Science.gov

Sample records for acute t-cell lymphoblastic

  1. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-11-02

    Adult T Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Stage II Adult T-Cell Leukemia/Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  2. Epigenetics in T-cell acute lymphoblastic leukemia.

    PubMed

    Peirs, Sofie; Van der Meulen, Joni; Van de Walle, Inge; Taghon, Tom; Speleman, Frank; Poppe, Bruce; Van Vlierberghe, Pieter

    2015-01-01

    Normal T-cell development is a strictly regulated process in which hematopoietic progenitor cells migrate from the bone marrow to the thymus and differentiate from early T-cell progenitors toward mature and functional T cells. During this maturation process, cooperation between a variety of oncogenes and tumor suppressors can drive immature thymocytes into uncontrolled clonal expansion and cause T-cell acute lymphoblastic leukemia (T-ALL). Despite improved insights in T-ALL disease biology and comprehensive characterization of its genetic landscape, clinical care remained largely similar over the past decades and still consists of high-dose multi-agent chemotherapy potentially followed by hematopoietic stem cell transplantation. Even with such aggressive treatment regimens, which are often associated with considerable side effects, clinical outcome is still extremely poor in a significant subset of T-ALL patients as a result of therapy resistance or hematological relapses. Recent genetic studies have identified recurrent somatic alterations in genes involved in DNA methylation and post-translational histone modifications in T-ALL, suggesting that epigenetic homeostasis is critically required in restraining tumor development in the T-cell lineage. In this review, we provide an overview of the epigenetic regulators that could be implicated in T-ALL disease biology and speculate how the epigenetic landscape of T-ALL could trigger the development of epigenetic-based therapies to further improve the treatment of human T-ALL. PMID:25510271

  3. Novel biological insights in T-cell acute lymphoblastic leukemia.

    PubMed

    Durinck, Kaat; Goossens, Steven; Peirs, Sofie; Wallaert, Annelynn; Van Loocke, Wouter; Matthijssens, Filip; Pieters, Tim; Milani, Gloria; Lammens, Tim; Rondou, Pieter; Van Roy, Nadine; De Moerloose, Barbara; Benoit, Yves; Haigh, Jody; Speleman, Frank; Poppe, Bruce; Van Vlierberghe, Pieter

    2015-08-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood cancer that accounts for about 15% of pediatric and 25% of adult acute lymphoblastic leukemia (ALL) cases. It is considered as a paradigm for the multistep nature of cancer initiation and progression. Genetic and epigenetic reprogramming events, which transform T-cell precursors into malignant T-ALL lymphoblasts, have been extensively characterized over the past decade. Despite our comprehensive understanding of the genomic landscape of human T-ALL, leukemia patients are still treated by high-dose multiagent chemotherapy, potentially followed by hematopoietic stem cell transplantation. Even with such aggressive treatment regimens, which are often associated with considerable acute and long-term side effects, about 15% of pediatric and 40% of adult T-ALL patients still relapse, owing to acquired therapy resistance, and present with very dismal survival perspectives. Unfortunately, the molecular mechanisms by which residual T-ALL tumor cells survive chemotherapy and act as a reservoir for leukemic progression and hematologic relapse remain poorly understood. Nevertheless, it is expected that enhanced molecular understanding of T-ALL disease biology will ultimately facilitate a targeted therapy driven approach that can reduce chemotherapy-associated toxicities and improve survival of refractory T-ALL patients through personalized salvage therapy. In this review, we summarize recent biological insights into the molecular pathogenesis of T-ALL and speculate how the genetic landscape of T-ALL could trigger the development of novel therapeutic strategies for the treatment of human T-ALL. PMID:26123366

  4. PHF6 mutations in T-cell acute lymphoblastic leukemia.

    PubMed

    Van Vlierberghe, Pieter; Palomero, Teresa; Khiabanian, Hossein; Van der Meulen, Joni; Castillo, Mireia; Van Roy, Nadine; De Moerloose, Barbara; Philippé, Jan; González-García, Sara; Toribio, María L; Taghon, Tom; Zuurbier, Linda; Cauwelier, Barbara; Harrison, Christine J; Schwab, Claire; Pisecker, Markus; Strehl, Sabine; Langerak, Anton W; Gecz, Jozef; Sonneveld, Edwin; Pieters, Rob; Paietta, Elisabeth; Rowe, Jacob M; Wiernik, Peter H; Benoit, Yves; Soulier, Jean; Poppe, Bruce; Yao, Xiaopan; Cordon-Cardo, Carlos; Meijerink, Jules; Rabadan, Raul; Speleman, Frank; Ferrando, Adolfo

    2010-04-01

    Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is importantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease.

