Science.gov

Sample records for acute stress exposure

  1. Increased oxidative stress following acute and chronic high altitude exposure.

    PubMed

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude.

  2. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    PubMed

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p < 0.001) and returned to baseline by 180 min, whereas H(2)O(2) increased at 120 min and remained increased at 240 min (p = 0.001). No changes in exhaled NO and NO(2)/NO(3) were observed, while decreases in FEV(1) (p < 0.001) and FEV(1)/FVC (p < 0.001) were observed after exposure and returned to baseline by 180 min. A 1-h exposure to secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28.

  3. Cumulative exposure to prior collective trauma and acute stress responses to the Boston marathon bombings.

    PubMed

    Garfin, Dana Rose; Holman, E Alison; Silver, Roxane Cohen

    2015-06-01

    The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metropolitan Boston (n = 846) and New York City (n = 941) completed Internet-based surveys shortly after the Boston Marathon bombings. Cumulative direct exposure and indirect exposure to prior community trauma and acute stress symptoms were assessed. Acute stress levels did not differ between Boston and New York metropolitan residents. Cumulative direct and indirect, live-media-based exposure to 9/11, Superstorm Sandy, and the Sandy Hook shooting were positively associated with acute stress responses in the covariate-adjusted model. People who experience multiple community-based traumas may be sensitized to the negative impact of subsequent events, especially in communities previously exposed to similar disasters. PMID:25896419

  4. Exposure to acute stress enhances decision-making competence: Evidence for the role of DHEA.

    PubMed

    Shields, Grant S; Lam, Jovian C W; Trainor, Brian C; Yonelinas, Andrew P

    2016-05-01

    Exposure to acute stress can impact performance on numerous cognitive abilities, but little is known about how acute stress affects real-world decision-making ability. In the present study, we induced acute stress with a standard laboratory task involving uncontrollable socio-evaluative stress and subsequently assessed decision-making ability using the Adult Decision Making Competence index. In addition, we took baseline and post-test saliva samples from participants to examine associations between decision-making competence and adrenal hormones. Participants in the stress induction group showed enhanced decision-making competence, relative to controls. Further, although both cortisol and dehydroepiandrosterone (DHEA) reactivity predicted decision-making competence when considered in isolation, DHEA was a significantly better predictor than cortisol when both hormones were considered simultaneously. Thus, our results show that exposure to acute stress can have beneficial effects on the cognitive ability underpinning real-world decision-making and that this effect relates to DHEA reactivity more than cortisol.

  5. Perceived Chronic Stress Exposure Modulates Reward-Related Medial Prefrontal Cortex Responses to Acute Stress in Depression

    PubMed Central

    Kumar, Poornima; Slavich, George M.; Berghorst, Lisa H.; Treadway, Michael T.; Brooks, Nancy H.; Dutra, Sunny J.; Greve, Douglas N.; O'Donovan, Aoife; Bleil, Maria E.; Maninger, Nicole; Pizzagalli, Diego A.

    2015-01-01

    Introduction Major depressive disorder (MDD) is often precipitated by life stress and growing evidence suggests that stress-induced alterations in reward processing may contribute to such risk. However, no human imaging studies have examined how recent life stress exposure modulates the neural systems that underlie reward processing in depressed and healthy individuals. Methods In this proof-of-concept study, 12 MDD and 10 psychiatrically healthy individuals were interviewed using the Life Events and Difficulties Schedule (LEDS) to assess their perceived levels of recent acute and chronic life stress exposure. Additionally, each participant performed a monetary incentive delay task under baseline (no-stress) and stress (social-evaluative) conditions during functional MRI. Results Across groups, medial prefrontal cortex (mPFC) activation to reward feedback was greater during acute stress versus no-stress conditions in individuals with greater perceived stressor severity. Under acute stress, depressed individuals showed a positive correlation between perceived stressor severity levels and reward-related mPFC activation (r = 0.79, p = 0.004), whereas no effect was found in healthy controls. Moreover, for depressed (but not healthy) individuals, the correlations between the stress (r = 0.79) and no-stress (r = −0.48) conditions were significantly different. Finally, relative to controls, depressed participants showed significantly reduced mPFC grey matter, but functional findings remained when accounting for structural differences. Limitation Small sample size, which warrants replication. Conclusion Depressed individuals experiencing greater recent life stress recruited the mPFC more under stress when processing rewards. Our results represent an initial step toward elucidating mechanisms underlying stress sensitization and recurrence in depression. PMID:25898329

  6. Exposure to Discrimination and Heart Rate Variability Reactivity to Acute Stress among Women with Diabetes.

    PubMed

    Wagner, Julie; Lampert, Rachel; Tennen, Howard; Feinn, Richard

    2015-08-01

    Exposure to racial discrimination has been linked to physiological reactivity. This study investigated self-reported exposure to racial discrimination and parasympathetic [high-frequency heart rate variability (HF-HRV)] and sympathetic (norepinephrine and cortisol) activity at baseline and then again after acute laboratory stress. Lifetime exposure to racial discrimination was measured with the Schedule of Racist Events scale. Thirty-two women (16 Black and 16 White) with type 2 diabetes performed a public speaking stressor. Beat-to-beat intervals were recorded on electrocardiograph recorders, and HF-HRV was calculated using spectral analysis and natural log transformed. Norepinephrine and cortisol were measured in blood. Higher discrimination predicted lower stressor HF-HRV, even after controlling for baseline HF-HRV. When race, age, A1c and baseline systolic blood pressure were also controlled, racial discrimination remained a significant independent predictor of stressor HF-HRV. There was no association between lifetime discrimination and sympathetic markers. In conclusion, preliminary data suggest that among women with type 2 diabetes mellitus (T2DM), exposure to racial discrimination is adversely associated with parasympathetic, but not sympathetic, reactivity.

  7. Effects of additional prolonged exposure to psychoeducation and relaxation in acute stress disorder.

    PubMed

    Freyth, Claudia; Elsesser, Karin; Lohrmann, Thomas; Sartory, Gudrun

    2010-12-01

    We investigated the effect of prolonged exposure (PE) on the heart rate (HR) and skin conductance response to trauma-related stimuli in acute stress disorder (ASD). Forty recent trauma victims with ASD were randomly assigned to three sessions of either PE or supportive counseling (SC) with both groups also receiving psychoeducation and progressive relaxation. Assessments were carried out before and after treatment and again after 3 months. Four years later, patients were asked by telephone whether they had received further treatment. There were no significant group differences with regard to symptomatic improvement at the end of treatment. Both groups showed initial cardiac acceleration to trauma-related pictures. After treatment the PE group showed attenuation of the HR response and a reduction in spontaneous fluctuations (SF) whereas the SC group showed a decelerative (orienting) response and a marginal increase in SF. Following SC, 43% received further treatment compared to 9% after PE.

  8. Acute Exposure to Stress Improves Performance in Trace Eyeblink Conditioning and Spatial Learning Tasks in Healthy Men

    ERIC Educational Resources Information Center

    Duncko, Roman; Cornwell, Brian; Cui, Lihong; Merikangas, Kathleen R.; Grillon, Christian

    2007-01-01

    The present study investigated the effects of acute stress exposure on learning performance in humans using analogs of two paradigms frequently used in animals. Healthy male participants were exposed to the cold pressor test (CPT) procedure, i.e., insertion of the dominant hand into ice water for 60 sec. Following the CPT or the control procedure,…

  9. Acute stress, depression, and anxiety symptoms among English and Spanish speaking children with recent trauma exposure

    PubMed Central

    Barber, Beth A.; Kohl, Krista L.; Kassam-Adams, Nancy; Gold, Jeffrey I.

    2015-01-01

    A growing literature suggests the clinical importance of acute stress disorder (ASD) symptoms in youth following potentially traumatic events. A multisite sample of English and Spanish speaking children and adolescents (N=479) between the ages of 8 to 17, along with their caregivers completed interviews and self-report questionnaires between 2 days and one month following the event. The results indicate that children with greater total acute stress symptoms reported greater depressive (r = .41, p < .01), and anxiety symptoms (r = .53, p < .01). Examining specific acute stress subscales, re-experiencing was correlated with anxiety (r = .47, p < .01) and arousal was correlated with depression (r = .50, p < .01) and anxiety (r = .55, p < .01). Age was inversely associated with total acute stress symptoms (r = -.24, p < .01), re-experiencing (r = -.17, p < .01), avoidance (r = -.27, p < .01), and arousal (r = -.19, p < .01) and gender was related to total anxiety symptoms (Spearman's rho = .17, p < .01). The current study supports the importance of screening acute stress symptoms and other mental health outcomes following a potentially traumatic event in children and adolescents. Early screening may enable clinicians to identify and acutely intervene to support children's psychological and physical recovery. PMID:24337685

  10. The effects of acute stress exposure on striatal activity during Pavlovian conditioning with monetary gains and losses.

    PubMed

    Lewis, Andrea H; Porcelli, Anthony J; Delgado, Mauricio R

    2014-01-01

    Pavlovian conditioning involves the association of an inherently neutral stimulus with an appetitive or aversive outcome, such that the neutral stimulus itself acquires reinforcing properties. Across species, this type of learning has been shown to involve subcortical brain regions such as the striatum and the amygdala. It is less clear, however, how the neural circuitry involved in the acquisition of Pavlovian contingencies in humans, particularly in the striatum, is affected by acute stress. In the current study, we investigate the effect of acute stress exposure on Pavlovian conditioning using monetary reinforcers. Participants underwent a partial reinforcement conditioning procedure in which neutral stimuli were paired with high and low magnitude monetary gains and losses. A between-subjects design was used, such that half of the participants were exposed to cold stress while the remaining participants were exposed to a no stress control procedure. Cortisol measurements and subjective ratings were used as measures of stress. We observed an interaction between stress, valence, and magnitude in the ventral striatum, with the peak in the putamen. More specifically, the stress group exhibited an increased sensitivity to magnitude in the gain domain. This effect was driven by those participants who experienced a larger increase in circulating cortisol levels in response to the stress manipulation. Taken together, these results suggest that acute stress can lead to individual differences in circulating cortisol levels which influence the striatum during Pavlovian conditioning with monetary reinforcers.

  11. The effects of acute stress exposure on striatal activity during Pavlovian conditioning with monetary gains and losses

    PubMed Central

    Lewis, Andrea H.; Porcelli, Anthony J.; Delgado, Mauricio R.

    2014-01-01

    Pavlovian conditioning involves the association of an inherently neutral stimulus with an appetitive or aversive outcome, such that the neutral stimulus itself acquires reinforcing properties. Across species, this type of learning has been shown to involve subcortical brain regions such as the striatum and the amygdala. It is less clear, however, how the neural circuitry involved in the acquisition of Pavlovian contingencies in humans, particularly in the striatum, is affected by acute stress. In the current study, we investigate the effect of acute stress exposure on Pavlovian conditioning using monetary reinforcers. Participants underwent a partial reinforcement conditioning procedure in which neutral stimuli were paired with high and low magnitude monetary gains and losses. A between-subjects design was used, such that half of the participants were exposed to cold stress while the remaining participants were exposed to a no stress control procedure. Cortisol measurements and subjective ratings were used as measures of stress. We observed an interaction between stress, valence, and magnitude in the ventral striatum, with the peak in the putamen. More specifically, the stress group exhibited an increased sensitivity to magnitude in the gain domain. This effect was driven by those participants who experienced a larger increase in circulating cortisol levels in response to the stress manipulation. Taken together, these results suggest that acute stress can lead to individual differences in circulating cortisol levels which influence the striatum during Pavlovian conditioning with monetary reinforcers. PMID:24904331

  12. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash

    SciTech Connect

    Marchini, T.; Magnani, N.D.; Paz, M.L.; Vanasco, V.; Tasat, D.; González Maglio, D.H.; and others

    2014-01-15

    It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acid levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5 h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1 h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3 h. The onset of an adaptive response was observed at 5 h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-α and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. - Highlights: • An acute exposure to ROFA triggers the occurrence of systemic oxidative stress. • Changes in plasmatic oxidative stress markers appear as early as 1 h after exposure. • ROFA induces proinflammatory cytokines release and intravascular leukocyte activation. • PMN

  13. Acute acidic exposure induces p53-mediated oxidative stress and DNA damage in tilapia (Oreochromis niloticus) blood cells.

    PubMed

    Mai, Wei-jun; Yan, Jun-lun; Wang, Lei; Zheng, Ying; Xin, Yu; Wang, Wei-na

    2010-11-01

    Acid rain and inputs of acidic effluent can result in increased acidity in aquatic ecosystems, where it is known to have a significant impact and possibly, to cause the decline of some populations of aquatic organisms. In previous studies, intracellular acid-induced oxidative stress has been shown to cause DNA damage, and cooperatively activate the expression of the p53 gene. The acute effects of acidic environments on shrimp and fish have been widely studied. However, the molecular mechanism of acid-induced injury remains largely unknown. In this study, we examined the cellular responses of tilapia to acidic exposure-induced oxidative stress and antioxidant enzyme gene expression. Furthermore, we determined how acute acid stress activates the ATM-p53 signal pathway. We measured the upregulation of reactive oxygen species (ROS) production, the intracellular Ca(2)(+) concentration ([Ca(2)(+)](i)), the tail DNA values, the malondialdehyde (MDA) level in the blood cells and the percentage of dead and damaged blood cells. Our results suggest that oxidative stress and DNA damage occurred in tilapia in conditions where the pH was 5.3. Apoptosis was detected by Hoechst staining, which was mainly associated with changes in cell viability. The parameters that we measured were related to acid-induced DNA damage, and all parameters changed in the blood cells through time. The effects of acute acid exposure (pH 5.3) on the expression of ATM, p53, p21, Bax, manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) were investigated in tilapia blood cells. The results showed that acute acid stress induced upregulation of ATM, p53 and p21, associated with increasing of DNA damage and apoptosis in blood cells. Additionally, the expression of Bax was slightly increased. Moreover, consensus p53-binding sequences were identified in tilapia MnSOD and GPx gene promoter regions and increased levels of ROS in the blood cells coincided with increased mRNA expression of p53, Mn

  14. The effects of acute waterborne exposure to sublethal concentrations of molybdenum on the stress response in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Ricketts, Chelsea D; Bates, William R; Reid, Scott D

    2015-01-01

    To determine if molybdenum (Mo) is a chemical stressor, fingerling and juvenile rainbow trout (Oncorhynchus mykiss) were exposed to waterborne sodium molybdate (0, 2, 20, or 1,000 mg l-1 of Mo) and components of the physiological (plasma cortisol, blood glucose, and hematocrit) and cellular (heat shock protein [hsp] 72, hsp73, and hsp90 in the liver, gills, heart, and erythrocytes and metallothionein [MT] in the liver and gills) stress responses were measured prior to initiation of exposure and at 8, 24, and 96 h. During the acute exposure, plasma cortisol, blood glucose, and hematocrit levels remained unchanged in all treatments. Heat shock protein 72 was not induced as a result of exposure and there were no detectable changes in total hsp70 (72 and 73), hsp90, and MT levels in any of the tissues relative to controls. Both fingerling and juvenile fish responded with similar lack of apparent sensitivity to Mo exposure. These experiments demonstrate that exposure to waterborne Mo of up to 1,000 mg l(-1) did not activate a physiological or cellular stress response in fish. Information from this study suggests that Mo water quality guidelines for the protection of aquatic life are highly protective of freshwater fish, namely rainbow trout.

  15. The Effects of Acute Waterborne Exposure to Sublethal Concentrations of Molybdenum on the Stress Response in Rainbow Trout, Oncorhynchus mykiss

    PubMed Central

    Ricketts, Chelsea D.; Bates, William R.; Reid, Scott D.

    2015-01-01

    To determine if molybdenum (Mo) is a chemical stressor, fingerling and juvenile rainbow trout (Oncorhynchus mykiss) were exposed to waterborne sodium molybdate (0, 2, 20, or 1,000 mg l-1 of Mo) and components of the physiological (plasma cortisol, blood glucose, and hematocrit) and cellular (heat shock protein [hsp] 72, hsp73, and hsp90 in the liver, gills, heart, and erythrocytes and metallothionein [MT] in the liver and gills) stress responses were measured prior to initiation of exposure and at 8, 24, and 96 h. During the acute exposure, plasma cortisol, blood glucose, and hematocrit levels remained unchanged in all treatments. Heat shock protein 72 was not induced as a result of exposure and there were no detectable changes in total hsp70 (72 and 73), hsp90, and MT levels in any of the tissues relative to controls. Both fingerling and juvenile fish responded with similar lack of apparent sensitivity to Mo exposure. These experiments demonstrate that exposure to waterborne Mo of up to 1,000 mg l-1 did not activate a physiological or cellular stress response in fish. Information from this study suggests that Mo water quality guidelines for the protection of aquatic life are highly protective of freshwater fish, namely rainbow trout. PMID:25629693

  16. Amphetamine sensitization and cross-sensitization with acute restraint stress: impact of prenatal alcohol exposure in male and female rats

    PubMed Central

    Uban, Kristina A.; Comeau, Wendy L.; Bodnar, Tamara; Yu, Wayne K.; Weinberg, Joanne; Galea, Liisa A. M.

    2014-01-01

    Rationale Individuals with fetal alcohol spectrum disorder (FASD) are at increased risk for substance use disorders (SUD). In typically developing individuals, susceptibility to SUD is associated with alterations in dopamine and hypothalamic-pituitary-adrenal (HPA) systems, and their interactions. Prenatal alcohol exposure (PAE) alters dopamine and HPA systems, yet effects of PAE on dopamine-HPA interactions are unknown. Amphetamine-stress cross-sensitization paradigms were utilized to investigate sensitivity of dopamine and stress (HPA) systems, and their interactions following PAE. Methods Adult Sprague-Dawley offspring from PAE, pair-fed, and ad libitum-fed control groups were assigned to amphetamine-(1–2mg/kg) or saline-treated conditions, with injections every other day for 15 days. 14 days later, all animals received an amphetamine challenge (1mg/kg) and 5 days later, hormones were measured under basal or acute stress conditions. Amphetamine sensitization (augmented locomotion, days 1–29) and cross-sensitization with acute restraint stress (increased stress hormones, day 34) were assessed. Results PAE rats exhibited a lower threshold for amphetamine sensitization compared to controls, suggesting enhanced sensitivity of dopaminergic systems to stimulant-induced changes. Cross-sensitization between amphetamine (dopamine) and stress (HPA hormone) systems was evident in PAE, but not in control rats. PAE males exhibited increased dopamine receptor expression (mPFC) compared to controls. Conclusions PAE alters induction and expression of sensitization/cross-sensitization, as reflected in locomotor, neural, and endocrine changes, in a manner consistent with increased sensitivity of dopamine and stress systems. These results provide insight into possible mechanisms that could underlie increased prevalence of SUD, as well as the impact of widely prescribed stimulant medications among adolescents with FASD. PMID:25420606

  17. Oxidative stress related to chlorpyrifos exposure in rainbow trout: Acute and medium term effects on genetic biomarkers.

    PubMed

    Benedetto, A; Brizio, P; Squadrone, S; Scanzio, T; Righetti, M; Gasco, L; Prearo, M; Abete, M C

    2016-05-01

    Organophosphates (OPs) are derivatives of phosphoric acid widely used in agriculture as pesticides. Chlorpyrifos (CPF) is an OP that is extremely toxic to aquatic organisms. Rainbow trout (Oncorhynchus mykiss) is considered as a sentinel model species for ecotoxicology assessment in freshwater ecosystems. An exposure study was carried out on rainbow trout to investigate genetic responses to CPF-induced oxidative stress by Real-Time PCR, and to determine the accumulation dynamics of CPF and toxic metabolite chlorpyrifos-oxon (CPF-ox) in edible parts, by HPLC-MS/MS. Among the genes considered to be related to oxidative stress, a significant increase in HSP70 mRNA levels was observed in liver samples up to 14 days after CPF exposure (0.05 mg/L). CPF concentrations in muscle samples reach mean values of 285.25 ng/g within 96 hours of exposure, while CPF-ox concentrations were always under the limit of quantification (LOQ) of the applied method. Our findings lead us to consider HSP70 as a suitable genetic marker in rainbow trout for acute and medium-term monitoring of CPF exposure, complementary to analytical determinations.

  18. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash.

    PubMed

    Marchini, T; Magnani, N D; Paz, M L; Vanasco, V; Tasat, D; González Maglio, D H; Alvarez, S; Evelson, P A

    2014-01-15

    It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acid levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3h. The onset of an adaptive response was observed at 5h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-α and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. PMID:24321338

  19. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash.

    PubMed

    Marchini, T; Magnani, N D; Paz, M L; Vanasco, V; Tasat, D; González Maglio, D H; Alvarez, S; Evelson, P A

    2014-01-15

    It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acid levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3h. The onset of an adaptive response was observed at 5h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-α and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation.

  20. The Protective Effects of Melatonin Against Oxidative Stress and Inflammation Induced by Acute Cadmium Exposure in Mice Testis.

    PubMed

    Li, Renyan; Luo, Xue; Li, Lianbing; Peng, Qiang; Yang, Yuyou; Zhao, Letian; Ma, Mingfu; Hou, Zhiwei

    2016-03-01

    Cadmium (Cd) is widely used in daily life and was recently recognized as a possible source of human toxicity due to its ability to accumulate in organs. Previous studies have shown that Cd exposure may cause testicular toxicity through oxidative stress and an inflammatory effect. Melatonin has been demonstrated to be an effective anti-oxidant and has an anti-inflammatory effect. The aim of the present study was to investigate the toxicological effects of Cd on reproduction in male mice and the potential protective action of melatonin against these adverse effects. Adult male mice were injected intraperitoneally with Cd at a dose of 2 mg/kg body weight per day for seven consecutive days with or without melatonin pretreatment. Sex organ weight, sperm parameters including sperm quality, apoptosis, acrosome integrity, mitochondrial membrane potential, testicular morphology, serum sex hormone, inflammatory status, and oxidative stress were evaluated. The results showed that significant adverse effects were observed in the male reproductive system after Cd exposure, including alterations in sperm parameters, increased DNA damage, and sex hormone disturbance. Acute Cd exposure also significantly increased malondialdehyde (MDA) contents, decreased glutathione (GSH) and superoxide dismutase (SOD) activities, and upregulated levels of the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β), in the testis. In contrast, melatonin pretreatment significantly alleviated these toxic effects, and its mechanism may involve inhibiting MDA level, restoring GSH and SOD activities, and reducing the upregulation of TNF-α and IL-1β. Our data suggest that oxidative stress and inflammation are involved in Cd-induced toxicity in the male reproductive system and that co-administration of melatonin exerts a protective effect against Cd-induced male reproductive toxicity. PMID:26224376

  1. OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM)

    EPA Science Inventory

    OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM). E S Roberts1, R Jaskot2, J Richards2, and K L Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC a...

  2. Prior exposure to capture heightens the corticosterone and behavioural responses of little penguins (Eudyptula minor) to acute stress.

    PubMed

    Carroll, Gemma; Turner, Emma; Dann, Peter; Harcourt, Rob

    2016-01-01

    Studies of physiology can provide important insight into how animals are coping with challenges in their environment and can signal the potential effects of exposure to human activity in both the short and long term. In this study, we measured the physiological and behavioural response of little penguins (Eudyptula minor) that were naïve to human activity over 30 min of capture and handling. We assessed relationships between corticosterone secretion, behaviour, sex and time of day in order to characterize the determinants of the natural stress response. We then compared the response of these naïve penguins with the responses of female little penguins that had been exposed to research activity (bimonthly nest check and weighing) and to both research activity (monthly nest check and weighing) and evening viewing by tourists. We found that corticosterone concentrations increased significantly over 30 min of capture, with naïve penguins demonstrating a more acute stress response during the day than at night. Penguins that had previously been exposed to handling at the research and research/visitor sites showed elevated corticosterone concentrations and consistently more aggressive behaviour after 30 min compared with naïve birds, although there were no significant differences in baseline corticosterone concentrations. Our findings demonstrate that these little penguins have not habituated to routine capture, but rather mount a heightened physiological and behavioural response to handling by humans. Less invasive research monitoring techniques, such as individual identification with PIT tags and automatic recording and weighing, and a reduction in handling during the day should be considered to mitigate some of the potentially negative effects of disturbance. Given the paucity of data on the long-term consequences of heightened stress on animal physiology, our study highlights the need for further investigation of the relationship between the corticosterone

  3. Prior exposure to capture heightens the corticosterone and behavioural responses of little penguins (Eudyptula minor) to acute stress

    PubMed Central

    Carroll, Gemma; Turner, Emma; Dann, Peter; Harcourt, Rob

    2016-01-01

    Studies of physiology can provide important insight into how animals are coping with challenges in their environment and can signal the potential effects of exposure to human activity in both the short and long term. In this study, we measured the physiological and behavioural response of little penguins (Eudyptula minor) that were naïve to human activity over 30 min of capture and handling. We assessed relationships between corticosterone secretion, behaviour, sex and time of day in order to characterize the determinants of the natural stress response. We then compared the response of these naïve penguins with the responses of female little penguins that had been exposed to research activity (bimonthly nest check and weighing) and to both research activity (monthly nest check and weighing) and evening viewing by tourists. We found that corticosterone concentrations increased significantly over 30 min of capture, with naïve penguins demonstrating a more acute stress response during the day than at night. Penguins that had previously been exposed to handling at the research and research/visitor sites showed elevated corticosterone concentrations and consistently more aggressive behaviour after 30 min compared with naïve birds, although there were no significant differences in baseline corticosterone concentrations. Our findings demonstrate that these little penguins have not habituated to routine capture, but rather mount a heightened physiological and behavioural response to handling by humans. Less invasive research monitoring techniques, such as individual identification with PIT tags and automatic recording and weighing, and a reduction in handling during the day should be considered to mitigate some of the potentially negative effects of disturbance. Given the paucity of data on the long-term consequences of heightened stress on animal physiology, our study highlights the need for further investigation of the relationship between the corticosterone

  4. Having your cake and eating it too: A habit of comfort food may link chronic social stress exposure and acute stress-induced cortisol hyporesponsiveness.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stress has been tied to changes in eating behavior and food choice. Previous studies in rodents have shown that chronic stress increases palatable food intake which, in turn, increases mesenteric fat and inhibits acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity. The effect of...

  5. Characterising multi-level effects of acute pressure exposure on a shallow-water invertebrate: insights into the kinetics and hierarchy of the stress response.

    PubMed

    Morris, James P; Thatje, Sven; Ravaux, Juliette; Shillito, Bruce; Hauton, Chris

    2015-08-01

    Hydrostatic pressure is an important, ubiquitous, environmental variable of particular relevance in the marine environment. However, it is widely overlooked despite recent evidence that some marine ectotherms may be demonstrating climate-driven bathymetric range shifts. Wide-ranging effects of increased hydrostatic pressure have been observed from the molecular through to the behavioural level. Still, no study has simultaneously examined these multiple levels of organisation in a single experiment in order to understand the kinetics, hierarchy and interconnected nature of such responses during an acute exposure, and over a subsequent recovery period. Here, we quantify the transcription of a set of previously characterised genes during and after acute pressure exposure in adults of the shrimp Palaemonetes varians. Further, we perform respiratory rate and behavioural analysis over the same period. Increases in expression of genes associated with stress and metabolism were observed during and after high-pressure exposure. Respiratory rate increased during exposure and into the recovery period. Finally, differential behaviour was observed under elevated hydrostatic pressure in comparison to ambient pressure. Characterising generalised responses to acute elevated pressure is a vital precursor to longer-term, acclimation-based pressure studies. Results provide a novel insight into what we term the overall stress response (OSR) to elevated pressure; a concept that we suggest to be applicable to other environmental stressors. We highlight the importance of considering more than a single component of the stress response in physiological studies, particularly in an era where environmental multi-stressor studies are proliferating.

  6. Differential influence of the 5-HTTLPR genotype, neuroticism and real-life acute stress exposure on appetite and energy intake.

    PubMed

    Capello, Aimée E M; Markus, C Rob

    2014-06-01

    Stress or negative mood often promotes energy intake and overeating. Since the serotonin transporter-linked polymorphic region (5-HTTLPR) is found to mediate stress vulnerability as well as to influence energy intake, this gene may also influence the negative effects of stress exposure on overeating. Moreover, since stress proneness also reflects cognitive stress vulnerability - as often defined by trait neuroticism - this may additionally predispose for stress-induced overeating. In the present study it was investigated whether the 5-HTTLPR genotype interacted with neuroticism on changes in mood, appetite and energy intake following exposure to a real-life academic examination stressor. In a balanced-experimental design, homozygous S-allele and L-allele carriers (N = 94) with the lowest and highest neuroticism scores were selected from a large database of 5-HTTLPR genotyped students. Mood, appetite and energy intake were measured before and after a 2-hour academic examination and compared with a control day. Examination influenced appetite for particular sweet snacks differently depending on 5-HTTLPR genotype and neuroticism. S/S compared with L/L subjects reported greater examination stress, and this was accompanied by a more profound post-stress increase in appetite for sweet snacks. Data also revealed a 5-HTTLPR genotype by trait neuroticism interaction on energy intake, regardless of examination. These results consolidate previous assumptions of 5-HTTLPR involvement in stress vulnerability and suggest 5-HTTLPR and neuroticism may influence stress-induced overeating depending on the type of food available. These findings furthermore link previous findings of increased risk for weight gain in S/S-allele carriers, particularly with high scores on trait neuroticism, to increased energy intake.

  7. Stress and acute respiratory infection

    SciTech Connect

    Graham, N.M.; Douglas, R.M.; Ryan, P.

    1986-09-01

    To examine the relationship between stress and upper respiratory tract infection, 235 adults aged 14-57 years, from 94 families affiliated with three suburban family physicians in Adelaide, South Australia, participated in a six-month prospective study. High and low stress groups were identified by median splits of data collected from the Life Events Inventory, the Daily Hassles Scale, and the General Health Questionnaire, which were administered both before and during the six months of respiratory diary data collection. Using intra-study stress data, the high stress group experienced significantly more episodes (mean of 2.71 vs. 1.56, p less than 0.0005) and symptom days (mean of 29.43 vs. 15.42, p = 0.005) of respiratory illness. The two groups were almost identical with respect to age, sex, occupational status, smoking, passive smoking, exposure to air pollution, family size, and proneness to acute respiratory infection in childhood. In a multivariate model with total respiratory episodes as the dependent variable, 21% of the variance was explained, and two stress variables accounted for 9% of the explained variance. Significant, but less strong relationships were also identified between intra-study stress variables and clinically definite episodes and symptom days in both clinically definite and total respiratory episodes. Pre-study measures of stress emphasized chronic stresses and were less strongly related to measures of respiratory illness than those collected during the study. However, significantly more episodes (mean of 2.50 vs. 1.75, p less than 0.02) and symptom days (mean of 28.00 vs. 17.06, p less than 0.03) were experienced in the high stress group. In the multivariate analyses, pre-study stress remained significantly associated with total respiratory episodes nd symptom days in total and ''definite'' respiratory episodes.

  8. Oxidative stress in female B6C3F1 mice following acute and subchronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

    PubMed

    Slezak, B P; Hatch, G E; DeVito, M J; Diliberto, J J; Slade, R; Crissman, K; Hassoun, E; Birnbaum, L S

    2000-04-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly persistent trace environmental contaminant and is one of the most potent toxicants known to man. Hassoun et al. (1998, Toxicol. Sci. 42, 23-27) reported an increase in the production of reactive oxygen species (ROS) in the brain of female B6C3F1 mice following subchronic exposure to TCDD at doses as low as 0.45 ng/kg/day. In the present study, oxidative stress was characterized in liver, spleen, lung, and kidney following subchronic (0.15-150 ng/kg; 5 days/week for 13 weeks, po) or acute exposure (0.001-100 microg/kg, po) to TCDD in order to investigate the interaction between tissue concentration and time for production of ROS. Seven days following acute administration of TCDD, mice were sacrificed; they demonstrated increases in liver superoxide anion production (SOAP) and thiobarbituric acid reactive substances (TBARS) at doses of 10 and 100 microg/kg, associated with hepatic TCDD concentrations of 55 and 321 ng/g, respectively. Liver obtained from mice following subchronic TCDD exposure demonstrated an increase in SOAP and TBARS above controls at doses of 150 ng/kg/day with liver TCDD concentration of only 12 ng/g. Interestingly, glutathione (GSH) levels in lung and kidney following sub-chronic TCDD exposure were decreased at the low dose of 0.15 ng/kg/day. This effect disappeared at higher TCDD doses. The data suggest that higher tissue TCDD concentrations are required to elicit oxidative stress following acute dosing than with subchronic TCDD exposure. Therefore, the mechanism of ROS production following TCDD exposure does not appear to be solely dependent upon the concentration of TCDD within the tissue. In addition, very low doses of TCDD that result in tissue concentrations similar to the background levels found in the human population produced an effect on an oxidative stress endogenous defense system. The role of this effect in TCDD-mediated toxicity is not known and warrants further investigation.

  9. Neurobehavioural Changes and Brain Oxidative Stress Induced by Acute Exposure to GSM900 Mobile Phone Radiations in Zebrafish (Danio rerio).

    PubMed

    Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha

    2016-04-01

    The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish.

  10. Neurobehavioural Changes and Brain Oxidative Stress Induced by Acute Exposure to GSM900 Mobile Phone Radiations in Zebrafish (Danio rerio).

    PubMed

    Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha

    2016-04-01

    The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish. PMID:27123163

  11. Neurobehavioural Changes and Brain Oxidative Stress Induced by Acute Exposure to GSM900 Mobile Phone Radiations in Zebrafish (Danio rerio)

    PubMed Central

    Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha

    2016-01-01

    The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish. PMID:27123163

  12. Ascorbic acid regulation in stress responses during acute cold exposure and following recovery in juvenile Chinese soft-shelled turtle (Pelodiscus sinensis).

    PubMed

    Chen, Bo-jian; Niu, Cui-juan; Yuan, Lin

    2015-06-01

    Intense temperature change often leads to increased oxidative stress in many animals with a few exceptions, including the turtle. To date, little is known about the mechanism of protective antioxidative defenses in turtles during acute temperature change, specifically the role that the antioxidant ascorbic acid (AA) plays. In this study, Chinese soft-shelled turtles (Pelodiscus sinensis) were initially acclimated at 28°C (3 wks), exposed to acute cold condition (8°C, 8 h) and finally placed in recovery (28°C, 24 h). L-Gulonolactone oxidase (GLO) mRNA exhibited a stable transcription pattern during the intense thermal fluctuation. GLO activity also remained stable, which validated the mRNA expression pattern. The similar Q10 values for GLO activity in the different treatment groups at incubation temperatures of 28°C and 8°C indicated that the GLO activity response to thermal change exhibited a temperature-dependent enzymatic kinetic characteristic. The AA storage was tissue-specific as well as the AA re-supply in the recovery period, with brain as the priority. Despite the insufficient transport during cold exposure, the plasma AA reservoir greatly contributed to the redistribution of AA during recovery. Depending on the prominent GLO activity, the high level of tissue-specific AA storage and the extraordinary plasma AA transport potential, the Chinese soft-shelled turtle endured severe thermal fluctuations with no apparent oxidative stress. However, the significant decrease in AA concentration in the brain tissue during acute cold exposure suggested that such a strategy may not be sufficient for prolonged cold exposure.

  13. Acute exposure to diesel exhaust impairs nitric oxide-mediated endothelial vasomotor function by increasing endothelial oxidative stress.

    PubMed

    Wauters, Aurélien; Dreyfuss, Céline; Pochet, Stéphanie; Hendrick, Patrick; Berkenboom, Guy; van de Borne, Philippe; Argacha, Jean-François

    2013-08-01

    Exposure to diesel exhaust was recently identified as an important cardiovascular risk factor, but whether it impairs nitric oxide (NO)-mediated endothelial function and increases production of reactive oxygen species (ROS) in endothelial cells is not known. We tested these hypotheses in a randomized, controlled, crossover study in healthy male volunteers exposed to ambient and polluted air (n=12). The effects of skin microvascular hyperemic provocative tests, including local heating and iontophoresis of acetylcholine and sodium nitroprusside, were assessed using a laser Doppler imager. Before local heating, skin was pretreated by iontophoresis of either a specific NO-synthase inhibitor (L-N-arginine-methyl-ester) or a saline solution (Control). ROS production was measured by chemiluminescence using the lucigenin technique in human umbilical vein endothelial cells preincubated with serum from 5 of the subjects. Exposure to diesel exhaust reduced acetylcholine-induced vasodilation (P<0.01) but did not affect vasodilation with sodium nitroprusside. Moreover, the acetylcholine/sodium nitroprusside vasodilation ratio decreased from 1.51 ± 0.1 to 1.06 ± 0.07 (P<0.01) and was correlated to inhaled particulate matter 2.5 (r=-0.55; P<0.01). NO-mediated skin thermal vasodilatation decreased from 466 ± 264% to 29 ± 123% (P<0.05). ROS production was increased after polluted air exposure (P<0.01) and was correlated with the total amount of inhaled particulate matter <2.5 μm (PM2.5). In healthy subjects, acute experimental exposure to diesel exhaust impaired NO-mediated endothelial vasomotor function and promoted ROS generation in endothelial cells. Increased PM2.5 inhalation enhances microvascular dysfunction and ROS production. PMID:23798345

  14. Acute exposure to diesel exhaust impairs nitric oxide-mediated endothelial vasomotor function by increasing endothelial oxidative stress.

    PubMed

    Wauters, Aurélien; Dreyfuss, Céline; Pochet, Stéphanie; Hendrick, Patrick; Berkenboom, Guy; van de Borne, Philippe; Argacha, Jean-François

    2013-08-01

    Exposure to diesel exhaust was recently identified as an important cardiovascular risk factor, but whether it impairs nitric oxide (NO)-mediated endothelial function and increases production of reactive oxygen species (ROS) in endothelial cells is not known. We tested these hypotheses in a randomized, controlled, crossover study in healthy male volunteers exposed to ambient and polluted air (n=12). The effects of skin microvascular hyperemic provocative tests, including local heating and iontophoresis of acetylcholine and sodium nitroprusside, were assessed using a laser Doppler imager. Before local heating, skin was pretreated by iontophoresis of either a specific NO-synthase inhibitor (L-N-arginine-methyl-ester) or a saline solution (Control). ROS production was measured by chemiluminescence using the lucigenin technique in human umbilical vein endothelial cells preincubated with serum from 5 of the subjects. Exposure to diesel exhaust reduced acetylcholine-induced vasodilation (P<0.01) but did not affect vasodilation with sodium nitroprusside. Moreover, the acetylcholine/sodium nitroprusside vasodilation ratio decreased from 1.51 ± 0.1 to 1.06 ± 0.07 (P<0.01) and was correlated to inhaled particulate matter 2.5 (r=-0.55; P<0.01). NO-mediated skin thermal vasodilatation decreased from 466 ± 264% to 29 ± 123% (P<0.05). ROS production was increased after polluted air exposure (P<0.01) and was correlated with the total amount of inhaled particulate matter <2.5 μm (PM2.5). In healthy subjects, acute experimental exposure to diesel exhaust impaired NO-mediated endothelial vasomotor function and promoted ROS generation in endothelial cells. Increased PM2.5 inhalation enhances microvascular dysfunction and ROS production.

  15. Cellular metabolic, stress, and histological response on exposure to acute toxicity of endosulfan in tilapia (Oreochromis mossambicus).

    PubMed

    Kumar, Neeraj; Sharma, Rupam; Tripathi, Gayatri; Kumar, Kundan; Dalvi, Rishikesh S; Krishna, Gopal

    2016-01-01

    Endosulfan is one of the most hazardous organochlorines pesticides responsible for environmental pollution, as it is very persistent and shows bio-magnification. This study evaluated the impact of acute endosulfan toxicity on metabolic enzymes, lysozyme activities, heat shock protein (Hsp) 70 expression, and histopathology in Tilapia (Oreochromis mossambicus). Among the indicators that were induced in dose dependent manner were the enzymes of amino acid metabolism (serum alanine aminotransferase and aspartate aminotransferase), carbohydrate metabolism (serum lactate dehydrogenase), pentose phosphate pathway (Glucose-6-phosphate dehydrogenase) as well as lysozyme and Hsp70 in liver and gill, while liver and gill Isocitrate dehydrogenase (TCA cycle enzyme) and marker of general energetics (Total adenosine triphosphatase) were inhibited. Histopathological alterations in gill were clubbing of secondary gill lamellae, marked hyperplasia, complete loss of secondary lamellae and atrophy of primary gill filaments. Whereas in liver, swollen hepatocyte, and degeneration with loss of cellular boundaries were distinctly noticed. Overall results clearly demonstrated the unbalanced metabolism and damage of the vital organs like liver and gill in Tilapia due to acute endosulfan exposure.

  16. Acute exposure to rhodamine B.

    PubMed

    Dire, D J; Wilkinson, J A

    1987-01-01

    Rhodamine B is a red colored dye that is used in cosmetic products. We report a case of 17 patients who were exposed to aerosolized Rhodamine B inside a maintenance shop. The mean duration of exposure was 26 minutes (range 2-65). Sixteen of the patients (94%) complained of acute symptoms including: burning of the eyes (82%), excessive tearing (47%), nasal burning (41%), nasal itching (35%), chest pain/tightness (35%), rhinorhea (29%), cough (29%), dyspnea (29%), burning of the throat (24%), burning/pruritic skin (24%), chest burning (12%), headache (6%), and nausea (6%). All of the patients had resolution of their symptoms within 24 hours (less than 4 hours in 63%). Acute exposure to Rhodamine B resulted in transient mucous membrane and skin irritation without evidence of serious sequellae.

  17. Traumatic stress in acute leukemia

    PubMed Central

    Rodin, Gary; Yuen, Dora; Mischitelle, Ashley; Minden, Mark D; Brandwein, Joseph; Schimmer, Aaron; Marmar, Charles; Gagliese, Lucia; Lo, Christopher; Rydall, Anne; Zimmermann, Camilla

    2013-01-01

    Objective Acute leukemia is a condition with an acute onset that is associated with considerable morbidity and mortality. However, the psychological impact of this life-threatening condition and its intensive treatment has not been systematically examined. In the present study, we investigate the prevalence and correlates of post-traumatic stress symptoms in this population. Methods Patients with acute myeloid, lymphocytic, and promyelocytic leukemia who were newly diagnosed, recently relapsed, or treatment failures were recruited at a comprehensive cancer center in Toronto, Canada. Participants completed the Stanford Acute Stress Reaction Questionnaire, Memorial Symptom Assessment Scale, CARES Medical Interaction Subscale, and other psychosocial measures. A multivariate regression analysis was used to assess independent predictors of post-traumatic stress symptoms. Results Of the 205 participants, 58% were male, mean age was 50.1 ± 15.4 years, 86% were recently diagnosed, and 94% were receiving active treatment. The mean Stanford Acute Stress Reaction Questionnaire score was 30.2 ± 22.5, with 27 of 200 (14%) patients meeting criteria for acute stress disorder and 36 (18%) for subsyndromal acute stress disorder. Post-traumatic stress symptoms were associated with more physical symptoms, physical symptom distress, attachment anxiety, and perceived difficulty communicating with health-care providers, and poorer spiritual well-being (all p <0.05). Conclusions The present study demonstrates that clinically significant symptoms of traumatic stress are common in acute leukemia and are linked to the degree of physical suffering, to satisfaction with relationships with health-care providers, and with individual psychological characteristics. Longitudinal study is needed to determine the natural history, but these findings suggest that intervention may be indicated to alleviate or prevent traumatic stress in this population. PMID:22081505

  18. Biochemical and histological evaluation of kidney damage after sub-acute exposure to 2,4-dichlorophenoxyacetic herbicide in rats: involvement of oxidative stress.

    PubMed

    Tayeb, Wafa; Nakbi, Amel; Trabelsi, Mounir; Miled, Abdelhedi; Hammami, Mohamed

    2012-11-01

    The present study evaluated the effects of sub-acute exposure to different doses of 2,4-dichlorophenoxyacetic acid (2,4-D) on rat kidney. Forty animals were divided into four equal groups and treated with different doses of 2,4-D: 0, 15, 75 and 150 mg/kg body weight per day via oral gavage for 28 consecutive days. Renal function, histopathology, tissue malondialdehyde and antioxidant enzyme activities were evaluated. The results showed a significant decrease (p < 0.01) in uric acid level and an increase in plasma levels of urea and creatinine (p < 0.01) in rats administered 2,4-D at the three studied doses. The activities of catalase and superoxide dismutase were significantly affected for all treated rats, while glutathione peroxidase significantly decreased in rats exposed to 2,4-D at a dose of 150 mg/kg. Through sub-acute treatment, starting from the low to the high doses of 2,4-D, there were significant increase in kidney MDA as compared to controls. The histopathological study revealed tubular damages, glomerular alterations, vascular congestion and increased number of pyknotic nuclei in kidneys of all 2,4-D treated groups. The severity of these alterations increase in a dose-dependent manner. Our findings confirm that sub-acute exposure to 2,4-D induced oxidative renal dysfunction in rats. Therefore, at higher doses, 2,4-D may be implicated in the pathogenesis of kidney failure via lipid peroxidation and oxidative stress.

  19. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish.

    PubMed

    Zhao, Xuesong; Wang, Shutao; Wu, Yuan; You, Hong; Lv, Lina

    2013-07-15

    Nano-scale zinc oxide (nano-ZnO) is widely used in various industrial and commercial applications. However, the available toxicological information was inadequate to assess the potential ecological risk of nano-ZnO to aquatic organisms and the publics. In this study, the developmental toxicity, oxidative stress and DNA damage of nano-ZnO embryos were investigated in the embryo-larval zebrafish, the toxicity of Zn(2+) releasing from nano-ZnO were also investigated to ascertain the relationship between the nano-ZnO and corresponding Zn(2+). Zebrafish embryos were exposed to 1, 5, 10, 20, 50, and 100mg/L nano-ZnO and 0.59, 2.15, 3.63, 4.07, 5.31, and 6.04 mg/L Zn(2+) for 144 h post-fertilisation (hpf), respectively. Up to 144 hpf, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and malondialdehyde (MDA) contents, the genes related to oxidative damage, reactive oxygen species (ROS) generation and DNA damage in zebrafish embryos were measured. The nano-ZnO was found to exert a dose-dependent toxicity to zebrafish embryos and larvae, reducing the hatching rate and inducing malformation and the acute toxicity to zebrafish embryos was greater than that of the Zn(2+) solution. The generation of ROS was significantly increased at 50 and 100mg/L nano-ZnO. DNA damage of zebrafish embryo was evaluated by single-cell gel electrophoresis and was enhanced with increasing nano-ZnO concentration. Moreover, the transcriptional expression of mitochondrial inner membrane genes related to ROS production, such as Bcl-2, in response to oxidative damage, such as Nqo1, and related to antioxidant response element such as Gstp2 were significantly down-regulated in the nano-ZnO treatment groups. However, the nano-ZnO up-regulated the transcriptional expression of Ucp2-related to ROS production. In conclusion, nano-ZnO induces developmental toxicity, oxidative stress and DNA damage on zebrafish embryos and the dissolved Zn(2+) only partially

  20. Acute stress does not affect the impairing effect of chronic stress on memory retrieval

    PubMed Central

    Ozbaki, Jamile; Goudarzi, Iran; Salmani, Mahmoud Elahdadi; Rashidy-Pour, Ali

    2016-01-01

    Objective(s): Due to the prevalence and pervasiveness of stress in modern life and exposure to both chronic and acute stresses, it is not clear whether prior exposure to chronic stress can influence the impairing effects of acute stress on memory retrieval. This issue was tested in this study. Materials and Methods: Adult male Wistar rats were randomly assigned to the following groups: control, acute, chronic, and chronic + acute stress groups. The rats were trained with six trials per day for 6 consecutive days in the water maze. Following training, the rats were either kept in control conditions or exposed to chronic stress in a restrainer 6 hr/day for 21 days. On day 22, a probe test was done to measure memory retention. Time spent in target and opposite areas, platform location latency, and proximity were used as indices of memory retention. To induce acute stress, 30 min before the probe test, animals received a mild footshock. Results: Stressed animals spent significantly less time in the target quadrant and more time in the opposite quadrant than control animals. Moreover, the stressed animals showed significantly increased platform location latency and proximity as compared with control animals. No significant differences were found in these measures among stress exposure groups. Finally, both chronic and acute stress significantly increased corticosterone levels. Conclusion: Our results indicate that both chronic and acute stress impair memory retrieval similarly. Additionally, the impairing effects of chronic stress on memory retrieval were not influenced by acute stress. PMID:27635201

  1. Acute stress does not affect the impairing effect of chronic stress on memory retrieval

    PubMed Central

    Ozbaki, Jamile; Goudarzi, Iran; Salmani, Mahmoud Elahdadi; Rashidy-Pour, Ali

    2016-01-01

    Objective(s): Due to the prevalence and pervasiveness of stress in modern life and exposure to both chronic and acute stresses, it is not clear whether prior exposure to chronic stress can influence the impairing effects of acute stress on memory retrieval. This issue was tested in this study. Materials and Methods: Adult male Wistar rats were randomly assigned to the following groups: control, acute, chronic, and chronic + acute stress groups. The rats were trained with six trials per day for 6 consecutive days in the water maze. Following training, the rats were either kept in control conditions or exposed to chronic stress in a restrainer 6 hr/day for 21 days. On day 22, a probe test was done to measure memory retention. Time spent in target and opposite areas, platform location latency, and proximity were used as indices of memory retention. To induce acute stress, 30 min before the probe test, animals received a mild footshock. Results: Stressed animals spent significantly less time in the target quadrant and more time in the opposite quadrant than control animals. Moreover, the stressed animals showed significantly increased platform location latency and proximity as compared with control animals. No significant differences were found in these measures among stress exposure groups. Finally, both chronic and acute stress significantly increased corticosterone levels. Conclusion: Our results indicate that both chronic and acute stress impair memory retrieval similarly. Additionally, the impairing effects of chronic stress on memory retrieval were not influenced by acute stress.

  2. The effect of acute stress exposure on ischemia and reperfusion injury in rat heart: role of oxytocin.

    PubMed

    Moghimian, Maryam; Faghihi, Mahdieh; Karimian, Seyed Morteza; Imani, Alireza

    2012-07-01

    Previous studies showed the protective effects of oxytocin (OT) on myocardial injury in ischemic and reperfused rat heart. Moreover, exposure to various stressors not only evokes sudden cardiovascular effects but also triggers the release of OT in the rat. The present study was aimed to evaluate the possible cardioprotective effects of endogenous OT released in response to stress (St), and effects of administration of exogenous OT on the ischemic-reperfused isolated heart of rats previously exposed to St. Wistar rats were divided into six groups: ischemia/reperfusion (IR); St: rats exposed to swim St for 10 min before anesthesia; St+atosiban (ATO): an OT receptor antagonist, was administered (1.5 mg/kg i.p.) prior to St; St+OT: OT was administered (0.03 mg/kg i.p.) prior to St; OT: OT was administrated prior to anesthesia; ATO was given prior to anesthesia. Isolated hearts were perfused with Krebs buffer solution by the Langendorff method and subjected to 30 min of regional ischemia followed by 60 min of reperfusion. The infarct size (IS) and creatine kinase MB isoenzyme (CK-MB) and lactate dehydrogenase (LDH) in coronary effluent were measured. Hemodynamic parameters were recorded throughout the experiment. The plasma concentrations of OT and corticosterone were significantly increased by St. Unexpectedly St decreased IR injury compared with the IR alone group. OT administration significantly inhibited myocardial injury, and administration of ATO with St abolished recovery of the rate pressure product, and increased IS and levels of CK-MB and LDH. These findings indicate that activation of cardiac OT receptors by OT released in response to St may participate in cardioprotection and inhibition of myocardial IR injury.

  3. The oxidative stress response in freshwater-acclimated killifish (Fundulus heteroclitus) to acute copper and hypoxia exposure.

    PubMed

    Ransberry, Victoria E; Blewett, Tamzin A; McClelland, Grant B

    2016-01-01

    Aquatic organisms face multiple stressors in natural ecosystems. Here we examine the effects of moderate hypoxia and low-level copper (Cu) on freshwater (FW)-acclimated killifish. Both Cu and hypoxia can affect oxidative stress in fish, but it is unclear if in combination these two stressors would act synergistically. We exposed killifish for 96h to Cu in normoxia (total 23.4±0.9μg CuL(-1)), or either no Cu (2.33±0.01mg O2 L(-1)) or with Cu in hypoxia (23.6±0.8μg Cu L(-1); 2.51±0.04mg O2 L(-1)), and compared them to normoxic controls with no added Cu (0.7±0.1μg Cu L(-1); 9.10±0.00mg O2 L(-1)) at a hardness of 140mgL(-1) as CaCO3 equivalents. Gills showed significant Cu accumulation with both excess waterborne Cu in normoxia and in hypoxia. This was accompanied by increases in gill catalase (CAT) activity but with no significant changes in either protein carbonyls or lipid peroxidation (TBARS). Hypoxia alone decreased gill protein carbonyls. Liver showed no change in Cu load, but a significant decline in CAT activity occurred with Cu in normoxia. Liver showed an increase in TBARS with Cu in normoxia. Cu when combined with hypoxia caused a significant decline in cytochrome c oxidase (COX) and citrate synthase (CS) activity in gill and liver. Thus, low waterborne levels of Cu and moderate hypoxia both affected gill and liver phenotypes. However, killifish are tolerant of Cu and hypoxia, and there was no evidence of a synergistic response to exposure to the two stressors combined compared to each stressor alone. PMID:26297808

  4. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung.

    PubMed

    Cohen, Mitchell D; Vaughan, Joshua M; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Kodavanti, Urmila P; Ward, William O; Peltier, Richard E; Zelikoff, Judith; Chen, Lung-chi

    2015-01-01

    First responders (FR) present at Ground Zero in the first 72 h after the World Trade Center (WTC) collapsed have progressively exhibited significant respiratory injuries. The few toxicology studies performed to date evaluated effects from just fine (< 2.5 µm) WTC dusts; none examined health effects/toxicities from atmospheres bearing larger particle sizes, despite the fact the majority (> 96%) of dusts were > 10 µm and most FR likely entrained dusts by mouth breathing. Using a system that generated/delivered supercoarse (10-53 µm) WTC dusts to F344 rats (in a manner that mimicked FR exposures), this study sought to examine potential toxicities in the lungs. In this exploratory study, rats were exposed for 2 h to 100 mg WTC dust/m(3) (while under isoflurane [ISO] anesthesia) or an air/ISO mixture; this dose conservatively modeled likely exposures by mouth-breathing FR facing ≈750-1000 mg WTC dust/m(3). Lungs were harvested 2 h post-exposure and total RNA extracted for subsequent global gene expression analysis. Among the >  1000 genes affected by WTC dust (under ISO) or ISO alone, 166 were unique to the dust exposure. In many instances, genes maximally-induced by the WTC dust exposure (relative to in naïve rats) were unchanged/inhibited by ISO only; similarly, several genes maximally inhibited in WTC dust rats were largely induced/unchanged in rats that received ISO only. These outcomes reflect likely contrasting effects of ISO and the WTC dust on lung gene expression. Overall, the data show that lungs of rats exposed to WTC dust (under ISO) - after accounting for any impact from ISO alone - displayed increased expression of genes related to lung inflammation, oxidative stress, and cell cycle control, while several involved in anti-oxidant function were inhibited. These changes suggested acute inflammogenic effects and oxidative stress in the lungs of WTC dust-exposed rats. This study, thus, concludes that a single very high exposure

  5. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung

    PubMed Central

    Cohen, Mitchell D.; Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Kodavanti, Urmila P.; Ward, William O.; Peltier, Richard E.; Zelikoff, Judith; Chen, Lung-chi

    2015-01-01

    First responders (FR) present at Ground Zero in the first 72 h after the World Trade Center (WTC) collapsed have progressively exhibited significant respiratory injuries. The few toxicology studies performed to date evaluated effects from just fine (<2.5 µm) WTC dusts; none examined health effects/toxicities from atmospheres bearing larger particle sizes, despite the fact the majority (496%) of dusts were >10µm and most FR likely entrained dusts by mouth breathing. Using a system that generated/delivered supercoarse (10–53 µm) WTC dusts to F344 rats (in a manner that mimicked FR exposures), this study sought to examine potential toxicities in the lungs. In this exploratory study, rats were exposed for 2 h to 100 mg WTC dust/m3 (while under isoflurane [ISO] anesthesia) or an air/ISO mixture; this dose conservatively modeled likely exposures by mouth-breathing FR facing ≈750–1000 mg WTC dust/m3. Lungs were harvested 2 h post-exposure and total RNA extracted for subsequent global gene expression analysis. Among the > 1000 genes affected by WTC dust (under ISO) or ISO alone, 166 were unique to the dust exposure. In many instances, genes maximally-induced by the WTC dust exposure (relative to in naïve rats) were unchanged/inhibited by ISO only; similarly, several genes maximally inhibited in WTC dust rats were largely induced/unchanged in rats that received ISO only. These outcomes reflect likely contrasting effects of ISO and the WTC dust on lung gene expression. Overall, the data show that lungs of rats exposed to WTC dust (under ISO) – after accounting for any impact from ISO alone – displayed increased expression of genes related to lung inflammation, oxidative stress, and cell cycle control, while several involved in anti-oxidant function were inhibited. These changes suggested acute inflammogenic effects and oxidative stress in the lungs of WTC dust-exposed rats. This study, thus, concludes that a single very high exposure to WTC dusts could

  6. Acute selenium selenite exposure effects on oxidative stress biomarkers and essential metals and trace-elements in the model organism zebrafish (Danio rerio).

    PubMed

    Hauser-Davis, R A; Silva, J A N; Rocha, Rafael C C; Saint'Pierre, Tatiana; Ziolli, R L; Arruda, M A Z

    2016-01-01

    Selenium (Se) is an essential trace-element that becomes toxic when present at high concentrations. Little is known regarding Se effects on parameters such as oxidative stress biomarkers. The aim of the present study was to investigate the effects of acute selenium exposure on oxidative stress biomarkers in a model organism, zebrafish (Danio rerio). Fish were exposed to selenium selenite at 1mgL(-1). Reduced glutathione (GSH), and metallothionein (MT) concentrations were determined in liver, kidney and brain, with MT also being determined in bile. Essential metals and trace-elements were also determined by inductively coupled mass spectrometry (ICP-MS) in order to verify possible metal homeostasis alterations. GSH concentrations in liver, kidney and brain increased significantly (1.05±0.03μmolg(-1) ww, 1.42±0.03μmolg(-1) ww and 1.64±0.03μmolg(-1) ww, respectively) in the Se-exposed group when compared to the controls (0.88±0.05μmolg(-1) ww, 0.80±0.04μmolg(-1) ww and 0.89±0.03μmolg(-1) ww for liver, kidney and brain, respectively). MT levels in Se-exposed liver (0.52±0.03μmolg(-1) ww) decreased significantly in comparison to the control group (0.64±0.02μmolg(-1) ww), while levels in bile increased, albeit non-significantly. This is in accordance with previous studies that indicate efficient biliary MT action, leading to a rapid metabolism and elimination of contaminants from the body. Levels in the brain increased significantly after Se-exposure (0.57±0.01μmolg(-1) ww) when compared to the control group (0.35±0.03μmolg(-1) ww) since this organ does not present a detoxification route as quick as the liver-gallbladder route. Several metal and trace-elements were altered with Se-exposure, indicating that excess of selenium results in metal dyshomeostasis. This is the first report on metal dyshomeostasis due to Se-exposure, which may be the first step in the mechanism of action of selenium toxicity, as is postulated to occur in certain major human

  7. Effects of Mikania glomerata Spreng. and Mikania laevigata Schultz Bip. ex Baker (Asteraceae) extracts on pulmonary inflammation and oxidative stress caused by acute coal dust exposure

    SciTech Connect

    Freitas, T.P.; Silveira, P.C.; Rocha, L.G.; Rezin, G.T.; Rocha, J.; Citadini-Zanette, V.; Romao, P.T.; Dal-Pizzol, F.; Pinho, R.A.; Andrade, V.M.; Streck, E.L.

