand immersion test. Fifteen males performed two right-hand immersion tests in 8°C water, during which they were inspiring either room air (Fio2: 0.21; AIR), or a hypoxic gas mixture (Fio2: 0.14; HYPO). The tests were conducted in a counterbalanced order and separated by a 1-hour interval. Throughout the 30-min cold-water immersion (CWI) and the 15-min spontaneous rewarming (RW) phases, finger-skin temperatures were measured continuously with thermocouple probes; infrared thermography was also employed during the RW phase to map all segments of the hand. During the CWI phase, the average skin temperature (Tavg) of the fingers did not differ between the conditions (AIR: 10.2±0.5°C, HYPO: 10.0±0.5°C; p=0.67). However, Tavg was lower in the HYPO than the AIR RW phase (AIR: 24.5±3.4°C; HYPO: 22.0±3.8°C; p=0.002); a response that was alike in all regions of the immersed hand. Accordingly, present findings suggest that acute exposure to normobaric hypoxia does not aggravate the cold-induced drop in hand temperature of normothermic males. Still, hypoxia markedly impairs the rewarming responses of the hand. PMID:24666109

  17. Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicus.

    PubMed

    Wang, Fangyu; Yang, Hongsheng; Gao, Fei; Liu, Guangbin

    2008-12-01

    Invertebrates are increasingly raised in mariculture, where it is important to monitor immune function and to minimize stresses that could suppress immunity. The activities of phagocytosis, superoxide dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), and lysozyme (LSZ) were measured to evaluate the immune capacities of the sea cucumber, Apostichopus japonicus, to acute temperature changes (from 12 degrees C to 0 degrees C, 8 degrees C, 16 degrees C, 24 degrees C, and 32 degrees C for 72 h) and salinity changes (from 30 per thousand to 20 per thousand, 25 per thousand, and 35 per thousand for 72 h) in the laboratory. Phagocytosis was significantly affected by temperature increases in 3 h, and by salinity (25 per thousand and 35 per thousand) changes in 1 h. SOD activities decreased significantly in 0.5 h to 6 h samples at 24 degrees C. At 32 degrees C, SOD activities decreased significantly in 0.5 h and 1 h exposures, and obviously increased for 12 h exposure. CAT activities decreased significantly at 24 degrees C for 0.5 h exposure, and increased significantly at 32 degrees C in 3 h to 12 h exposures. Activities of MPO increased significantly at 0 degrees C in 0.5 h to 6 h exposures and at 8 degrees C for 1 h. By contrast, activities of MPO decreased significantly in 24 degrees C and 32 degrees C treatments. In elevated-temperature treatments, activities of LSZ increased significantly except at 32 degrees C for 6 h to 12 h exposures. SOD activity was significantly affected by salinity change. CAT activity decreased significantly after only 1 h exposure to salinity of 20 per thousand. Activities of MPO and LSZ showed that A. japonicus tolerates limited salinity stress. High-temperature stress had a much greater effect on the immune capacities of A. japonicus than did low-temperature and salinity stresses. PMID:18640284

  18. SFRR-E Young Investigator AwardeeαB-crystallin modulation after acute exercise in skeletal muscle: the role of oxidative stress and fiber composition.

    PubMed

    Grazioli, Elisa; Dimauro, Ivan; Mercatelli, Neri; Barone, Rosario; Macaluso, Filippo; Fittipaldi, Simona; Di Felice, Valentina; Caporossi, Daniela

    2014-10-01

    αB-crystallin (CRYAB) is a member of the small heat shock proteins implicated in various biological functions, particularly in skeletal muscle where it is involved in adaptive remodelling processes, activation of gene transcription and stabilization of nascent proteins.In this research we analysed αB-crystallin' response in mouse gastrocnemius at 15' and 30' of recovery from an acute aerobic exercise (1hour), correlating its modulation with oxidative stress level and fiber composition, red (RG) and white gastrocnemius (WG).We found for the first time that the acute exercise lead to a short term, specific increase of phospho-αB-crystallin level (pCRYAB) in the RG, while no changes were observed in the WG. Moreover, this induction was correlated with increased level of 4-hydroxynonenal (HNE),suggesting a putative role for oxidative stress in driving CRYAB, but not hsp70 or hsp27, activity during exercise. Any increased level of αB-crystallin' protein was observed neither in RG nor in WG. These data were also supported by our in vitro experiments showing a significant enhancement of pCRYAB in H2O2-treated C2C12 myotubes.Although our results seem suggest a fiber-dependent role of CRYAB, further experiments are in progress to clarify both the molecular pathway driving CRYAB phosphorylation and its fiber-specific induction after exercise -induced oxidative stress.This work was supported by MIUR - PRIN 2012 grant. PMID:26461288

  19. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    PubMed Central

    SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  20. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS.

    PubMed

    Sepehr, Reyhaneh; Audi, Said H; Maleki, Sepideh; Staniszewski, Kevin; Eis, Annie L; Konduri, Girija G; Ranji, Mahsa

    2013-07-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  1. Acute Exposure to Stress Improves Performance in Trace Eyeblink Conditioning and Spatial Learning Tasks in Healthy Men

    ERIC Educational Resources Information Center

    Duncko, Roman; Cornwell, Brian; Cui, Lihong; Merikangas, Kathleen R.; Grillon, Christian

    2007-01-01

    The present study investigated the effects of acute stress exposure on learning performance in humans using analogs of two paradigms frequently used in animals. Healthy male participants were exposed to the cold pressor test (CPT) procedure, i.e., insertion of the dominant hand into ice water for 60 sec. Following the CPT or the control procedure,…

  2. Effects of Acute Exercise on Some Respiratory, Circulatory and Oxidative Stress Parameters of School Boys Aged 15-17 Years

    ERIC Educational Resources Information Center

    Kurkcu, Recep; Gokhan, Ismail

    2013-01-01

    The purpose of this study was to evaluate the effects of acute exercise on respiratory functions, heart-beats, blood pressure, total antioxidative capacity (TAC), oxidative stress index (OSI), lipid hydro-peroxide (LOOHs) and Paraoxonase (PON) in school boys. A sample of 18 male amateur wrestlers are selected for this study. The participants…

  3. Locus of Control Predicts Cortisol Reactivity and Speech Performance in Response to Acute Stress in Undergraduate Students

    ERIC Educational Resources Information Center

    Szabo, Yvette Z.; Chang, Andrew; Chancellor-Freeland, Cheryl

    2015-01-01

    Previous studies have found that an individual's perception of control in a situation (Locus of Control; LOC) can serve as a protective factor that has physiological and psychological benefits. The present study examines LOC in an acute stress paradigm to examine the relationship between LOC and hypothalamic-pituitary-adrenal axis functioning as…

  4. Investigating the role of acute mental stress on endothelial dysfunction: a systematic review and meta-analysis.

    PubMed

    Xue, Yi-Tao; Tan, Qi-Wen; Li, Ping; Mou, Shan-Fang; Liu, Shu-Juan; Bao, Yue; Jiao, Hua-Chen; Su, Wen-Ge

    2015-04-01

    Chronic stress is a known risk factor for both endothelial dysfunction and cardiovascular disease (CVD), but less is known of how acute mental stress affects the vasculature. In this systematic review and meta-analysis, we analyzed the impact of acute mental stress on flow-mediated dilation (FMD), an indicator of endothelial function. We searched the Medline, Cochrane, EMBASE, and ISI Web of Knowledge databases through May 2014, to identify publications in English-language journals. The primary outcome was the change in FMD from baseline to the time of measurement. We also assessed the risk of bias and the heterogeneity of included studies. Our search identified eight prospective studies, which displayed significant heterogeneity. Four studies measured FMD while the subject was performing the task; six measured FMD after the task had been completed. The total number of participants was 164. The pooled results indicate that FMD did not change significantly while the task was being performed (pooled difference in means: -0.853; 95 % confidence interval (CI), -3.926/2.220; P = 0.586); however, FMD measured after the task was completed was significantly less than baseline (pooled difference in means: -2.450; 95 %CI, -3.925/-0.975; P = 0.001). In conclusions, our findings provide evidence that an acute stressful experience has a delayed, negative impact on the function of the endothelium. Repeated exposure to short-term stress may lead to permanent injury of the vasculature. Therefore, assessment of patients' exposure to both repeated acute mental stress and chronic stress may be useful in determining their risk of developing CVD. PMID:25391292

  5. INCREASES IN ANXIETY-LIKE BEHAVIOR INDUCED BY ACUTE STRESS ARE REVERSED BY ETHANOL IN ADOLESCENT BUT NOT ADULT RATS

    PubMed Central

    Varlinskaya, Elena I.; Spear, Linda P.

    2011-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnatal day (P35)] Sprague-Dawley rats differ from their adult counterparts (P70) in the impact of acute restraint stress on social anxiety and in their sensitivity to the social anxiolytic effects of ethanol. Animals were restrained for 90 min, followed by examination of stress- and ethanol-induced (0, 0.25, 0.5, 0.75, and 1 g/kg) alterations in social behavior using a modified social interaction test in a familiar environment. Acute restraint stress increased anxiety, as indexed by reduced levels of social investigation at both ages, and decreased social preference among adolescents. These increases in anxiety were dramatically reversed among adolescents by acute ethanol. No anxiolytic-like effects of ethanol emerged following restraint stress in adults. The social suppression seen in response to higher doses of ethanol was reversed by restraint stress in animals of both ages. To the extent that these data are applicable to humans, the results of the present study provide some experimental evidence that stressful life events may increase the attractiveness of alcohol as an anxiolytic agent for adolescents. PMID:22024161

  6. Time-Course Changes of Steroidogenic Gene Expression and Steroidogenesis of Rat Leydig Cells after Acute Immobilization Stress

    PubMed Central

    Lin, Han; Yuan, Kai-ming; Zhou, Hong-yu; Bu, Tiao; Su, Huina; Liu, Shiwen; Zhu, Qiqi; Wang, Yiyan; Hu, Yuanyuan; Shan, Yuanyuan; Lian, Qing-quan; Wu, Xiao-yun; Ge, Ren-shan

    2014-01-01

    Leydig cells secrete testosterone, which is essential for male fertility and reproductive health. Stress increases the secretion of glucocorticoid (corticosterone, CORT; in rats), which decreases circulating testosterone levels in part through a direct action by binding to the glucocorticoid receptors (NR3C1) in Leydig cells. The intratesticular CORT level is dependent on oxidative inactivation of glucocorticoid by 11β-hydroxysteroid dehydrogenase 1 (HSD11B1) in Leydig cells. In the present study, we investigated the time-course changes of steroidogenic gene expression levels after acute immobilization stress in rats. The plasma CORT levels were significantly increased 0.5, 1, 3 and 6 h after immobilization stress, while plasma testosterone levels were significantly reduced 3 and 6 h, after stress and luteinizing hormone (LH) did not change. Immobilization stress caused the down-regulation of Scarb1, Star and Cyp17a1 expression levels in the rat testis starting at the first hour of stress, ahead of the significant decreases of plasma testosterone levels. Other mRNA levels, including Cyp11a1, Hsd3b1 and Hsd17b3, began to decline after 3 h. Hsd11b1 and Nos2 mRNA levels did not change during the course of stress. Administration of glucocorticoid antagonist RU486 significantly restored plasma testosterone levels. In conclusion, Scarb1, Star and Cyp17a1 expression levels are more sensitive to acute stress, and acute immobilization stress causes the decline of the steroidogenic pathway via elevating the levels of glucocorticoid, which binds to NR3C1 in Leydig cells to inhibit steroidogenic gene expression. PMID:25405735

  7. Effects of acute ingestion of different fats on oxidative stress and inflammation in overweight and obese adults

    PubMed Central

    2011-01-01

    Background Studies show that obese individuals have prolonged elevations in postprandial lipemia and an exacerbated inflammatory response to high fat meals, which can increase risk for cardiovascular diseases. As epidemiological studies indicate an association between type of fat and circulating inflammatory markers, the purpose of this study was to investigate the acute effect of different fat sources on inflammation and oxidative stress in overweight and obese individuals. Methods Eleven overweight and obese subjects consumed three high fat milkshakes rich in monounsaturated fat (MFA), saturated fat (SFA), or long-chain omega 3 polyunsaturated fat (O3FA) in random order. Blood samples collected at baseline, 1, 2, 4, and 6 hours postprandial were analyzed for markers of inflammation (soluble intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor- α (TNF-α), and C-reactive protein (CRP)), oxidative stress (8-epi-prostaglandin-F2α (8-epi) and nuclear factor-κB (NF-κB)), and metabolic factors (glucose, insulin, non-esterified free fatty acids, and triglycerides (TG)). Results O3FA enhanced NF-kB activation compared to SFA, but did not increase any inflammatory factors measured. Conversely, SFA led to higher ICAM-1 levels than MFA (p = 0.051), while MFA increased TG more than SFA (p < 0.05). CRP increased while TNF-α and 8-epi decreased with no difference between treatments. Conclusions While most of the inflammatory factors measured had modest or no change following the meal, ICAM-1 and NF-κB responded differently by meal type. These results are provocative and suggest that type of fat in meals may differentially influence postprandial inflammation and endothelial activation. PMID:22059644

  8. Assessing DSM-5 latent subtypes of acute stress disorder dissociative or intrusive?

    PubMed

    Armour, Cherie; Hansen, Maj

    2015-02-28

    Acute Stress Disorder (ASD) was first included in the DSM-IV in 1994. It was proposed to account for traumatic responding in the early post trauma phase and to act as an identifier for later Posttraumatic Stress Disorder (PTSD). Unlike PTSD it included a number of dissociative indicators. The revised DSM-5 PTSD criterion included a dissociative-PTSD subtype. The current study assessed if a dissociative-ASD subtype may be present for DSM-5 ASD. Moreover, we assessed if a number of risk factors resulted in an increased probability of membership in symptomatic compared to a baseline ASD profile. We used data from 450 bank robbery victims. Latent profile analysis (LPA) was used to uncover latent profiles of ASD. Multinomial logistic regression was used to determine if female gender, age, social support, peritraumatic panic, somatization, and number of trauma exposures increased or decreased the probability of profile membership. Four latent profiles were uncovered and included an intrusion rather than dissociative subtype. Increased age and social support decreased the probability of individuals being grouped into the intrusion subtype whereas increased peritraumatic panic and somatization increased the probability of individuals being grouped into the intrusion subtype. Findings are discussed in regard to the ICD-11 and the DSM-5. PMID:25535010

  9. Effect of iron supplementation on oxidative stress and intestinal inflammation in rats with acute colitis.

    PubMed

    Aghdassi, E; Carrier, J; Cullen, J; Tischler, M; Allard, J P

    2001-05-01

    In this study, we investigated the effect of intraperitoneal iron dextran (100 mg/100 g body weight) on oxidative stress and intestinal inflammation in rats with acute colitis induced by 5% dextran sulfate sodium. In both colitis and healthy animals, disease activity index, crypt and inflammatory scores, colon length, plasma and colonic lipid peroxides, and plasma vitamins E, C, and retinol were assessed. The results showed that iron-supplemented groups had moderate iron deposition in the colonic submucosa and lamina propria. In the colitis group supplemented with iron, colon length was significantly shorter; disease activity index, crypt, and inflammatory scores and colonic lipid peroxides were significantly higher; and plasma alpha-tocopherol was significantly lower compared to the colitis group without iron supplementation. There was no intestinal inflammation and no significant increase in colonic lipid peroxides in healthy rats supplemented with iron. In conclusion, iron injection resulted in an increased oxidative stress and intestinal inflammation in rats with colitis but not in healthy rats. PMID:11341654

  10. Cortisol response to acute stress in asthma: Moderation by depressive mood.

    PubMed

    Trueba, Ana F; Simon, Erica; Auchus, Richard J; Ritz, Thomas

    2016-05-15

    Both individuals with asthma and depression show signs of a dysregulated hypothalamus-pituitary-adrenal axis. However, little is known about the cortisol response to stress in the context of co-occurring asthma and depressive mood. Thirty-nine individuals with asthma and 41 healthy controls underwent a combined speech and mental arithmetic stressor. During the course of the laboratory session, salivary cortisol was collected 5 times, with 1 sample at 0min before the stressor and 4 samples at 0, 15, 30 and 45min after the stressor. Depressive mood in the past week was assessed with the Hospital Anxiety and Depression Scale at the beginning of the session. Depressive symptoms moderated cortisol response to the acute stressor, but only among asthmatic patients. Higher depressive mood was associated with a significant increase in cortisol, whereas low depressive mood was associated with no cortisol response. In healthy participants, depressive mood had no substantial effect on cortisol response to the stressor. These findings suggest that depressive mood and chronic inflammatory diseases such as asthma can interact to augment cortisol response to stress. PMID:26965527

  11. Ulinastatin suppresses endoplasmic reticulum stress and apoptosis in the hippocampus of rats with acute paraquat poisoning

    PubMed Central

    Li, Hai-feng; Zhao, Shi-xing; Xing, Bao-peng; Sun, Ming-li

    2015-01-01

    Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, prevent cell damage, and reduce the production of free radicals. This study assumed that ulinastatin would exert these effects on brain tissues that had been poisoned with paraquat. Rat models of paraquat poisoning were intraperitoneally injected with ulinastatin. Simultaneously, rats in the control group were administered normal saline. Hematoxylin-eosin staining showed that most hippocampal cells were contracted and nucleoli had disappeared in the paraquat group. Fewer cells in the hippocampus were concentrated and nucleoli had disappeared in the ulinastatin group. Western blot assay showed that expressions of GRP78 and cleaved-caspase-3 were significantly lower in the ulinastatin group than in the paraquat group. Immunohistochemical findings showed that CHOP immunoreactivity was significantly lower in the ulinastatin group than in the paraquat group. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining showed that the number of apoptotic cells was reduced in the paraquat and ulinastatin groups. These data confirmed that endoplasmic reticular stress can be induced by acute paraquat poisoning. Ulinastatin can effectively inhibit this stress as well as cell apoptosis, thereby exerting a neuroprotective effect. PMID:25878598

  12. von Willebrand Factor and Oxidative Stress Parameters in Acute Coronary Syndromes

    PubMed Central

    Koprivica, Zoran; Djordjevic, Dusica; Vuletic, Milena; Zivkovic, Vladimir; Barudzic, Nevena; Andjelkovic, Nebojsa; Djuric, Dragan; Iric-Cupic, Violeta; Krkeljic, Jelena; Jakovljevic, Vladimir

    2011-01-01

    Considering the role of von Willebrand factor (vWf) in hemostasis, and the role of oxidative stress in the development of endothelial dysfunction and atherosclerotic disease, the aim of our study was to investigate the relationship between vWf, parameters of oxidative stress and different types of acute coronary syndromes (ACS). Levels of vWf activity (vWfAct), vWf antigen (vWfAg), nitric oxide (estimated through nitrites–NO2 −), superoxide anion radical (O2 −), hydrogen peroxide (H2O2), index of lipid peroxidation (estimated through thiobarbituric acid reactive substances–TBARS), superoxide dismutase (SOD) and catalase (CAT) activity of 115 patients were compared with those of 40 healthy controls. ACS patients had significantly higher vWfAct and vWfAg levels, as well as TBARS levels, while their levels of NO2 −, H2O2, SOD and CAT activities were lower than controls'. vWfAg showed high specificity and sensitivity as a test to reveal healthy or diseased subjects. Multivariant logistic regression marked only vWfAg and TBARS as parameters that were under independent effect of ACS type. The results of our study support the implementation of vWf in clinical rutine and into therapeutic targets, and suggest that ACS patients are in need of antioxidant supplementation to improve their impaired antioxidant defence. PMID:21904649

  13. The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood

    PubMed Central

    Koelsch, Stefan; Boehlig, Albrecht; Hohenadel, Maximilian; Nitsche, Ines; Bauer, Katrin; Sack, Ulrich

    2016-01-01

    Stress and recovery from stress significantly affect interactions between the central nervous system, endocrine pathways, and the immune system. However, the influence of acute stress on circulating immune-endocrine mediators in humans is not well known. Using a double-blind, randomized study design, we administered a CO2 stress test to n = 143 participants to identify the effects of acute stress, and recovery from stress, on serum levels of several mediators with immune function (IL-6, TNF-α, leptin, and somatostatin), as well as on noradrenaline, and two hypothalamic–pituitary–adrenal axis hormones (ACTH and cortisol). Moreover, during a 1 h-recovery period, we repeatedly measured these serum parameters, and administered an auditory mood-induction protocol with positive music and a neutral control stimulus. The acute stress elicited increases in noradrenaline, ACTH, cortisol, IL-6, and leptin levels. Noradrenaline and ACTH exhibited the fastest and strongest stress responses, followed by cortisol, IL-6 and leptin. The music intervention was associated with more positive mood, and stronger cortisol responses to the acute stressor in the music group. Our data show that acute (CO2) stress affects endocrine, immune and metabolic functions in humans, and they show that mood plays a causal role in the modulation of responses to acute stress. PMID:27020850

  14. The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood.

    PubMed

    Koelsch, Stefan; Boehlig, Albrecht; Hohenadel, Maximilian; Nitsche, Ines; Bauer, Katrin; Sack, Ulrich

    2016-01-01

    Stress and recovery from stress significantly affect interactions between the central nervous system, endocrine pathways, and the immune system. However, the influence of acute stress on circulating immune-endocrine mediators in humans is not well known. Using a double-blind, randomized study design, we administered a CO2 stress test to n = 143 participants to identify the effects of acute stress, and recovery from stress, on serum levels of several mediators with immune function (IL-6, TNF-α, leptin, and somatostatin), as well as on noradrenaline, and two hypothalamic-pituitary-adrenal axis hormones (ACTH and cortisol). Moreover, during a 1 h-recovery period, we repeatedly measured these serum parameters, and administered an auditory mood-induction protocol with positive music and a neutral control stimulus. The acute stress elicited increases in noradrenaline, ACTH, cortisol, IL-6, and leptin levels. Noradrenaline and ACTH exhibited the fastest and strongest stress responses, followed by cortisol, IL-6 and leptin. The music intervention was associated with more positive mood, and stronger cortisol responses to the acute stressor in the music group. Our data show that acute (CO2) stress affects endocrine, immune and metabolic functions in humans, and they show that mood plays a causal role in the modulation of responses to acute stress. PMID:27020850

  15. Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder.