  5. The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia.

    PubMed

    Durinck, Kaat; Wallaert, Annelynn; Van de Walle, Inge; Van Loocke, Wouter; Volders, Pieter-Jan; Vanhauwaert, Suzanne; Geerdens, Ellen; Benoit, Yves; Van Roy, Nadine; Poppe, Bruce; Soulier, Jean; Cools, Jan; Mestdagh, Pieter; Vandesompele, Jo; Rondou, Pieter; Van Vlierberghe, Pieter; Taghon, Tom; Speleman, Frank

    2014-12-01

    Genetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting a role as an essential driver for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34(+) thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from ex vivo isolated Notch active CD34(+) and Notch inactive CD4(+)CD8(+) thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publicly available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T cells. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way for the development of novel therapeutic strategies that target hyperactive Notch signaling in human T-cell acute lymphoblastic leukemia.

  6. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia.

    PubMed

    Lahortiga, Idoya; De Keersmaecker, Kim; Van Vlierberghe, Pieter; Graux, Carlos; Cauwelier, Barbara; Lambert, Frederic; Mentens, Nicole; Beverloo, H Berna; Pieters, Rob; Speleman, Frank; Odero, Maria D; Bauters, Marijke; Froyen, Guy; Marynen, Peter; Vandenberghe, Peter; Wlodarska, Iwona; Meijerink, Jules P P; Cools, Jan

    2007-05-01

    We identified a duplication of the MYB oncogene in 8.4% of individuals with T cell acute lymphoblastic leukemia (T-ALL) and in five T-ALL cell lines. The duplication is associated with a threefold increase in MYB expression, and knockdown of MYB expression initiates T cell differentiation. Our results identify duplication of MYB as an oncogenic event and suggest that MYB could be a therapeutic target in human T-ALL.

  7. Hemophagocytosis by Leukemic Blasts in T Cell Acute Lymphoblastic Leukemia: An Unusual Finding.

    PubMed

    Harrison, Aradhana; Chandra, Dinesh; Kakkar, Naveen; Das, Sheila; John, M Joseph

    2016-06-01

    Hemophagocytosis shows engulfment of hematopoietic cells by histiocytes and is a property generally associated with cells of the histiocytic lineage. It can be familial or is seen in a wide spectrum of acquired disorders. Hemophagocytosis by leukemic blasts is an uncommon phenomenon and has been reported mainly in acute myeloid leukemia. Its association with acute lymphoblastic leukemia is rare. We present a case of hemophagocytosis by blasts in the bone marrow in a 11 year old boy with T cell-acute lymphoblastic leukemia. PMID:27408348

  8. Hemophagocytosis by Leukemic Blasts in T Cell Acute Lymphoblastic Leukemia: An Unusual Finding.

    PubMed

    Harrison, Aradhana; Chandra, Dinesh; Kakkar, Naveen; Das, Sheila; John, M Joseph

    2016-06-01

    Hemophagocytosis shows engulfment of hematopoietic cells by histiocytes and is a property generally associated with cells of the histiocytic lineage. It can be familial or is seen in a wide spectrum of acquired disorders. Hemophagocytosis by leukemic blasts is an uncommon phenomenon and has been reported mainly in acute myeloid leukemia. Its association with acute lymphoblastic leukemia is rare. We present a case of hemophagocytosis by blasts in the bone marrow in a 11 year old boy with T cell-acute lymphoblastic leukemia.

  9. Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T cell acute lymphoblastic leukemia.

    PubMed

    Jost, Tanja Rezzonico; Borga, Chiara; Radaelli, Enrico; Romagnani, Andrea; Perruzza, Lisa; Omodho, Lorna; Cazzaniga, Giovanni; Biondi, Andrea; Indraccolo, Stefano; Thelen, Marcus; Te Kronnie, Geertruy; Grassi, Fabio