    2008-12-15

    Several studies have reported biological effects of Mikania glomerata and Mikania laevigata, used in Brazilian folk medicine for respiratory diseases. Pneumoconiosis is characterized by pulmonary inflammation caused by coal dust exposure. In this work, we evaluated the effect of pretreatment with M. glomerata and M. laevigata extracts (MGE and MLE, respectively) (100 mg/kg, s.c.) on inflammatory and oxidative stress parameters in lung of rats subjected to a single coal dust intratracheal instillation. Rats were pretreated for 2 weeks with saline solution, MGE, or MLE. On day 15, the animals were anesthetized, and gross mineral coal dust or saline solutions were administered directly in the lung by intratracheal instillation. Fifteen days after coal dust instillation, the animals were killed. Bronchoalveolar lavage (BAL) was obtained; total cell count and lactate dehydrogenase (LDH) activity were determined. In the lung, myeloperoxidase activity, thiobarbituric acid-reactive substances (TBARS) level, and protein carbonyl and sulfhydryl contents were evaluated. In BAL of treated animals, we verified an increased total cell count and LDH activity. MGE and MLE prevented the increase in cell count, but only MLE prevented the increase in LDH. Myeloperoxidase and TBARS levels were not affected, protein carbonylation was increased, and the protein thiol levels were decreased by acute coal dust intratracheal administration. The findings also suggest that both extracts present an important protective effect on the oxidation of thiol groups. Moreover, pretreatment with MGE and MLE also diminished lung inflammatory infiltration induced by coal dust, as assessed by histopathologic analyses.

  8. Variation in quantity and composition of cuticular hydrocarbons in the scorpion Buthus occitanus (Buthidae) in response to acute exposure to desiccation stress.

    PubMed

    Gefen, E; Talal, S; Brendzel, O; Dror, A; Fishman, A

    2015-04-01

    Scorpions exhibit some of the lowest recorded water loss rates among terrestrial arthropods. Evaporative water loss to the surrounding environment occurs mainly through the integument, and thus its resistance to water loss has paramount significance for the ability of scorpions to tolerate extremely dry habitats. Cuticular hydrocarbons (HCs) deposited on the outer epicuticle play an important role in determining cuticular waterproofing, and seasonal variation in both cuticular HC quantity and composition has been shown to correlate with water loss rates. Precursor incorporation rates into cuticle HCs have been observed to be extremely low in scorpions compared with insects. We therefore used adult male Buthus occitanus (Buthidae) in order to test HC profile plasticity during acute exposure to 14 d and 28 d of experimental desiccation. Cuticular HC profile of hydrated scorpions was similar to that reported for several other scorpion species, consisting of similar fractions of n-alkanes and branched alkanes, with no evidence for unsaturation. Most abundant of the n-alkanes were n-heptacosane (C27; 19±2% of total HCs), n-nonacosane (C29; 16±1%) and n-hentriacontane (C31; 11±1%). Exposure to desiccation stress resulted in a significant increase in the total amount of extracted HCs, and in the relative abundance of branched alkanes at the expense of n-alkanes. Together with an increase in HC chain lengths, these changes mimic previously-reported seasonal variation among freshly-collected specimens. This indicates that scorpions respond to water shortage by regulating the properties of their passive integumental barrier to water loss.

  9. Variation in quantity and composition of cuticular hydrocarbons in the scorpion Buthus occitanus (Buthidae) in response to acute exposure to desiccation stress.

    PubMed

    Gefen, E; Talal, S; Brendzel, O; Dror, A; Fishman, A

    2015-04-01

    Scorpions exhibit some of the lowest recorded water loss rates among terrestrial arthropods. Evaporative water loss to the surrounding environment occurs mainly through the integument, and thus its resistance to water loss has paramount significance for the ability of scorpions to tolerate extremely dry habitats. Cuticular hydrocarbons (HCs) deposited on the outer epicuticle play an important role in determining cuticular waterproofing, and seasonal variation in both cuticular HC quantity and composition has been shown to correlate with water loss rates. Precursor incorporation rates into cuticle HCs have been observed to be extremely low in scorpions compared with insects. We therefore used adult male Buthus occitanus (Buthidae) in order to test HC profile plasticity during acute exposure to 14 d and 28 d of experimental desiccation. Cuticular HC profile of hydrated scorpions was similar to that reported for several other scorpion species, consisting of similar fractions of n-alkanes and branched alkanes, with no evidence for unsaturation. Most abundant of the n-alkanes were n-heptacosane (C27; 19±2% of total HCs), n-nonacosane (C29; 16±1%) and n-hentriacontane (C31; 11±1%). Exposure to desiccation stress resulted in a significant increase in the total amount of extracted HCs, and in the relative abundance of branched alkanes at the expense of n-alkanes. Together with an increase in HC chain lengths, these changes mimic previously-reported seasonal variation among freshly-collected specimens. This indicates that scorpions respond to water shortage by regulating the properties of their passive integumental barrier to water loss. PMID:25499238

  10. Acute psychosocial stress reduces pain modulation capabilities in healthy men.

    PubMed

    Geva, Nirit; Pruessner, Jens; Defrin, Ruth

    2014-11-01

    Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system.

  11. Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae.

    PubMed

    Olivari, Francisco A; Hernández, Pedro P; Allende, Miguel L

    2008-12-01

    Numerous physical and chemical agents can destroy mechanosensory hair cells in the inner ear of vertebrates, a process that is irreversible in mammals. Few experimental systems allow the observation of hair cell death mechanisms in vivo, in the intact animal, one of these being the lateral line system in the zebrafish. In this work we characterize the behavior of dying lateral line hair cells in fish exposed to low doses of copper in the water. The concentration of copper used in our study kills hair cells in a few hours, but removal of the metal is followed by robust regeneration of new hair cells. We use a combination of membrane and nuclear live stains, ultrastructural analysis and measurement of reactive oxygen species to characterize the events leading to the death of hair cells under these conditions. Our results show that a combination of necrotic cell death, accompanied by apoptotic features such as rapid DNA fragmentation, lead to the loss of these cells. We also show that hair cells exposed to copper undergo oxidative stress and that antioxidants can protect these cells from the effects of the metal. The study of this process in the zebrafish lateral line allows rapid morphological analysis of hair cell death and may be used as an efficient end point for molecule screens aimed at preventing these effects. PMID:18848822

  12. Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae.

    PubMed

    Olivari, Francisco A; Hernández, Pedro P; Allende, Miguel L

    2008-12-01

    Numerous physical and chemical agents can destroy mechanosensory hair cells in the inner ear of vertebrates, a process that is irreversible in mammals. Few experimental systems allow the observation of hair cell death mechanisms in vivo, in the intact animal, one of these being the lateral line system in the zebrafish. In this work we characterize the behavior of dying lateral line hair cells in fish exposed to low doses of copper in the water. The concentration of copper used in our study kills hair cells in a few hours, but removal of the metal is followed by robust regeneration of new hair cells. We use a combination of membrane and nuclear live stains, ultrastructural analysis and measurement of reactive oxygen species to characterize the events leading to the death of hair cells under these conditions. Our results show that a combination of necrotic cell death, accompanied by apoptotic features such as rapid DNA fragmentation, lead to the loss of these cells. We also show that hair cells exposed to copper undergo oxidative stress and that antioxidants can protect these cells from the effects of the metal. The study of this process in the zebrafish lateral line allows rapid morphological analysis of hair cell death and may be used as an efficient end point for molecule screens aimed at preventing these effects.

  13. Cannabinoids & Stress: impact of HU-210 on behavioral tests of anxiety in acutely stressed mice.

    PubMed

    Kinden, Renee; Zhang, Xia

    2015-05-01

    Anxiety disorders are one of the most prevalent classes of mental disorders affecting the general population, but current treatment strategies are restricted by their limited efficacy and side effect profiles. Although the cannabinoid system is speculated to be a key player in the modulation of stress responses and emotionality, the vast majority of current research initiatives had not incorporated stress exposure into their experimental designs. This study was the first to investigate the impact of exogenous cannabinoid administration in an acutely stressed mouse model, where CD1 mice were pre-treated with HU-210, a potent CB1R agonist, prior to acute stress exposure and subsequent behavioral testing. Exogenous cannabinoid administration induced distinct behavioral phenotypes in stressed and unstressed mice. While low doses of HU-210 were anxiolytic in unstressed subjects, this effect was abolished when mice were exposed to an acute stressor. The administration of higher HU-210 doses in combination with acute stress exposure led to severe locomotor deficits that were not previously observed at the same dose in unstressed subjects. These findings suggest that exogenous cannabinoids and acute stress act synergistically in an anxiogenic manner. This study underlies the importance of including stress exposure into future anxiety-cannabinoid research due to the differential impact of cannabinoid administration on stressed and unstressed subjects.

  14. Patterns of Immunotoxicity Associated with Chronic as Compared with Acute Exposure to Chemical or Physical Stressors and their Relevance with Regard to the Role of Stress and with Regard to Immunotoxicity Testing

    PubMed Central

    Pruett, Stephen B.; Fan, Ruping; Zheng, Qiang; Schwab, Carlton

    2009-01-01

    Previous studies have demonstrated that the stress response induced by some drugs and chemicals contributes in a predictable way to alteration of particular immunological parameters in mice. It has not been determined if mice can become tolerant or habituated with regard to the stress response and consequent immunological effects. Addressing this issue was the purpose of the present study. Mice were dosed daily for 28 days with atrazine, ethanol, propanil, or subjected to restraint, which are known to induce neuroendocrine stress responses and thereby to alter several immunological parameters. On day 29, a blood sample was taken and the spleen was removed for analysis of cellular phenotypes, differential cell counts (for blood), and natural killer (NK) cell activity. Corticosterone concentration at various times after dosing (or restraint) was also measured. Comparison of these results with results from previous studies with a single acute exposure revealed that the corticosterone response was almost completely absent in mice treated with ethanol, reduced in mice treated with restraint and propanil, and for atrazine the response was the same as noted for acute exposure. In most cases, the changes in immunological parameters were consistent with expectations based on these corticosterone responses. However, in a few cases (e.g., NK cell activity), it was clear that there were effects not mediated by stress. These results indicate that the nature of the stressor determines whether mice become tolerant with regard to the stress response and consequent immunological effects. This finding has practical implications for safety testing in mice. PMID:19357072

  15. Accidental acute exposure to doxorubicin.

    PubMed

    Curran, C F; Luce, J K

    1989-12-01

    Accidental ocular exposure to doxorubicin was followed by no reaction or rapidly resolving conjunctivitis in 13 of 15 cases (87%). In the two remaining cases, persistent photophobia and chronic inflammation were reported. Of 28 accidental exposures to sites other than the eyes, no reactions or rapidly resolving local reactions were reported in 24 cases (86%). Nurses are at particular risk for accidental exposure to doxorubicin and accounted for 20 of the 43 reported exposures (47%). PMID:2590899

  16. Exposure of Lactating Dairy Cows to Acute Pre-Ovulatory Heat Stress Affects Granulosa Cell-Specific Gene Expression Profiles in Dominant Follicles.

    PubMed

    Vanselow, Jens; Vernunft, Andreas; Koczan, Dirk; Spitschak, Marion; Kuhla, Björn

    2016-01-01

    High environmental temperatures induce detrimental effects on various reproductive processes in cattle. According to the predicted global warming the number of days with unfavorable ambient temperatures will further increase. The objective of this study was to investigate effects of acute heat stress during the late pre-ovulatory phase on morphological, physiological and molecular parameters of dominant follicles in cycling cows during lactation. Eight German Holstein cows in established lactation were exposed to heat stress (28°C) or thermoneutral conditions (15°C) with pair-feeding for four days. After hormonal heat induction growth of the respective dominant follicles was monitored by ultrasonography for two days, then an ovulatory GnRH dose was given and follicular steroid hormones and granulosa cell-specific gene expression profiles were determined 23 hrs thereafter. The data showed that the pre-ovulatory growth of dominant follicles and the estradiol, but not the progesterone concentrations tended to be slightly affected. mRNA microarray and hierarchical cluster analysis revealed distinct expression profiles in granulosa cells derived from heat stressed compared to pair-fed animals. Among the 255 affected genes heatstress-, stress- or apoptosis associated genes were not present. But instead, we found up-regulation of genes essentially involved in G-protein coupled signaling pathways, extracellular matrix composition, and several members of the solute carrier family as well as up-regulation of FST encoding follistatin. In summary, the data of the present study show that acute pre-ovulatory heat stress can specifically alter gene expression profiles in granulosa cells, however without inducing stress related genes and pathways and suggestively can impair follicular growth due to affecting the activin-inhibin-follistatin system. PMID:27532452

  17. Exposure of Lactating Dairy Cows to Acute Pre-Ovulatory Heat Stress Affects Granulosa Cell-Specific Gene Expression Profiles in Dominant Follicles

    PubMed Central

    Vanselow, Jens; Vernunft, Andreas; Koczan, Dirk; Spitschak, Marion; Kuhla, Björn

    2016-01-01

    High environmental temperatures induce detrimental effects on various reproductive processes in cattle. According to the predicted global warming the number of days with unfavorable ambient temperatures will further increase. The objective of this study was to investigate effects of acute heat stress during the late pre-ovulatory phase on morphological, physiological and molecular parameters of dominant follicles in cycling cows during lactation. Eight German Holstein cows in established lactation were exposed to heat stress (28°C) or thermoneutral conditions (15°C) with pair-feeding for four days. After hormonal heat induction growth of the respective dominant follicles was monitored by ultrasonography for two days, then an ovulatory GnRH dose was given and follicular steroid hormones and granulosa cell-specific gene expression profiles were determined 23 hrs thereafter. The data showed that the pre-ovulatory growth of dominant follicles and the estradiol, but not the progesterone concentrations tended to be slightly affected. mRNA microarray and hierarchical cluster analysis revealed distinct expression profiles in granulosa cells derived from heat stressed compared to pair-fed animals. Among the 255 affected genes heatstress-, stress- or apoptosis associated genes were not present. But instead, we found up-regulation of genes essentially involved in G-protein coupled signaling pathways, extracellular matrix composition, and several members of the solute carrier family as well as up-regulation of FST encoding follistatin. In summary, the data of the present study show that acute pre-ovulatory heat stress can specifically alter gene expression profiles in granulosa cells, however without inducing stress related genes and pathways and suggestively can impair follicular growth due to affecting the activin-inhibin-follistatin system. PMID:27532452

  18. Acute arsenic intoxication from environmental arsenic exposure

    SciTech Connect

    Franzblau, A.; Lilis, R. )

    1989-11-01

    Reports of acute arsenic poisoning arising from environmental exposure are rare. Two cases of acute arsenic intoxication resulting from ingestion of contaminated well water are described. These patients experienced a variety of problems: acute gastrointestinal symptoms, central and peripheral neurotoxicity, bone marrow suppression, hepatic toxicity, and mild mucous membrane and cutaneous changes. Although located adjacent to an abandoned mine, the well water had been tested for microorganisms only and was found to be safe. Regulations for testing of water from private wells for fitness to drink are frequently nonexistent, or only mandate biologic tests for microorganisms. Well water, particularly in areas near mining activity, should be tested for metals.

  19. Acute stress impairs set-shifting but not reversal learning.

    PubMed

    Butts, K A; Floresco, S B; Phillips, A G

    2013-09-01

    The ability to update and modify previously learned behavioral responses in a changing environment is essential for successful utilization of promising opportunities and for coping with adverse events. Valid models of cognitive flexibility that contribute to behavioral flexibility include set-shifting and reversal learning. One immediate effect of acute stress is the selective impairment of performance on higher-order cognitive control tasks mediated by the medial prefrontal cortex (mPFC) but not the hippocampus. Previous studies show that the mPFC is required for set-shifting but not for reversal learning, therefore the aim of the present experiment is to assess whether exposure to acute stress (15 min of mild tail-pinch stress) given immediately before testing on either a set-shifting or reversal learning tasks would impair performance selectively on the set-shifting task. An automated operant chamber-based task, confirmed that exposure to acute stress significantly disrupts set-shifting but has no effect on reversal learning. Rats exposed to an acute stressor require significantly more trials to reach criterion and make significantly more perseverative errors. Thus, these data reveal that an immediate effect of acute stress is to impair mPFC-dependent cognition selectively by disrupting the ability to inhibit the use of a previously relevant cognitive strategy.

  20. Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture

    SciTech Connect

    Bodega, G. . E-mail: guillermo.bodega@uah.es; Forcada, I.; Suarez, I.; Fernandez, B.

    2005-07-01

    This paper reports the effects of exposure to static, sinusoidal (50 Hz), and combined static/sinusoidal magnetic fields on cultured astroglial cells. Confluent primary cultures of astroglial cells were exposed to a 1-mT sinusoidal, static, or combined magnetic field for 1 h. In another experiment, cells were exposed to the combined magnetic field for 1, 2, and 4 h. The hsp25, hsp60, hsp70, actin, and glial fibrillary acidic protein contents of the astroglial cells were determined by immunoblotting 24 h after exposure. No significant differences were seen between control and exposed cells with respect to their contents of these proteins, neither were any changes in cell morphology observed. In a third experiment to determine the effect of a chronic (11-day) exposure to a combined 1-mT static/sinusoidal magnetic field on the proliferation of cultured astroglial cells, no significant differences were seen between control, sham-exposed, or exposed cells. These results suggest that exposure to 1-mT sinusoidal, static, or combined magnetic fields has no significant effects on the stress, cytoskeletal protein levels in, or proliferation of cultured astroglial cells.

  1. Acute posttraumatic stress symptoms but not generalized anxiety symptoms are associated with severity of exposure to war trauma: A study of civilians under fire

    PubMed Central

    Helpman, Liat; Besser, Avi; Neria, Yuval

    2015-01-01

    Posttraumatic stress (PTSS) and generalized anxiety symptoms (GAS) may ensue following trauma. While they are now thought to represent different psychopathological entities, it is not clear whether both GAS and PTSS show a dose–response to trauma exposure. The current study aimed to address this gap in knowledge and to investigate the moderating role of subjects’ demographics in the exposure-outcome associations. The sample included 249 civilian adults, assessed during the 2014 Israel–Gaza military conflict. The survey probed demographic information, trauma exposure, and symptoms. PTSS but not GAS was associated with exposure severity. Women were at higher risk for both PTSS and GAS than men. In addition, several demographic variables were only associated with PTSS levels. PTSS dose-response effect was moderated by education. These findings are in line with emerging neurobiological and cognitive research, suggesting that although PTSS and GAS have shared risk factors they represent two different psychopathological entities. Clinical and theoretical implications are discussed. PMID:26343559

  2. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    PubMed

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  3. Acute combined pressure and temperature exposures on a shallow-water crustacean: novel insights into the stress response and high pressure neurological syndrome.

    PubMed

    Morris, J P; Thatje, S; Ravaux, J; Shillito, B; Fernando, D; Hauton, C

    2015-03-01

    Little is known about the ecological and physiological processes governing depth distribution limits in species. Temperature and hydrostatic pressure are considered to be two dominant factors. Research has shown that some marine ectotherms are shifting their bathymetric distributions in response to rapid anthropogenic ocean surface warming. Shallow-water species unable to undergo latitudinal range shifts may depend on bathymetric range shifts to seek refuge from warming surface waters. As a first step in constraining the molecular basis of pressure tolerance in shallow water crustaceans, we examined differential gene expression in response to acute pressure and temperature exposures in juveniles of the shallow-water shrimp Palaemonetes varians. Significant increases in the transcription of genes coding for an NMDA receptor-regulated protein, an ADP ribosylation factor, β-actin, two heat shock protein 70 kDa isoforms (HSP70), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were found in response to elevated pressure. NMDA receptors have been implicated in pathways of excitotoxic damage to neurons and the onset of high pressure neurological syndrome (HPNS) in mammals. These data indicate that the sub-lethal effects of acute barotrauma are associated with transcriptional disturbances within the nervous tissue of crustaceans, and cellular macromolecular damage. Such transcriptional changes lead to the onset of symptoms similar to that described as HPNS in mammals, and may act as a limit to shallow water organisms' prolonged survival at depth.

  4. In Vivo Nanodetoxication for Acute Uranium Exposure.

    PubMed

    Guzmán, Luis; Durán-Lara, Esteban F; Donoso, Wendy; Nachtigall, Fabiane M; Santos, Leonardo S

    2015-06-15

    Accidental exposure to uranium is a matter of concern, as U(VI) is nephrotoxic in both human and animal models, and its toxicity is associated to chemical toxicity instead of radioactivity. We synthesized different PAMAM G4 and G5 derivatives in order to prove their interaction with uranium and their effect on the viability of red blood cells in vitro. Furthermore, we prove the effectiveness of the selected dendrimers in an animal model of acute uranium intoxication. The dendrimer PAMAM G4-Lys-Fmoc-Cbz demonstrated the ability to chelate the uranyl ion in vivo, improving the biochemical and histopathologic features caused by acute intoxication with uranium.

  5. In Vivo Nanodetoxication for Acute Uranium Exposure.

    PubMed

    Guzmán, Luis; Durán-Lara, Esteban F; Donoso, Wendy; Nachtigall, Fabiane M; Santos, Leonardo S

    2015-01-01

    Accidental exposure to uranium is a matter of concern, as U(VI) is nephrotoxic in both human and animal models, and its toxicity is associated to chemical toxicity instead of radioactivity. We synthesized different PAMAM G4 and G5 derivatives in order to prove their interaction with uranium and their effect on the viability of red blood cells in vitro. Furthermore, we prove the effectiveness of the selected dendrimers in an animal model of acute uranium intoxication. The dendrimer PAMAM G4-Lys-Fmoc-Cbz demonstrated the ability to chelate the uranyl ion in vivo, improving the biochemical and histopathologic features caused by acute intoxication with uranium. PMID:26083036

  6. Dynamics of telomerase activity in response to acute psychological stress

    PubMed Central

    Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Wolkowitz, Owen M.; Puterman, E; Karan, Lori; Blackburn, Elizabeth H.

    2010-01-01

    Telomerase activity plays an essential role in cel0l survival, by lengthening telomeres and promoting cell growth and longevity. It is now possible to quantify the low levels of telomerase activity in human leukocytes. Low basal telomerase activity has been related to chronic stress in people and to chronic glucocorticoid exposure in vitro. Here we test whether leukocyte telomerase activity changes under acute psychological stress. We exposed 44 elderly women, including 22 high stress dementia caregivers and 22 matched low stress controls, to a brief laboratory psychological stressor, while examining changes in telomerase activity of peripheral blood mononuclear cells (PBMC). At baseline, caregivers had lower telomerase activity levels than controls, but during stress telomerase activity increased similarly in both groups. Across the entire sample, subsequent telomerase activity increased by 18% one hour after the end of the stressor (p<0.01). The increase in telomerase activity was independent of changes in numbers or percentages of monocytes, lymphocytes, and specific T cell types, although we cannot fully rule out some potential contribution from immune cell redistribution in the change in telomerase activity. Telomerase activity increases were associated with greater cortisol increases in response to the stressor. Lastly, psychological response to the tasks (greater threat perception) was also related to greater telomerase activity increases in controls. These findings uncover novel relationships of dynamic telomerase activity with exposure to an acute stressor, and with two classic aspects of the stress response -- perceived psychological stress and neuroendocrine (cortisol) responses to the stressor. PMID:20018236

  7. Acute emotional stress and cardiac arrhythmias.

    PubMed

    Ziegelstein, Roy C

    2007-07-18

    Episodes of acute emotional stress can have significant adverse effects on the heart. Acute emotional stress can produce left ventricular contractile dysfunction, myocardial ischemia, or disturbances of cardiac rhythm. Although these abnormalities are often only transient, their consequences can be gravely damaging and sometimes fatal. Despite the many descriptions of catastrophic cardiovascular events in the setting of acute emotional stress, the anatomical substrate and physiological pathways by which emotional stress triggers cardiovascular events are only now being characterized, aided by the advent of functional neuroimaging. Recent evidence indicates that asymmetric brain activity is particularly important in making the heart more susceptible to ventricular arrhythmias. Lateralization of cerebral activity during emotional stress may stimulate the heart asymmetrically and produce areas of inhomogeneous repolarization that create electrical instability and facilitate the development of cardiac arrhythmias. Patients with ischemic heart disease who survive an episode of sudden cardiac death in the setting of acute emotional stress should receive a beta-blocker. Nonpharmacological approaches to manage emotional stress in patients with and without coronary artery disease, including social support, relaxation therapy, yoga, meditation, controlled slow breathing, and biofeedback, are also appropriate to consider and merit additional investigation in randomized trials.

  8. Human Physiological Responses to Acute and Chronic Cold Exposure

    NASA Technical Reports Server (NTRS)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  9. Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans

    EPA Science Inventory

    RATIONALE: Air pollution has been associated with increased prevalence of type 2 diabetes; however, the mechanisms remain unknown. We have shown that acute ozone exposure in rats induces release of stress hormones, hyperglycemia, leptinemia, and gluoose intolerance that are assoc...

  10. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions

    PubMed Central

    Mehus, Aaron A.; Reed, Rustin J.; Lee, Vivien S. T.; Littau, Sally R.; Hu, Chengcheng; Lutz, Eric A.

    2015-01-01

    Objective: To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. Methods: We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting—lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. Results: B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Conclusions: Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use. PMID:26147538

  11. Acute lymphopenia, stress, and plasma cortisol.

    PubMed Central

    Ramaekers, L H; Theunissen, P M; Went, K

    1975-01-01

    Plasma cortisol levels were determined in 51 children on admission to hospital for a variety of acute illnesses which were associated with a lymphopenia, and again when the lymphocyte count had returned to normal. The ratio cortisol level/lymphocyte count was much higher in the acute phase of the illness than later when the lymphocyte count had returned to normal. It is concluded that the lymphocyte count is a useful means of detecting an acute stress condition, and the time of return of normal plasma cortisol levels. PMID:1167069

  12. Media's role in broadcasting acute stress following the Boston Marathon bombings.

    PubMed

    Holman, E Alison; Garfin, Dana Rose; Silver, Roxane Cohen

    2014-01-01

    We compared the impact of media vs. direct exposure on acute stress response to collective trauma. We conducted an Internet-based survey following the Boston Marathon bombings between April 29 and May 13, 2013, with representative samples of residents from Boston (n = 846), New York City (n = 941), and the remainder of the United States (n = 2,888). Acute stress symptom scores were comparable in Boston and New York [regression coefficient (b) = 0.43; SE = 1.42; 95% confidence interval (CI), -2.36, 3.23], but lower nationwide when compared with Boston (b = -2.21; SE = 1.07; 95% CI, -4.31, -0.12). Adjusting for prebombing mental health (collected prospectively), demographics, and prior collective stress exposure, six or more daily hours of bombing-related media exposure in the week after the bombings was associated with higher acute stress than direct exposure to the bombings (continuous acute stress symptom total: media exposure b = 15.61 vs. direct exposure b = 5.69). Controlling for prospectively collected prebombing television-watching habits did not change the findings. In adjusted models, direct exposure to the 9/11 terrorist attacks and the Sandy Hook School shootings were both significantly associated with bombing-related acute stress; Superstorm Sandy exposure wasn't. Prior exposure to similar and/or violent events may render some individuals vulnerable to the negative effects of collective traumas. Repeatedly engaging with trauma-related media content for several hours daily shortly after collective trauma may prolong acute stress experiences and promote substantial stress-related symptomatology. Mass media may become a conduit that spreads negative consequences of community trauma beyond directly affected communities.

  13. Media’s role in broadcasting acute stress following the Boston Marathon bombings

    PubMed Central

    Holman, E. Alison; Garfin, Dana Rose; Silver, Roxane Cohen

    2014-01-01

    We compared the impact of media vs. direct exposure on acute stress response to collective trauma. We conducted an Internet-based survey following the Boston Marathon bombings between April 29 and May 13, 2013, with representative samples of residents from Boston (n = 846), New York City (n = 941), and the remainder of the United States (n = 2,888). Acute stress symptom scores were comparable in Boston and New York [regression coefficient (b) = 0.43; SE = 1.42; 95% confidence interval (CI), −2.36, 3.23], but lower nationwide when compared with Boston (b = −2.21; SE = 1.07; 95% CI, −4.31, −0.12). Adjusting for prebombing mental health (collected prospectively), demographics, and prior collective stress exposure, six or more daily hours of bombing-related media exposure in the week after the bombings was associated with higher acute stress than direct exposure to the bombings (continuous acute stress symptom total: media exposure b = 15.61 vs. direct exposure b = 5.69). Controlling for prospectively collected prebombing television-watching habits did not change the findings. In adjusted models, direct exposure to the 9/11 terrorist attacks and the Sandy Hook School shootings were both significantly associated with bombing-related acute stress; Superstorm Sandy exposure wasn't. Prior exposure to similar and/or violent events may render some individuals vulnerable to the negative effects of collective traumas. Repeatedly engaging with trauma-related media content for several hours daily shortly after collective trauma may prolong acute stress experiences and promote substantial stress-related symptomatology. Mass media may become a conduit that spreads negative consequences of community trauma beyond directly affected communities. PMID:24324161

  14. Media's role in broadcasting acute stress following the Boston Marathon bombings.

    PubMed

    Holman, E Alison; Garfin, Dana Rose; Silver, Roxane Cohen

    2014-01-01

    We compared the impact of media vs. direct exposure on acute stress response to collective trauma. We conducted an Internet-based survey following the Boston Marathon bombings between April 29 and May 13, 2013, with representative samples of residents from Boston (n = 846), New York City (n = 941), and the remainder of the United States (n = 2,888). Acute stress symptom scores were comparable in Boston and New York [regression coefficient (b) = 0.43; SE = 1.42; 95% confidence interval (CI), -2.36, 3.23], but lower nationwide when compared with Boston (b = -2.21; SE = 1.07; 95% CI, -4.31, -0.12). Adjusting for prebombing mental health (collected prospectively), demographics, and prior collective stress exposure, six or more daily hours of bombing-related media exposure in the week after the bombings was associated with higher acute stress than direct exposure to the bombings (continuous acute stress symptom total: media exposure b = 15.61 vs. direct exposure b = 5.69). Controlling for prospectively collected prebombing television-watching habits did not change the findings. In adjusted models, direct exposure to the 9/11 terrorist attacks and the Sandy Hook School shootings were both significantly associated with bombing-related acute stress; Superstorm Sandy exposure wasn't. Prior exposure to similar and/or violent events may render some individuals vulnerable to the negative effects of collective traumas. Repeatedly engaging with trauma-related media content for several hours daily shortly after collective trauma may prolong acute stress experiences and promote substantial stress-related symptomatology. Mass media may become a conduit that spreads negative consequences of community trauma beyond directly affected communities. PMID:24324161

  15. Effects of acute restraint stress on set-shifting and reversal learning in male rats.

    PubMed

    Thai, Chester A; Zhang, Ying; Howland, John G

    2013-03-01

    Exposure to acute stress alters cognition; however, few studies have examined the effects of acute stress on executive functions such as behavioral flexibility. The goal of the present experiments was to determine the effects of acute periods of stress on two distinct forms of behavioral flexibility: set-shifting and reversal learning. Male Sprague-Dawley rats were trained and tested in an operant-chamber-based task. Some of the rats were exposed to acute restraint stress (30 min) immediately before either the set-shifting test day or the reversal learning test day. Acute stress had no effect on set-shifting, but it significantly facilitated reversal learning, as assessed by both trials to criterion and total errors. In a second experiment, the roles of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the acute-stress-induced facilitation of reversal learning were examined. Systemic administration of the GR-selective antagonist RU38486 (10 mg/kg) or the MR-selective antagonist spironolactone (50 mg/kg) 30 min prior to acute stress failed to block the facilitation on reversal learning. The present results demonstrate a dissociable effect of acute stress on set-shifting and reversal learning and suggest that the facilitation of reversal learning by acute stress may be mediated by factors other than corticosterone.

  16. Skin temperature reveals the intensity of acute stress

    PubMed Central

    Herborn, Katherine A.; Graves, James L.; Jerem, Paul; Evans, Neil P.; Nager, Ruedi; McCafferty, Dominic J.; McKeegan, Dorothy E.F.

    2015-01-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  17. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress.

    PubMed

    Tahara, Yu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Kuriki, Daisuke; Sasaki, Hiroyuki; Motohashi, Hiroaki; Sakai, Tomoko; Shibata, Shigenobu

    2015-01-01

    The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo.

  18. Fluoxetine and diazepam acutely modulate stress induced-behavior.

    PubMed

    Giacomini, Ana Cristina V V; Abreu, Murilo S; Giacomini, Luidia V; Siebel, Anna M; Zimerman, Fernanda F; Rambo, Cassiano L; Mocelin, Ricieri; Bonan, Carla D; Piato, Angelo L; Barcellos, Leonardo J G

    2016-01-01

    Drug residue contamination in aquatic ecosystems has been studied extensively, but the behavioral effects exerted by the presence of these drugs are not well known. Here, we investigated the effects of acute stress on anxiety, memory, social interaction, and aggressiveness in zebrafish exposed to fluoxetine and diazepam at concentrations that disrupt the hypothalamic-pituitary-interrenal (HPI) axis. Stress increased the locomotor activity and time spent in the bottom area of the tank (novel tank). Fluoxetine and diazepam prevented these behaviors. We also observed that stress and fluoxetine and diazepam exposures decreased social interaction. Stress also increased aggressive behavior, which was not reversed by fluoxetine or diazepam. These data suggest that the presence of these drugs in aquatic ecosystems causes significant behavioral alterations in fish. PMID:26403161

  19. Fluoxetine and diazepam acutely modulate stress induced-behavior.

    PubMed

    Giacomini, Ana Cristina V V; Abreu, Murilo S; Giacomini, Luidia V; Siebel, Anna M; Zimerman, Fernanda F; Rambo, Cassiano L; Mocelin, Ricieri; Bonan, Carla D; Piato, Angelo L; Barcellos, Leonardo J G

    2016-01-01

    Drug residue contamination in aquatic ecosystems has been studied extensively, but the behavioral effects exerted by the presence of these drugs are not well known. Here, we investigated the effects of acute stress on anxiety, memory, social interaction, and aggressiveness in zebrafish exposed to fluoxetine and diazepam at concentrations that disrupt the hypothalamic-pituitary-interrenal (HPI) axis. Stress increased the locomotor activity and time spent in the bottom area of the tank (novel tank). Fluoxetine and diazepam prevented these behaviors. We also observed that stress and fluoxetine and diazepam exposures decreased social interaction. Stress also increased aggressive behavior, which was not reversed by fluoxetine or diazepam. These data suggest that the presence of these drugs in aquatic ecosystems causes significant behavioral alterations in fish.

  20. Effects of acute and chronic psychological stress on platelet aggregation in mice.

    PubMed

    Matsuhisa, Fumikazu; Kitamura, Nobuo; Satoh, Eiki

    2014-03-01

    Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.

  1. Stress Exposure and Depression in Disadvantaged Women: The Protective Effects of Optimism and Perceived Control

    ERIC Educational Resources Information Center

    Grote, Nancy K.; Bledsoe, Sarah E.; Larkin, Jill; Lemay, Edward P., Jr.; Brown, Charlotte

    2007-01-01

    In the present study, the authors predicted that the individual protective factors of optimism and perceived control over acute and chronic stressors would buffer the relations between acute and chronic stress exposure and severity of depression, controlling for household income, in a sample of financially disadvantaged women. Ninety-seven African…

  2. Acute stress impairs the retrieval of extinction memory in humans.

    PubMed

    Raio, Candace M; Brignoni-Perez, Edith; Goldman, Rachel; Phelps, Elizabeth A

    2014-07-01

    Extinction training is a form of inhibitory learning that allows an organism to associate a previously aversive cue with a new, safe outcome. Extinction does not erase a fear association, but instead creates a competing association that may or may not be retrieved when a cue is subsequently encountered. Characterizing the conditions under which extinction learning is expressed is important to enhancing the treatment of anxiety disorders that rely on extinction-based exposure therapy as a primary treatment technique. The ventromedial prefrontal cortex, which plays a critical role in the expression of extinction memory, has been shown to be functionally impaired after stress exposure. Further, recent work in rodents has demonstrated that exposure to stress leads to deficits in extinction retrieval, although this has yet to be tested in humans. To explore how stress might influence extinction retrieval in humans, participants underwent a differential aversive learning paradigm, in which one image was probabilistically paired with an aversive shock while the other image denoted safety. Extinction training directly followed, at which point reinforcement was omitted. A day later, participants returned to the lab and either completed an acute stress manipulation (i.e., cold pressor), or a control task, before undergoing an extinction retrieval test. Skin conductance responses and salivary cortisol concentrations were measured throughout each session as indices of fear arousal and neuroendocrine stress response, respectively. The efficacy of our stress induction was established by observing significant increases in cortisol for the stress condition only. We examined extinction retrieval by comparing conditioned responses during the last trial of extinction (day 1) with that of the first trial of re-extinction (day 2). Groups did not differ on initial fear acquisition or extinction, however, a day later participants in the stress group (n=27) demonstrated significantly

  3. Salivary Markers of Inflammation in Response to Acute Stress

    PubMed Central

    Slavish, Danica C.; Graham-Engeland, Jennifer E.; Smyth, Joshua M.; Engeland, Christopher G.

    2014-01-01

    There is burgeoning interest in the ability to detect inflammatory markers in response to stress within naturally occurring social contexts and/or across multiple time points per day within individuals. Salivary collection is a less invasive process than current methods of blood collection and enables intensive naturalistic methodologies, such as those involving extensive repeated measures per day over time. Yet the reliability and validity of saliva-based to blood-based inflammatory biomarkers in response to stress remains unclear. We review and synthesize the published studies that have examined salivary markers of inflammation following exposure to an acute laboratory stressor. Results from each study are reviewed by analyte (IL-1β, TNF-α, IL-6, IL-2, IL-4, IL-10, IL-12, CRP) and stress type (social-cognitive and exercise-physical), after which methodological issues and limitations are addressed. Although the literature is limited, several inflammatory markers (including IL-1β, TNF-α, and IL-6) have been reliably determined from saliva and have increased significantly in response to stress across multiple studies, with effect sizes ranging from very small to very large. Although CRP from saliva has been associated with CRP in circulating blood more consistently than other biomarkers have been associated with their counterparts in blood, evidence demonstrating it reliably responds to acute stress is absent. Although the current literature is presently too limited to allow broad assertion that inflammatory biomarkers determined from saliva are valuable for examining acute stress responses, this review suggests that specific targets may be valid and highlights specific areas of need for future research. PMID:25205395

  4. Oxidative stress in severe acute illness.

    PubMed

    Bar-Or, David; Bar-Or, Raphael; Rael, Leonard T; Brody, Edward N

    2015-01-01

    The overall redox potential of a cell is primarily determined by oxidizable/reducible chemical pairs, including glutathione-glutathione disulfide, reduced thioredoxin-oxidized thioredoxin, and NAD(+)-NADH (and NADP-NADPH). Current methods for evaluating oxidative stress rely on detecting levels of individual byproducts of oxidative damage or by determining the total levels or activity of individual antioxidant enzymes. Oxidation-reduction potential (ORP), on the other hand, is an integrated, comprehensive measure of the balance between total (known and unknown) pro-oxidant and antioxidant components in a biological system. Much emphasis has been placed on the role of oxidative stress in chronic diseases, such as Alzheimer's disease and atherosclerosis. The role of oxidative stress in acute diseases often seen in the emergency room and intensive care unit is considerable. New tools for the rapid, inexpensive measurement of both redox potential and total redox capacity should aid in introducing a new body of literature on the role of oxidative stress in acute illness and how to screen and monitor for potentially beneficial pharmacologic agents.

  5. Acute stress, memory, attention and cortisol.

    PubMed

    Vedhara, K; Hyde, J; Gilchrist, I D; Tytherleigh, M; Plummer, S

    2000-08-01

    An investigation was conducted to explore the relationship between acute changes in cortisol and memory and attention in the context of an acute naturalistic stressor, namely, examination stress. Sixty students (36 male, 24 female) participated in an assessment of self-reported levels of stress, salivary cortisol, short term memory, selective and divided attention and auditory verbal working memory. Assessments were conducted during a non-exam and exam period. The results revealed that the exam period was associated with an increase in perceived levels of stress, but also a significant reduction in levels of salivary cortisol, compared with the non-exam period. This reduction in cortisol was associated with enhanced short-term memory (as measured by the total number of words recalled in a free recall task), impaired attention and an impairment in the primacy effect (a hippocampal-specific index of short term memory), but no significant effects on auditory verbal working memory. It was concluded that the results support the view that cortisol can modulate cognitive processes and that the effects of corticosteroids on cognitive function are selective.

  6. How acute is the acute stress response? Baseline corticosterone and corticosteroid-binding globulin levels change 24h after an acute stressor in Japanese quail.

    PubMed

    Malisch, Jessica L; Satterlee, Daniel G; Cockrem, John F; Wada, Haruka; Breuner, Creagh W

    2010-01-15

    Changes in plasma corticosteroid-binding globulin (CBG) capacity can alter free plasma concentration and tissue availability of glucocorticoids (GC) and hence alter the organismal response to stress. However, CBG change in response to stress has not been extensively studied. While it is clear that chronic stress can causes CBG decline and in some species acute stressors can reduce CBG during the 30-60 min of the stressor, more long-term changes in CBG following an acute stressor has received less attention. Here we investigated corticosterone (CORT: the primary GC in birds) and CBG levels 24h after an acute stressor in a unique study system: Japanese quail divergently selected for CORT reactivity to acute stress. Using this model, we examined the interaction of selected CORT reactivity with CBG response to determine if CBG shows a delayed decline in response to an acute stressor and if that decline varies by selected genetic background. We found lowered CBG capacity, elevated total CORT and free CORT 24h after acute stress in all three quail groups. These results demonstrate for the first time in an avian species that exposure to an acute stressor can affect CBG and CORT 24h later.

  7. Acute radiodermatitis from occupational exposure to iridium 192

    SciTech Connect

    Becker, J.; Rosen, T. )

    1989-12-01

    Industrial radiography using the man-made radioisotope iridium 192 is commonplace in the southern states. Despite established procedures and safeguards, accidental exposure may result in typical acute radiodermatitis. We have presented a clinical example of this phenomenon.9 references.

  8. Acute high dose exposure to benzene in shipyard workers

    SciTech Connect

    Midzenski, M.A.; McDiarmid, M.A.; Rothman, N.; Kolodner, K. )

    1992-01-01

    Fifteen degassers were acutely exposed over several days to high concentrations (> 60 ppm) of benzene during removal of residual fuel (degassing) from shipboard fuel tanks. Medical surveillance evaluation mandated by the Occupational Safety and Health Administration's (OSHA) Benzene Standard initially revealed 11 workers (73%) reporting neurotoxic symptoms while degassing. Workers with more than 2 days (16 hours) of acute exposure were significantly more likely to report dizziness and nausea than those with 2 or fewer days of acute exposure. Repeated laboratory analyses performed over a 4-month period after the acute exposure revealed at least one hematologic abnormality consistent with benzene exposure in 9 (60%) of these degassers. One year later, 6 workers (40%) had persistent abnormalities; an additional worker with normal hematologic parameters at the time of our initial evaluation subsequently developed an abnormality consistent with benzene exposure. Numerous large granular lymphocytes were observed on 6 (40%) of the peripheral blood smears. Despite these laboratory findings, there were no significant associations between the presence of hematologic abnormalities and either the number of hours of acute benzene exposure or the duration of employment as a degasser. Volatilization of benzene from the residual fuel was the suspected source of benzene in the headspace of tanks. Confined space exposure to petroleum products may be exposing workers to benzene at levels above the OSHA Short-Term Exposure Limit (STEL). This situation warrants further study.

  9. Acute psychosocial stress and children's memory.

    PubMed

    de Veld, Danielle M J; Riksen-Walraven, J Marianne; de Weerth, Carolina

    2014-07-01

    We investigated whether children's performance on working memory (WM) and delayed retrieval (DR) tasks decreased after stress exposure, and how physiological stress responses related to performance under stress. About 158 children (83 girls; Mage = 10.61 years, SD = 0.52) performed two WM tasks (WM forward and WM backward) and a DR memory task first during a control condition, and 1 week later during a stress challenge. Salivary alpha-amylase (sAA) and cortisol were assessed during the challenge. Only WM backward performance declined over conditions. Correlations between physiological stress responses and performance within the stress challenge were present only for WM forward and DR. For WM forward, higher cortisol responses were related to better performance. For DR, there was an inverted U-shape relation between cortisol responses and performance, as well as a cortisol × sAA interaction, with concurrent high or low responses related to optimal performance. This emphasizes the importance of including curvilinear and interaction effects when relating physiology to memory.

  10. Prolonged Effects of Acute Stress on Decision-Making under Risk: A Human Psychophysiological Study.

    PubMed

    Yamakawa, Kaori; Ohira, Hideki; Matsunaga, Masahiro; Isowa, Tokiko

    2016-01-01

    This study investigates the prolonged effects of physiological responses induced by acute stress on risk-taking in decision-making. Participants were divided into a Stress group (N = 14) and a Control group (N = 12). The Trier Social Stress Test was administered as an acute stressor, and reading was administered as a control task; thereafter, participants performed a decision-making task in which they needed to choose a sure option or a gamble option in Gain and Loss frame trials 2 h after (non-) exposure to the stressor. Increased cortisol, adrenaline, heart rate (HR), and subjective stress levels validated acute stress manipulation. Stressed participants made fewer risky choices only in the Gain domain, whereas no effect of stress was shown in the Loss domain. Deceleration of HR reflecting attention was greater for Gains compared with Losses only in the Stress group. Risk avoidance was determined by increased levels of cortisol caused by acute stress. These results suggest that processes regarding glucocorticoid might be involved in the prolonged effects of acute stress on the evaluation of risks and the monitoring of outcomes in decision-making. PMID:27679566

  11. Prolonged Effects of Acute Stress on Decision-Making under Risk: A Human Psychophysiological Study

    PubMed Central

    Yamakawa, Kaori; Ohira, Hideki; Matsunaga, Masahiro; Isowa, Tokiko

    2016-01-01

    This study investigates the prolonged effects of physiological responses induced by acute stress on risk-taking in decision-making. Participants were divided into a Stress group (N = 14) and a Control group (N = 12). The Trier Social Stress Test was administered as an acute stressor, and reading was administered as a control task; thereafter, participants performed a decision-making task in which they needed to choose a sure option or a gamble option in Gain and Loss frame trials 2 h after (non-) exposure to the stressor. Increased cortisol, adrenaline, heart rate (HR), and subjective stress levels validated acute stress manipulation. Stressed participants made fewer risky choices only in the Gain domain, whereas no effect of stress was shown in the Loss domain. Deceleration of HR reflecting attention was greater for Gains compared with Losses only in the Stress group. Risk avoidance was determined by increased levels of cortisol caused by acute stress. These results suggest that processes regarding glucocorticoid might be involved in the prolonged effects of acute stress on the evaluation of risks and the monitoring of outcomes in decision-making. PMID:27679566

  12. Prolonged Effects of Acute Stress on Decision-Making under Risk: A Human Psychophysiological Study

    PubMed Central

    Yamakawa, Kaori; Ohira, Hideki; Matsunaga, Masahiro; Isowa, Tokiko

    2016-01-01

    This study investigates the prolonged effects of physiological responses induced by acute stress on risk-taking in decision-making. Participants were divided into a Stress group (N = 14) and a Control group (N = 12). The Trier Social Stress Test was administered as an acute stressor, and reading was administered as a control task; thereafter, participants performed a decision-making task in which they needed to choose a sure option or a gamble option in Gain and Loss frame trials 2 h after (non-) exposure to the stressor. Increased cortisol, adrenaline, heart rate (HR), and subjective stress levels validated acute stress manipulation. Stressed participants made fewer risky choices only in the Gain domain, whereas no effect of stress was shown in the Loss domain. Deceleration of HR reflecting attention was greater for Gains compared with Losses only in the Stress group. Risk avoidance was determined by increased levels of cortisol caused by acute stress. These results suggest that processes regarding glucocorticoid might be involved in the prolonged effects of acute stress on the evaluation of risks and the monitoring of outcomes in decision-making.

  13. Parent-Child Agreement Regarding Children's Acute Stress: The Role of Parent Acute Stress Reactions

    ERIC Educational Resources Information Center

    Kassam-Adams, Nancy; Garcia-Espana, J. Felipe; Miller, Victoria A.; Winston, Flaura

    2006-01-01

    Objective: We examined parent--child agreement regarding child acute stress disorder (ASD) and the relationship between parent ASD symptoms and parent ratings of child ASD. Method: Parent-child dyads (N = 219; child age 8-17 years) were assessed within 1 month of child injury. Parent--child agreement was examined regarding child ASD presence,…

  14. Variations of physiological and innate immunological responses in goldfish (Carassius auratus) subjected to recurrent acute stress.

    PubMed

    Eslamloo, Khalil; Akhavan, Sobhan R; Fallah, Farzin Jamalzad; Henry, Morgane A

    2014-03-01

    This study was undertaken to investigate the influence of repeated acute stress on the physiological status and non-specific immune response of goldfish, Carassius auratus. The acute stress was a succession of a 3 min-chasing period followed by a 2 min-air exposure. The goldfish in triplicate tanks were subjected 3 times daily to this stress for one (S3) or three (S9) days. A separate group of unstressed fish was used as control for each sampling time. Blood samples were collected 12, 48 and 120 h after the last stress procedure. Variations of globulin levels, plasma anti-protease and bactericidal activities were not significant in the present study. The haematological parameters and plasma total protein and albumin strongly declined in S9 fish 12 h post-stress compared to control fish. However, plasma cortisol, glucose and lactate levels in both S3 and S9 transiently increased compared to the control fish. Similarly, plasma peroxidase activity transiently increased in both stressed groups 12 h after stress. An increase in plasma lysozyme and complement activities suggested a hormesis-like effect with one-day acute stress improving the immunological response of goldfish while an extension of the stress period to three days impaired physiology and immunity for up to 5 days. This study revealed that recurrent acute stress could immunosuppress goldfish as usually expected of chronic stress.

  15. Acute restraint stress induces rapid and prolonged changes in erythrocyte and hippocampal redox status.

    PubMed

    Spiers, Jereme G; Chen, Hsiao-Jou; Bradley, Adrian J; Anderson, Stephen T; Sernia, Conrad; Lavidis, Nickolas A

    2013-11-01

    The onset and consequential changes in reduction-oxidation (redox) status that take place in response to short-term stress have not been well defined. This study utilized erythrocytes and neural tissue from male Wistar rats to demonstrate the rapid redox alterations that occur following an acute restraining stress. Serial blood samples collected from catheterized animals were used to measure prolactin, corticosterone, glucose, general oxidative status, and glutathione/glutathione disulfide ratios. Restraint increased prolactin concentration by approximately 300% at 30 min and rapidly returned to baseline values by 120 min of stress. Baseline blood glucose and corticosterone increased during stress exposure by approximately 25% and 150% respectively. Over the experimental period, the erythrocytic oxidative status of restrained animals increased by approximately 10% per hour which persisted after stress exposure, while changes in the glutathione redox couple were not observed until 120 min following the onset of stress. Application of restraint stress increased hippocampal oxidative status by approximately 17% while no change was observed in the amygdala. It was concluded that while endocrine and metabolic markers of stress rapidly increase and habituate to stress exposure, redox status continues to change following stress in both peripheral and neural tissue. Studies with longer post-restraint times and the inclusion of several brain regions should further elucidate the consequential redox changes induced by acute restraint stress.

  16. Acute Restraint Stress Enhances Hippocampal Endocannabinoid Function via Glucocorticoid Receptor Activation

    PubMed Central

    Wang, Meina; Hill, Matthew N.; Zhang, Longhua; Gorzalka, Boris B.; Hillard, Cecilia J.; Alger, Bradley E.

    2012-01-01

    Exposure to behavioral stress normally triggers a complex, multi-level response of the hypothalamic-pituitary-adrenal (HPA) axis that helps maintain homeostatic balance. Although the endocannabinoid (eCB) system (ECS) is sensitive to chronic stress, few studies have directly addressed its response to acute stress. Here we show that acute restraint stress enhances eCB-dependent modulation of GABA release measured by whole-cell voltage clamp of inhibitory post-synaptic currents (IPSCs) in rat hippocampal CA1 pyramidal cells in vitro. Both Ca2+-dependent, eCB-mediated depolarization-induced suppression of inhibition (DSI), and muscarinic cholinergic receptor (mAChR) mediated eCB mobilization are enhanced following acute stress exposure. DSI enhancement is dependent on the activation of glucocorticoid receptors (GRs) and is mimicked by both in vivo and in vitro corticosterone treatment. This effect does not appear to involve cyclooxygenase-2 (COX-2), an enzyme that can degrade eCBs; however, treatment of hippocampal slices with the L-type calcium (Ca2+) channel inhibitor, nifedipine, reverses while an agonist of these channels mimics the effect of in vivo stress. Finally, we find that acute stress produces a delayed (by 30 min) increase in the hippocampal content of 2-arachidonoylglycerol, the eCB responsible for DSI. These results support the hypothesis that the ECS is a biochemical effector of glucocorticoids in the brain, linking stress with changes in synaptic strength. PMID:21890595

  17. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific.

  18. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. PMID:26476140

  19. Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress.

    PubMed

    André, Lucas; Gouzi, Fares; Thireau, Jérôme; Meyer, Gregory; Boissiere, Julien; Delage, Martine; Abdellaoui, Aldja; Feillet-Coudray, Christine; Fouret, Gilles; Cristol, Jean-Paul; Lacampagne, Alain; Obert, Philippe; Reboul, Cyril; Fauconnier, Jérémy; Hayot, Maurice; Richard, Sylvain; Cazorla, Olivier

    2011-11-01

    Arrhythmias following cardiac stress are a key predictor of death in healthy population. Carbon monoxide (CO) is a ubiquitous pollutant promoting oxidative stress and associated with hospitalization for cardiovascular disease and cardiac mortality. We investigated the effect of chronic CO exposure on the occurrence of arrhythmic events after a cardiac stress test and the possible involvement of related oxidative stress. Wistar rats exposed chronically (4 weeks) to sustained urban CO pollution presented more arrhythmic events than controls during recovery after cardiac challenge with isoprenaline in vivo. Sudden death occurred in 22% of CO-exposed rats versus 0% for controls. Malondialdehyde (MDA), an end-product of lipid peroxidation, was increased in left ventricular tissue of CO-exposed rats. Cardiomyocytes isolated from CO-exposed rats showed higher reactive oxygen species (ROS) production (measured with MitoSox Red dye), higher diastolic Ca(2+) resulting from SR calcium leak and an higher occurrence of irregular Ca(2+) transients (measured with Indo-1) in comparison to control cells after a high pacing sequence. Acute treatment with a ROS scavenger (N-acetylcysteine, 20 mmol/L, 1 h) prevented this sequence of alterations and decreased the number of arrhythmic cells following high pacing. Chronic CO exposure promotes oxidative stress that alters Ca(2+) homeostasis (through RYR2 and SERCA defects) and thereby mediates the triggering of ventricular arrhythmia after cardiac stress that can lead to sudden death.

  20. Brain vasopressin V(1) receptors contribute to enhanced cardiovascular responses to acute stress in chronically stressed rats and rats with myocardial infarcton.

    PubMed

    Cudnoch-Jedrzejewska, Agnieszka; Szczepanska-Sadowska, Ewa; Dobruch, Jakub; Gomolka, Ryszard; Puchalska, Liana

    2010-03-01

    The present study was designed to determine the role of central vasopressin 1 receptors (V(1)R) in the regulation of cardiovascular parameters in chronically stressed infarcted rats and sham-operated rats under resting conditions and during exposure to acute alarming stress. The experiments were performed on four groups of conscious sham-operated and four groups of infarcted rats subjected to intraventricular infusion of either vehicle or a V(1)R antagonist (V(1)RANT). Two groups of infarcted and two groups of sham-operated rats were subjected to mild chronic stressing. Mean arterial blood pressure (MABP) and heart rate (HR) were determined under resting conditions and after exposure to acute stress (air jet). During vehicle infusion, MABP and HR increases in response to acute stress in the infarcted rats not subjected to chronic stress, and in the infarcted and sham-operated chronically stressed rats, were significantly greater than in the sham-operated rats not exposed to chronic stress. However, MABP and HR responses to acute stress in the chronically stressed infarcted rats and chronically stressed sham-operated rats did not differ. V(1)RANT abolished differences in cardiovascular responses to acute stress between the experimental groups. Resting cardiovascular parameters were not affected by any of the experimental treatments. It is concluded that chronic stressing enhances the pressor and tachycardic responses to acute stress in the sham-operated rats but does not further intensify these responses in infarcted rats.The results provide evidence that central V(1)Rs are involved in potentiation of cardiovascular responses to acute stress in chronically stressed rats, infarcted rats, and chronically stressed infarcted rats.

  1. Formaldehyde exposure and acute health effects study

    SciTech Connect

    Quackenboss, J.J.; Lebowitz, M.D.; Michaud, J.P.; Bronnimann, D. )

    1989-01-01

    To assess the effects of formaldehyde exposures on health, exposure groups were defined using baseline exposure and health questionnaires. Formaldehyde concentrations were poorly correlated with these exposure classifications, perhaps due to the time delay between classification and monitoring. The 151 households reported here had a mean HCHO concentration of 35 (S.E. 1.5 and median 30) {mu}g/m{sup 3}. Passive samplers prepared in our lab were calibrated in a chamber to derive an estimated sampling rate of 0.311 {mu}g/(mg {center dot} m{sup {minus}3} {center dot} hr). They were also compared to commercially available samplers inside of the homes, with a correlation coefficient of 0.896 and mean difference of 2.6 {mu}g/m{sup 3}. In this report of initial findings from an ongoing study, daily symptoms and peak expiratory flow measurements were compared with an HCHO exposure classification based on the median measured concentrations. None of the symptoms groups were related to HCHO exposure when controlling for age and sex. There was a significant relationship between HCHO exposure and variability in peak expiratory flows that was dependent on age group. It may be especially important to assess the variability in reactive individuals and children to determine the short-term effects of HCHO exposures and possible long-term consequences.

  2. Acute Stress Symptoms in Young Children with Burns

    ERIC Educational Resources Information Center

    Stoddard, Frederick J.; Saxe, Glenn; Ronfeldt, Heidi; Drake, Jennifer E.; Burns, Jennifer; Edgren, Christy; Sheridan, Robert

    2006-01-01

    Objective: Posttraumatic stress disorder symptoms are a focus of much research with older children, but little research has been conducted with young children, who account for about 50% of all pediatric burn injuries. This is a 3-year study of 12- to 48-month-old acutely burned children to assess acute traumatic stress outcomes. The aims were to…

  3. Bifactor Item Response Theory Model of Acute Stress Response

    PubMed Central

    Zhang, Ying; Jiang, Yuan; Tang, Jingjing; Zhu, Xia; Miao, Danmin

    2013-01-01

    Background Better understanding of acute stress responses is important for revision of DSM-5. However, the latent structure and relationship between different aspects of acute stress responses haven’t been clarified comprehensively. Bifactor item response model may help resolve this problem. Objective The purpose of this study is to develop a statistical model of acute stress responses, based on data from earthquake rescuers using Acute Stress Response Scale (ASRS). Through this model, we could better understand acute stress responses comprehensively, and provide preliminary information for computerized adaptive testing of stress responses. Methods Acute stress responses of earthquake rescuers were evaluated using ASRS, and state/trait anxiety were assessed using State-trait Anxiety Inventory (STAI). A hierarchical item response model (bifactor model) was used to analyze the data. Additionally, we tested this hierarchical model with model fit comparisons with one-dimensional and five-dimensional models. The correlations among acute stress responses and state/trait anxiety were compared, based on both the five-dimensional and bifactor models. Results Model fit comparisons showed bifactor model fit the data best. Item loadings on general and specific factors varied greatly between different aspects of stress responses. Many symptoms (40%) of physiological responses had positive loadings on general factor, and negative loadings on specific factor of physiological responses, while other stress responses had positive loadings on both general and specific factors. After extracting general factor of stress responses using bifactor analysis, significant positive correlations between physiological responses and state/trait anxiety (r = 0.185/0.112, p<0.01) changed into negative ones (r = −0.177/−0.38, p<0.01). Conclusion Our results demonstrated bifactor structure of acute stress responses, and positive and negative correlations between physiological responses

  4. Acute and chronic respiratory effects of sodium borate particulate exposures.

    PubMed Central

    Wegman, D H; Eisen, E A; Hu, X; Woskie, S R; Smith, R G; Garabrant, D H

    1994-01-01

    This study examined work-related chronic abnormality in pulmonary function and work-related acute irritant symptoms associated with exposure to borate dust in mining and processing operations. Chronic effects were examined by pulmonary function at the beginning and end of a 7-year interval. Time-specific estimates of sodium borate particulate exposures were used to estimate cumulative exposure during the study interval. Change in pulmonary function over the 7 years was found unrelated to the estimate of cumulative exposure during that interval. Exposure-response associations also were examined with respect to short-term peak exposures and incidence of five symptoms of acute respiratory irritation. Hourly measures of health outcome and continuous measures of particulate exposure were made on each subject throughout the day. Whenever a subject reported one of the irritant symptoms, a symptom intensity score was also recorded along with the approximate time of onset. The findings indicated that exposure-response relationships were present for each of the specific symptoms at several symptom intensity levels. The associations were present when exposure was estimated by both day-long and short-term (15-min) time-weighted average exposures. Associations persisted after taking account of smoking, age, and the presence of a common cold. No significant difference in response rate was found between workers exposed to different types of sodium borate dusts. PMID:7889871

  5. The Additive Benefit of Hypnosis and Cognitive-Behavioral Therapy in Treating Acute Stress Disorder

    ERIC Educational Resources Information Center

    Bryant, Richard A.; Moulds, Michelle L.; Guthrie, Rachel M.; Nixon, Reginald D. V.