    PubMed

    Rau, Vinuta; DeCola, Joseph P; Fanselow, Michael S

    2005-01-01

    Fear is an adaptive response that initiates defensive behavior to protect animals and humans from danger. However, anxiety disorders, such as Posttraumatic Stress Disorder (PTSD), can occur when fear is inappropriately regulated. Fear conditioning can be used to study aspects of PTSD, and we have developed a model in which pre-exposure to a stressor of repeated footshock enhances conditional fear responding to a single context-shock pairing. The experiments in this chapter address interpretations of this effect including generalization and summation or fear, inflation, and altered pain sensitivity. The results of these experiments lead to the conclusion that pre-exposure to shock sensitizes conditional fear responding to similar less intense stressors. This sensitization effect resists exposure therapy (extinction) and amnestic (NMDA antagonist) treatment. The pattern predicts why in PTSD patients, mild stressors cause reactions more appropriate for the original traumatic stressor and why new fears are so readily formed in these patients. This model can facilitate the study of neurobiological mechanisms underlying sensitization of responses observed in PTSD. PMID:16095698

  16. Cognitive reappraisal increases neuroendocrine reactivity to acute social stress and physical pain.

    PubMed

    Denson, Thomas F; Creswell, J David; Terides, Matthew D; Blundell, Kate

    2014-11-01

    Cognitive reappraisal can foster emotion regulation, yet less is known about whether cognitive reappraisal alters neuroendocrine stress reactivity. Some initial evidence suggests that although long-term training in cognitive behavioral therapy techniques (which include reappraisal as a primary training component) can reduce cortisol reactivity to stress, some studies also suggest that reappraisal is associated with heightened cortisol stress reactivity. To address this mixed evidence, the present report describes two experimental studies that randomly assigned young adult volunteers to use cognitive reappraisal while undergoing laboratory stressors. Relative to the control condition, participants in the reappraisal conditions showed greater peak cortisol reactivity in response to a socially evaluative speech task (Experiment 1, N=90) and to a physical pain cold pressor task (Experiment 2, N=94). Participants in the cognitive reappraisal group also reported enhanced anticipatory psychological appraisals of self-efficacy and control in Experiment 2 and greater post-stressor self-efficacy. There were no effects of the reappraisal manipulation on positive and negative subjective affect, pain, or heart rate in either experiment. These findings suggest that although cognitive reappraisal fosters psychological perceptions of self-efficacy and control under stress, this effortful emotion regulation strategy in the short-term may increase cortisol reactivity. Discussion focuses on promising psychological mechanisms for these cognitive reappraisal effects. PMID:25063879

  17. Baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat

    PubMed Central

    Chen, Huaguo; Xu, Yongfu; Wang, Jianzhong; Zhao, Wei; Ruan, Huihui

    2015-01-01

    Baicalin belongs to glucuronic acid glycosides and after hydrolysisbaicalein and glucuronic acid come into being. It has such effects as clearing heat and removing toxicity, anti-inflammation, choleresis, bringing high blood pressure down, diuresis, anti-allergic reaction and so on. In this study, we investigated whether baicalin ameliorates isoproterenol-induced acute myocardial infarction and its mechanism. Rat model of acute myocardial infarction was induced by isoproterenol. Casein kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH), cardiac troponin T (cTnT) and infarct size measurement were used to measure the protective effect of baicalin on isoproterenol-induced acute myocardial infarction. iNOS protein expression in rat was analyzed using western blot analysis. Tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), malondialdehyde (MDA) and superoxide dismutase (SOD) and caspase-3 activation levels were explored using commercial ELISA kits. In the acute myocardial infarction experiment, baicalin effectively ameliorates the level of CK, CK-MB, LDH and cTnT, reduced infarct size in acute myocardial infarction rat model. Meanwhile, treatment with baicalin effectively decreased the iNOS protein expression, inflammatory factors and oxidative stresses in a rat model of acute myocardial infarction. However, baicalin emerged that anti-apoptosis activity and suppressed the activation of caspase-3 in a rat model of acute myocardial infarction. The data suggest that the protective effect of baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat. PMID:26617721

  18. Dysregulated Hypothalamic–Pituitary–Adrenal Axis Function Contributes to Altered Endocrine and Neurobehavioral Responses to Acute Stress

    PubMed Central

    Kinlein, Scott A.; Wilson, Christopher D.; Karatsoreos, Ilia N.

    2015-01-01

    Organisms react to environmental challenges by activating a coordinated set of brain–body responses known as the stress response. These physiological and behavioral countermeasures are, in large part, regulated by the neuroendocrine hypothalamic–pituitary–adrenal (HPA) axis. Normal functioning of the HPA axis ensures that an organism responds appropriately to altered environmental demands, representing an essential system to promote survival. Over the past several decades, increasing evidence supports the hypothesis that disruption of the HPA axis can lead to dysregulated stress response phenotypes, exacting a physiological cost on the organism commonly referred to as allostatic load. Furthermore, it has been recognized that high allostatic load can contribute to increased vulnerability of the organism to further challenges. This observation leads to the notion that disrupted HPA function and resulting inappropriate responses to stressors may underlie many neuropsychiatric disorders, including depression and anxiety. In the present set of studies, we investigate the role of both the normally functioning and disrupted HPA axis in the endocrine, neural, and behavioral responses to acute stress. Using a model of non-invasive chronic corticosterone treatment in mice, we show that dysregulating the normal function of the HPA leads to a mismatch between the hormonal and neural response to acute stress, resulting in abnormal behavioral coping strategies. We believe this model can be leveraged to tease apart the mechanisms by which altered HPA function contributes to neurobehavioral dysregulation in response to acute stress. PMID:25821436

  19. Stress enhances retrieval of drug-related memories in abstinent heroin addicts.

    PubMed

    Zhao, Li-Yan; Shi, Jie; Zhang, Xiao-Li; Epstein, David H; Zhang, Xiang-Yang; Liu, Yu; Kosten, Thomas R; Lu, Lin

    2010-02-01

    Stress is associated with relapse to drugs after abstinence, but the mechanisms for this association are unclear. One mechanism may be that stress enhances abstinent addicts' recall of memories of drugs as stress relievers. This study assessed the effects of stress on free recall and cued recall of 10 heroin-related and 10 neutral words learned 24 h earlier by 102 abstinent heroin addicts. These participants were randomly assigned to three experiments that also assessed attention and working memory. Experiment 1 used a psychosocial stressor (Trier social stress test (TSST)) before testing for recall of heroin-related words. Experiment 2 added administration of the beta-adrenoceptor antagonist propranolol 1 h before the psychosocial stressor. Experiment 3 added administration of either cortisol with propranolol, cortisol alone, or propranolol alone 1 h before word recall to determine whether stress enhancement of heroin-related word recall required noradrenergic-glucocorticoid interactions. We found that free recall of heroin-related words in abstinent addicts was enhanced after stress or cortisol administration when compared with a non-stress condition or placebo, respectively, whereas these interventions had no effect on neutral word recall. beta-adrenergic blockade blocked the enhancing effect of stress or cortisol on free recall of heroin-related words. Neither stress nor cortisol affected cued recall, attention, or working memory. The potential of beta-adrenergic blockade to reduce or block stress-induced enhancement of drug-related memory retrieval may be relevant to preventing stress-induced relapse in abstinent heroin addicts. PMID:19890257

  20. Neuronal and inducible nitric oxide synthase upregulation in the rat medial prefrontal cortex following acute restraint stress: A dataset.

    PubMed

    Spiers, Jereme G; Chen, Hsiao-Jou Cortina; Lee, Johnny K; Sernia, Conrad; Lavidis, Nickolas A

    2016-03-01

    This data article provides additional evidence on gene expression changes in the neuronal and inducible isoforms of nitric oxide synthase in the medial prefrontal cortex following acute stress. Male Wistar rats aged 6-8 weeks were exposed to control or restraint stress conditions for up to four hours in the dark cycle after which the brain was removed and the medial prefrontal cortex isolated by cryodissection. Following RNA extraction and cDNA synthesis, gene expression data were measured using quantitative real-time PCR. The mRNA levels of the neuronal and inducible nitric oxide synthase isoforms, and the inhibitory subunit of NF-κB, I kappa B alpha were determined using the ΔΔCT method relative to control animals. This data article presents complementary results related to the research article entitled 'Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum' [1]. PMID:26909371

  1. Hyper-responsiveness to acute stress, emotional problems and poorer memory in former preterm children.

    PubMed

    Quesada, Andrea A; Tristão, Rosana M; Pratesi, Riccardo; Wolf, Oliver T

    2014-09-01

    The prevalence of preterm birth (PTB) is high worldwide, especially in developing countries like Brazil. PTB is marked by a stressful environment in intra- as well as extrauterine life, which can affect neurodevelopment and hormonal and physiological systems and lead to long-term negative outcomes. Nevertheless, little is known about PTB and related outcomes later on in childhood. Thus, the goals of the current study were threefold: (1) comparing cortisol and alpha-amylase (sAA) profiles, including cortisol awakening response (CAR), between preterm and full-term children; (2) evaluating whether preterm children are more responsive to acute stress and (3) assessing their memory skills and emotional and behavioral profiles. Basal cortisol and sAA profiles, including CAR of 30 preterm children, aged 6 to 10 years, were evaluated. Further, we assessed memory functions using the Wide Range Assessment of Memory and Learning, and we screened behavior/emotion using the Strengths and Difficulties Questionnaire. The results of preterm children were compared to an age- and sex-matched control group. One week later, participants were exposed to a standardized laboratory stressor [Trier Social Stress Test for Children (TSST-C)], in which cortisol and sAA were measured at baseline, 1, 10 and 25 min after stressor exposure. Preterm children had higher cortisol concentrations at awakening, a flattened CAR and an exaggerated response to TSST-C compared to full-term children. These alterations were more pronounced in girls. In addition, preterm children were characterized by more emotional problems and poorer memory performance. Our findings illustrate the long-lasting and in part sex-dependent effects of PTB on the hypothalamic-pituitary-adrenal (HPA) axis, internalizing behavior and memory. The findings are in line with the idea that early adversity alters the set-point of the HPA axis, thereby creating a more vulnerable phenotype. PMID:25089937

  2. Pentoxifylline attenuates nitrogen mustard-induced acute lung injury, oxidative stress and inflammation.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Cervelli, Jessica A; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2014-08-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants. PMID:24886962

  3. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency.

    PubMed

    Zhang, Ji; Friedman, Morton H

    2013-09-15

    Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm(2) at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay. PMID:23851277

  4. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency

    PubMed Central

    Zhang, Ji

    2013-01-01

    Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm2 at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay. PMID:23851277

  5. Changes in clinical and instrumental vestibular parameters following acute exposition to auditory stress.

    PubMed

    Cassandro, E; Chiarella, G; Catalano, M; Gallo, L V; Marcelli, V; Nicastri, M; Petrolo, C

    2003-08-01

    Besides Tullio's phenomenon, resulting from anatomic changes in the labyrinth, a hypersensitivity to acoustic stimuli of the saccular structures appears to be the underlying cause of the vestibular responses detected in some patients. In order to evaluate the incidence of vestibular symptoms triggered by acute exposure to auditory stress (disco music), 40 subjects aged between 18 and 26 years, with no audiological and vestibular disorders, were submitted to otoneurologic tests. Subjects were exposed to disco music [intensity 128 dB (C)], for 3 hours. Tests have been carried out before and immediately after exposure. Canalar and macular functions have been evaluated using vestibular investigation techniques and vestibular evoked myogenic potentials. When compared to baseline data, post-exposure test results did not reveal any canalar damage. Pre- and post-exposure recordings of the vestibular-oculomotor reflex threshold have shown no significant changes. Conversely, post-stimulus recordings have shown a significant increase in the amplitude of the vestibular evoked myogenic potential response, thus indicating a possible irritative involvement of the macular receptor. This result suggests a direct action upon the receptor by acoustic stimulation which could, therefore, be the underlying cause of vestibular symptoms reported by patients following exposure to sufficiently intense acoustic stimuli. Prior to this study. a questionnaire concerning the relationship between habitual disco visiting and audio-vestibular symptoms has been completed by 310 students at the University of Catanzaro. This survey revealed a significant incidence of vestibular symptoms due to acoustic stress (Tullio's phenomenon) which led us to hypothesise that balance disorders due to auditory stress are much more frequent than commonly held, particularly since, in many cases, diagnoses is unknown or not easy due to the difficult procedures by which these conditions are diagnosed. PMID:15046413

  6. Subliminal Activation of Social Ties Moderates Cardiovascular Reactivity during Acute Stress

    PubMed Central

    Carlisle, McKenzie; Uchino, Bert N.; Sanbonmatsu, David M.; Smith, Timothy W.; Cribbet, Matthew R.; Birmingham, Wendy; Light, Kathleen C.; Vaughn, Allison A.

    2011-01-01

    Objective The quality of one’s personal relationships has been reliably linked to important physical health outcomes, perhaps through the mechanism of physiological stress responses. Most studies of this mechanism have focused on whether more conscious interpersonal transactions influence cardiovascular reactivity. However, whether such relationships can be automatically activated in memory to influence physiological processes has not been determined. The primary aims of this study were to examine if subliminal activation of relationships could influence health-relevant physiological processes, and to examine this question in the context of a more general relationship model that incorporates both positive and negative dimensions. Method We randomly assigned participants to be subliminally primed with existing relationships that varied in their underlying positivity and negativity (i.e., indifferent, supportive, aversive, ambivalent). They then performed acute psychological stressors while cardiovascular and self-report measures were assessed. Results Priming negative relationships was associated with greater threat, lower feelings of control, and higher diastolic blood pressure reactivity during stress. Moreover, priming relationships high in positivity and negativity (ambivalent ties) was associated with the highest heart rate reactivity and greatest respiratory sinus arrhythmia decreases during stress. Exploratory analyses during the priming task itself suggested that the effects of negative primes on biological measures were prevalent across tasks, whereas the links to ambivalent ties was specific to the subsequent stressor task. Conclusions These data highlight novel mechanisms by which social ties may impact cardiovascular health, and further suggest the importance of incorporating both positivity and negativity in the study of relationships and physical health. PMID:21842996

  7. Intrathecal Clonidine Pump Failure Causing Acute Withdrawal Syndrome With 'Stress-Induced' Cardiomyopathy.

    PubMed

    Lee, Hwee Min D; Ruggoo, Varuna; Graudins, Andis

    2016-03-01

    Clonidine is a central alpha(2)-agonist antihypertensive used widely for opioid/alcohol withdrawal, attention deficit hyperactivity disorder and chronic pain management. We describe a case of clonidine withdrawal causing life-threatening hypertensive crisis and stress-induced cardiomyopathy. A 47-year-old man with chronic back pain, treated with clonidine for many years via intrathecal pump (550 mcg/24 h), presented following a collapse and complaining of sudden worsening of back pain, severe headache, diaphoresis, nausea and vomiting. A few hours prior to presentation, his subcutaneous pump malfunctioned. On presentation, vital signs included pulse 100 bpm, BP 176/103 mmHg, temperature 37.8 °C and O2 saturation 100 % (room air). Acute clonidine withdrawal with hypertensive crisis was suspected. Intravenous clonidine loading dose and a 50 mcg/h infusion were commenced. Five hours later, severe chest pain, dyspnoea, tachycardia, hypoxia, with BP 180/120 mmHg and pulmonary edema ensued. ECG showed sinus tachycardia with no ST elevation. Repeated intravenous clonidine doses were given (25 mcg every 5-10 min), with ongoing clonidine infusion to control blood pressure. Glyceryl trinitrate infusion, positive pressure ventilation and intravenous benzodiazepines were added. Bedside echocardiogram showed stress-induced cardiomyopathy pattern. Serum troponin-I was markedly elevated. His coronary angiography showed minor irregularities in the major vessels. Over the next 3 days in the ICU, drug infusions were weaned. Discharge was 12 days later on oral clonidine, metoprolol, perindopril, aspirin and oxycodone-SR. Two months later, his echocardiogram was normal. The intrathecal pump was removed. We report a case of stress-induced cardiomyopathy resulting from the sudden cessation of long-term intrathecal clonidine. This was managed by re-institution of clonidine and targeted organ-specific therapies. PMID:26370679

  8. Cinnamon (Cinnamomum sp.) inclusion in diets for Nile tilapia submitted to acute hypoxic stress.

    PubMed

    M Dos Santos, Welliene; S de Brito, Túlio; de A Prado, Samuel; G de Oliveira, Camila; C De Paula, Andréia; C de Melo, Daniela; A P Ribeiro, Paula

    2016-07-01

    The aim of this study was to evaluate the possible effects of diets supplemented with probiotics and different cinnamon levels (powder and essential oil) on immunological parameters of Nile tilapia after being subjected to acute stress by hypoxia. Three hundred and thirty juvenile male tilapia fish (66.08 ± 2.79 g) were distributed in 30 tanks of 100 L capacity (11/cage) with a water recirculation system. The animals were fed for 71 days with diets containing extruded cinnamon powder at different levels (0.5, 1, 1.5, 2%), cinnamon essential oil (0.05, 0.1, 0.15; 0.2%) and probiotics (0.4%), all in triplicate. At the end of the experiment, the fish (200.36 ± 19.88 g) of the different groups were subjected to stress by hypoxia. Hypoxia was achieved by capturing the animals with a net, keeping them out of the water for three minutes, and then sampling the blood 30 min after the procedure to determine the levels of cortisol, glucose, haematocrit, lysozyme, bactericidal index, total protein, and its fractions. The animals kept blood homeostasis after hypoxic stress. Diet supplementation with 0.5% cinnamon powder improved the fish immune response, since it resulted in an increase of 0.5% in γ-globulin level. Administration of 0.15% cinnamon essential oil resulted in an increase of α1 and α2-globulins, which may be reflected in increased lipid content of the carcass and the hepatosomatic index. More studies are necessary to better understand the effects of these additives for fish immunity. PMID:27142937

  9. Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF

    PubMed Central

    Graybeal, Carolyn; Feyder, Michael; Schulman, Emily; Saksida, Lisa M.; Bussey, Timothy J.; Brigman, Jonathan L.; Holmes, Andrew

    2012-01-01

    Stress often has deleterious effects on cognition. We show that moderate stress enhanced late reversal learning in a mouse touchscreen-based choice task. Ventromedial prefrontal cortex (vmPFC) lesions mimicked the effects of stress, while orbitofrontal (OFC) and dorsolateral striatal (DLS) lesions impaired reversal. Stress-facilitation of reversal was prevented by BDNF infusion into the vmPFC. These findings suggest a mechanism in which stress-induced vmPFC dysfunction disinhibits learning by alternate (e.g., striatal) systems. PMID:22057192

  10. Serum leptin and cortisol, related to acutely perceived academic examination stress and performance in female university students.