    2016-06-01

    Infiltration of the central nervous system is a severe trait of T cell acute lymphoblastic leukemia. Inhibition of CXC chemokine receptor 4 significantly ameliorates T cell acute lymphoblastic leukemia in murine models of the disease; however, signaling by CXC chemokine receptor 4 is important in limiting the divagation of peripheral blood mononuclear cells out of the perivascular space into the central nervous system parenchyma. Therefore, Inhibition of CXC chemokine receptor 4 potentially may untangle T cell acute lymphoblastic leukemia cells from retention outside the brain. Here, we show that leukemic lymphoblasts massively infiltrate cranial bone marrow, with diffusion to the meninges without invasion of the brain parenchyma, in mice that underwent xenotransplantation with human T cell acute lymphoblastic leukemia cells or that developed leukemia from transformed hematopoietic progenitors. We tested the hypothesis that T cell acute lymphoblastic leukemia neuropathology results from meningeal infiltration through CXC chemokine receptor 4-mediated bone marrow colonization. Inhibition of leukemia engraftment in the bone marrow by pharmacologic CXC chemokine receptor 4 antagonism significantly ameliorated neuropathologic aspects of the disease. Genetic deletion of CXCR4 in murine hematopoietic progenitors abrogated leukemogenesis induced by constitutively active Notch1, whereas lack of CCR6 and CCR7, which have been shown to be involved in T cell and leukemia extravasation into the central nervous system, respectively, did not influence T cell acute lymphoblastic leukemia development. We hypothesize that lymphoblastic meningeal infiltration as a result of bone marrow colonization is responsible for the degenerative alterations of the neuroparenchyma as well as the alteration of cerebrospinal fluid drainage in T cell acute lymphoblastic leukemia xenografts. Therefore, CXC chemokine receptor 4 may constitute a pharmacologic target for T cell acute lymphoblastic

  10. Combination Chemotherapy With or Without Bortezomib in Treating Younger Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-11-02

    Adult T Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Stage II Childhood Lymphoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  11. [Ribonuclease binase induces death in T-cell acute lymphoblastic leukemia cells by apoptosis].

    PubMed

    Burnysheva, K M; Petrushanko, I Yu; Spirin, P V; Prassolov, V S; Makarov, A A; Mitkevich, V A

    2016-01-01

    Bacterial ribonuclease binase is a potential anticancer agent. In the present study, we have determined the toxic effect of binase towards cell lines of T-cell acute lymphoblastic leukemia Jurkat and CEMss. We have shown that binase induces apoptosis in these cells. At the same time, binase does not cause toxic effects in leukocytes of healthy donors, which suggests that binase activity towards leukemic cells is selective. We have found that the treatment of cancer cells with binase leads to a reduction in reactive oxygen species and transcription factor NFκB levels, and demonstrated that these effects are a common feature of the action of RNases on cancer cells.

  12. Renal Calculi: An Unusual Presentation of T-Cell Acute Lymphoblastic Leukemia.

    PubMed

    Daly, Gemma F; Barnard, Edward B G; Thoreson, Lynn

    2016-01-01

    Spontaneous tumor lysis syndrome is a rare initial presentation of hematologic malignancy in children that typically presents with complications of electrolyte derangement, specifically hyperkalemia, hyperphosphatemia, and hyperuricemia. We report a case of a 5-year-old boy who presented to the emergency department with gross hematuria, abdominal pain, and vomiting and was ultimately diagnosed with uric acid nephrolithiasis and acute renal failure secondary to spontaneous tumor lysis syndrome in the setting of T-cell acute lymphoblastic leukemia. Tumor lysis syndrome is considered an oncologic emergency, and in this case, the child required urgent treatment with potassium-binding agents, rasburicase, and hemodialysis. This case demonstrates that occult hematologic malignancy should be suspected in cases of nephrolithiasis and acute renal failure when found in conjunction with hyperuricemia despite a normal complete blood count at the time of presentation. PMID:26644483

  13. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia

    PubMed Central

    La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J.; Mecucci, Cristina

    2016-01-01

    Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. PMID:27151989

  14. MicroRNA-128-3p is a novel oncomiR targeting PHF6 in T-cell acute lymphoblastic leukemia.

    PubMed

    Mets, Evelien; Van Peer, Gert; Van der Meulen, Joni; Boice, Michael; Taghon, Tom; Goossens, Steven; Mestdagh, Pieter; Benoit, Yves; De Moerloose, Barbara; Van Roy, Nadine; Poppe, Bruce; Vandesompele, Jo; Wendel, Hans-Guido; Van Vlierberghe, Pieter; Speleman, Frank; Rondou, Pieter