    2005-01-01

    This research represents the first controlled treatment study of hypnosis and cognitive- behavioral therapy (CBT) of acute stress disorder (ASD). Civilian trauma survivors (N = 87) who met criteria for ASD were randomly allocated to 6 sessions of CBT, CBT combined with hypnosis (CBT-hypnosis), or supportive counseling (SC). CBT comprised exposure,…

  6. Exhaled nitric oxide decreases upon acute exposure to high-altitude hypoxia.

    PubMed

    Brown, Daniel E; Beall, Cynthia M; Strohl, Kingman P; Mills, Phoebe S

    2006-01-01

    Nitric oxide (NO) is a vasodilator that plays a role in blood flow and oxygen delivery. Acute hypoxia down regulates NO synthesis, a response that may exacerbate hypoxic stress by decreasing blood flow. This study was designed to test the hypotheses that pulmonary NO decreases upon acute exposure to high-altitude hypoxia and that relatively low levels of NO at altitude are associated with greater stress as reflected in more symptoms of acute mountain sickness (AMS). A sample of 47 healthy, adult, nonsmoking, sea-level residents provided measurements at sea level, at 2,800 m, and at 0-, 2-, and 3-h exposure times at 4,200 m altitude on Mauna Kea, Hawaii. Measurements were made of exhaled NO, oxygen saturation of hemoglobin, heart rate, and reported symptoms of AMS. The partial pressure of NO concentration in exhaled breath decreased significantly from a sea level mean of 4.2 nmHg to 3.8 nmHg at 2,800 m and 3.4 nmHg at 4,200 m. NO concentration in exhaled breath did not change significantly over a 3-h exposure at 4,200 m and recovered to pre-exposure baseline upon return to sea level. There was no significant association between the level of NO exhaled and the number of self-reported symptoms of AMS during this brief exposure. PMID:16493632

  7. Chronic and acute effects of stress on energy balance: are there appropriate animal models?

    PubMed Central

    2014-01-01

    Stress activates multiple neural and endocrine systems to allow an animal to respond to and survive in a threatening environment. The corticotropin-releasing factor system is a primary initiator of this integrated response, which includes activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. The energetic response to acute stress is determined by the nature and severity of the stressor, but a typical response to an acute stressor is inhibition of food intake, increased heat production, and increased activity with sustained changes in body weight, behavior, and HPA reactivity. The effect of chronic psychological stress is more variable. In humans, chronic stress may cause weight gain in restrained eaters who show increased HPA reactivity to acute stress. This phenotype is difficult to replicate in rodent models where chronic psychological stress is more likely to cause weight loss than weight gain. An exception may be hamsters subjected to repeated bouts of social defeat or foot shock, but the data are limited. Recent reports on the food intake and body composition of subordinate members of group-housed female monkeys indicate that these animals have a similar phenotype to human stress-induced eaters, but there are a limited number of investigators with access to the model. Few stress experiments focus on energy balance, but more information on the phenotype of both humans and animal models during and after exposure to acute or chronic stress may provide novel insight into mechanisms that normally control body weight. PMID:25519732

  8. Dysfunctional cognitive appraisal and psychophysiological reactivity in acute stress disorder.

    PubMed

    Elsesser, Karin; Freyth, Claudia; Lohrmann, Thomas; Sartory, Gudrun

    2009-10-01

    The present study investigated the extent of dysfunctional appraisal as measured with the Posttraumatic Cognitions Inventory (PTCI) and physiological responses to trauma-related material in patients with acute stress disorder (ASD; N=44) in comparison to participants without trauma exposure (N=27). Heart-rate (HR), skin conductance responses (SCR), and viewing time were recorded in response to - for trauma victims - idiosyncratically trauma-relevant and control pictures. ASD patients evidenced greater dysfunctional appraisal than control participants with regard to the PTCI scales Self and World and also an accelerative HR reaction and greater SCRs to trauma-relevant pictures. Among patients, PTCI was highly correlated with ASD severity while PTCI World was positively correlated with resting HR and depression. Amplitude of the HR reaction to trauma-related pictures was negatively correlated with viewing time. Results suggest that dysfunctional appraisal and autonomic reactivity are only loosely related in ASD.

  9. Neuroendocrine and cardiovascular reactions to acute psychological stress are attenuated in smokers.

    PubMed

    Ginty, Annie T; Jones, Alexander; Carroll, Douglas; Roseboom, Tessa J; Phillips, Anna C; Painter, Rebecca; de Rooij, Susanne R

    2014-10-01

    A number of studies have now examined the association between smoking and the magnitude of physiological reactions to acute psychological stress. However, no large-scale study has demonstrated this association incorporating neuroendocrine in addition to cardiovascular reactions to stress. The present study compared neuroendocrine and cardiovascular reactions to acute stress exposure in current smokers, ex-smokers, and those who had never smoked in a large community sample. Salivary cortisol, systolic and diastolic blood pressure, heart rate and frequency components of systolic blood pressure and heart rate variability were measured at rest and during exposure to a battery of three standardized stress tasks in 480 male and female participants from the Dutch Famine Birth Cohort Study. Current smokers had significantly lower cortisol, systolic and diastolic blood pressure, and heart rate reactions to stress. They also exhibited smaller changes in the low frequency band of blood pressure variability compared to ex- and never smokers. There were no group differences in stress related changes in overall heart rate variability as measured by the root mean square of successive interbeat interval differences or in the high frequency band of heart rate variability. In all cases, effects remained significant following statistical adjustment for a host of variables likely to be associated with reactivity and/or smoking. In secondary analyses, there were no significant associations between lifetime cigarette consumption or current consumption and stress reactivity. In conclusion, compared to non-smokers and ex-smokers, current smokers exhibited attenuated neuroendocrine and cardiovascular reactions to acute psychological stress. Among smokers and ex-smokers, there is no evidence that lifetime exposure was associated with physiological reactions to acute stress, nor that current levels of cigarette consumption were associated with reactivity. It is possible, then, that

  10. OSO paradigm--A rapid behavioral screening method for acute psychosocial stress reactivity in mice.

    PubMed

    Brzózka, M M; Unterbarnscheidt, T; Schwab, M H; Rossner, M J

    2016-02-01

    Chronic psychosocial stress is an important environmental risk factor for the development of psychiatric diseases. However, studying the impact of chronic psychosocial stress in mice is time consuming and thus not optimally suited to 'screen' increasing numbers of genetically manipulated mouse models for psychiatric endophenotypes. Moreover, many studies focus on restraint stress, a strong physical stressor with limited relevance for psychiatric disorders. Here, we describe a simple and a rapid method based on the resident-intruder paradigm to examine acute effects of mild psychosocial stress in mice. The OSO paradigm (open field--social defeat--open field) compares behavioral consequences on locomotor activity, anxiety and curiosity before and after exposure to acute social defeat stress. We first evaluated OSO in male C57Bl/6 wildtype mice where a single episode of social defeat reduced locomotor activity, increased anxiety and diminished exploratory behavior. Subsequently, we applied the OSO paradigm to mouse models of two schizophrenia (SZ) risk genes. Transgenic mice with neuronal overexpression of Neuregulin-1 (Nrg1) type III showed increased risk-taking behavior after acute stress exposure suggesting that NRG1 dysfunction is associated with altered affective behavior. In contrast, Tcf4 transgenic mice displayed a normal stress response which is in line with the postulated predominant contribution of TCF4 to cognitive deficits of SZ. In conclusion, the OSO paradigm allows for rapid screening of selected psychosocial stress-induced behavioral endophenotypes in mouse models of psychiatric diseases.

  11. Effect of neonatal handling on adult rat spatial learning and memory following acute stress.

    PubMed

    Stamatakis, A; Pondiki, S; Kitraki, E; Diamantopoulou, A; Panagiotaropoulos, T; Raftogianni, A; Stylianopoulou, F

    2008-03-01

    Brief neonatal handling permanently alters hypothalamic-pituitary-adrenal axis function resulting in increased ability to cope with stress. Since stress is known to affect cognitive abilities, in the present study we investigated the effect of brief (15 min) handling on learning and memory in the Morris water maze, following exposure to an acute restraint stress either before training or recall. Exposure of non-handled rats to the acute stress prior to training resulted in quicker learning of the task, than in the absence of the stressor. When acute stress preceded acquisition, male handled rats showed an overall better learning performance, and both sexes of handled animals were less impaired in the subsequent memory trial, compared to the respective non-handled. In addition, the number of neurons immunoreactive for GR was higher in all areas of Ammon's horn of the handled rats during the recall. In contrast, the number of neurons immunoreactive for MR was higher in the CA1 and CA2 areas of the non-handled males. When the acute restraint stress was applied prior to the memory test, neonatal handling was not effective in preventing mnemonic impairment, as all animal groups showed a similar deficit in recall. In this case, no difference between handled and non-handled rats was observed in the number of GR positive neurons in the CA2 and CA3 hippocampal areas during the memory test. These results indicate that early experience interacts with sex and acute stress exposure in adulthood to affect performance in the water maze. Hippocampal corticosterone receptors may play a role in determining the final outcome.

  12. EFFECTS OF ACUTE PYRETHROID EXPOSURE ON THERMOREGULATION IN RATS.

    EPA Science Inventory

    Pyrethroid insecticides produce acute neurotoxicity in mammals. According to the FQPA mandate, the USEPA is required to consider the risk of cumulative toxicity posed to humans through exposure to pyrethroid mixtures. Thermoregulatory response (TR) is being used to determine if t...

  13. Biomarkers of Acute Respiratory Allergen Exposure: Screening For Sensitization Potential

    EPA Science Inventory

    Rationale: An in vitro assay to identify respiratory sensitizers will provide a rapid screen and reduce animal use. The study goal was to identify biomarkers that differentiate allergen versus non-allergen responses following an acute exposure. Methods: Female BALB/c mice rec...

  14. Health Impacts from Acute Radiation Exposure

    SciTech Connect

    Strom, Daniel J.

    2003-09-30

    Absorbed doses above1-2 Gy (100-200 rads) received over a period of a day or less lead to one or another of the acute radiation syndromes. These are the hematopoietic syndrome, the gastrointestinal (GI) syndrome, the cerebrovascular (CV) syndrome, the pulmonary syndrome, or the cutaneous syndrome. The dose that will kill about 50% of the exposed people within 60 days with minimal medical care, LD50-60, is around 4.5 Gy (450 rads) of low-LET radiation measured free in air. The GI syndrome may not be fatal with supportive medical care and growth factors below about 10 Gy (1000 rads), but above this is likely to be fatal. Pulmonary and cutaneous syndromes may or may not be fatal, depending on many factors. The CV syndrome is invariably fatal. Lower acute doses, or protracted doses delivered over days or weeks, may lead to many other health outcomes than death. These include loss of pregnancy, cataract, impaired fertility or temporary or permanent sterility, hair loss, skin ulceration, local tissue necrosis, developmental abnormalities including mental and growth retardation in persons irradiated as children or fetuses, radiation dermatitis, and other symptoms listed in Table 2 on page 12. Children of parents irradiated prior to conception may experience heritable ill-health, that is, genetic changes from their parents. These effects are less strongly expressed than previously thought. Populations irradiated to high doses at high dose rates have increased risk of cancer incidence and mortality, taken as about 10-20% incidence and perhaps 5-10% mortality per sievert of effective dose of any radiation or per gray of whole-body absorbed dose low-LET radiation. Cancer risks for non-uniform irradiation will be less.

  15. Microscopic acute lesions after caustic exposure.

    PubMed

    Advenier, A-S; Dorandeu, A; Charlier, P; Lorin de la Grandmaison, G

    2014-01-01

    Although lesions related to chemical burns have been studied through case reports, clinical analyses and autopsy series, microscopic lesions have not yet been precisely described. Our study analyses the microscopic lesions recorded after caustic exposure in fourteen lethal and four non-lethal cases. We find that microscopic lesions after caustic exposure are various and non-specific. Moreover, the distribution of gastrointestinal lesions is inconsistent. Histological changes affect the digestive mucosa first, with the entire wall suffering damage in some cases. Multiple factors influence the pattern of lesions, including the nature of the caustic substance, the duration of contact, the amount of the substance encountering the tissue and the length of postingestion survival. The assessment of microscopic lesions, especially necrosis, can be limited by post-mortem autolysis, which quickly affects the digestive tract. Chemical pneumonia due to caustic burns is rare and, when present, typically secondary to aspiration. According to the presented findings, macroscopic examination at autopsy under- or overestimates the nature and degree of lesions. Significant complications of caustic ingestion such as chemical pneumonitis can also be found by histological analysis. Microscopic examination can be useful to rule out oesophagitis or other digestive pathologies that can mimic chemical burns.

  16. Responses of the soft coral Xenia elongata following acute exposure to a chemical dispersant.

    PubMed

    Studivan, Michael S; Hatch, Walter I; Mitchelmore, Carys L

    2015-01-01

    Limited toxicology data are available regarding oil dispersant exposure to coral species. Corexit® EC9500A (Corexit) is a commonly applied dispersant most well known for its use after the Deepwater Horizon spill in April, 2010. There is limited evidence that Corexit can cause a bleaching response in corals. The aims of the study were: (1) to determine the extent of bleaching after acute 24 h and 72 h exposures of sublethal concentrations (0-50 ppm) of Corexit to the pulsing soft coral Xenia elongata and (2) to investigate a percent symbiont loss calculation using zooxanthellae density. The percent symbiont loss calculation was compared to a traditional metric of normalizing zooxanthellae density to soluble protein content. Percent symbiont loss was an effective measure of coral stress in acute Corexit exposures, while protein normalized zooxanthellae density was more variable. The bleaching data suggest a positive relationship between dispersant concentration and percent symbiont loss, culminating in excessive tissue necrosis and coral mortality within 72 h in high concentration exposures (p < 0.001). Percent beaching ranged from 25% in 5 ppm exposures to 100% in 50 ppm exposures. Corexit also caused a significant decrease in pulse activity (p < 0.0001) and relative oxygen saturation (p < 0.001), possibly indicating a reduction in photosynthetic efficiency. This study and other similar research indicate that dispersant exposure is highly damaging to marine organisms, including ecologically important coral species.

  17. Dynamics of locomotor activity and heat production in rats after acute stress.

    PubMed

    Pertsov, S S; Alekseeva, I V; Koplik, E V; Sharanova, N E; Kirbaeva, N V; Gapparov, M M G

    2014-05-01

    The dynamics of locomotor activity and heat production were studied in rats demonstrating passive and active behavior in the open field test at different time after exposure to acute emotional stress caused by 12-h immobilization during dark hours. The most pronounced changes in behavior and heat production followed by disturbances in circadian rhythms of these parameters were detected within the first 2 days after stress. In contrast to behaviorally active rats, the most significant decrease in locomotor activity and heat production of passive animals subjected to emotional stress was observed during dark hours. Circadian rhythms of behavior and heat production in rats tended to recover on day 3 after immobilization stress. These data illustrate the specificity of metabolic and behavioral changes reflecting the shift of endogenous biological rhythms in individuals with different prognostic resistance to stress at different terms after exposure to negative emotiogenic stimuli. PMID:24906959

  18. Oxidative Stress and Air Pollution Exposure

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2011-01-01

    Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact. PMID:21860622

  19. Chronic Psychosocial Factors and Acute Physiological Responses to Laboratory-Induced Stress in Healthy Populations: A Quantitative Review of 30 Years of Investigations

    ERIC Educational Resources Information Center

    Chida, Yoichi; Hamer, Mark

    2008-01-01

    This meta-analysis included 729 studies from 161 articles investigating how acute stress responsivity (including stress reactivity and recovery of hypothalamic-pituitary-adrenal [HPA] axis, autonomic, and cardiovascular systems) changes with various chronic psychosocial exposures (job stress; general life stress; depression or hopelessness;…

  20. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  1. Stress-induced sensitization of cortical adrenergic receptors following a history of cannabinoid exposure

    PubMed Central

    Reyes, B.A.S.; Szot, P.; Sikkema, C.; Cathel, A. M.; Kirby, L.G.; Van Bockstaele, E.J.

    2014-01-01

    The cannabinoid receptor agonist, WIN 55,212-2, increases extracellular norepinephrine levels in the rat frontal cortex under basal conditions, likely via desensitization of inhibitory α2-adrenergic receptors located on norepinephrine terminals. Here, the effect of WIN 55,212-2 on stress-induced norepinephrine release was assessed in the medial prefrontal cortex (mPFC), in adult male Sprague-Dawley rats using in vivo microdialysis. Systemic administration of WIN 55,212-2 thirty minutes prior to stressor exposure prevented stress-induced cortical norepinephrine release induced by a single exposure to swim when compared to vehicle. To further probe cortical cannabinoid-adrenergic interactions, postsynaptic α2-adrenergic receptor (AR)-mediated responses were assessed in mPFC pyramidal neurons using electrophysiological analysis in an in vitro cortical slice preparation. We confirm prior studies showing that clonidine increases cortical pyramidal cell excitability and that this was unaffected by exposure to acute stress. WIN 55,212-2, via bath application, blocked postsynaptic α2-AR mediated responses in cortical neurons irrespective of exposure to stress. Interestingly, stress exposure prevented the desensitization of α2-AR mediated responses produced by a history of cannabinoid exposure. Together, these data indicate the stress-dependent nature of cannabinoid interactions via both pre- and postsynaptic ARs. In summary, microdialysis data indicate that cannabinoids restrain stress-induced cortical NE efflux. Electrophysiology data indicate that cannabinoids also restrain cortical cell excitability under basal conditions; however, stress interferes with these CB1-α2 AR interactions, potentially contributing to over-activation of pyramidal neurons in mPFC. Overall, cannabinoids are protective of the NE system and cortical excitability but stress can derail this protective effect, potentially contributing to stress-related psychopathology. These data add to the

  2. The effects of acute and chronic stress on diabetes control.

    PubMed

    Marcovecchio, M Loredana; Chiarelli, Francesco

    2012-10-23

    Stress is an important contributor to pathological conditions in humans. Hormonal changes that occur during acute and chronic stress situations can affect glucose homeostasis in both healthy people and in those with diabetes. Several studies have reported a negative effect of acute stress on maintenance of blood glucose concentrations in patients with type 1 and type 2 diabetes. The effect of stress on glycemic control in people with diabetes may be related to a direct effect of stress hormones on blood glucose levels and an indirect effect of stress on patient behaviors related to diabetes treatment and monitoring and meal and exercise plans. In contrast, there is no clear evidence that stressful life events promote the development of diabetes in children or in adults. Stress hyperglycemia, the development of hyperglycemia during acute illness, represents another interesting connection between the stress system and glucose homeostasis. A large body of evidence supports an association between stress hyperglycemia and increased morbidity and mortality in critically ill patients. Interestingly, there is some evidence supporting a beneficial effect of insulin in reducing morbidity and mortality in patients admitted to intensive care units. Finally, stress can influence the development of type 2 diabetes indirectly by promoting obesity and metabolic syndrome. PMID:23092890

  3. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    PubMed

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration.

  4. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    PubMed

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. PMID:26924539

  5. Acute eosinophilic pneumonia associated with glyphosate-surfactant exposure.

    PubMed

    De Raadt, Wanda M; Wijnen, Petal A; Bast, Aalt; Bekers, Otto; Drent, Marjolein

    2015-01-01

    We report a case of a female patient who developed acute eosinophilic pneumonia (AEP) after recent onset of smoking and exposure to glyphosate-surfactant.The additional exposure associated with the recent start of smoking may have contributed to the development and/or severity of AEP.A clinical relapse after re-challenge four years later both with smoking and glyphosate-surfactant made the association highly likely.Respiratory distress is a factor of poor outcome and mortality after ingestion of glyphosate-surfactant.This case highlights the importance of a thorough exposure history e.g., possible occupational and environmental exposures together with drug-intake.Genotyping should be considered in cases of severe unexplained pulmonary damage. PMID:26278698

  6. Acute liver failure associated with occupational exposure to tetrachloroethylene.

    PubMed

    Shen, Chuan; Zhao, Cai-Yan; Liu, Fang; Wang, Ya-Dong; Wang, Wei

    2011-01-01

    Tetrachloroethylene is a chlorinated solvent that is primarily used in dry cleaning and degreasing operations. Although the hepatotoxicity caused by tetrachloroethylene has been well documented in literature, it is rarely considered as a cause of acute liver failure. We report a case of a 39-yr-old man who was admitted to our hospital for acute liver failure due to tetrachloroethylene exposure. Histological examination of the liver revealed massive hepatic necrosis, prominently, in zone 3 of the hepatic lobules. The patient underwent supportive treatment along with 3 sessions of plasmapheresis, and consequently, he presented a favorable outcome. Repeat liver biopsy performed 6 months after the patient's discharge showed architectural distortion with postnecrotic cirrhosis. Physicians should be aware of the possibility of acute liver failure induced by tetrachloroethylene. Early plasmapheresis can be effective for individuals with sufficient capacity for hepatocyte regeneration.

  7. The expression of thioredoxin-1 in acute epinephrine stressed mice.

    PubMed

    Jia, Jin-Jing; Zeng, Xian-Si; Li, Kun; Ma, Li-Fang; Chen, Lei; Song, Xin-Qiang

    2016-09-01

    Stress, a state of perceived threat to homeostasis, regulates a panel of important physiological functions. The human mind and body respond to stress by activating the sympathetic nervous system and secreting the catecholamines epinephrine and norepinephrine in the "fight-or-flight" response. However, the protective mechanism of acute stress is still unknown. In the present study, an acute stress mouse model was constructed by intraperitoneal injection of epinephrine (0.2 mg kg(-1)) for 4 h. Epinephrine treatment induced heat shock 70(Hsp70) expression in the stress responsive tissues, such as the cortex, hippocampus, thymus, and kidney. Further, the expression of thioredoxin-1(Trx-1), a cytoprotective protein, was also upregulated in these stress responsive tissues. In addition, the phosphorylation of cAMP-response element binding protein (CREB), a transcription factor of Trx-1, was increased after treatment with epinephrine. The block of CREB activation by H89 inhibited the acute epinephrine stress-induced Trx-1 and Hsp70 expression. Taken together, our data suggest that acute stimuli of epinephrine induced Trx-1 expression through activating CREB and may represent a protective role against stress. PMID:27511023

  8. Medical mitigation strategies for acute radiation exposure during spaceflight.

    PubMed

    Epelman, Slava; Hamilton, Douglas R

    2006-02-01

    The United States Government has recently refocused their space program on manned missions to the Moon by 2018 and later to Mars. While there are many potential risks associated with exploration-class missions, one of the most serious and unpredictable is the effect of acute space radiation exposure, and the space program must make every reasonable effort to mitigate this risk. The two cosmic sources of radiation that could impact a mission outside the Earth's magnetic field are solar particle events (SPE) and galactic cosmic radiation (GCR). Either can cause acute and chronic medical illness. Numerous researchers are currently examining the ability of GCR exposure to induce the development of genetic changes that lead to malignancies and other delayed effects. However, relatively little has been published on the medical management of an acute SPE event and the potential impact on the mission and crew. This review paper will provide the readers with medical management options for an acute radiation event based on recommendations from the Department of Homeland Security (DHS), Centers for Disease Control (CDC), and evidence-based critical analysis of the scientific literature. It is the goal of this paper to stimulate debate regarding the definition of safety parameters for exploration-class missions to determine the level of medical care necessary to provide for the crew that will undertake such missions.

  9. Medical mitigation strategies for acute radiation exposure during spaceflight.

    PubMed

    Epelman, Slava; Hamilton, Douglas R

    2006-02-01

    The United States Government has recently refocused their space program on manned missions to the Moon by 2018 and later to Mars. While there are many potential risks associated with exploration-class missions, one of the most serious and unpredictable is the effect of acute space radiation exposure, and the space program must make every reasonable effort to mitigate this risk. The two cosmic sources of radiation that could impact a mission outside the Earth's magnetic field are solar particle events (SPE) and galactic cosmic radiation (GCR). Either can cause acute and chronic medical illness. Numerous researchers are currently examining the ability of GCR exposure to induce the development of genetic changes that lead to malignancies and other delayed effects. However, relatively little has been published on the medical management of an acute SPE event and the potential impact on the mission and crew. This review paper will provide the readers with medical management options for an acute radiation event based on recommendations from the Department of Homeland Security (DHS), Centers for Disease Control (CDC), and evidence-based critical analysis of the scientific literature. It is the goal of this paper to stimulate debate regarding the definition of safety parameters for exploration-class missions to determine the level of medical care necessary to provide for the crew that will undertake such missions. PMID:16491581

  10. Biogenic amines and acute thermal stress in the rat

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Moberg, G. P.

    1975-01-01

    A study is summarized which demonstrates that depletion of the biogenic amines 5-hydroxytryptamine (5-HT) or norepinephrine (NE) alters the normal thermoregulatory responses to acute temperature stress. Specifically, NE depletion caused a significant depression in equilibrium rectal temperature at 22 C and a greater depression in rectal temperature than controls in response to cold (6 C) stress; NE depletion also resulted in a significantly higher rectal temperature response to acute heat (38 C) stress. Depletion of 5-HT had less severe effects. It remains unclear whether the primary site of action of these agents is central or peripheral.

  11. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging.

    PubMed

    Buechel, Heather M; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L; Thibault, Olivier; Blalock, Eric M

    2014-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9-12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors.

  12. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    PubMed Central

    Buechel, Heather M.; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L.; Thibault, Olivier; Blalock, Eric M.

    2013-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9–12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors. PMID:24575039

  13. History of chronic stress modifies acute stress-evoked fear memory and acoustic startle in male rats.

    PubMed

    Schmeltzer, Sarah N; Vollmer, Lauren L; Rush, Jennifer E; Weinert, Mychal; Dolgas, Charles M; Sah, Renu

    2015-01-01

    Chronicity of trauma exposure plays an important role in the pathophysiology of posttraumatic stress disorder (PTSD). Thus, exposure to multiple traumas on a chronic scale leads to worse outcomes than acute events. The rationale for the current study was to investigate the effects of a single adverse event versus the same event on a background of chronic stress. We hypothesized that a history of chronic stress would lead to worse behavioral outcomes than a single event alone. Male rats (n = 14/group) were exposed to either a single traumatic event in the form of electric foot shocks (acute shock, AS), or to footshocks on a background of chronic stress (chronic variable stress-shock, CVS-S). PTSD-relevant behaviors (fear memory and acoustic startle responses) were measured following 7 d recovery. In line with our hypothesis, CVS-S elicited significant increases in fear acquisition and conditioning versus the AS group. Unexpectedly, CVS-S elicited reduced startle reactivity to an acoustic stimulus in comparison with the AS group. Significant increase in FosB/ΔFosB-like immunostaining was observed in the dentate gyrus, basolateral amygdala and medial prefrontal cortex of CVS-S rats. Assessments of neuropeptide Y (NPY), a stress-regulatory transmitter associated with chronic PTSD, revealed selective reduction in the hippocampus of CVS-S rats. Collectively, our data show that cumulative stress potentiates delayed fear memory and impacts defensive responding. Altered neuronal activation in forebrain limbic regions and reduced NPY may contribute to these phenomena. Our preclinical studies support clinical findings reporting worse PTSD outcomes stemming from cumulative traumatization in contrast to acute trauma.

  14. Different effects of tianeptine pretreatment in rats exposed to acute stress and repeated severe stress.

    PubMed

    Kasar, M; Mengi, M; Yildirim, E A; Yurdakos, E

    2009-04-01

    In this study we aim to discuss the relationship between stress and learning and emotionality in an experimental model using two different stress conditions: acute stress (single restraint stress for 20 min) and repeated severe stress (6-h daily restraint for 21 days). We studied the effects of tianeptine, which has been suggested to have anxiolytic and cognition-enhancing effects under stressful conditions. After acute stress, the increase in the duration of immobility (F = 5.753 and 3.664) in the open field and holeboard tests and the decrease in rearing (F = 3.891) in the holeboard test were significant when compared to controls (P < 0.05). Results for repeated severe stress showed that in both the open field and holeboard tests the decrease in rearing (F = 4.494 and 4.530, respectively), increase in the duration of immobility (F = 6.069 and 4.742, respectively) and decrease in head dips (F = 4.938) in the holeboard test were statistically significant (P < 0.05). The group pretreated with tianeptine showed no significant difference from controls for either acute or repeated severe stress conditions. In the Morris water maze test, acute stress led to a prolongation of average escape latency, which indicated a spatial learning deficit. Treatment with tianeptine prior to acute stress prevented this spatial deficit. Repeated severe stress also led to spatial learning deficits in rats, but this deficit was not prevented by treatment with tianeptine. Our study demonstrates that pretreatment with tianeptine had different effects on stress-induced spatial learning deficits under acute and repeated stress conditions, while the effects on emotionality and anxiety-like behavior were similar. The mechanisms implicated in stress-induced emotional and memory deficits will be discussed.

  15. Sensory and Cognitive Effects of Acute Exposure to Hydrogen Sulfide

    PubMed Central

    Fiedler, Nancy; Kipen, Howard; Ohman-Strickland, Pamela; Zhang, Junfeng; Weisel, Clifford; Laumbach, Robert; Kelly-McNeil, Kathie; Olejeme, Kelechi; Lioy, Paul

    2008-01-01

    Background Some epidemiologic studies have reported compromised cognitive and sensory performance among individuals exposed to low concentrations of hydrogen sulfide (H2S). Objectives We hypothesized a dose–response increase in symptom severity and reduction in sensory and cognitive performance in response to controlled H2S exposures. Methods In separate exposure sessions administered in random order over three consecutive weeks, 74 healthy subjects [35 females, 39 males; mean age (± SD) = 24.7 ± 4.2; mean years of education = 16.5 ± 2.4], were exposed to 0.05, 0.5, and 5 ppm H2S. During each exposure session, subjects completed ratings and tests before H2S exposure (baseline) and during the final hour of the 2-hr exposure period. Results Dose–response reduction in air quality and increases in ratings of odor intensity, irritation, and unpleasantness were observed. Total symptom severity was not significantly elevated across any exposure condition, but anxiety symptoms were significantly greater in the 5-ppm than in the 0.05-ppm condition. No dose–response effect was observed for sensory or cognitive measures. Verbal learning was compromised during each exposure condition. Conclusions Although some symptoms increased with exposure, the magnitude of these changes was relatively minor. Increased anxiety was significantly related to ratings of irritation due to odor. Whether the effect on verbal learning represents a threshold effect of H2S or an effect due to fatigue across exposure requires further investigation. These acute effects in a healthy sample cannot be directly generalized to communities where individuals have other health conditions and concomitant exposures. PMID:18197303

  16. Divergent responses of inflammatory mediators within the amygdala and medial prefrontal cortex to acute psychological stress.

    PubMed

    Vecchiarelli, Haley A; Gandhi, Chaitanya P; Gray, J Megan; Morena, Maria; Hassan, Kowther I; Hill, Matthew N

    2016-01-01

    There is now a growing body of literature that indicates that stress can initiate inflammatory processes, both in the periphery and brain; however, the spatiotemporal nature of this response is not well characterized. The aim of this study was to examine the effects of an acute psychological stress on changes in mRNA and protein levels of a wide range of inflammatory mediators across a broad temporal range, in key corticolimbic brain regions involved in the regulation of the stress response (amygdala, hippocampus, hypothalamus, medial prefrontal cortex). mRNA levels of inflammatory mediators were analyzed immediately following 30min or 120min of acute restraint stress and protein levels were examined 0h through 24h post-termination of 120min of acute restraint stress using both multiplex and ELISA methods. Our data demonstrate, for the first time, that exposure to acute psychological stress results in an increase in the protein level of several inflammatory mediators in the amygdala while concomitantly producing a decrease in the protein level of multiple inflammatory mediators within the medial prefrontal cortex. This pattern of changes seemed largely restricted to the amygdala and medial prefrontal cortex, with stress producing few changes in the mRNA or protein levels of inflammatory mediators within the hippocampus or hypothalamus. Consistent with previous research, stress resulted in a general elevation in multiple inflammatory mediators within the circulation. These data indicate that neuroinflammatory responses to stress do not appear to be generalized across brain structures and exhibit a high degree of spatiotemporal specificity. Given the impact of inflammatory signaling on neural excitability and emotional behavior, these data may provide a platform with which to explore the importance of inflammatory signaling within the prefrontocortical-amygdala circuit in the regulation of the neurobehavioral responses to stress.

  17. Acute Psychological Stress Results in the Rapid Development of Insulin Resistance

    PubMed Central

    Li, Li; Li, Xiaohua; Zhou, Wenjun; Messina, Joseph L.

    2013-01-01

    In recent years, the roles of chronic stress and depression as an independent risk factor for decreased insulin sensitivity and the development of diabetes have been increasingly recognized. However, an understanding and the mechanisms linking insulin resistance and acute psychological stress are very limited. We hypothesized that acute psychological stress may cause the development of insulin resistance, which may be a risk factor in developing type 2 diabetes. We tested the hypothesis in a well-established mouse model using 180 episodes of inescapable foot shock (IES), followed by a behavioral escape test. In this study, mice that received IES treatment were tested for acute insulin resistance by measuring glucose metabolism and insulin signaling. When compared to normal and sham mice, mice that were exposed to IES resulting in escape failure (defined as IES with behavioral escape failure) displayed elevated blood glucose levels in both glucose tolerance and insulin tolerance tests. Furthermore, mice with IES exposure and behavioral escape failure exhibited impaired hepatic insulin signaling via the insulin-induced insulin receptor/insulin receptor substrate 1/Akt pathway, without affecting similar pathways in skeletal muscle, adipose tissue and brain. Additionally, a rise in murine growth-related oncogene KC/GRO was associated with impaired glucose metabolism in IES mice, suggesting a mechanism by which psychological stress by IES may influence glucose metabolism. The present results indicate that psychological stress induced by IES can acutely alter hepatic responsiveness to insulin and affect whole-body glucose metabolism. PMID:23444388

  18. Acute heat stress induces oxidative stress and decreases adaptation in young white leghorn cockerels by downregulation of avian uncoupling protein.

    PubMed

    Mujahid, A; Akiba, Y; Toyomizu, M

    2007-02-01

    Reactive oxygen species-induced damage of cells and molecules is one of the mechanisms responsible for the decline in an animal's performance due to heat stress. Mitochondria are the main producers of cellular superoxide, a process that is sensitive to proton motive force, and this superoxide production can be decreased by mild uncoupling. We studied the effects of heat stress on the production of mitochondrial superoxide as well as heat stress effects on the expression of avian uncoupling protein (avUCP) and avian A nucleotide translocator (avANT) in skeletal muscles of chicks and young cockerels. Male White Leghorn (Julia) chicks at 16 d and cockerels at 87 d of age were exposed to acute heat stress, 34 degrees C for 18 h, or kept at moderate ambient temperature (25 and 21 degrees C, respectively). There was no difference in mitochondrial superoxide production between heat-exposed and control chicks, whereas significant differences were observed in the case of young cockerels. Greater substrate-independent superoxide production was found in muscle mitochondria from heat-stressed young cockerels. In chicks, neither avUCP nor avANT transcript expression was changed by heat exposure, whereas in young cockerels avUCP transcript was decreased, but avANT transcript level was not changed. Thus, in heat-stressed young cockerels, increased mitochondrial superoxide production was accompanied by downregulation of avUCP. Taken together, these results suggest that exposure of young cockerels to heat stress stimulates mitochondrial superoxide production, possibly via downregulation of avUCP. Chicks with persistent avUCP expression, on the other hand, are relatively better adapted to high temperature. It can be assumed that appropriate expression of avUCP may alleviate overproduction of mitochondrial superoxide and could help birds adapt to oxidative stress resulting from acute heat stress.

  19. Acute effects of cigarette smoke exposure on experimental skin flaps

    SciTech Connect

    Nolan, J.; Jenkins, R.A.; Kurihara, K.; Schultz, R.C.

    1985-04-01

    Random vascular patterned caudally based McFarlane-type skin flaps were elevated in groups of Fischer 344 rats. Groups of rats were then acutely exposed on an intermittent basis to smoke generated from well-characterized research filter cigarettes. Previously developed smoke inhalation exposure protocols were employed using a Maddox-ORNL inhalation exposure system. Rats that continued smoke exposure following surgery showed a significantly greater mean percent area of flap necrosis compared with sham-exposed groups or control groups not exposed. The possible pathogenesis of this observation as well as considerations and correlations with chronic human smokers are discussed. Increased risks of flap necrosis by smoking in the perioperative period are suggested by this study.

  20. Acute stress selectively impairs learning to act.

    PubMed

    de Berker, Archy O; Tirole, Margot; Rutledge, Robb B; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-07-20

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress.

  1. Acute stress selectively impairs learning to act.

    PubMed

    de Berker, Archy O; Tirole, Margot; Rutledge, Robb B; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-01-01

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress. PMID:27436299

  2. Acute stress selectively impairs learning to act

    PubMed Central

    de Berker, Archy O.; Tirole, Margot; Rutledge, Robb B.; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress. PMID:27436299

  3. Artificial light at night alters delayed-type hypersensitivity reaction in response to acute stress in Siberian hamsters.

    PubMed

    Bedrosian, Tracy A; Aubrecht, Taryn G; Kaugars, Katherine E; Weil, Zachary M; Nelson, Randy J

    2013-11-01

    Several physiological and behavioral processes rely on precisely timed light information derived from the natural solar cycle. Using this information, traits have adapted to allow individuals within specific niches to optimize survival and reproduction, but urbanization by humans has significantly altered natural habitats. Nighttime light exposure alters immune function in several species, which could lead to decreased fitness or survival, particularly in the face of an environmental challenge. We exposed male Siberian hamsters (Phodopus sungorus) to five lux of light at night for four weeks, and then administered six hours of acute restraint stress. Delayed-type hypersensitivity (DTH) response was assessed immediately following stress. Acute restraint increased the DTH reaction in dark nights, but exposure to nighttime light prevented this response. Exposure to light at night prolonged the DTH response in non-stressed control hamsters. These results suggest that light pollution may significantly alter physiological responses in Siberian hamsters, particularly in response to a salient environmental challenge such as stress.

  4. Acute Stress Induces Hyperacusis in Women with High Levels of Emotional Exhaustion

    PubMed Central

    Hasson, Dan; Theorell, Töres; Bergquist, Jonas; Canlon, Barbara

    2013-01-01

    Background Hearing problems is one of the top ten public health disorders in the general population and there is a well-established relationship between stress and hearing problems. The aim of the present study was to explore if an acute stress will increase auditory sensitivity (hyperacusis) in individuals with high levels of emotional exhaustion (EE). Methods Hyperacusis was assessed using uncomfortable loudness levels (ULL) in 348 individuals (140 men; 208 women; age 23–71 years). Multivariate analyses (ordered logistic regression), were used to calculate odds ratios, including interacting or confounding effects of age, gender, ear wax and hearing loss (PTA). Two-way ANCOVAs were used to assess possible differences in mean ULLs between EE groups pre- and post-acute stress task (a combination of cold pressor, emotional Stroop and Social stress/video recording). Results There were no baseline differences in mean ULLs between the three EE groups (one-way ANOVA). However, after the acute stress exposure there were significant differences in ULL means between the EE-groups in women. Post-hoc analyses showed that the differences in mean ULLs were between those with high vs. low EE (range 5.5–6.5 dB). Similar results were found for frequencies 0.5 and 1 kHz. The results demonstrate that women with high EE-levels display hyperacusis after an acute stress task. The odds of having hyperacusis were 2.5 (2 kHz, right ear; left ns) and 2.2 (4 kHz, right ear; left ns) times higher among those with high EE compared to those with low levels. All these results are adjusted for age, hearing loss and ear wax. Conclusion Women with high levels of emotional exhaustion become more sensitive to sound after an acute stress task. This novel finding highlights the importance of including emotional exhaustion in the diagnosis and treatment of hearing problems. PMID:23301005

  5. Adrenal response to acute stress in mammillary medial nuclei lesioned rats.

    PubMed

    Suarez, M; Perassi, N I

    1993-01-01

    In view of the inhibitory influence of Mammillary Medial Nuclei, pars lateralis (MMN) on corticoadrenal activity, experiments were conducted in order to determine whether these nuclei are involved in the control of adrenal response to ether stress. In bilateral MMN lesioned rats, prestress plasma corticosterone concentration (C) is significantly higher than that in sham lesioned animals. Acute stress produced a significant C increase in both, sham and lesioned rats, being this increase lower in lesioned animals. After exposure to ether vapors. adrenal concentration of norepinephrine was similar in lesioned and control animals. Whereas, adrenal epinephrine concentration was significantly higher in lesioned rats than that found in the sham lesioned ones. This study demonstrates that the integrity of MMN is not essential for adrenal response to acute stress.

  6. Characterisation of cochlear inflammation in mice following acute and chronic noise exposure.

    PubMed

    Tan, Winston J T; Thorne, Peter R; Vlajkovic, Srdjan M

    2016-08-01

    Oxidative stress has been established as the key mechanism of the cochlear damage underlying noise-induced hearing loss, however, emerging evidence suggests that cochlear inflammation may also be a major contributor. This study aimed to improve our understanding of the cochlear inflammatory response associated with acute and chronic noise exposure. C57BL/6 mice were exposed to acute traumatic noise (100 dBSPL, 8-16 kHz for 24 h) and their cochleae collected at various intervals thereafter, up to 7 days. Using quantitative RT-PCR and immunohistochemistry, changes in expression levels of proinflammatory cytokines (TNF-α, IL-1β), chemokines (CCL2) and cell adhesion molecules (ICAM-1) were studied. All gene transcripts displayed similar dynamics of expression, with an early upregulation at 6 h post-exposure, followed by a second peak at 7 days. ICAM-1 immunoexpression increased significantly in the inferior region of the spiral ligament, peaking 24 h post-exposure. The early expression of proinflammatory mediators likely mediates the recruitment and extravasation of inflammatory cells into the noise-exposed cochlea. The occurrence of the latter expression peak is not clear, but it may be associated with reparative processes initiated in response to cochlear damage. Chronic exposure to moderate noise (90 dBSPL, 8-16 kHz, 2 h/day, up to 4 weeks) also elicited an inflammatory response, reaching a maximum after 2 weeks, suggesting that cochlear damage and hearing loss associated with chronic environmental noise exposure may be linked to inflammatory processes in the cochlea. This study thus provides further insight into the dynamics of the cochlear inflammatory response induced by exposure to acute and chronic noise. PMID:27109494

  7. Acute Stress Reduces Reward Responsiveness: Implications for Depression

    PubMed Central

    Bogdan, Ryan; Pizzagalli, Diego A.

    2008-01-01

    Background Stress, one of the strongest risk factors for depression, has been linked to “anhedonic” behavior and dysfunctional reward-related neural circuitry in preclinical models. Methods To test if acute stress reduces reward responsiveness (i.e., the ability to modulate behavior as a function of past reward), a signal-detection task coupled with a differential reinforcement schedule was utilized. Eighty female participants completed the task under both a stress condition, either threat-of-shock (n = 38) or negative performance feedback (n = 42), and a no-stress condition. Results Stress increased negative affect and anxiety. As hypothesized based on preclinical findings, stress, particularly the threat-of-shock condition, impaired reward responsiveness. Regression analyses indicate that self-report measures of anhedonia predicted stress-induced hedonic deficits even after controlling for anxiety symptoms. Conclusions These findings indicate that acute stress reduces reward responsiveness, particularly in individuals with anhedonic symptoms. Stress-induced hedonic deficit is a promising candidate mechanism linking stressful experiences to depression. PMID:16806107

  8. Acute stress in adulthood impoverishes social choices and triggers aggressiveness in preclinical models

    PubMed Central

    Nosjean, Anne; Cressant, Arnaud; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Chauveau, Frédéric; Granon, Sylvie

    2015-01-01

    Adult C57BL/6J mice are known to exhibit high level of social flexibility while mice lacking the β2 subunit of nicotinic receptors (β2−/− mice) present social rigidity. We asked ourselves what would be the consequences of a restraint acute stress (45 min) on social interactions in adult mice of both genotypes, hence the contribution of neuronal nicotinic receptors in this process. We therefore dissected social interaction complexity of stressed and not stressed dyads of mice in a social interaction task. We also measured plasma corticosterone levels in our experimental conditions. We showed that a single stress exposure occurring in adulthood reduced and disorganized social interaction complexity in both C57BL/6J and β2−/− mice. These stress-induced maladaptive social interactions involved alteration of distinct social categories and strategies in both genotypes, suggesting a dissociable impact of stress depending on the functioning of the cholinergic nicotinic system. In both genotypes, social behaviors under stress were coupled to aggressive reactions with no plasma corticosterone changes. Thus, aggressiveness appeared a general response independent of nicotinic function. We demonstrate here that a single stress exposure occurring in adulthood is sufficient to impoverish social interactions: stress impaired social flexibility in C57BL/6J mice whereas it reinforced β2−/− mice behavioral rigidity. PMID:25610381

  9. Endocrine responses in the rhesus monkey during acute cold exposure

    SciTech Connect

    Lotz, W.G.; Saxton, J.L. )

    1991-03-11

    The authors studied five young male rhesus monkeys (Macaca mulatta), 3.4 to 6.7 kg, to determine the relationship between fluid balance hormones and urine production during acute, dry cold exposure. Each monkey served as its own control in duplicate experimental sessions at 6C or 26C. A 6-h experimental session consisted of 120 min equilibration at 26C, 120 min experimental exposure, and 120 min recovery at 26C. Urinary and venous catheters were inserted on the morning of a session. Rectal (Tre) and skin temperatures were monitored continuously. Blood samples were taken at 0, 30, 60 and 120 min of exposure, and at 60 min postexposure. Plasma was analyzed for arginine vasopressin (AVP), atrial natriuretic factor (ANF), plasma renin activity (PRA), plasma aldosterone (PA), and osmolality. Urine samples were analyzed for osmolality, electrolytes, and creatinine. Mean Tre was 1.6C lower after 120 min at 6C than at 26C. Urine volume and osmolality were not altered by cold exposure, as they are in humans and rats. Vasopressin and PA increased sharply, with mean plasma levels in monkeys exposed to cold more than threefold and tenfold, respectively, the levels in monkeys exposed at 26C. In contrast, ANF, PRA, and plasma osmolality were not significantly changed by cold exposure. The absence of a cold-induced diuresis in the monkey may be related to the marked increase in plasma AVP level.

  10. Computations of uncertainty mediate acute stress responses in humans.

    PubMed

    de Berker, Archy O; Rutledge, Robb B; Mathys, Christoph; Marshall, Louise; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-03-29

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function.

  11. Computations of uncertainty mediate acute stress responses in humans.

    PubMed

    de Berker, Archy O; Rutledge, Robb B; Mathys, Christoph; Marshall, Louise; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  12. Computations of uncertainty mediate acute stress responses in humans

    PubMed Central

    de Berker, Archy O.; Rutledge, Robb B.; Mathys, Christoph; Marshall, Louise; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  13. Acute stress impairs cognitive flexibility in men, not women.

    PubMed

    Shields, Grant S; Trainor, Brian C; Lam, Jovian C W; Yonelinas, Andrew P

    2016-09-01

    Psychosocial stress influences cognitive abilities, such as long-term memory retrieval. However, less is known about the effects of stress on cognitive flexibility, which is mediated by different neurobiological circuits and could thus be regulated by different neuroendocrine pathways. In this study, we randomly assigned healthy adults to an acute stress induction or control condition and subsequently assessed participants' cognitive flexibility using an open-source version of the Wisconsin Card Sort task. Drawing on work in rodents, we hypothesized that stress would have stronger impairing effects on cognitive flexibility in men than women. As predicted, we found that stress impaired cognitive flexibility in men but did not significantly affect women. Our results thus indicate that stress exerts sex-specific effects on cognitive flexibility in humans and add to the growing body of research highlighting the need to consider sex differences in effects of stress.

  14. ACUTE MENTAL STRESS AND HEMOSTASIS: WHEN PHYSIOLOGY BECOMES VASCULAR HARM

    PubMed Central

    von Känel, Roland

    2015-01-01

    Stress-induced activation of the sympathoadrenal medullary system activates both the coagulation and fibrinolysis system resulting in net hypercoagulability. The evolutionary interpretation of this physiology is that stress-hypercoagulability protects a healthy organism from excess bleeding should injury occur in fight-or-flight situations. In turn, acute mental stress, negative emotions and psychological trauma also are triggering factors of atherothrombotic events and possibly of venous thromboembolism. Individuals with pre-existent atherosclerosis and impaired endothelial anticoagulant function are the most vulnerable to experience onset of acute coronary events within two hours of intense emotions. A range of sociodemographic and psychosocial factors (e.g., chronic stress and negative affect) might critically intensify and prolong stress-induced hypercoagulability. In contrast, several pharmacological compounds, dietary flavanoids, and positive affect mitigate the acute prothrombotic stress response. Studies are needed to investigate whether attenuation of stress-hypercoagulability through medications and biobehavioral interventions reduce the risk of thrombotic incidents in at-risk populations. PMID:25861135

  15. Contribution of infralimbic cortex in the cardiovascular response to acute stress.

    PubMed

    Müller-Ribeiro, Flávia Camargos de Figueirêdo; Zaretsky, Dmitry V; Zaretskaia, Maria V; Santos, Robson A S; DiMicco, Joseph A; Fontes, Marco Antônio Peliky

    2012-09-15

    The infralimbic region of the medial prefrontal cortex (IL) modulates autonomic and neuroendocrine function via projections to subcortical structures involved in the response to stress. We evaluated the contribution of the IL to the cardiovascular response evoked by acute stress. Under anesthesia (80 mg/kg ketamine-11.5 mg/kg xylazine), rats were implanted with telemetry probes or arterial lines for recording heart rate and blood pressure. Guide cannulas were implanted to target the IL for microinjection of muscimol (100 pmol/100 nl), N-methyl-d-aspartate (NMDA) (6 pmol/100 nl), or vehicle (100 nl). Microinjection of muscimol, an agonist of GABA(A) receptors, into the IL had no effect on stress-evoked cardiovascular and thermogenic changes in any of the paradigms evaluated (cage switch, restraint plus air-jet noise, or air-jet stress). However, microinjection of the excitatory amino acid NMDA into the IL attenuated the pressor and tachycardic response to air-jet stress. Pretreatment with the selective NMDA antagonist dl-2-amino-5-phosphonopentanoic acid (AP-5, 100 pmol/100 nl) blocked the effect of NMDA on the cardiovascular response to air-jet stress. We conclude that 1) the IL region is not tonically involved in cardiovascular or thermogenic control during stress or under baseline conditions, and 2) activation of NMDA receptors in the IL can suppress the cardiovascular response to acute stress exposure.

  16. Acute stress and working memory in older people.

    PubMed

    Pulopulos, Matias M; Hidalgo, Vanesa; Almela, Mercedes; Puig-Perez, Sara; Villada, Carolina; Salvador, Alicia

    2015-01-01

    Several studies have shown that acute stress affects working memory (WM) in young adults, but the effect in older people is understudied. As observed in other types of memory, older people may be less sensitive to acute effects of stress on WM. We performed two independent studies with healthy older men and women (from 55 to 77 years old) to investigate the effects of acute stress (Trier Social Stress Test; TSST) and cortisol on WM. In study 1 (n = 63), after the TSST women (but not men) improved their performance on Digit Span Forward (a measure of the memory span component of WM) but not on Digit Span Backward (a measure of both memory span and the executive component of WM). Furthermore, in women, cortisol levels at the moment of memory testing showed a positive association with the memory span component of WM before and after the TSST, and with the executive component of WM only before the stress task. In study 2 (n = 76), although participants showed a cortisol and salivary alpha-amylase (sAA) response to the TSST, stress did not affect performance on Letter-Number Sequencing (LNS; a task that places a high demand on the executive component of WM). Cortisol and sAA were not associated with WM. The results indicate that circulating cortisol levels at the moment of memory testing, and not the stress response, affect memory span in older women, and that stress and the increase in cortisol levels after stress do not affect the executive component of WM in older men and women. This study provides further evidence that older people may be less sensitive to stress and stress-induced cortisol response effects on memory processes.

  17. EATING BEHAVIOR IN RESPONSE TO ACUTE STRESS.

    PubMed

    Mocanu, Veronica; Bontea, Amalia; Anton-Păduraru, Dana-teodora

    2016-01-01

    Obesity is a medical and social problem with a dramatically increasing prevalence. It is important to take action since childhood to prevent and treat obesity and metabolic syndrome. Infantile obesity affects all body systems starting in childhood and continuing to adulthood. Understanding the impact of stressors on weight status may be especially important for preventing obesity. The relationship between stress, eating behavior and obesity is not fully understood. However, there is evidence that stress causes disorders in hypothalamic-pituitary-adrenal (HPA) axis, system that regulates both stress and feeding responses. Also, the response is different depending on the type of stressors. Chronic stress, especially when people live in a palatable food environment, induces HPA stimulation, excess glucocorticoids, insulin resistance, which lead to inhibition of lipid mobilization, accumulation of triglyceride and retention of abdominal fat. PMID:27483696

  18. Mitigation Strategies for Acute Radiation Exposure during Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Epelman, Slava

    2006-01-01

    While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low-dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 gm/cm(sup 2) would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.

  19. Mitigation Strategies for Acute Radiation Exposure during Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Epelman, Slava

    2006-01-01

    While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 grams per square centimeters would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.

  20. Social stress modulates the cortisol response to an acute stressor in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Jeffrey, J D; Gollock, M J; Gilmour, K M

    2014-01-15

    In rainbow trout (Oncorhynchus mykiss) of subordinate social status, circulating cortisol concentrations were elevated under resting conditions but the plasma cortisol and glucose responses to an acute stressor (confinement in a net) were attenuated relative to those of dominant trout. An in vitro head kidney preparation, and analysis of the expression of key genes in the stress axis prior to and following confinement in a net were then used to examine the mechanisms underlying suppression of the acute cortisol stress response in trout experiencing chronic social stress. With porcine adrenocorticotropic hormone (ACTH) as the secretagogue, ACTH-stimulated cortisol production was significantly lower for head kidney preparations from subordinate trout than for those from dominant trout. Dominant and subordinate fish did not, however, differ in the relative mRNA abundance of melanocortin-2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) or cytochrome P450 side chain cleavage enzyme (P450scc) within the head kidney, although the relative mRNA abundance of these genes was significantly higher in both dominant and subordinate fish than in sham trout (trout that did not experience social interactions but were otherwise treated identically to the dominant and subordinate fish). The relative mRNA abundance of all three genes was significantly higher in trout exposed to an acute net stressor than under control conditions. Upstream of cortisol production in the stress axis, plasma ACTH concentrations were not affected by social stress, nor was the relative mRNA abundance of the binding protein for corticotropin releasing factor (CRF-BP). The relative mRNA abundance of CRF in the pre-optic area of subordinate fish was significantly higher than that of dominant or sham fish 1h after exposure to the stressor. Collectively, the results indicate that chronic social stress modulates cortisol production at the level of the interrenal cells, resulting in an attenuated

  1. Responses of Hyalella azteca to acute and chronic microplastic exposures.

    PubMed

    Au, Sarah Y; Bruce, Terri F; Bridges, William C; Klaine, Stephen J

    2015-11-01

    Limited information is available on the presence of microplastics in freshwater systems, and even less is known about the toxicological implications of the exposure of aquatic organisms to plastic particles. The present study was conducted to evaluate the effects of microplastic ingestion on the freshwater amphipod, Hyalella azteca. Hyalella azteca was exposed to fluorescent polyethylene microplastic particles and polypropylene microplastic fibers in individual 250-mL chambers to determine 10-d mortality. In acute bioassays, polypropylene microplastic fibers were significantly more toxic than polyethylene microplastic particles; 10-d lethal concentration 50% values for polyethylene microplastic particles and polypropylene microplastic fibers were 4.64 × 10(4) microplastics/mL and 71.43 microplastics/mL, respectively. A 42-d chronic bioassay using polyethylene microplastic particles was conducted to quantify effects on reproduction, growth, and egestion. Chronic exposure to polyethylene microplastic particles significantly decreased growth and reproduction at the low and intermediate exposure concentrations. During acute exposures to polyethylene microplastic particles, the egestion times did not significantly differ from the egestion of normal food materials in the control; egestion times for polypropylene microplastic fibers were significantly slower than the egestion of food materials in the control. Amphipods exposed to polypropylene microplastic fibers also had significantly less growth. The greater toxicity of microplastic fibers than microplastic particles corresponded with longer residence times for the fibers in the gut. The difference in residence time might have affected the ability to process food, resulting in an energetic effect reflected in sublethal endpoints.