    PubMed

    Haleem, Darakhshan J; Inam, Qurrat-Ul-Aen; Haider, Saida; Perveen, Tahira; Haleem, Muhammad Abdul

    2015-12-01

    Leptin, identified as an antiobesity hormone, also has important role in responses to stress and processing of memory. This study was designed to determine effects of academic examination stress-induced changes in serum leptin and its impact on academic performance. Eighty five healthy female students (age 19-21 years; BMI 21.9 ± 1.6) were recruited for the study. Serum leptin and cortisol were monitored at base line (beginning of academic session) and on the day of examination; using a standardized ELISA kit. Acute perception of academic examination stress was determined with the help of a questionnaire derived from Hamilton Anxiety Scale and self report of stress perception. Academic performance was evaluated by the percentage of marks obtained in the examination. Serum cortisol levels were positively correlated (p < 0.01) with the subjective perception of examination stress but not with academic performance. There was an inverted U-shape relationship between level of stress and academic performance. Leptin increased in all stress groups and correlated (p < 0.01) positively with academic performance. There was an inverted U-shape relationship between level of stress and circulating leptin. The findings suggest the peptide hormone, leptin, is a biomarker of stress perception and a mediator of facilitating effects of stress on cognition. PMID:26187200

  11. Reciprocal relationship between acute stress and acute fatigue in everyday life in a sample of university students.

    PubMed

    Doerr, Johanna M; Ditzen, Beate; Strahler, Jana; Linnemann, Alexandra; Ziemek, Jannis; Skoluda, Nadine; Hoppmann, Christiane A; Nater, Urs M

    2015-09-01

    We investigated whether stress may influence fatigue, or vice versa, as well as factors mediating this relationship. Fifty healthy participants (31 females, 23.6±3.2 years) completed up to 5 momentary assessments of stress and fatigue during 5 days of preparation for their final examinations (exam condition) and 5 days of a regular semester week (control condition). Sleep quality was measured by self-report at awakening. A sub-group of participants (n=25) also collected saliva samples. Fatigue was associated with concurrent stress, stress reported at the previous measurement point, and previous-day stress. However, momentary stress was also predicted by concurrent fatigue, fatigue at the previous time point, and previous-day fatigue. Sleep quality mediated the association between stress and next-day fatigue. Cortisol and alpha-amylase did not mediate the stress-fatigue relationship. In conclusion, there is a reciprocal stress-fatigue relationship. Both prevention and intervention programs should comprehensively cover how stress and fatigue might influence one another. PMID:26143479

  12. Acute nicotine enhances spontaneous recovery of contextual fear and changes c-fos early gene expression in infralimbic cortex, hippocampus, and amygdala.

    PubMed

    Kutlu, Munir G; Tumolo, Jessica M; Holliday, Erica; Garrett, Brendan; Gould, Thomas J

    2016-08-01

    Exposure therapy, which focuses on extinguishing fear-triggering cues and contexts, is widely used to treat post-traumatic stress disorder (PTSD). Yet, PTSD patients who received successful exposure therapy are vulnerable to relapse of fear response after a period of time, a phenomenon known as spontaneous recovery (SR). Increasing evidence suggests ventral hippocampus, basolateral amygdala, and infralimbic cortex may be involved in SR. PTSD patients also show high rates of comorbidity with nicotine dependence. While the comorbidity between smoking and PTSD might suggest nicotine may alter SR, the effects of nicotine on SR of contextual fear are unknown. In the present study, we tested the effects of acute nicotine administration on SR of extinguished contextual fear memories and c-fos immediate early gene immunohistochemistry in mice. Our results demonstrated that acute nicotine enhanced SR of extinguished fear whereas acute nicotine did not affect retrieval of unextinguished contextual memories. This suggests that the effect of acute nicotine on SR is specific for memories that have undergone extinction treatment. C-fos immunoreactive (IR) cells in the ventral hippocampus and basolateral amygdala were increased in the nicotine-treated mice following testing for SR, whereas the number of IR cells in the infralimbic cortex was decreased in the same group. Overall, this study suggests that nicotine may adversely affect context-specific relapse of fear memories and this effect is potentially mediated by the suppression of cortical regions and increased activity in the ventral hippocampus and amygdala. PMID:27421892

  13. Haptoglobin activates innate immunity to enhance acute transplant rejection in mice

    PubMed Central

    Shen, Hua; Song, Yang; Colangelo, Christopher M.; Wu, Terence; Bruce, Can; Scabia, Gaia; Galan, Anjela; Maffei, Margherita; Goldstein, Daniel R.

    2011-01-01

    Immune tolerance to transplanted organs is impaired when the innate immune system is activated in response to the tissue necrosis that occurs during harvesting and implantation procedures. A key molecule in this immune pathway is the intracellular TLR signal adaptor known as myeloid differentiation primary response gene 88 (MyD88). After transplantation, MyD88 induces DC maturation as well as the production of inflammatory mediators, such as IL-6 and TNF-α. However, upstream activators of MyD88 function in response to transplantation have not been identified. Here, we show that haptoglobin, an acute phase protein, is an initiator of this MyD88-dependent inflammatory process in a mouse model of skin transplantation. Necrotic lysates from transplanted skin elicited higher inflammatory responses in DCs than did nontransplanted lysates, suggesting DC-mediated responses are triggered by factors released during transplantation. Analysis of transplanted lysates identified haptoglobin as one of the proteins upregulated during transplantation. Expression of donor haptoglobin enhanced the onset of acute skin transplant rejection, whereas haptoglobin-deficient skin grafts showed delayed acute rejection and antidonor T cell priming in a MyD88-dependent graft rejection model. Thus, our results show that haptoglobin release following skin necrosis contributes to accelerated transplant rejection, with potential implications for the development of localized immunosuppressive therapies. PMID:22156194

  14. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    PubMed

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health. PMID:27091601

  15. Ky-2, a Histone Deacetylase Inhibitor, Enhances High-Salinity Stress Tolerance in Arabidopsis thaliana.

    PubMed

    Sako, Kaori; Kim, Jong-Myong; Matsui, Akihiro; Nakamura, Kotaro; Tanaka, Maho; Kobayashi, Makoto; Saito, Kazuki; Nishino, Norikazu; Kusano, Miyako; Taji, Teruaki; Yoshida, Minoru; Seki, Motoaki

    2016-04-01

    Adaptation to environmental stress requires genome-wide changes in gene expression. Histone modifications are involved in gene regulation, but the role of histone modifications under environmental stress is not well understood. To reveal the relationship between histone modification and environmental stress, we assessed the effects of inhibitors of histone modification enzymes during salinity stress. Treatment with Ky-2, a histone deacetylase inhibitor, enhanced high-salinity stress tolerance in Arabidopsis. We confirmed that Ky-2 possessed inhibition activity towards histone deacetylases by immunoblot analysis. To investigate how Ky-2 improved salt stress tolerance, we performed transcriptome and metabolome analysis. These data showed that the expression of salt-responsive genes and salt stress-related metabolites were increased by Ky-2 treatment under salinity stress. A mutant deficient inAtSOS1(Arabidopis thaliana SALT OVERLY SENSITIVE 1), which encodes an Na(+)/H(+)antiporter and was among the up-regulated genes, lost the salinity stress tolerance conferred by Ky-2. We confirmed that acetylation of histone H4 atAtSOS1was increased by Ky-2 treatment. Moreover, Ky-2 treatment decreased the intracellular Na(+)accumulation under salinity stress, suggesting that enhancement of SOS1-dependent Na(+)efflux contributes to increased high-salinity stress tolerance caused by Ky-2 treatment. PMID:26657894

  16. Acute Beta Blockade at Peak Stress: Will It Alter the Sensitivity of Dobutamine Stress Echocardiography in Patients with Normal Resting Wall Motion?

    PubMed Central

    Abdel-Salam, Zainab; Ghazy, Mohamed; Khaled, Mohamed; Nammas, Wail

    2016-01-01

    Background We compared the accuracy of recovery phase images following administration of intravenous propranolol with peak stress images, for detection of coronary artery disease in patients with no resting wall motion abnormalities undergoing dobutamine stress echocardiography. Methods We enrolled 100 consecutive patients with no resting wall motion abnormalities who underwent dobutamine stress echocardiography. Propranolol was injected after termination of dobutamine infusion. Positive peak stress images were defined as the induction of wall motion abnormalities at any stage before propranolol injection. Positive recovery phase images were defined as maintenance or worsening of wall motion abnormalities induced at peak stress, or the appearance of new wall motion abnormalities during recovery phase. Significant coronary stenosis was defined as ≥ 50% obstruction of ≥ 1 sizable artery by coronary angiography. Results Seventy-two patients (72%) had significant coronary artery disease. Analysis of peak stress images revealed sensitivity, specificity, positive and negative predictive values of 80.6%, 85.7%, 93.5%, and 63.2%; the overall accuracy was 82%. Analysis of the recovery phase images revealed sensitivity, specificity, positive and negative predictive values of 91.7%, 75%, 90.4%, and 77.8%; here, the overall accuracy was 87%. Conclusions In patients with no resting wall motion abnormalities, acute beta blockade during dobutamine stress echocardiography improved the sensitivity of recovery phase images for detection of significant coronary artery disease versus peak stress images, but with reduced specificity. PMID:27122936

  17. S-Nitroso-Proteome in Poplar Leaves in Response to Acute Ozone Stress

    PubMed Central

    Vanzo, Elisa; Ghirardo, Andrea; Merl-Pham, Juliane; Lindermayr, Christian; Heller, Werner; Hauck, Stefanie M.; Durner, Jörg; Schnitzler, Jörg-Peter

    2014-01-01

    Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure. PMID:25192423

  18. Role for leptin in promoting glucose mobilization during acute hyperosmotic stress in teleost fishes.

    PubMed

    Baltzegar, David A; Reading, Benjamin J; Douros, Jonathon D; Borski, Russell J

    2014-01-01

    Osmoregulation is critical for survival in all vertebrates, yet the endocrine regulation of this metabolically expensive process is not fully understood. Specifically, the function of leptin in the regulation of energy expenditure in fishes, and among ectotherms, in general, remains unresolved. In this study, we examined the effects of acute salinity transfer (72  h) and the effects of leptin and cortisol on plasma metabolites and hepatic energy reserves in the euryhaline fish, the tilapia (Oreochromis mossambicus). Transfer to 2/3 seawater (23  ppt) significantly increased plasma glucose, amino acid, and lactate levels relative to those in the control fish. Plasma glucose levels were positively correlated with amino acid levels (R2=0.614), but not with lactate levels. The mRNA expression of liver leptin A (lepa), leptin receptor (lepr), and hormone-sensitive and lipoprotein lipases (hsl and lpl) as well as triglyceride content increased during salinity transfer, but plasma free fatty acid and triglyceride levels remained unchanged. Both leptin and cortisol significantly increased plasma glucose levels in vivo, but only leptin decreased liver glycogen levels. Leptin decreased the expression of liver hsl and lpl mRNAs, whereas cortisol significantly increased the expression of these lipases. These findings suggest that hepatic glucose mobilization into the blood following an acute salinity challenge involves both glycogenolysis, induced by leptin, and subsequent gluconeogenesis of free amino acids. This is the first study to report that teleost leptin A has actions that are functionally distinct from those described in mammals acting as a potent hyperglycemic factor during osmotic stress, possibly in synergism with cortisol. These results suggest that the function of leptin may have diverged during the evolution of vertebrates, possibly reflecting differences in metabolic regulation between poikilotherms and homeotherms. PMID:24194509

  19. Enhancement of wind stress evaluation method under storm conditions

    NASA Astrophysics Data System (ADS)

    Chen, Yingjian; Yu, Xiping

    2016-02-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  20. Moringa oleifera extract enhances sexual performance in stressed rats*

    PubMed Central

    Prabsattroo, Thawatchai; Wattanathorn, Jintanaporn; Iamsaard, Sitthichai; Somsapt, Pichet; Sritragool, Opass; Thukhummee, Wipawee; Muchimapura, Supaporn

    2015-01-01

    Aphrodisiacs are required to improve male sexual function under stressful conditions. Due to the effects of oxidative stress and dopamine on male sexual function, we hypothesized that Moringa oleifera leaves might improve male sexual dysfunction induced by stress. Therefore, the effects on various factors playing important roles in male sexual behavior, such as antioxidant effects, the suppression of monoamine and phosphodiesterase type 5 (PDE-5) activities, serum testosterone and corticosterone levels, and histomorphological changes in the testes, of a hydroethanolic extract of M. oleifera leaves were investigated. Various doses of extract including 10, 50, and 250 mg/kg body weight (BW) were given orally to male Wistar rats before exposure to 12 h-immobilization stress for 7 d. The results demonstrated that the extract showed both antioxidant and monoamine oxidase type B (MAO-B) suppression activities. At 7 d of treatment, the low dose of extract improved sexual performance in stress-exposed rats by decreasing intromission latency and increasing intromission frequency. It also suppressed PDE-5 activity, decreased serum corticosterone level, but increased serum testosterone, numbers of interstitial cells of Leydig and spermatozoa. The increased numbers of interstitial cells of Leydig and spermatozoa might have been due to the antioxidant effect of the extract. The increased sexual performance during the intromission phase might have been due to the suppression of MAO-B and PDE-5 activities and increased testosterone. Therefore, M. oleifera is a potential aphrodisiac, but further research concerning the precise underlying mechanisms is still needed. PMID:25743119

  1. Moringa oleifera extract enhances sexual performance in stressed rats.

    PubMed

    Prabsattroo, Thawatchai; Wattanathorn, Jintanaporn; Iamsaard, Sitthichai; Somsapt, Pichet; Sritragool, Opass; Thukhummee, Wipawee; Muchimapura, Supaporn

    2015-03-01

    Aphrodisiacs are required to improve male sexual function under stressful conditions. Due to the effects of oxidative stress and dopamine on male sexual function, we hypothesized that Moringa oleifera leaves might improve male sexual dysfunction induced by stress. Therefore, the effects on various factors playing important roles in male sexual behavior, such as antioxidant effects, the suppression of monoamine and phosphodiesterase type 5 (PDE-5) activities, serum testosterone and corticosterone levels, and histomorphological changes in the testes, of a hydroethanolic extract of M. oleifera leaves were investigated. Various doses of extract including 10, 50, and 250 mg/kg body weight (BW) were given orally to male Wistar rats before exposure to 12 h-immobilization stress for 7 d. The results demonstrated that the extract showed both antioxidant and monoamine oxidase type B (MAO-B) suppression activities. At 7 d of treatment, the low dose of extract improved sexual performance in stress-exposed rats by decreasing intromission latency and increasing intromission frequency. It also suppressed PDE-5 activity, decreased serum corticosterone level, but increased serum testosterone, numbers of interstitial cells of Leydig and spermatozoa. The increased numbers of interstitial cells of Leydig and spermatozoa might have been due to the antioxidant effect of the extract. The increased sexual performance during the intromission phase might have been due to the suppression of MAO-B and PDE-5 activities and increased testosterone. Therefore, M. oleifera is a potential aphrodisiac, but further research concerning the precise underlying mechanisms is still needed. PMID:25743119

  2. Hyperoside enhances the suppressive effects of arsenic trioxide on acute myeloid leukemia cells

    PubMed Central

    Zhang, Feng; Zhu, Fang-Bing; Li, Jia-Jia; Zhang, Ping-Ping; Zhu, Jun-Feng

    2015-01-01

    Hyperoside (Hyp) is the chief component of some Chinese herbs which has anticancer effect and the present study is to identify whether it could enhance the anti leukemic properties of arsenic trioxide (As2O3) in acute myeloid leukemia (AML). We provide evidence on the concomitant treatment of HL-60 human AML cells with hyperoside potentiates As2O3-dependent induction of apoptosis. The activation of caspase-9, Bcl-2-associated agonist of cell death (BAD), p-BAD, p27 was assessed by Western blot. Results showed that hyperoside inhibited BAD from phosphorylating, reactivated caspase-9, and increased p27 levels. Importantly, hyperoside demonstrated its induction of autophagy effect by upregulation of LC-II in HL-60 AML cell line. Taken together, hyperoside may serve as a great candidate of concomitant treatment for leukemia; these effects were probably related to induction of autophagy and enhancing apoptosis-inducing action of As2O3. PMID:26629016

  3. Stress-dependent and gender-specific neuroregulatory roles of the apelin receptor in the hypothalamic–pituitary–adrenal axis response to acute stress

    PubMed Central

    Newson, M J F; Pope, G R; Roberts, E M; Lolait, S J; O'Carroll, A-M

    2013-01-01

    The neuropeptide apelin is expressed in hypothalamic paraventricular and supraoptic nuclei and mediates its effects via activation of the apelin receptor (APJ). Evidence suggests a role for apelin and APJ in mediating the neuroendocrine response to stress. To understand the physiological role of APJ in regulation of the hypothalamic–pituitary–adrenal (HPA) axis, we measured ACTH and corticosterone (CORT) plasma levels in male and female mice lacking APJ (APJ knockout, APJ KO) and in wild-type controls, in response to a variety of acute stressors. Exposure to mild restraint, systemic injection of lipopolysaccharide (LPS), insulin-induced hypoglycaemia and forced swim (FS) stressors, elevated plasma ACTH and CORT levels in wild-type mice. Acute mild restraint significantly increased plasma ACTH and CORT to a similar level in APJ KO mice as in wild-type mice. However, an intact APJ was required for a conventional ACTH, but not CORT, response to LPS administration in male mice and to insulin-induced hypoglycaemia in male and female mice. In contrast, APJ KO mice displayed an impaired CORT response to acute FS stress, regardless of gender. These data indicate that APJ has a role in regulation of the HPA axis response to some acute stressors and has a gender-specific function in peripheral immune activation of the HPA axis. PMID:23086141

  4. Iron-Deficiency Anemia Enhances Red Blood Cell Oxidative Stress

    PubMed Central

    Nagababu, Enika; Gulyani, Seema; Earley, Christopher J.; Cutler, Roy G.; Mattson, Mark P.; Rifkind, Joseph M.