    2014-08-01

    T-cell acute lymphoblastic leukemia arises from the leukemic transformation of developing thymocytes and results from cooperative genetic lesions. Inactivation of the PHF6 gene is frequently observed in T-cell acute lymphoblastic leukemia, suggesting an important tumor suppressive role for PHF6 in the pathobiology of this leukemia. Although the precise function of PHF6 is still unknown, this gene is most likely involved in chromatin regulation, a strongly emerging theme in T-cell acute lymphoblastic leukemia. In this context, our previous description of a cooperative microRNA regulatory network controlling several well-known T-cell acute lymphoblastic leukemia tumor suppressor genes, including PHF6, is of great importance. Given the high frequency of PHF6 lesions in T-cell acute lymphoblastic leukemia and the integration of PHF6 in this microRNA regulatory network, we aimed to identify novel oncogenic microRNAs in T-cell acute lymphoblastic leukemia which suppress PHF6. To this end, we performed an unbiased PHF6 3'UTR-microRNA library screen and combined the results with microRNA profiling data of samples from patients with T-cell acute lymphoblastic leukemia and normal thymocyte subsets. We selected miR-128-3p as a candidate PHF6-targeting, oncogenic microRNA and demonstrated regulation of PHF6 expression upon modulation of this microRNA in T-cell acute lymphoblastic leukemia cell lines. In vivo evidence of an oncogenic role of this microRNA in T-cell acute lymphoblastic leukemia was obtained through accelerated leukemia onset in a NOTCH1-induced T-cell acute lymphoblastic leukemia mouse model upon miR-128-3p over-expression. We conclude that miR-128-3p is a strong novel candidate oncogenic microRNA in T-cell acute lymphoblastic leukemia which targets the PHF6 tumor suppressor gene.

  15. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia

    PubMed Central

    Maude, Shannon L.; Teachey, David T.; Porter, David L.

    2015-01-01

    Relapsed and refractory acute lymphoblastic leukemia (ALL) remains difficult to treat, with minimal improvement in outcomes seen in more than 2 decades despite advances in upfront therapy and improved survival for de novo ALL. Adoptive transfer of T cells engineered to express a chimeric antigen receptor (CAR) has emerged as a powerful targeted immunotherapy, showing striking responses in highly refractory populations. Complete remission (CR) rates as high as 90% have been reported in children and adults with relapsed and refractory ALL treated with CAR-modified T cells targeting the B-cell–specific antigen CD19. Distinct CAR designs across several studies have produced similar promising CR rates, an encouraging finding. Even more encouraging are durable remissions observed in some patients without additional therapy. Duration of remission and CAR-modified T-cell persistence require further study and more mature follow-up, but emerging data suggest these factors may distinguish CAR designs. Supraphysiologic T-cell proliferation, a hallmark of this therapy, contributes to both efficacy and the most notable toxicity, cytokine release syndrome (CRS), posing a unique challenge for toxicity management. This review will discuss the current landscape of CD19 CAR clinical trials, CRS pathophysiology and management, and remaining challenges. PMID:25999455

  16. Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha.

    PubMed Central

    Kelliher, M A; Seldin, D C; Leder, P

    1996-01-01

    Ectopic activation of the TAL-1 gene in T lymphocytes occurs in the majority of cases of human T cell acute lymphoblastic leukemia (T-ALL), yet experiments to date have failed to demonstrate a direct transforming capability for tal-1. The tal-1 gene product is a serine phosphoprotein and basic helix-loop-helix (bHLH) transcription factor known to regulate embryonic hematopoiesis. We have established a transgenic mouse model in which tal-1 mis-expression in the thymus results in the development of clonal T cell lymphoblastic leukemia/lymphoma. Thus, overexpression of tal-1 alone can be transforming, verifying its pathogenic role in human T-ALL. In addition, leukemogenesis is accelerated dramatically by transgenic co-expression of tal-1 and the catalytic subunit of casein kinase IIalpha (CKIIalpha), a serine/threonine protein kinase known to modulate the activity of other bHLH transcription factors. Although tal-1 is a substrate for CKII, the synergy of the tal-1 and CKIIalpha transgenes appears to be indirect, perhaps mediated through the E protein heterodimeric partners of tal-1. These studies prove that dysregulated tal-1 is oncogenic, providing a direct molecular explanation for the malignancies associated with TAL-1 activation in human T-ALL. Images PMID:8895560

  17. Bortezomib and Combination Chemotherapy in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2014-09-30

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  18. ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival

    PubMed Central

    Zhong, Wenbin; Yi, Qing; Xu, Bing; Li, Shiqian; Wang, Tong; Liu, Fupei; Zhu, Biying; Hoffmann, Peter R.; Ji, Guangju; Lei, Pingsheng; Li, Guoping; Li, Jiwei; Li, Jian; Olkkonen, Vesa M.; Yan, Daoguang

    2016-01-01

    Metabolic pathways are reprogrammed in cancer to support cell survival. Here, we report that T-cell acute lymphoblastic leukemia (T-ALL) cells are characterized by increased oxidative phosphorylation and robust ATP production. We demonstrate that ORP4L is expressed in T-ALL but not normal T-cells and its abundance is proportional to cellular ATP. ORP4L acts as an adaptor/scaffold assembling CD3ɛ, Gαq/11 and PLCβ3 into a complex that activates PLCβ3. PLCβ3 catalyzes IP3 production in T-ALL as opposed to PLCγ1 in normal T-cells. Up-regulation of ORP4L thus results in a switch in the enzyme responsible for IP3-induced endoplasmic reticulum Ca2+ release and oxidative phosphorylation. ORP4L knockdown results in suboptimal bioenergetics, cell death and abrogation of T-ALL engraftment in vivo. In summary, we uncovered a signalling pathway operating specifically in T-ALL cells in which ORP4L mediates G protein-coupled ligand-induced PLCβ3 activation, resulting in an increase of mitochondrial respiration for cell survival. Targeting ORP4L might represent a promising approach for T-ALL treatment. PMID:27581363

  19. ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival.

    PubMed

    Zhong, Wenbin; Yi, Qing; Xu, Bing; Li, Shiqian; Wang, Tong; Liu, Fupei; Zhu, Biying; Hoffmann, Peter R; Ji, Guangju; Lei, Pingsheng; Li, Guoping; Li, Jiwei; Li, Jian; Olkkonen, Vesa M; Yan, Daoguang

    2016-01-01

    Metabolic pathways are reprogrammed in cancer to support cell survival. Here, we report that T-cell acute lymphoblastic leukemia (T-ALL) cells are characterized by increased oxidative phosphorylation and robust ATP production. We demonstrate that ORP4L is expressed in T-ALL but not normal T-cells and its abundance is proportional to cellular ATP. ORP4L acts as an adaptor/scaffold assembling CD3ɛ, Gαq/11 and PLCβ3 into a complex that activates PLCβ3. PLCβ3 catalyzes IP3 production in T-ALL as opposed to PLCγ1 in normal T-cells. Up-regulation of ORP4L thus results in a switch in the enzyme responsible for IP3-induced endoplasmic reticulum Ca(2+) release and oxidative phosphorylation. ORP4L knockdown results in suboptimal bioenergetics, cell death and abrogation of T-ALL engraftment in vivo. In summary, we uncovered a signalling pathway operating specifically in T-ALL cells in which ORP4L mediates G protein-coupled ligand-induced PLCβ3 activation, resulting in an increase of mitochondrial respiration for cell survival. Targeting ORP4L might represent a promising approach for T-ALL treatment. PMID:27581363

  20. Novel dynamin 2 mutations in adult T-cell acute lymphoblastic leukemia

    PubMed Central

    Ge, Zheng; Li, Min; Zhao, Gang; Xiao, Lichan; Gu, Yan; Zhou, Xilian; Yu, Michael D.; Li, Jianyong; Dovat, Sinisa; Song, Chunhua

    2016-01-01

    Genetic mutations on signaling pathways are found in patients with T-cell acute lymphoblastic leukemia (T-ALL) and act as markers of high-risk leukemia. Mutations in dynamin 2 (DNM2) have been reported in T-ALL, particularly in early T-cell precursor-ALL. In the present study, DNM2 mutations were screened by sequencing DNM2 exons obtained by polymerase chain reaction amplification and gel purification in adult T-ALL patients. A total of 4 novel DNM2 mutations were identified in adult T-ALL patients, with a mutation rate of 9.5%, and the DNM2 mutations were found to co-exist with NOTCH1 and PHD finger protein 6, and were also associated with high-risk leukemia. A high rate of silent mutation was also found in the patients, but no significant association was found between the silent mutations and patients' clinical features. The present findings suggested the DNM2 mutations may be involved in the oncogenesis of T-ALL.