  2. Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters

    PubMed Central

    Sarnat, Jeremy A.; Golan, Rachel; Greenwald, Roby; Raysoni, Amit U.; Kewada, Priya; Winquist, Andrea; Sarnat, Stefanie E.; Flanders, W. Dana; Mirabelli, Maria C.; Zora, Jennifer E.; Bergin, Michael H.; Yip, Fuyuen

    2015-01-01

    Background Exposure to traffic pollution has been linked to numerous adverse health endpoints. Despite this, limited data examining traffic exposures during realistic commutes and acute response exists. Objectives: We conducted the Atlanta Commuters Exposures (ACE-1) Study, an extensive panel-based exposure and health study, to measure chemically-resolved in-vehicle exposures and corresponding changes in acute oxidative stress, lipid peroxidation, pulmonary and systemic inflammation and autonomic response. Methods We recruited 42 adults (21 with and 21 without asthma) to conduct two 2-h scripted highway commutes during morning rush hour in the metropolitan Atlanta area. A suite of in-vehicle particulate components were measured in the subjects’ private vehicles. Biomarker measurements were conducted before, during, and immediately after the commutes and in 3 hourly intervals after commutes. Results At measurement time points within 3 h after the commute, we observed mild to pronounced elevations relative to baseline in exhaled nitric oxide, C-reactive-protein, and exhaled malondialdehyde, indicative of pulmonary and systemic inflammation and oxidative stress initiation, as well as decreases relative to baseline levels in the time-domain heart-rate variability parameters, SDNN and rMSSD, indicative of autonomic dysfunction. We did not observe any detectable changes in lung function measurements (FEV1, FVC), the frequency-domain heart-rate variability parameter or other systemic biomarkers of vascular injury. Water soluble organic carbon was associated with changes in eNO at all post-commute time-points (p < 0.0001). Conclusions Our results point to measureable changes in pulmonary and autonomic biomarkers following a scripted 2-h highway commute. PMID:24906070

  3. Pediatric Acute Lymphoblastic Leukemia and Exposure to Pesticides

    PubMed Central

    Soldin, Offie P.; Nsouly-Maktabi, Hala; Genkinger, Jeanine M.; Loffredo, Christopher A.; Ortega-Garcia, Juan Antonio; Colantino, Drew; Barr, Dana B.; Luban, Naomi L.; Shad, Aziza T.; Nelson, David

    2013-01-01

    Organophosphates are pesticides ubiquitous in the environment and have been hypothesized as one of the risk factors for acute lymphoblastic leukemia (ALL). In this study, we evaluated the associations of pesticide exposure in a residential environment with the risk for pediatric ALL. This is a case–control study of children newly diagnosed with ALL, and their mothers (n = 41 child–mother pairs) were recruited from Georgetown University Medical Center and Children's National Medical Center in Washington, DC, between January 2005 and January 2008. Cases and controls were matched for age, sex, and county of residence. Environmental exposures were determined by questionnaire and by urinalysis of pesticide metabolites using isotope dilution gas chromatography–high-resolution mass spectrometry. We found that more case mothers (33%) than controls (14%) reported using insecticides in the home (P < 0.02). Other environmental exposures to toxic substances were not significantly associated with the risk of ALL. Pesticide levels were higher in cases than in controls (P < 0.05). Statistically significant differences were found between children with ALL and controls for the organophosphate metabolites diethylthiophosphate (P < 0.03) and diethyldithiophosphate (P < 0.05). The association of ALL risk with pesticide exposure merits further studies to confirm the association. PMID:19571777

  4. Acute stress cardiomyopathy and deaths associated with electronic weapons.

    PubMed

    Cevik, Cihan; Otahbachi, Mohammad; Miller, Elizabeth; Bagdure, Satish; Nugent, Kenneth M

    2009-03-01

    Deaths associated with the use of electronic weapons almost always occur in young men involved in either civil disturbances or criminal activity. These situations are associated with high levels of circulating catecholamines and frequently associated with drug intoxication. The mechanism for these deaths is unclear. Clinical studies indicate that these high voltage electrical pulses do not cause cardiac arrhythmia. Acute stress cardiomyopathy provides an alternative explanation for deaths associated with electronic weapons and may provide a better explanation for the usual time course associated with taser deaths. Patients with acute stress cardiomyopathy usually have had an emotional or physical stress, have high circulating levels of catecholamines, present with an acute coronary syndrome but have normal coronary vessels without significant thrombus formation. They have unusual left ventricular dysfunction with so-called apical ballooning. This presentation has been attributed to the direct effects of catecholamines on myocardial cell function. Alternative explanations include vasospasm in the coronary microcirculation and/or acute thrombosis followed by rapid thrombolysis. Similar events could occur during the high stress situations associated with the use of electronic weapons. These events also likely explain restraint-related deaths which occur in independent of any use of electronic weapons. Forensic pathologists have the opportunity to provide important details about the pathogenesis of these deaths through histological studies and careful evaluation of coronary vessels.

  5. The Conspiracy of Autophagy, Stress and Inflammation in Acute Pancreatitis

    PubMed Central

    Hall, Jason C.; Crawford, Howard C.

    2015-01-01

    Purpose of review Acute pancreatitis (AP) is associated with alcohol abuse, gallstones and bacterial infection. Its basic etiology is tissue destruction accompanied by an innate inflammatory response, which induces epithelial stress pathways. Recent studies have focused on some of the integral cellular pathways shared between multiple pancreatitis models that also suggest new approaches to detection and treatment. Recent findings Several models of pancreatitis have been associated with stress responses, such as endoplasmic reticulum (ER) and oxidative stress together with the induction of a defective autophagic pathway. Recent evidence reinforces the critical role of these cellular processes in pancreatitis. A member of the the Toll-Like Receptor family, TLR4, which is known to contribute to disease pathology in many models of experimental pancreatitis, has been found to be a promising target for treatment of pancreatitis. Interestingly, a direct activator of TLR4,, the bacterial cell wall component in Gram negative bacteria lipopolysaccharide (LPS), contributes to the onset and severity of disease when combined with additional stressors, such as chronic alcohol feeding, however recent studies have shown that acute infection of mice with live bacteria is alone sufficient to induce acute pancreatitis. Summary In the last several months, the convergent roles of acinar cell stress, autophagy and proinflammatory signaling initiated by the toll-like receptors have been emphatically reinforced in the onset of acute pancreatitis. PMID:25003605

  6. Acute stress increases neuropsin mRNA expression in the mouse hippocampus through the glucocorticoid pathway.

    PubMed

    Harada, Akiko; Shiosaka, Sadao; Ishikawa, Yasuyuki; Komai, Shoji

    2008-05-01

    Stress affects synaptic plasticity and may alter various types of behaviour, including anxiety or memory formation. In the present study, we examined the effects of acute stress (1 h restraint with or without tail-shock) on mRNA levels of a plasticity-related serine protease neuropsin (NP) in the hippocampus using semiquantitative RT-PCR and in situ hybridization. We found that NP mRNA expression was dramatically increased shortly after exposure to the acute restraint tail-shock stress and remained at high level for at least 24 h. The level of NP mRNA would be correlated to the elevated plasma concentration of the glucocorticoid corticosterone (CORT) and to the stress intensity. Application of CORT either onto primary cultured hippocampal neurons (5 nM) or in vivo to adrenalectomized (ADX) mice (10 mg/kg B.W., s.c.) mimicked the effect of stress and significantly elevated NP mRNA. These results suggest that the upregulation of NP mRNA after stress is CORT-dependent and point to a role for neuropsin in stress-induced neuronal plasticity.

  7. Acute stress affects free recall and recognition of pictures differently depending on age and sex.

    PubMed

    Hidalgo, Vanesa; Pulopulos, Matias M; Puig-Perez, Sara; Espin, Laura; Gomez-Amor, Jesus; Salvador, Alicia

    2015-10-01

    Little is known about age differences in the effects of stress on memory retrieval. Our aim was to perform an in-depth examination of acute psychosocial stress effects on memory retrieval, depending on age and sex. For this purpose, data from 52 older subjects (27 men and 25 women) were reanalyzed along with data from a novel group of 50 young subjects (26 men and 24 women). Participants were exposed to an acute psychosocial stress task (Trier Social Stress Test) or a control task. After the experimental manipulation, the retrieval of positive, negative and neutral pictures learned the previous day was tested. As expected, there was a significant response to the exposure to the stress task, but the older participants had a lower cortisol response to TSST than the younger ones. Stress impaired free recall of emotional (positive and negative) and neutral pictures only in the group of young men. Also in this group, correlation analyses showed a marginally significant association between cortisol and free recall. However, exploratory analyses revealed only a negative relationship between the stress-induced cortisol response and free recall of negative pictures. Moreover, stress impaired recognition memory of positive pictures in all participants, although this effect was not related to the cortisol or alpha-amylase response. These results indicate that both age and sex are critical factors in acute stress effects on specific aspects of long-term memory retrieval of emotional and neutral material. They also point out that more research is needed to better understand their specific role. PMID:26149415

  8. Acute stress rapidly and persistently enhances memory formation in the male rat.

    PubMed

    Shors, T J

    2001-01-01

    Previous studies, as well as the present one, report that acute exposure to intermittent tailshocks enhances classical eyeblink conditioning in male rats when trained 24 h after stressor cessation. In Experiment 1, it was determined that the facilitating effect of stress on conditioning could also be obtained in response to a stressor of acute inescapable swim stress but not inescapable noise or the unconditioned stimulus of periorbital eyelid stimulation. These selective responses arose despite comparable enhancements of the stress-related hormone corticosterone in response to tailshocks, periorbital eyelid stimulation, noise stress, and supraelevation in response to swim stress. Although corticosterone is necessary for the enhanced learning in response to stress (Beylin & Shors, 1999), these results suggest that it is not sufficient. In addition, the results suggest that the enhancement is not dependent on common characteristics between the stressor and the conditioning stimuli (stimulus generalization). In Experiment 2, it was determined that the facilitating effect of the stressor on conditioning occurs within 30 min of stressor cessation. Thus, the mechanism responsible for facilitating memory formation is rapidly induced as well as persistently expressed. In Experiment 3, it was determined that exposure to the stressor does not enhance performance of the conditioned response after the response has been acquired. Thus, exposure to the stressor enhances the formation of new associations rather than affecting retention or performance of the motor response. These studies extend the circumstances under which stress is known to enhance associative learning and implicate neural mechanisms of memory enhancement that are rapidly induced and persistently expressed.

  9. Stress Exposure, Food Intake, and Emotional State

    PubMed Central

    Ulrich-Lai, Yvonne M.; Fulton, Stephanie; Wilson, Mark; Petrovich, Gorica; Rinaman, Linda

    2016-01-01

    This manuscript summarizes the proceedings of the symposium entitled, “Stress, Palatable Food and Reward”, that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr. Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr. Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr. Mark Wilson describes his group’s research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Lastly, Dr. Gorica Petrovich discusses her research program that is aimed at defining cortical–amygdalar–hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e., fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential, and environmental factors. PMID:26303312

  10. Stress exposure, food intake and emotional state.

    PubMed

    Ulrich-Lai, Yvonne M; Fulton, Stephanie; Wilson, Mark; Petrovich, Gorica; Rinaman, Linda

    2015-01-01

    This manuscript summarizes the proceedings of the symposium entitled, "Stress, Palatable Food and Reward", that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr Mark Wilson describes his group's research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Finally, Dr Gorica Petrovich discusses her research program that is aimed at defining cortical-amygdalar-hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e. fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential and environmental factors on these interactions. PMID:26303312

  11. Stress exposure, food intake and emotional state.

    PubMed

    Ulrich-Lai, Yvonne M; Fulton, Stephanie; Wilson, Mark; Petrovich, Gorica; Rinaman, Linda

    2015-01-01

    This manuscript summarizes the proceedings of the symposium entitled, "Stress, Palatable Food and Reward", that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr Mark Wilson describes his group's research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Finally, Dr Gorica Petrovich discusses her research program that is aimed at defining cortical-amygdalar-hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e. fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential and environmental factors on these interactions.

  12. Does Acute Stress Disorder Predict Posttraumatic Stress Disorder Following Bank Robbery?

    ERIC Educational Resources Information Center

    Hansen, Maj; Elklit, Ask

    2013-01-01

    Unfortunately, the number of bank robberies is increasing and little is known about the subsequent risk of posttraumatic stress disorder (PTSD). Several studies have investigated the prediction of PTSD through the presence of acute stress disorder (ASD). However, there have only been a few studies following nonsexual assault. The present study…

  13. Acute Stress Disorder as a Predictor of Post-Traumatic Stress Disorder in Physical Assault Victims

    ERIC Educational Resources Information Center

    Elklit, Ask; Brink, Ole

    2004-01-01

    The authors' objective was to examine the ability of acute stress disorder (ASD) and other trauma-related factors in a group of physical assault victims in predicting post-traumatic stress disorder (PTSD) 6 months later. Subjects included 214 victims of violence who completed a questionnaire 1 to 2 weeks after the assault, with 128 participating…

  14. The Relationship between Acute Stress Disorder and Posttraumatic Stress Disorder Following Cancer

    ERIC Educational Resources Information Center

    Kangas, Maria; Henry, Jane L.; Bryant, Richard A.

    2005-01-01

    In this study, the authors investigated the relationship between acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) following cancer diagnosis. Patients who were recently diagnosed with 1st onset head and neck or lung malignancy (N = 82) were assessed for ASD within the initial month following their diagnosis and reassessed (n =…

  15. Virtual reality exposure therapy for World Trade Center Post-traumatic Stress Disorder: a case report.

    PubMed

    Difede, JoAnn; Hoffman, Hunter G

    2002-12-01

    Done properly by experienced therapists, re-exposure to memories of traumatic events via imaginal exposure therapy can lead to a reduction of Post-traumatic Stress Disorder (PTSD) symptoms. Exposure helps the patient process and habituate to memories and strong emotions associated with the traumatic event: memories and emotions they have been carefully avoiding. But many patients are unwilling or unable to self-generate and re-experience painful emotional images. The present case study describes the treatment of a survivor of the World Trade Center (WTC) attack of 9-11-01 who had developed acute PTSD. After she failed to improve with traditional imaginal exposure therapy, we sought to increase emotional engagement and treatment success using virtual reality (VR) exposure therapy. Over the course of six 1-h VR exposure therapy sessions, we gradually and systematically exposed the PTSD patient to virtual planes flying over the World Trade Center, jets crashing into the World Trade Center with animated explosions and sound effects, virtual people jumping to their deaths from the burning buildings, towers collapsing, and dust clouds. VR graded exposure therapy was successful for reducing acute PTSD symptoms. Depression and PTSD symptoms as measured by the Beck Depression Inventory and the Clinician Administered PTSD Scale indicated a large (83%) reduction in depression, and large (90%) reduction in PTSD symptoms after completing VR exposure therapy. Although case reports are scientifically inconclusive by nature, these strong preliminary results suggest that VR exposure therapy is a promising new medium for treating acute PTSD. This study may be examined in more detail at www.vrpain.com.

  16. Acute stress and hippocampal output: exploring dorsal CA1 and subicular synaptic plasticity simultaneously in anesthetized rats

    PubMed Central

    MacDougall, Matthew J; Howland, John G

    2013-01-01

    The Cornu Ammonis-1 (CA1) subfield and subiculum (SUB) serve as major output structures of the hippocampal formation. Exploring forms of synaptic plasticity simultaneously within these two output regions may improve understanding of the dynamics of hippocampal circuitry and information transfer between hippocampal and cortical brain regions. Using a novel dual-channel electrophysiological preparation in urethane-anesthetized adult male Sprague-Dawley rats in vivo, we examined the effects of acute restraint stress (30 min) on short- and long-term forms of synaptic plasticity in both CA1 and SUB by stimulating the CA3 region. Paired-pulse facilitation was disrupted in SUB but not CA1 in the dual-channel experiments following exposure to acute stress. Disruptions in CA1 PPF were evident in subsequent single-channel experiments with a more anterior recording site. Acute stress disrupted long-term potentiation induced by high-frequency stimulation (10 bursts of 20 pulses at 200 Hz) in both CA1 and SUB. Low-frequency stimulation (900 pulses at 1 Hz) did not alter CA1 plasticity while a late-developing potentiation was evident in SUB that was disrupted following exposure to acute stress. These findings highlight differences in the sensitivity to acute stress for distinct forms of synaptic plasticity within synapses in hippocampal output regions. The findings are discussed in relation to normal and aberrant forms of hippocampal-cortical information processing. PMID:24303119

  17. Transcriptional Response to Acute Thermal Exposure in Juvenile Chinook Salmon Determined by RNAseq.

    PubMed

    Tomalty, Katharine M H; Meek, Mariah H; Stephens, Molly R; Rincón, Gonzalo; Fangue, Nann A; May, Bernie P; Baerwald, Melinda R

    2015-07-01

    Thermal exposure is a serious and growing challenge facing fish species worldwide. Chinook salmon (Oncorhynchus tshawytscha) living in the southern portion of their native range are particularly likely to encounter warmer water due to a confluence of factors. River alterations have increased the likelihood that juveniles will be exposed to warm water temperatures during their freshwater life stage, which can negatively impact survival, growth, and development and pose a threat to dwindling salmon populations. To better understand how acute thermal exposure affects the biology of salmon, we performed a transcriptional analysis of gill tissue from Chinook salmon juveniles reared at 12° and exposed acutely to water temperatures ranging from ideal to potentially lethal (12° to 25°). Reverse-transcribed RNA libraries were sequenced on the Illumina HiSeq2000 platform and a de novo reference transcriptome was created. Differentially expressed transcripts were annotated using Blast2GO and relevant gene clusters were identified. In addition to a high degree of downregulation of a wide range of genes, we found upregulation of genes involved in protein folding/rescue, protein degradation, cell death, oxidative stress, metabolism, inflammation/immunity, transcription/translation, ion transport, cell cycle/growth, cell signaling, cellular trafficking, and structure/cytoskeleton. These results demonstrate the complex multi-modal cellular response to thermal stress in juvenile salmon. PMID:25911227

  18. Transcriptional Response to Acute Thermal Exposure in Juvenile Chinook Salmon Determined by RNAseq

    PubMed Central

    Tomalty, Katharine M. H.; Meek, Mariah H.; Stephens, Molly R.; Rincón, Gonzalo; Fangue, Nann A.; May, Bernie P.; Baerwald, Melinda R.

    2015-01-01

    Thermal exposure is a serious and growing challenge facing fish species worldwide. Chinook salmon (Oncorhynchus tshawytscha) living in the southern portion of their native range are particularly likely to encounter warmer water due to a confluence of factors. River alterations have increased the likelihood that juveniles will be exposed to warm water temperatures during their freshwater life stage, which can negatively impact survival, growth, and development and pose a threat to dwindling salmon populations. To better understand how acute thermal exposure affects the biology of salmon, we performed a transcriptional analysis of gill tissue from Chinook salmon juveniles reared at 12° and exposed acutely to water temperatures ranging from ideal to potentially lethal (12° to 25°). Reverse-transcribed RNA libraries were sequenced on the Illumina HiSeq2000 platform and a de novo reference transcriptome was created. Differentially expressed transcripts were annotated using Blast2GO and relevant gene clusters were identified. In addition to a high degree of downregulation of a wide range of genes, we found upregulation of genes involved in protein folding/rescue, protein degradation, cell death, oxidative stress, metabolism, inflammation/immunity, transcription/translation, ion transport, cell cycle/growth, cell signaling, cellular trafficking, and structure/cytoskeleton. These results demonstrate the complex multi-modal cellular response to thermal stress in juvenile salmon. PMID:25911227

  19. Development and Psychometric Evaluation of Child Acute Stress Measures in Spanish and English

    PubMed Central

    Kassam-Adams, Nancy; Gold, Jeffrey I.; Montaño, Zorash; Kohser, Kristen L.; Cuadra, Anai; Muñoz, Cynthia; Armstrong, F. Daniel

    2015-01-01

    Clinicians and researchers need tools for accurate early assessment of children’s acute stress reactions and acute stress disorder (ASD). There is a particular need for independently validated Spanish-language measures. The current study reports on 2 measures of child acute stress (a self-report checklist and a semi-structured interview), describing the development of the Spanish version of each measure and psychometric evaluation of both the Spanish and English versions. Children between the ages of 8 to 17 years who had experienced a recent traumatic event completed study measures in Spanish (n = 225) or in English (n = 254). Results provide support for reliability (internal consistency of the measures in both languages ranges from .83 to .89; cross-language reliability of the checklist is .93) and for convergent validity (with later PTSD symptoms, and with concurrent anxiety symptoms). Comparing checklist and interview results revealed a strong association between severity scores within the Spanish and English samples. Checklist-interview differences in evaluating the presence of ASD appear to be linked to different content coverage for dissociation symptoms. Future studies should further assess the impact of differing assessment modes, content coverage, and the use of these measures in children with diverse types of acute trauma exposure in English- and Spanish-speaking children. PMID:23371337

  20. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides).

    PubMed

    Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D

    2014-07-01

    Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction. PMID:24794047

  1. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides).

    PubMed

    Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D

    2014-07-01

    Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction.

  2. Acute effects of acrolein in human volunteers during controlled exposure

    PubMed Central

    Dwivedi, Aishwarya M.; Johanson, Gunnar; Lorentzen, Johnny C.; Palmberg, Lena; Sjögren, Bengt; Ernstgård, Lena

    2015-01-01

    Abstract Context: Acrolein is a reactive aldehyde mainly formed by combustion. The critical effect is considered to be irritation of the eyes and airways; however, the scarce data available make it difficult to assess effect levels. Objective: The aim of the study was to determine thresholds for acute irritation for acrolein. Methods: Nine healthy volunteers of each sex were exposed at six occasions for 2 h at rest to: clean air, 15 ppm ethyl acetate (EA), and 0.05 ppm and 0.1 ppm acrolein with and without EA (15 ppm) to mask the potential influence of odor. Symptoms related to irritation and central nervous system effects were rated on 100-mm Visual Analogue Scales. Results: The ratings of eye irritation were slightly but significantly increased during exposure to acrolein in a dose-dependent manner (p < 0.001, Friedman test) with a median rating of 8 mm (corresponding to “hardly at all”) at the 0.1 ppm condition and with no influence from EA. No significant exposure-related effects were found for pulmonary function, or nasal swelling, nor for markers of inflammation and coagulation in blood (IL-6, C-reactive protein, serum amyloid A, fibrinogen, factor VIII, von Willebrand factor, and Clara cell protein) or induced sputum (cell count, differential cell count, IL-6 and IL-8). Blink frequency recorded by electromyography was increased during exposure to 0.1 ppm acrolein alone but not during any of the other five exposure conditions. Conclusion: Based on subjective ratings, the present study showed minor eye irritation by exposure to 0.1 ppm acrolein. PMID:26635308

  3. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    PubMed

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress.

  4. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    PubMed

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PMID:19123763

  5. Cortisol modulates men's affiliative responses to acute social stress.

    PubMed

    Berger, Justus; Heinrichs, Markus; von Dawans, Bernadette; Way, Baldwin M; Chen, Frances S

    2016-01-01

    The dominant characterization of the physiological and behavioral human stress reaction is the fight-or-flight response. On the other hand, it has been suggested that social affiliation during stressful times ("tend-and-befriend") also represents a common adaptive response to stress, particularly for women. In the current study, we investigate the extent to which men may also show affiliative responses following acute stress. In addition, we examine a potential neuroendocrine modulator of the hypothesized affiliative response. Eighty male students (forty dyads) were recruited to undergo either the Trier Social Stress Test for Groups (TSST-G) or a non-stressful control situation. Subsequently, participants completed a dyadic interaction task and were then asked to report their feelings of psychological closeness to their interaction partner. Although participants assigned to the stress condition did not differ overall on psychological closeness from participants assigned to the control condition, participants with high cortisol responses to the stressor showed significantly higher ratings of psychological closeness to their interaction partner than participants with low cortisol responses. Our findings suggest that men may form closer temporary bonds following stressful situations that are accompanied by a significant cortisol response. We suggest that the traditional characterization of the male stress response in terms of "fight-or-flight" may be incomplete, and that social affiliation may in fact represent a common, adaptive response to stress in men.

  6. Cortisol Awakening Response Prospectively Predicts Peritraumatic and Acute Stress Reactions in Police Officers

    PubMed Central

    Inslicht, Sabra S.; Otte, Christian; McCaslin, Shannon E.; Apfel, Brigitte A.; Henn-Haase, Clare; Metzler, Thomas; Yehuda, Rachel; Neylan, Thomas C.; Marmar, Charles R.

    2011-01-01

    Background The hypothalamic pituitary adrenal (HPA) axis is a major stress response system hypothesized to be involved in the pathogenesis of posttraumatic stress disorder (PTSD). However, few studies have prospectively examined the relationships among pre-exposure HPA activity, acute stress reactions and PTSD symptoms. Methods Two hundred and ninety-six police recruits were assessed during academy training prior to duty-related critical incident exposure and provided salivary cortisol at first awakening and after 30 minutes. A measure of cortisol awakening response (CAR) was computed as the change in cortisol level from the first to the second collection. At 12, 24, and 36 months following the start of active police service, officers were assessed for peritraumatic distress, peritraumatic dissociation, ASD symptoms, and PTSD symptoms to their self-identified worst duty-related critical incident. Mixed models for repeated measures were used to analyze the effects of CAR on the outcome variables pooled across the three follow-up assessments. Results Mixed model analyses indicated that after controlling for time of awakening, first awakening cortisol levels, and cumulative critical incident stress exposure, CAR during academy training was associated with greater peritraumatic dissociation, β=.14, z=3.49, p<.0001, and greater acute stress disorder (ASD) symptoms during police service assessed at 12, 24, and 36 months, β=.09, z=2.03, p<.05, but not with peritraumatic distress β=.03, z=.81, p=.42 or PTSD symptoms β=−.004, z=−.09, p=.93. Conclusions These findings suggest that greater cortisol response to awakening is a pre-exposure risk factor for peritraumatic dissociation and ASD symptoms during police service. PMID:21906725

  7. Urinary 1-Hydroxypyrene is Associated with Oxidative Stress and Inflammatory Biomarkers in Acute Myocardial Infarction

    PubMed Central

    Freitas, Fernando; Brucker, Natália; Durgante, Juliano; Bubols, Guilherme; Bulcão, Rachel; Moro, Angela; Charão, Mariele; Baierle, Marília; Nascimento, Sabrina; Gauer, Bruna; Sauer, Elisa; Zimmer, Marcelo; Thiesen, Flávia; Castro, Iran; Saldiva, Paulo; Garcia, Solange C.

    2014-01-01

    Several studies have associated exposure to environmental pollutants, especially polycyclic aromatic hydrocarbons (PAHs), with the development of cardiovascular diseases. Considering that 1-hydroxypyrene (1-OHP) is the major biomarker of exposure to pyrenes, the purpose of this study was to evaluate the potential association between 1-OHP and oxidative stress/inflammatory biomarkers in patients who had suffered an acute myocardial infarction (AMI). After adopting the exclusion criteria, 58 post-infarction patients and 41 controls were sub-divided into smokers and non-smokers. Urinary 1-OHP, hematological and biochemical parameters, oxidative stress biomarkers (MDA, SOD, CAT, GPx and exogenous antioxidants) and the inflammatory biomarker (hs-CRP) were analyzed. 1-OHP levels were increased in post-infarct patients compared to controls (p < 0.05) and were correlated to MDA (r = 0.426, p < 0.01), CAT (r = 0.474, p < 0.001) and β-carotene (r = −0.309; p < 0.05) in non-smokers. Furthermore, post-infarction patients had elevated hs-CRP, MDA, CAT and GPx levels compared to controls for both smokers and non-smokers. Besides, β-carotene levels and SOD activity were decreased in post-infarction patients. In summary, our findings indicate that the exposure to pyrenes was associated to lipid damage and alterations of endogenous and exogenous antioxidants, demonstrating that PAHs contribute to oxidative stress and are associated to acute myocardial infarction. PMID:25257356

  8. Self-reported acute health symptoms and exposure to companion animals

    EPA Science Inventory

    Background: In order to understand the etiological burden of disease associated with acute health symptoms (e.g. gastrointestinal [GI], respiratory, dermatological), it is important to understand how common exposures influence these symptoms. Exposures to familiar and unfamiliar ...

  9. Depression of contraction and the calcium transient in single cardiomyocytes with acute ethanol exposure

    SciTech Connect

    Rozanski, D.J.; Delaville, F.J.; Thomas, A.P. )

    1992-01-01

    The mechanism by which acute ethanol (ET) exposure causes reversible myocardial dysfunction is unknown. The purpose of this study was to examine the effects of ET exposure on contraction and cytosolic free Ca[sup 2+] ([Ca[sup 2+

  10. Temporal Changes in Rat Liver Gene Expression after Acute Cadmium and Chromium Exposure

    PubMed Central

    Madejczyk, Michael S.; Baer, Christine E.; Dennis, William E.; Minarchick, Valerie C.; Leonard, Stephen S.; Jackson, David A.; Stallings, Jonathan D.; Lewis, John A.

    2015-01-01

    U.S. Service Members and civilians are at risk of exposure to a variety of environmental health hazards throughout their normal duty activities and in industrial occupations. Metals are widely used in large quantities in a number of industrial processes and are a common environmental toxicant, which increases the possibility of being exposed at toxic levels. While metal toxicity has been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify candidate biomarkers, rats were exposed via a single intraperitoneal injection to three concentrations of CdCl2 and Na2Cr2O7, with livers harvested at 1, 3, or 7 days after exposure. Cd and Cr accumulated in the liver at 1 day post exposure. Cd levels remained elevated over the length of the experiment, while Cr levels declined. Metal exposures induced ROS, including hydroxyl radical (•OH), resulting in DNA strand breaks and lipid peroxidation. Interestingly, ROS and cellular damage appeared to increase with time post-exposure in both metals, despite declines in Cr levels. Differentially expressed genes were identified via microarray analysis. Both metals perturbed gene expression in pathways related to oxidative stress, metabolism, DNA damage, cell cycle, and inflammatory response. This work provides insight into the temporal effects and mechanistic pathways involved in acute metal intoxication, leading to the identification of candidate biomarkers. PMID:25993096

  11. Acute Eosinophilic Pneumonia: Pyrethroid Exposure & Change In Smoking Habit!

    PubMed

    Kuriakose, Kevin; Klair, Jagpal Singh; Johnsrud, Andrew; Meena, Nikhil K

    2016-06-01

    We report a case of Acute Eosinophilic Pneumonia (AEP) in a 29-year-old white woman with recent use of a'flea bomb' (containing pyrethroids) at home while remaining indoors, about 48 hours prior to presentation, and recent change in smoking habit (restarted 2 weeks prior after quitting for 10 years). She presented with two days of worsening fever, shortness of breath, productive cough, developed hypoxemic respiratory failure and ARDS. She required a PEEP of 20 and 100% FiO2 to maintain oxygenation. Bronchoalveolar lavage showed 36% Eosinophils. She was given IV steroids with dramatic clinical and radiological improvement. To the best of our knowledge, this is the second report associating AEP with pyrethroid exposure. PMID:27434983

  12. Anxiety in mice following acute aspartame and ethanol exposure.

    PubMed

    LaBuda, C J; Hale, R L

    2000-01-01

    The purpose of the present study was to look at the effect of aspartame on the anxiolytic actions of ethanol. Previous research has shown that ethanol reliably produces an anxiolytic effect on rodent's plus-maze performance. There have been anecdotal reports that aspartame increases anxiety. CD-1 male mice were given i.p. aspartame doses of vehicle, 1000, or 2000 mg/kg, followed 30 min later by i.p. ethanol doses of 1.6 g/kg or vehicle. Animals were then placed in an open field, then tested in the plus-maze. Results determined that the aspartame condition had no significant effect on anxiety-related behavior, nor did it alter the anxiolytic actions of ethanol. Thus, acute high dose exposure to aspartame does not appear to affect anxiety-related behaviors.

  13. Posterior Midline Activation during Symptom Provocation in Acute Stress Disorder: An fMRI Study.

    PubMed

    Cwik, Jan C; Sartory, Gudrun; Schürholt, Benjamin; Knuppertz, Helge; Seitz, Rüdiger J

    2014-01-01

    Functional imaging studies of patients with post-traumatic stress disorder showed wide-spread activation of midline cortical areas during symptom provocation, i.e., exposure to trauma-related cues. The present study aimed at investigating neural activation during exposure to trauma-related pictures in patients with acute stress disorder (ASD) shortly after the traumatic event. Nineteen ASD patients and 19 healthy control participants were presented with individualized pictures of the traumatic event and emotionally neutral control pictures during the acquisition of whole-brain data with a 3-T fMRI scanner. Compared to the control group and to control pictures, ASD patients showed significant activation in midline cortical areas in response to trauma-related pictures including precuneus, cuneus, postcentral gyrus, and pre-supplementary motor area. The results suggest that the trauma-related pictures evoke emotionally salient self-referential processing in ASD patients.

  14. Posterior Midline Activation during Symptom Provocation in Acute Stress Disorder: An fMRI Study

    PubMed Central

    Cwik, Jan C.; Sartory, Gudrun; Schürholt, Benjamin; Knuppertz, Helge; Seitz, Rüdiger J.

    2014-01-01

    Functional imaging studies of patients with post-traumatic stress disorder showed wide-spread activation of midline cortical areas during symptom provocation, i.e., exposure to trauma-related cues. The present study aimed at investigating neural activation during exposure to trauma-related pictures in patients with acute stress disorder (ASD) shortly after the traumatic event. Nineteen ASD patients and 19 healthy control participants were presented with individualized pictures of the traumatic event and emotionally neutral control pictures during the acquisition of whole-brain data with a 3-T fMRI scanner. Compared to the control group and to control pictures, ASD patients showed significant activation in midline cortical areas in response to trauma-related pictures including precuneus, cuneus, postcentral gyrus, and pre-supplementary motor area. The results suggest that the trauma-related pictures evoke emotionally salient self-referential processing in ASD patients. PMID:24847285

  15. Acute health effects of accidental chlorine gas exposure

    PubMed Central

    2014-01-01

    Objectives This study was conducted to report the course of an accidental release of chlorine gas that occurred in a factory in Gumi-si, South Korea, on March 5, 2013. We describe the analysis results of 2 patients hospitalized because of chlorine-induced acute health problems, as well as the clinical features of 209 non-hospitalized patients. Methods We analyzed the medical records of the 2 hospitalized patients admitted to the hospital, as well as the medical records and self-report questionnaires of 209 non-hospitalized patients completed during outpatient treatment. Results Immediately after the exposure, the 2 hospitalized patients developed acute asthma-like symptoms such as cough and dyspnea, and showed restrictive and combined pattern ventilatory defects on the pulmonary function test. The case 1 showed asthma-like symptoms over six months and diurnal variability in peak expiratory flow rate was 56.7%. In case 2, his FEV1 after treatment (93%) increased by 25% compared to initial FEV1 (68%). Both cases were diagnosed as chlorine-induced reactive airways dysfunction syndrome (RADS) on the basis of these clinical features. The most frequent chief complaints of the 209 non-hospitalized patients were headache (22.7%), followed by eye irritation (18.2%), nausea (11.2%), and sore throat (10.8%), with asymptomatic patients accounting for 36.5%. The multiple-response analysis of individual symptom revealed headache (42.4%) to be the most frequent symptom, followed by eye irritation (30.5%), sore throat (30.0%), cough (29.6%), nausea (27.6%), and dizziness (27.3%). Conclusions The 2 patients hospitalized after exposure to chlorine gas at the leakage site showed a clinical course corresponding to RADS. All of the 209 non-hospitalized patients only complained of symptoms of the upper airways and mucous membrane irritation. PMID:25852940

  16. Exposure to cold and acute upper respiratory tract infection.

    PubMed

    Eccles, R; Wilkinson, J E

    2015-06-01

    The incidence of acute upper respiratory tract viral infections (URTI) is directly correlated to air temperature with most URTI occurring seasonally in cold weather. This review looks at four types of cold exposure and examines the evidence and possible mechanisms for any relationship to URTI. The effects of cold are discussed as: 1) Chilling of the nose and upper respiratory tract by breathing cold air, 2) Chilling of the mouth and upper digestive tract by ingestion of cold drinks and food, 3) Acute chilling of the body surface, and, 4) Chilling of the body as a whole with a fall in body temperature, hypothermia. Some studies were found to support a relationship between breathing cold air and chilling the body surface with the development of URTI, although this area is controversial. No evidence was found in the literature to support any relationship between ingestion of cold drinks and food and URTI, and similarly no evidence was found to link hypothermia and URTI. PMID:26030031

  17. Acute arsenic exposure treated with oral D-penicillamine

    SciTech Connect

    Watson, W.A.; Veltri, J.C.; Metcalf, T.J.

    1981-06-01

    Arsenic trioxide (As2O3) is the arsenic compound most commonly implicated in acute toxic exposures. The toxicity of As2O3 is a function of the preparation's particle size and solubility. A 16-month-old female presented at a local emergency room with a history of acute ingestion of As2O3 obtained from a commonly available pesticide. Classic gastrointestinal symptoms of arsenic toxicity were exhibited shortly after ingestion; however, aggressive decontamination followed by early chelation therapy resulted in the cessation of toxic manifestations and an uneventful recovery. Oral chelation therapy with D-penicillamine has rarely been reported as an effective agent in the treatment of arsenic poisoning. The case reported herein is further documentation that D-penicillamine is effective in increasing the mobilization of arsenic. The authors also recommend that products containing arsenic compounds should not be used where children may come in contact with them until the Environmental Protection Agency's child resistant packaging regulations become effective.

  18. Acute pergolide exposure stiffens engineered valve interstitial cell tissues and reduces contractility in vitro.

    PubMed

    Capulli, Andrew K; MacQueen, Luke A; O'Connor, Blakely B; Dauth, Stephanie; Parker, Kevin Kit

    2016-01-01

    Medications based on ergoline-derived dopamine and serotonin agonists are associated with off-target toxicities that include valvular heart disease (VHD). Reports of drug-induced VHD resulted in the withdrawal of appetite suppressants containing fenfluramine and phentermine from the US market in 1997 and pergolide, a Parkinson's disease medication, in 2007. Recent evidence suggests that serotonin receptor activity affected by these medications modulates cardiac valve interstitial cell activation and subsequent valvular remodeling, which can lead to cardiac valve fibrosis and dysfunction similar to that seen in carcinoid heart disease. Failure to identify these risks prior to market and continued use of similar drugs reaffirm the need to improve preclinical evaluation of drug-induced VHD. Here, we present two complimentary assays to measure stiffness and contractile stresses generated by engineered valvular tissues in vitro. As a case study, we measured the effects of acute (24 h) pergolide exposure to engineered porcine aortic valve interstitial cell (AVIC) tissues. Pergolide exposure led to increased tissue stiffness, but it decreased both basal and active contractile tone stresses generated by AVIC tissues. Pergolide exposure also disrupted AVIC tissue organization (i.e., tissue anisotropy), suggesting that the mechanical properties and contractile functionality of these tissues are governed by their ability to maintain their structure. We expect further use of these assays to identify off-target drug effects that alter the phenotypic balance of AVICs, disrupt their ability to maintain mechanical homeostasis, and lead to VHD. PMID:27174867

  19. Acute stress is detrimental to heart regeneration in zebrafish

    PubMed Central

    Sallin, Pauline; Jaźwińska, Anna

    2016-01-01

    Psychological stress is one of the factors associated with human cardiovascular disease. Here, we demonstrate that acute perceived stress impairs the natural capacity of heart regeneration in zebrafish. Beside physical and chemical disturbances, intermittent crowding triggered an increase in cortisol secretion and blocked the replacement of fibrotic tissue with new myocardium. Pharmacological simulation of stress by pulse treatment with dexamethasone/adrenaline reproduced the regeneration failure, while inhibition of the stress response with anxiolytic drugs partially rescued the regenerative process. Impaired heart regeneration in stressed animals was associated with a reduced cardiomyocyte proliferation and with the downregulation of several genes, including igfbp1b, a modulator of IGF signalling. Notably, daily stress induced a decrease in Igf1r phosphorylation. As cardiomyocyte proliferation was decreased in response to IGF-1 receptor inhibition, we propose that the stress-induced cardiac regenerative failure is partially caused by the attenuation of IGF signalling. These findings indicate that the natural regenerative ability of the zebrafish heart is vulnerable to the systemic paracrine stress response. PMID:27030176

  20. Sildenafil does not Improve Exercise Capacity under Acute Hypoxia Exposure.

    PubMed

    Toro-Salinas, A H; Fort, N; Torrella, J R; Pagès, T; Javierre, C; Viscor, G

    2016-09-01

    The increase in pulmonary arterial pressure (PAP) due to hypoxic pulmonary vasoconstriction (HPV) could be a limiting factor for physical performance during hypoxic exposure. Sildenafil has been shown to reduce PAP in situations of moderate or severe hypoxia, and consequently its role as an ergogenic aid and even a possible doping substance must be considered. We performed a double-blind crossover study to determine the effects of sildenafil on cardiovascular, respiratory and metabolic parameters in normoxia and during acute exposure to hypobaric hypoxia (4 000 m) at rest and during maximal and submaximal (60% VO2 max) exercise tests. One hour before testing started, sildenafil (100 mg) or a placebo was orally administered to 11 volunteers. In normoxic conditions, sildenafil did not affect performance. Similarly, no significant differences were found in cardiovascular and respiratory parameters in hypoxic conditions at rest or during exercise. The use of sildenafil to improve physical performance in non-acclimatized subjects is not supported by our data. PMID:27414159

  1. Predictors of individual differences in acute response to ozone exposure

    SciTech Connect

    McDonnell, W.F.; Muller, K.E.; Bromberg, P.A.; Shy, C.M. )

    1993-04-01

    The purpose of this study was to identify personal characteristics that predict individual differences in acute FEV1 response to ozone exposure. Response and predictor data were collected on 290 white male volunteers 18 to 32 yr of age who were each exposed to one of six concentrations of ozone between 0.0 and 0.40 part per million. The sample was divided into an exploratory sample of 96 and a confirmatory sample of 194 subjects. Exploratory analysis indicated that ozone, age, and several other variables explained a significant proportion of the variance in response. In the confirmatory sample, only age and ozone concentration predicted FEV1 decrement. For the combined sample ozone explained 31% of the variance, with age accounting for an additional 4%. The model predicted a decreasing response with increasing age for all nonzero ozone concentrations. For exposure to 0.40 ppm, the model predicts decrements in FEV1 of 1.07 and 0.47 L for 18- and 30-yr-old subjects, respectively. We concluded that for white male subjects age was a significant predictor of response, with older subjects being less responsive to ozone. Furthermore, we demonstrated that exploratory analysis without control of type I statistical error rates may result in apparent findings that cannot be replicated.

  2. Influence of Acute Coffee Consumption on Postprandial Oxidative Stress

    PubMed Central

    Bloomer, Richard J.; Trepanowski, John F.; Farney, Tyler M.

    2013-01-01

    Background: Coffee has been reported to be rich in antioxidants, with both acute and chronic consumption leading to enhanced blood antioxidant capacity. High-fat feeding is known to result in excess production of reactive oxygen and nitrogen species, promoting a condition of postprandial oxidative stress. Methods: We tested the hypothesis that coffee intake following a high-fat meal would attenuate the typical increase in blood oxidative stress during the acute postprandial period. On 3 different occasions, 16 men and women consumed a high-fat milk shake followed by either 16 ounces of caffeinated or decaffeinated coffee or bottled water. Blood samples were collected before and at 2 and 4 hours following intake of the milk shake and analyzed for triglycerides (TAG), malondialdehyde (MDA), hydrogen peroxide (H2O2), and Trolox equivalent antioxidant capacity (TEAC). Results: Values for TAG and MDA (P < 0.001), as well as for H2O2 (P < 0.001), increased significantly following milk shake consumption, with values higher at 4 hours compared with 2 hours post consumption for TAG and H2O2 (P < 0.05). TEAC was unaffected by the milk shake consumption. Coffee had no impact on TAG, MDA, H2O2, or TEAC, with no condition or interaction effects noted for any variable (P > 0.05). Conclusions: Acute coffee consumption following a high-fat milk shake has no impact on postprandial oxidative stress. PMID:23935371

  3. Stress and adaptation responses to repeated acute acceleration.

    NASA Technical Reports Server (NTRS)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Study in which groups of adult male chickens (single-comb white leghorn) were exposed daily to acceleration (centrifugation) of 2 or 3 G for 10 min, 1, 4, 8, 12, 16, and 24 hr (continuously), or 0 time (controls). After approximately five months of this intermittent treatment (training), the birds were exposed to continuous accelerations of the same G force (intensity). The degree of stress and adaptation of each bird was determined by survival and relative lymphocyte count criteria. Intermittent training exposures of 2 G developed levels of adaptation in birds directly proportional to the duration of their daily exposure. Intermittent training periods at 3 G, however, produced a physiological deterioration in birds receiving daily exposures of 8 hr or more. Adaptive benefits were found only in the 1- and 4-hr-daily intermittent 3-G exposure groups. Exposure to 3 G produced an immediate stress response as indicated by a low relative lymphocyte count which returned to control (preexposed) values prior to the next daily acceleration period in the 10-min, 1-hr, and 4-hr groups. This daily recovery period from stress appeared to be necessary for adaptation as opposed to deterioration for the more severe environmental (3 G) alteration.

  4. Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential

    SciTech Connect

    Pucheu-Haston, Cherie M.; Copeland, Lisa B.; Vallanat, Beena; Boykin, Elizabeth; Ward, Marsha D.W.

    2010-04-15

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens following an acute exposure in naive individuals. Female BALB/c mice received a single intratracheal aspiration exposure to Metarhizium anisopliae crude antigen (MACA) or bovine serum albumin (BSA) in Hank's Balanced Salt Solution (HBSS) or HBSS alone. Mice were terminated after 1, 3, 6, 12, 18 and 24 h. Bronchoalveolar lavage fluid (BALF) was evaluated to determine total and differential cellularity, total protein concentration and LDH activity. RNA was isolated from lung tissue for microarray analysis and qRT-PCR. MACA administration induced a rapid increase in BALF neutrophils, lymphocytes, eosinophils and total protein compared to BSA or HBSS. Microarray analysis demonstrated differential expression of genes involved in cytokine production, signaling, inflammatory cell recruitment, adhesion and activation in 3 and 12 h MACA-treated samples compared to BSA or HBSS. Further analyses allowed identification of approx 100 candidate biomarker genes. Eleven genes were selected for further assessment by qRT-PCR. Of these, 6 demonstrated persistently increased expression (Ccl17, Ccl22, Ccl7, Cxcl10, Cxcl2, Saa1), while C3ar1 increased from 6-24 h. In conclusion, a single respiratory exposure of mice to an allergenic mold extract induces an inflammatory response which is distinct in phenotype and gene transcription from the response to a control protein. Further validation of these biomarkers with additional allergens and irritants is needed. These biomarkers may facilitate improvements in screening methods.

  5. Biomarkers of acute respiratory allergen exposure: screening for sensitization potential.

    PubMed

    Pucheu-Haston, Cherie M; Copeland, Lisa B; Vallanat, Beena; Boykin, Elizabeth; Ward, Marsha D W

    2010-04-15

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens following an acute exposure in naïve individuals. Female BALB/c mice received a single intratracheal aspiration exposure to Metarhizium anisopliae crude antigen (MACA) or bovine serum albumin (BSA) in Hank's Balanced Salt Solution (HBSS) or HBSS alone. Mice were terminated after 1, 3, 6, 12, 18 and 24 h. Bronchoalveolar lavage fluid (BALF) was evaluated to determine total and differential cellularity, total protein concentration and LDH activity. RNA was isolated from lung tissue for microarray analysis and qRT-PCR. MACA administration induced a rapid increase in BALF neutrophils, lymphocytes, eosinophils and total protein compared to BSA or HBSS. Microarray analysis demonstrated differential expression of genes involved in cytokine production, signaling, inflammatory cell recruitment, adhesion and activation in 3 and 12 h MACA-treated samples compared to BSA or HBSS. Further analyses allowed identification of approximately 100 candidate biomarker genes. Eleven genes were selected for further assessment by qRT-PCR. Of these, 6 demonstrated persistently increased expression (Ccl17, Ccl22, Ccl7, Cxcl10, Cxcl2, Saa1), while C3ar1 increased from 6-24 h. In conclusion, a single respiratory exposure of mice to an allergenic mold extract induces an inflammatory response which is distinct in phenotype and gene transcription from the response to a control protein. Further validation of these biomarkers with additional allergens and irritants is needed. These biomarkers may facilitate improvements in screening methods. PMID:20045013

  6. Mental health response to acute stress following wilderness disaster.

    PubMed

    Mortimer, Amanda R

    2010-12-01

    Expedition physicians should be prepared to respond to traumatic stress disorders following wilderness disasters. Stress disorder symptoms include re-experiencing the traumatic event, avoiding stimuli associated with the traumatic event, and increased physical arousal. These symptoms can also be seen in healthy individuals, and should only lead to disorder diagnosis when they cause distress or impairment. Treatment options for stress disorders include observation, psychological interventions, and medication. Approximately half of those with diagnosable stress disorders will return to nondiagnosable status over time without therapeutic intervention. Psychological interventions with empirical support concentrate on providing either noninvasive support in the short term, such as psychological first aid (PFA), or more long-term controlled re-experiencing of the precipitating trauma, such as many exposure-based therapies. Exposure-based treatments can result in temporary increases in symptoms before long-term gains are realized, so they are not recommended for wilderness settings. Medications to treat stress disorders include benzodiazepines, propranolol, and antidepressant medications. Benzodiazepines are often carried in wilderness first aid kits, but they provide very limited stress disorder symptom relief. Propranolol is being explored as a method of preventing traumatic stress disorders, but the data are not currently conclusive. Antidepressant medications are a good long-term strategy for stress disorder treatment, but they are of limited utility in wilderness settings as they are unlikely to be included in expedition medical kits and require approximately 4 weeks of administration for symptom reduction. Recommendations for wilderness treatment of stress disorders focus on increasing knowledge of stress disorder diagnosis and PFA.

  7. Resilience as a correlate of acute stress disorder symptoms in patients with acute myocardial infarction

    PubMed Central

    Meister, Rebecca E; Weber, Tania; Princip, Mary; Schnyder, Ulrich; Barth, Jürgen; Znoj, Hansjörg; Schmid, Jean-Paul; von Känel, Roland

    2015-01-01

    Objectives Myocardial infarction (MI) may be experienced as a traumatic event causing acute stress disorder (ASD). This mental disorder has an impact on the daily life of patients and is associated with the development of post-traumatic stress disorder. Trait resilience has been shown to be a protective factor for post-traumatic stress disorder, but its association with ASD in patients with MI is elusive and was examined in this study. Methods We investigated 71 consecutive patients with acute MI within 48 h of having stable haemodynamic conditions established and for 3 months thereafter. All patients completed the Acute Stress Disorder Scale and the Resilience Scale to self-rate the severity of ASD symptoms and trait resilience, respectively. Results Hierarchical regression analysis showed that greater resilience was associated with lower symptoms of ASD independent of covariates (b=−0.22, p<0.05). Post hoc analysis revealed resilience level to be inversely associated with the ASD symptom clusters of re-experiencing (b=−0.05, p<0.05) and arousal (b=−0.09, p<0.05), but not with dissociation and avoidance. Conclusions The findings suggest that patients with acute MI with higher trait resilience experience relatively fewer symptoms of ASD during MI. Resilience was particularly associated with re-experiencing and arousal symptoms. Our findings contribute to a better understanding of resilience as a potentially important correlate of ASD in the context of traumatic situations such as acute MI. These results emphasise the importance of identifying patients with low resilience in medical settings and to offer them adequate support. PMID:26568834

  8. Hippocampal ER stress and learning deficits following repeated pyrethroid exposure.

    PubMed

    Hossain, Muhammad M; DiCicco-Bloom, Emanuel; Richardson, Jason R

    2015-01-01

    Endoplasmic reticulum (ER) stress is implicated as a significant contributor to neurodegeneration and cognitive dysfunction. Previously, we reported that the widely used pyrethroid pesticide deltamethrin causes ER stress-mediated apoptosis in SK-N-AS neuroblastoma cells. Whether or not this occurs in vivo remains unknown. Here, we demonstrate that repeated deltamethrin exposure (3 mg/kg every 3 days for 60 days) causes hippocampal ER stress and learning deficits in adult mice. Repeated exposure to deltamethrin caused ER stress in the hippocampus as indicated by increased levels of C/EBP-homologous protein (131%) and glucose-regulated protein 78 (96%). This was accompanied by increased levels of caspase-12 (110%) and activated caspase-3 (50%). To determine whether these effects resulted in learning deficits, hippocampal-dependent learning was evaluated using the Morris water maze. Deltamethrin-treated animals exhibited profound deficits in the acquisition of learning. We also found that deltamethrin exposure resulted in decreased BrdU-positive cells (37%) in the dentate gyrus of the hippocampus, suggesting potential impairment of hippocampal neurogenesis. Collectively, these results demonstrate that repeated deltamethrin exposure leads to ER stress, apoptotic cell death in the hippocampus, and deficits in hippocampal precursor proliferation, which is associated with learning deficits.

  9. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury

    USGS Publications Warehouse

    Richter, Catherine A.; Garcia-Reyero, Natàlia; Martyniuk, Chris; Knoebl, Iris; Pope, Marie; Wright-Osment, Maureen K.; Denslow, Nancy D.; Tillitt, Donald E.

    2011-01-01

    Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5(mu or u)g MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of pexposure. Individual genes exhibiting altered expression in response to MeHg exposure implicate effects on glutathione metabolism in the mechanism of MeHg neurotoxicity. Gene ontology (GO) terms significantly enriched among altered genes included protein folding, cell redox homeostasis, and steroid biosynthetic process. The most affected biological functions were related to nervous system development and function, as well as lipid metabolism and molecular transport. These results support the involvement of oxidative stress and effects on protein structure in the mechanism of action of MeHg in the female brain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.

  10. Hepatic Steatosis in Response to Acute Alcohol Exposure in Zebrafish requires Srebp Activation

    PubMed Central

    Passeri, Michael J.; Cinaroglu, Ayca; Gao, Chuan; Sadler, Kirsten C.

    2008-01-01

    Steatosis is the most common consequence of acute alcohol abuse and may predispose to more severe hepatic disease. Increased lipogenesis driven by the sterol response element binding protein (SREBP) transcription factors is essential for steatosis associated with chronic alcohol ingestion, but the mechanisms underlying steatosis following acute alcohol exposure are unknown. Zebrafish larvae represent an attractive vertebrate model for studying alcoholic liver disease (ALD), because they possess the pathways to metabolize alcohol, the liver is mature by 4 days post-fertilization (dpf), and alcohol can be simply added to their water. Exposing 4 dpf zebrafish larvae to 2% ethanol (EtOH) for 32 hours achieves ∼80 mM intracellular EtOH and upregulation of hepatic cyp2e1, sod and bip, indicating that EtOH is metabolized and provokes oxidant stress. EtOH-treated larvae develop hepatomegaly and steatosis accompanied by changes in the expression of genes required for hepatic lipid metabolism. Based on the importance of SREPBs in chronic ALD, we explored the role of Srebps in this model of acute ALD. Srebp activation was prevented in gonzo larvae, which harbor a mutation in the membrane bound transcription factor protease 1 (mbtps1) gene, and in embryos injected with a morpholino to knock-down Srebp cleavage activating protein (scap). Both gonzo mutants and scap morphants were resistant to steatosis in response to 2% EtOH, and the expression of many Srebp target genes are down regulated in gonzo mutant livers. Conclusion Zebrafish larvae develop signs of acute ALD, including steatosis. Srebp activation is required for steatosis in this model. The tractability of zebrafish genetics provides a valuable tool for dissecting the molecular pathogenesis of acute ALD. PMID:19127516

  11. Superoxide radical production in chicken skeletal muscle induced by acute heat stress.

    PubMed

    Mujahid, A; Yoshiki, Y; Akiba, Y; Toyomizu, M

    2005-02-01

    Heat stress is of major concern for poultry, especially in the hot regions of the world because of the resulting poor growth performance, immunosuppression, and high mortality. To assess superoxide (O2*-) production in mitochondria isolated from skeletal muscle of chickens (n = 4 to 8) exposed to acute heat stress, electron spin resonance (ESR) spectroscopy using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap agent and lucigenin-derived chemiluminescence (LDCL) method were applied. ESR spectra of suspensions containing mitochondria from control and acute heat-treated meat-type chickens showed similar hyperfine coupling constants (aN = 1.44 mT, aHbeta = 0.12 mT, and aHbeta = 0.11 mT) to those of DMPO-O2*- adducts observed in a hypoxanthine-xanthine oxidase system. Heat exposure resulted in enhancement of the DMPO-O2*- signal. The results using LDCL showed significantly enhanced superoxide production in heat stress-treated skeletal muscle mitochondria of meat-type chickens, whereas no such increase was observed in laying chickens. The enhancement of superoxide production in the former case was associated with heat-induced increments in rectal and muscle temperatures, leading to significant body weight loss. In contrast, the latter case showed no increase in temperatures, although there was a slight decrease in body weight gain. Percentage increases of superoxide production in the presence of carboxyatractylate, a specific inhibitor of adenine nucleotide translocator (ANT), were the same for skeletal muscle mitochondria from meat- and laying-type chickens from the control or heat stress-treated group. This finding suggests the irrelevance of ANT in the regulation of reactive oxygen species flux under heat stress conditions. The study provides the first evidence of superoxide anion production in the skeletal muscle mitochondria of meat-type chickens in response to acute heat stress.

  12. Involvement of tissue plasminogen activator in stress responsivity during acute cocaine withdrawal in mice.

    PubMed

    Zhou, Yan; Maiya, Rajani; Norris, Erin H; Kreek, Mary Jeanne; Strickland, Sidney

    2010-11-01

    There is evidence that increased release of corticotropin-releasing factor (CRF) in the central nucleus of the amygdala (CeA) contributes to stress responsivity during cocaine withdrawal (WD). Recent studies suggest that tissue plasminogen activator (tPA) in the CeA is a downstream effector protein for CRF after acute "binge" cocaine administration. The purpose of this study was to determine if tPA modulates cocaine WD-induced stress responsivity. Wild-type (WT) and tPA-deficient (tPA - / - ) mice were subjected to chronic (14 days) "binge" cocaine (45 mg/kg per day) or its acute (1 day) WD. Extracellular tPA activity, CRF mRNA levels, and plasma corticosterone (CORT) levels were measured in tPA - / -  and WT mice. Extracellular tPA activity was reduced by 50% in the CeA and medial amygdala of WT mice after chronic cocaine and returned to basal levels after acute WD. Unlike WT mice, tPA - / -  mice did not display elevated amygdalar CRF mRNA levels during cocaine WD. In comparison to WT mice, tPA - / -  mice showed a blunted plasma CORT response during acute WD. These results demonstrate that tPA activity in the amygdala (Amy) is altered by chronic cocaine exposure, and further suggest an involvement of tPA in modulating amygdalar CRF stress responsive system and hypothalamic-pituitary-adrenal axis in response to acute cocaine WD.

  13. Involvement of tissue plasminogen activator in stress responsivity during acute cocaine withdrawal in mice

    PubMed Central

    Zhou, Yan; Maiya, Rajani; Norris, Erin H.; Kreek, Mary Jeanne; Strickland, Sidney

    2013-01-01

    There is evidence that increased release of corticotropin-releasing factor (CRF) in the central nucleus of the amygdala (CeA) contributes to stress responsivity during cocaine withdrawal (WD). Recent studies suggest that tissue plasminogen activator (tPA) in the CeA is a downstream effector protein for CRF after acute “binge” cocaine administration. The purpose of this study was to determine if tPA modulates cocaine WD-induced stress responsivity. Wild-type (WT) and tPA-deficient (tPA −/−) mice were subjected to chronic (14 days) “binge” cocaine (45 mg/kg per day) or its acute (1 day) WD. Extracellular tPA activity, CRF mRNA levels, and plasma corticosterone (CORT) levels were measured in tPA −/− and WT mice. Extracellular tPA activity was reduced by 50% in the CeA and medial amygdala of WT mice after chronic cocaine and returned to basal levels after acute WD. Unlike WT mice, tPA −/− mice did not display elevated amygdalar CRF mRNA levels during cocaine WD. In comparison to WT mice, tPA −/− mice showed a blunted plasma CORT response during acute WD. These results demonstrate that tPA activity in the amygdala (Amy) is altered by chronic cocaine exposure, and further suggest an involvement of tPA in modulating amygdalar CRF stress responsive system and hypothalamic–pituitary–adrenal axis in response to acute cocaine WD. PMID:20666641

  14. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  15. Acute exercise and oxidative stress: a 30 year history

    PubMed Central

    Fisher-Wellman, Kelsey; Bloomer, Richard J

    2009-01-01

    The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years. PMID:19144121

  16. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  17. Exposure to forced swim stress alters local circuit activity and plasticity in the dentate gyrus of the hippocampus.

    PubMed

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  18. Exposure to stressful environments - Strategy of adaptive responses

    NASA Technical Reports Server (NTRS)

    Farhi, Leon E.

    1991-01-01

    Stresses such as hypoxia, water lack, and heat exposure can produce strains in more than a single organ system, in turn stimulating the body to adapt in multiple ways. Nevertheless, a general strategy of the various adaptive responses emerges when the challenges are divided into three groups: (1) conditions that affect the supply of essential molecules, (2) stresses that prevent the body from regulating properly the output of waste products such as CO2 and heat, and (3) environments that disrupt body transport systems. Problems may arise when there is a conflict between two stresses requiring conflicting adaptive changes. An alternative to adaptation, creation of microenvironment, is often favored by the animal.

  19. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output.