    2009-01-01

    Oxidative stress associated with iron deficiency anemia in a murine model was studied feeding an iron deficient diet. Anemia was monitored by a decrease in hematocrit and hemoglobin. For the 9 week study an increase in total iron binding capacity was also demonstrated. Anemia resulted in an increase in red blood cells (RBC) oxidative stress as indicated by increased levels of fluorescent heme degradation products (1.24 fold after 5 weeks; 2.1 fold after 9 weeks). The increase in oxidative stress was further confirmed by elevated levels of methemoglobin for mice fed an iron deficient diet. Increased hemoglobin autoxidation and subsequent generation of ROS can account for the shorter RBC lifespan and other pathological changes associated with iron deficiency anemia. PMID:19051108

  5. Induction and Expression of Fear Sensitization Caused by Acute Traumatic Stress.

    PubMed

    Perusini, Jennifer N; Meyer, Edward M; Long, Virginia A; Rau, Vinuta; Nocera, Nathaniel; Avershal, Jacob; Maksymetz, James; Spigelman, Igor; Fanselow, Michael S

    2016-01-01

    Fear promotes adaptive responses to threats. However, when the level of fear is not proportional to the level of threat, maladaptive fear-related behaviors characteristic of anxiety disorders result. Post-traumatic stress disorder develops in response to a traumatic event, and patients often show sensitized reactions to mild stressors associated with the trauma. Stress-enhanced fear learning (SEFL) is a rodent model of this sensitized responding, in which exposure to a 15-shock stressor nonassociatively enhances subsequent fear conditioning training with only a single trial. We examined the role of corticosterone (CORT) in SEFL. Administration of the CORT synthesis blocker metyrapone prior to the stressor, but not at time points after, attenuated SEFL. Moreover, CORT co-administered with metyrapone rescued SEFL. However, CORT alone without the stressor was not sufficient to produce SEFL. In these same animals, we then looked for correlates of SEFL in terms of changes in excitatory receptor expression. Western blot analysis of the basolateral amygdala (BLA) revealed an increase in the GluA1 AMPA receptor subunit that correlated with SEFL. Thus, CORT is permissive to trauma-induced changes in BLA function. PMID:26329286

  6. Role of spinal V1a receptors in regulation of arterial pressure during acute and chronic osmotic stress.

    PubMed

    Veitenheimer, Britta; Osborn, John W

    2011-02-01

    Vasopressinergic neurons in the paraventricular nucleus project to areas in the spinal cord from which sympathetic nerves originate. This pathway is hypothesized to be involved in the regulation of mean arterial pressure (MAP), particularly under various conditions of osmotic stress. Several studies measuring sympathetic nerve activity support this hypothesis. However, the evidence that spinal vasopressin influences MAP under physiological or pathophysiological conditions in conscious animals is limited. The purpose of this study was to investigate, in conscious rats, if the increases in MAP during acute or chronic osmotic stimuli are due to activation of spinal vasopressin (V1a) receptors. Three conditions of osmotic stress were examined: acute intravenous hypertonic saline, 24- and 48-h water deprivation, and 4 wk of DOCA-salt treatment. Rats were chronically instrumented with an indwelling catheter for intrathecal injections and a radiotelemeter to measure MAP. In normotensive rats, intrathecal vasopressin and V1a agonist increased MAP, heart rate, and motor activity; these responses were blocked by pretreatment with an intrathecal V1a receptor antagonist. However, when the intrathecal V1a antagonist was given during the three conditions of osmotic stress to investigate the role of "endogenous" vasopressin, the antagonist had no effect on MAP, heart rate, or motor activity. Contrary to the hypothesis suggested by previous studies, these findings indicate that spinal V1a receptors are not required for elevations of MAP under conditions of acute or chronic osmotic stress in conscious rats. PMID:21123759

  7. Greater Heart Rate Responses to Acute Stress Are Associated with Better Post-Error Adjustment in Special Police Cadets.

    PubMed

    Yao, Zhuxi; Yuan, Yi; Buchanan, Tony W; Zhang, Kan; Zhang, Liang; Wu, Jianhui

    2016-01-01

    High-stress jobs require both appropriate physiological regulation and behavioral adjustment to meet the demands of emergencies. Here, we investigated the relationship between the autonomic stress response and behavioral adjustment after errors in special police cadets. Sixty-eight healthy male special police cadets were randomly assigned to perform a first-time walk on an aerial rope bridge to induce stress responses or a walk on a cushion on the ground serving as a control condition. Subsequently, the participants completed a Go/No-go task to assess behavioral adjustment after false alarm responses. Heart rate measurements and subjective reports confirmed that stress responses were successfully elicited by the aerial rope bridge task in the stress group. In addition, greater heart rate increases during the rope bridge task were positively correlated with post-error slowing and had a trend of negative correlation with post-error miss rate increase in the subsequent Go/No-go task. These results suggested that stronger autonomic stress responses are related to better post-error adjustment under acute stress in this highly selected population and demonstrate that, under certain conditions, individuals with high-stress jobs might show cognitive benefits from a stronger physiological stress response. PMID:27428280

  8. Upregulated Hsp27 expression in the cardioprotection induced by acute stress and oxytocin in ischemic reperfused hearts of the rat.

    PubMed

    Moghimian, Maryam; Faghihi, Mahdieh; Karimian, Seyed Morteza; Imani, AliReza; Mobasheri, Maryam Beigom

    2014-12-31

    In view of the cardioprotective effect of oxytocin (OT) released in response to stress, the aim of this study was to evaluate the role of heat shock proteins Hsps 70, 27 and 20 in stress-induced cardioprotection in isolated, perfused rat hearts. Rats were divided in two main groups: unstressed and stressed rats, and all of them were subjected to i.c.v. infusion of vehicle or drugs: unstressed rats [control: vehicle, OT (100 ng/5 μl), atosiban (ATO; 4.3 μg/5 μl) as OT antagonist, ATO+OT], and stressed rats [St: stress, OT+St, ATO+St]. After anesthesia, hearts were isolated and subjected to 30 min regional ischemia and 60 min subsequent reperfusion (IR). Acute stress protocol included swimming for 10 min before anesthesia. Malondialdehyde in coronary effluent was measured and the expression of Hsp 70, 27 and 20 was measured in myocardium using real-time reverse transcriptase polymerase chain reaction (RT-PCR). The malondialdehyde levels, which decreased in the St and OT groups, increased by the administration of atosiban as an OT antagonist. The expression of Hsp27 increased 4 to 5 folds by stress induction and i.c.v. infusion of OT. Central administration of atosiban prior to both stress and OT decreased Hsp27 mRNA levels. These findings suggest that endogenous OT may participate in stress-induced cardioprotection via Hsp27 over-expression as an early response. PMID:25575521

  9. Greater Heart Rate Responses to Acute Stress Are Associated with Better Post-Error Adjustment in Special Police Cadets

    PubMed Central

    Yao, Zhuxi; Yuan, Yi; Buchanan, Tony W.; Zhang, Kan; Zhang, Liang; Wu, Jianhui

    2016-01-01

    High-stress jobs require both appropriate physiological regulation and behavioral adjustment to meet the demands of emergencies. Here, we investigated the relationship between the autonomic stress response and behavioral adjustment after errors in special police cadets. Sixty-eight healthy male special police cadets were randomly assigned to perform a first-time walk on an aerial rope bridge to induce stress responses or a walk on a cushion on the ground serving as a control condition. Subsequently, the participants completed a Go/No-go task to assess behavioral adjustment after false alarm responses. Heart rate measurements and subjective reports confirmed that stress responses were successfully elicited by the aerial rope bridge task in the stress group. In addition, greater heart rate increases during the rope bridge task were positively correlated with post-error slowing and had a trend of negative correlation with post-error miss rate increase in the subsequent Go/No-go task. These results suggested that stronger autonomic stress responses are related to better post-error adjustment under acute stress in this highly selected population and demonstrate that, under certain conditions, individuals with high-stress jobs might show cognitive benefits from a stronger physiological stress response. PMID:27428280

  10. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents.

    PubMed

    Yu, Yan; Xie, Yangchun; Cao, Lizhi; Yang, Liangchun; Yang, Minghua; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells. PMID:27308510

  11. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents

    PubMed Central

    Yu, Yan; Xie, Yangchun; Cao, Lizhi; Yang, Liangchun; Yang, Minghua; Lotze, Michael T.; Zeh, Herbert J.; Kang, Rui; Tang, Daolin

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells. PMID:27308510

  12. Enhanced resistance to acute infection with Trypanosoma cruzi in mice treated with an interferon inducer.

    PubMed Central

    James, S L; Kipnis, T L; Sher, A; Hoff, R

    1982-01-01

    For an exploration of the effects of interferon-inducible resistance mechanisms in acute American trypanosomiasis, the synthetic interferon inducer tilerone hydrochloride was administered to mice of the C57BL/6J strain, which is highly resistant to Trypanosoma cruzi, 18 to 24 h before infection with a potentially lethal dose of bloodstream trypomastigotes. Although all of the control mice died within 30 days of the acute infection, approximately 50% of the tilerone-treated animals were able to survive indefinitely (P less than 0.05). The tilerone-treated mice demonstrated significant levels of serum interferon and splenic natural killer cells at the time of infection. Macrophages isolated from the peritoneal cavities of tilerone-treated C57BL/6J mice appeared to kill significant numbers of trypanosomes during 2 to 3 days of in vitro culture, indicating that activated macrophages may contribute to the enhanced resistance to T. cruzi infection in these mice. Beige mice treated with tilerone did not survive T. cruzi infection as well as tilerone-treated heterozygotes did, suggesting a role for natural killer cells in interferon-induced resistance. These results suggest that interferon or effector mechanisms enhanced by interferon induction can play a significant role in influencing resistance to T. cruzi infection. PMID:6173326

  13. Enhanced surveillance of acute hepatitis B and C in four health regions in Canada, 1998 to 1999

    PubMed Central

    Zou, Shimian; Zhang, Jun; Tepper, Martin; Giulivi, Antonio; Baptiste, Beverley; Predy, Gerry; Poliquin, Darlene; Morin, Manon; Jones, Donna; Lowewen, Joy; Ogonowski, Margaret; Moses, Stephen; Elliott, Lawrence

    2001-01-01

    OBJECTIVE: To assess the incidence and risk factors for acute hepatitis B and acute hepatitis C in a defined Canadian population. PATIENTS AND METHODS: An enhanced surveillance system was established in October 1998 to identify cases of acute hepatitis B and C infections in four regions in Canada, with a total population of approximately 3.2 million people. Information on demographic and clinical characteristics, laboratory results and potential risk factors was collected using predefined questionnaires. RESULTS: A total of 79 cases of acute hepatitis B and 102 cases of acute hepatitis C were identified from October 1998 to December 1999, resulting in an incidence rate of 2.3 and 2.9/100,000 person-years, respectively. Males had higher incidence rates than females. The incidence of acute hepatitis B peaked at age 30 to 39 years for both males and females, whereas acute hepatitis C peaked at 30 to 39 years for males and 15 to 29 years for females. At least 34% of acute hepatitis B and 63% of acute hepatitis C were associated with injection drug use. Persons who were 15 to 39 years of age were more likely to report injection drug use as a risk factor. Heterosexual contact was reported to be a risk factor for 36.6% of acute hepatitis B cases and 3.5% of acute hepatitis C cases. CONCLUSIONS: The surveillance provides national incidence estimates of clinically recognized acute hepatitis B and C. Both hepatitis B and C are important public health threats to Canadians. Prevention efforts for both diseases should focus on injection drug use, especially for people aged 15 to 39 years. Risky sexual behaviour is also a major concern in prevention of hepatitis B in Canada. PMID:18159363

  14. Differential response of GnIH in the brain and gonads following acute stress in a songbird.

    PubMed

    Ernst, Darcy K; Lynn, Sharon E; Bentley, George E

    2016-02-01

    Gonadotropin-inhibitory hormone (GnIH) acts to inhibit reproduction at all levels of the hypothalamo-pituitary-gonad axis. GnIH expression and/or immunoreactivity in the hypothalamus increase with acute stress in some birds and mammals, and thus may be involved in stress-induced reproductive inhibition. Much is known about GnIH and stress in seasonal and continuous breeders, but far less is known about these interactions in opportunistic breeders. For opportunistically breeding animals, reproductive readiness is closely associated with unpredictable environmental cues, and thus the GnIH system may be more sensitive to stress. To test this, we collected tissues from zebra finches immediately following capture or after 60min of restraint. Restraint significantly increased plasma corticosterone in males and females but, contrary to studies on other species, restrained birds had significantly fewer GnIH immunoreactive (GnIH-ir) cell bodies than control birds. GnIH-ir cell number did not differ between the sexes. Stressed females had lower mRNA expression of the beta subunit of follicle stimulating hormone (FSHβ) in the pituitary, suggesting that the reduction in observed GnIH immunoreactivity in females may have been due to increased GnIH release in response to acute stress. GnIH expression increased in the testes, but not the ovaries, of restrained animals. Our data suggest that although GnIH responsiveness to stress appears to be conserved across species, specific tissue response and direction of GnIH regulation is not. Variation in the GnIH response to stress between species might be the result of ecological adaptations or other species differences in the response of the GnIH system to stress. PMID:26158243

  15. Acute laminar shear stress reversibly increases human glomerular endothelial cell permeability via activation of endothelial nitric oxide synthase.

    PubMed

    Bevan, Heather S; Slater, Sadie C; Clarke, Hayley; Cahill, Paul A; Mathieson, Peter W; Welsh, Gavin I; Satchell, Simon C

    2011-10-01

    Laminar shear stress is a key determinant of systemic vascular behavior, including through activation of endothelial nitric oxide synthase (eNOS), but little is known of its role in the glomerulus. We confirmed eNOS expression by glomerular endothelial cells (GEnC) in tissue sections and examined effects of acute exposure (up to 24 h) to physiologically relevant levels of laminar shear stress (10-20 dyn/cm(2)) in conditionally immortalized human GEnC. Laminar shear stress caused an orientation of GEnC and stress fibers parallel to the direction of flow and induced Akt and eNOS phosphorylation along with NO production. Inhibition of the phophatidylinositol (PI)3-kinase/Akt pathway attenuated laminar shear stress-induced eNOS phosphorylation and NO production. Laminar shear stress of 10 dyn/cm(2) had a dramatic effect on GEnC permeability, reversibly decreasing the electrical resistance across GEnC monolayers. Finally, the laminar shear stress-induced reduction in electrical resistance was attenuated by the NOS inhibitors l-N(G)-monomethyl arginine (l-NMMA) and l-N(G)-nitroarginine methyl ester (l-NAME) and also by inhibition of the PI3-kinase/Akt pathway. Hence we have shown for GEnC in vitro that acute permeability responses to laminar shear stress are dependent on NO, produced via activation of the PI3-kinase/Akt pathway and increased eNOS phosphorylation. These results suggest the importance of laminar shear stress and NO in regulating the contribution of GEnC to the permeability properties of the glomerular capillary wall. PMID:21775480

  16. KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats.

    PubMed

    Li, C; Huang, P; Lu, Q; Zhou, M; Guo, L; Xu, X

    2014-11-01

    Spatial memory retrieval and hippocampal long-term potentiation (LTP) are impaired by stress. KCNQ/Kv7 channels are closely associated with memory and the KCNQ/Kv7 channel activator flupirtine represents neuroprotective effects. This study aims to test whether KCNQ/Kv7 channel activation prevents acute stress-induced impairments of spatial memory retrieval and hippocampal LTP. Rats were placed on an elevated platform in the middle of a bright room for 30 min to evoke acute stress. The expression of KCNQ/Kv7 subunits was analyzed at 1, 3 and 12 h after stress by Western blotting. Spatial memory was examined by the Morris water maze (MWM) and the field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area was recorded in vivo. Acute stress transiently decreased the expression of KCNQ2 and KCNQ3 in the hippocampus. Acute stress impaired the spatial memory retrieval and hippocampal LTP, the KCNQ/Kv7 channel activator flupirtine prevented the impairments, and the protective effects of flupirtine were blocked by XE-991 (10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone), a selective KCNQ channel blocker. Furthermore, acute stress decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 in the hippocampus, and flupirtine inhibited the reduction. These results suggest that the KCNQ/Kv7 channels may be a potential target for protecting both hippocampal synaptic plasticity and spatial memory retrieval from acute stress influences. PMID:25234320

  17. Enhanced Cortisol Response to Stress in Children in Autism

    ERIC Educational Resources Information Center

    Spratt, Eve G.; Nicholas, Joyce S.; Brady, Kathleen T.; Carpenter, Laura A.; Hatcher, Charles R.; Meekins, Kirk A.; Furlanetto, Richard W.; Charles, Jane M.

    2012-01-01

    Children with Autism often show difficulties in adapting to change. Previous studies of cortisol, a neurobiologic stress hormone reflecting hypothalamic-pituitary-adrenal (HPA) axis activity, in children with autism have demonstrated variable results. This study measured cortisol levels in children with and without Autism: (1) at rest; (2) in a…

  18. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    PubMed

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  19. Hypohydration and acute thermal stress affect mood state but not cognition or dynamic postural balance.

    PubMed

    Ely, Brett R; Sollanek, Kurt J; Cheuvront, Samuel N; Lieberman, Harris R; Kenefick, Robert W

    2013-04-01

    Equivocal findings have been reported in the few studies that examined the impact of ambient temperature (T a) and hypohydration on cognition and dynamic balance. The purpose of this study was to determine the impact of acute exposure to a range of ambient temperatures (T(a) 10-40 °C) in euhydration (EUH) and hypohydration (HYP) states on cognition, mood and dynamic balance. Thirty-two men (age 22 ± 4 years, height 1.80 ± 0.05 m, body mass 85.4 ± 10.8 kg) were grouped into four matched cohorts (n = 8), and tested in one of the four T(a) (10, 20, 30, 40 °C) when EUH and HYP (-4 % body mass via exercise-heat exposure). Cognition was assessed using psychomotor vigilance, 4-choice reaction time, matching to sample, and grammatical reasoning. Mood was evaluated by profile of mood states and dynamic postural balance was tested using a Biodex Balance System. Thermal sensation (TS), core (T core) and skin temperature (T(sk)) were obtained throughout testing. Volunteers lost -4.1 ± 0.4 % body mass during HYP. T sk and TS increased with increasing T(a), with no effect of hydration. Cognitive performance was not altered by HYP or thermal stress. Total mood disturbance (TMD), fatigue, confusion, anger, and depression increased during HYP at all T(a). Dynamic balance was unaffected by HYP, but 10 °C exposure impaired balance compared to all other T(a). Despite an increase in TMD during HYP, cognitive function was maintained in all testing environments, demonstrating cognitive resiliency in response to body fluid deficits. Dynamic postural stability at 10 °C appeared to be hampered by low-grade shivering, but was otherwise maintained during HYP and thermal stress. PMID:23064870

  20. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    PubMed Central

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  1. Raman spectroscopic study of acute oxidative stress induced changes in mice skeletal muscles

    NASA Astrophysics Data System (ADS)

    Sriramoju, Vidyasagar; Alimova, Alexandra; Chakraverty, Rahul; Katz, A.; Gayen, S. K.; Larsson, L.; Savage, H. E.; Alfano, R. R.

    2008-02-01

    The oxidative stress due to free radicals is implicated in the pathogenesis of tissue damage in diseases such as muscular dystrophy, Alzheimer dementia, diabetes mellitus, and mitochrondrial myopathies. In this study, the acute oxidative stress induced changes in nicotinamide adenine dinucleotides in mouse skeletal muscles are studied in vitro using Raman spectroscopy. Mammalian skeletal muscles are rich in nicotinamide adenine dinucleotides in both reduced (NADH) and oxidized (NAD) states, as they are sites of aerobic and anaerobic respiration. The relative levels of NAD and NADH are altered in certain physiological and pathological conditions of skeletal muscles. In this study, near infrared Raman spectroscopy is used to identify the molecular fingerprints of NAD and NADH in five-week-old mice biceps femoris muscles. A Raman vibrational mode of NADH is identified in fresh skeletal muscle samples suspended in buffered normal saline. In the same samples, when treated with 1% H IIO II for 5 minutes and 15 minutes, the Raman spectrum shows molecular fingerprints specific to NAD and the disappearance of NADH vibrational bands. The NAD bands after 15 minutes were more intense than after 5 minutes. Since NADH fluoresces and NAD does not, fluorescence spectroscopy is used to confirm the results of the Raman measurements. Fluorescence spectra exhibit an emission peak at 460 nm, corresponding to NADH emission wavelength in fresh muscle samples; while the H IIO II treated muscle samples do not exhibit NADH fluorescence. Raman spectroscopy may be used to develop a minimally invasive, in vivo optical biopsy method to measure the relative NAD and NADH levels in muscle tissues. This may help to detect diseases of muscle, including mitochondrial myopathies and muscular dystrophies.