    PubMed

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-01-01

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors. PMID:27511270

  20. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output

    PubMed Central

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-01-01

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors. PMID:27511270

  1. Maternal stress exposures, reactions, and priorities for stress reduction among low-income urban women

    PubMed Central

    Bloom, Tina; Glass, Nancy; Ann Curry, Mary; Hernandez, Rebecca; Houck, Gayle

    2015-01-01

    INTRODUCTION Maternal psychosocial stress has been associated with adverse maternal-child outcomes. Vulnerable women’s experiences with stressors during pregnancy and their desires and priorities for appropriate and useful stress reduction interventions for pregnant women are not well-understood. METHODS Qualitative interviews with low-income, urban women explored their stress exposures and reactions during pregnancy, ways that stressors overlapped and interacted, and their priorities for stress reduction. Quantitative measures (Perceived Stress Scale, My Exposure to Violence Instrument Danger Assessment, Center for Epidemiologic Studies of Depression Scale, Revised, and Posttraumatic Stress Disorder Checklist-Civilian) supplemented qualitative descriptions of women’s stress exposures and reactions. Analyses explored relationships between stressors and women’s priorities for stress intervention. Lay advisors from the sample population reviewed qualitative interview guides for appropriateness, completeness, and language prior to interviews, and reviewed study findings for validity. Study findings were returned to the community in newsletter form. RESULTS Twenty-four low-income urban women participated in interviews. Women in the sample reported high stress, lifetime violence exposure, depression and posttraumatic stress disorder symptoms. The most common stressors reported were financial strain, violence exposure, and feelings of intense isolation and loneliness. Few participants reported having discussed psychosocial stressors with prenatal care providers. Participants in this study described connections with other women as desirable to relieve their stress and provided input on ways healthcare providers could facilitate such connections. DISCUSSION Clinical and research implications of findings are discussed, including approaches that health care providers may find useful to facilitate connections among vulnerable pregnant women. PMID:23278984

  2. Sex Differences in Adolescent Depression: Stress Exposure and Reactivity Models

    ERIC Educational Resources Information Center

    Hankin, Benjamin L.; Mermelstein, Robin; Roesch, Linda

    2007-01-01

    Stress exposure and reactivity models were examined as explanations for why girls exhibit greater levels of depressive symptoms than boys. In a multiwave, longitudinal design, adolescents' depressive symptoms, alcohol usage, and occurrence of stressors were assessed at baseline, 6, and 12 months later (N=538; 54.5% female; ages 13-18, average…

  3. Trauma Exposure and Posttraumatic Stress Disorder in Delinquent Female Adolescents

    ERIC Educational Resources Information Center

    Ariga, Michio; Uehara, Toru; Takeuchi, Kazuo; Ishige, Yoko; Nakano, Reiko; Mikuni, Masahiko

    2008-01-01

    Background: Although juveniles within the justice system have high psychiatric morbidity, few comprehensive investigations have shown posttraumatic stress disorder (PTSD) in female delinquents. Here, we aim to describe the nature and extent of PTSD and trauma exposure and to clarify the relationships among comorbidity and psychosocial factors in…

  4. Acute exposure to acid fog. Effects on mucociliary clearance

    SciTech Connect

    Laube, B.L.; Bowes, S.M. III; Links, J.M.; Thomas, K.K.; Frank, R. )

    1993-05-01

    Submicrometric sulfuric acid (H2SO4) aerosol can affect mucociliary clearance without eliciting irritative symptoms or changes in pulmonary function. The effect of larger fog droplets containing H2SO4 on mucociliary clearance is unknown. We quantified mucociliary clearance from the trachea (n = 4) and small airways (n = 7) of young healthy male adults after an acute exposure to H2SO4 fog (MMAD = 10.3 microns; pH = 2.0; liquid water content = 481 +/- 65 mg/m3; osmolarity = 30 mOsm). Acid fog (AF) or saline fog (SF) (10.9 microns; 492 +/- 116 mg/m3; 30 mOsm) was administered for 40 min of unencumbered breathing (no mouth-piece) at rest and for 20 min of exercise sufficient to produce oronasal breathing. Fog exposures were followed by a methacholine (MCh) challenge (a measure of airway reactivity) or inhalation of technetium-99M radioaerosol (MMAD = 3.4 microns) on 2 study days each. Changes in symptoms and forced ventilatory function were also assessed. Clearance was quantified from computer-assisted analyses of gamma camera images of the lower respiratory tract in terms of %removal/min of the radiolabel from the trachea 25 min after inhalation and from the outer zone of the right lung after 1.9 to 3 h. Symptoms, forced ventilatory function, and MCh response were unaffected by either fog. Tracheal clearance was more rapid in four of four subjects after AF (0.83 +/- 1.58% removal/min) compared with that after SF (-0.54 +/- 0.85% removal/min). Outer zone clearance was more rapid in six of seven subjects after AF (0.22 +/- 0.15% removal/min) compared with that after SF (0.01 +/- 0.09% removal/min).

  5. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain.

    PubMed

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-09-01

    The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress. PMID:26445572

  6. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain.

    PubMed

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-09-01

    The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress.

  7. A brief retrospective method for identifying longitudinal trajectories of adjustment following acute stress.

    PubMed

    Mancini, Anthony D; Bonanno, George A; Sinan, Beyza

    2015-06-01

    Research increasingly indicates that prototypical trajectories of resilience, recovery, delayed, and chronic distress characterize reactions to acute adversity. However, trajectory research has been limited by the practical and methodological difficulties of obtaining pre-event and longitudinal data. In two studies, we employed a novel method in which trained interviewers provided a graphical depiction of prototypical stress trajectories to participants and asked them to select the one that best described their experience. In Study 1, self-identified trajectories from 21 high-exposure survivors of the September 11th World Trade Center attacks distinguished variation in posttraumatic stress disorder and depression symptoms at 7 and 18 months, and were consistent with trajectories based on longitudinal outcomes and friend/relative ratings. In Study 2, we examined self-identified trajectories from 115 bereaved spouses at 1.5 to 3 years. Persons who identified a resilient trajectory, compared with recovery and chronic distress trajectories, had fewer interviewer-rated symptoms of grief, depression, and posttraumatic stress disorder were rated as functioning more effectively by friends, reported higher life satisfaction, and had fewer somatic complaints. The present results provide initial evidence for the construct validity of a cross-sectional and less demanding method for identifying acute stress trajectories.

  8. A brief retrospective method for identifying longitudinal trajectories of adjustment following acute stress.

    PubMed

    Mancini, Anthony D; Bonanno, George A; Sinan, Beyza

    2015-06-01

    Research increasingly indicates that prototypical trajectories of resilience, recovery, delayed, and chronic distress characterize reactions to acute adversity. However, trajectory research has been limited by the practical and methodological difficulties of obtaining pre-event and longitudinal data. In two studies, we employed a novel method in which trained interviewers provided a graphical depiction of prototypical stress trajectories to participants and asked them to select the one that best described their experience. In Study 1, self-identified trajectories from 21 high-exposure survivors of the September 11th World Trade Center attacks distinguished variation in posttraumatic stress disorder and depression symptoms at 7 and 18 months, and were consistent with trajectories based on longitudinal outcomes and friend/relative ratings. In Study 2, we examined self-identified trajectories from 115 bereaved spouses at 1.5 to 3 years. Persons who identified a resilient trajectory, compared with recovery and chronic distress trajectories, had fewer interviewer-rated symptoms of grief, depression, and posttraumatic stress disorder were rated as functioning more effectively by friends, reported higher life satisfaction, and had fewer somatic complaints. The present results provide initial evidence for the construct validity of a cross-sectional and less demanding method for identifying acute stress trajectories. PMID:25288824

  9. The stress response in gametes and embryos after paternal chemical exposures

    SciTech Connect

    Hales, Barbara F. . E-mail: barbara.hales@mcgill.ca; Aguilar-Mahecha, Adriana; Robaire, Bernard

    2005-09-01

    There is increasing concern that paternal exposure to toxic chemicals impacts negatively on progeny outcome. Exposure of male rats to a model male-mediated developmental toxicant and anticancer alkylating agent, cyclophosphamide, resulted in increased pre- and post-implantation loss, as well as in malformations. We hypothesize that the stage specificity of the effects of paternal cyclophosphamide exposure on progeny depends on the ability of germ cells to respond to stress, repair DNA or undergo apoptosis. Acute high dose exposure of male rats to cyclophosphamide increased the expression of heat shock proteins and DNA repair genes, predominantly in round spermatids. In contrast, chronic low dose treatment dramatically decreased the expression of stress response genes in pachytene spermatocytes and round spermatids, but not in elongated spermatids; this reduced ability to respond to stress may allow damage to accumulate, resulting in altered sperm function. Increased DNA damage was maximal 3 weeks after drug exposure, during spermiogenesis, a key point in sperm chromatin remodelling. Drug exposure for 9 weeks increased the frequency of spermatozoa with chromosome 4 disomy and nullisomy. DNA damage found in cyclophosphamide-exposed spermatozoa was imparted to the newly fertilized zygote. Drug-exposed spermatozoa decondensed more rapidly than control spermatozoa and male pronuclear formation was earlier. RNA synthesis was higher in 1-cell embryos sired by drug-treated fathers than in controls. Significantly, the profile of gene expression was altered in embryos sired by drug-treated males as early as the 1-cell stage. Thus, exposure of male rats to cyclophosphamide altered male germ cell quality with a consequent temporal and spatial disruption of the zygotic genome activation.

  10. Intermittent altitude exposures reduce acute mountain sickness at 4300 m.

    PubMed

    Beidleman, Beth A; Muza, Stephen R; Fulco, Charles S; Cymerman, Allen; Ditzler, Dan; Stulz, Dean; Staab, Janet E; Skrinar, Gary S; Lewis, Steven F; Sawka, Michael N

    2004-03-01

    Acute mountain sickness (AMS) commonly occurs at altitudes exceeding 2000-2500 m and usually resolves after acclimatization induced by a few days of chronic residence at the same altitude. Increased ventilation and diuresis may contribute to the reduction in AMS with altitude acclimatization. The aim of the present study was to examine the effects of intermittent altitude exposures (IAE), in combination with rest and exercise training, on the incidence and severity of AMS, resting ventilation and 24-h urine volume at 4300 m. Six lowlanders (age, 23 +/- 2 years; body weight, 77 +/- 6 kg; values are means +/- S.E.M.) completed an Environmental Symptoms Questionnaire (ESQ) and Lake Louise AMS Scoring System (LLS), a resting end-tidal partial pressure of CO2 ( PETCO2) test and a 24-h urine volume collection at sea level (SL) and during a 30 h exposure to 4300 m altitude-equivalent (barometric pressure=446 mmHg) once before (PreIAE) and once after (PostIAE) a 3-week period of IAE (4 h.day(-1), 5 days.week(-1), 4300 m). The previously validated factor score, AMS cerebral score, was calculated from the ESQ and the self-report score was calculated from the LLS at 24 h of altitude exposure to assess the incidence and severity of AMS. During each IAE, three subjects cycled for 45-60 min.day(-1) at 60-70% of maximal O2 uptake (VO2 max) and three subjects rested. Cycle training during each IAE did not affect any of the measured variables, so data from all six subjects were combined. The results showed that the incidence of AMS (%), determined from both the ESQ and LLS, increased (P<0.05) from SL (0 +/- 0) to PreIAE (50 +/- 22) at 24 h of altitude exposure and decreased (P<0.05) from PreIAE to PostIAE (0 +/- 0). The severity of AMS (i.e. AMS cerebral symptom and LLS self-report scores) increased (P<0.05) from SL (0.02 +/- 0.02 and 0.17 +/- 0.17 respectively) to PreIAE (0.49 +/- 0.18 and 4.17 +/- 0.94 respectively) at 24 h of altitude exposure, and decreased (P<0.05) from Pre

  11. Morphologic alteration of the olfactory bulb after acute ozone exposure in rats.

    PubMed

    Colín-Barenque, L; Avila-Costa, M R; Fortoul, T; Rugerio-Vargas, C; Machado-Salas, J P; Espinosa-Villanueva, J; Rivas-Arancibia, S

    1999-10-15

    The interaction of ozone with some molecules results in an increased production of free radicals. The objective of this study was to identify whether acute ozone exposure to 1-1.5 ppm for 4 h, produced cytological and ultrastructural modifications in the olfactory bulb cells. The results showed that in rats exposed to ozone there was a significant loss of dendritic spines on primary and secondary dendrites of granule cells, whereas the control rats did not present such changes. Besides these exposed cells showed vacuolation of neuronal cytoplasm, swelling of Golgi apparatus and mitochondrion, dilation cisterns of the rough endoplasmic reticulum. These findings suggest that oxidative stress produced by ozone induces alterations in the granule layer of the olfactory bulb, which may be related to functional modifications.

  12. Post-stress rumination predicts HPA axis responses to repeated acute stress.

    PubMed

    Gianferante, Danielle; Thoma, Myriam V; Hanlin, Luke; Chen, Xuejie; Breines, Juliana G; Zoccola, Peggy M; Rohleder, Nicolas

    2014-11-01

    Failure of the hypothalamus-pituitary-adrenal (HPA) axis to habituate to repeated stress exposure is related with adverse health outcomes, but our knowledge of predictors of non-habituation is limited. Rumination, defined as repetitive and unwanted past-centered negative thinking, is related with exaggerated HPA axis stress responses and poor health outcomes. The aim of this study was to test whether post-stress rumination was related with non-habituation of cortisol to repeated stress exposure. Twenty-seven participants (n=13 females) were exposed to the Trier Social Stress Test (TSST) twice on consecutive afternoons. Post-stress rumination was measured after the first TSST, and HPA axis responses were assessed by measuring salivary cortisol 1 min before, and 1, 10, 20, 60, and 120 min after both TSSTs. Stress exposure induced HPA axis activation on both days, and this activation showed habituation indicated by lower responses to the second TSST (F=3.7, p=0.015). Post-stress rumination after the first TSST was associated with greater cortisol reactivity after the initial stress test (r=0.45, p<0.05) and with increased cortisol responses to the second TSST (r=0.51, p<0.01), indicating non-habituation, independently of age, sex, depressive symptoms, perceived life stress, and trait rumination. In summary, results showed that rumination after stress predicted non-habituation of HPA axis responses. This finding implicates rumination as one possible mechanism mediating maladaptive stress response patterns, and it might also offer a pathway through which rumination might lead to negative health outcomes.

  13. Manganese-enhanced magnetic resonance imaging (MEMRI) reveals brain circuitry involved in responding to an acute novel stress in rats with a history of repeated social stress

    PubMed Central

    Bangasser, Debra A.; Lee, Catherine S.; Cook, Philip A.; Gee, James C.; Bhatnagar, Seema; Valentino, Rita J.

    2013-01-01

    Responses to acute stressors are determined in part by stress history. For example, a history of chronic stress results in facilitated responses to a novel stressor and this facilitation is considered to be adaptive. We previously demonstrated that repeated exposure of rats to the resident-intruder model of social stress results in the emergence of two subpopulations that are characterized by different coping responses to stress. The submissive subpopulation failed to show facilitation to a novel stressor and developed a passive strategy in the Porsolt forced swim test. Because a passive stress coping response has been implicated in the propensity to develop certain psychiatric disorders, understanding the unique circuitry engaged by exposure to a novel stressor in these subpopulations would advance our understanding of the etiology of stress-related pathology. An ex vivo functional imaging technique, manganese-enhanced magnetic resonance imaging (MEMRI), was used to identify and distinguish brain regions that are differentially activated by an acute swim stress (15 min) in rats with a history of social stress compared to controls. Specifically, Mn2+ was administered intracerebroventricularly prior to swim stress and brains were later imaged ex vivo to reveal activated structures. When compared to controls, all rats with a history of social stress showed greater activation in specific striatal, hippocampal, hypothalamic, and midbrain regions. The submissive subpopulation of rats was further distinguished by significantly greater activation in amygdala, bed nucleus of the stria terminalis, and septum, suggesting that these regions may form a circuit mediating responses to novel stress in individuals that adopt passive coping strategies. The finding that different circuits are engaged by a novel stressor in the two subpopulations of rats exposed to social stress implicates a role for these circuits in determining individual strategies for responding to stressors

  14. Acute effects of exposure to 56Fe and 16O particles on learning and memory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although it has been shown that exposure to HZE particles disrupts cognitive performance when tested 2-4 weeks after irradiation, it has not been determined whether exposure to HZE particles can exert acute effects on cognitive performance; i.e., effects within 4-48 hrs after exposure. The present ...

  15. The impact of unintentional pediatric trauma: a review of pain, acute stress, and posttraumatic stress.

    PubMed

    Gold, Jeffrey I; Kant, Alexis J; Kim, Seok Hyeon

    2008-04-01

    This article reviews current research on acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) resulting from pediatric simple (i.e., single, unpredictable, and unintentional) physical injury and how pain may act as both a trigger and a coexisting symptom. Although several studies have explored predictors of ASD and PTSD, as well as the relationship between these conditions in adults, there is less research on ASD and PTSD in children and adolescents. This review highlights the importance of early detection of pain and acute stress symptoms resulting from pediatric unintentional physical injury in the hopes of preventing long-term negative outcomes, such as the potential development of PTSD and associated academic, social, and psychological problems.

  16. Acute Physiological Stress Down-Regulates mRNA Expressions of Growth-Related Genes in Coho Salmon

    PubMed Central

    Nakano, Toshiki; Afonso, Luis O. B.; Beckman, Brian R.; Iwama, George K.; Devlin, Robert H.

    2013-01-01

    Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish. PMID:23990952

  17. Sex differences in hippocampal response to endocannabinoids after exposure to severe stress.

    PubMed

    Zer-Aviv, Tomer Mizrachi; Akirav, Irit

    2016-07-01

    Women are more vulnerable to stress-related mental disorders than men and the naturally occurring fluctuation in estrogen that occur across the estrus cycle can dramatically influence the pathophysiology observed following traumatic events. It has been demonstrated that the endocannabinoid (eCB) system could represent a therapeutic target for the treatment of post-traumatic stress disorder (PTSD) in males. The current study aimed to examine the effects of exposure to a traumatic event and acute enhancement of eCB signaling on hippocampal-dependent learning and plasticity in male and female rats. Males and females were exposed to the single prolonged stress (SPS) model of PTSD (restraint, forced swim, and sedation) followed by acute administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.3 mg/kg). Females were in diestrus during SPS exposure. SPS exposure impaired extinction and hippocampal plasticity tested a week later in males and females. Sex differences were observed in the effects of URB597 on hippocampal plasticity of SPS-exposed rats. Also, URB597 normalized the SPS-induced upregulation in CB1 receptor levels in the amygdala, prefrontal cortex (PFC), and hippocampus in males. In females, URB597 normalized the SPS-induced up regulation in CB1 receptors in the amygdala and PFC, but not hippocampus. Our findings support the eCB system as a therapeutic target for the treatment of disorders associated to inefficient fear coping in males and females. There are differences in the hippocampal response of males and females to the enhancement of eCB signaling after intense stress suggesting sex differences in treatment efficacy. © 2016 Wiley Periodicals, Inc. PMID:26928784

  18. Paternal preconception ethanol exposure blunts hypothalamic-pituitary-adrenal axis responsivity and stress-induced excessive fluid intake in male mice.

    PubMed

    Rompala, Gregory R; Finegersh, Andrey; Homanics, Gregg E

    2016-06-01

    A growing number of environmental insults have been shown to induce epigenetic effects that persist across generations. For instance, paternal preconception exposures to ethanol or stress have independently been shown to exert such intergenerational effects. Since ethanol exposure is a physiological stressor that activates the hypothalamic-pituitary-adrenal (HPA) axis, we hypothesized that paternal ethanol exposure would impact stress responsivity of offspring. Adult male mice were exposed to chronic intermittent vapor ethanol or control conditions for 5 weeks before being mated with ethanol-naïve females to produce ethanol (E)- and control (C)-sired offspring. Adult male and female offspring were tested for plasma corticosterone (CORT) levels following acute restraint stress and the male offspring were further examined for stress-evoked 2-bottle choice ethanol-drinking. Paternal ethanol exposure blunted plasma CORT levels following acute restraint stress selectively in male offspring; females were unaffected. In a stress-evoked ethanol-drinking assay, there was no effect of stress on ethanol consumption. However, C-sired males exhibited increased total fluid intake (polydipsia) in response to stress while E-sired males were resistant to this stress-induced phenotype. Taken together, these data suggest that paternal ethanol exposure imparts stress hyporesponsivity to male offspring.

  19. The stressed female brain: neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress.

    PubMed

    Maeng, Lisa Y; Shors, Tracey J

    2013-01-01

    Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD), indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA) is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC) during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL) and infralimbic (IL) subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. About 24 h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similarly to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful life

  20. Acute Stress, But not Corticosterone, Disrupts Short- and Long-Term Synaptic Plasticity in Rat Dorsal Subiculum Via Glucocorticoid Receptor Activation

    PubMed Central

    MacDougall, Matthew J.; Howland, John G.

    2015-01-01

    The subiculum (SUB) serves as the major output structure of the hippocampus; therefore, exploring synaptic plasticity within this region is of great importance for understanding the dynamics of hippocampal circuitry and hippocampal–cortical interactions. Previous research has shown exposure to acute stress dramatically alters synaptic plasticity within the hippocampus proper. Using in vivo electrophysiological recordings in urethane-anesthetized adult male Sprague–Dawley rats, we tested the effects of either acute restraint stress (30 min) or corticosterone (CORT) injections (3 mg/kg; s.c.) on short- and long-term forms of synaptic plasticity in the Cornu Ammonis 1–SUB pathway. Paired-pulse facilitation and two forms of long-term plasticity (long-term potentiation and late-developing potentiation) were significantly reduced after exposure to acute stress but not CORT treatment. Measurements of plasma CORT confirmed similar levels of circulating hormone in animals exposed to either acute stress or CORT treatment. The disruptive effects of acute stress on both short- and long-term forms of synaptic plasticity are mediated by glucocorticoid receptor (GR) activation as these disruptions were blocked by pre-treatment with the selective GR antagonist RU38486 (10 mg/kg; s.c.). The present results highlight the susceptibility of subicular plasticity to acute stress and provide evidence that GR activation is necessary but not sufficient for mediating these alterations. PMID:22918985

  1. Ozone exposure activates oxidative stress responses in murine skin.

    PubMed

    Valacchi, Giuseppe; van der Vliet, Albert; Schock, Bettina C; Okamoto, Tatsuya; Obermuller-Jevic, Ute; Cross, Carroll E; Packer, Lester

    2002-09-30

    Ozone (O(3)) is among the most reactive environmental oxidant to which skin is exposed. O(3) exposure has previously been shown to induce antioxidant depletion as well as lipid and protein oxidation in the outermost skin layer, the stratum corneum (SC), but little is known regarding the potential effects of O(3) on the skin epidermis and dermis. To evaluate such skin responses to O(3), SKH-1 hairless mice were exposed for 2 h to 8.0 ppm O(3) or to ambient air. O(3) exposure caused a significant increase in skin carbonyls (28%) compared to the skin of air exposed control animals. An evident increase in 4-hydroxynonenal-protein adducts was detected after O(3) exposure. O(3) exposure caused a rapid up-regulation of HSP27 (20-fold), and more delayed induction of HSP70 (2.8-fold) and heme oxygenase-1 (5-fold). O(3) exposure also led to the induction of nitric oxide synthase (iNOS) 6-12 h following O(3) exposure. We conclude that skin exposure to high levels of O(3) not only affects antioxidant levels and oxidation markers in the SC, but also induces stress responses in the active layers of the skin, most likely by indirect mechanisms, since it is unlikely that O(3) itself penetrates the protective SC layers.

  2. Acute Anteroseptal Myocardial Infarction after a Negative Exercise Stress Test.

    PubMed

    Al-Alawi, Abdullah M; Janardan, Jyotsna; Peck, Kah Y; Soward, Alan

    2016-05-01

    A myocardial infarction is a rare complication which can occur after an exercise stress test. We report a 48-year-old male who was referred to the Mildura Cardiology Practice, Victoria, Australia, in August 2014 with left-sided chest pain. He underwent an exercise stress test which was negative for myocardial ischaemia. However, the patient presented to the Emergency Department of the Mildura Base Hospital 30 minutes after the test with severe retrosternal chest pain. An acute anteroseptal ST segment elevation myocardial infarction was observed on electrocardiography. After thrombolysis, he was transferred to a tertiary hospital where coronary angiography subsequently revealed significant left anterior descending coronary artery stenosis. Thrombus aspiration and a balloon angioplasty were performed. The patient was discharged three days after the surgical procedure in good health.

  3. Reversible Inactivation of the Auditory Thalamus Disrupts HPA Axis Habituation to Repeated Loud Noise Stress Exposures

    PubMed Central

    Day, Heidi E.W.; Masini, Cher V.; Campeau, Serge

    2009-01-01

    Although habituation to stress is a widely observed adaptive mechanism in response to repeated homotypic challenge exposure, its brain location and mechanism of plasticity remains elusive. And while habituation-related plasticity has been suggested to take place in central limbic regions, recent evidence suggests that sensory sites may provide the underlying substrate for this function. For instance, several brainstem, midbrain, thalamic, and/or cortical auditory processing areas, among others, could support habituation-related plasticity to repeated loud noise exposures. In the present study, the auditory thalamus was tested for its putative role in habituation to repeated loud noise exposures, in rats. The auditory thalamus was inactivated reversibly by muscimol injections during repeated loud noise exposures to determine if brainstem or midbrain auditory nuclei would be sufficient to support habituation to this specific stressor, as measured during an additional and drug-free loud noise exposure test. Our results indicate that auditory thalamic inactivation by muscimol disrupts acute HPA axis response specifically to loud noise. Importantly, habituation to repeated loud noise exposures was also prevented by reversible auditory thalamic inactivation, suggesting that this form of plasticity is likely mediated at, or in targets of, the auditory thalamus. PMID:19379718

  4. Acute Exposure from RADON-222 and Aerosols in Drinking Water

    NASA Astrophysics Data System (ADS)

    Bernhardt, George Paul, IV

    Radon-222 in water is released when the water is aerated, such as during showering. As a result, a temporary burst of radon-222 can appear as a short term, or acute, exposure. This study looked at homes with radon-222 concentrations in water from 800 picocuries per liter (pCi/l) to 53,000 pCi/l to determine the buildup of radon gas in a bathroom during showering. Samples from the tap and drain, compared to determine the percentage of radon-222 released, showed that between 58% and 88% of radon-222 in the water was released. The resultant radon-222 increase in air, measured with a flow-through detector, ranged from 2 pCi/l to 114 pCi/l in bathrooms due to a 10 to 15 minute shower with water flow rates ranging from 3 l/min to 6 l/min. Significantly, these rates did not fall rapidly but stayed approximately the same for up to 15 minutes after the water flow ceased. In examining exposures, the true danger is in the radon-222 progeny rather than the radon itself. The progeny can be inhaled and deposited in the tracheobronchial passages in the lung. Filter samples of bathroom air measured in a portable alpha spectrometer showed an increase in radon-222 progeny, notably polonium-218 and -214, in the air after showering. These increases were gradual and were on the order of 0.5 pCi/l at the highest level. Tap samples measured in a portable liquid scintillator showed that the progeny are present in the water but are not in true secular equilibrium with the radon-222 in the water. Therefore, the radon-222 does not have to decay to produce progeny since the progeny are already present in the water. A two stage sampler was used to examine the percentage of radiation available in aerosols smaller than 7 microns. Repeated trials showed that up to 85% of the radiation available in the aerosols is contained in the smaller, more respirable particles.

  5. Arterial Stiffness, Oxidative Stress, and Smoke Exposure in Wildland Firefighters

    PubMed Central

    Gaughan, Denise M.; Siegel, Paul D.; Hughes, Michael D.; Chang, Chiung-Yu; Law, Brandon F.; Campbell, Corey R.; Richards, Jennifer C.; Kales, Stefanos F.; Chertok, Marcia; Kobzik, Lester; Nguyen, Phuongson; O’Donnell, Carl R.; Kiefer, Max; Wagner, Gregory R.; Christiani, David C.

    2015-01-01

    Objectives To assess the association between exposure, oxidative stress, symptoms, and cardiorespiratory function in wildland firefighters. Methods We studied two Interagency Hotshot Crews with questionnaires, pulse wave analysis for arterial stiffness, spirometry, urinary 8-iso-prostaglandin F2α (8-isoprostane) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), and the smoke exposure marker (urinary levoglucosan). Arterial stiffness was assessed by examining levels of the aortic augmentation index, expressed as a percentage. An oxidative stress score comprising the average of z-scores created for 8-OHdG and 8-isoprostane was calculated. Results Mean augmentation index % was higher for participants with higher oxidative stress scores after adjusting for smoking status. Specifically for every one unit increase in oxidative stress score the augmentation index % increased 10.5% (95% CI: 2.5, 18.5%). Higher mean lower respiratory symptom score was associated with lower percent predicted forced expiratory volume in one second/forced vital capacity. Conclusions Biomarkers of oxidative stress may serve as indicators of arterial stiffness in wildland firefighters. PMID:24909863

  6. ESTIMATED RATE OF FATAL AUTOMOBILE ACCIDENTS ATTRIBUTABLE TO ACUTE SOLVENT EXPOSURE AT LOW INHALED CONCENTRATIONS

    EPA Science Inventory

    Acute solvent exposures may contribute to automobile accidents because they increase reaction time and decrease attention, in addition to impairing other behaviors. These effects resemble those of ethanol consumption, both with respect to behavioral effects and neurological mecha...

  7. Acute and Chronic Plasma Metabolomic and Liver Transcriptomic Stress Effects in a Mouse Model with Features of Post-Traumatic Stress Disorder

    PubMed Central

    Gautam, Aarti; D’Arpa, Peter; Donohue, Duncan E.; Muhie, Seid; Chakraborty, Nabarun; Luke, Brian T.; Grapov, Dmitry; Carroll, Erica E.; Meyerhoff, James L.; Hammamieh, Rasha; Jett, Marti

    2015-01-01

    Acute responses to intense stressors can give rise to post-traumatic stress disorder (PTSD). PTSD diagnostic criteria include trauma exposure history and self-reported symptoms. Individuals who meet PTSD diagnostic criteria often meet criteria for additional psychiatric diagnoses. Biomarkers promise to contribute to reliable phenotypes of PTSD and comorbidities by linking biological system alterations to behavioral symptoms. Here we have analyzed unbiased plasma metabolomics and other stress effects in a mouse model with behavioral features of PTSD. In this model, C57BL/6 mice are repeatedly exposed to a trained aggressor mouse (albino SJL) using a modified, resident-intruder, social defeat paradigm. Our recent studies using this model found that aggressor-exposed mice exhibited acute stress effects including changed behaviors, body weight gain, increased body temperature, as well as inflammatory and fibrotic histopathologies and transcriptomic changes of heart tissue. Some of these acute stress effects persisted, reminiscent of PTSD. Here we report elevated proteins in plasma that function in inflammation and responses to oxidative stress and damaged tissue at 24 hrs post-stressor. Additionally at this acute time point, transcriptomic analysis indicated liver inflammation. The unbiased metabolomics analysis showed altered metabolites in plasma at 24 hrs that only partially normalized toward control levels after stress-withdrawal for 1.5 or 4 wks. In particular, gut-derived metabolites were altered at 24 hrs post-stressor and remained altered up to 4 wks after stress-withdrawal. Also at the 4 wk time point, hyperlipidemia and suppressed metabolites of amino acids and carbohydrates in plasma coincided with transcriptomic indicators of altered liver metabolism (activated xenobiotic and lipid metabolism). Collectively, these system-wide sequelae to repeated intense stress suggest that the simultaneous perturbed functioning of multiple organ systems (e.g., brain, heart

  8. Susceptibility to ozone-induced inflammation. II. Separate loci control responses to acute and subacute exposures

    SciTech Connect

    Kleeberger, S.R.; Levitt, R.C.; Zhang, L.Y. )

    1993-01-01

    We demonstrated previously that inbred strains of mice are differentially susceptible to acute (3 h) and subacute (48 h) exposures to 2 parts per million (ppm) ozone (O3) and 0.30 ppm O3, respectively. Genetic studies with O3-resistant C3H/HeJ and O3-susceptible C57BL/6J strains have indicated that susceptibility to each of these O3 exposures is under Mendelian (single gene) control. In the present study, we hypothesized that the same gene controls susceptibility to the airway inflammatory responses to 2 ppm and 0.30 ppm O3 exposures. To test this hypothesis, airway inflammation was induced in 10 BXH and 16 BXD recombinant inbred (RI) strains of mice by acute as well as subacute O3 exposures. Airway inflammation was assessed by counting the number of polymorphonuclear leukocytes (PMNs) in bronchoalveolar lavage (BAL) returns obtained immediately after 48-h subacute exposure to 0.30 ppm O3, or 6 h after 3 h acute exposure to 2 ppm O3. Each RI strain was classified as susceptible or resistant to each exposure, based on a comparison of mean numbers of PMNs with those of the respective progenitor strains. For each RI set, a phenotypic strain distribution pattern (SDP) was thus derived for each exposure regimen, and the SDPs were then compared for concordance. Among the BXH RI strains, 4 of 10 responded discordantly to the two exposures: 3 were susceptible to acute exposure and resistant to subacute exposure, whereas 1 was conversely susceptible. Among the BXD RI strains, 4 of 16 were discordant: 1 was susceptible to acute exposure, and resistant to subacute exposure, whereas 3 were conversely susceptible.

  9. Chronic Cocaine Exposure During Pregnancy Increases Postpartum Neuroendocrine Stress Responses

    PubMed Central

    Williams, Sarah K.; Barber, John S.; Jamieson-Drake, Abigail W.; Enns, Jordan A.; Townsend, Leah B.; Walker, Cheryl H.; Johns, Josephine M.

    2012-01-01

    The cycle of chronic cocaine (CC) use and withdrawal results in increased anxiety, depression and disrupted stress-responsiveness. Oxytocin and corticosterone (CORT) interact to mediate hormonal stress responses and can be altered by cocaine use. These neuroendocrine signals play important regulatory roles in a variety of social behaviours, specifically during the postpartum period, and are sensitive to disruption by CC exposure in both clinical settings and preclinical models. To determine whether CC exposure during pregnancy affected behavioural and hormonal stress response in the early postpartum period in a rodent model, Sprague-Dawley rats were administered cocaine daily (30 mg/kg) throughout gestation (days 1–20). Open field test (OFT) and forced swim test (FST) behaviours were measured on postpartum day 5. Plasma CORT concentrations were measured prior to and following testing throughout the test day, while plasma and brain oxytocin concentrations were measured post-testing only. Results indicated increased CORT response following the OFT in CC-treated dams (p≤ 0.05). CC-treated dams also exhibited altered FST behaviour (p≤ 0.05), suggesting abnormal stress responsiveness. Peripheral, but not central, oxytocin levels were increased by cocaine treatment (p≤ 0.05). Peripheral oxytocin and CORT increased following the FST regardless of treatment condition (p≤ 0.05). Changes in stress-responsiveness, both behaviourally and hormonally may underlie some deficits in maternal behaviour, thus a clearer understanding of CC’s effect on the stress response system may potentially lead to treatment interventions which could be relevant to clinical populations. Additionally, these results indicate that CC treatment can have long-lasting effects on peripheral oxytocin regulation in rats, similar to changes observed in persistent social behaviour and stress-response deficits in clinical populations. PMID:22309318

  10. Oxidative stress and lung pathology following geogenic dust exposure.

    PubMed

    Leetham, M; DeWitt, J; Buck, B; Goossens, D; Teng, Y; Pollard, J; McLaurin, B; Gerads, R; Keil, D

    2016-10-01

    This study was designed to evaluate markers of systemic oxidative stress and lung histopathology following subacute exposure to geogenic dust with varying heavy metal content collected from a natural setting prone to wind erosion and used heavily for off-road vehicle recreation. Adult female B6C3F1 mice were exposed to several concentrations of dust collected from seven different types of surfaces at the Nellis Dunes Recreation Area in Clark County, Nevada, designated here as CBN 1-7. Dust representing each of the seven surface types, with an average median diameter of 4.2 μm, was selected and administered via oropharyngeal aspiration to mice at concentrations from 0.01 to 100 mg of dust kg(-1) of body weight. Exposures were given four times spaced a week apart over a 28 day period to mimic a month of weekend exposures. Lung pathology was evaluated while plasma markers of oxidative stress included levels of reactive oxygen and nitrogen species, superoxide dismutase, total antioxidant capacity and total glutathione. Overall, results of these assays to evaluate markers of oxidative stress indicate that no single CBN surface type was able to consistently induce markers of systemic oxidative stress at a particular dose or in a dose-response manner. All surface types were able to induce some level of lung inflammation, typically at the highest exposure levels. These data suggest that dust from the Nellis Dunes Recreation Area may present a potential health risk, but additional studies are necessary to characterize the full extent of health risks to humans. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26922875

  11. Oxidative stress and lung pathology following geogenic dust exposure.

    PubMed

    Leetham, M; DeWitt, J; Buck, B; Goossens, D; Teng, Y; Pollard, J; McLaurin, B; Gerads, R; Keil, D

    2016-10-01

    This study was designed to evaluate markers of systemic oxidative stress and lung histopathology following subacute exposure to geogenic dust with varying heavy metal content collected from a natural setting prone to wind erosion and used heavily for off-road vehicle recreation. Adult female B6C3F1 mice were exposed to several concentrations of dust collected from seven different types of surfaces at the Nellis Dunes Recreation Area in Clark County, Nevada, designated here as CBN 1-7. Dust representing each of the seven surface types, with an average median diameter of 4.2 μm, was selected and administered via oropharyngeal aspiration to mice at concentrations from 0.01 to 100 mg of dust kg(-1) of body weight. Exposures were given four times spaced a week apart over a 28 day period to mimic a month of weekend exposures. Lung pathology was evaluated while plasma markers of oxidative stress included levels of reactive oxygen and nitrogen species, superoxide dismutase, total antioxidant capacity and total glutathione. Overall, results of these assays to evaluate markers of oxidative stress indicate that no single CBN surface type was able to consistently induce markers of systemic oxidative stress at a particular dose or in a dose-response manner. All surface types were able to induce some level of lung inflammation, typically at the highest exposure levels. These data suggest that dust from the Nellis Dunes Recreation Area may present a potential health risk, but additional studies are necessary to characterize the full extent of health risks to humans. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Effects of stress, acute alcohol treatment, or both on pre-pulse inhibition in high- and low-alcohol preferring mice.

    PubMed

    Powers, M S; Chester, J A

    2014-03-01

    Pre-pulse inhibition of the acoustic startle reflex (PPI) is a measure of sensorimotor gating frequently used to assess information processing in both humans and rodents. Both alcohol and stress exposure can modulate PPI, making it possible to assess how stress and alcohol interact to influence information processing. Humans with an increased genetic risk for alcoholism are more reactive to stressful situations compared to those without a family history, and alcohol may have stress-dampening effects for those with high genetic risk. The purpose of the present study was to examine the effects of stress, acute alcohol exposure, or both on PPI in male and female mice selectively bred for high- (HAP2) and low- (LAP2) alcohol preference. Experiment 1 assessed the effects of various doses of acute alcohol on PPI. Experiments 2 and 3 assessed the effect of 10 days of restraint stress on subsequent PPI tested at 30 min (Experiment 2) or 24 h (Experiment 3) following the termination of stress exposure. Experiment 3 also examined the effects of acute alcohol treatment (0.75 g/kg) on PPI in mice previously exposed to stress or no stress. Results indicate that 0.75 and 1.0 g/kg doses of alcohol increased PPI in HAP2 but not LAP2 mice. When PPI was tested 30 min after stress exposure, stressed HAP2 mice showed a trend toward decreased PPI and stressed LAP2 mice showed a trend toward increased PPI. The combination of stress and alcohol treatment did not alter PPI in either line 24 h following the termination of stress exposure, suggesting that alcohol does not ameliorate the effect of stress on PPI. Stressed LAP2 mice had increased basal circulating corticosterone on the final stress exposure day compared to non-stressed LAP2 mice, and no difference was found between stressed and non-stressed HAP2 mice. The results suggest that high genetic risk for alcoholism may be related to increased sensitivity to alcohol and stress effects on PPI, and this sensitivity could signify

  13. Consequences of acclimation on the resistance to acute thermal stress: Proteomic focus on mussels from pristine site.

    PubMed

    Péden, Romain; Rocher, Béatrice; Chan, Philippe; Vaudry, David; Poret, Agnès; Olivier, Stéphanie; Le Foll, Frank; Bultelle, Florence

    2016-10-01

    Climate change constitutes an additional threat for intertidal species that already have to cope with a challenging environment. The present study focuses on the blue mussel Mytilus edulis and aims at investigating the importance of thermal acclimation in heat stress response. Microcosm exposures were performed with mussels submitted to an identical acute thermal stress following two thermal summer acclimations standing for present or future temperature conditions. Gill proteomes were analyzed by 2DE and 96 differentially expressed proteoforms were identified. Our results show that cell integrity appears to be maintained by the rise in molecular protective systems (i.e. Heat Shock Proteins), and by the reallocation of energy production via a switch to anaerobic metabolism and the setting up of alternative energy pathways. Finally, our results indicate that the response of mussels to acute thermal stress is conditioned by the acclimation temperature with an improved response in organisms acclimated to higher temperatures.

  14. Consequences of acclimation on the resistance to acute thermal stress: Proteomic focus on mussels from pristine site.

    PubMed

    Péden, Romain; Rocher, Béatrice; Chan, Philippe; Vaudry, David; Poret, Agnès; Olivier, Stéphanie; Le Foll, Frank; Bultelle, Florence

    2016-10-01

    Climate change constitutes an additional threat for intertidal species that already have to cope with a challenging environment. The present study focuses on the blue mussel Mytilus edulis and aims at investigating the importance of thermal acclimation in heat stress response. Microcosm exposures were performed with mussels submitted to an identical acute thermal stress following two thermal summer acclimations standing for present or future temperature conditions. Gill proteomes were analyzed by 2DE and 96 differentially expressed proteoforms were identified. Our results show that cell integrity appears to be maintained by the rise in molecular protective systems (i.e. Heat Shock Proteins), and by the reallocation of energy production via a switch to anaerobic metabolism and the setting up of alternative energy pathways. Finally, our results indicate that the response of mussels to acute thermal stress is conditioned by the acclimation temperature with an improved response in organisms acclimated to higher temperatures. PMID:26972988

  15. Trait Hostility and Acute Inflammatory Responses to Stress in the Laboratory

    PubMed Central

    Girard, Dominique; Tardif, Jean-Claude; Boisclair Demarble, Julie; D’Antono, Bianca

    2016-01-01

    Hostility has been associated with higher basal levels of inflammation. The present study evaluated the association of hostility with acute stress-induced changes in inflammatory activity. One hundred and ninety-nine healthy men and women, aged 19–64 years, were exposed to a stress protocol involving four interpersonal stressors. Participants completed the Cook-Medley Hostility questionnaire and provided two blood samples for the measurement of inflammatory biomarkers (CRP, Il-6, MPO, TNF-α, MCP-1, Il-8, Il-10, and Il-18), prior to and following exposure to a standardized stress protocol. In univariate analyses, hostility was associated with significantly higher TNF-α, but lower Il-8 and Il-18 values post-stress, though only Il-8 remained significant after controlling for baseline differences. In multivariate analyses, a significant Age by Hostility interaction emerged for Il-6, while sex moderated the relation between hostility and Il-10 reactivity. Following stress, hostility was associated with greater pro-inflammatory Il-6 activity among younger individuals and to decreased anti-inflammatory Il-10 activity in women. Future research is needed to replicate these findings and to evaluate their implication for disease. PMID:27270459

  16. Trait Hostility and Acute Inflammatory Responses to Stress in the Laboratory.

    PubMed

    Girard, Dominique; Tardif, Jean-Claude; Boisclair Demarble, Julie; D'Antono, Bianca

    2016-01-01

    Hostility has been associated with higher basal levels of inflammation. The present study evaluated the association of hostility with acute stress-induced changes in inflammatory activity. One hundred and ninety-nine healthy men and women, aged 19-64 years, were exposed to a stress protocol involving four interpersonal stressors. Participants completed the Cook-Medley Hostility questionnaire and provided two blood samples for the measurement of inflammatory biomarkers (CRP, Il-6, MPO, TNF-α, MCP-1, Il-8, Il-10, and Il-18), prior to and following exposure to a standardized stress protocol. In univariate analyses, hostility was associated with significantly higher TNF-α, but lower Il-8 and Il-18 values post-stress, though only Il-8 remained significant after controlling for baseline differences. In multivariate analyses, a significant Age by Hostility interaction emerged for Il-6, while sex moderated the relation between hostility and Il-10 reactivity. Following stress, hostility was associated with greater pro-inflammatory Il-6 activity among younger individuals and to decreased anti-inflammatory Il-10 activity in women. Future research is needed to replicate these findings and to evaluate their implication for disease. PMID:27270459

  17. Effects of intracisternal administration of cannabidiol on the cardiovascular and behavioral responses to acute restraint stress.

    PubMed

    Granjeiro, Erica M; Gomes, Felipe V; Guimarães, Francisco S; Corrêa, Fernando M A; Resstel, Leonardo B M

    2011-10-01

    Systemic administration of cannabidiol (CBD), a non-psychotomimetic compound from Cannabis sativa, attenuates the cardiovascular and behavioral responses to restraint stress. Although the brain structures related to CBD effects are not entirely known, they could involve brainstem structures responsible for cardiovascular control. Therefore, to investigate this possibility the present study verified the effects of CBD (15, 30 and 60 nmol) injected into the cisterna magna on the autonomic and behavioral changes induced by acute restraint stress. During exposure to restraint stress (1h) there was a significant increase in mean arterial pressure (MAP) and heart rate (HR). Also, 24h later the animals showed a decreased percentage of entries onto the open arms of the elevated plus-maze. These effects were attenuated by CBD (30 nmol). The drug had no effect on MAP and HR baseline values. These results indicate that intracisternal administration of CBD can attenuate autonomic responses to stress. However, since CBD decreased the anxiogenic consequences of restraint stress, it is possible that the drug is also acting on forebrain structures. PMID:21771609

  18. Acute lung injury following exposure to nitric acid

    PubMed Central

    Jayalakshmi, T. K.; Shah, Samir; Lobo, Ivona; Uppe, Abhay; Mehta, Ankur

    2009-01-01

    We present a series of three cases of survival following inhalation of nitric acid fumes, which resulted in acute respiratory distress. Inhalation of nitric acid fumes and its decomposition gases such as nitrogen dioxide results in delayed onset of acute respiratory distress syndrome. Intensive respiratory management, ventilatory support, and steroids can help in survival. PMID:20532002

  19. Exposure to Stressful Environments: Strategy of Adaptive Responses

    NASA Technical Reports Server (NTRS)

    Farhi, Leon E.

    1991-01-01

    Any new natural environment may generate a number of stresses (such as hypoxia, water lack, and heat exposure), each of which can produce strains in more than a single organ system. Every strain may in turn stimulate the body to adapt in multiple ways. Nevertheless, a general strategy of the various adaptive responses emerges when the challenges are divided into three groups. The first category includes conditions that affect the supply of essential molecules, while the second is made up by those stresses that prevent the body from regulating properly the output of waste products, such as CO2 and heat. In both classes, there is a small number of responses, similar in principle, regardless of the specific situation. The third unit is created by environments that disrupt body transport systems. Problems may arise when there is a conflict between two stresses requiring conflicting adaptive changes. An alternative to adaptation, creation of micro-environment, is often favored by the animal.

  20. Reaction of chickens to graduated length of exposure to stress

    NASA Technical Reports Server (NTRS)

    Nvota, J.; Grom, A.; Faberova, A.

    1980-01-01

    The reactions of 60 day old chickens Arbor Acres 60 X Vantress to immobilization stress lasting 1/2, 1, 2, 4 hours and to application of ACTH, manifested by activity changes in the systems hypophysis-adrenal gland and hypophysis-thyroid gland were studied. The highest activity increase in the two neuro-endocrine systems of the chickens was found to occur after 1/2 hour exposure to stress. With prolonged stress the responses weakened and after 4 hours most of the values gradually regressed to their initial level. The responses of both systems were synchronized. Reactions of the chickens differed from those of laboratory rats in which an increased activity of the hypophysis-adrenal gland system coincided with attenuation of the hypophysis-thyroid gland system.

  1. Impairments of spatial working memory and attention following acute psychosocial stress.

    PubMed

    Olver, James S; Pinney, Myra; Maruff, Paul; Norman, Trevor R

    2015-04-01

    Few studies have investigated the effect of an acute psychosocial stress paradigm on impaired attention and working memory in humans. Further, the duration of any stress-related cognitive impairment remains unclear. The aim of this study was to examine the effect of an acute psychosocial stress paradigm, the Trier Social Stress, on cognitive function in healthy volunteers. Twenty-three healthy male and female subjects were exposed to an acute psychosocial stress task. Physiological measures (salivary cortisol, heart rate and blood pressure) and subjective stress ratings were measured at baseline, in anticipation of stress, immediately post-stress and after a period of rest. A neuropsychological test battery including spatial working memory and verbal memory was administered at each time point. Acute psychosocial stress produced significant increases in cardiovascular and subjective measures in the anticipatory and post-stress period, which recovered to baseline after rest. Salivary cortisol steadily declined over the testing period. Acute psychosocial stress impaired delayed verbal recall, attention and spatial working memory. Attention remained impaired, and delayed verbal recall continued to decline after rest. Acute psychosocial stress is associated with an impairment of a broad range of cognitive functions in humans and with prolonged abnormalities in attention and memory.

  2. Prenatal exposure to escitalopram and/or stress in rats produces limited effects on endocrine, behavioral, or gene expression measures in adult male rats

    PubMed Central

    Bourke, Chase H.; Stowe, Zachary N.; Neigh, Gretchen N.; Olson, Darin E.; Owens, Michael J.

    2013-01-01

    Stress and/or antidepressants during pregnancy have been implicated in a wide range of long-term effects in the offspring. We investigated the long-term effects of prenatal stress and/or clinically relevant antidepressant exposure on male adult offspring in a model of the pharmacotherapy of maternal depression. Female Sprague-Dawley rats were implanted with osmotic minipumps that delivered clinically relevant exposure to the antidepressant escitalopram throughout gestation. Subsequently, pregnant females were exposed on gestational days 10–20 to a chronic unpredictable mild stress paradigm. The male offspring were analyzed in adulthood. Baseline physiological measurements were largely unaltered by prenatal manipulations. Behavioral characterization of the male offspring, with or without pre-exposure to an acute stressor, did not reveal any group differences. Prenatal stress exposure resulted in a faster return towards baseline following the peak response to an acute restraint stressor, but not an airpuff startle stressor, in adulthood. Microarray analysis of the hippocampus and hypothalamus comparing all treatment groups revealed no significantly-altered transcripts. Real time PCR of the hippocampus confirmed that several transcripts in the CRFergic, serotonergic, and neural plasticity pathways were unaffected by prenatal exposures. This stress model of maternal depression and its treatment indicate that escitalopram use and/or stress during pregnancy produced no alterations in our measures of male adult behavior or the transcriptome, however prenatal stress exposure resulted in some evidence for increased glucocorticoid negative feedback following an acute restraint stress. Study design should be carefully considered before implications for human health are ascribed to prenatal exposure to stress or antidepressant medication. PMID:23906943

  3. Prenatal exposure to escitalopram and/or stress in rats produces limited effects on endocrine, behavioral, or gene expression measures in adult male rats.

    PubMed

    Bourke, Chase H; Stowe, Zachary N; Neigh, Gretchen N; Olson, Darin E; Owens, Michael J

    2013-01-01

    Stress and/or antidepressants during pregnancy have been implicated in a wide range of long-term effects in the offspring. We investigated the long-term effects of prenatal stress and/or clinically relevant antidepressant exposure on male adult offspring in a model of the pharmacotherapy of maternal depression. Female Sprague-Dawley rats were implanted with osmotic minipumps that delivered clinically relevant exposure to the antidepressant escitalopram throughout gestation. Subsequently, pregnant females were exposed on gestational days 10-20 to a chronic unpredictable mild stress paradigm. The male offspring were analyzed in adulthood. Baseline physiological measurements were largely unaltered by prenatal manipulations. Behavioral characterization of the male offspring, with or without pre-exposure to an acute stressor, did not reveal any group differences. Prenatal stress exposure resulted in a faster return towards baseline following the peak response to an acute restraint stressor, but not an airpuff startle stressor, in adulthood. Microarray analysis of the hippocampus and hypothalamus comparing all treatment groups revealed no significantly-altered transcripts. Real time PCR of the hippocampus confirmed that several transcripts in the CRFergic, serotonergic, and neural plasticity pathways were unaffected by prenatal exposures. This stress model of maternal depression and its treatment indicate that escitalopram use and/or stress during pregnancy produced no alterations in our measures of male adult behavior or the transcriptome, however prenatal stress exposure resulted in some evidence for increased glucocorticoid negative feedback following an acute restraint stress. Study design should be carefully considered before implications for human health are ascribed to prenatal exposure to stress or antidepressant medication. PMID:23906943

  4. Environmental enrichment: the influences of restricted daily exposure and subsequent exposure to uncontrollable stress.

    PubMed

    Widman, D R; Abrahamsen, G C; Rosellini, R A

    1992-02-01

    Environmental enrichment has been proposed to enhance an animal's subsequent ability to learn. While this proposal has received considerable support from experiments involving maze tasks, it has received equivocal support from experiments employing operant and pavlovian tasks. The purpose of the present study is two-fold. The first is to demonstrate that a regimen of restricted daily exposure to environmental enrichment is capable of producing effects similar to those using more standard exposure regimens when compared to the most appropriate control, a group given social exposure. The second is to examine the proposed learning enhancement of environmental enrichment on an operant task both before and following exposure to uncontrollable stress. Uncontrollable stress, as interpreted by learned-helplessness theory, results in the formation of an expectancy of response-reinforcer independence which proactively interferes with the subsequent acquisition of response-outcome associations. It may be possible, then, that environmental enrichment and uncontrollable stress may interact in such a way as to allow the potential learning effects of environmental enrichment to be assessed on an operant task. Rats were exposed to differential environments; one group exposed to an enriched environment and another exposed to a social environment 2 hours daily for 30 days. Each group was then tested on the object-exploration test. Following the acquisition of an appetitive-operant response, a subset of these two groups was exposed to either controllable, uncontrollable, or no stress using parameters known to induce learned helplessness. Animals were then tested on an appetitive-noncontingent test. It was found that, while the enrichment procedure was effective in producing effects on the object-exploration test, environmental enrichment did not modify the acquisition of the operant or the effect produced by uncontrollable stress on the appetitive-noncontingent test.

  5. Reactive nitrogen species contribute to the rapid onset of redox changes induced by acute immobilization stress in rats.

    PubMed

    Chen, Hsiao-Jou Cortina; Spiers, Jereme G; Sernia, Conrad; Anderson, Stephen T; Lavidis, Nickolas A

    2014-12-01

    Acute stress leads to the rapid secretion of glucocorticoids, which accelerates cellular metabolism, resulting in increased reactive oxygen and nitrogen species generation. Although the nitrergic system has been implicated in numerous stress-related diseases, the time course and extent of nitrosative changes during acute stress have not been characterized. Outbred male Wistar rats were randomly allocated into control (n = 9) or 120 min acute immobilization stress (n = 9) groups. Serial blood samples were collected at 0 (baseline), 60, 90, and 120 min. Plasma corticosterone concentrations increased by approximately 350% at 60, 90, and 120 (p < 0.001) min of stress. The production of nitric oxide, measured as the benzotriazole form of 4-amino-5-methylamino-2',7'-difluorofluorescein, increased during stress exposure by approximately 5%, 10%, and 15% at 60 (p < 0.05), 90 (p < 0.01) and 120 (p < 0.001) min, respectively, compared to controls. Nitric oxide metabolism, measured as the stable metabolites nitrite and nitrate, showed a 40-60% increase at 60, 90, and 120 (p < 0.001) min of stress. The oxidative status of 2',7'-dichlorofluorescein in plasma was significantly elevated at 60 (p < 0.01), 90, and 120 (p < 0.001) min. A delayed decrease of approximately 25% in the glutathione redox ratio at 120 min (p < 0.001) also indicates stress-induced cellular oxidative stress. The peroxidation of plasma lipids increased by approximately 10% at 90 (p < 0.05) and 15% at 120 (p < 0.001) min, indicative of oxidative damage. It was concluded that a single episode of stress causes early and marked changes of both oxidative and nitrosative status sufficient to induce oxidative damage in peripheral tissues.

  6. Habituation of hypothalamic-pituitary-adrenocortical axis hormones to repeated homotypic stress and subsequent heterotypic stressor exposure in male and female rats.

    PubMed

    Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge

    2014-05-01

    Understanding potential sex differences in repeated stress-induced hypothalamic-pituitary-adrenocortical (HPA) axis habituation could provide insight into the sex-biased prevalence of certain affective disorders such as anxiety and depression. Therefore in these studies, male and female rats were exposed to 30 min of either audiogenic or restraint stress daily for 10 days in order to determine whether sex regulates the extent to which HPA axis hormone release is attenuated upon repeated homotypic stressor presentation. In response to the initial exposure, both stressors robustly increased plasma concentrations of both adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in both sexes. Acutely, females displayed higher ACTH and CORT concentrations following restraint stress, whereas males exhibited higher hormone concentrations following loud noise stress. HPA axis hormone responses to both stressors decreased incrementally over successive days of exposure to each respective stressor. Despite the differential effect of sex on acute hormone responses, the extent to which HPA axis hormone response was attenuated did not differ between male and female animals following either stressor. Furthermore, ACTH and CORT responses to a novel environment were not affected by prior exposure to stress of either modality in either male or female rats. These experiments demonstrate that despite the acute stress response, male and female rats exhibit similar habituation of HPA axis hormones upon repeated homotypic stressor presentations, and that exposure to repeated stress does not produce exaggerated HPA axis hormone responses to a novel environment in either female or male rats.

  7. Trauma Exposure and Posttraumatic Stress Disorder in the Canadian Military

    PubMed Central

    Brunet, Alain; Monson, Eva; Liu, Aihua; Fikretoglu, Deniz

    2015-01-01

    Objective: To estimate the lifetime prevalence of trauma exposure and posttraumatic stress disorder (PTSD) among a representative, active military sample, and to identify demographic and military variables that modulate rates of trauma exposure as well as PTSD rates and duration. Method: A cross-sectional weighted sample of 5155 regular members and 3957 reservists (n = 8441) of the Canadian Armed Forces (CAF) was face-to-face interviewed using a lay-administered structured interview that generates Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, psychiatric diagnoses. Results: Within this sample, 85.6% reported 1 or more trauma exposure, with a median number of 3 or more exposures. Compared with males, females were less likely (P < 0.05) to be exposed to warlike trauma (adjusted odds ratio [AOR] 0.40), disasters (AOR 0.43), assaultive violence (AOR 0.52), and witnessing trauma (AOR 0.75). However, they were more likely to report sexual assault (AOR 7.36). The lifetime prevalence of PTSD was 6.6% and the conditional rate was 7.7%. Both lifetime and conditional PTSD rates were higher among female soldiers, but lower among the reserve forces, both male and female. Finally, the median duration of PTSD was negatively influenced by younger age of onset, but not influenced by whether the event occurred during deployment. Conclusions: Active members of the CAF report a high degree of trauma exposure but a moderate rate of lifetime PTSD. PMID:26720506

  8. USE OF LETHALITY DATA DURING CATEGORICAL REGRESSION MODELING OF ACUTE REFERENCE EXPOSURES

    EPA Science Inventory

    Categorical regression is being considered by the U.S. EPA as an additional tool for derivation of acute reference exposures (AREs) to be used for human health risk assessment for exposure to inhaled chemicals. Categorical regression is used to calculate probability-response fun...

  9. AGE-RELATED TOXICITY PATHWAY ANALYSIS IN BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    EPA Science Inventory

    The influence of aging on susceptibility to environmental exposures is poorly understood. To investigate-the contribution of different life stages on response to toxicants, we examined the effects of an acute exposure to the volatile organic compound, toluene (0.0 or 1.0 g/kg), i...

  10. ACUTE EXPOSURE TO MOLINATE ALTERS NEUROENDOCRINE CONTROL OF OVULATION IN THE RAT

    EPA Science Inventory

    Molinate, a thiocarbamate herbicide, has been shown previously to impair reproductive capability in the male rat. In a two-generation study, molinate exposure to female rats resulted in altered pregnancy outcome. However, published data is lacking on the effects of acute exposure...

  11. ASSESSING THE IMPORTANCE OF THE BEHAVIORAL EFFECT OF ACUTE EXPOSURE TO TOLUENE IN HUMANS.

    EPA Science Inventory

    There is increasing interest in being able to evaluate potential benefit-cost relationships of controlling exposure to toxic substances. Behavioral effects of acute toluene exposure could be subjected to benefit-cost analysis if it's effects were quantitatively compared to tho...

  12. SOCIAL CONSEQUENCES OF ETHANOL: IMPACT OF AGE, STRESS AND PRIOR HISTORY OF ETHANOL EXPOSURE

    PubMed Central

    Varlinskaya, Elena I.; Spear, Linda P.

    2014-01-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  13. Social consequences of ethanol: Impact of age, stress, and prior history of ethanol exposure.

    PubMed

    Varlinskaya, Elena I; Spear, Linda P

    2015-09-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  14. Acute Stress Symptoms in Children: Results From an International Data Archive

    ERIC Educational Resources Information Center

    Kassam-Adams, Nancy; Palmieri, Patrick A.; Rork, Kristine; Delahanty, Douglas L.; Kenardy, Justin; Kohser, Kristen L.; Landolt, Markus A.; Le Brocque, Robyne; Marsac, Meghan L.; Meiser-Stedman, Richard; Nixon, Reginald D.V.; Bui, Eric; McGrath, Caitlin

    2012-01-01

    Objective: To describe the prevalence of acute stress disorder (ASD) symptoms and to examine proposed "DSM-5" symptom criteria in relation to concurrent functional impairment in children and adolescents. Method: From an international archive, datasets were identified that included assessment of acute traumatic stress reactions and concurrent…

  15. Factor Structure of the Acute Stress Disorder Scale in a Sample of Hurricane Katrina Evacuees

    ERIC Educational Resources Information Center

    Edmondson, Donald; Mills, Mary Alice; Park, Crystal L.

    2010-01-01

    Acute stress disorder (ASD) is a poorly understood and controversial diagnosis (A. G. Harvey & R. A. Bryant, 2002). The present study used confirmatory factor analysis (CFA) to test the factor structure of the most widely used self-report measure of ASD, the Acute Stress Disorder Scale (R. A. Bryant, M. L. Moulds, & R. M. Guthrie, 2000), in a…

  16. Effects of acute electromagnetic fields exposure on the interhemispheric homotopic functional connectivity during resting state.

    PubMed

    Lv, Bin; Shao, Qing; Chen, Zhiye; Ma, Lin; Wu, Tongning

    2015-08-01

    In this paper, we aimed to investigate the possible effects of acute radiofrequency electromagnetic fields (EMF) on the interhemispheric homotopic functional connectivity with resting state functional magnetic resonance imaging (fMRI) technique. We designed a controllable LTE-related EMF exposure environment at 2.573 GHz and performed the 30 min real/sham exposure experiments on human brain under the safety limits. The resting state fMRI signals were collected before and after EMF exposure. Then voxel-mirrored homotopic connectivity method was utilized to evaluate the acute effects of LTE EMF exposure on the homotopic functional connectivity between two human hemispheres. Based on our previous research, we further demonstrated that the 30 min short-term LTE EMF exposure would modulate the interhemispheric homotopic functional connectivity in resting state around the medial frontal gyrus and the paracentral lobule during the real exposure.

  17. Effect of Acute Surgical Stress on Serum Ghrelin Levels

    PubMed Central

    Kontoravdis, Nikolaos; Vassilikostas, George; Lagoudianakis, Emmanuel; Pappas, Apostolos; Seretis, Charalampos; Panagiotopoulos, Nikolaos; Koronakis, Nikolaos; Chrysikos, John; Karanikas, George; Manouras, Ioannis; Legakis, Ioanis; Voros, Dionysios

    2012-01-01

    Background Ghrelin is an appetite hormone that influences the gastrointestinal function and regulates energy metabolism. Growing evidence also suggests that this hormone plays a central role in immune modulation. Each surgical operation is followed by a series of inflammatory and metabolic changes that constitute the stress response. The aim of our study is to evaluate the effect of stress during different types of abdominal surgery in ghrelin serum levels. Methods An overall of 25 patients were prospectively allocated in two groups based on the type of surgical operation. Group A (n = 10) patients were scheduled to undergo cholecystectomy, whereas Group B (n = 15) patients underwent colectomy. Serum ghrelin concentrations were evaluated in each patient preoperatively, after the induction of general anesthesia and tracheal intubation, one and five hours after the beginning of surgery and the morning of the first and second postoperative day. Results In both groups serum ghrelin concentrations reached their peak level at 24 hr (Group A: 8.4 ± 3.4 ng/mL; Group B: 7.4 ± 1.8 ng/mL) and these values were significantly higher than those in the preoperative period (Group A: 5.0 ±1.5 ng/mL; Group B: 4.8 ± 0.6 ng/mL) (P < 0.05). Forty eight hours after surgery the levels of ghrelin returned to their preoperative status. Patients’ gender, age, ASA score and type of surgical procedure did not influence the serum ghrelin levels. Conclusions Serum ghrelin concentration appears to elevate in response to surgical stress. Future studies are needed to improve comprehension of the mechanisms underlying responses of this hormone to acute surgical stress and to evaluate their possible clinical implications.

  18. Glutamate NMDA receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure

    PubMed Central

    Li, Nanxin; Liu, Rong-Jian; Dwyer, Jason M.; Banasr, Mounira; Lee, Boyoung; Son, Hyeon; Li, Xiao-Yuan; Aghajanian, George; Duman, Ronald S.

    2011-01-01

    Background Despite widely reported clinical and preclinical studies of rapid antidepressant actions of glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonists, there has been very little work examining the effects of these drugs in stress models of depression that require chronic administration of antidepressants, or the molecular mechanisms that could account for the rapid responses. Methods We used a rat 21-day chronic unpredictable stress (CUS) model to test the rapid actions of NMDA receptor antagonists on depressant-like behavior, neurochemistry, and spine density and synaptic function of prefrontal cortex (PFC) neurons. Results The results demonstrate that acute treatment with the non-competitive NMDA channel blocker ketamine or the selective NR2B antagonist Ro 25-6981 rapidly ameliorates CUS-induced anhedonia and anxiogenic behaviors. We also find that CUS exposure decreases the expression levels of synaptic proteins and spine number and the frequency/amplitude of synaptic currents (EPSCs) in layer V pyramidal neurons in the PFC, and that these deficits are rapidly reversed by ketamine. Blockade of the mammalian target of rapamycin (mTOR) protein synthesis cascade abolishes both the behavioral and biochemical effects of ketamine. Conclusions The results indicate that the structural and functional deficits resulting from long-term stress exposure, which could contribute to the pathophysiology of depression, are rapidly reversed by NMDA receptor antagonists in an mTOR-dependent manner. PMID:21292242

  19. Microemboli alter the acute stress response and cause prolonged expression of MCP-1 in the hippocampus.

    PubMed

    Nemeth, Christina L; Neigh, Gretchen N

    2015-04-01

    Microvascular ischemia is linked to cardiovascular disease pathology, as well as alterations in mood and cognition. Ischemia activates the hypothalamic-pituitary-adrenal (HPA) axis and through chronic activation, alters HPA axis function. Dysregulation of the HPA axis can lead to the chronic release of glucocorticoids, a hyper-inflammatory cerebral response, cell damage, and changes in behavior. Although the interactions between injury and HPA axis activity have been established in global ischemia, HPA-related repercussions of diffuse ischemic damage and subsequent inflammation have not been assessed. The current study used a rat model of microsphere embolism (ME) ischemia to test the hypothesis that microvascular ischemia would lead to long term alterations in HPA axis function and inflammatory activity. Furthermore, given the pro-inflammatory nature of chronic stress, we assessed the implications of chronic stress for gene expression of inflammatory factors and key components of the glucocorticoid receptor response, following microvascular ischemia. Results indicated that ME altered the response to an acute stress fourteen days following ME injury and increased hippocampal expression of monocyte chemoattractant protein 1 (Mcp-1) as long as 4 weeks following ME injury, without concomitant effects on gene expression of the glucocorticoid receptor or its co-chaperones. Furthermore, no exacerbative effects of chronic stress exposure were observed following ME injury beyond the effects of ME injury alone. Together, these results indicate that ME injury is sufficient to alter both HPA axis activity and cerebral inflammation for a prolonged period of time following injury.

  20. Acute stress disorder in hospitalised victims of 26/11-terror attack on Mumbai, India.

    PubMed

    Balasinorwala, Vanshree Patil; Shah, Nilesh

    2010-11-01

    The 26/11 terror attacks on Mumbai have been internationally denounced. Acute stress disorder is common in victims of terror. To find out the prevalence and to correlate acute stress disorder, 70 hospitalised victims of terror were assessed for presence of the same using DSM-IV TR criteria. Demographic data and clinical variables were also collected. Acute stress disorder was found in 30% patients. On demographic profile and severity of injury, there were some interesting observations and differences between the victims who developed acute stress disorder and those who did not; though none of the differences reached the level of statistical significance. This study documents the occurrence of acute stress disorder in the victims of 26/11 terror attack.

  1. Acute exercise stress reveals cerebrovascular benefits associated with moderate gains in cardiorespiratory fitness.

    PubMed

    Brugniaux, Julien V; Marley, Christopher J; Hodson, Danielle A; New, Karl J; Bailey, Damian M

    2014-12-01

    Elevated cardiorespiratory fitness improves resting cerebral perfusion, although to what extent this is further amplified during acute exposure to exercise stress and the corresponding implications for cerebral oxygenation remain unknown. To examine this, we recruited 12 moderately active and 12 sedentary healthy males. Middle cerebral artery blood velocity (MCAv) and prefrontal cortical oxyhemoglobin (cO(2)Hb) concentration were monitored continuously at rest and throughout an incremental cycling test to exhaustion. Despite a subtle elevation in the maximal oxygen uptake (active: 52±9 ml/kg per minute versus sedentary: 33±5 ml/kg per minute, P<0.05), resting MCAv was not different between groups. However, more marked increases in both MCAv (+28±13% versus +18±6%, P<0.05) and cO(2)Hb (+5±4% versus -2±3%, P<0.05) were observed in the active group during the transition from low- to moderate-intensity exercise. Collectively, these findings indicate that the long-term benefits associated with moderate increase in physical activity are not observed in the resting state and only become apparent when the cerebrovasculature is challenged by acute exertional stress. This has important clinical implications when assessing the true extent of cerebrovascular adaptation. PMID:25269518

  2. An enriched environment reduces the stress level and locomotor activity induced by acute morphine treatment and by saline after chronic morphine treatment in mice.

    PubMed

    Xu, Jia; Sun, Jinling; Xue, Zhaoxia; Li, Xinwang

    2014-06-18

    This study investigated the relationships among an enriched environment, stress levels, and drug addiction. Mice were divided randomly into four treatment groups (n=12 each): enriched environment without restraint stress (EN), standard environment without restraint stress (SN), enriched environment with restraint stress (ES), and standard environment with restraint stress (SS). Mice were reared in the respective environment for 45 days. Then, the ES and SS groups were subjected to restraint stress daily (2 h/day) for 14 days, whereas the EN and SN groups were not subjected to restraint stress during this stage. The stress levels of all mice were tested in the elevated plus maze immediately after exposure to restraint stress. After the 2-week stress testing period, mice were administered acute or chronic morphine (5 mg/kg) treatment for 7 days. Then, after a 7-day withdrawal period, the mice were injected with saline (1 ml/kg) or morphine (5 mg/kg) daily for 2 days to observe locomotor activity. The results indicated that the enriched environment reduced the stress and locomotor activity induced by acute morphine administration or saline after chronic morphine treatment. However, the enriched environment did not significantly inhibit locomotor activity induced by morphine challenge. In addition, the stress level did not mediate the effect of the enriched environment on drug-induced locomotor activity after acute or chronic morphine treatment.

  3. Infectious Disease risks associated with exposure to stressful environments

    NASA Technical Reports Server (NTRS)

    Meehan, Ichard T.; Smith, Morey; Sams, Clarence

    1993-01-01

    Multiple environmental factors asociated with space flight can increase the risk of infectious illness among crewmembers thereby adversely affecting crew health and mission success. Host defences can be impaired by multiple physiological and psychological stressors including: sleep deprivation, disrupted circadian rhythms, separation from family, perceived danger, radiation exposure, and possibly also by the direct and indirect effects of microgravity. Relevant human immunological data from isolated or stressful environments including spaceflight will be reviewed. Long-duration missions should include reliable hardware which supports sophisticated immunodiagnostic capabilities. Future advances in immunology and molecular biology will continue to provide therapeutic agents and biologic response modifiers which should effectively and selectively restore immune function which has been depressed by exposure to environmental stressors.

  4. Neuropsychological and stress evaluation of a residential mercury exposure.

    PubMed Central

    Fiedler, N; Udasin, I; Gochfeld, M; Buckler, G; Kelly-McNeil, K; Kipen, H

    1999-01-01

    Residents of a former factory building converted to apartments were exposed to mercury over a 2-year period. The neurobehavioral and emotional health effects of this exposure and subsequent evacuation are presented. Urine mercury levels were measured before (urine1) and 3-10 weeks after evacuation (urine2) of the building, when neurobehavioral and psychological measures were also completed. Performance on neurobehavioral and psychologic measures were compared between subjects above and below the median for urine1 (>=19 microg/g creatinine) and were correlated with urine1 mercury levels. The high urine mercury group made more errors on a test of fine motor function and 84% of the residents reported clinically significant elevations in somatic and psychologic symptoms. Although subclinical tremor from mercury exposure may have affected subtle hand-eye coordination, other tests of motor function were not affected. Therefore, the observation of reduced hand-eye coordination may be due to chance. Significant levels of psychosocial stress were more closely associated with the evacuation necessitated by mercury exposure rather than a direct effect of mercury exposure. PMID:10210689

  5. Computer Models of Stress, Allostasis, and Acute and Chronic Diseases

    PubMed Central

    Goldstein, David S.

    2009-01-01

    The past century has seen a profound shift in diseases of humankind. Acute, unifactorial diseases are being replaced increasingly by multifactorial disorders that arise from complex interactions among genes, environment, concurrent morbidities and treatments, and time. According to the concept of allostasis, there is no single, ideal set of steady-state conditions in life. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators “homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of a home temperature control system, the temperature can be maintained at any of a variety of levels (allostatic states) by multiple means (effectors), regulated by a comparator thermostat (homeostat). Stress might exert adverse health consequences via allostatic load. This presentation describes models of homeostatic systems that incorporate negative feedback regulation, multiple effectors, effector sharing, environmental influences, intrinsic obsolescence, and destabilizing positive feedback loops. These models can be used to predict effects of environmental and genetic alterations on allostatic load and therefore on the development of multi-system disorders and failures. PMID:19120114

  6. Oxidative status in testis and epididymal sperm parameters after acute and chronic stress by cold-water immersion in the adult rat.

    PubMed

    García-Díaz, Erika Cecilia; Gómez-Quiroz, Luis Enrique; Arenas-Ríos, Edith; Aragón-Martínez, Andrés; Ibarra-Arias, Juan Antonio; del Socorro I Retana-Márquez, María

    2015-06-01

    Stress is associated with detrimental effects on male reproductive function. It is known that stress increases reactive oxygen species (ROS) generation in the male reproductive tract. High ROS levels may be linked to low sperm quality and male infertility. However, it is still not clear if ROS are generated by stress in the testis. The objective of this study was to characterize the role of oxidative stress induced by cold-water immersion stress in the testis of adult male rats and its relation with alterations in cauda epididymal sperm. Adult male rats were exposed to acute stress or chronic stress by cold-water immersion. Rats were sacrificed at 0, 6, 12, and 24 hours immediately following acute stress exposure, and after 20, 40, and 50 days of chronic stress. ROS production increased only at 6 hours post-stress, while the activity and expression of antioxidant enzymes, lipid peroxidation (LPO), and sperm parameters were not modified in the testis. Corticosterone increased immediately after acute stress, whereas testosterone was not modified. After chronic stress, testicular absolute weight decreased; in addition, ROS production and LPO increased at 20, 40, and 50 days. The activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) decreased throughout the duration of chronic stress and the activity of catalase (CAT) decreased at 40 and 50 days, and increased at 20 days. The expression of copper/zinc superoxide dismutase (SOD1) and CAT were not modified, but the expression of phospholipid hydroperoxide glutathione peroxidase (GPx-4) decreased at 20 days. Motility, viability, and sperm count decreased, while abnormal sperm increased with chronic stress. These results suggest that during acute stress there is a redox state regulation in the testis since no deleterious effect was observed. In contrast, equilibrium redox is lost during chronic stress, with low enzyme activity but without modifying their expression. In addition, corticosterone increased

  7. Oxidative status in testis and epididymal sperm parameters after acute and chronic stress by cold-water immersion in the adult rat.

    PubMed

    García-Díaz, Erika Cecilia; Gómez-Quiroz, Luis Enrique; Arenas-Ríos, Edith; Aragón-Martínez, Andrés; Ibarra-Arias, Juan Antonio; del Socorro I Retana-Márquez, María

    2015-06-01

    Stress is associated with detrimental effects on male reproductive function. It is known that stress increases reactive oxygen species (ROS) generation in the male reproductive tract. High ROS levels may be linked to low sperm quality and male infertility. However, it is still not clear if ROS are generated by stress in the testis. The objective of this study was to characterize the role of oxidative stress induced by cold-water immersion stress in the testis of adult male rats and its relation with alterations in cauda epididymal sperm. Adult male rats were exposed to acute stress or chronic stress by cold-water immersion. Rats were sacrificed at 0, 6, 12, and 24 hours immediately following acute stress exposure, and after 20, 40, and 50 days of chronic stress. ROS production increased only at 6 hours post-stress, while the activity and expression of antioxidant enzymes, lipid peroxidation (LPO), and sperm parameters were not modified in the testis. Corticosterone increased immediately after acute stress, whereas testosterone was not modified. After chronic stress, testicular absolute weight decreased; in addition, ROS production and LPO increased at 20, 40, and 50 days. The activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) decreased throughout the duration of chronic stress and the activity of catalase (CAT) decreased at 40 and 50 days, and increased at 20 days. The expression of copper/zinc superoxide dismutase (SOD1) and CAT were not modified, but the expression of phospholipid hydroperoxide glutathione peroxidase (GPx-4) decreased at 20 days. Motility, viability, and sperm count decreased, while abnormal sperm increased with chronic stress. These results suggest that during acute stress there is a redox state regulation in the testis since no deleterious effect was observed. In contrast, equilibrium redox is lost during chronic stress, with low enzyme activity but without modifying their expression. In addition, corticosterone increased

  8. Influence of low level maternal Pb exposure and prenatal stress on offspring stress challenge responsivity.

    PubMed

    Virgolini, M B; Rossi-George, A; Weston, D; Cory-Slechta, D A

    2008-11-01

    We previously demonstrated potentiated effects of maternal Pb exposure producing blood Pb(PbB) levels averaging 39microg/dl combined with prenatal restraint stress (PS) on stress challenge responsivity of female offspring as adults. The present study sought to determine if: (1) such interactions occurred at lower PbBs, (2) exhibited gender specificity, and (3) corticosterone and neurochemical changes contributed to behavioral outcomes. Rat dams were exposed to 0, 50 or 150ppm Pb acetate drinking water solutions from 2 mos prior to breeding through lactation (pup exposure ended at weaning; mean PbBs of dams at weaning were <1, 11 and 31microg/dl, respectively); a subset in each Pb group underwent prenatal restraint stress (PS) on gestational days 16-17. The effects of variable intermittent stress challenge (restraint, cold, novelty) on Fixed Interval (FI) schedule controlled behavior and corticosterone were examined in offspring when they were adults. Corticosterone changes were also measured in non-behaviorally tested (NFI) littermates. PS alone was associated with FI rate suppression in females and FI rate enhancement in males; Pb exposure blunted these effects in both genders, particularly following restraint stress. PS alone produced modest corticosterone elevation following restraint stress in adult females, but robust enhancements in males following all challenges. Pb exposure blunted these corticosterone changes in females, but further enhanced levels in males. Pb-associated changes showed linear concentration dependence in females, but non-linearity in males, with stronger or selective changes at 50ppm. Statistically, FI performance was associated with corticosterone changes in females, but with frontal cortical dopaminergic and serotonergic changes in males. Corticosterone changes differed markedly in FI vs. NFI groups in both genders, demonstrating a critical role for behavioral history and raising caution about extrapolating biochemical markers across

  9. Effects of Acute Stress on Decision Making under Ambiguous and Risky Conditions in Healthy Young Men.

    PubMed

    Cano-López, Irene; Cano-López, Beatriz; Hidalgo, Vanesa; González-Bono, Esperanza

    2016-01-01

    Acute stress and decision making (DM) interact in life - although little is known about the role of ambiguity and risk in this interaction. The aim of this study is to clarify the effect of acute stress on DM under various conditions. Thirty-one young healthy men were randomly distributed into two groups: experimental and control. DM processes were evaluated before and after an experimental session. For the experimental group, the session consisted of an acute stress battery; and the protocol was similar for the control group but the instructions were designed to minimize acute stress. Cardiovascular variables were continuously recorded 30 minutes before the DM tasks and during the experimental session. Cortisol, glucose, mood responses, and personality factors were also assessed. Acute stress was found to enhance disadvantageous decisions under ambiguous conditions (F(1, 29) = 4.16, p = .05, η2 p = .13), and this was mainly explained by the stress induced cortisol response (26.1% of variance, F(1, 30) = 11.59, p = .002). While there were no significant effects under risky conditions, inhibition responses differed between groups (F(1, 29) = 4.21, p = .05, η2 p = .13) and these differences were explained by cardiovascular and psychological responses (39.1% of variance, F(3, 30) = 7.42, p < .001). Results suggest that DM tasks could compete with cognitive resources after acute stress and could have implications for intervention in acute stress effects on DM in contexts such as addiction or eating disorders. PMID:27644414

  10. Novel Roles for Protein Kinase Cδ-dependent Signaling Pathways in Acute Hypoxic Stress-induced Autophagy*S⃞

    PubMed Central

    Chen, Jo-Lin; Lin, Her H.; Kim, Kwang-Jin; Lin, Anning; Forman, Henry J.; Ann, David K.

    2008-01-01

    Macroautophagy, a tightly orchestrated intracellular process for bulk degradation of cytoplasmic proteins or organelles, is believed to be essential for cell survival or death in response to stress conditions. Recent observations indicate that autophagy is an adaptive response in cells subjected to prolonged hypoxia. However, the signaling mechanisms that activate autophagy under acute hypoxic stress are not clearly understood. In this study, we show that acute hypoxic stress by treatment with 1% O2 or desferroxamine, a hypoxia-mimetic agent, of cells renders a rapid induction of LC3-II level changes and green fluorescent protein-LC3 puncta accumulation, hallmarks of autophagic processing, and that this process involves protein kinase Cδ (PKCδ), and occurs prior to the induction of BNIP3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3). Interestingly, hypoxic stress leads to a rapid and transient activation of JNK in Pa-4 or mouse embryo fibroblast cells. Acute hypoxic stress-induced changes in LC3-II level and JNK activation are attenuated in Pa-4 cells by dominant negative PKCδKD or in mouse embryo fibroblast/PKCδ-null cells. Intriguingly, the requirement of PKCδ is not apparent for starvation-induced autophagy. The importance of PKCδ in hypoxic stress-induced adaptive responses is further supported by our findings that inhibition of PKCδ-facilitated autophagy by 3-methyladenine or Atg5 knock-out renders a greater prevalence of cell death following prolonged desferroxamine treatment, whereas PKCδ- or JNK1-deficient cells exhibit resistance to extended hypoxic exposure. These results uncover dual roles of PKCδ-dependent signaling in the cell fate determination upon hypoxic exposure. PMID:18836180

  11. Acute expanded perlite exposure with persistent reactive airway dysfunction syndrome.

    PubMed

    Du, Chung-Li; Wang, Jung-Der; Chu, Po-Chin; Guo, Yue-Liang Leon

    2010-01-01

    Expanded perlite has been assumed as simple nuisance, however during an accidental spill out in Taiwan, among 24 exposed workers followed for more than 6 months, three developed persisted respiratory symptoms and positive provocation tests were compatible with reactive airway dysfunction syndrome. During simulation experiment expanded perlite is shown to be very dusty and greatly exceed current exposure permission level. Review of literature and evidence, though exposure of expanded perlite below permission level may be generally safe, precautionary protection of short term heavy exposure is warranted.

  12. Acute Neuroactive Drug Exposures alter Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially,...

  13. Acute stress disorder as a predictor of posttraumatic stress: A longitudinal study of Chinese children exposed to the Lushan earthquake.

    PubMed

    Zhou, Peiling; Zhang, Yuqing; Wei, Chuguang; Liu, Zhengkui; Hannak, Walter

    2016-09-01

    This study examined the prevalence of acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) in children who experienced the Lushan earthquake in Sichuan, China, and assessed the ability of ASD to predict PTSD. The Acute Stress Disorder Scale (ASDS) was used to assess acute stress reaction within weeks of the trauma. The University of California at Los Angeles Post-Traumatic Stress Disorder Reaction Index (UCLA-PTSD) for children was administered at intervals of 2, 6, and 12 months after the earthquake to 197 students who experienced the Lushan earthquake at the Longxing Middle School. The results demonstrated that 28.4% of the children suffered from ASD, but only a small percentage of the population went on to develop PTSD. Among all of the students, 35.0% of those who met the criteria for ASD were diagnosed with PTSD at the 12-month interval. The severity of ASD symptoms correlated with later PTSD symptoms.

  14. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS.

    PubMed

    Sepehr, Reyhaneh; Audi, Said H; Maleki, Sepideh; Staniszewski, Kevin; Eis, Annie L; Konduri, Girija G; Ranji, Mahsa

    2013-07-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  15. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    PubMed Central

    SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  16. Acute stress differentially affects aromatase activity in specific brain nuclei of adult male and female quail.

    PubMed

    Dickens, Molly J; Cornil, Charlotte A; Balthazart, Jacques

    2011-11-01

    The rapid and temporary suppression of reproductive behavior is often assumed to be an important feature of the adaptive acute stress response. However, how this suppression operates at the mechanistic level is poorly understood. The enzyme aromatase converts testosterone to estradiol in the brain to activate reproductive behavior in male Japanese quail (Coturnix japonica). The discovery of rapid and reversible modification of aromatase activity (AA) provides a potential mechanism for fast, stress-induced changes in behavior. We investigated the effects of acute stress on AA in both sexes by measuring enzyme activity in all aromatase-expressing brain nuclei before, during, and after 30 min of acute restraint stress. We show here that acute stress rapidly alters AA in the male and female brain and that these changes are specific to the brain nuclei and sex of the individual. Specifically, acute stress rapidly (5 min) increased AA in the male medial preoptic nucleus, a region controlling male reproductive behavior; in females, a similar increase was also observed, but it appeared delayed (15 min) and had smaller amplitude. In the ventromedial and tuberal hypothalamus, regions associated with female reproductive behavior, stress induced a quick and sustained decrease in AA in females, but in males, only a slight increase (ventromedial) or no change (tuberal) in AA was observed. Effects of acute stress on brain estrogen production, therefore, represent one potential way through which stress affects reproduction.

  17. Review of VA/DOD Clinical Practice Guideline on management of acute stress and interventions to prevent posttraumatic stress disorder.

    PubMed

    Nash, William P; Watson, Patricia J

    2012-01-01

    This article summarizes the recommendations of the Department of Veterans Affairs (VA)/Department of Defense (DOD) VA/DOD Clinical Practice Guideline for Management of Post-Traumatic Stress that pertain to acute stress and the prevention of posttraumatic stress disorder, including screening and early interventions for acute stress states in various settings. Recommended interventions during the first 4 days after a potentially traumatic event include attending to safety and basic needs and providing access to physical, emotional, and social resources. Psychological first aid is recommended for management of acute stress, while psychological debriefing is discouraged. Further medical and psychiatric assessment and provision of brief, trauma-focused cognitive-behavioral therapy are warranted if clinically significant distress or functional impairment persists or worsens after 2 days or if the criteria for a diagnosis of acute stress disorder are met. Follow-up monitoring and rescreening are endorsed for at least 6 months for everyone who experiences significant acute posttraumatic stress. Four interventions that illustrate early intervention principles contained in the VA/DOD Clinical Practice Guideline are described.

  18. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity

    USGS Publications Warehouse

    Lefebvre, Kathi A.; Frame, Elizabeth R.; Gulland, Frances; Hansen, John D.; Kendrick, Preston S.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Hiolski, Emma M.; Smith, Donald R.; Marcinek, David J.

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  19. A Novel Antibody-Based Biomarker for Chronic Algal Toxin Exposure and Sub-Acute Neurotoxicity

    PubMed Central

    Lefebvre, Kathi A.; Frame, Elizabeth R.; Gulland, Frances; Hansen, John D.; Kendrick, Preston S.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Hiolski, Emma M.; Smith, Donald R.; Marcinek, David J.

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins. PMID:22567140

  20. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity.

    PubMed

    Lefebvre, Kathi A; Frame, Elizabeth R; Gulland, Frances; Hansen, John D; Kendrick, Preston S; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Hiolski, Emma M; Smith, Donald R; Marcinek, David J

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins. PMID:22567140

  1. Endocrine, metabolic, and behavioral effects of and recovery from acute stress in a free-ranging bird.

    PubMed

    Deviche, Pierre; Bittner, Stephanie; Davies, Scott; Valle, Shelley; Gao, Sisi; Carpentier, Elodie

    2016-08-01

    Acute stress in vertebrates generally stimulates the hypothalamo-pituitary-adrenal axis and is often associated with multiple metabolic changes, such as increased gluconeogenesis, and with behavioral alterations. Little information is available, especially in free-ranging organisms, on the duration of these reversible effects once animals are no longer exposed to the stressor. To investigate this question, we exposed free-ranging adult male Rufous-winged Sparrows, Peucaea carpalis, in breeding condition to a standard protocol consisting of a social challenge (conspecific song playback) followed with capture and restraint for 30min, after which birds were released on site. Capture and restraint increased plasma corticosterone (CORT) and decreased plasma testosterone (T), glucose (GLU), and uric acid (UA). In birds that we recaptured the next day after exposure to conspecific song playback, plasma CORT and UA levels no longer differed from levels immediately after capture the preceding day. However, plasma T was similar to that measured after stress exposure the preceding day, and plasma GLU was markedly elevated. Thus, exposure to social challenge and acute stress resulted in persistent (⩾24h) parameter-specific effects. In recaptured sparrows, the territorial aggressive response to conspecific song playback, as measured by song rate and the number of flights over the song-broadcasting speakers, did not, however, differ between the first capture and the recapture, suggesting no proximate functional association between plasma T and conspecific territorial aggression. The study is the first in free-ranging birds to report the endocrine, metabolic, and behavioral recovery from the effects of combined social challenge and acute stress. PMID:27311790

  2. Genotoxic Evaluation of Mikania laevigata Extract on DNA Damage Caused by Acute Coal Dust Exposure

    SciTech Connect

    Freitas, T.P.; Heuser, V.D.; Tavares, P.; Leffa, D.D.; da Silva, G.A.; Citadini-Zanette, V.; Romao, P.R.T.; Pinho, R.A.; Streck, E.L.; Andrade,V.M.

    2009-06-15

    We report data on the possible antigenotoxic activity of Mikania laevigata extract (MLE) after acute intratracheal instillation of coal dust using the comet assay in peripheral blood, bone marrow, and liver cells and the micronucleus test in peripheral blood of Wistar rats. The animals were pretreated for 2 weeks with saline solution (groups 1 and 2) or MLE (100 mg/kg) (groups 3 and 4). On day 15, the animals were anesthetized with ketamine (80 mg/kg) and xylazine (20 mg/kg), and gross mineral coal dust (3 mg/0.3 mL saline) (groups 2 and 4) or saline solution (0.3 mL) (groups 1 and 3) was administered directly in the lung by intratracheal administration. Fifteen days after coal dust or saline instillation, the animals were sacrificed, and the femur, liver, and peripheral blood were removed. The results showed a general increase in the DNA damage values at 8 hours for all treatment groups, probably related to surgical procedures that had stressed the animals. Also, liver cells from rats treated with coal dust, pretreated or not with MLE, showed statistically higher comet assay values compared to the control group at 14 days after exposure. These results could be expected because the liver metabolizes a variety of organic compounds to more polar by-products. On the other hand, the micronucleus assay results did not show significant differences among groups. Therefore, our data do not support the antimutagenic activity of M. laevigata as a modulator of DNA damage after acute coal dust instillation.

  3. Cold Stress Effects on Exposure Tolerance and Exercise Performance.

    PubMed

    Castellani, John W; Tipton, Michael J

    2015-01-01

    Cold weather can have deleterious effects on health, tolerance, and performance. This paper will review the physiological responses and external factors that impact cold tolerance and physical performance. Tolerance is defined as the ability to withstand cold stress with minimal changes in physiological strain. Physiological and pathophysiological responses to short-term (cold shock) and long-term cold water and air exposure are presented. Factors (habituation, anthropometry, sex, race, and fitness) that influence cold tolerance are also reviewed. The impact of cold exposure on physical performance, especially aerobic performance, has not been thoroughly studied. The few studies that have been done suggest that aerobic performance is degraded in cold environments. Potential physiological mechanisms (decreases in deep body and muscle temperature, cardiovascular, and metabolism) are discussed. Likewise, strength and power are also degraded during cold exposure, primarily through a decline in muscle temperature. The review also discusses the concept of thermoregulatory fatigue, a reduction in the thermal effector responses of shivering and vasoconstriction, as a result of multistressor factors, including exhaustive exercise. PMID:26756639

  4. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function.

    PubMed

    Walker, Frederick Rohan; Nilsson, Michael; Jones, Kimberley

    2013-10-01

    Traditionally, microglia have been considered to act as macrophages of the central nervous system. While this concept still remains true it is also becoming increasingly apparent that microglia are involved in a host of nonimmunological activities, such as monitoring synaptic function and maintaining synaptic integrity. It has also become apparent that microglia are exquisitely sensitive to perturbation by environmental challenges. The aim of the current review is to critically examine the now substantial literature that has developed around the ability of acute, sub-chronic and chronic stressors to alter microglial structure and function. The vast majority of studies have demonstrated that stress promotes significant structural remodelling of microglia, and can enhance the release of pro-inflammatory cytokines from microglia. Mechanistically, many of these effects appear to be driven by traditional stress-linked signalling molecules, namely corticosterone and norepinephrine. The specific effects of these signalling molecules are, however, complex as they can exert both inhibitory and suppressive effects on microglia depending upon the duration and intensity of exposure. Importantly, research has now shown that these stress-induced microglial alterations, rather than being epiphenomena, have broader behavioural implications, with the available evidence implicating microglia in directly regulating certain aspects of cognitive function and emotional regulation. PMID:24020974

  5. Acute low-level microwave exposure and central cholinergic activity: studies on irradiation parameters

    SciTech Connect

    Lai, H.; Horita, A.; Guy, A.W.

    1988-01-01

    Sodium-dependent high-affinity choline uptake was measured in the striatum, frontal cortex, hippocampus, and hypothalamus of rats after acute exposure (45 min) to pulsed (2 microseconds, 500 pps) or continuous-wave 2,450-MHz microwaves in cylindrical waveguides or miniature anechoic chambers. In all exposure conditions, the average whole-body specific absorption rate was at 0.6 W/kg. Decrease in choline uptake was observed in the frontal cortex after microwave exposure in all of the above irradiation conditions. Regardless of the exposure system used, hippocampal choline uptake was decreased after exposure to pulsed but not continuous-wave microwaves. Striatal choline uptake was decreased after exposure to either pulsed or continuous-wave microwaves in the miniature anechoic chamber. No significant change in hypothalamic choline uptake was observed under any of the exposure conditions studied. We conclude that depending on the parameters of the radiation, microwaves can elicit specific and generalized biological effects.

  6. Comparing disproportionate exposure to acute and chronic pollution risks: a case study in Houston, Texas.

    PubMed

    Chakraborty, Jayajit; Collins, Timothy W; Grineski, Sara E; Montgomery, Marilyn C; Hernandez, Maricarmen

    2014-11-01

    While environmental justice (EJ) research in the United States has focused primarily on the social distribution of chronic pollution risks, previous empirical studies have not analyzed disparities in exposure to both chronic (long-term) and acute (short-term) pollution in the same study area. Our article addresses this limitation though a case study that compares social inequities in exposure to chronic and acute pollution risks in the Greater Houston Metropolitan Statistical Area, Texas. The study integrates estimates of chronic cancer risk associated with ambient exposure to hazardous air pollutants from the Environmental Protection Agency's National-Scale Air Toxics Assessment (2005), hazardous chemical accidents from the National Response Center's Emergency Response Notification System (2007-2011), and sociodemographic characteristics from the American Community Survey (2007-2011). Statistical analyses are based on descriptive comparisons, bivariate correlations, and locally derived spatial regression models that account for spatial dependence in the data. Results indicate that neighborhoods with a higher percentage of Hispanic residents, lower percentage of homeowners, and higher income inequality are facing significantly greater exposure to both chronic and acute pollution risks. The non-Hispanic black percentage is significantly higher in neighborhoods with greater chronic cancer risk, but lower in areas exposed to acute pollution events. Households isolated by language--those highly likely to face evacuation problems during an actual chemical disaster--tend to reside in areas facing significantly greater exposure to high-impact acute events. Our findings emphasize the growing need to examine social inequities in exposure to both chronic and acute pollution risks in future EJ research and policy.

  7. Impact of prenatal and acute methamphetamine exposure on behaviour of adult male rats.

    PubMed

    Schutová, B; Hrubá, L; Pometlová, M; Slamberová, R

    2009-01-01

    Psychostimulants have been shown to alter behaviour in both rats and humans. The aim of the present study was: (1) to assess the effect of prenatal and acute methamphetamine (MA) administration on behaviour in adult male rats and (2) to find out if the prenatal exposure to MA increases sensitivity to acute MA application in adulthood. Behaviour of adult male rats prenatally exposed to MA (5 mg/kg) or no drug was tested in Open field (OF) and Elevated plus maze (EPM). Half of the animals were injected with MA (1 mg/kg) subcutaneously 30 minutes prior to testing. Locomotion, exploration, comforting behaviour and anxiety were evaluated in the OF, while anxiety and exploratory behaviour were assessed in the EPM. Our results showed that prenatal MA did not have an effect on baseline behaviour in either of the tests. By contrast, acute MA increased overall psychomotor activity by increasing locomotion and exploratory behaviour and decreasing comforting behaviour. Moreover, adult rats prenatally exposed to MA were more sensitive to the effects of acute MA on exploration. In addition, acute MA application decreased anxiety in the OF as well as in the EPM. Our present study, thus, demonstrates that acute MA increases overall psychomotor activity and decreases anxiety to novel environment. To further support our hypothesis that prenatal MA exposure increases sensitivity to drugs in adulthood, studies investigating the levels of dopamine in the rat brain after prenatal MA exposure are planned.

  8. Consequences of acute and chronic exposure to arsenic in children.

    PubMed

    Calderon, Rebecca L; Abernathy, Charles O; Thomas, David J

    2004-07-01

    Arsenic is a toxic chemical and may cause adverse health effects in children and adults. It is known to affect the nervous, gastrointestinal, and hematological systems and cause skin and internal cancers in people exposed to levels greater than 300 ppb in their drinking water. For most people, the major exposure to arsenic comes from food (8 to 14 microg inorganic arsenic per day), but when the arsenic level in water is elevated, drinking water becomes the predominant source of exposure. Because it is very difficult to limit arsenic exposure from food, it would be wise to limit arsenic exposure from those more controllable sources. Pediatricians should ascertain the levels of arsenic in drinking water of patients with high arsenic levels, using the supplier or, in the case of private wells, a professional water-testing laboratory assay. The Safe Drinking Water Act does not cover private wells or those water systems with less than 15 hook-ups or those that serve less than 25 people. Pediatricians should instruct parents to use prepared baby formulas or prepare them using water with the arsenic removed and to curtail playing time for younger children in places that have sand containing large amounts of arsenic. Such procedures will limit arsenic exposure to a minimum. PMID:15298311

  9. Lower Electrodermal Activity to Acute Stress in Caregivers of People with Autism Spectrum Disorder: An Adaptive Habituation to Stress

    ERIC Educational Resources Information Center

    Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2015-01-01

    Caring for a relative with autism spectrum disorder (ASD) entails being under chronic stress that could alter body homeostasis. Electrodermal activity (EDA) is an index of the sympathetic activity of the autonomic nervous system related to emotionality and homeostasis. This study compares EDA in response to acute stress in the laboratory between…

  10. Loblolly pine and slash pine responses to acute aluminum and acid exposures.

    PubMed

    Nowak, Jaroslaw; Friend, Alexander L

    2006-09-01

    In response to concerns about aluminum and HCl exposure associated with rocket motor testing and launches, survival and growth of full-sib families of loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) were evaluated in a nursery bed experiment. Each species was exposed to a single soil application of aluminum chloride (0.33 M AlCl(3), pH 2.5), hydrochloric acid (0.39 M HCl, pH 0.6) or water, with or without mycorrhizal inoculation with Pisolithus tinctorius (Coker and Couch). After 20 weeks without inoculation, survival in AlCl(3) and HCl treatments averaged 52% for loblolly pine and 72% for slash pine. Inoculation improved survival of loblolly pine, receiving HCl from 49 to 73%, and of those receiving AlCl3, from 55 to 90%. Inoculation also resulted in improved survival and growth of individual families in AlCl(3), but not in HCl treatments. Results illustrate the relative resistance of both pine species to the acute treatments supplied, the improvement in resistance associated with mycorrhizal inoculation and the importance of field testing, following hydroponic screening, to verify the resistance to soil-supplied stresses.

  11. Effect of exposure cycle on hot salt stress corrosion of a titanium alloy

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Johnston, J. R.

    1974-01-01

    The influence of exposure cycle on the hot-salt stress-corrosion cracking resistance of the Ti-8Al-1Mo-1V alloy was determined. Both temperature and stress were cycled simultaneously to simulate turbine-powered aircraft service cycles. Temperature and stress were also cycled independently to determine their individual effects. Substantial increases in crack threshold stresses were observed for cycles in which both temperature and stress or temperature alone were applied for 1 hour and removed for 3 hours. The crack threshold stresses for these cyclic exposures were twice those determined for continuous exposure for the same total time of 96 hours.

  12. Chronic vs. short-term acute O3 exposure effects on nocturnal transpiration in two Californian oaks.

    PubMed

    Grulke, N E; Paoletti, E; Heath, Robert L

    2007-01-01

    We tested the effect of daytime chronic moderate ozone (O3) exposure, short-term acute exposure, and both chronic and acute O3 exposure combined on nocturnal transpiration in California black oak and blue oak seedlings. Chronic O3 exposure (70 ppb for 8 h/day) was implemented in open-top chambers for either 1 month (California black oak) or 2 months (blue oak). Acute O3 exposure (approximately 1 h in duration during the day, 120-220 ppb) was implemented in a novel gas exchange system that supplied and maintained known O3 concentrations to a leaf cuvette. When exposed to chronic daytime O3 exposure, both oaks exhibited increased nocturnal transpiration (without concurrent O3 exposure) relative to unexposed control leaves (1.8x and 1.6x, black and blue oak, respectively). Short-term acute and chronic O3 exposure did not further increase nocturnal transpiration in either species. In blue oak previously unexposed to O3, short-term acute O3 exposure significantly enhanced nocturnal transpiration (2.0x) relative to leaves unexposed to O3. California black oak was unresponsive to (only) short-term acute O3 exposure. Daytime chronic and/or acute O3 exposures can increase foliar water loss at night in deciduous oak seedlings.

  13. Cognitive influences on health symptoms from acute chemical exposure.

    PubMed

    Dalton, P

    1999-11-01

    Symptom reports, perceived adverse health effects, and public health concerns are increasingly precipitated by the perception of chemical odors. This study examined the interaction between health cognitions, odor perception, and symptom reports. A group of 180 healthy men and women were exposed to 1 of 3 ambient odors, normatively rated as healthful (methyl salicylate, or wintergreen), harmful (butanol or alcohol), and ambiguous (isobomyl acetate, or balsam), after receiving 1 of 3 odorant characterizations (harmful, healthful, and neutral). Individuals given a harmful bias reported significantly more health symptoms following exposure and more intense odor and irritation during exposure than did those given a neutral or healthful bias. The overall pattern of results suggests that many of the health-related effects of exposure to odorants are mediated not by a direct agency of odors but by cognitive variables, such as mental models of the relationship between environmental odors and health.

  14. Acute and chronic respiratory effects of occupational exposure to ammonia.

    PubMed

    Holness, D L; Purdham, J T; Nethercott, J R

    1989-12-01

    In a soda ash plant, 58 workers exposed to mean airborne ammonia levels of 9.2 +/- 1.4 ppm were compared with 31 control workers with a mean exposure of 0.3 +/- 0.1 ppm. There were no differences between the groups in the reporting of respiratory or cutaneous symptoms, sense of smell, baseline lung function, or change in lung function over a work shift at the beginning and end of a workweek. No relationships between level or length of ammonia exposure and lung function results were demonstrated. PMID:2596404

  15. Reversible inactivation of rostral nucleus raphe pallidus attenuates acute autonomic responses but not their habituation to repeated audiogenic stress in rats.

    PubMed

    Nyhuis, Tara J; Masini, Cher V; Taufer, Kirsten L; Day, Heidi E W; Campeau, Serge

    2016-01-01

    The medullary nucleus raphe pallidus (RPa) mediates several autonomic responses evoked by acute stress exposure, including tachycardia and hyperthermia. The present study assessed whether the RPa contributes to the decline/habituation of these responses observed during repeated audiogenic stress. Adult male rats were implanted with cannulae aimed at the RPa, and abdominal E-mitters that wirelessly acquire heart rate and core body temperature. After surgical recovery, animals were injected with muscimol or vehicle (aCSF) in the RPa region, followed by 30 min of 95-dBA loud noise or no noise control exposures on 3 consecutive days at 24-h intervals. Forty-eight hours after the third exposure, animals were exposed to an additional, but injection-free, loud noise or no noise test to assess habituation of hyperthermia and tachycardia. Three days later, rats were restrained for 30-min to evaluate their ability to display normal acute autonomic responses following the repeated muscimol injection regimen. The results indicated that the inhibition of cellular activity induced by the GABAA-receptor agonist muscimol centered in the RPa region reliably attenuated acute audiogenic stress-evoked tachycardia and hyperthermia, compared with vehicle-injected rats. Animals in the stress groups exhibited similar attenuated tachycardia and hyperthermia during the injection-free fourth audiogenic stress exposure, and displayed similar and robust increases in these responses to the subsequent restraint test. These results suggest that cellular activity in neurons of the RPa region is necessary for the expression of acute audiogenic stress-induced tachycardia and hyperthermia, but may not be necessary for the acquisition of habituated tachycardic responses to repeated stress.

  16. Physical exercise and acute restraint stress differentially modulate hippocampal brain-derived neurotrophic factor transcripts and epigenetic mechanisms in mice.

    PubMed

    Ieraci, Alessandro; Mallei, Alessandra; Musazzi, Laura; Popoli, Maurizio

    2015-11-01

    Physical exercise and stressful experiences have been shown to exert opposite effects on behavioral functions and brain plasticity, partly by involving the action of brain-derived neurotrophic factor (BDNF). Although epigenetic modifications are known to play a pivotal role in the regulation of the different BDNF transcripts, it is poorly understood whether epigenetic mechanisms are also implied in the BDNF modulation induced by physical exercise and stress. Here, we show that total BDNF mRNA levels and BDNF transcripts 1, 2, 3, 4, 6, and 7 were reduced immediately after acute restraint stress (RS) in the hippocampus of mice, and returned to control levels 24 h after the stress session. On the contrary, exercise increased BDNF mRNA expression and counteracted the stress-induced decrease of BDNF transcripts. Physical exercise-induced up-regulation of BDNF transcripts was accounted for by increase in histone H3 acetylated levels at specific BDNF promoters, whereas the histone H3 trimethylated lysine 27 and dimethylated lysine 9 levels were unaffected. Acute RS did not change the levels of acetylated and methylated histone H3 at the BDNF promoters. Furthermore, we found that physical exercise and RS were able to differentially modulate the histone deacetylases mRNA levels. Finally, we report that a single treatment with histone deacetylase inhibitors, prior to acute stress exposure, prevented the down-regulation of total BDNF and BDNF transcripts 1, 2, 3, and 6, partially reproducing the effect of physical exercise. Overall, these results suggest that physical exercise and stress are able to differentially modulate the expression of BDNF transcripts by possible different epigenetic mechanisms.

  17. Cognitive Load Undermines Thought Suppression in Acute Stress Disorder.

    PubMed

    Nixon, Reginald D V; Rackebrandt, Julie

    2016-05-01

    Thought suppression studies demonstrate that attempts to suppress can be undermined by cognitive load. We report the first instance in which this has been tested experimentally in a sample of recently traumatized individuals. Individuals with and without acute stress disorder (ASD) were recruited following recent trauma and randomized to load or no load conditions (N=56). They monitored intrusive memories during baseline, suppression, and think anything phases. The impact of suppression and load on self-reported intrusions, attention bias (dot-probe), and memory priming (word-stem task) was assessed. The ASD load group were less able to suppress memories (d=0.32, CI95 [-0.15, 0.83], p=.088) than the ASD no load group (d=0.63, CI95 [0.08, 1.24], p<.001). In the think anything phase, the ASD load group reported more intrusions than the ASD no load or non-ASD groups (with and without load). No consistent findings were observed in relation to attentional bias. ASD load individuals exhibited stronger priming responses for motor vehicle accident and assault words than all other groups (ds between 0.35-0.73). Working memory did not moderate any outcomes of interest. The findings indicate that cognitive load interferes with suppression and may enhance access to trauma memories and associated material. The study extends previous research by demonstrating these effects for the first time in a clinical sample of recent survivors of trauma. PMID:27157032

  18. Toxicogenomic identification of biomarkers of acute respiratory exposure sensitizing agents

    EPA Science Inventory

    Allergy induction requires multiple exposures to an agent. Therefore the development of high-throughput or in vitro assays for effective screening of potential sensitizers will require the identification of biomarkers. The goal of this preliminary study was to identify potential ...

  19. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  20. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular.

  1. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. PMID:27174311

  2. Hypohydration and acute thermal stress affect mood state but not cognition or dynamic postural balance.

    PubMed

    Ely, Brett R; Sollanek, Kurt J; Cheuvront, Samuel N; Lieberman, Harris R; Kenefick, Robert W

    2013-04-01

    Equivocal findings have been reported in the few studies that examined the impact of ambient temperature (T a) and hypohydration on cognition and dynamic balance. The purpose of this study was to determine the impact of acute exposure to a range of ambient temperatures (T(a) 10-40 °C) in euhydration (EUH) and hypohydration (HYP) states on cognition, mood and dynamic balance. Thirty-two men (age 22 ± 4 years, height 1.80 ± 0.05 m, body mass 85.4 ± 10.8 kg) were grouped into four matched cohorts (n = 8), and tested in one of the four T(a) (10, 20, 30, 40 °C) when EUH and HYP (-4 % body mass via exercise-heat exposure). Cognition was assessed using psychomotor vigilance, 4-choice reaction time, matching to sample, and grammatical reasoning. Mood was evaluated by profile of mood states and dynamic postural balance was tested using a Biodex Balance System. Thermal sensation (TS), core (T core) and skin temperature (T(sk)) were obtained throughout testing. Volunteers lost -4.1 ± 0.4 % body mass during HYP. T sk and TS increased with increasing T(a), with no effect of hydration. Cognitive performance was not altered by HYP or thermal stress. Total mood disturbance (TMD), fatigue, confusion, anger, and depression increased during HYP at all T(a). Dynamic balance was unaffected by HYP, but 10 °C exposure impaired balance compared to all other T(a). Despite an increase in TMD during HYP, cognitive function was maintained in all testing environments, demonstrating cognitive resiliency in response to body fluid deficits. Dynamic postural stability at 10 °C appeared to be hampered by low-grade shivering, but was otherwise maintained during HYP and thermal stress. PMID:23064870

  3. Hypohydration and acute thermal stress affect mood state but not cognition or dynamic postural balance.

    PubMed

    Ely, Brett R; Sollanek, Kurt J; Cheuvront, Samuel N; Lieberman, Harris R; Kenefick, Robert W

    2013-04-01

    Equivocal findings have been reported in the few studies that examined the impact of ambient temperature (T a) and hypohydration on cognition and dynamic balance. The purpose of this study was to determine the impact of acute exposure to a range of ambient temperatures (T(a) 10-40 °C) in euhydration (EUH) and hypohydration (HYP) states on cognition, mood and dynamic balance. Thirty-two men (age 22 ± 4 years, height 1.80 ± 0.05 m, body mass 85.4 ± 10.8 kg) were grouped into four matched cohorts (n = 8), and tested in one of the four T(a) (10, 20, 30, 40 °C) when EUH and HYP (-4 % body mass via exercise-heat exposure). Cognition was assessed using psychomotor vigilance, 4-choice reaction time, matching to sample, and grammatical reasoning. Mood was evaluated by profile of mood states and dynamic postural balance was tested using a Biodex Balance System. Thermal sensation (TS), core (T core) and skin temperature (T(sk)) were obtained throughout testing. Volunteers lost -4.1 ± 0.4 % body mass during HYP. T sk and TS increased with increasing T(a), with no effect of hydration. Cognitive performance was not altered by HYP or thermal stress. Total mood disturbance (TMD), fatigue, confusion, anger, and depression increased during HYP at all T(a). Dynamic balance was unaffected by HYP, but 10 °C exposure impaired balance compared to all other T(a). Despite an increase in TMD during HYP, cognitive function was maintained in all testing environments, demonstrating cognitive resiliency in response to body fluid deficits. Dynamic postural stability at 10 °C appeared to be hampered by low-grade shivering, but was otherwise maintained during HYP and thermal stress.

  4. Effects of acute exposure to aluminum on cognition in humans.

    PubMed

    Molloy, D W; Standish, T I; Nieboer, E; Turnbull, J D; Smith, S D; Dubois, S

    2007-12-01

    There is epidemiological evidence suggesting an association between aluminum in drinking water and Alzheimer's disease (AD), and between aluminum in dialysate and dialysis dementia. The exact role of aluminum in the pathogenesis of these and other dementias is not clear. This study examined the acute effects of aluminum on cognitive function in patients with AD and related dementias and in age-matched and younger volunteers with normal cognitive function. Whether individuals with AD and/or the APOE epsilon4 genotype had enhanced gastrointestinal absorption of aluminum was tested, and whether individuals with elevated blood aluminum concentrations exhibited acute cognitive effects was determined. Subjects were randomized to receive a single dose of aluminum orally (Amphojel plus citrate) for 3 d followed by a 3-wk washout, and then 3 d of matched placebo administration, or vice versa. Serum aluminum levels were measured and the daily dose of Amphojel was adjusted to a target aluminum level between 50 and 150 microg/L. Neuropsychological tests were administered at baseline and 90 min after the third dose of Amphojel or placebo. There was a large interindividual variation in aluminum serum levels in all study groups after the same initial dose of Amphojel. There were no significant differences in neuropsychological test scores after aluminum ingestion in normal volunteers or in patients with cognitive impairment. There was no association between APOE epsilon4 genotype and aluminum absorption. The results did not support the hypothesis that aluminum ingested at these doses produces acute effects on cognition or adverse effects, nor did they reveal that AD patients are more vulnerable to such outcomes. Further inquiry is required to explore any possible association between aluminum and cognition, but controlled trials may be limited by safety concerns.

  5. Exposure to hypobaric hypoxia results in higher oxidative stress compared to normobaric hypoxia.

    PubMed

    Ribon, A; Pialoux, V; Saugy, J J; Rupp, T; Faiss, R; Debevec, T; Millet, G P

    2016-03-01

    Sixteen healthy exercise trained participants underwent the following three, 10-h exposures in a randomized manner: (1) Hypobaric hypoxia (HH; 3450m terrestrial altitude) (2) Normobaric hypoxia (NH; 3450m simulated altitude) and (3) Normobaric normoxia (NN). Plasma oxidative stress (malondialdehyde, MDA; advanced oxidation protein products, AOPP) and antioxidant markers (superoxide dismutase, SOD; glutathione peroxidase, GPX; catalase; ferric reducing antioxidant power, FRAP) were measured before and after each exposure. MDA was significantly higher after HH compared to NN condition (+24%). SOD and GPX activities were increased (vs. before; +29% and +54%) while FRAP was decreased (vs. before; -34%) only after 10h of HH. AOPP significantly increased after 10h for NH (vs. before; +83%), and HH (vs. before; +99%) whereas it remained stable in NN. These results provide evidence that prooxidant/antioxidant balance was impaired to a greater degree following acute exposure to terrestrial (HH) vs. simulated altitude (NH) and that the chamber confinement (NN) did likely not explain these differences. PMID:26732282

  6. Pentoxifylline Attenuates Nitrogen Mustard-induced Acute Lung Injury, Oxidative Stress and Inflammation

    PubMed Central

    Sunil, Vasanthi R.; Vayas, Kinal N.; Cervelli, Jessica A.; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B.; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (250 g; 8–10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histolopathological changes in the lung within 3 d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2+ and MMP-9+), and anti-inflammatory/wound repair (CD163+ and Gal-3+) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3 d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3+ macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants. PMID:24886962

  7. Pentoxifylline attenuates nitrogen mustard-induced acute lung injury, oxidative stress and inflammation.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Cervelli, Jessica A; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2014-08-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants.

  8. Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin).