  2. Novel thiazolidinedione mitoNEET ligand-1 acutely improves cardiac stem cell survival under oxidative stress.

    PubMed

    Logan, Suzanna J; Yin, Liya; Geldenhuys, Werner J; Enrick, Molly K; Stevanov, Kelly M; Carroll, Richard T; Ohanyan, Vahagn A; Kolz, Christopher L; Chilian, William M

    2015-03-01

    Ischemic heart disease (IHD) is a leading cause of death worldwide, and regenerative therapies through exogenous stem cell delivery hold promising potential. One limitation of such therapies is the vulnerability of stem cells to the oxidative environment associated with IHD. Accordingly, manipulation of stem cell mitochondrial metabolism may be an effective strategy to improve survival of stem cells under oxidative stress. MitoNEET is a redox-sensitive, mitochondrial target of thiazolidinediones (TZDs), and influences cellular oxidative capacity. Pharmacological targeting of mitoNEET with the novel TZD, mitoNEET Ligand-1 (NL-1), improved cardiac stem cell (CSC) survival compared to vehicle (0.1% DMSO) during in vitro oxidative stress (H2O2). 10 μM NL-1 also reduced CSC maximal oxygen consumption rate (OCR) compared to vehicle. Following treatment with dexamethasone, CSC maximal OCR increased compared to baseline, but NL-1 prevented this effect. Smooth muscle α-actin expression increased significantly in CSC following differentiation compared to baseline, irrespective of NL-1 treatment. When CSCs were treated with glucose oxidase for 7 days, NL-1 significantly improved cell survival compared to vehicle (trypan blue exclusion). NL-1 treatment of cells isolated from mitoNEET knockout mice did not increase CSC survival with H2O2 treatment. Following intramyocardial injection of CSCs into Zucker obese fatty rats, NL-1 significantly improved CSC survival after 24 h, but not after 10 days. These data suggest that pharmacological targeting of mitoNEET with TZDs may acutely protect stem cells following transplantation into an oxidative environment. Continued treatment or manipulation of mitochondrial metabolism may be necessary to produce long-term benefits related to stem cell therapies. PMID:25725808

  3. Brief, pre-learning stress reduces false memory production and enhances true memory selectively in females.

    PubMed

    Zoladz, Phillip R; Peters, David M; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Woelke, Sarah A; Wolters, Nicholas E; Talbot, Jeffery N

    2014-04-10

    Some of the previous research on stress-memory interactions has suggested that stress increases the production of false memories. However, as accumulating work has shown that the effects of stress on learning and memory depend critically on the timing of the stressor, we hypothesized that brief stress administered immediately before learning would reduce, rather than increase, false memory production. In the present study, participants submerged their dominant hand in a bath of ice cold water (stress) or sat quietly (no stress) for 3 min. Then, participants completed a short-term memory task, the Deese-Roediger-McDermott paradigm, in which they were presented with 10 different lists of semantically related words (e.g., candy, sour, sugar) and, after each list, were tested for their memory of presented words (e.g., candy), non-presented unrelated "distractor" words (e.g., hat), and non-presented semantically related "critical lure" words (e.g., sweet). Stress, overall, significantly reduced the number of critical lures recalled (i.e., false memory) by participants. In addition, stress enhanced memory for the presented words (i.e., true memory) in female, but not male, participants. These findings reveal that stress does not unequivocally enhance false memory production and that the timing of the stressor is an important variable that could mediate such effects. Such results could have important implications for understanding the dependability of eyewitness accounts of events that are observed following stress. PMID:24560841

  4. Hemojuvelin Modulates Iron Stress During Acute Kidney Injury: Improved by Furin Inhibitor

    PubMed Central

    Young, Guang-Huar; Huang, Tao-Min; Wu, Che-Hsiung; Lai, Chun-Fu; Hou, Chun-Cheng; Peng, Kang-Yung; Liang, Chan-Jung; Lin, Shuei-Liong; Chang, Shih-Chung; Tsai, Pi-Ru; Wu, Kwan-Dun

    2014-01-01

    Abstract Aims: Free iron plays an important role in the pathogenesis of acute kidney injury (AKI) via the formation of hydroxyl radicals. Systemic iron homeostasis is controlled by the hemojuvelin-hepcidin-ferroportin axis in the liver, but less is known about this role in AKI. Results: By proteomics, we identified a 42 kDa soluble hemojuvelin (sHJV), processed by furin protease from membrane-bound hemojuvelin (mHJV), in the urine during AKI after cardiac surgery. Biopsies from human and mouse specimens with AKI confirm that HJV is extensively increased in renal tubules. Iron overload enhanced the expression of hemojuvelin-hepcidin signaling pathway. The furin inhibitor (FI) decreases furin-mediated proteolytic cleavage of mHJV into sHJV and augments the mHJV/sHJV ratio after iron overload with hypoxia condition. The FI could reduce renal tubule apoptosis, stabilize hypoxic induced factor-1, prevent the accumulation of iron in the kidney, and further ameliorate ischemic-reperfusion injury. mHJV is associated with decreasing total kidney iron, secreting hepcidin, and promoting the degradation of ferroportin at AKI, whereas sHJV does the opposite. Innovation: This study suggests the ratio of mHJV/sHJV affects the iron deposition during acute kidney injury and sHJV could be an early biomarker of AKI. Conclusion: Our findings link endogenous HJV inextricably with renal iron homeostasis for the first time, add new significance to early predict AKI, and identify novel therapeutic targets to reduce the severity of AKI using the FI. Antioxid. Redox Signal. 20, 1181–1194. PMID:23901875

  5. NRF2 and the Phase II Response in Acute Stress Resistance Induced by Dietary Restriction.

    PubMed

    Hine, Christopher M; Mitchell, James R

    2012-06-19

    Dietary restriction (DR) as a means to increase longevity is well-established in a number of model organisms from yeast to primates. DR also improves metabolic fitness and increases resistance to acute oxidative, carcinogenic and toxicological stressors - benefits with more immediate potential for clinical translation than increased lifespan. While the detailed mechanism of DR action remains unclear, a conceptual framework involving an adaptive, or hormetic response to the stress of nutrient/energy deprivation has been proposed. A key prediction of the hormesis hypothesis of DR is that beneficial adaptations occur in response to an increase in reactive oxygen/nitrogen species (ROS). These ROS may be derived either from increased mitochondrial respiration or increased xenobiotic metabolism in the case of some DR mimetics. This review will focus on the potential role of the redox-sensing transcription factor NF-E2-related factor 2 (NRF2) and its control of the evolutionarily conserved antioxidant/redox cycling and detoxification systems, collectively known as the Phase II response, in the adaptive response to DR. PMID:23505614

  6. Symptoms of acute posttraumatic stress disorder in prostate cancer patients following radical prostatectomy.

    PubMed

    Anastasiou, Ioannis; Yiannopoulou, Konstantina G; Mihalakis, Anastasios; Hatziandonakis, Nikolaos; Constantinides, Constantinos; Papageorgiou, Charalambos; Mitropoulos, Dionisios

    2011-01-01

    Psychological morbidity is increasingly reported in cancer survivors. The authors' objective was to determine the presence of acute posttraumatic stress disorder (PTSD) symptoms in prostate cancer (PC) patients following radical prostatectomy. Fifteen patients who underwent radical prostatectomy for localized prostate cancer were assessed for the presence of PTSD-related symptoms by completing the Davidson Trauma Scale (DTS), a month following the procedure. A group of 20 patients who underwent surgery for benign prostate hyperplasia (BPH) served as the control group. PTSD total scores were significantly higher in PC patients when compared with BPH patients, whose PTSD scores did not differ from those reported in the general population (32.6 ± 18.5 vs. 11.3 ± 9.7, p = .001). PTSD did not vary among PC patients when adjusted for educational status. PTSD symptoms are common among patients undergoing radical prostatectomy and independent of their educational level. Research investigating these aspects of posttreatment psychological adjustment is needed for developing well-targeted psychological interventions. PMID:20483867

  7. Acute exposure to pure cylindrospermopsin results in oxidative stress and pathological alterations in tilapia (Oreochromis niloticus).

    PubMed

    Puerto, María; Jos, Angeles; Pichardo, Silvia; Moyano, Rosario; Blanco, Alfonso; Cameán, Ana M

    2014-04-01

    Cylindrospermopsin (CYN) is increasingly recognized as a potential threat to drinking water safety, due to its ubiquity. This cyanotoxin has been found to cause toxic effects in mammals, and although fish could be in contact with this toxin, acute toxicity studies on fish are nonexistent. This is the first study showing that single doses of CYN pure standard (200 or 400 μg CYN/kg fish bw) by oral route (gavage) generate histopathological effects in fish (Tilapia-Oreochromis niloticus) exposed to the toxin under laboratory condition. Among the morphological changes, disorganized parenchymal architecture in the liver, dilated Bowman's space in the kidney, fibrolysis in the heart, necrotic enteritis in the intestines, and hemorrhages in the gills, were observed. Moreover, some oxidative stress biomarkers in the liver and kidney of tilapias were altered. Thus, CYN exposure induced increased protein oxidation products in both organs, NADPH oxidase activity was significantly increased with the kidney being the most affected organ, and decreased GSH contents were also detected in both organs, at the higher dose assayed. PMID:22331699

  8. The effect of transport stress on turkey (Meleagris gallopavo) liver acute phase proteins gene expression.

    PubMed

    Marques, Andreia Tomás; Lecchi, Cristina; Grilli, Guido; Giudice, Chiara; Nodari, Sara Rota; Vinco, Leonardo J; Ceciliani, Fabrizio

    2016-02-01

    The aim of this study was to investigate the effects of transport-related stress on the liver gene expression of four acute phase proteins (APP), namely α1-acid glycoprotein (AGP), C-Reactive Protein (CRP), Serum Amyloid A (SAA) and PIT54, in turkeys (Meleagris gallopavo). A group of seven BUT BIG 6 commercial hens was subjected to a two-hour long road transportation and the quantitative gene expression of APP in the liver was compared to that of a non transported control group. The expression of AGP and CRP mRNA was found to be increased in animals slaughtered after road transport. The presence of AGP protein was also confirmed by immunohistochemistry and Western blotting. The results of this study showed that road-transport may induce the mRNA expression of immune related proteins. The finding that AGP and CRP can be upregulated during transport could suggest their use as for the assessment of turkey welfare during transport. PMID:26850544

  9. Exposure to Discrimination and Heart Rate Variability Reactivity to Acute Stress among Women with Diabetes.

    PubMed

    Wagner, Julie; Lampert, Rachel; Tennen, Howard; Feinn, Richard

    2015-08-01

    Exposure to racial discrimination has been linked to physiological reactivity. This study investigated self-reported exposure to racial discrimination and parasympathetic [high-frequency heart rate variability (HF-HRV)] and sympathetic (norepinephrine and cortisol) activity at baseline and then again after acute laboratory stress. Lifetime exposure to racial discrimination was measured with the Schedule of Racist Events scale. Thirty-two women (16 Black and 16 White) with type 2 diabetes performed a public speaking stressor. Beat-to-beat intervals were recorded on electrocardiograph recorders, and HF-HRV was calculated using spectral analysis and natural log transformed. Norepinephrine and cortisol were measured in blood. Higher discrimination predicted lower stressor HF-HRV, even after controlling for baseline HF-HRV. When race, age, A1c and baseline systolic blood pressure were also controlled, racial discrimination remained a significant independent predictor of stressor HF-HRV. There was no association between lifetime discrimination and sympathetic markers. In conclusion, preliminary data suggest that among women with type 2 diabetes mellitus (T2DM), exposure to racial discrimination is adversely associated with parasympathetic, but not sympathetic, reactivity. PMID:24194397

  10. Posttraumatic Stress and Myocardial Infarction Risk Perceptions in Hospitalized Acute Coronary Syndrome Patients

    PubMed Central

    Edmondson, Donald; Shaffer, Jonathan A.; Denton, Ellen-Ge; Shimbo, Daichi; Clemow, Lynn

    2012-01-01

    Posttraumatic stress disorder (PTSD) is related to acute coronary syndrome (ACS; i.e., myocardial infarction or unstable angina) recurrence and poor post-ACS adherence to medical advice. Since risk perceptions are a primary motivator of adherence behaviors, we assessed the relationship of probable PTSD to ACS risk perceptions in hospitalized ACS patients (n = 420). Participants completed a brief PTSD screen 3–7 days post-ACS, and rated their 1-year ACS recurrence risk relative to other men or women their age. Most participants exhibited optimistic bias (mean recurrence risk estimate between “average” and “below average”). Further, participants who screened positive for current PTSD (n = 15) showed significantly greater optimistic bias than those who screened negative (p < 0.05), after adjustment for demographics, ACS severity, medical comorbidities, depression, and self-confidence in their ability to control their heart disease. Clinicians should be aware that psychosocial factors, and PTSD in particular, may be associated with poor adherence to medical advice due to exaggerated optimistic bias in recurrence risk perceptions. PMID:22593749

  11. NRF2 and the Phase II Response in Acute Stress Resistance Induced by Dietary Restriction

    PubMed Central

    Hine, Christopher M.; Mitchell, James R.

    2013-01-01

    Dietary restriction (DR) as a means to increase longevity is well-established in a number of model organisms from yeast to primates. DR also improves metabolic fitness and increases resistance to acute oxidative, carcinogenic and toxicological stressors - benefits with more immediate potential for clinical translation than increased lifespan. While the detailed mechanism of DR action remains unclear, a conceptual framework involving an adaptive, or hormetic response to the stress of nutrient/energy deprivation has been proposed. A key prediction of the hormesis hypothesis of DR is that beneficial adaptations occur in response to an increase in reactive oxygen/nitrogen species (ROS). These ROS may be derived either from increased mitochondrial respiration or increased xenobiotic metabolism in the case of some DR mimetics. This review will focus on the potential role of the redox-sensing transcription factor NF-E2-related factor 2 (NRF2) and its control of the evolutionarily conserved antioxidant/redox cycling and detoxification systems, collectively known as the Phase II response, in the adaptive response to DR. PMID:23505614

  12. Novel Roles for Protein Kinase Cδ-dependent Signaling Pathways in Acute Hypoxic Stress-induced Autophagy*S⃞

    PubMed Central

    Chen, Jo-Lin; Lin, Her H.; Kim, Kwang-Jin; Lin, Anning; Forman, Henry J.; Ann, David K.

    2008-01-01

    Macroautophagy, a tightly orchestrated intracellular process for bulk degradation of cytoplasmic proteins or organelles, is believed to be essential for cell survival or death in response to stress conditions. Recent observations indicate that autophagy is an adaptive response in cells subjected to prolonged hypoxia. However, the signaling mechanisms that activate autophagy under acute hypoxic stress are not clearly understood. In this study, we show that acute hypoxic stress by treatment with 1% O2 or desferroxamine, a hypoxia-mimetic agent, of cells renders a rapid induction of LC3-II level changes and green fluorescent protein-LC3 puncta accumulation, hallmarks of autophagic processing, and that this process involves protein kinase Cδ (PKCδ), and occurs prior to the induction of BNIP3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3). Interestingly, hypoxic stress leads to a rapid and transient activation of JNK in Pa-4 or mouse embryo fibroblast cells. Acute hypoxic stress-induced changes in LC3-II level and JNK activation are attenuated in Pa-4 cells by dominant negative PKCδKD or in mouse embryo fibroblast/PKCδ-null cells. Intriguingly, the requirement of PKCδ is not apparent for starvation-induced autophagy. The importance of PKCδ in hypoxic stress-induced adaptive responses is further supported by our findings that inhibition of PKCδ-facilitated autophagy by 3-methyladenine or Atg5 knock-out renders a greater prevalence of cell death following prolonged desferroxamine treatment, whereas PKCδ- or JNK1-deficient cells exhibit resistance to extended hypoxic exposure. These results uncover dual roles of PKCδ-dependent signaling in the cell fate determination upon hypoxic exposure. PMID:18836180

  13. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins

    PubMed Central

    Das, Indrajit; Png, Chin Wen; Oancea, Iulia; Hasnain, Sumaira Z.; Lourie, Rohan; Proctor, Martina; Eri, Rajaraman D.; Sheng, Yong; Crane, Denis I.; Florin, Timothy H.

    2013-01-01

    Endoplasmic reticulum (ER) stress in intestinal secretory cells has been linked with colitis in mice and inflammatory bowel disease (IBD). Endogenous intestinal glucocorticoids are important for homeostasis and glucocorticoid drugs are efficacious in IBD. In Winnie mice with intestinal ER stress caused by misfolding of the Muc2 mucin, the glucocorticoid dexamethasone (DEX) suppressed ER stress and activation of the unfolded protein response (UPR), substantially restoring goblet cell Muc2 production. In mice lacking inflammation, a glucocorticoid receptor antagonist increased ER stress, and DEX suppressed ER stress induced by the N-glycosylation inhibitor, tunicamycin (Tm). In cultured human intestinal secretory cells, in a glucocorticoid receptor-dependent manner, DEX suppressed ER stress and UPR activation induced by blocking N-glycosylation, reducing ER Ca2+ or depleting glucose. DEX up-regulated genes encoding chaperones and elements of ER-associated degradation (ERAD), including EDEM1. Silencing EDEM1 partially inhibited DEX’s suppression of misfolding-induced ER stress, showing that DEX enhances ERAD. DEX inhibited Tm-induced MUC2 precursor accumulation, promoted production of mature mucin, and restored ER exit and secretion of Winnie mutant recombinant Muc2 domains, consistent with enhanced protein folding. In IBD, glucocorticoids are likely to ameliorate ER stress by promoting correct folding of secreted proteins and enhancing removal of misfolded proteins from the ER. PMID:23650437

  14. Infant stress exposure produces persistent enhancement of fear learning across development.

    PubMed

    Quinn, Jennifer J; Skipper, Rachel A; Claflin, Dragana I

    2014-07-01

    In recent years, it has become increasingly clear that early life stress experiences persistently impact subsequent physiological, cognitive, and emotional responses. In cases of trauma, these early experiences can result in anxiety disorders such as phobias and posttraumatic stress disorder. In the present paper, we examined the effects of infant footshock stress exposure at postnatal day (PND) 17 on subsequent contextual fear conditioning at postnatal days 18 (Experiment 1), 24 (Experiment 2), or 90 (Experiment 3). In each experiment, PND17 footshock stress exposure enhanced later fear conditioning, indicating that the stress enhancement of fear learning (SEFL) persists throughout development. Memory for the original stress exposure context was gradually forgotten, with significant fear expression evident at PND20, and a complete lack of fear expression in that same context at PND90. These data suggest that the stress-enhancing component of infant fear learning is dissociable from the infant contextual fear memory per se. In other words, early life stress produces persistent effects on subsequent cognition that are independent of the memory for that early life event. PMID:24264998

  15. Transgenic Alfalfa Plants Expressing the Sweetpotato Orange Gene Exhibit Enhanced Abiotic Stress Tolerance

    PubMed Central

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands. PMID:25946429

  16. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana.

    PubMed

    Zhang, Ji-Yu; Huang, Sheng-Nan; Wang, Gang; Xuan, Ji-Ping; Guo, Zhong-Ren

    2016-09-01

    Ethanolic fermentation is classically associated with waterlogging tolerance when plant cells switch from respiration to anaerobic fermentation. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we cloned a full-length PDC cDNA sequence from kiwifruit, named AdPDC1. We determined the expression of the AdPDC1 gene in kiwifruit under different environmental stresses using qRT-PCR, and the results showed that the increase of AdPDC1 expression during waterlogging stress was much higher than that during salt, cold, heat and drought stresses. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis enhanced the resistance to waterlogging stress but could not enhance resistance to cold stress at five weeks old seedlings. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis could not enhance resistance to NaCl and mannitol stresses at the stage of seed germination and in early seedlings. These results suggested that the kiwifruit AdPDC1 gene is required during waterlogging but might not be required during other environmental stresses. Expression of the AdPDC1 gene was down-regulated by abscisic acid (ABA) in kiwifruit, and overexpression of the AdPDC1 gene in Arabidopsis inhibited seed germination and root length under ABA treatment, indicating that ABA might negatively regulate the AdPDC1 gene under waterlogging stress. PMID:27191596

  17. Interlaminar stress recovery near free edge using a layerwise element with enhanced strains

    SciTech Connect

    Moorthy, D.; Mitchell, J.A.; Reddy, J.N.

    1997-07-01

    In the analysis of composite laminates, when the primary concern is the global response, one may choose to model the laminate with layers of different mechanical properties as an effective layer with equivalent mechanical characteristics. A layerwise finite element with enhanced strains is developed for the study of interlaminar stresses near free edge of a laminate in bending. Interlaminar boundary of interest is modeled as an adhesive contact zone between the two halves of the laminate separated at the interface. Interlaminar stresses are then recovered from the contact load that satisfies the equilibrium of the laminate. The stresses recovered thus are compared with other stress recovery procedures.

  18. Paramagnetic pyrophosphate. Preliminary studies on magnetic resonance contrast enhancement of acute myocardial infarction.