    PubMed

    Ivanina, A V; Taylor, C; Sokolova, I M

    2009-02-19

    Stress proteins such as heat shock proteins (HSPs) and metallothioneins (MTs) play a key role in cellular protection against environmental stress. Marine ectotherms such as eastern oysters Crassostrea virginica are commonly exposed to multiple stressors including temperature and pollution by metals such as cadmium (Cd) in estuaries and coastal zones; however, the combined effects of these stressors on their cellular protection mechanisms are poorly understood. We acclimated C. virginica from populations adapted to different thermal regimes (Washington, North Carolina and Texas) at a common temperature of 12 degrees C, and analyzed their expression of MTs and HSPs (cytosolic HSP69, HSC72-77, HSP90 and mitochondrial HSP60) in response to the combined acute temperature stress and long-term Cd exposure. Overall, HSP and MT induction patterns were similar in oysters from the three studied geographically distant populations. HSP69 and MTs were significantly up-regulated by Cd and temperature stress implying their important role in cellular stress protection. In contrast, HSC72-77, HSP60 and HSP90 were not consistently induced by either acute heat or Cd exposure. The induction temperature for MTs was higher than for HSP69 (>28 degrees C vs. 20 degrees C, respectively), and MTs were more strongly induced by Cd than by temperature stress (to up to 38-94-fold compared by 3.5-7.5-fold, respectively) consistent with their predominant role in metal detoxification. Notably, heat stress did not result in an additional increase in metallothionein expression in Cd-exposed oysters suggesting a capacity limitation during the combined exposure to Cd and temperature stress. Levels of HSP69 and in some cases, HSC72-77 and HSP90 were lower in Cd-exposed oysters as compared to their control counterparts during heat stress indicating that simultaneous exposure to these two stressors may have partially suppressed the cytoprotective upregulation of molecular chaperones. These limitations of

  9. The effects of sex and hormonal status on the physiological response to acute psychosocial stress.

    PubMed

    Kajantie, Eero; Phillips, David I W

    2006-02-01

    Whether one is male or female is one of the most important determinants of human health. While males are more susceptible to cardiovascular and infectious disease, they are outnumbered by women for many autoimmune disorders, fibromyalgia and chronic pain. Recently, individual differences in the physiological response to stress have emerged as a potentially important risk factor for these disorders. This raises the possibility that sex differences in prevalence of disease could at least in part be explained by sex differences in the nature of the physiological response to stress. In a psychophysiological laboratory, the autonomic nervous system response can be provoked by many different stressors including physical, mental and psychosocial tasks, while the hypothalamic-pituitary-adrenal axis (HPAA) response seems to be more specific to a psychosocial challenge incorporating ego involvement. The responses of both systems to different psychosocial challenges have been subject to extensive research, although in respect of sex differences the HPAA response has probably been more systematically studied. In this review, we focus on sex differences in HPAA and autonomic nervous system responses to acute psychosocial stress. Although some differences are dependent on the stressor used, the responses of both systems show marked and consistent differences according to sex, with the phase of the menstrual cycle, menopausal status and pregnancy having marked effects. Between puberty and menopause, adult women usually show lower HPAA and autonomic responses than men of same age. However, the HPAA response is higher in the luteal phase, when for example post stress free cortisol levels approach those of men. After menopause, there is an increase in sympathoadrenal responsiveness, which is attenuated during oral hormone replacement therapy, with most evidence suggesting that HPAA activity shows the same trends. Interestingly, pregnancy is associated with an attenuated response of

  10. RNA‐Seq Reveals Acute Manganese Exposure Increases Endoplasmic Reticulum Related and Lipocalin mRNAs in Caenorhabditis elegans

    PubMed Central

    Rudgalvyte, Martina; Peltonen, Juhani; Lakso, Merja; Nass, Richard

    2015-01-01

    ABSTRACT Manganese (Mn) is an essential nutrient; nonetheless, excessive amounts can accumulate in brain tissues causing manganism, a severe neurological condition. Previous studies have suggested oxidative stress, mitochondria dysfunction, and impaired metabolism pathways as routes for Mn toxicity. Here, we used the nematode Caenorhabditis elegans to analyze gene expression changes after acute Mn exposure using RNA‐Seq. L1 stage animals were exposed to 50 mM MnCl2 for 30 min and analyzed at L4. We identified 746 up‐ and 1828 downregulated genes (FDR corrected p < 0.05; two‐fold change) that included endoplasmic reticulum related abu and fkb family genes, as well as six of seven lipocalin‐related (lpr) family members. These were also verified by qRT‐PCR. RNA interference of lpr‐5 showed a dramatic increase in whole body vulnerability to Mn exposure. Our studies demonstrate that Mn exposure alters gene transcriptional levels in different cell stress pathways that may ultimately contribute to its toxic effects. PMID:26418576

  11. Cardiac Autonomic Effects of Acute Exposures to Airborne Particulates in Men and Women

    NASA Technical Reports Server (NTRS)

    Howarth, M. S.; Schlegel, T. T.; Knapp, C. F.; Patwardhan, A. R.; Jenkins, R. A.; Ilgner, R. H.; Evans, J. M.

    2007-01-01

    The aim of this research was to investigate cardiac autonomic changes associated with acute exposures to airborne particulates. Methods: High fidelity 12-lead ECG (CardioSoft, Houston, TX) was acquired from 19 (10 male / 9 female) non-smoking volunteers (age 33.6 +/- 6.6 yrs) during 10 minutes pre-exposure, exposure and post-exposure to environmental tobacco smoke (ETS), cooking oil fumes, wood smoke and sham (water vapor). To control exposure levels, noise, subject activity, and temperature, all studies were conducted inside an environmental chamber. Results: The short-term fractal scaling exponent (Alpha-1) and the ratio of low frequency to high frequency Heart Rate Variability (HRV) powers (LF/HF, a purported sympathetic index) were both higher in males (p<0.017 and p<0.05, respectively) whereas approximate entropy (ApEn) and HF/(LF+HF) (a purported parasympathetic index) were both lower in males (p<0.036, and p<0.044, respectively). Compared to pre-exposure (p<0.0002) and sham exposure (p<0.047), male heart rates were elevated during early ETS post-exposure. Our data suggest that, in addition to tonic HRV gender differences, cardiac responses to some acute airborne particulates are gender related.

  12. Chronic and Acute Effects of Coal Tar Pitch Exposure and Cardiopulmonary Mortality Among Aluminum Smelter Workers

    PubMed Central

    Friesen, Melissa C.; Demers, Paul A.; Spinelli, John J.; Eisen, Ellen A.; Lorenzi, Maria F.; Le, Nhu D.

    2010-01-01

    Air pollution causes several adverse cardiovascular and respiratory effects. In occupational studies, where levels of particulate matter and polycyclic aromatic hydrocarbons (PAHs) are higher, the evidence is inconsistent. The effects of acute and chronic PAH exposure on cardiopulmonary mortality were examined within a Kitimat, Canada, aluminum smelter cohort (n = 7,026) linked to a national mortality database (1957–1999). No standardized mortality ratio was significantly elevated compared with the province's population. Smoking-adjusted internal comparisons were conducted using Cox regression for male subjects (n = 6,423). Ischemic heart disease (IHD) mortality (n = 281) was associated with cumulative benzo[a]pyrene (B(a)P) exposure (hazard ratio = 1.62, 95% confidence interval: 1.06, 2.46) in the highest category. A monotonic but nonsignificant trend was observed with chronic B(a)P exposure and acute myocardial infarction (n = 184). When follow-up was restricted to active employment, the hazard ratio for IHD was 2.39 (95% confidence interval: 0.95, 6.05) in the highest cumulative B(a)P category. The stronger associations observed during employment suggest that risk may not persist after exposure cessation. No associations with recent or current exposure were observed. IHD was associated with chronic (but not current) PAH exposure in a high-exposure occupational setting. Given the widespread workplace exposure to PAHs and heart disease's high prevalence, even modest associations produce a high burden. PMID:20702507

  13. Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults

    PubMed Central

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W. E. M.; Merckelbach, Harald

    2013-01-01

    Background Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area. PMID:23671762

  14. Acute air pollution exposure and risk of suicide completion.

    PubMed

    Bakian, Amanda V; Huber, Rebekah S; Coon, Hilary; Gray, Douglas; Wilson, Phillip; McMahon, William M; Renshaw, Perry F

    2015-03-01

    Research into environmental factors associated with suicide has historically focused on meteorological variables. Recently, a heightened risk of suicide related to short-term exposure to airborne particulate matter was reported. Here, we examined the associations between short-term exposure to nitrogen dioxide, particulate matter, and sulfur dioxide and completed suicide in Salt Lake County, Utah (n = 1,546) from 2000 to 2010. We used a time-stratified case-crossover design to estimate adjusted odds ratios for the relationship between suicide and exposure to air pollutants on the day of the suicide and during the days preceding the suicide. We observed maximum heightened odds of suicide associated with interquartile-range increases in nitrogen dioxide during cumulative lag 3 (average of the 3 days preceding suicide; odds ratio (OR) = 1.20, 95% confidence interval (CI): 1.04, 1.39) and fine particulate matter (diameter ≤2.5 μm) on lag day 2 (day 2 before suicide; OR = 1.05, 95% CI: 1.01, 1.10). Following stratification by season, an increased suicide risk was associated with exposure to nitrogen dioxide during the spring/fall transition period (OR = 1.35, 95% CI: 1.09, 1.66) and fine particulate matter in the spring (OR = 1.28, 95% CI: 1.01, 1.61) during cumulative lag 3. Findings of positive associations between air pollution and suicide appear to be consistent across study locations with vastly different meteorological, geographical, and cultural characteristics.

  15. Alterations in surfactant protein A after acute exposure to ozone.

    PubMed

    Su, W Y; Gordon, T

    1996-05-01

    The surfactant layer covering the gas-exchange region of the lung serves as the initial site of interaction with inhaled oxidant gases. Among the endogenous compounds potentially vulnerable to oxidative injury are surfactant proteins. This study focused on the effect of ozone on surfactant protein A (SP-A) function, content, and gene expression. To determine the time course of response to ozone, guinea pigs were exposed to 0.2-0.8 parts/million (ppm) ozone for 6 h and were killed up to 120 h postexposure. To determine the effect of repeated exposure, animals were exposed to 0.8 ppm ozone for 6 h/day and were killed on days 3 and 5. A significant increase in surfactant's ability to modulate the respiratory burst induced by phorbol 12-myristate 13-acetate in naive macrophages was observed at 24 h after a single 0.8 ppm ozone exposure. Because neutralizing antibodies to SP-A blunted this stimulatory effect, we hypothesized that ozone enhanced the modulatory role of SP-A in macrophage function. This alteration in function was accompanied by an influx of inflammatory cells and only marginal changes in SP-A levels as determined by an enzyme-linked immunosorbent assay. No significant changes in steady-state levels of SP-A mRNA were observed after single or repeated exposure to ozone. Thus the inflammation that accompanies in vivo ozone exposure may result in a change in the structure and thus functional role of SP-A in modulating macrophage activity.

  16. Acute and chronic stress induced changes in sensitivity of peripheral inflammatory pathways to the signals of multiple stress systems --2011 Curt Richter Award Winner.

    PubMed

    Rohleder, Nicolas

    2012-03-01

    Exposure to psychosocial stress has been associated with increasing rates of morbidity in humans and in animal models, but the underlying mechanisms are not completely understood. Major stress responsive systems, such as the hypothalamus-pituitary adrenal (HPA) axis and the autonomic nervous system (ANS) are under investigation as underlying pathways, but although acute stress reliably activates these systems, findings of long-term alternations in baseline activity are inconsistent at present. Emerging evidence suggests that stress-related changes in the sensitivity of target systems toward glucocorticoid (GC) regulation, i.e. development of GC resistance, might help explain inflammatory disinhibition and development of disease related to inflammation. More recent findings further show that the autonomic nervous system might play an important role in the regulatory control of the inflammatory cascade. The major argument put forward in this manuscript is that target tissues for stress system modulation, such as the inflammatory cascade, vary in their ability to respond to stress system signaling, and that assessing alterations in this stress signal sensitivity which can be caused by stress or disease processes, might be necessary to understand and explain stress effects on health. This review focuses on the inflammatory system in particular, because anti-inflammatory effects of most stress systems have been documented, but the general assumption might have to be generalized to other target systems. The main conclusion to be made is that reduction in glucocorticoid sensitivity of target tissues is the most consistent finding at present, and that assessing such changes in glucocorticoid sensitivity might be necessary to understand many stress-related changes in physiology.

  17. Behavioral, endocrine, immune, and performance measures for pigs exposed to acute stress.

    PubMed

    Hicks, T A; McGlone, J J; Whisnant, C S; Kattesh, H G; Norman, R L

    1998-02-01

    Weanling pigs (n = 132) were used to investigate the effects of three common stressors (and a control) and differing social status on behavior, immunity, plasma cortisol, blood chemical, and performance measures. Eleven blocks of 12 pigs each were evaluated. Each pen contained three pigs of dominant (DOM), intermediate (INT), or submissive (SUB) social status. Two weeks later, random pens of pigs experienced either a control treatment (CON) or they were stressed for 4 h by shipping (SHIP), heat-stressed (HEAT) with overhead heat lamps in their home pens, or cold-stressed (COLD) by direct application of water and an air current. Treatments did not influence body weights; however, percentage weight loss during SHIP was greater than for other treatments. Body weights were heavier for DOM pigs than for INT and SUB pigs. Social status had large effects on plasma cortisol, globulin, acute-phase proteins, body weight, and weight changes. Only acute shipping stress resulted in weight loss. Many immune and blood measures were not changed among acutely stressed pigs; however, the relationship between social status and mitogen-induced lymphocyte proliferation and natural killer cell cytotoxicity was disrupted during acute stress. Pig behavior was significantly changed by each stress treatment in a unique manner. During acute stress, behavioral changes seem to be the most consistent and reliable indicators.

  18. CARDIOVASCULAR INJURY FROM ACUTE AND REPEATED EXPOSURE TO PARTICULATE MATTER (PM): POTENTIAL ROLE OF ZINC

    EPA Science Inventory

    CARDIOVASCULAR INJURY FROM ACUTE AND REPEATED EXPOSURE TO PARTICULATE MATTER (PM): POTENTIAL ROLE OF ZINC. UP Kodavanti, MC Schladweiler, AD Ledbetter, RH Jaskot, PS Gilmour, DC Christiani, WP Watkinson, DL Costa, JK McGee, A Nyska. NHEERL, USEPA, RTP, NC; CEMALB, UNC, Chapel Hil...

  19. Self-reported acute health symptoms and exposure to companion animals#

    EPA Science Inventory

    Self-reported acute health symptoms and exposure to companion animalsWhitney S. Krueger1,2, Elizabeth D. Hilborn2, Timothy J. Wade21Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA2Environmental Public Health Division, Office of Research and Development, U...

  20. Neurobehavorial effects of acute exposure to four solvents: meta-abalyses

    EPA Science Inventory

    Meta-and re-analyses of the available data for the neurobehavioral effects of acute inhalation exposure to toluene were reported by Benignus et al. (2007). The present study was designed to test the generality of the toluene results in as many other solvents as possible by furthe...

  1. In Utero Exposure to Lipopolysaccharide Alters the Postnatal Acute Phase Response in Beef Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the potential effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to an LPS challenge in heifers. Pregnant crossbred cows (n = 50) were separated into prenatal immune stimulation (PIS; n = 25; administered 0.1 microgr...

  2. TOXICITY PATHWAY ANALYSIS IN AGING BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    EPA Science Inventory

    The influence of aging on susceptibility to environmental stressors is poorly understood. To investigate the contribution of different life stages on response to toxicants, we examined the effects of acute exposure by oral gavage of the volatile organic solvent toluene (0.00, 0.3...

  3. ACUTE BEHAVORIAL EFFECTS FROM EXPOSURE TO TWO-STROKE ENGINE EXHAUST

    EPA Science Inventory

    Benefits of changing from two-stroke to four-stroke engines (and other remedial requirements) can be evaluated (monetized) from the standpoint of acute behavioral effects of human exposure to exhaust from these engines. The monetization process depends upon estimates of the magn...

  4. DISTRIBUTION OF 14C-ATRAZINE FOLLOWING AN ACUTE LACTATIONAL EXPOSURE IN THE WISTAR RAT.

    EPA Science Inventory

    The purpose of the present study was to examine the distribution of atrazine in the lactating dam and suckling neonate following an acute exposure to either 2 or 4 mg/kg 14C-atrazine (14C-ATR) by gavage. 14C-ATR was administered to the nursing dam on postnatal day 3 by oral gavag...

  5. Enzyme genotype and exposure tolerance in fathead minnow populations acutely and chronically exposed to fluoranthene

    SciTech Connect

    Diamond, S.; Oris, J.T.; Guttman, S.I.

    1995-12-31

    Populations residing in contaminated areas often exhibit enhanced genetically based tolerance. Shifts in enzyme genotype frequencies have been suggested as indicators of these adaptive responses. However, the between extant tolerance and enzyme genotype frequencies in affected populations has not been previously reported. The authors report here on attempts, involving acute and chronic exposures, to select for tolerance in populations of fathead minnows. Offspring of survivors of an acutely exposed population were significantly less tolerant relative to naive fish, whereas offspring of fish exposed to a sub-lethal concentration were significantly more tolerant of exposure. Relationships between differential response in the acute exposure were elucidated using failure-time methods. Genotype at one focus, glucose phosphate isomerase (GPI), was significantly related to survival time during this exposure. In addition, significant differences in GPI allele frequency between survivors and their offspring were also apparent. Comparison of offspring of chronically exposed fish with offspring of unexposed fish indicated a significant shift in allele frequencies at the GPI locus. These F1 populations were also exposed acutely to fluoranthene to assess their relative tolerance. Separate failure-time analyses for these populations again indicated a significant relationship between GPI genotype and mortality in the control fish (and at three other loci), but not in the exposure fish. Overall, five loci were significantly related to mortality in the control population, whereas one locus was related to mortality in the exposure offspring. These results suggest that enzyme genotype frequencies can be consistent indicators of population response to exposure and that selection by contaminants may reduce variability in these relationships.

  6. Acute exposure to waterborne psychoactive drugs attract zebrafish.

    PubMed

    Abreu, Murilo S; Giacomini, Ana Cristina V; Gusso, Darlan; Rosa, João G S; Koakoski, Gessi; Kalichak, Fabiana; Idalêncio, Renan; Oliveira, Thiago A; Barcellos, Heloísa H A; Bonan, Carla D; Barcellos, Leonardo J G

    2016-01-01

    Psychotropic medications are widely used, and their prescription has increased worldwide, consequently increasing their presence in aquatic environments. Therefore, aquatic organisms can be exposed to psychotropic drugs that may be potentially dangerous, raising the question of whether these drugs are attractive or aversive to fish. To answer this question, adult zebrafish were tested in a chamber that allows the fish to escape or seek a lane of contaminated water. These attraction and aversion paradigms were evaluated by exposing the zebrafish to the presence of acute contamination with these compounds. The zebrafish were attracted by certain concentrations of diazepam, fluoxetine, risperidone and buspirone, which were most likely detected by olfaction, because this behavior was absent in anosmic fish. These findings suggest that despite their deleterious effects, certain psychoactive drugs attract fish.

  7. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure.

    PubMed

    Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen

    2016-07-01

    Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM. PMID:27125786

  8. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress

    PubMed Central

    Moench, Kelly M.; Maroun, Mouna; Kavushansky, Alexandra; Wellman, Cara

    2015-01-01

    Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies. PMID:26844245

  9. Expedited Patient-Specific Assessment of Contact Stress Exposure in the Ankle Joint Following Definitive Articular Fracture Reduction

    PubMed Central

    Kern, Andrew M.; Anderson, Donald D.

    2015-01-01

    Acute injury severity, altered joint kinematics, and joint incongruity are three important mechanical factors linked to post-traumatic osteoarthritis (PTOA). Finite element analysis (FEA) was previously used to assess the influence of increased contact stress due to joint incongruity on PTOA development. While promising agreement with PTOA development was seen, the inherent complexities of contact FEA limited the numbers of subjects that could be analyzed. Discrete element analysis (DEA) is a simplified methodology for contact stress computation, which idealizes contact surfaces as a bed of independent linear springs. In this study, DEA was explored as an expedited alternative to FEA contact stress exposure computation. DEA was compared to FEA using results from a previously completed validation study of two cadaveric human ankles, as well as a previous study of post-operative contact stress exposure in 11 patients with tibial plafond fracture. DEA-computed maximum contact stresses were within 19% of those experimentally measured, with 90% of the contact area having computed contact stress values within 1 MPa of those measured. In the 11 fractured ankles, maximum contact stress and contact area differences between DEA and FEA were 0.85±0.64 MPa and 22.5±11.5 mm2. As a predictive measure for PTOA development, both DEA and FEA had 100% concordance with presence of OA (KL grade ≥ 2) and >95% concordance with KL grade at 2 years. These results support DEA as a reasonable alternative to FEA for computing contact stress exposures following surgical reduction of a tibial plafond fracture. PMID:26105660

  10. Expedited patient-specific assessment of contact stress exposure in the ankle joint following definitive articular fracture reduction.

    PubMed

    Kern, Andrew M; Anderson, Donald D

    2015-09-18

    Acute injury severity, altered joint kinematics, and joint incongruity are three important mechanical factors linked to post-traumatic osteoarthritis (PTOA). Finite element analysis (FEA) was previously used to assess the influence of increased contact stress due to joint incongruity on PTOA development. While promising agreement with PTOA development was seen, the inherent complexities of contact FEA limited the numbers of subjects that could be analyzed. Discrete element analysis (DEA) is a simplified methodology for contact stress computation, which idealizes contact surfaces as a bed of independent linear springs. In this study, DEA was explored as an expedited alternative to FEA contact stress exposure computation. DEA was compared to FEA using results from a previously completed validation study of two cadaveric human ankles, as well as a previous study of post-operative contact stress exposure in 11 patients with tibial plafond fracture. DEA-computed maximum contact stresses were within 19% of those experimentally measured, with 90% of the contact area having computed contact stress values within 1MPa of those measured. In the 11 fractured ankles, maximum contact stress and contact area differences between DEA and FEA were 0.85 ± 0.64 MPa and 22.5 ± 11.5mm(2). As a predictive measure for PTOA development, both DEA and FEA had 100% concordance with presence of OA (KL grade ≥ 2) and >95% concordance with KL grade at 2 years. These results support DEA as a reasonable alternative to FEA for computing contact stress exposures following surgical reduction of a tibial plafond fracture.

  11. S-Nitroso-Proteome in Poplar Leaves in Response to Acute Ozone Stress

    PubMed Central

    Vanzo, Elisa; Ghirardo, Andrea; Merl-Pham, Juliane; Lindermayr, Christian; Heller, Werner; Hauck, Stefanie M.; Durner, Jörg; Schnitzler, Jörg-Peter

    2014-01-01

    Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure. PMID:25192423

  12. Prenatal and acute cocaine exposure affects neural responses and habituation to visual stimuli.

    PubMed

    Riley, Elizabeth; Kopotiyenko, Konstantin; Zhdanova, Irina

    2015-01-01

    Psychostimulants have many effects on visual function, from adverse following acute and prenatal exposure to therapeutic on attention deficit. To determine the impact of prenatal and acute cocaine exposure on visual processing, we studied neuronal responses to visual stimuli in two brain regions of a transgenic larval zebrafish expressing the calcium indicator GCaMP-HS. We found that both red light (LF) and dark (DF) flashes elicited similar responses in the optic tectum neuropil (TOn), while the dorsal telencephalon (dTe) responded only to LF. Acute cocaine (0.5 μM) reduced neuronal responses to LF in both brain regions but did not affect responses to DF. Repeated stimulus presentation (RSP) led to habituation of dTe neurons to LF. Acute cocaine prevented habituation. TOn habituated to DF, but not LF, and DF habituation was not modified by cocaine. Remarkably, prenatal cocaine exposure (PCE) prevented the effects of acute cocaine on LF response amplitude and habituation later in development in both brain regions, but did not affect DF responses. We discovered that, in spite of similar neural responses to LF and DF in the TO (superior colliculus in mammals), responses to LF are more complex, involving dTe (homologous to the cerebral cortex), and are more vulnerable to cocaine. Our results demonstrate that acute cocaine exposure affects visual processing differentially by brain region, and that PCE modifies zebrafish visual processing in multiple structures in a stimulus-dependent manner. These findings are in accordance with the major role that the optic tectum and cerebral cortex play in sustaining visual attention, and support the hypothesis that modification of these areas by PCE may be responsible for visual deficits noted in humans. This model offers new methodological approaches for studying the adverse and therapeutic effects of psychostimulants on attention, and for the development of new pharmacological interventions.

  13. Acute Effects of Normobaric Hypoxia on Hand-Temperature Responses During and After Local Cold Stress

    PubMed Central

    Kölegård, Roger; Mekjavic, Igor B.; Eiken, Ola

    2014-01-01

    Abstract Keramidas, Michail E, Roger Kölegård, Igor B. Mekjavic, and Ola Eiken. Acute effects of normobaric hypoxia on hand-temperature responses during and after local cold stress. High Alt Med Biol. 15:183–191, 2014.—The purpose was to investigate acute effects of normobaric hypoxia on hand-temperature responses during and after a cold-water hand immersion test. Fifteen males performed two right-hand immersion tests in 8°C water, during which they were inspiring either room air (Fio2: 0.21; AIR), or a hypoxic gas mixture (Fio2: 0.14; HYPO). The tests were conducted in a counterbalanced order and separated by a 1-hour interval. Throughout the 30-min cold-water immersion (CWI) and the 15-min spontaneous rewarming (RW) phases, finger-skin temperatures were measured continuously with thermocouple probes; infrared thermography was also employed during the RW phase to map all segments of the hand. During the CWI phase, the average skin temperature (Tavg) of the fingers did not differ between the conditions (AIR: 10.2±0.5°C, HYPO: 10.0±0.5°C; p=0.67). However, Tavg was lower in the HYPO than the AIR RW phase (AIR: 24.5±3.4°C; HYPO: 22.0±3.8°C; p=0.002); a response that was alike in all regions of the immersed hand. Accordingly, present findings suggest that acute exposure to normobaric hypoxia does not aggravate the cold-induced drop in hand temperature of normothermic males. Still, hypoxia markedly impairs the rewarming responses of the hand. PMID:24666109

  14. Child Anxiety Symptoms Related to Longitudinal Cortisol Trajectories and Acute Stress Responses: Evidence of Developmental Stress Sensitization

    PubMed Central

    Laurent, Heidemarie K.; Gilliam, Kathryn S.; Wright, Dorianne B.; Fisher, Philip A.

    2015-01-01

    Cross-sectional research suggests that individuals at risk for internalizing disorders show differential activation levels and/or dynamics of stress-sensitive physiological systems, possibly reflecting a process of stress sensitization. However, there is little longitudinal research to clarify how the development of these systems over time relates to activation during acute stress, and how aspects of such activation map onto internalizing symptoms. We investigated children’s (n=107) diurnal hypothalamic-pituitary-adrenal activity via salivary cortisol (morning and evening levels) across 29 assessments spanning 6+ years, and related longitudinal patterns to acute stress responses at the end of this period (age 9–10). Associations with child psychiatric symptoms at age 10 were also examined to determine internalizing risk profiles. Increasing morning cortisol levels across assessments predicted less of a cortisol decline following interpersonal stress at age 9, and higher cortisol levels during performance stress at age 10. These same profiles of high and/or sustained cortisol elevation during psychosocial stress were associated with child anxiety symptoms. Results suggest developmental sensitization to stress—reflected in rising morning cortisol and eventual hyperactivation during acute stress exposure—may distinguish children at risk for internalizing disorders. PMID:25688433

  15. Acute stress disorder modifies cerebral activity of amygdala and prefrontal cortex.

    PubMed

    Reynaud, Emmanuelle; Guedj, Eric; Trousselard, Marion; El Khoury-Malhame, Myriam; Zendjidjian, Xavier; Fakra, Eric; Souville, Marc; Nazarian, Bruno; Blin, Olivier; Canini, Frédéric; Khalfa, Stephanie

    2015-01-01

    The diagnosis constraint of acute stress disorder (ASD), consisting of testing individuals in the month following trauma exposure, limits research on the very early and initial stage of the disease. In this regard, this work aims to explore the cerebral mechanism of ASD in a population of fire-fighters before and after trauma exposure. Thirty-six healthy non-traumatized male fire-fighters were explored by an fMRI emotional face-matching task to evaluate the cerebral substrate of emotional recognition. During the two years of the follow-up, two subjects were traumatized, and thus retested, as were 10 non-traumatized subjects among the initial non-exposed ones. In comparison to non-exposed subjects, fire-fighters with ASD had enhanced amygdala, orbitofrontal, and dorsolateral prefrontal BOLD responses to fearful and angry faces (p < .05, FDR-corrected). These results shed new light on the cerebral mechanism associated with ASD. We observed for the first time the existence of an altered fear processing pathway in ASD that is mediated by amygdala and prefrontal cortex hyperactivity, which might be at the core of the disorder. PMID:25599382

  16. Alterations in gills of Lepomis gibbosus, after acute exposure to several xenobiotics (pesticide, detergent and pharmaceuticals): morphometric and biochemical evaluation.

    PubMed

    Rodrigues, Sara; Correia, Alberto T; Antunes, Sara C; Nunes, Bruno

    2015-04-01

    In recent decades, scientific research about the effects of anthropogenic xenobiotics on non-target organisms has increased. Among the likely effects, some studies reported the evaluation of biochemical and morphological changes in specific tissues or organs of fishes, such as gills, which are key organs for the direct action of pollutants in the aquatic environment. This work intended to assess biochemical [oxidative stress/phase II conjugation isoenzymes glutathione S-transferase (GSTs)] and morphological [secondary lamellar length (SLL), secondary lamellar width (SLW), interlamellar distance (ID), basal epithelial thickness (BET) and proportion of the secondary lamellae available for gas exchange (PAGE)] changes in gills, after acute exposure to the pesticide chlorfenvinphos, the detergent sodium dodecylsulphate (SDS) and to the anticholinesterasic pharmaceuticals (neostigmine and pyridostigmine). Our results point to a significant, eventually hormetic, effect in the activity of GSTs following exposure to chlorfenvinphos that significantly increased the activity of GSTs at concentration of 0.2 mg/L. The activity of GSTs increased significantly after exposure to 100 mg/L of neostigmine. Considering the morphometric analysis of the gills, the data obtained showed that chlorfenvinphos exerted mainly minor architectural alterations in gills, with the exception of the highest tested concentration of chlorfenvinphos that produced also a slight decrease of the PAGE. The overall conclusions point to a null or negligible toxicity of the selected toxicants towards L. gibbosus, which may be reverted if exposure is withdrawn.

  17. Acute stress regulates nociception and inflammatory response induced by bee venom in rats: possible mechanisms.

    PubMed

    Chen, Hui-Sheng; Li, Feng-Peng; Li, Xiao-Qiu; Liu, Bao-Jun; Qu, Fang; Wen, Wei-Wei; Wang, Yang; Lin, Qing

    2013-09-01

    Restraint stress modulates pain and inflammation. The present study was designed to evaluate the effect of acute restraint stress on inflammatory pain induced by subcutaneous injection of bee venom (BV). First, we investigated the effect of 1 h restraint on the spontaneous paw-flinching reflex (SPFR), decrease in paw withdrawal mechanical threshold (PWMT) and increase in paw volume (PV) of the injected paw induced by BV. SPFR was measured immediately after BV injection, and PWMT and PV were measured 2 h before BV and 2-8 h after BV. The results showed that acute restraint inhibited significantly the SPFR but failed to affect mechanical hyperalgesia. In contrast, stress enhanced significantly inflammatory swelling of the injected paw. In a second series of experiments, the effects of pretreatment with capsaicin locally applied to the sciatic nerve, systemic 6-hydroxydopamine (6-OHDA), and systemic naloxone were examined on the antinociception and proinflammation produced by acute restraint stress. Local capsaicin pretreatment inhibited BV-induced nociception and inflammatory edema, and had additive effects with stress on nociception but reduced stress enhancement of edema. Systemic 6-OHDA treatment attenuated the proinflammatory effect of stress, but did not affect the antinociceptive effect. Systemic naloxone pretreatment eliminated the antinociceptive effect of stress, but did not affect proinflammation. Taken together, our data indicate that acute restraint stress contributes to antinociception via activating an endogenous opioid system, while sympathetic postganglionic fibers may contribute to enhanced inflammation in the BV pain model.

  18. Effects of Acute Exposure to Sublethal Waterborne Cadmium on Energy Homeostasis in Silver Carp (Hypophthalmichthys molitrix).

    PubMed

    Pi, Jie; Li, Xuelin; Zhang, Ting; Li, Deliang

    2016-10-01

    Effects of acute exposure to sublethal waterborne cadmium (Cd) on energy homeostasis in filter-feeding fishes have rarely been studied. The response patterns of energy substances were investigated in juvenile silver carp (Hypophthalmichthys molitrix) exposed to sublethal waterborne Cd for 96 h. The results showed the 96hLC50 of Cd on juvenile silver carp was 1.723 mg/L. Sublethal acute exposure of Cd significantly affected the energy homeostasis of juvenile silver carp, including increase in plasma glucose and lactate, and decrease in plasma triglyceride, muscle glycogen and triglyceride and liver glycogen. The results indicated that glycogen and triglyceride prior to protein were mobilized to meet the increased demands for detoxication and repair mechanism to sublethal waterborne Cd exposure, and glycogen level depleted faster and restored slower in the liver than in the white muscle in juvenile silver carp. PMID:27488982

  19. Anxiety Sensitivity Among First-Time Fathers Moderates the Relationship Between Exposure to Stress During Birth and Posttraumatic Stress Symptoms.

    PubMed

    Zerach, Gadi; Magal, Ortal

    2016-05-01

    This longitudinal study examined posttraumatic stress disorder (PTSD) and anxiety symptoms among men attending the birth of their first offspring. Furthermore, we examined the moderating role of anxiety sensitivity (AS) and intolerance of uncertainty in the association between exposure to stress during birth and PTSD and anxiety symptoms. Participants were Israeli men (n = 171) who were assessed with self-report questionnaires during the third trimester of pregnancy (T1) and approximately a month following birth (T2). Results show that the rates of postnatal PTSD and anxiety symptoms were relatively low. Subjective exposure to stress during birth and AS predicted PTSD in T2, above and beyond other negative life events and PTSD in T1. In addition, AS moderated the relations between subjective exposure to stress during birth and PTSD symptoms. Pregnancy and childbirth professionals may benefit from the insight that men with high levels of AS might experience childbirth as a highly stressful situation with possible posttraumatic stress symptoms.

  20. Effects of multigenerational exposure to elevated temperature on reproduction, oxidative stress, and Cu toxicity in Daphnia magna.

    PubMed

    Bae, Eunhye; Samanta, Palas; Yoo, Jisu; Jung, Jinho

    2016-10-01

    This study evaluated the effect of temperature (20 and 25°C) on reproduction, oxidative stress, and copper (Cu) toxicity in Daphnia magna across three generations (F0, F1, and F2). Exposing D. magna to elevated temperature significantly decreased the number of offspring per female per day, the time to first brood, and body length compared to exposure to the optimal temperature (p<0.05). In addition, elevated temperature induced a significantly higher production of reactive oxygen species and lipid peroxidation (p<0.05). These findings suggest that D. magna likely responded to thermal stress by investing more energy into defense mechanisms, rather than growth and reproduction. In addition, oxidative stress at the elevated temperature gradually increased with each generation, possibly owing to the reduced fitness of the offspring. Exposing D. magna to 25°C (EC50=34±3µgL(-1)) substantially increased the median effective concentration of Cu in all generations compared to exposure to 20°C (EC50=25±3µgL(-1)), indicating a decrease in acute toxicity at elevated temperature. However, elevated temperature significantly increased the oxidative stress induced by a sublethal concentration of Cu (10µgL(-1)). The interaction between elevated temperature and Cu exposure appears to be synergistic; however, this needs to be confirmed using multiple generations in a long-term experiment. PMID:27376351

  1. Amygdala-Hippocampal Connectivity Changes During Acute Psychosocial Stress: Joint Effect of Early Life Stress and Oxytocin.

    PubMed

    Fan, Yan; Pestke, Karin; Feeser, Melanie; Aust, Sabine; Pruessner, Jens C; Böker, Heinz; Bajbouj, Malek; Grimm, Simone

    2015-11-01

    Previous evidence shows that acute stress changes both amygdala activity and its connectivity with a distributed brain network. Early life stress (ELS), especially emotional abuse (EA), is associated with altered reactivity to psychosocial stress in adulthood and moderates or even reverses the stress-attenuating effect of oxytocin (OXT). The neural underpinnings of the interaction between ELS and OXT remain unclear, though. Therefore, we here investigate the joint effect of ELS and OXT on transient changes in amygdala-centered functional connectivity induced by acute psychosocial stress, using a double-blind, randomized, placebo-controlled, within-subject crossover design. Psychophysiological interaction analysis in the placebo session revealed stress-induced increases in functional connectivity between amygdala and medial prefrontal cortex, posterior cingulate cortex, putamen, caudate and thalamus. Regression analysis showed that EA was positively associated with stress-induced changes in connectivity between amygdala and hippocampus. Moreover, hierarchical linear regression showed that this positive association between EA and stress-induced amygdala-hippocampal connectivity was moderated after the administration of intranasal OXT. Amygdala-hippocampal connectivity in the OXT session correlated negatively with cortisol stress responses. Our findings suggest that altered amygdala-hippocampal functional connectivity during psychosocial stress may have a crucial role in the altered sensitivity to OXT effects in individuals who have experienced EA in their childhood.

  2. Amygdala-Hippocampal Connectivity Changes During Acute Psychosocial Stress: Joint Effect of Early Life Stress and Oxytocin.

    PubMed

    Fan, Yan; Pestke, Karin; Feeser, Melanie; Aust, Sabine; Pruessner, Jens C; Böker, Heinz; Bajbouj, Malek; Grimm, Simone

    2015-11-01

    Previous evidence shows that acute stress changes both amygdala activity and its connectivity with a distributed brain network. Early life stress (ELS), especially emotional abuse (EA), is associated with altered reactivity to psychosocial stress in adulthood and moderates or even reverses the stress-attenuating effect of oxytocin (OXT). The neural underpinnings of the interaction between ELS and OXT remain unclear, though. Therefore, we here investigate the joint effect of ELS and OXT on transient changes in amygdala-centered functional connectivity induced by acute psychosocial stress, using a double-blind, randomized, placebo-controlled, within-subject crossover design. Psychophysiological interaction analysis in the placebo session revealed stress-induced increases in functional connectivity between amygdala and medial prefrontal cortex, posterior cingulate cortex, putamen, caudate and thalamus. Regression analysis showed that EA was positively associated with stress-induced changes in connectivity between amygdala and hippocampus. Moreover, hierarchical linear regression showed that this positive association between EA and stress-induced amygdala-hippocampal connectivity was moderated after the administration of intranasal OXT. Amygdala-hippocampal connectivity in the OXT session correlated negatively with cortisol stress responses. Our findings suggest that altered amygdala-hippocampal functional connectivity during psychosocial stress may have a crucial role in the altered sensitivity to OXT effects in individuals who have experienced EA in their childhood. PMID:25924202

  3. Acute and Chronic Exposure to CO2 in Space Flight

    NASA Technical Reports Server (NTRS)

    Alexander, D.; Wu, J.; Barr, Y. R.; Watkins, S. D.

    2010-01-01

    Spacecraft and space stations, similar to other habitable confined spaces such as submarines, need to provide a breathable atmosphere for their inhabitants. The inevitable production of CO2 during respiration necessitates life support systems that "scrub" the atmosphere and lower CO2 levels. Due to operational limitations associated with space flight (limited mass, volume, power, and consumables) CO2 is not scrubbed down to its terrestrial equivalent of 0.03% CO2 (ppCO2 of 0.23 mmHg), but is kept below 0.7% (ppCO2 of 5.3 mmHg), a level established in NASA s 180-day mission Spacecraft Maximum Allowable Concentration (SMAC) to be safe and unlikely to cause symptoms. Reports of space flight crewmembers becoming symptomatic with headaches, fatigue, and malaise at levels below those known to cause such symptoms terrestrially has prompted studies measuring the levels of CO2 on both the space shuttle and the space station. Data from cabin atmosphere sampling were collected on space shuttle missions STS-113, STS-122, STS-123, and International Space Station Expeditions 12-15 and 17, and the measured CO2 levels were then correlated to symptoms reported by the crew. The results indicate that a correlation exists between CO2 levels and symptomatology, however causality cannot be established at this time. While the short-term effects of elevated CO2 exposure are well known terrestrially, less is known regarding potential long-term effects of prolonged exposure to a CO2-rich environment or how the physiological changes caused by microgravity may interact with such exposures. Other challenges include limitations in the CO2 monitors used, lack of convection in the microgravity environment, and formation of localized CO2 pockets. As it is unclear if the unique environment of space increases sensitivity to CO2 or if other confounding factors are present, further research is planned to elucidate these points. At the same time, efforts are underway to update the SMAC to a lower level

  4. Toxicity of white phosphorus to waterfowl: acute exposure in mallards

    USGS Publications Warehouse

    Sparling, D.W.; Gustafson, M.; Klein, P.; Karouna-Renier, N.

    1997-01-01

    As part of an effort to understand extensive, white phosphorus (P4)-induced waterfowl mortality at Eagle River Flats, Fort Richardson, Alaska, we conducted a number of acute toxicity tests using penned mallards (Anas platyrhynchos) in 1993 and 1994. The 24-hr median lethal dose (LD50) for P4 dissolved in oil was 6.46 mg/kg in adult males and 6.96 mg/kg in adult females. Although the median lethal doses were not statistically different, the female dose-response curve had a statistically shallower slope than that of males. The LD50 for the ecologically more relevant pelletized form of P4 in adult males was 4.05 mg/kg. In mallards, one mechanism of P4 toxicity caused rapid (3 to 10 hr) mortality and had signs consistent with anoxia. A second, slower acting mechanism resulted in hepatic and renal pathology including extensive fat deposition in the liver and cellular necrosis. White phosphorus accumulated in adipose tissues, but only for a few days.

  5. Acute theophylline exposure modulates breathing activity through a cervical contusion.

    PubMed

    Hoy, Kevin C; Alilain, Warren J

    2015-09-01

    Cervical spinal contusion injuries are the most common form of spinal cord injury (>50%) observed in humans. These injuries can result in the impaired ability to breathe. In this study we examine the role of theophylline in the rescue of breathing behavior after a cervical spinal contusion. Previous research in the C2 hemisection model has shown that acute administration of theophylline can rescue phrenic nerve activity and diaphragmatic EMG on the side ipsilateral to injury. However, this effect is dependent on intact and uninjured pathways. In this study we utilized a cervical contusion injury model that more closely mimics the human condition. This injury model can determine the effectiveness of therapeutic interventions, in this case theophylline, on the isolated contused pathways of the spinal cord. Three weeks after a 150 kD C3/4 unilateral contusion subjects received a 15 mg/kg dose of theophylline prior to a contralateral C2 hemisection. Subjects that received theophylline were able to effectively utilize damaged pathways to breathe for up to 2 min, while subjects treated with saline were unable to support ventilation. Through these experiments, we demonstrate that theophylline can make injured pathways that mediate breathing more effective and therefore, suggest a potential therapeutic role in the critical time points immediately after injury.

  6. Effect of acute hexavalent chromium exposure on pituitary-thyroid axis of a freshwater fish, Channa punctatus (Bloch).

    PubMed

    Mishra, Ashish K; Mohanty, Banalata

    2015-01-01

    Acute exposure to hexavalent chromium (10 mg L(-1) , 20 mg L(-1) , and 40 mg L(-1) potassium dichromate for 96 h) dose-dependently affected the pituitary-thyroid axis of teleost, Channa punctatus. Significant hypertrophy of the thyroid follicle was observed in 20 mg L(-1) and 40 mg L(-1) groups; the follicular epithelium was however hypertrophied only in 40 mg L(-1) group. The colloid depletion in the lumen of thyroid follicle was evident in 20 mg L(-1) and 40 mg L(-1) groups. Serum thyroid hormones (thyroxine/T4 and triiodothyronine/T3) level increased significantly at both the higher doses. Increased immunointensity and significant hypertrophy of the pituitary thyrotrophs (anti TSHβ-immunoreactive cells) was observed in both 20 mg L(-1) and 40 mg L(-1) chromium-exposed fish. The increased thyroid hormones secretion observed in this study might be an adaptive response of the pituitary-thyroid axis under acute chromium-induced stress condition to maintain homeostasis. The long-term Cr(VI) exposures, however, may lead to attenuation/exhaustion of the pituitary-thyroid axis and pose serious threat to fish health and affect their population.

  7. Effects of acute cigarette smoking on total blood count and markers of oxidative stress in active and passive smokers

    PubMed Central

    Lymperaki, E; Makedou, K; Iliadis, S; Vagdatli, E

    2015-01-01

    Background: Free radicals, as a product of cigarette smoke, are considered to have deleterious effects causing oxidative stress. Acute active smoking seems to be followed by transient leukocytosis and delayed increase in neutrophil activation. The aim of the present study was to investigate the oxidative status of smokers and passive non-smokers, as well as the impact that acute cigarette smoking has on hematological parameters. Methods: Thirty-two healthy volunteers, 16 active smokers (Group A) aged 20-23 years and 16 age-matched, non-smokers (Group B), 18 women and 14 men in total, participated voluntarily in the study. All subjects did not have any food, drink, or cigarette smoking for eight hours before the study. Each time, two active smokers and two non-smokers were exposed simultaneously for half an hour to the smoke of two cigarettes smoked consecutively by the smokers. Blood was drawn before and after the exposure to cigarette smoke. Whole blood was analyzed immediately for total blood count parameters and serum was stored in -70◦C until serum levels of malondialdehyde (MDA) and vitamin E (VitE), and total antioxidant capacity (TAC) were determined. Results: No statistical significant difference was observed in the values of white blood cells and their subpopulations between the two groups and within the same group before and after exposure to cigarette smoke. In the group of smokers, granulocyte/lymphocyte ratio increased significantly, MDA levels showed significant elevation and protective VitE serum levels decreased significantly, whereas TAC was reduced, but not significantly, after the exposure. In the group of passive, non-smokers the results of the blood count parameters, MDA and VitE were similar to Group A, and there was a significant decrease in TAC, as well. Between the two groups, only hematocrit values and MDA levels differed significantly before the exposure to smoke, and no other significant difference was detected before or after the

  8. Copper accumulation and oxidative stress in the sea anemone, Aiptasia pallida, after waterborne copper exposure.

    PubMed

    Main, W P L; Ross, C; Bielmyer, G K

    2010-03-01

    Copper is a common marine pollutant yet its effects on symbiotic cnidarians are largely understudied. To further understand the impact of elevated copper concentrations on marine symbiotic organisms, toxicity tests were conducted using the model sea anemone, Aiptasia pallida, with and without its zooxanthellae symbiont. Symbiotic and aposymbiotic A. pallida were exposed to sublethal copper concentrations (0, 5, 15, and 50 microg/L) for 7d and copper accumulation, behavior, and the activity of the oxidative stress enzymes, superoxide dismutase (SOD), and catalase (CAT) were measured. Additionally, acute 96-h toxicity tests were conducted to determine LC(50) values of the organisms after copper exposure. Both symbiotic and aposymbiotic A. pallida rapidly accumulated copper in a time and dose dependent manner. However, higher copper concentrations accumulated in the aposymbiotic as compared to the symbiotic A. pallida. In response to the highest two copper exposures (15 and 50 microg/L) symbiotic A. pallida upregulated CAT activity to combat the damaging effects of hydrogen peroxide. Contrary to these results, SOD activity significantly decreased during the highest copper exposure, when compared to controls. CAT activity was not detected and SOD was substantially (>10 fold) reduced in aposymbiotic A. pallida, suggesting that the zooxanthellae are associated with the oxidative stress response. Copper exposure as low as 5 microg/L caused tentacle retraction and increased mucus production in both symbiotic and aposymbiotic anemones. The LC(50) values for symbiotic and aposymbiotic A. pallida exposed to copper for 96 h were 148 microg/L (95% confidence interval=126.4, 173.8) and 206 microg/L (95% confidence interval=175.2, 242.2), respectively. Understanding the varying responses of symbiotic and aposymbiotic A. pallida to copper stress may advance our comprehension of the functional roles of zooxanthellae and host. Although the mechanism of copper toxicity has not been

  9. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    PubMed

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  10. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    PubMed

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  11. Acute health effects after exposure to chlorine gas released after a train derailment⋆

    PubMed Central

    Van Sickle, David; Wenck, Mary Anne; Belflower, Amy; Drociuk, Dan; Ferdinands, Jill; Holguin, Fernando; Svendsen, Erik; Bretous, Lena; Jankelevich, Shirley; Gibson, James J.; Garbe, Paul; Moolenaar, Ronald L.

    2015-01-01

    In January 2005, a train derailment on the premises of a textile mill in South Carolina released 42 to 60 tons of chlorine gas in the middle of a small town. Medical records and autopsy reports were reviewed to describe the clinical presentation, hospital course, and pathology observed in persons hospitalized or deceased as a result of chlorine gas exposure. Eight persons died before reaching medical care; of the 71 persons hospitalized for acute health effects as a result of chlorine exposure, 1 died in the hospital. The mean age of the hospitalized persons was 40 years (range, 4 months-76 years); 87% were male. The median duration of hospitalization was 4 days (range, 1-29 days). Twenty-five (35%) persons were admitted to the intensive care unit; the median length of stay was 3 days. Many surviving victims developed significant pulmonary signs and severe airway inflammation; 41 (58%) hospitalized persons met Po2/Fio2 criteria for acute respiratory distress syndrome or acute lung injury. During their hospitalization, 40 (57%) developed abnormal x-ray findings, 74% of those within the first day. Hypoxia on room air and Po2/Fio2 ratio predicted severity of outcome as assessed by the duration of hospitalization and the need for intensive care support. This community release of chlorine gas caused widespread exposure and resulted in significant acute health effects and substantial health care requirements. Pulse oximetry and arterial blood gas analysis provided early indications of outcome severity. PMID:19041527

  12. Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: a model to study Parkinsonism.

    PubMed

    Bonilla-Ramirez, Leonardo; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2011-12-01

    The biometals iron (Fe), manganese (Mn) and copper (Cu) have been associated to Parkinson's disease (PD) and Parkinsonism. In this work, we report for the first time that acute (15 mM for up to 5 days) or chronic (0.5 mM for up to 15 days) Fe, Mn and Cu exposure significantly reduced life span and locomotor activity (i.e. climbing capabilities) in Drosophila melanogaster. It is shown that the concentration of those biometals dramatically increase in Drosophila's brain acutely or chronically fed with metal. We demonstrate that the metal accumulation in the fly's head is associated with the neurodegeneration of several dopaminergic neuronal clusters. Interestingly, it is found that the PPL2ab DAergic neuronal cluster was erode by the three metals in acute and chronic metal exposure and the PPL3 DAergic cluster was also erode by the three metals but in acute metal exposure only. Furthermore, we found that the chelator desferoxamine, ethylenediaminetetraacetic acid, and D: -penicillamine were able to protect but not rescue D. melanogaster against metal intoxication. Taken together these data suggest that iron, manganese and copper are capable to destroy DAergic neurons in the fly's brain, thereby impairing their movement capabilities. This work provides for the first time metal-induced Parkinson-like symptoms in D. melanogaster. Understanding therefore the effects of biometals in the Drosophila model may provide insights into the toxic effect of metal ions and more effective therapeutic approaches to Parkinsonism. PMID:21594680

  13. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    PubMed

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors. PMID:26628398

  14. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    PubMed Central

    Morais-Silva, G.; Fernandes-Santos, J.; Moreira-Silva, D.; Marin, M.T.

    2015-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors. PMID:26628398

  15. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    PubMed

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  16. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    SciTech Connect

    Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.; Andrews, Debora; Schladweiler, Mette C.; Ghio, Andrew J.; Gavett, Stephen H.; Kodavanti, Urmila P.

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  17. Cognitive Processing Therapy for Acute Stress Disorder Resulting from an Anti-Gay Assault

    ERIC Educational Resources Information Center

    Kaysen, Debra; Lostutter, Ty W.; Goines, Marie A.

    2005-01-01

    This case study describes Cognitive Processing Therapy (CPT) with a 30-year-old gay man with symptoms of acute stress disorder (ASD) following a recent homophobic assault. Treatment addressed assault-related posttraumatic stress disorder symptoms and depressive symptoms. Also addressed were low self-esteem, helplessness, and high degrees of…

  18. Sex steroid levels temporarily increase in response to acute psychosocial stress in healthy men and women.

    PubMed

    Lennartsson, Anna-Karin; Kushnir, Mark M; Bergquist, Jonas; Billig, Håkan; Jonsdottir, Ingibjörg H

    2012-06-01

    It is well known that acute psychosocial stress activates the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). However, the effect of acute psychosocial stress on the hypothalamic-pituitary-gonadal (HPG) axis and levels of sex steroids are less known. The aim of this study was to investigate the effect of acute psychosocial stress on serum concentrations of sex steroids in healthy men and women. Twenty men and 19 women (age 30-50 years) underwent Trier Social Stress Test (TSST), a tool for investigating psychobiological stress responses in a laboratory setting. Blood samples were collected before, directly after the stress test, and after 30 min of recovery. Concentrations of androgens were measured with high specificity LC-MS/MS method; concentrations of cortisol, estradiol and sex hormone-binding globulin were determined using immunoassays. In both men and women we observed significantly elevated levels of testosterone, estradiol, androstenedione and sex hormone binding globulin along with significantly increased adrenocorticotropic hormone (ACTH), serum cortisol, heart rate, systolic blood pressure (SBP), and diastolic blood pressure (DBP) as a response to the stressor. Thus, even though the HPG axis and the production of sex steroids may be inhibited during prolonged periods of stress, the sex steroid levels may increase in the initial phase of acute psychosocial stress.

  19. Posttraumatic Stress in U.S. Marines: The Role of Unit Cohesion and Combat Exposure

    ERIC Educational Resources Information Center

    Armistead-Jehle, Patrick; Johnston, Scott L.; Wade, Nathaniel G.; Ecklund, Christofer J.

    2011-01-01

    Combat exposure is a consistent predictor of posttraumatic stress (PTS). Understanding factors that might buffer the effects of combat exposure is crucial for helping service members weather the stress of war. In a study of U.S. Marines returning from Iraq, hierarchical multiple regression analyses revealed that unit cohesion and combat exposure…

  20. Emotion Dysregulation as a Mechanism Linking Stress Exposure to Adolescent Aggressive Behavior

    ERIC Educational Resources Information Center

    Herts, Kate L.; McLaughlin, Katie A.; Hatzenbuehler, Mark L.

    2012-01-01

    Exposure to stress is associated with a wide range of internalizing and externalizing problems in adolescents, including aggressive behavior. Extant research examining mechanisms underlying the associations between stress and youth aggression has consistently identified social information processing pathways that are disrupted by exposure to…

  1. Factors affecting the estimated probabilistic acute dietary exposure to captan from apple consumption.

    PubMed

    Zentai, A; Sali, J; Szabó, I J; Szeitzné-Szabó, M; Ambrus, A; Vásárhelyi, A

    2013-01-01

    The effect of the number of pesticide residue values below the LOQ/LOD of analytical methods, the variability of residues in individual fruits, mass of fruit units and the number of bootstrap iterations was studied on the probabilistically estimated acute exposure of consumers. The 4720 daily apple consumption data and the results of 1239 apple sample analyses for captan residues, performed within the Hungarian monitoring programme between 2005 and 2011, were used in this study as model matrix. Up to about 95th percentile exposure (µg/(kg bw·day)), simply multiplying each residue in composite samples with each consumption value gave similar estimates to those obtained with the complex procedure taking also into account the mass of and residues in individual fruits. However, the exposure above the 95th percentile calculated with the complex procedure gradually increased with increasing percentile level compared to the simple procedure. Including the high number of non-detects reduced the estimated exposure, which was the highest when only the residues measured in treated fruits were taken into account. The number of bootstrap iterations between 100 and 10,000 did not significantly affect the calculated exposure. The 99.99th percentile exposure amounted to 17.9% of the acute reference dose of 300 µg/(kg bw·day) for women of childbearing age.

  2. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus).

    PubMed

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Xi, Lin; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2014-01-01

    Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (P<0.05). However, oxidation status of lipid and protein and expression of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05) and gene expression of all 4 HSF gene expression was upregulated (P<0.05). During chronic heat treatment, the HSP 70 mRNA level was increased (P<0.05) and HSP 90 mRNA (P<0.05) was decreased. In the liver, oxidation of protein was alleviated during acute heat challenge (P<0.05), however, gene expression HSF2, 3 and 4 and HSP 70 were highly induced (P<0.05). HSP90 expression was increased by chronic thermal treatment (P<0.05). In the muscle, both types of heat stress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052) and 90 (P = 0.054) gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.

  3. Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH.

    PubMed

    Engeland, William C; Yoder, J Marina; Karsten, Carley A; Kofuji, Paulo

    2016-01-01

    The adrenal cortex has a molecular clock that generates circadian rhythms in glucocorticoid production, yet it is unclear how the clock responds to acute stress. We hypothesized that stress-induced ACTH provides a signal that phase shifts the adrenal clock. To assess whether acute stress phase shifts the adrenal clock in vivo in a phase-dependent manner, mPER2:LUC mice on a 12:12-h light:dark cycle underwent restraint stress for 15 min or no stress at zeitgeber time (ZT) 2 (early subjective day) or at ZT16 (early subjective night). Adrenal explants from mice stressed at ZT2 showed mPER2:LUC rhythms that were phase-advanced by ~2 h, whereas adrenals from mice stressed at ZT16 showed rhythms that were phase-delayed by ~2 h. The biphasic response was also observed in mice injected subcutaneously either with saline or with ACTH at ZT2 or ZT16. Blockade of the ACTH response with the glucocorticoid, dexamethasone, prevented restraint stress-induced phase shifts in the mPER2:LUC rhythm both at ZT2 and at ZT16. The finding that acute stress results in a phase-dependent shift in the adrenal mPER2:LUC rhythm that can be blocked by dexamethasone indicates that stress-induced effectors, including ACTH, act to phase shift the adrenal clock rhythm. PMID:27445984

  4. Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH

    PubMed Central

    Engeland, William C.; Yoder, J. Marina; Karsten, Carley A.; Kofuji, Paulo

    2016-01-01

    The adrenal cortex has a molecular clock that generates circadian rhythms in glucocorticoid production, yet it is unclear how the clock responds to acute stress. We hypothesized that stress-induced ACTH provides a signal that phase shifts the adrenal clock. To assess whether acute stress phase shifts the adrenal clock in vivo in a phase-dependent manner, mPER2:LUC mice on a 12:12-h light:dark cycle underwent restraint stress for 15 min or no stress at zeitgeber time (ZT) 2 (early subjective day) or at ZT16 (early subjective night). Adrenal explants from mice stressed at ZT2 showed mPER2:LUC rhythms that were phase-advanced by ~2 h, whereas adrenals from mice stressed at ZT16 showed rhythms that were phase-delayed by ~2 h. The biphasic response was also observed in mice injected subcutaneously either with saline or with ACTH at ZT2 or ZT16. Blockade of the ACTH response with the glucocorticoid, dexamethasone, prevented restraint stress-induced phase shifts in the mPER2:LUC rhythm both at ZT2 and at ZT16. The finding that acute stress results in a phase-dependent shift in the adrenal mPER2:LUC rhythm that can be blocked by dexamethasone indicates that stress-induced effectors, including ACTH, act to phase shift the adrenal clock rhythm. PMID:27445984

  5. Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulum stress in rat liver.

    PubMed

    Boden, Guenther; Song, Weiwei; Duan, Xunbao; Cheung, Peter; Kresge, Karen; Barrero, Carlos; Merali, Salim

    2011-07-01

    Endoplasmic reticulum (ER) stress has recently been implicated as a cause for obesity-related insulin resistance; however, what causes ER stress in obesity has remained uncertain. Here, we have tested the hypothesis that macronutrients can cause acute (ER) stress in rat liver. Examined were the effects of intravenously infused glucose and/or lipids on proximal ER stress sensor activation (PERK, eIF2-α, ATF4, Xbox protein 1 (XBP1s)), unfolded protein response (UPR) proteins (GRP78, calnexin, calreticulin, protein disulphide isomerase (PDI), stress kinases (JNK, p38 MAPK) and insulin signaling (insulin/receptor substrate (IRS) 1/2 associated phosphoinositol-3-kinase (PI3K)) in rat liver. Glucose and/or lipid infusions, ranging from 23.8 to 69.5 kJ/4 h (equivalent to between ~17% and ~50% of normal daily energy intake), activated the proximal ER stress sensor PERK and ATF6 increased the protein abundance of calnexin, calreticulin and PDI and increased two GRP78 isoforms. Glucose and glucose plus lipid infusions induced comparable degrees of ER stress, but only infusions containing lipid activated stress kinases (JNK and p38 MAPK) and inhibited insulin signaling (PI3K). In summary, physiologic amounts of both glucose and lipids acutely increased ER stress in livers 12-h fasted rats and dependent on the presence of fat, caused insulin resistance. We conclude that this type of acute ER stress is likely to occur during normal daily nutrient intake.