    PubMed

    Maurer, A H; Knight, L C; Siegel, J A; Elfenbein, I B; Adler, L P

    1990-02-01

    Ferric pyrophosphate (Fe-PyP) was investigated in an animal model of acute myocardial infarction for its potential to provide contrast enhancement of the peri-infarct zone using magnetic resonance (MR) imaging. Radiotracer studies compared the biodistribution of soluble 59Fe-PyP with 99mTc-PyP in excised tissue samples. Preferential localization of 59Fe-PyP in the peri-infarct zone was found to be similar to 99mTc-PyP. The ratio (percent dose/gram of tissue) at the edge of the infarct to normal tissue was 1.30 +/- 0.16 and 1.44 +/- 0.33 for 99mTc-PyP and 59Fe-PyP, respectively. In initial studies with high doses of the contrast agent, gated T1-weighted MR images of animals with 48-hour-old infarcts were obtained at 15-minute intervals after injection of Fe-PyP at a dose of 350 mg/kg. Contrast enhancement of the infarct zone was observed in all studies and was maximal 15-30 minutes after injection. Signal intensity ratios (infarct/normal) increased from a baseline 1.31 +/- 0.22 to a peak 1.90 +/- 0.57. Studies were then performed with smaller amounts of Fe-PyP. Images obtained with 50 mg/kg Fe-PyP showed contrast enhancement beginning at 60 minutes. Toxicology studies showed primarily respiratory effects, which became significant at doses of 190 mg/kg. These preliminary studies suggest that Fe-PyP potentially could serve as an MR contrast agent to localize and size acute myocardial infarcts; however, its clinical use may be limited by potential toxicity and dose limitations. PMID:2155882

  19. Preliminary evidence that exercise dependence is associated with blunted cardiac and cortisol reactions to acute psychological stress.

    PubMed

    Heaney, Jennifer L J; Ginty, Annie T; Carroll, Douglas; Phillips, Anna C

    2011-02-01

    Low or blunted cardiovascular and cortisol reactions to acute psychological stress have been shown to characterise those with a tobacco or alcohol dependency. The present study tested the hypothesis that exercise dependency would be similarly associated with blunted reactivity. Young female exercisers (N=219) were screened by questionnaire for exercise dependence. Ten women with probable exercise dependence and 10 non dependent controls were selected for laboratory stress testing. Cardiovascular activity and salivary cortisol were measured at rest and in response to a 10-min mental arithmetic stress task. The exercise dependent women showed blunted cardiac reactions to the stress task and blunted cortisol at 10, 20, and 30 minute post stress exposure. These effects could not be accounted for in terms of group differences in stress task performance, nor could the cardiac effects be attributed to group differences in cardio-respiratory fitness. It would seem that low stress reactivity is characteristic of a wide range of dependencies, and is not confined to substance dependence. Our results offer further support for the hypothesis that blunted stress reactivity may be a peripheral marker of a central motivational dysregulation. PMID:21145361

  20. Impacts of Stress, Self-Efficacy, and Optimism on Suicide Ideation among Rehabilitation Patients with Acute Pesticide Poisoning

    PubMed Central

    Feng, Jun; Li, Shusheng; Chen, Huawen

    2015-01-01

    Background The high incidence of pesticide ingestion as a means to commit suicide is a critical public health problem. An important predictor of suicidal behavior is suicide ideation, which is related to stress. However, studies on how to defend against stress-induced suicidal thoughts are limited. Objective This study explores the impact of stress on suicidal ideation by investigating the mediating effect of self-efficacy and dispositional optimism. Methods Direct and indirect (via self-efficacy and dispositional optimism) effects of stress on suicidal ideation were investigated among 296 patients with acute pesticide poisoning from four general hospitals. For this purpose, structural equation modeling (SEM) and bootstrap method were used. Results Results obtained using SEM and bootstrap method show that stress has a direct effect on suicide ideation. Furthermore, self-efficacy and dispositional optimism partially weakened the relationship between stress and suicidal ideation. Conclusion The final model shows a significant relationship between stress and suicidal ideation through self-efficacy or dispositional optimism. The findings extended prior studies and provide enlightenment on how self-efficacy and optimism prevents stress-induced suicidal thoughts. PMID:25679994

  1. In Vitro Acute Exposure to DEHP Affects Oocyte Meiotic Maturation, Energy and Oxidative Stress Parameters in a Large Animal Model

    PubMed Central

    Sardanelli, Anna Maria; Pocar, Paola; Martino, Nicola Antonio; Paternoster, Maria Stefania; Amati, Francesca; Dell'Aquila, Maria Elena

    2011-01-01

    Phthalates are ubiquitous environmental contaminants because of their use in plastics and other common consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate and it impairs fertility by acting as an endocrine disruptor. The aim of the present study was to analyze the effects of in vitro acute exposure to DEHP on oocyte maturation, energy and oxidative status in the horse, a large animal model. Cumulus cell (CC) apoptosis and oxidative status were also investigated. Cumulus-oocyte complexes from the ovaries of slaughtered mares were cultured in vitro in presence of 0.12, 12 and 1200 µM DEHP. After in vitro maturation (IVM), CCs were removed and evaluated for apoptosis (cytological assessment and TUNEL) and intracellular reactive oxygen species (ROS) levels. Oocytes were evaluated for nuclear chromatin configuration. Matured (Metaphase II stage; MII) oocytes were further evaluated for cytoplasmic energy and oxidative parameters. DEHP significantly inhibited oocyte maturation when added at low doses (0.12 µM; P<0.05). This effect was related to increased CC apoptosis (P<0.001) and reduced ROS levels (P<0.0001). At higher doses (12 and 1200 µM), DEHP induced apoptosis (P<0.0001) and ROS increase (P<0.0001) in CCs without affecting oocyte maturation. In DEHP-exposed MII oocytes, mitochondrial distribution patterns, apparent energy status (MitoTracker fluorescence intensity), intracellular ROS localization and levels, mt/ROS colocalization and total SOD activity did not vary, whereas increased ATP content (P<0.05), possibly of glycolytic origin, was found. Co-treatment with N-Acetyl-Cysteine reversed apoptosis and efficiently scavenged excessive ROS in DEHP-treated CCs without enhancing oocyte maturation. In conclusion, acute in vitro exposure to DEHP inhibits equine oocyte maturation without altering ooplasmic energy and oxidative stress parameters in matured oocytes which retain the potential to be fertilized and develop into embryos

  2. Laboratory evidence for particle mobilization as a mechanism for permeability enhancement via dynamic stressing

    NASA Astrophysics Data System (ADS)

    Candela, Thibault; Brodsky, Emily E.; Marone, Chris; Elsworth, Derek

    2014-04-01

    It is well-established that seismic waves can increase the permeability in natural systems, yet the mechanism remains poorly understood. We investigate the underlying mechanics by generating well-controlled, repeatable permeability enhancement in laboratory experiments. Pore pressure oscillations, simulating dynamic stresses, were applied to intact and fractured Berea sandstone samples under confining stresses of tens of MPa. Dynamic stressing produces an immediate permeability enhancement ranging from 1 to 60%, which scales with the amplitude of the dynamic strain (7×10-7 to 7×10-6) followed by a gradual permeability recovery. We investigated the mechanism by: (1) recording deformation of samples both before and after fracturing during the experiment, (2) varying the chemistry of the water and therefore particle mobility, (3) evaluating the dependence of permeability enhancement and recovery on dynamic stress amplitude, and (4) examining micro-scale pore textures of the rock samples before and after experiments. We find that dynamic stressing does not produce permanent deformation in our samples. Water chemistry has a pronounced effect on the sensitivity to dynamic stressing, with the magnitude of permeability enhancement and the rate of permeability recovery varying with ionic strength of the pore fluid. Permeability recovery rates generally correlate with the permeability enhancement sensitivity. Microstructural observations of our samples show clearing of clay particulates from fracture surfaces during the experiment. From these four lines of evidence, we conclude that a flow-dependent mechanism associated with mobilization of fines controls both the magnitude of the permeability enhancement and the recovery rate in our experiments. We also find that permeability sensitivity to dynamic stressing increases after fracturing, which is a process that generates abundant particulate matter in situ. Our results suggest that fluid permeability in many areas of the

  3. Acute Psychological Stress Modulates the Expression of Enzymes Involved in the Kynurenine Pathway throughout Corticolimbic Circuits in Adult Male Rats

    PubMed Central

    Vecchiarelli, Haley A.; Gandhi, Chaitanya P.; Hill, Matthew N.

    2016-01-01

    Tryptophan is an essential dietary amino acid that is necessary for protein synthesis, but also serves as the precursor for serotonin. However, in addition to these biological functions, tryptophan also serves as a precursor for the kynurenine pathway, which has neurotoxic (quinolinic acid) and neuroprotective (kynurenic acid) metabolites. Glucocorticoid hormones and inflammatory mediators, both of which are increased by stress, have been shown to bias tryptophan along the kynurenine pathway and away from serotonin synthesis; however, to date, there is no published data regarding the effects of stress on enzymes regulating the kynurenine pathway in a regional manner throughout the brain. Herein, we examined the effects of an acute psychological stress (120 min restraint) on gene expression patterns of enzymes along the kynurenine pathway over a protracted time-course (1–24 h post-stress termination) within the amygdala, hippocampus, hypothalamus, and medial prefrontal cortex. Time-dependent changes in differential enzymes along the kynurenine metabolism pathway, particularly those involved in the production of quinolinic acid, were found within the amygdala, hypothalamus, and medial prefrontal cortex, with no changes seen in the hippocampus. These regional differences acutely may provide mechanistic insight into processes that become dysregulated chronically in stress-associated disorders. PMID:26819772

  4. Comparison of centrally injected tryptophan-related substances inducing sedation in acute isolation stress-induced neonatal chicks.

    PubMed

    Yoshida, Junki; Erwan, Edi; Chowdhury, Vishwajit Sur; Ogino, Yumi; Shigemura, Asako; Denbow, D Michael; Furuse, Mitsuhiro

    2015-02-01

    In the present study, we first focused on the function of l-tryptophan (TRP) metabolites which are synthesized in different metabolic pathways, namely, the kynurenine (KYN) pathway and serotonin (5-HT) pathway during an acute isolation stress. When l-TRP metabolites were intracerebroventricularly injected on an equimolar basis (100 nmol), 5-HT induced a sedative effect in neonatal chicks. Additionally, plasma corticosterone, dopamine, 5-HT, and its metabolite 5-hydroxyindoleacetic acid concentrations were increased in the diencephalon of the 5-HT treated group compared with other groups. Second, the two doses (400 or 800 nmol) of l- and d-TRP were compared under a corticotrophin-releasing hormone-augmented social isolation stress. When comparing the efficacy between l- and d-TRP against stress behavior, both amino acids had a similar effect and quickly suppressed distress vocalizations. Finally, d-amino acid levels in the diencephalon and telencephalon were measured but d-TRP was not found. These results indicate that l- and d-TRP induce the same effect in attenuating stress but the mode of action of TRP derivatives, namely 5-HT differs during an acute isolation stress in neonatal chick. The absence of d-TRP in the diencephalon further suggests that instead of being an endogenous factor it may play role as a pharmacological factor. PMID:25459103

  5. Acute stress-related psychological impact in children following devastating natural disaster, the Sikkim earthquake (2011), India

    PubMed Central

    Mondal, Rakesh; Sarkar, Sumantra; Banerjee, Indira; Hazra, Avijit; Majumder, Debabrata; Sabui, Tapas; Dutta, Sudip; Saren, Abhisek; Pan, Partha

    2013-01-01

    Background: Psychological stress following natural disaster is common. Despite several earthquakes in India, data on evaluation of acute stress among the child victims in the early postdisaster period is scarce. Immediately following a devastating earthquake (6.9 Richter) at Sikkim on September, 18 2011, many children attended North Bengal Medical College, the nearest government tertiary care institution, with unusual stress symptoms. Objective: Evaluation of acute stress symptoms in children in the immediate postearthquake period. Materials and Methods: This was a cross-sectional study done over 4 weeks and includes all the children from 1 to 12 years presenting with unusual physical or behavioral symptoms. Those with major injuries requiring admission were excluded. They were divided into two age groups. For older children (8-12 years) the 8-item Children Impact of Event Scale (CIES) was used for screening of stress. Unusual symptoms were recorded in younger children (1-8 years) as CIES is not validated < 8 years. Result: A total of 84 children (2.66%) out of 3154 had stress symptoms. Maximum attendance was noted in first 3 days (65.47%) and declined gradually. In children ≥ 8 years, 48.78% had psychological stress, which was statistically significant on CIES scores without any gender predilection. Static posturing (41.86%), sleeplessness (32.55%), anorexia (9.30%), recurrent vomiting (13.95%), excessive crying (13.95%), or night-awakenings (4.65%) were found in younger children (n = 43) and three required admission. Conclusion: This study represent the first Indian data showing statistically significant psychological impact in older children (8-12 years) and various forms of physical stress symptoms in young children (1-8 years) following earthquake. PMID:24174793

  6. Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures

    SciTech Connect

    Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; André Niemeijer; Hideaki Yasuhara

    2009-03-30

    This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

  7. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance.

    PubMed

    Lima, John Milton; Nath, Manoj; Dokku, Prasad; Raman, K V; Kulkarni, K P; Vishwakarma, C; Sahoo, S P; Mohapatra, U B; Mithra, S V Amitha; Chinnusamy, V; Robin, S; Sarla, N; Seshashayee, M; Singh, K; Singh, A K; Singh, N K; Sharma, R P; Mohapatra, T

    2015-01-01

    Water stress is one of the most severe constraints to crop productivity. Plants display a variety of physiological and biochemical responses both at the cellular and whole organism level upon sensing water stress. Leaf rolling, stomatal closure, deeper root penetration, higher relative water content (RWC) and better osmotic adjustment are some of the mechanisms that plants employ to overcome water stress. In the current study, we report a mutant, enhanced water stress tolerant1 (ewst1) with enhanced water stress tolerance, identified from the ethyl methanesulfonate-induced mutant population of rice variety Nagina22 by field screening followed by withdrawal of irrigation in pots and hydroponics (PEG 6000). Though ewst1 was morphologically similar to the wild type (WT) for 35 of the 38 morphological descriptors (except chalky endosperm/expression of white core, decorticated grain colour and grain weight), it showed enhanced germination in polyethylene glycol-infused medium. It exhibited increase in maximum root length without any significant changes in its root weight, root volume and total root number on crown when compared with the WT under stress in PVC tube experiment. It also showed better performance for various physiological parameters such as RWC, cell membrane stability and chlorophyll concentration upon water stress in a pot experiment. Root anatomy and stomatal microscopic studies revealed changes in the number of xylem and phloem cells, size of central meta-xylem and number of closed stomata in ewst1. Comparative genome-wide transcriptome analysis identified genes related to exocytosis, secondary metabolites, tryptophan biosynthesis, protein phosphorylation and other signalling pathways to be playing a role in enhanced response to water stress in ewst1. The possible involvement of a candidate gene with respect to the observed morpho-physiological and transcriptional changes and its role in stress tolerance are discussed. The mutant identified and

  8. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance

    PubMed Central

    Lima, John Milton; Nath, Manoj; Dokku, Prasad; Raman, K. V.; Kulkarni, K. P.; Vishwakarma, C.; Sahoo, S. P.; Mohapatra, U. B.; Mithra, S. V. Amitha; Chinnusamy, V.; Robin, S.; Sarla, N.; Seshashayee, M.; Singh, K.; Singh, A. K.; Singh, N. K.; Sharma, R. P.; Mohapatra, T.

    2015-01-01

    Water stress is one of the most severe constraints to crop productivity. Plants display a variety of physiological and biochemical responses both at the cellular and whole organism level upon sensing water stress. Leaf rolling, stomatal closure, deeper root penetration, higher relative water content (RWC) and better osmotic adjustment are some of the mechanisms that plants employ to overcome water stress. In the current study, we report a mutant, enhanced water stress tolerant1 (ewst1) with enhanced water stress tolerance, identified from the ethyl methanesulfonate-induced mutant population of rice variety Nagina22 by field screening followed by withdrawal of irrigation in pots and hydroponics (PEG 6000). Though ewst1 was morphologically similar to the wild type (WT) for 35 of the 38 morphological descriptors (except chalky endosperm/expression of white core, decorticated grain colour and grain weight), it showed enhanced germination in polyethylene glycol-infused medium. It exhibited increase in maximum root length without any significant changes in its root weight, root volume and total root number on crown when compared with the WT under stress in PVC tube experiment. It also showed better performance for various physiological parameters such as RWC, cell membrane stability and chlorophyll concentration upon water stress in a pot experiment. Root anatomy and stomatal microscopic studies revealed changes in the number of xylem and phloem cells, size of central meta-xylem and number of closed stomata in ewst1. Comparative genome-wide transcriptome analysis identified genes related to exocytosis, secondary metabolites, tryptophan biosynthesis, protein phosphorylation and other signalling pathways to be playing a role in enhanced response to water stress in ewst1. The possible involvement of a candidate gene with respect to the observed morpho-physiological and transcriptional changes and its role in stress tolerance are discussed. The mutant identified and

  9. Evaluation of Potential Oxidative Stress in Egyptian Patients with Acute Zinc Phosphide Poisoning and the Role of Vitamin C

    PubMed Central

    Sagah, Ghada A.; Oreby, Merfat M.; El-Gharbawy, Rehab M.; Ahmed Fathy, Amal S.

    2015-01-01

    Objective To evaluate potential oxidative stress in patients with acute phosphide poisoning and the effect of vitamin C. Methods Participants were females and divided into three groups; group I: healthy volunteers group II: healthy volunteers received vitamin C, group III: patients with acute phosphide poisoning received the supportive and symptomatic treatment and group IV: patients with acute phosphide poisoning received the supportive and symptomatic treatment in addition to vitamin C. All the participants were subjected to thorough history, clinical examination, ECG and laboratory investigations were carried on collected blood and gastric lavage samples on admission. Blood samples were divided into two parts, one for measurement of routine investigations and the second part was used for evaluation of malondialdehyde and total thiol levels before and after receiving the treatment regimen. Results Most of the cases in this study were among the age group of 15–25 years, females, single, secondary school education, from rural areas and suicidal. All vital signs were within normal range and the most common complaint was vomiting and abdominal pain. All cases in this study showed normal routine investigations. The mean MDA levels after receiving treatment decreased significantly in groups II and IV. The mean total thiol levels increased significantly after receiving treatment in groups II and IV. Conclusion It can be concluded that vitamin C has a potential benefit due to its antioxidant property on zinc phosphide induced-oxidative stress in acute zinc phosphide poisoned patients. PMID:26715917

  10. Chronic Psychosocial Stress and Negative Feedback Inhibition: Enhanced Hippocampal Glucocorticoid Signaling despite Lower Cytoplasmic GR Expression

    PubMed Central

    Füchsl, Andrea M.; Reber, Stefan O.

    2016-01-01

    Chronic subordinate colony housing (CSC), a pre-clinically validated mouse model for chronic psychosocial stress, results in increased basal and acute stress-induced plasma adrenocorticotropic hormone (ACTH) levels. We assessed CSC effects on hippocampal glucocorticoid (GC) receptor (GR), mineralocorticoid receptor (MR), and FK506 binding protein (FKBP51) expression, acute heterotypic stressor-induced GR translocation, as well as GC effects on gene expression and cell viability in isolated hippocampal cells. CSC mice showed decreased GR mRNA and cytoplasmic protein levels compared with single-housed control (SHC) mice. Basal and acute stress-induced nuclear GR protein expression were comparable between CSC and SHC mice, as were MR and FKBP51 mRNA and/or cytoplasmic protein levels. In vitro the effect of corticosterone (CORT) on hippocampal cell viability and gene transcription was more pronounced in CSC versus SHC mice. In summary, CSC mice show an, if at all, increased hippocampal GC signaling capacity despite lower cytoplasmic GR protein expression, making negative feedback deficits in the hippocampus unlikely to contribute to the increased ACTH drive following CSC. PMID:27057751

  11. Pivotal Importance of STAT3 in Protecting the Heart from Acute and Chronic Stress: New Advancement and Unresolved Issues

    PubMed Central

    Zouein, Fouad A.; Altara, Raffaele; Chen, Qun; Lesnefsky, Edward J.; Kurdi, Mazen; Booz, George W.

    2015-01-01

    The transcription factor, signal transducer and activator of transcription 3 (STAT3), has been implicated in protecting the heart from acute ischemic injury under both basal conditions and as a crucial component of pre- and post-conditioning protocols. A number of anti-oxidant and antiapoptotic genes are upregulated by STAT3 via canonical means involving phosphorylation on Y705 and S727, although other incompletely defined posttranslational modifications are involved. In addition, STAT3 is now known to be present in cardiac mitochondria and to exert actions that regulate the electron transport chain, reactive oxygen species production, and mitochondrial permeability transition pore opening. These non-canonical actions of STAT3 are enhanced by S727 phosphorylation. The molecular basis for the mitochondrial actions of STAT3 is poorly understood, but STAT3 is known to interact with a critical subunit of complex I and to regulate complex I function. Dysfunctional complex I has been implicated in ischemic injury, heart failure, and the aging process. Evidence also indicates that STAT3 is protective to the heart under chronic stress conditions, including hypertension, pregnancy, and advanced age. Paradoxically, the accumulation of unphosphorylated STAT3 (U-STAT3) in the nucleus has been suggested to drive pathological cardiac hypertrophy and inflammation via non-canonical gene expression, perhaps involving a distinct acetylation profile. U-STAT3 may also regulate chromatin stability. Our understanding of how the non-canonical genomic and mitochondrial actions of STAT3 in the heart are regulated and coordinated with the canonical actions of STAT3 is rudimentary. Here, we present an overview of what is currently known about the pleotropic actions of STAT3 in the heart in order to highlight controversies and unresolved issues. PMID:26664907

  12. Effect of acute administration of L-tyrosine on oxidative stress parameters in brain of young rats.

    PubMed

    Macêdo, Livia G R P; Carvalho-Silva, Milena; Ferreira, Gabriela K; Vieira, Júlia S; Olegário, Natália; Gonçalves, Renata C; Vuolo, Francieli S; Ferreira, Gustavo C; Schuck, Patrícia F; Dal-Pizzol, Felipe; Streck, Emilio L

    2013-12-01

    Tyrosinemia type II, also known as Richner-Hanhart syndrome, is an autosomal recessive inborn error of metabolism caused by a deficiency of hepatic cytosolic tyrosine aminotransferase, and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that studies demonstrated that high concentrations of tyrosine provoke oxidative stress in vitro and in vivo in the cerebral cortex of rats, in the present study we investigate the oxidative stress parameters (enzymatic antioxidant defenses, thiobarbituric acid-reactive substances and protein carbonyl content) in cerebellum, hippocampus and striatum of 30-old-day rats after acute administration of L-tyrosine. Our results demonstrated that the acute administration of L-tyrosine increased the thiobarbituric acid reactive species levels in hippocampus and the carbonyl levels in cerebellum, hippocampus and striatum. In addition, acute administration of L-tyrosine significantly decreased superoxide dismutase activity in cerebellum, hippocampus and striatum, while catalase was increased in striatum. In conclusion, the oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia and the administration of antioxidants may be considered as a potential adjuvant therapy for tyrosinemia, especially type II. PMID:24135880

  13. Neural traces of stress: cortisol related sustained enhancement of amygdala-hippocampal functional connectivity

    PubMed Central

    Vaisvaser, Sharon; Lin, Tamar; Admon, Roee; Podlipsky, Ilana; Greenman, Yona; Stern, Naftali; Fruchter, Eyal; Wald, Ilan; Pine, Daniel S.; Tarrasch, Ricardo; Bar-Haim, Yair; Hendler, Talma

    2013-01-01

    Stressful experiences modulate neuro-circuitry function, and the temporal trajectory of these alterations, elapsing from early disturbances to late recovery, heavily influences resilience and vulnerability to stress. Such effects of stress may depend on processes that are engaged during resting-state, through active recollection of past experiences and anticipation of future events, all known to involve the default mode network (DMN). By inducing social stress and acquiring resting-state functional magnetic resonance imaging (fMRI) before stress, immediately following it, and 2 h later, we expanded the time-window for examining the trajectory of the stress response. Throughout the study repeated cortisol samplings and self-reports of stress levels were obtained from 51 healthy young males. Post-stress alterations were investigated by whole brain resting-state functional connectivity (rsFC) of two central hubs of the DMN: the posterior cingulate cortex (PCC) and hippocampus. Results indicate a ’recovery’ pattern of DMN connectivity, in which all alterations, ascribed to the intervening stress, returned to pre-stress levels. The only exception to this pattern was a stress-induced rise in amygdala-hippocampal connectivity, which was sustained for as long as 2 h following stress induction. Furthermore, this sustained enhancement of limbic connectivity was inversely correlated to individual stress-induced cortisol responsiveness (AUCi) and characterized only the group lacking such increased cortisol (i.e., non-responders). Our observations provide evidence of a prolonged post-stress response profile, characterized by both the comprehensive balance of most DMN functional connections and the distinct time and cortisol dependent ascent of intra-limbic connectivity. These novel insights into neuro-endocrine relations are another milestone in the ongoing search for individual markers in stress-related psychopathologies. PMID:23847492

  14. Anabolic responses to acute and chronic resistance exercise are enhanced when combined with aquatic treadmill exercise.

    PubMed

    Lambert, Brad S; Shimkus, Kevin L; Fluckey, James D; Riechman, Steven E; Greene, Nicholas P; Cardin, Jessica M; Crouse, Stephen F

    2015-02-01

    Aquatic treadmill (ATM) running may simultaneously promote aerobic fitness and enhance muscle growth when combined with resistance training (RT) compared with land-treadmill (LTM) running. Therefore, we examined acute and chronic physiological responses to RT, concurrent RT-LTM, and concurrent RT-ATM. Forty-seven untrained volunteers (men: n = 23, 37 ± 11 yr, 29.6 ± 4.6 kg/m(2); women: n = 24, 38 ± 12 yr, 27.53 ± 6.4 kg/m(2)) from the general population were tested for V̇o2max, body composition, and strength before and after training. All groups performed 12 wk of RT (2 wk, 3 × 8-12 sets at 60 to approximately 80% 1-repetition maximum). The RT-LTM and RT-ATM groups also performed 12 wk of LTM or ATM training (2 wk immediately post-RT and 1 wk in isolation, 60-85% V̇o2max, 250-500 kcal/session). Additionally, 25 subjects volunteered for muscle biopsy prior to and 24 h post-acute exercise before and after training. Stable isotope labeling (70% (2)H2O, 3 ml/kg) was utilized to quantify 24 h post-exercise myofibrillar fractional synthesis rates (myoFSR). Mixed-model ANOVA revealed that RT-ATM but not RT-LTM training produced greater chronic increases in lean mass than RT alone (P < 0.05). RT-LTM training was found to elicit the greatest decreases in percent body fat (-2.79%, P < 0.05). In the untrained state, acute RT-ATM exercise elicited higher 24-h myoFSRs compared with RT (+5.68%/day, P < 0.01) and RT-LTM (+4.08%/day, P < 0.05). Concurrent RT-ATM exercise and training elicit greater skeletal muscle anabolism than RT alone or RT-LTM. PMID:25425002

  15. Differences in maladaptive schemas between patients suffering from chronic and acute posttraumatic stress disorder and healthy controls

    PubMed Central

    Ahmadian, Alireza; Mirzaee, Jafar; Omidbeygi, Maryam; Holsboer-Trachsler, Edith; Brand, Serge

    2015-01-01

    Background War, as a stressor event, has a variety of acute and chronic negative consequences, such as posttraumatic stress disorder (PTSD). In this context, early maladaptive schema-based problems in PTSD have recently become an important research area. The aim of this study was to assess early maladaptive schemas in patients with acute and chronic PTSD. Method Using available sampling methods and diagnostic criteria, 30 patients with chronic PTSD, 30 patients with acute PTSD, and 30 normal military personnel who were matched in terms of age and wartime experience were selected and assessed with the Young Schema Questionnaire-Long Form, Beck Depression Inventory second version (BDI-II), the Beck Anxiety Inventory (BAI), and the Impact of Events Scale (IES). Results Both acute and chronic PTSD patients, when compared with normal military personnel, had higher scores for all early maladaptive schemas. Additionally, veterans suffering from chronic PTSD, as compared with veterans suffering from acute PTSD and veterans without PTSD, reported more impaired schemas related, for instance, to Self-Control, Social Isolation, and Vulnerability to Harm and Illness. Discussion The results of the present study have significant preventative, diagnostic, clinical, research, and educational implications with respect to PTSD. PMID:26203249

  16. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation

    PubMed Central

    Shi, Junwei; Whyte, Warren A.; Zepeda-Mendoza, Cinthya J.; Milazzo, Joseph P.; Shen, Chen; Roe, Jae-Seok; Minder, Jessica L.; Mercan, Fatih; Wang, Eric; Eckersley-Maslin, Melanie A.; Campbell, Amy E.; Kawaoka, Shinpei; Shareef, Sarah; Zhu, Zhu; Kendall, Jude; Muhar, Matthias; Haslinger, Christian; Yu, Ming; Roeder, Robert G.; Wigler, Michael H.; Blobel, Gerd A.; Zuber, Johannes; Spector, David L.; Young, Richard A.; Vakoc, Christopher R.

    2013-01-01

    Cancer cells frequently depend on chromatin regulatory activities to maintain a malignant phenotype. Here, we show that leukemia cells require the mammalian SWI/SNF chromatin remodeling complex for their survival and aberrant self-renewal potential. While Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cell types, we found that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as one of its key targets. To account for this context-specific function, we identify a cluster of lineage-specific enhancers located 1.7 Mb downstream from Myc that are occupied by SWI/SNF as well as the BET protein Brd4. Brg1 is required at these distal elements to maintain transcription factor occupancy and for long-range chromatin looping interactions with the Myc promoter. Notably, these distal Myc enhancers coincide with a region that is focally amplified in ∼3% of acute myeloid leukemias. Together, these findings define a leukemia maintenance function for SWI/SNF that is linked to enhancer-mediated gene regulation, providing general insights into how cancer cells exploit transcriptional coactivators to maintain oncogenic gene expression programs. PMID:24285714

  17. Obatoclax Potentiates the Cytotoxic Effect of Cytarabine on Acute Myeloid Leukemia Cells by Enhancing DNA Damage

    PubMed Central

    Xie, Chengzhi; Edwards, Holly; Caldwell, J. Timothy; Wang, Guan; Taub, Jeffrey W.; Ge, Yubin

    2014-01-01

    Resistance to cytarabine and anthracycline-based chemotherapy is a major cause of treatment failure for acute myeloid leukemia (AML) patients. Overexpression of Bcl-2, Bcl-xL, and/or Mcl-1 has been associated with chemoresistance in AML cell lines and with poor clinical outcome of AML patients. Thus, inhibitors of anti-apoptotic Bcl-2 family proteins could be novel therapeutic agents. In this study, we investigated how clinically achievable concentrations of obatoclax, a pan-Bcl-2 inhibitor, potentiate the antileukemic activity of cytarabine in AML cells. MTT assays in AML cell lines and diagnostic blasts, as well as flow cytometry analyses in AML cell lines revealed synergistic antileukemic activity between cytarabine and obatoclax. Bax activation was detected in the combined, but not the individual, drug treatments. This was accompanied by significantly increased loss of mitochondrial membrane potential. Most importantly, in AML cells treated with the combination, enhanced early induction of DNA double-strand breaks (DSBs) preceded a decrease of Mcl-1 levels, nuclear translocation of Bcl-2, Bcl-xL, and Mcl-1, and apoptosis. These results indicate that obatoclax enhances cytarabine-induced apoptosis by enhancing DNA DSBs. This novel mechanism provides compelling evidence for the clinical use of BH3 mimetics in combination with DNA-damaging agents in AML and possibly a broader range of malignancies. PMID:25308513

  18. Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning.

    PubMed

    Stelly, Claire E; Pomrenze, Matthew B; Cook, Jason B; Morikawa, Hitoshi

    2016-01-01

    Enduring memories of sensory cues associated with drug intake drive addiction. It is well known that stressful experiences increase addiction vulnerability. However, it is not clear how repeated stress promotes learning of cue-drug associations, as repeated stress generally impairs learning and memory processes unrelated to stressful experiences. Here, we show that repeated social defeat stress in rats causes persistent enhancement of long-term potentiation (LTP) of NMDA receptor-mediated glutamatergic transmission in the ventral tegmental area (VTA). Protein kinase A-dependent increase in the potency of inositol 1,4,5-triphosphate-induced Ca(2+) signaling underlies LTP facilitation. Notably, defeated rats display enhanced learning of contextual cues paired with cocaine experience assessed using a conditioned place preference (CPP) paradigm. Enhancement of LTP in the VTA and cocaine CPP in behaving rats both require glucocorticoid receptor activation during defeat episodes. These findings suggest that enhanced glutamatergic plasticity in the VTA may contribute, at least partially, to increased addiction vulnerability following repeated stressful experiences. PMID:27374604

  19. Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning

    PubMed Central

    Stelly, Claire E; Pomrenze, Matthew B; Cook, Jason B; Morikawa, Hitoshi

    2016-01-01

    Enduring memories of sensory cues associated with drug intake drive addiction. It is well known that stressful experiences increase addiction vulnerability. However, it is not clear how repeated stress promotes learning of cue-drug associations, as repeated stress generally impairs learning and memory processes unrelated to stressful experiences. Here, we show that repeated social defeat stress in rats causes persistent enhancement of long-term potentiation (LTP) of NMDA receptor-mediated glutamatergic transmission in the ventral tegmental area (VTA). Protein kinase A-dependent increase in the potency of inositol 1,4,5-triphosphate-induced Ca2+ signaling underlies LTP facilitation. Notably, defeated rats display enhanced learning of contextual cues paired with cocaine experience assessed using a conditioned place preference (CPP) paradigm. Enhancement of LTP in the VTA and cocaine CPP in behaving rats both require glucocorticoid receptor activation during defeat episodes. These findings suggest that enhanced glutamatergic plasticity in the VTA may contribute, at least partially, to increased addiction vulnerability following repeated stressful experiences. DOI: http://dx.doi.org/10.7554/eLife.15448.001 PMID:27374604

  20. Bone marrow transplantation modulates tissue macrophage phenotype and enhances cardiac recovery after subsequent acute myocardial infarction

    PubMed Central

    Protti, Andrea; Mongue-Din, Heloise; Mylonas, Katie J.; Sirker, Alexander; Sag, Can Martin; Swim, Megan M.; Maier, Lars; Sawyer, Greta; Dong, Xuebin; Botnar, Rene; Salisbury, Jon; Gray, Gillian A.; Shah, Ajay M.

    2016-01-01

    Background Bone marrow transplantation (BMT) is commonly used in experimental studies to investigate the contribution of BM-derived circulating cells to different disease processes. During studies investigating the cardiac response to acute myocardial infarction (MI) induced by permanent coronary ligation in mice that had previously undergone BMT, we found that BMT itself affects the remodelling response. Methods and results Compared to matched naive mice, animals that had previously undergone BMT developed significantly less post-MI adverse remodelling, infarct thinning and contractile dysfunction as assessed by serial magnetic resonance imaging. Cardiac rupture in male mice was prevented. Histological analysis showed that the infarcts of mice that had undergone BMT had a significantly higher number of inflammatory cells, surviving cardiomyocytes and neovessels than control mice, as well as evidence of significant haemosiderin deposition. Flow cytometric and histological analyses demonstrated a higher number of alternatively activated (M2) macrophages in myocardium of the BMT group compared to control animals even before MI, and this increased further in the infarcts of the BMT mice after MI. Conclusions The process of BMT itself substantially alters tissue macrophage phenotype and the subsequent response to acute MI. An increase in alternatively activated macrophages in this setting appears to enhance cardiac recovery after MI. PMID:26688473

  1. Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction

    PubMed Central

    Long, Virginia A.; Fanselow, Michael S.

    2014-01-01

    Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24 h after stress. Recent studies found that extinction from 10 min to 1 h subsequent to fear conditioning “erased” learning, whereas later extinction, occurring from 24 to 72 h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial’s procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10 min or 72 h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments. PMID:22176467

  2. Oxidative status in testis and epididymal sperm parameters after acute and chronic stress by cold-water immersion in the adult rat.

    PubMed

    García-Díaz, Erika Cecilia; Gómez-Quiroz, Luis Enrique; Arenas-Ríos, Edith; Aragón-Martínez, Andrés; Ibarra-Arias, Juan Antonio; del Socorro I Retana-Márquez, María

    2015-06-01

    Stress is associated with detrimental effects on male reproductive function. It is known that stress increases reactive oxygen species (ROS) generation in the male reproductive tract. High ROS levels may be linked to low sperm quality and male infertility. However, it is still not clear if ROS are generated by stress in the testis. The objective of this study was to characterize the role of oxidative stress induced by cold-water immersion stress in the testis of adult male rats and its relation with alterations in cauda epididymal sperm. Adult male rats were exposed to acute stress or chronic stress by cold-water immersion. Rats were sacrificed at 0, 6, 12, and 24 hours immediately following acute stress exposure, and after 20, 40, and 50 days of chronic stress. ROS production increased only at 6 hours post-stress, while the activity and expression of antioxidant enzymes, lipid peroxidation (LPO), and sperm parameters were not modified in the testis. Corticosterone increased immediately after acute stress, whereas testosterone was not modified. After chronic stress, testicular absolute weight decreased; in addition, ROS production and LPO increased at 20, 40, and 50 days. The activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) decreased throughout the duration of chronic stress and the activity of catalase (CAT) decreased at 40 and 50 days, and increased at 20 days. The expression of copper/zinc superoxide dismutase (SOD1) and CAT were not modified, but the expression of phospholipid hydroperoxide glutathione peroxidase (GPx-4) decreased at 20 days. Motility, viability, and sperm count decreased, while abnormal sperm increased with chronic stress. These results suggest that during acute stress there is a redox state regulation in the testis since no deleterious effect was observed. In contrast, equilibrium redox is lost during chronic stress, with low enzyme activity but without modifying their expression. In addition, corticosterone increased

  3. Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L.

    PubMed Central

    Shi, Yu; Zhang, Yi; Han, Weihua; Feng, Ru; Hu, Yanhong; Guo, Jia; Gong, Haijun

    2016-01-01

    Silicon (Si) can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si’s role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum ‘Zhongza No.9’) under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v) polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance. PMID:26941762

  4. Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L.

    PubMed

    Shi, Yu; Zhang, Yi; Han, Weihua; Feng, Ru; Hu, Yanhong; Guo, Jia; Gong, Haijun

    2016-01-01

    Silicon (Si) can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si's role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum 'Zhongza No.9') under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v) polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance. PMID:26941762

  5. Endoplasmic reticulum stress in bone marrow-derived cells prevents acute cardiac inflammation and injury in response to angiotensin II.

    PubMed

    Li, T-T; Jia, L-X; Zhang, W-M; Li, X-Y; Zhang, J; Li, Y-L; Li, H-H; Qi, Y-F; Du, J

    2016-01-01

    Inflammation plays an important role in hypertensive cardiac injury. The endoplasmic reticulum (ER) stress pathway is involved in the inflammatory response. However, the role of ER stress in elevated angiotensin II (Ang II)-induced cardiac injury remains unclear. In this study, we investigated the role of ER stress in Ang II-induced hypertensive cardiac injury. Transcriptome analysis and quantitative real-time PCR showed that Ang II infusion in mice increased ER stress-related genes expression in the heart. C/EBP homologous protein (CHOP) deficiency, a key mediator of ER stress, increased infiltration of inflammatory cells, especially neutrophils, the production of inflammatory cytokines, chemokines in Ang II-infused mouse hearts. CHOP deficiency increased Ang II-induced cardiac fibrotic injury: (1) Masson trichrome staining showed increased fibrotic areas, (2) immunohistochemistry staining showed increased expression of α-smooth muscle actin, transforming growth factor β1 and (3) quantitative real-time PCR showed increased expression of collagen in CHOP-deficient mouse heart. Bone marrow transplantation experiments indicated that CHOP deficiency in bone marrow cells was responsible for Ang II-induced cardiac fibrotic injury. Moreover, TUNEL staining and flow cytometry revealed that CHOP deficiency decreased neutrophil apoptosis in response to Ang II. Taken together, our study demonstrated that hypertension induced ER stress after Ang II infusion. ER stress in bone marrow-derived cells protected acute cardiac inflammation and injury in response to Ang II. PMID:27277680

  6. [Promising new treatment for acute ischemic stroke--Sonothrombolysis can enhance the effect of intravenous thrombolysis].