  6. Cancer Events After Acute or Chronic Exposure to Sulfur Mustard: A Review of the Literature

    PubMed Central

    Razavi, Seyed Mansour; Abdollahi, Mohammad; Salamati, Payman

    2016-01-01

    Background: Sulfur mustard (SM) has been considered as a carcinogen in the laboratory studies. However, its carcinogenic effects on human beings were not well discussed. The main purpose of our study is to assess carcinogenesis of SM following acute and/or chronic exposures in human beings. Methods: The valid scientific English and Persian databases including PubMed, Web of Science, Scopus, IranMedex, and Irandoc were searched and the collected papers reviewed. The used keywords were in two languages: English and Persian. The inclusion criteria were the published original articles indexed in above-mentioned databases. Eleven full-texts out of 296 articles were found relevant and then assessed. Results: Studies on the workers of the SM factories during the World Wars showed that the long-term chronic exposure to mustards can cause a variety of cancers in the organs such as oral cavity, larynx, lung, and skin. Respiratory system was the most important affected system. Acute single exposure to SM was assumed as the carcinogenic inducer in the lung and blood and for few cancers including basal cell carcinoma and squamous cell carcinoma. Conclusions: SM is a proven carcinogen in chronic situations although data are not enough to strongly conclude in acute exposure. PMID:27280012

  7. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure.

    PubMed

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-05-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism.

  8. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure

    PubMed Central

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-01-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395

  9. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure.

    PubMed

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-05-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395

  10. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    PubMed Central

    Delgado, Alejandra; Jaffé, Erica H.

    2011-01-01

    We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ. PMID:21785597

  11. The effect of obesity on inflammatory cytokine and leptin production following acute mental stress.

    PubMed

    Caslin, H L; Franco, R L; Crabb, E B; Huang, C J; Bowen, M K; Acevedo, E O

    2016-02-01

    Obesity may contribute to cardiovascular disease (CVD) risk by eliciting chronic systemic inflammation and impairing the immune response to additional stressors. There has been little assessment of the effect of obesity on psychological stress, an independent risk factor for CVD. Therefore, it was of interest to examine interleukin-6, tumor necrosis factor-α, interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), and leptin following an acute mental stress task in nonobese and obese males. Twenty college-aged males (21.3 ± 0.56 years) volunteered to participate in a 20-min Stroop color-word and mirror-tracing task. Subjects were recruited for obese (body mass index: BMI > 30) and nonobese (BMI < 25) groups, and blood samples were collected for enzyme-linked immunosorbent assay analysis. The acute mental stress task elicited an increase in heart rate, catecholamines, and IL-1β in all subjects. Additionally, acute mental stress increased cortisol concentrations in the nonobese group. There was a significant reduction in leptin in obese subjects 30 min posttask compared with a decrease in nonobese subjects 120 min posttask. Interestingly, the relationship between the percent change in leptin and IL-1Ra at 120 min posttask in response to an acute mental stress task was only observed in nonobese individuals. This is the first study to suggest that adiposity in males may impact leptin and inflammatory signaling mechanisms following acute mental stress.

  12. The effect of obesity on inflammatory cytokine and leptin production following acute mental stress.

    PubMed

    Caslin, H L; Franco, R L; Crabb, E B; Huang, C J; Bowen, M K; Acevedo, E O

    2016-02-01

    Obesity may contribute to cardiovascular disease (CVD) risk by eliciting chronic systemic inflammation and impairing the immune response to additional stressors. There has been little assessment of the effect of obesity on psychological stress, an independent risk factor for CVD. Therefore, it was of interest to examine interleukin-6, tumor necrosis factor-α, interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), and leptin following an acute mental stress task in nonobese and obese males. Twenty college-aged males (21.3 ± 0.56 years) volunteered to participate in a 20-min Stroop color-word and mirror-tracing task. Subjects were recruited for obese (body mass index: BMI > 30) and nonobese (BMI < 25) groups, and blood samples were collected for enzyme-linked immunosorbent assay analysis. The acute mental stress task elicited an increase in heart rate, catecholamines, and IL-1β in all subjects. Additionally, acute mental stress increased cortisol concentrations in the nonobese group. There was a significant reduction in leptin in obese subjects 30 min posttask compared with a decrease in nonobese subjects 120 min posttask. Interestingly, the relationship between the percent change in leptin and IL-1Ra at 120 min posttask in response to an acute mental stress task was only observed in nonobese individuals. This is the first study to suggest that adiposity in males may impact leptin and inflammatory signaling mechanisms following acute mental stress. PMID:26511907

  13. Hormone levels in neonatal hair reflect prior maternal stress exposure during pregnancy.

    PubMed

    Kapoor, Amita; Lubach, Gabriele R; Ziegler, Toni E; Coe, Christopher L

    2016-04-01

    Hormones present in hair provide summative information about endocrine activity while the hair was growing. Therefore, it can be collected from an infant after birth and still provide retrospective information about hormone exposure during prenatal development. We employed this approach to determine whether a delimited period of maternal stress during pregnancy affected the concentrations of glucocorticoids and gonadal hormones in the hair of neonatal rhesus monkeys. Hair from 22 infant monkeys exposed to 5 weeks of gestational disturbance was compared to specimens from 13 infants from undisturbed control pregnancies. Using an LC/MS/MS based technique, which permitted seven steroid hormones to be quantified simultaneously, we found 2 hormones were significantly different in infants from disturbed pregnancies. Cortisol and testosterone levels were lower in the hair of both male and female neonates. Maternal hair hormone levels collected on the same day after delivery no longer showed effects of the disturbance earlier during pregnancy. This study documents that a period of acute stress, lasting for 20% of gestation, has sustained effects on the hormones to which a developing fetus is exposed. PMID:26802598

  14. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior.

    PubMed

    Amin, Shaimaa Nasr; El-Aidi, Ahmed Amro; Ali, Mohamed Mostafa; Attia, Yasser Mahmoud; Rashed, Laila Ahmed

    2015-06-01

    Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.

  15. Effects of Acute Exposures to Carbon Dioxide Upon Cognitive Functions

    NASA Technical Reports Server (NTRS)

    Scully, R. R.; Alexander, D. J.; Ryder, V. E.; Lam, C. W.; Statish, U.; Basner, M.

    2016-01-01

    Large quantities of carbon dioxide (CO2) originate from human metabolism and typically, within spacecraft, remain about 10-fold higher in concentration than at the earth's surface. There have been recurring complaints by crew members of episodes of "mental viscosity" adversely affecting their performance, and there is evidence from the International Space Station (ISS) that associates CO2 levels with reports of headaches by crewmembers. Additionally, there is concern that CO2 may contribute to vision impairment and intracranial pressure that has been observed in some crewmembers. Consequently, flight rules have been employed to control the level of CO2 below 4 mm Hg, which is well below the existing Spacecraft Maximum Allowable Concentration (SMAC) of 10 mm Hg for 24-hour exposures, and 5.3 mm Hg for exposures of 7 to 180 days. However, the flight rule imposed limit, which places additional demands upon resources and current technology, still exceeds the lower bound of the threshold range for reportable headaches (2 - 5 mm Hg). Headaches, while sometime debilitating themselves, are also symptoms that can provide evidence that physiological defense mechanisms have been breached. The causes of the headaches may elicit other subtle adverse effects that occur at CO2 levels well below that for headaches. The concern that CO2 may have effects at levels below the threshold for headaches appears to be substantiated in unexpected findings that CO2 at concentrations below 2 mm Hg substantially reduced some cognitive functions that are associated with the ability to make complex decisions in conditions that are characterized by volatility, uncertainty, complexity, ambiguity, and delayed feedback. These are conditions that could be encountered by crews in off-nominal situations or during the first missions beyond low earth orbit. If findings of the earlier study are confirmed in crew-like subjects, our findings would provide additional evidence that CO2 may need to be

  16. Hyper-responsiveness to acute stress, emotional problems and poorer memory in former preterm children.

    PubMed

    Quesada, Andrea A; Tristão, Rosana M; Pratesi, Riccardo; Wolf, Oliver T

    2014-09-01

    The prevalence of preterm birth (PTB) is high worldwide, especially in developing countries like Brazil. PTB is marked by a stressful environment in intra- as well as extrauterine life, which can affect neurodevelopment and hormonal and physiological systems and lead to long-term negative outcomes. Nevertheless, little is known about PTB and related outcomes later on in childhood. Thus, the goals of the current study were threefold: (1) comparing cortisol and alpha-amylase (sAA) profiles, including cortisol awakening response (CAR), between preterm and full-term children; (2) evaluating whether preterm children are more responsive to acute stress and (3) assessing their memory skills and emotional and behavioral profiles. Basal cortisol and sAA profiles, including CAR of 30 preterm children, aged 6 to 10 years, were evaluated. Further, we assessed memory functions using the Wide Range Assessment of Memory and Learning, and we screened behavior/emotion using the Strengths and Difficulties Questionnaire. The results of preterm children were compared to an age- and sex-matched control group. One week later, participants were exposed to a standardized laboratory stressor [Trier Social Stress Test for Children (TSST-C)], in which cortisol and sAA were measured at baseline, 1, 10 and 25 min after stressor exposure. Preterm children had higher cortisol concentrations at awakening, a flattened CAR and an exaggerated response to TSST-C compared to full-term children. These alterations were more pronounced in girls. In addition, preterm children were characterized by more emotional problems and poorer memory performance. Our findings illustrate the long-lasting and in part sex-dependent effects of PTB on the hypothalamic-pituitary-adrenal (HPA) axis, internalizing behavior and memory. The findings are in line with the idea that early adversity alters the set-point of the HPA axis, thereby creating a more vulnerable phenotype.

  17. Effect of acute and chronic arsenic exposure on growth, structure and virulence of Aeromonas hydrophila isolated from fish.

    PubMed

    Goswami, Ramansu; Ghosh, Debabrata; Saha, Dhira Rani; Padhy, Pratap Kumar; Mazumder, Shibnath

    2011-02-01

    Aeromonas hydrophila being a ubiquitous bacterium is prone to arsenic exposure. The present study was designed to determine the role of arsenic on growth and virulence of A. hydrophila. Exposure to arsenic (1 mg L(-1) and 2 mg L(-1)) had no effect on growth but significantly inhibited the hemolytic and cytotoxic potential of exposed bacteria. Transmission electron microscopy revealed loss of membrane integrity and presence of condensed cytoplasm suggestive of acute stress in bacteria exposed to arsenic. Arsenic-adapted bacteria were developed by repeated sub-culturing in presence of arsenic. Arsenic-adaptation led to significant recovery in hemolytic and cytotoxic potential. The arsenic-adapted bacteria exhibited normal membrane integrity, decreased cytoplasmic condensation and possessed scattered polysome like structures in the cytoplasm. A positive correlation was observed between arsenic tolerance and resistance to several antimicrobials. Arsenic-adaptation failed to confer cross-protection to mercury and cadmium stress. SDS-PAGE analysis revealed the expression of two new proteins of approximately 85 kDa and 79 kDa respectively in arsenic-adapted A. hydrophila. Plasmid-curing and transformation studies clearly indicate plasmid has no role on arsenic resistance trait of the bacteria. Our study, for the first time, reports a structure and function relationship of xenobiotics on bacteria.

  18. Species specificity in the magnitude and duration of the acute stress response in Mediterranean marine fish in culture.

    PubMed

    Fanouraki, E; Mylonas, C C; Papandroulakis, N; Pavlidis, M

    2011-09-01

    The aim of the present study was to examine the species-specific stress response for seven Mediterranean fishes in culture. Also, to evaluate the method of measuring free cortisol concentration in the rearing water as a non-invasive and reliable indicator of stress in marine species, of aquaculture importance. Gilthead sea bream, Sparus aurata (Sparidae); common dentex, Dentex dentex (Sparidae); common Pandora, Pagellus erythrinus (Sparidae); sharpsnout sea bream, Diplodus puntazzo (Sparidae); dusky grouper, Epinephelus marginatus (Serranidae); meagre, Argyrosomus regius (Sciaenidae) and European sea bass, Dicentrarchus labrax (Moronidae) were subjected to identical acute stress (5-6 min chasing and 1-1.5 min air exposure) under the same environmental conditions and samples were analyzed by the same procedures. Results indicated that there was a clear species-specificity in the magnitude, timing and duration of the stress response in terms of cortisol, glucose and lactate. European sea bass showed a very high response and dusky grouper and meagre a very low response, except plasma glucose concentrations of dusky grouper which was constantly high, while sharpsnout sea bream presented a protracted stress response, up to 8h. The present study confirmed that free cortisol release rate into the water can be used as a reliable stress indicator. PMID:21712040

  19. Oxidative stress response to acute hypobaric hypoxia and its association with indirect measurement of increased intracranial pressure: a field study

    PubMed Central

    Strapazzon, Giacomo; Malacrida, Sandro; Vezzoli, Alessandra; Dal Cappello, Tomas; Falla, Marika; Lochner, Piergiorgio; Moretti, Sarah; Procter, Emily; Brugger, Hermann; Mrakic-Sposta, Simona

    2016-01-01

    High altitude is the most intriguing natural laboratory to study human physiological response to hypoxic conditions. In this study, we investigated changes in reactive oxygen species (ROS) and oxidative stress biomarkers during exposure to hypobaric hypoxia in 16 lowlanders. Moreover, we looked at the potential relationship between ROS related cellular damage and optic nerve sheath diameter (ONSD) as an indirect measurement of intracranial pressure. Baseline measurement of clinical signs and symptoms, biological samples and ultrasonography were assessed at 262 m and after passive ascent to 3830 m (9, 24 and 72 h). After 24 h the imbalance between ROS production (+141%) and scavenging (−41%) reflected an increase in oxidative stress related damage of 50–85%. ONSD concurrently increased, but regression analysis did not infer a causal relationship between oxidative stress biomarkers and changes in ONSD. These results provide new insight regarding ROS homeostasis and potential pathophysiological mechanisms of acute exposure to hypobaric hypoxia, plus other disease states associated with oxidative-stress damage as a result of tissue hypoxia. PMID:27579527

  20. Oxidative stress response to acute hypobaric hypoxia and its association with indirect measurement of increased intracranial pressure: a field study.

    PubMed

    Strapazzon, Giacomo; Malacrida, Sandro; Vezzoli, Alessandra; Dal Cappello, Tomas; Falla, Marika; Lochner, Piergiorgio; Moretti, Sarah; Procter, Emily; Brugger, Hermann; Mrakic-Sposta, Simona

    2016-01-01

    High altitude is the most intriguing natural laboratory to study human physiological response to hypoxic conditions. In this study, we investigated changes in reactive oxygen species (ROS) and oxidative stress biomarkers during exposure to hypobaric hypoxia in 16 lowlanders. Moreover, we looked at the potential relationship between ROS related cellular damage and optic nerve sheath diameter (ONSD) as an indirect measurement of intracranial pressure. Baseline measurement of clinical signs and symptoms, biological samples and ultrasonography were assessed at 262 m and after passive ascent to 3830 m (9, 24 and 72 h). After 24 h the imbalance between ROS production (+141%) and scavenging (-41%) reflected an increase in oxidative stress related damage of 50-85%. ONSD concurrently increased, but regression analysis did not infer a causal relationship between oxidative stress biomarkers and changes in ONSD. These results provide new insight regarding ROS homeostasis and potential pathophysiological mechanisms of acute exposure to hypobaric hypoxia, plus other disease states associated with oxidative-stress damage as a result of tissue hypoxia. PMID:27579527

  1. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    PubMed Central

    Hacioglu, Gulay; Senturk, Ayse; Ince, Imran; Alver, Ahmet

    2016-01-01

    Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT) and superoxide dismutase (SOD) enzymes, and the amount of malondialdehyde (MDA) were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain. PMID:27279982

  2. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  3. Acute exposure to 2,4-dinitrophenol alters zebrafish swimming performance and whole body triglyceride levels.

    PubMed

    Marit, Jordan S; Weber, Lynn P

    2011-06-01

    While swimming endurance (critical swimming speed or U(crit)) and lipid stores have both been reported to acutely decrease after exposure to a variety of toxicants, the relationship between these endpoints has not been clearly established. In order to examine these relationships, adult zebrafish (Danio rerio) were aqueously exposed to solvent control (ethanol) or two nominal concentrations of 2,4-dinitrophenol (DNP), a mitochondrial electron transport chain uncoupler, for a 24-h period. Following exposure, fish were placed in a swim tunnel in clean water for swimming testing or euthanized immediately without testing, followed by analysis of whole body triglyceride levels. U(crit) decreased in both the 6 mg/L and 12 mg/L DNP groups, with 12 mg/L approaching the LC₅₀. A decrease in tail beat frequency was observed without a significant change in tail beat amplitude. In contrast, triglyceride levels were elevated in a concentration-dependent manner in the DNP exposure groups, but only in fish subjected to swimming tests. This increase in triglyceride stores may be due to a direct interference of DNP on lipid catabolism as well as increased triglyceride production when zebrafish were subjected to the co-stressors of swimming and toxicant exposure. Future studies should be directed at determining how acute DNP exposure combines with swimming to cause alterations in triglyceride accumulation. PMID:21406246

  4. Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl

    USGS Publications Warehouse

    Bridges, C.M.

    1997-01-01

    General activity and swimming performance (i.e., sprint speed and distance) of plains leopard frog tadpoles (Rana blairi) were examined after acute exposure to three sublethal concentrations of carbaryl (3.5, 5.0, and 7.2 mg/L). Both swimming performance and spontaneous swimming activity are important for carrying out life history functions (e.g., growth and development) and for escaping from predators. Measured tadpole activity diminished by nearly 90% at 3.5 mg/L carbaryl and completely ceased at 7.2 mg/L. Sprint speed and sprint distance also decreased significantly following exposure. Carbaryl affected both swimming performance and activity after just 24 h, suggesting that 24 h may be an adequate length of exposure to determine behavioral effects on tadpoles. Slight recovery of activity levels was noted at 24 and 48 h post-exposure; no recovery of swimming performance was observed. Reduction in activity and swimming performance may result in increased predation rates and, because activity is closely associated with feeding, may result in slowed growth leading to a failure to emerge before pond drying or an indirect reduction in adult fitness. Acute exposure to sublethal toxicants such as carbaryl may not only affect immediate survival of tadpoles but also impact critical life history functions and generate changes at the local population level.

  5. [Acute-onset thrombocytopenia following single inhalation xylene exposure--a case report].

    PubMed

    Siwek-Iwanicka, Jolanta; Chwaluk, Agnieszka

    2013-01-01

    Bone marrow damage is a well known consequence of chronic exposure to benzene and its homologues, which include xylene. Anemia dominates in the clinical picture and isolated thrombocytopenia is a rare symptom. We have not found reports of isolated thrombocytopenia in the course of acute xylene poisoning. A 56-years old man with thrombocytopenia, was admitted, after two days of work with concrete floor paint containing up to 17% xylene. The thrombocytes' nadir (29 x 10(9)/L) occurred on the fourth day from the exposure. After treatment with dexamethasone the platelet count normalized. There were no signs of hemorrhagic diathesis. Clinicians should be aware of the possibility of thrombocytopenia in patients acutely exposed to xylene.

  6. Sleep Alterations Following Exposure to Stress Predict Fear-Associated Memory Impairments in a Rodent Model of PTSD

    PubMed Central

    Vanderheyden, William M.; George, Sophie A.; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R.

    2015-01-01

    Sleep abnormalities such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of post-traumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating these sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stress exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops in rats. SPS resulted in acutely increased REM sleep, transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. We also report reductions in theta (4–10 Hz) and sigma (10–15 Hz) band power during transition to REM sleep which also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  7. Glucocorticoids Protect Against the Delayed Behavioral and Cellular Effects of Acute Stress on the Amygdala

    PubMed Central

    Rao, Rajnish P.; Anilkumar, Shobha; McEwen, Bruce; Chattarji, Sumantra

    2013-01-01

    Background A single episode of acute immobilization stress has previously been shown to trigger a delayed onset of anxiety-like behavior and spinogenesis in the basolateral amygdala (BLA) of rats. Spurred on by a seemingly paradoxical observation in which even a modest increase in corticosterone (CORT), caused by a single vehicle injection before stress, could dampen the delayed effects of stress, we hypothesized a protective role for glucocorticoids against stress. Methods We tested this hypothesis by analyzing how manipulations in CORT levels modulate delayed increase in anxiety-like behavior of rats on the elevated plus-maze 10 days after acute stress. We also investigated the cellular correlates of different levels of anxiety under different CORT conditions by quantifying spine density on Golgi-stained BLA principal neurons. Results CORT in drinking water for 12 hours preceding acute stress prevented delayed increase in anxiety rather than exacerbating it. Conversely, vehicle injection failed to prevent the anxiogenic effect of stress in bilaterally adrenalectomized rats. However, when CORT was restored in adrenalectomized rats by injection, the delayed anxiogenic effect of stress was once again blocked. Finally, high and low anxiety states were accompanied by high and low levels of BLA spine density. Conclusions Our findings suggest that the presence of elevated levels of CORT at the time of acute stress confers protection against the delayed enhancing effect of stress on BLA synaptic connectivity and anxiety-like behavior. These observations are consistent with clinical reports on the protective effects of glucocorticoids against the development of posttraumatic symptoms triggered by traumatic stress. PMID:22572034

  8. Effects of dark chocolate consumption on the prothrombotic response to acute psychosocial stress in healthy men.

    PubMed

    von Känel, R; Meister, R E; Stutz, M; Kummer, P; Arpagaus, A; Huber, S; Ehlert, U; Wirtz, P H

    2014-12-01

    Flavanoid-rich dark chocolate consumption benefits cardiovascular health, but underlying mechanisms are elusive. We investigated the acute effect of dark chocolate on the reactivity of prothrombotic measures to psychosocial stress. Healthy men aged 20-50 years (mean ± SD: 35.7 ± 8.8) were assigned to a single serving of either 50 g of flavonoid-rich dark chocolate (n=31) or 50 g of optically identical flavonoid-free placebo chocolate (n=34). Two hours after chocolate consumption, both groups underwent an acute standardised psychosocial stress task combining public speaking and mental arithmetic. We determined plasma levels of four stress-responsive prothrombotic measures (i. e., fibrinogen, clotting factor VIII activity, von Willebrand Factor antigen, fibrin D-dimer) prior to chocolate consumption, immediately before and after stress, and at 10 minutes and 20 minutes after stress cessation. We also measured the flavonoid epicatechin, and the catecholamines epinephrine and norepinephrine in plasma. The dark chocolate group showed a significantly attenuated stress reactivity of the hypercoagulability marker D-dimer (F=3.87, p=0.017) relative to the placebo chocolate group. Moreover, the blunted D-dimer stress reactivity related to higher plasma levels of the flavonoid epicatechin assessed before stress (F=3.32, p = 0.031) but not to stress-induced changes in catecholamines (p's=0.35). There were no significant group differences in the other coagulation measures (p's≥0.87). Adjustments for covariates did not alter these findings. In conclusion, our findings indicate that a single consumption of flavonoid-rich dark chocolate blunted the acute prothrombotic response to psychosocial stress, thereby perhaps mitigating the risk of acute coronary syndromes triggered by emotional stress.

  9. Diazepam blocks striatal lipid peroxidation and improves stereotyped activity in a rat model of acute stress.

    PubMed

    Méndez-Cuesta, Luis A; Márquez-Valadez, Berenice; Pérez-De La Cruz, Verónica; Escobar-Briones, Carolina; Galván-Arzate, Sonia; Alvarez-Ruiz, Yarummy; Maldonado, Perla D; Santana, Ricardo A; Santamaría, Abel; Carrillo-Mora, Paul

    2011-11-01

    In this work, the effect of a single dose of diazepam was tested on different markers of oxidative damage in the striatum of rats in an acute model of immobilization (restraint) stress. In addition, the locomotor activity was measured at the end of the restraint period. Immobilization was induced to animals for 24 hr, and then, lipid peroxidation, superoxide dismutase activity and content, and mitochondrial function were all estimated in striatal tissue samples. Corticosterone levels were measured in serum. Diazepam was given to rats as a pre-treatment (1 mg/kg, i.p.) 20 min. before the initiation of stress. Our results indicate that acute stress produced enhanced striatal levels of lipid peroxidation (73% above the control), decreased superoxide dismutase activity (54% below the control), reduced levels of mitochondrial function (35% below the control) and increased corticosterone serum levels (86% above the control). Pre-treatment of stressed rats with diazepam decreased the striatal lipid peroxidation levels (68% below the stress group) and improved mitochondrial function (18% above the stress group), but only mild preservation of superoxide dismutase activity was detected (17% above the stress group). In regard to the motor assessment, only the stereotyped activity was increased in the stress group with respect to control (46% above the control), and this effect was prevented by diazepam administration (30% below the stress group). The preventive actions of diazepam in this acute model of stress suggest that drugs exhibiting anxiolytic and antioxidant properties might be useful for the design of therapies against early acute phases of physic stress.

  10. Evaluation of single and joint toxicity of perfluorooctane sulfonate and zinc to Limnodrilus hoffmeisteri: Acute toxicity, bioaccumulation and oxidative stress.

    PubMed

    Liu, Jiaoqin; Qu, Ruijuan; Yan, Liqing; Wang, Liansheng; Wang, Zunyao

    2016-01-15

    Perfluorooctane sulfonate (PFOS) and zinc have been detected in aquatic environment widely. In order to study the combined effects of PFOS and Zn, a series of experiments was conducted to explore the acute mortality, bioaccumulation and antioxidant status of Limnodrilus hoffmeisteri. The acute toxicity was evaluated by calculating 24h-EC50 values, and it was observed that 24h-EC50 values in single and joint treatments decreased with decreasing pH value or increasing exposure concentration. Toxic unit analysis suggested that the combined effects of the PFOS+Zn binary mixture were mostly simple addition, with 8 groups showing synergism and only one group showing antagonism. The analysis of internal Zn and PFOS concentration showed that the possible interaction between Zn and PFOS can affect the bioaccumulation of the two chemicals in L. hoffmeisteri. In addition, oxidative stress status was assessed by measuring oxidation-related biochemical parameters such as superoxide dismutase, glutathione peroxidase and malondialdehyde, and the integrated biomarker response index was estimated to rank the toxicity order. Exposures to Zn and PFOS were found to evoke some changes in the antioxidant defense system, and a strong self-adaptive ability was noticed for L. hoffmeisteri after 10 d exposure.

  11. Acute and chronic toxicity of sodium sulfate to four freshwater organisms in water-only exposures

    USGS Publications Warehouse

    Wang, Ning; Consbrock, Rebecca A.; Ingersoll, Christopher G.; Hardesty, Douglas K.; Brumbaugh, William G.; Hammer, Edward J.; Bauer, Candice R.; Mount, David R.

    2016-01-01

    The acute and chronic toxicity of sulfate (tested as sodium sulfate) was determined in diluted well water (hardness of 100 mg/L and pH 8.2) with a cladoceran (Ceriodaphnia dubia; 2-d and 7-d exposures), a midge (Chironomus dilutus; 4-d and 41-d exposures), a unionid mussel (pink mucket, Lampsilis abrupta; 4-d and 28-d exposures), and a fish (fathead minnow, Pimephales promelas; 4-d and 34-d exposures). Among the 4 species, the cladoceran and mussel were acutely more sensitive to sulfate than the midge and fathead minnow, whereas the fathead minnow was chronically more sensitive than the other 3 species. Acute-to-chronic ratios ranged from 2.34 to 5.68 for the 3 invertebrates but were as high as 12.69 for the fish. The fathead minnow was highly sensitive to sulfate during the transitional period from embryo development to hatching in the diluted well water, and thus, additional short-term (7- to 14-d) sulfate toxicity tests were conducted starting with embryonic fathead minnow in test waters with different ionic compositions at a water hardness of 100 mg/L. Increasing chloride in test water from 10 mg Cl/L to 25 mg Cl/L did not influence sulfate toxicity to the fish, whereas increasing potassium in test water from 1mg K/L to 3mg K/L substantially reduced the toxicity of sulfate. The results indicate that both acute and chronic sulfate toxicity data, and the influence of potassium on sulfate toxicity to fish embryos, need to be considered when environmental guidance values for sulfate are developed or refined.

  12. Acute and chronic toxicity of sodium sulfate to four freshwater organisms in water-only exposures

    USGS Publications Warehouse

    Wang, Ning; Consbrock, Rebecca A.; Ingersoll, Christopher G.; Hardesty, Douglas K.; Brumbaugh, William G.; Hammer, Edward J.; Bauer, Candice R.; Mount, David R.

    2015-01-01

    The acute and chronic toxicity of sulfate (tested as sodium sulfate) was determined in diluted well water (hardness of 100 mg/L and pH 8.2) with a cladoceran (Ceriodaphnia dubia; 2-d and 7-d exposures), a midge (Chironomus dilutus; 4-d and 41-d exposures), a unionid mussel (pink mucket, Lampsilis abrupta; 4-d and 28-d exposures), and a fish (fathead minnow, Pimephales promelas; 4-d and 34-d exposures). Among the 4 species, the cladoceran and mussel were acutely more sensitive to sulfate than the midge and fathead minnow, whereas the fathead minnow was chronically more sensitive than the other 3 species. Acute-to-chronic ratios ranged from 2.34 to 5.68 for the 3 invertebrates but were as high as 12.69 for the fish. The fathead minnow was highly sensitive to sulfate during the transitional period from embryo development to hatching in the diluted well water, and thus, additional short-term (7- to 14-d) sulfate toxicity tests were conducted starting with embryonic fathead minnow in test waters with different ionic compositions at a water hardness of 100 mg/L. Increasing chloride in test water from 10 mg Cl/L to 25 mg Cl/L did not influence sulfate toxicity to the fish, whereas increasing potassium in test water from 1mg K/L to 3mg K/L substantially reduced the toxicity of sulfate. The results indicate that both acute and chronic sulfate toxicity data, and the influence of potassium on sulfate toxicity to fish embryos, need to be considered when environmental guidance values for sulfate are developed or refined.

  13. Acute and chronic toxicity of sodium sulfate to four freshwater organisms in water-only exposures.

    PubMed

    Wang, Ning; Dorman, Rebecca A; Ingersoll, Christopher G; Hardesty, Doug K; Brumbaugh, William G; Hammer, Edward J; Bauer, Candice R; Mount, David R

    2016-01-01

    The acute and chronic toxicity of sulfate (tested as sodium sulfate) was determined in diluted well water (hardness of 100 mg/L and pH 8.2) with a cladoceran (Ceriodaphnia dubia; 2-d and 7-d exposures), a midge (Chironomus dilutus; 4-d and 41-d exposures), a unionid mussel (pink mucket, Lampsilis abrupta; 4-d and 28-d exposures), and a fish (fathead minnow, Pimephales promelas; 4-d and 34-d exposures). Among the 4 species, the cladoceran and mussel were acutely more sensitive to sulfate than the midge and fathead minnow, whereas the fathead minnow was chronically more sensitive than the other 3 species. Acute-to-chronic ratios ranged from 2.34 to 5.68 for the 3 invertebrates but were as high as 12.69 for the fish. The fathead minnow was highly sensitive to sulfate during the transitional period from embryo development to hatching in the diluted well water, and thus, additional short-term (7- to 14-d) sulfate toxicity tests were conducted starting with embryonic fathead minnow in test waters with different ionic compositions at a water hardness of 100 mg/L. Increasing chloride in test water from 10 mg Cl/L to 25 mg Cl/L did not influence sulfate toxicity to the fish, whereas increasing potassium in test water from 1 mg K/L to 3 mg K/L substantially reduced the toxicity of sulfate. The results indicate that both acute and chronic sulfate toxicity data, and the influence of potassium on sulfate toxicity to fish embryos, need to be considered when environmental guidance values for sulfate are developed or refined.

  14. Alteration in Memory and Electroencephalogram Waves with Sub-acute Noise Stress in Albino Rats and Safeguarded by Scoparia dulcis

    PubMed Central

    Loganathan, Sundareswaran; Rathinasamy, Sheeladevi

    2016-01-01

    Background: Noise stress has different effects on memory and novelty and the link between them with an electroencephalogram (EEG) has not yet been reported. Objective: To find the effect of sub-acute noise stress on the memory and novelty along with EEG and neurotransmitter changes. Materials and Methods: Eight-arm maze (EAM) and Y-maze to analyze the memory and novelty by novel object test. Four groups of rats were used: Control, control treated with Scoparia dulcis extract, noise exposed, and noise exposed which received Scoparia extract. Results: The results showed no marked difference observed between control and control treated with Scoparia extract on EAM, Y-maze, novel object test, and EEG in both prefrontal and occipital region, however, noise stress exposed rats showed significant increase in the reference memory and working memory error in EAM and latency delay, triad errors in Y-maze, and prefrontal and occipital EEG frequency rate with the corresponding increase in plasma corticosterone and epinephrine, and significant reduction in the novelty test, and significant reduction in the novelty test, amplitude of prefrontal, occipital EEG, and acetylcholine. Conclusion: These noise stress induced changes in EAM, Y-maze, novel object test, and neurotransmitters were significantly prevented when treated with Scoparia extract and these changes may be due to the normalizing action of Scoparia extract on the brain, which altered due to noise stress. SUMMARY Noise stress exposure causes EEG, behavior, and neurotransmitter alteration in the frontoparietal and occipital regions mainly involved in planning and recognition memoryOnly the noise stress exposed animals showed the significant alteration in the EEG, behavior, and neurotransmittersHowever, these noise stress induced changes in EEG behavior and neurotransmitters were significantly prevented when treated with Scoparia extractThese changes may be due to the normalizing action of Scoparia dulcis (adoptogen) on

  15. The effects of acute and chronic stress on motor and sensory performance in male Lewis rats.

    PubMed

    Metz, G A; Schwab, M E; Welzl, H

    2001-01-01

    Any behavioral testing induces stress to some degree. A meaningful interpretation of behavioral results can be difficult if stress, caused by handling or the testing situation, modifies the experimental outcome. Especially for neurological animal models, it is important to know how stress affects motor and sensory performance. Therefore, we investigated the effects of varying degrees of stress on several motor and sensory tasks that are frequently used to assess functional recovery after lesion-induced impairments in adult rats. Acute, subchronic, and chronic stress impaired ladder walking and prolonged the duration of grasping a bar. Stress also altered walking patterns by increasing the base of support and foot rotation and reducing stride length. Furthermore, chronic stress induced hypersensitivity to painful stimuli, but did not significantly influence the latency to remove sticky papers from the hindpaws (sticky paper test). In the light--dark (L/D) test, stress reduced the latency to enter the dark compartment and enhanced the number of transitions supporting that cold swim stress modifies the animal's level of anxiety. These data point towards a critical influence of acute or chronic stress on motor control and sensory performance of rats, suggesting that stress might be a critical intervening variable of the outcome of behavioral tests. PMID:11239978

  16. The acute glucocorticoid stress response does not differentiate between rewarding and aversive social stimuli in rats.

    PubMed

    Buwalda, Bauke; Scholte, Jan; de Boer, Sietse F; Coppens, Caroline M; Koolhaas, Jaap M

    2012-02-01

    The mere presence of elevated plasma levels of corticosterone is generally regarded as evidence of compromised well-being. However, environmental stimuli do not necessarily need to be of a noxious or adverse nature to elicit activation of the stress response systems. In the present study, the physiological and neuroendocrine responses to repeated social stimuli that can be regarded as emotional opposites, i.e. social defeat and sexual behavior, were compared. Similar corticosterone responses were observed in animals confronted for the first time with either a highly aggressive male intruder or a receptive female, but a decrease was noticed in defeated rats tested during a third interaction. Only if animals are being physically attacked does the corticosterone response remain similar to the one observed during sexual behavior. In addition, the number of activated cells in the parvocellular hypothalamic paraventricular nucleus, as visualized by c-Fos immunocytochemistry, shows no difference between rats 1h after the third exposure to defeat or sex. Finally, biotelemetric recordings of heart rate, body temperature and locomotor activity show a robust response to both social stimuli that is generally, however, higher in animals being confronted with a receptive female. The data clearly indicate that acute plasma corticosterone levels are not reflecting the emotional valence of a salient stimulus. The magnitude of the response seems to be a direct reflection of the behavioral activity and hence of the metabolic requirements of activated tissues. Next to its direct metabolic role, acute increases in plasma corticosterone will have neurobiological and behavioral effects that largely depend on the neural circuitry that is activated by the stimulus that triggered its release. PMID:22210197

  17. Acute mountain sickness: medical problems associated with acute and subacute exposure to hypobaric hypoxia

    PubMed Central

    Clarke, C

    2006-01-01

    This article summarises the medical problems of travel to altitudes above 3000 m. These are caused by chronic hypoxia. Acute mountain sickness (AMS), a self limiting common illness is almost part of normal acclimatisation—a transient condition lasting for several days. However, in <2% of people staying above 4000 m, serious illnesses related to hypoxia develop – high altitude pulmonary oedema and cerebral oedema. These are potentially fatal but can be largely avoided by gradual ascent. Short vacations, pressure from travel companies and peer groups often encourage ascent to 4000 m more rapidly than is prudent. Sensible guidelines for ascent are outlined, clinical features, management and treatment of these conditions. PMID:17099095

  18. Hair cortisol, stress exposure, and mental health in humans: a systematic review.

    PubMed

    Staufenbiel, Sabine M; Penninx, Brenda W J H; Spijker, Anne T; Elzinga, Bernet M; van Rossum, Elisabeth F C

    2013-08-01

    The deleterious effects of chronic stress on health and its contribution to the development of mental illness attract broad attention worldwide. An important development in the last few years has been the employment of hair cortisol analysis with its unique possibility to assess the long-term systematic levels of cortisol retrospectively. This review makes a first attempt to systematically synthesize the body of published research on hair cortisol, chronic stress, and mental health. The results of hair cortisol studies are contrasted and integrated with literature on acutely circulating cortisol as measured in bodily fluids, thereby combining cortisol baseline concentration and cortisol reactivity in an attempt to understand the cortisol dynamics in the development and/or maintenance of mental illnesses. The studies on hair cortisol and chronic stress show increased hair cortisol levels in a wide range of contexts/situations (e.g. endurance athletes, shift work, unemployment, chronic pain, stress in neonates, major life events). With respect to mental illnesses, the results differed between diagnoses. In major depression, the hair cortisol concentrations appear to be increased, whereas for bipolar disorder, cortisol concentrations were only increased in patients with a late age-of-onset. In patients with anxiety (generalized anxiety disorder, panic disorder), hair cortisol levels were reported to be decreased. The same holds true for patients with posttraumatic stress disorder, in whom - after an initial increase in cortisol release - the cortisol output decreases below baseline. The effect sizes are calculated when descriptive statistics are provided, to enable preliminary comparisons across the different laboratories. For exposure to chronic stressors, the effect sizes on hair cortisol levels were medium to large, whereas for psychopathology, the effect sizes were small to medium. This is a first implication that the dysregulation of the hypothalamic

  19. Global Gradients of Coral Exposure to Environmental Stresses and Implications for Local Management

    PubMed Central

    Maina, Joseph; McClanahan, Tim R.; Venus, Valentijn; Ateweberhan, Mebrahtu; Madin, Joshua

    2011-01-01

    Background The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. Methodology/Principal Findings This study combined global spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress. Conclusions/Significance Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management efforts should focus on incorporating the factors that mitigate the effect of coral stressors

  20. Acute and chronic psychological stress as risk factors for cardiovascular disease: Insights gained from epidemiological, clinical and experimental studies.

    PubMed

    Lagraauw, H Maxime; Kuiper, Johan; Bot, Ilze

    2015-11-01

    Cardiovascular disease (CVD) remains a leading cause of death worldwide and identification and therapeutic modulation of all its risk factors is necessary to ensure a lower burden on the patient and on society. The physiological response to acute and chronic stress exposure has long been recognized as a potent modulator of immune, endocrine and metabolic pathways, however its direct implications for cardiovascular disease development, progression and as a therapeutic target are not completely understood. More and more attention is given to the bidirectional interaction between psychological and physical health in relation to cardiovascular disease. With atherosclerosis being a chronic disease starting already at an early age the contribution of adverse early life events in affecting adult health risk behavior, health status and disease development is receiving increased attention. In addition, experimental research into the biological pathways involved in stress-induced cardiovascular complications show important roles for metabolic and immunologic maladaptation, resulting in increased disease development and progression. Here we provide a concise overview of human and experimental animal data linking chronic and acute stress to CVD risk and increased progression of the underlying disease atherosclerosis. PMID:26256574

  1. Personal and situational factors that predict coping strategies for acute stress among basketball referees.

    PubMed

    Kaissidis-Rodafinos, A; Anshel, M H; Porter, A

    1997-08-01

    The aim of this study was to establish the ways in which coping style and situational appraisals are related to the consistency of using approach and avoidance coping strategies for skilled Australian basketball referees (n = 133) after three game-related stressful events. The events, 'making a mistake', 'aggressive reactions by coaches or players' and 'presence of important others', were determined from previous research on sources of acute stress among basketball officials. Our findings indicated that: referees exhibited consistent avoidance, but not approach, coping styles; they used more avoidance than approach strategies; and they perceived stress to be positively correlated with approach, and negatively associated with avoidance, coping strategies. These findings suggest that individual differences exist in perceptions of stress (i.e. situational appraisals), controllability and coping styles among moderately and highly skilled basketball referees. The implications for teaching cognitive and behavioural strategies for effective coping with acute stress in basketball officiating are discussed.

  2. Being a grump only makes things worse: a transactional account of acute stress on mind wandering

    PubMed Central

    Vinski, Melaina T.; Watter, Scott

    2013-01-01

    The current work investigates the influence of acute stress on mind wandering. Participants completed the Positive and Negative Affect Schedule as a measure of baseline negative mood, and were randomly assigned to either the high-stress or low-stress version of the Trier Social Stress Test. Participants then completed the Sustained Attention to Response Task as a measure of mind-wandering behavior. In Experiment 1, participants reporting a high degree of negative mood that were exposed to the high-stress condition were more likely to engage in a variable response time, make more errors, and were more likely to report thinking about the stressor relative to participants that report a low level of negative mood. These effects diminished throughout task performance, suggesting that acute stress induces a temporary mind-wandering state in participants with a negative mood. The temporary affect-dependent deficits observed in Experiment 1 were replicated in Experiment 2, with the high negative mood participants demonstrating limited resource availability (indicated by pupil diameter) immediately following stress induction. These experiments provide novel evidence to suggest that acute psychosocial stress briefly suppresses the availability of cognitive resources and promotes an internally oriented focus of attention in participants with a negative mood. PMID:24273520

  3. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    PubMed

    Iguchi, Yoshio; Kosugi, Sakurako; Nishikawa, Hiromi; Lin, Ziqiao; Minabe, Yoshio; Toda, Shigenobu

    2014-01-01

    Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX) to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing) rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates. PMID:25489939

  4. Repeated Exposure of Adult Rats to Transient Oxidative Stress Induces Various Long-Lasting Alterations in Cognitive and Behavioral Functions

    PubMed Central

    Iguchi, Yoshio; Kosugi, Sakurako; Nishikawa, Hiromi; Lin, Ziqiao; Minabe, Yoshio; Toda, Shigenobu

    2014-01-01

    Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX) to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing) rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates. PMID:25489939

  5. Prenatal exposure to stressful life events is associated with masculinized anogenital distance (AGD) in female infants

    PubMed Central

    Barrett, Emily S.; Parlett, Lauren E.; Sathyanarayana, Sheela; Liu, Fan; Redmon, J. Bruce; Wang, Christina; Swan, Shanna H.

    2013-01-01

    In animal models, prenatal stress programs reproductive development in the resulting offspring, however little is known about effects in humans. Anogenital distance (AGD) is a commonly used, sexually dimorphic biomarker of prenatal androgen exposure in many species. In rodents, prenatally stressed males have shorter AGD than controls (suggesting lower prenatal androgen exposure), whereas prenatally stressed females have longer AGD than controls (suggesting greater prenatal androgen exposure). Our objective was to investigate the relationship between stressful life events in pregnancy and infant AGD. In a prospective cohort study, pregnant women and their partners reported exposure to stressful life events during pregnancy. Pregnancies in which the couple reported 4+ life events were considered highly stressed. After birth (average 16.5 months), trained examiners measured AGD in the infants (137 males, 136 females). After adjusting for age, body size and other covariates, females born to couples reporting high stress had significantly longer (i.e. more masculine) AGD than females born to couples reporting low stress (p=0.015). Among males, high stress was weakly, but not significantly, associated with shorter AGD. Our results suggest prenatal stress may masculinize some aspects of female reproductive development in humans. More sensitive measures of prenatal stress and additional measures of reproductive development are needed to better understand these relationships and clarify mechanisms. PMID:23499769

  6. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure.

    PubMed

    Razvi, Shehla S; Richards, Jeremy B; Malik, Farhan; Cromar, Kevin R; Price, Roger E; Bell, Cynthia S; Weng, Tingting; Atkins, Constance L; Spencer, Chantal Y; Cockerill, Katherine J; Alexander, Amy L; Blackburn, Michael R; Alcorn, Joseph L; Haque, Ikram U; Johnston, Richard A

    2015-11-15

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines-including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)-promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  7. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution

    PubMed Central

    Pettit, Ashley P.; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46–70 years) were taken on a 1.5hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics. PMID:26656561

  8. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution.

    PubMed

    Pettit, Ashley P; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46-70 years) were taken on a 1.5 hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics.

  9. Cross-Sensitization Between Cocaine and Acute Restraint Stress is Associated with Sensitized Dopamine but not Glutamate Release in the Nucleus Accumbens

    PubMed Central

    Garcia-Keller, C; Martinez, SA; Esparza, A; Bollati, F; Kalivas, PW; Cancela, LM

    2015-01-01

    Repeated administration of psychostimulant drugs or stress can elicit a sensitized response to the stimulating and reinforcing properties of the drug. Here we explore the mechanisms in the nucleus accumbens (NAc) whereby an acute restraint stress augments the acute locomotor response to cocaine. This was accomplished by a combination of behavioral pharmacology, microdialysis measures of extracellular dopamine and glutamate, and Western blotting for GluR1 subunit of the AMPA glutamate receptor (AMPAR). A single exposure to restraint stress 3 weeks before testing revealed that enduring locomotor sensitization to cocaine was paralleled by an increase in extracellular dopamine in the core, but not the shell subcompartment of the NAc. Wistar rats pre-exposed to acute stress showed increased basal levels of glutamate in the core but the increase in glutamate by acute cocaine was blunted. The alterations in extracellular glutamate seem to be relevant, since blocking AMPAR by CNQX microinjection into the core prevented both the behavioral cross-sensitization and the augmented increase in cocaine-induced extracellular dopamine. Further implicating glutamate, the locomotor response to AMPAR stimulation in the core was potentiated, but not in the shell of pre-stressed animals, and this was accompanied by an increase in NAc GluR1 surface expression. This study provides evidence that the long-term expression of restraint stress-induced behavioral cross-sensitization to cocaine recapitulates some mechanisms thought to underpin the sensitization induced by daily cocaine administration, and shows that long-term neurobiological changes induced in the NAc by acute stress are consequential in the expression of cross-sensitization to cocaine. PMID:23360446

  10. Acute and chronic exposure to Tyrophagus putrescentiae induces allergic pulmonary response in a murine model

    PubMed Central

    Nuñez, Nailê Karine; dos Santos Dutra, Moisés; Barbosa, Gustavo Leivas; Morassutti, Alessandra Loureiro; de Souza, Rodrigo Godinho; Vargas, Mauro Henrique Moraes; Antunes, Géssica Luana; Silveira, Josiane Silva; da Silva, Guilherme Liberato; Pitrez, Paulo Márcio

    2016-01-01

    Background Tyrophagus putrescentiae (Tp) is a source of aeroallergen that causes allergic diseases. Objective To describe an acute and chronic murine model of allergic asthma with Tp extract with no systemic sensitization and no use of adjuvant. Methods Mites from dust sample were cultured and a raw extract was produced. Female BALB/c mice (6-8 weeks) were challenged intranasally with Tp extract or Dulbecco's phosphate-buffered saline, for 10 consecutive days (acute protocol) or for 6 weeks (chronic protocol). Twenty-four hours after the last intranasal challenge, bronchoalveolar lavage fluid (BALF) was performed for total and differential cells count, cytokine analysis, and eosinophil peroxidase activity. Lung tissue was also removed for histopathologic analysis. Results Tp extract has shown a significant increase in total cells count from BALF as well as an increase in absolute eosinophils count, eosinophil peroxidase activity, interleukin (IL)-5 and IL-13 levels, in both acute and chronic protocols. Peribronchovascular infiltrate, goblet cells hyperplasia and collagen deposition were shown in the airways of acute and chronic Tp-exposed mice. Conclusion Our data suggest that the intranasal exposure to Tp extract, with no systemic sensitization and no use of adjuvants, induces a robust allergic inflammation in the lungs of mice, in both acute and chronic models. Our Tp extract seems to be a potent allergen extract which may be used in asthma model studies. PMID:26844220

  11. Exposure to recurrent combat stress: combat stress reactions among Israeli soldiers in the Lebanon War.

    PubMed

    Solomon, Z; Mikulincer, M; Jakob, B R

    1987-05-01

    This study examined the impact of repeated exposure to combat on combat stress reaction (CSR). Soldiers diagnosed with CSR during the Lebanon War (N = 382) were compared with a matched control group of soldiers who fought in the same units but did not manifest symptoms of CSR (N = 334). CSR in the Lebanon War was found to be related to the psychological outcome the soldier experienced in previous wars. The CSR rate in the Lebanon War was higher in soldiers who had experienced an episode of CSR in a previous war than in soldiers with no past combat experience. However, CSR rates were lower among soldiers who had not had an episode of CSR in a previous war than among soldiers with no prior combat experience. High intensity of combat in Lebanon was found to increase both the detrimental and favourable effects of prior combat experience. PMID:3602235

  12. Models and Methods to Investigate Acute Stress Responses in Cattle

    PubMed Central

    Chen, Yi; Arsenault, Ryan; Napper, Scott; Griebel, Philip

    2015-01-01

    There is a growing appreciation within the livestock industry and throughout society that animal stress is an important issue that must be addressed. With implications for animal health, well-being, and productivity, minimizing animal stress through improved animal management procedures and/or selective breeding is becoming a priority. Effective management of stress, however, depends on the ability to identify and quantify the effects of various stressors and determine if individual or combined stressors have distinct biological effects. Furthermore, it is critical to determine the duration of stress-induced biological effects if we are to understand how stress alters animal production and disease susceptibility. Common stress models used to evaluate both psychological and physical stressors in cattle are reviewed. We identify some of the major gaps in our knowledge regarding responses to specific stressors and propose more integrated methodologies and approaches to measuring these responses. These approaches are based on an increased knowledge of both the metabolic and immune effects of stress. Finally, we speculate on how these findings may impact animal agriculture, as well as the potential application of large animal models to understanding human stress. PMID:26633525

  13. Models and Methods to Investigate Acute Stress Responses in Cattle.

    PubMed

    Chen, Yi; Arsenault, Ryan; Napper, Scott; Griebel, Philip

    2015-01-01

    There is a growing appreciation within the livestock industry and throughout society that animal stress is an important issue that must be addressed. With implications for animal health, well-being, and productivity, minimizing animal stress through improved animal management procedures and/or selective breeding is becoming a priority. Effective management of stress, however, depends on the ability to identify and quantify the effects of various stressors and determine if individual or combined stressors have distinct biological effects. Furthermore, it is critical to determine the duration of stress-induced biological effects if we are to understand how stress alters animal production and disease susceptibility. Common stress models used to evaluate both psychological and physical stressors in cattle are reviewed. We identify some of the major gaps in our knowledge regarding responses to specific stressors and propose more integrated methodologies and approaches to measuring these responses. These approaches are based on an increased knowledge of both the metabolic and immune effects of stress. Finally, we speculate on how these findings may impact animal agriculture, as well as the potential application of large animal models to understanding human stress. PMID:26633525

  14. A diagnostic interview for acute stress disorder for children and adolescents.

    PubMed

    Miller, Alisa; Enlow, Michelle Bosquet; Reich, Wendy; Saxe, Glenn

    2009-12-01

    The goal of this study was to develop a semistructured clinical interview for assessing acute stress disorder (ASD) in youth and test its psychometric properties. Youth (N = 168) with an acute burn or injury were administered the acute stress disorder module of the Diagnostic Interview for Children and Adolescents (DICA-ASD). The DICA-ASD demonstrated strong psychometric properties, including high internal consistency (alpha = .97) and perfect diagnostic interrater agreement (kappa = 1.00). Participants diagnosed with ASD scored significantly higher than those not diagnosed on validated traumatic stress symptomatology measures but not on other symptomatology measures, providing evidence of convergent and discriminant validity. Preliminary evidence supports the reliability and validity of the first semistructured clinical interview for diagnosing ASD in youth.

  15. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-01

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish.

  16. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles

    PubMed Central

    Nemmar, Abderrahim; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Kazzam, Elsadig E; Ali, Badreldin H

    2016-01-01

    The use of amorphous silica (SiO2) in biopharmaceutical and industrial fields can lead to human exposure by injection, skin penetration, ingestion, or inhalation. However, the in vivo acute toxicity of amorphous SiO2 nanoparticles (SiNPs) on multiple organs and the mechanisms underlying these effects are not well understood. Presently, we investigated the acute (24 hours) effects of intraperitoneally administered 50 nm SiNPs (0.25 mg/kg) on systemic toxicity, oxidative stress, inflammation, and DNA damage in the lung, heart, liver, kidney, and brain of mice. Lipid peroxidation was significantly increased by SiNPs in the lung, liver, kidney, and brain, but was not changed in the heart. Similarly, superoxide dismutase and catalase activities were significantly affected by SiNPs in all organs studied. While the concentration of tumor necrosis factor α was insignificantly increased in the liver and brain, its increase was statistically significant in the lung, heart, and kidney. SiNPs induced a significant elevation in pulmonary and renal interleukin 6 and interleukin-1 beta in the lung, liver, and brain. Moreover, SiNPs caused a significant increase in DNA damage, assessed by comet assay, in all the organs studied. SiNPs caused leukocytosis and increased the plasma activities of lactate dehydrogenase, creatine kinase, alanine aminotranferase, and aspartate aminotransferase. These results indicate that acute systemic exposure to SiNPs causes oxidative stress, inflammation, and DNA damage in several major organs, and highlight the need for thorough evaluation of SiNPs before they can be safely used in human beings. PMID:27022259

  17. Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

    PubMed Central

    Herzog, Fabian; Loza, Kateryna; Balog, Sandor; Clift, Martin J D; Epple, Matthias; Gehr, Peter; Petri-Fink, Alke

    2014-01-01

    Summary In the emerging market of nano-sized products, silver nanoparticles (Ag NPs) are widely used due to their antimicrobial properties. Human interaction with Ag NPs can occur through the lung, skin, gastrointestinal tract, and bloodstream. However, the inhalation of Ag NP aerosols is a primary concern. To study the possible effects of inhaled Ag NPs, an in vitro triple cell co-culture model of the human alveolar/airway barrier (A549 epithelial cells, human peripheral blood monocyte derived dendritic and macrophage cells) together with an air–liquid interface cell exposure (ALICE) system was used in order to reflect a real-life exposure scenario. Cells were exposed at the air–liquid interface (ALI) to 0.03, 0.3, and 3 µg Ag/cm2 of Ag NPs (diameter 100 nm; coated with polyvinylpyrrolidone: PVP). Ag NPs were found to be highly aggregated within ALI exposed cells with no impairment of cell morphology. Furthermore, a significant increase in release of cytotoxic (LDH), oxidative stress (SOD-1, HMOX-1) or pro-inflammatory markers (TNF-α, IL-8) was absent. As a comparison, cells were exposed to Ag NPs in submerged conditions to 10, 20, and 30 µg Ag/mL. The deposited dose per surface area was estimated by using a dosimetry model (ISDD) to directly compare submerged vs ALI exposure concentrations after 4 and 24 h. Unlike ALI exposures, the two highest concentrations under submerged conditions promoted a cytotoxic and pro-inflammatory response after 24 h. Interestingly, when cell cultures were co-incubated with lipopolysaccharide (LPS), no synergistic inflammatory effects were observed. By using two different exposure scenarios it has been shown that the ALI as well as the suspension conditions for the lower concentrations after 4 h, reflecting real-life concentrations of an acute 24 h exposure, did not induce any adverse effects in a complex 3D model mimicking the human alveolar/airway barrier. However, the highest concentrations used in the ALI setup, as well as

  18. Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches.

    PubMed

    Herzog, Fabian; Loza, Kateryna; Balog, Sandor; Clift, Martin J D; Epple, Matthias; Gehr, Peter; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2014-01-01

    In the emerging market of nano-sized products, silver nanoparticles (Ag NPs) are widely used due to their antimicrobial properties. Human interaction with Ag NPs can occur through the lung, skin, gastrointestinal tract, and bloodstream. However, the inhalation of Ag NP aerosols is a primary concern. To study the possible effects of inhaled Ag NPs, an in vitro triple cell co-culture model of the human alveolar/airway barrier (A549 epithelial cells, human peripheral blood monocyte derived dendritic and macrophage cells) together with an air-liquid interface cell exposure (ALICE) system was used in order to reflect a real-life exposure scenario. Cells were exposed at the air-liquid interface (ALI) to 0.03, 0.3, and 3 µg Ag/cm(2) of Ag NPs (diameter 100 nm; coated with polyvinylpyrrolidone: PVP). Ag NPs were found to be highly aggregated within ALI exposed cells with no impairment of cell morphology. Furthermore, a significant increase in release of cytotoxic (LDH), oxidative stress (SOD-1, HMOX-1) or pro-inflammatory markers (TNF-α, IL-8) was absent. As a comparison, cells were exposed to Ag NPs in submerged conditions to 10, 20, and 30 µg Ag/mL. The deposited dose per surface area was estimated by using a dosimetry model (ISDD) to directly compare submerged vs ALI exposure concentrations after 4 and 24 h. Unlike ALI exposures, the two highest concentrations under submerged conditions promoted a cytotoxic and pro-inflammatory response after 24 h. Interestingly, when cell cultures were co-incubated with lipopolysaccharide (LPS), no synergistic inflammatory effects were observed. By using two different exposure scenarios it has been shown that the ALI as well as the suspension conditions for the lower concentrations after 4 h, reflecting real-life concentrations of an acute 24 h exposure, did not induce any adverse effects in a complex 3D model mimicking the human alveolar/airway barrier. However, the highest concentrations used in the ALI setup, as well as all

  19. Effects of Acute Laboratory Stress on Executive Functions

    PubMed Central

    Starcke, Katrin; Wiesen, Carina; Trotzke, Patrick; Brand, Matthias

    2016-01-01

    Recent research indicates that stress can affect executive functioning. However, previous results are mixed with respect to the direction and size of effects, especially when considering different subcomponents of executive functions. The current study systematically investigates the effects of stress on the five components of executive functions proposed by Smith and Jonides (1999): attention and inhibition; task management; planning; monitoring; and coding. Healthy participants (N = 40) were either exposed to the computerized version of the Paced Auditory Serial Addition Test as a stressor (N = 20), or to a rest condition (N = 20). Stress reactions were assessed with heart rate and subjective measures. After the experimental manipulation, all participants performed tasks that measure the different executive functions. The manipulation check indicates that stress induction was successful (i.e., the stress group showed a higher heart rate and higher subjective responses than the control group). The main results demonstrate that stressed participants show a poorer performance compared with unstressed participants in all executive subcomponents, with the exception of monitoring. Effect sizes for the tasks that reveal differences between stressed and unstressed participants are high. We conclude that the laboratory stressor used here overall reduced executive functioning. PMID:27065926

  20. Acute animal and human poisonings from cyanotoxin exposure - A review of the literature.

    PubMed

    Wood, Roslyn

    2016-05-01

    Cyanobacterial blooms are a potential health hazard due to the ability of some species to produce toxins that are harmful to other living organisms. This review provides a comprehensive summary of anecdotal and case reports on acute poisonings in animals and humans attributable to cyanotoxin exposure in fresh- and brackish-waters. Approximately two-thirds of reported poisonings have occurred in Europe and the United States. Dogs and livestock account for the majority of reported cases involving animal exposure to cyanotoxins, while recreational activities are responsible for approximately half of reported incidents involving human exposure. Due to data limitations it is difficult to estimate the total number of animals and humans affected by cyanotoxins, however, some general observations regarding frequency and numbers affected are made. The review demonstrates that cyanotoxins have, and will likely to continue to have, potentially serious consequences for public health and animal welfare worldwide.