    PubMed

    Gu, Thomas; Wester, Per; Johansson, Elias

    2015-01-01

    Intravenous thrombolysis has been a break-through for treatment of acute ischemic stroke. However, total recanalization is only achieved in 18%. Sonothrombolysis aims at enhancing the recanalization effect by adding continuous transcranial ultrasound. Sonothrombolysis may facilitate the recanalization rate without increased risk of intracerebral hemorrhage. This further results in decreased risk of disability compared with only intravenous thrombolysis. Intravenously applied micro-bubbles is an additive treatment to sonothrombolysis which might further increase the recanalization rate but perhaps at the expense of increased risk of intracerebral hemorrhage. In a case-series at Umeå Stroke Center, we report the results of the first 20 ischemic stroke patients treated with sonothrombolysis in Sweden. Our initial results look promising with recanalization rates similar to earlier published data. No intracerebral hemorrhage occurred among our sonothrombolysed patients. PMID:25647105

  7. Oxidative stress markers in laparoscopic vs. open appendectomy for acute appendicitis: A double-blind randomized study

    PubMed Central

    Aktimur, Recep; Gokakin, Ali Kagan; Deveci, Koksal; Atabey, Mustafa; Topcu, Omer

    2016-01-01

    BACKGROUND: Oxidative stress is a complicated process, which was defined as an increase in prooxidants and decrease in antioxidants caused by various mechanisms, including inflammation and surgical trauma. The association between acute appendicitis and oxidative stress has been showed in previous studies. However, comparison of oxidative stress in laparoscopic or open appendectomy (OA) has not been established. PATIENTS AND METHODS: Patients who were diagnosed as acute appendicitis between October 2012 and January 2013 were randomized to open (OA, n = 50) and laparoscopic appendectomy (LA, n = 50). Blood samples for oxidative stress markers (total oxidant status [TOS] and total antioxidant status [TAS]), C-reactive protein (CRP) and white blood cells (WBC’s) were collected just before the surgery and 24 h after surgery. RESULTS: There were no differences in preoperative values of WBC and CRP between LA and OA groups (P = 0.523 and 0.424), however, in postoperative 24th h, CRP was reduced in LA group (P = 0.031). There were no differences in preoperative levels of TOS, TAS, and oxidative stress index (OSI) between LA and OA groups. In the postoperative 24th h, TOS and OSI were found to be significantly higher in OA group when compared to LA group (P = 0.017 and 0.002) whereas no difference was detected in TAS level in the postoperative 24th h (P = 0.172). CONCLUSIONS: This double-blind, randomized clinical trial provides evidence that LA for uncomplicated appendicitis is associated with significantly lower oxidative stress compared with OA. Some of the advantages of LA may be attributed to the significant reduction of oxidative stress in these patients. PMID:27073307

  8. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish.

    PubMed

    Zhao, Xuesong; Wang, Shutao; Wu, Yuan; You, Hong; Lv, Lina

    2013-07-15

    Nano-scale zinc oxide (nano-ZnO) is widely used in various industrial and commercial applications. However, the available toxicological information was inadequate to assess the potential ecological risk of nano-ZnO to aquatic organisms and the publics. In this study, the developmental toxicity, oxidative stress and DNA damage of nano-ZnO embryos were investigated in the embryo-larval zebrafish, the toxicity of Zn(2+) releasing from nano-ZnO were also investigated to ascertain the relationship between the nano-ZnO and corresponding Zn(2+). Zebrafish embryos were exposed to 1, 5, 10, 20, 50, and 100mg/L nano-ZnO and 0.59, 2.15, 3.63, 4.07, 5.31, and 6.04 mg/L Zn(2+) for 144 h post-fertilisation (hpf), respectively. Up to 144 hpf, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and malondialdehyde (MDA) contents, the genes related to oxidative damage, reactive oxygen species (ROS) generation and DNA damage in zebrafish embryos were measured. The nano-ZnO was found to exert a dose-dependent toxicity to zebrafish embryos and larvae, reducing the hatching rate and inducing malformation and the acute toxicity to zebrafish embryos was greater than that of the Zn(2+) solution. The generation of ROS was significantly increased at 50 and 100mg/L nano-ZnO. DNA damage of zebrafish embryo was evaluated by single-cell gel electrophoresis and was enhanced with increasing nano-ZnO concentration. Moreover, the transcriptional expression of mitochondrial inner membrane genes related to ROS production, such as Bcl-2, in response to oxidative damage, such as Nqo1, and related to antioxidant response element such as Gstp2 were significantly down-regulated in the nano-ZnO treatment groups. However, the nano-ZnO up-regulated the transcriptional expression of Ucp2-related to ROS production. In conclusion, nano-ZnO induces developmental toxicity, oxidative stress and DNA damage on zebrafish embryos and the dissolved Zn(2+) only partially

  9. Prion protein interaction with stress-inducible protein 1 enhances neuronal protein synthesis via mTOR

    PubMed Central

    Roffé, Martín; Beraldo, Flávio Henrique; Bester, Romina; Nunziante, Max; Bach, Christian; Mancini, Gabriel; Gilch, Sabine; Vorberg, Ina; Castilho, Beatriz A.; Martins, Vilma Regina; Hajj, Glaucia Noeli Maroso

    2010-01-01

    Transmissible spongiform encephalopathies are fatal neurodegenerative diseases caused by the conversion of prion protein (PrPC) into an infectious isoform (PrPSc). How this event leads to pathology is not fully understood. Here we demonstrate that protein synthesis in neurons is enhanced via PrPC interaction with stress-inducible protein 1 (STI1). We also show that neuroprotection and neuritogenesis mediated by PrPC–STI1 engagement are dependent upon the increased protein synthesis mediated by PI3K-mTOR signaling. Strikingly, the translational stimulation mediated by PrPC–STI1 binding is corrupted in neuronal cell lines persistently infected with PrPSc, as well as in primary cultured hippocampal neurons acutely exposed to PrPSc. Consistent with this, high levels of eukaryotic translation initiation factor 2α (eIF2α) phosphorylation were found in PrPSc-infected cells and in neurons acutely exposed to PrPSc. These data indicate that modulation of protein synthesis is critical for PrPC–STI1 neurotrophic functions, and point to the impairment of this process during PrPSc infection as a possible contributor to neurodegeneration. PMID:20615969

  10. The seasonal glucocorticoid response of male Rufous-winged Sparrows to acute stress correlates with changes in plasma uric acid, but neither glucose nor testosterone.

    PubMed

    Deviche, Pierre; Valle, Shelley; Gao, Sisi; Davies, Scott; Bittner, Stephanie; Carpentier, Elodie

    2016-09-01

    We sought to clarify functional relationships between baseline and acute stress-induced changes in plasma levels of the stress hormone corticosterone (CORT) and the reproductive hormone testosterone (T), and those of two main metabolites, uric acid (UA) and glucose (GLU). Acute stress in vertebrates generally stimulates the secretion of glucocorticoids, which in birds is primarily CORT. This stimulation is thought to promote behavioral and metabolic changes, including increased glycemia. However, limited information in free-ranging birds supports the view that acutely elevated plasma CORT stimulates glycemia. Acute stress also often decreases the secretion of reproductive hormones (e.g., T in males), but the role of CORT in this decrease and the contribution of T to the regulation of plasma GLU remain poorly understood. We measured initial (pre-stress) and acute stress-induced plasma CORT and T as well as GLU in adult male Rufous-winged Sparrows, Peucaea carpalis, sampled during the pre-breeding, breeding, post-breeding molt, and non-breeding stages. Stress increased plasma CORT and the magnitude of this increase did not differ across life history stages. The stress-induced elevation of plasma CORT was consistently associated with decreased plasma UA, suggesting a role for CORT in the regulation of plasma UA during stress. During stress plasma GLU either increased (pre-breeding), did not change (breeding), or decreased (molt and non-breeding), and plasma T either decreased (pre-breeding and breeding) or did not change (molt and non-breeding). These data provide only partial support to the hypothesis that CORT secretion during acute stress exerts a hyperglycemic action or is responsible for the observed decrease in plasma T taking place at certain life history stages. They also do not support the hypothesis that rapid changes in plasma T influence glycemia. PMID:27292791

  11. Acute deep brain stimulation in the thalamic reticular nucleus protects against acute stress and modulates initial events of adult hippocampal neurogenesis.

    PubMed

    Magdaleno-Madrigal, Víctor Manuel; Pantoja-Jiménez, Christopher Rodrigo; Bazaldúa, Adrián; Fernández-Mas, Rodrigo; Almazán-Alvarado, Salvador; Bolaños-Alejos, Fernanda; Ortíz-López, Leonardo; Ramírez-Rodriguez, Gerardo Bernabé

    2016-11-01

    Deep brain stimulation (DBS) is used as an alternative therapeutic procedure for pharmacoresistant psychiatric disorders. Recently the thalamic reticular nucleus (TRN) gained attention due to the description of a novel pathway from the amygdala to this nucleus suggesting that may be differentially disrupted in mood disorders. The limbic system is implicated in the regulation of these disorders that are accompanied by neuroplastic changes. The hippocampus is highly plastic and shows the generation of new neurons, process affected by stress but positively regulated by antidepressant drugs. We explored the impact of applying acute DBS to the TRN (DBS-TRN) in male Wistar rats exposed to acute stress caused by the forced-swim Porsolt's test (FST) and on initial events of hippocampal neurogenesis. After the first session of forced-swim, rats were randomly subdivided in a DBS-TRN and a Sham group. Stimulated rats received 10min of DBS, thus the depressant-like behavior reflected as immobility was evaluated in the second session of forced-swim. Locomotricity was evaluated in the open field test. Cell proliferation and doublecortin-associated cells were quantified in the hippocampus of other cohorts of rats. No effects of electrode implantation were found in locomotricity. Acute DBS-TRN reduced immobility in comparison to the Sham group (p<0.001). DBS-TRN increased cell proliferation (Ki67 or BrdU-positive cells; p=0.02, p=0.02) and the number of doublecortin-cells compared to the Sham group (p<0.02). Similar effects were found in rats previously exposed to the first session of forced-swim. Our data could suggest that TRN brain region may be a promising target for DBS to treat intractable depression. PMID:27435420

  12. Emodin enhances alveolar epithelial barrier function in rats with experimental acute pancreatitis

    PubMed Central

    Xia, Xian-Ming; Wang, Fang-Yu; Wang, Zhen-Kai; Wan, Hai-Jun; Xu, Wen-An; Lu, Heng

    2010-01-01

    claudin-4, claudin-5 and occluding was increased, and the pulmonary dye extravasation was reduced in lung tissue samples from rats with acute pancreatitis after treatment with emodin. CONCLUSION: Emodin attenuates pulmonary edema and inflammation, enhances alveolar epithelial barrier function, and promotes expression of claudin-4, claudin-5 and occludin in lung tissue samples from rats with acute pancreatitis. PMID:20572302

  13. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    SciTech Connect

    Jia, Fengjuan Qi, Shengdong Li, Hui Liu, Pu Li, Pengcheng Wu, Changai Zheng, Chengchao Huang, Jinguang

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  14. Effect of Beta vulgaris Linn. Leaves Extract on Anxiety- and Depressive-like Behavior and Oxidative Stress in Mice after Acute Restraint Stress

    PubMed Central

    Sulakhiya, Kunjbihari; Patel, Vikas Kumar; Saxena, Rahul; Dashore, Jagrati; Srivastava, Amit Kumar; Rathore, Manoj

    2016-01-01

    Background: Stress plays a significant role in the pathogenesis of neuropsychiatric disorders such as anxiety and depression. Beta vulgaris is commonly known as “beet root” possessing antioxidant, anticancer, hepatoprotective, nephroprotective, wound healing, and anti-inflammatory properties. Objective: To study the protective effect of Beta vulgaris Linn. ethanolic extract (BVEE) of leaves against acute restraint stress (ARS)-induced anxiety- and depressive-like behavior and oxidative stress in mice. Materials and Methods: Mice (n = 6) were pretreated with BVEE (100 and 200 mg/kg, p. o.) for 7 days and subjected to ARS for 6 h to induce behavioral and biochemical changes. Anxiety- and depressive-like behavior were measured by using different behavioral paradigms such as open field test (OFT), elevated plus maze (EPM), forced swim test (FST), and tail suspension test (TST) 40 min postARS. Brain homogenate was used to analyze oxidative stress parameters, that is, malondialdehyde (MDA) and reduced glutathione (GSH) level. Results: BVEE pretreatment significantly (P < 0.05) reversed the ARS-induced reduction in EPM parameters, that is, percentage entries and time spent in open arms and in OFT parameters, that is, line crossings, and rearings in mice. ARS-induced increase in the immobility time in FST and TST was attenuated significantly (P < 0.05) by BVEE pretreatment at both the dosage. An increase in MDA and depletion of GSH level postARS was prevented significantly (P < 0.05) with BVEE pretreatment at both the dosage (100 and 200 mg/kg). Conclusion: BVEE exhibits anxiolytic and antidepressant activity in stressed mice along with good antioxidant property suggesting its therapeutic potential in the treatment of stress-related psychiatric disorders. SUMMARY Stress plays major role in the pathogenesis of anxiety and depressionARS-induced anxiety- and depressive-like behavior through oxidative damage in miceBVEE pretreatment reversed ARS-induced behavioral changes

  15. Oxidative stress in post-acute ischemic stroke patients after intensive neurorehabilitation.

    PubMed

    Ciancarelli, Irene; De Amicis, Daniela; Di Massimo, Caterina; Carolei, Antonio; Ciancarelli, Maria Giuliana Tozzi

    2012-11-01

    We investigated in post-acute ischemic stroke patients the influence of intensive neurorehabilitation on oxidative stress balance during recovery of neurological deficits. For this purpose, fourteen patients were included in the study within 30 days of stroke onset. Outcome measures were the National Institutes of Health Stroke Scale (NIHSS), the modified Rankin Scale (mRS), the Barthel Index, and the Katz Index. Redox balance was assessed by measuring plasma peroxidative by-products, nitrite/nitrate metabolites (NOx), as an index of nitric oxide (NO), Cu/Zn Superoxide Dismutase (Cu/Zn SOD) activity, serum urate concentration, autoantibodies against ox-LDL (OLAB) serum level and plasma antioxidant capacity. Assessments were made before and after neurorehabilitation. Fifteen apparently healthy controls were investigated to compare redox markers. Intensive neurorehabilitation was associated with an improvement of all the outcome measures (P < 0.05). Decreased values of peroxidative by-products and of NOx (P < 0.05) were observed after neurorehabilitation in stroke patients even though their values were higher than in controls (P < 0.05). Changes observed before and after neurorehabilitation in NIHSS scores (Δ NIHSS scores) and in plasma NOx amount (Δ NOx) correlated positively (r=0.79; P < 0.005). No differences in EC-SOD activity, OLAB and serum urate concentrations were found between stroke patients and controls, before and after neurorehabilitation. Total plasma antioxidant capacity, lower in stroke patients than in controls before neurorehabilitation, was unchanged thereafter. Our data provide evidence of the effectiveness of neurorehabilitation on reducing redox unbalance in stroke patients and hints the role of NO as a messenger involved in post-ischemic neuronal plasticity influencing recovery of neurological deficits. PMID:22873723

  16. Carvacrol modulates oxidative stress and decreases cell injury in pancreas of rats with acute pancreatitis.

    PubMed

    Kılıç, Yeliz; Geyikoglu, Fatime; Çolak, Suat; Turkez, Hasan; Bakır, Murat; Hsseinigouzdagani, Mirkhalil

    2016-08-01

    Acute pancreatitis (AP) is considered as major problem around the world and the incidence of AP is increasing. Carvacrol (CAR), a monoterpenic phenol, has good antioxidant activity. This in vivo study was designed to evaluate whether CAR provide protection against AP that developed by pancreas injury. The rats were randomised into groups to receive (I) no therapy; (II) 50 µg/kg cerulein at 1 h intervals by four intraperitonally (i.p.) injections; (III) 50, 100 and 200 mg/kg CAR by one i.p. injection; and (IV) cerulein plus CAR after 2 h of cerulein administration. 12 h later, serum samples were obtained to assess pancreatic function, the lipase and amylase values. The oxidative stress markers were evaluated by changes in the amount of lipid peroxides measured as malondialdehyde (MDA) and changes in main tissue antioxidant enzyme levels including SOD, CAT and GSH-PX. Histopathological examination was performed using scoring systems. Additionally, oxidative DNA damage was determined by measuring the increases of 8-hydroxy-deoxyguanosine (8-OH-dG) formations. We found that the increasing doses of CAR decreased AP-induced MDA and 8-OH-dG levels. Moreover, the pancreas antioxidant enzyme activities were higher than that of the rats in the AP group when compared to the AP plus CAR group. In the treatment groups, the lipase and amylase were reduced. Besides, histopathological findings in the pancreatic tissue were alleviated (p < 0.05). We suggest that CAR could be a safe and potent new drug candidate for treating AP through its antioxidative mechanism of action for the treatment of a wide range of disorders related to pancreas. PMID:26093481

  17. Influence of acute erythrocythemia on temperature regulation during exercise-heat stress

    SciTech Connect

    Sawka, M.N.; Gonzalez, R.R.; Dennis, R.C.; Young, A.J.; Muza, S.R.; Martin, J.W.; Francesconi, R.P.; Pandolf, K.B.; Valeri, C.R.

    1986-03-01

    We studied the effects of acute erythrocythemia on temperature regulation responses during exercise in the heat. In a double blind study, 6 subjects (Ss) received a 700-ml solution of autologous red blood cells at a 60% Hct, and 3 Ss (control) received a 700-ml saline solution. All Ss attempted a Heat Stress Test (HST) two weeks prior to and 48-h post-transfusion during summer months. After 30 min of rest in a 20/sup 0/C antechamber, the HST consisted of a 120-min exposure (two repeats of 15-min rest and 45-min treadmill walk) in a 35/sup 0/C, 45% rh environment while euhydrated. Maximal oxygen uptake (VO/sub 2/ max) and red cell volume (RCV, /sup 51/Cr) were measured approximately 24 h before each HST. For experimental Ss, an increase in RCV (11%, P < 0.01) and VO/sub 2/ max (11%, P < 0.05) was found following transfusion, whereas, differences were not observed in the control Ss. During the HSTs for experimental Ss, metabolic rate as well as steady state rectal and esophageal temperatures were similar, but heat storage tended (P = 0.13) to be lower post-transfusion. Steady state local arm (R + C) was reduced (P < 0.05) with no change in total body sweating rate or local arm evaporative heat loss post-transfusion. For control Ss, thermoregulatory responses were generally not altered post-transfusion. Erythrocythemia may improve steady state sensible heat exchange by allowing a greater volume of blood to be directed to the cutaneous vasculature.

  18. Enhanced economic connectivity to foster heat stress-related losses.

    PubMed

    Wenz, Leonie; Levermann, Anders

    2016-06-01

    Assessing global impacts of unexpected meteorological events in an increasingly connected world economy is important for estimating the costs of climate change. We show that since the beginning of the 21st century, the structural evolution of the global supply network has been such as to foster an increase of climate-related production losses. We compute first- and higher-order losses from heat stress-induced reductions in productivity under changing economic and climatic conditions between 1991 and 2011. Since 2001, the economic connectivity has augmented in such a way as to facilitate the cascading of production loss. The influence of this structural change has dominated over the effect of the comparably weak climate warming during this decade. Thus, particularly under future warming, the intensification of international trade has the potential to amplify climate losses if no adaptation measures are taken. PMID:27386555

  19. Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance.

    PubMed

    Abou Alhamed, M F; Shebany, Y M

    2012-09-01

    This study aims at characterisation of the impact of Chaetomium globosum on copper stress resistance of maize seedlings. Higher levels of copper treatment decreased maize dry weight and induced a marked increase in osmotic solutes, antioxidant enzyme activity and the level of lipid peroxidation. On the other hand, addition of the endophytic C. globosum alleviated the toxic effect of copper on maize growth. The combination of copper sulphate and Chaetomium increased seedling dry weight, osmotic solute content and antioxidant enzyme activity compared to copper sulphate alone, while lipid peroxidation levels were also decreased. The fungal scavenger system might be important for supporting the ability of maize seedlings to resist copper toxicity. PMID:22672065

  20. Physiological Correlation of Airway Pressure and Transpulmonary Pressure Stress Index on Respiratory Mechanics in Acute Respiratory Failure

    PubMed Central

    Pan,