  1. Heterogeneity in mechanisms of emergent resistance in pediatric T-cell acute lymphoblastic leukemia.

    PubMed

    Yadav, Babasaheb D; Samuels, Amy L; Wells, Julia E; Sutton, Rosemary; Venn, Nicola C; Bendak, Katerina; Anderson, Denise; Marshall, Glenn M; Cole, Catherine H; Beesley, Alex H; Kees, Ursula R; Lock, Richard B

    2016-08-11

    Relapse in pediatric T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem and is thought to be associated with clonal selection during treatment. In this study we used an established pre-clinical model of induction therapy to increase our understanding of the effect of engraftment and chemotherapy on clonal selection and acquisition of drug resistance in vivo. Immune-deficient mice were engrafted with patient diagnostic specimens and exposed to a repeated combination therapy consisting of vincristine, dexamethasone, L-asparaginase and daunorubicin. Any re-emergence of disease following therapy was shown to be associated with resistance to dexamethasone, no resistance was observed to the other three drugs. Immunoglobulin/T-cell receptor gene rearrangements closely matched those in respective diagnosis and relapse patient specimens, highlighting that these clonal markers do not fully reflect the biological changes associated with drug resistance. Gene expression profiling revealed the significant underlying heterogeneity of dexamethasone-resistant xenografts. Alterations were observed in a large number of biological pathways, yet no dominant signature was common to all lines. These findings indicate that the biological changes associated with T-ALL relapse and resistance are stochastic and highly individual, and underline the importance of using sophisticated molecular techniques or single cell analyses in developing personalized approaches to therapy. PMID:27623214

  2. microRNAs regulate TAL1 expression in T-cell acute lymphoblastic leukemia

    PubMed Central

    Correia, Nádia C.; Melão, Alice; Póvoa, Vanda; Sarmento, Leonor; de Cedrón, Marta Gómez; Malumbres, Marcos; Enguita, Francisco J.; Barata, João T.

    2016-01-01

    The transcription factor TAL1 is a proto-oncogene whose aberrant expression in committed T-cell precursors is associated with the development of T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms leading to aberrant activation of TAL1 in T-ALL patients who lack chromosomal rearrangements involving the TAL1 locus remain largely unknown. We hypothesized that TAL1 levels decrease during normal T-cell development at least in part due to miRNA-dependent silencing, in which case TAL1 over-expression in some T-ALL cases could be the consequence of deregulated miRNA expression. By performing computational prediction of miRNAs that bind to the human TAL1 mRNA we compiled a list of miRNAs that are candidates to regulate TAL1. Using a luciferase reporter system and mutagenesis assays we confirmed the miRNA-TAL1 mRNA interactions and selected candidate miRNAs: miR-101, miR-520d-5p, miR-140-5p, miR-448 and miR-485-5p. Over-expression of these microRNAs in different T-ALL cell lines consistently resulted in the down-regulation of TAL1 protein. In accordance, inhibition of miR-101 and miR-520d-5p promoted TAL1 protein expression. Importantly, we found that miR-101, miR-140-5p, miR-448 and miR-485-5p were down-regulated in T-ALL patient specimens and T-ALL cell lines. Our results show for the first time the existence of epigenetic regulation of TAL1 by specific miRNAs which may contribute, at least in part, to the ectopic expression of TAL1 in some T-ALL cases. PMID:26882564

  3. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells.

    PubMed

    Bae, Kyoung Jun; Lee, Yura; Kim, Soon Ae; Kim, Jiyeon

    2016-04-22

    Of the hematological disorders typified by poor prognoses and survival rates, T-cell acute lymphoblastic leukemia (T-ALL) is one of the most commonly diagnosed. Despite the development of new therapeutic agents, the treatment options for this cancer remain limited. In this manuscript, we investigated the anti-proliferative effects of plumbagin, mediated by the activation of mitogen-activated protein kinase (MAPK) pathways, and inhibition of NF-κB signaling; the human T-ALL MOLT-4 cell line was used as our experimental system. Plumbagin is a natural, plant derived compound, which exerts an anti-proliferative activity against many types of human cancer. Our experiments confirm that plumbagin induces a caspase-dependent apoptosis of MOLT-4 cells, with no significant cytotoxicity seen for normal peripheral blood mononuclear cells (PBMCs). Plumbagin also inhibited LPS-induced phosphorylation of p65, and the transcription of NF-κB target genes. Our results now show that plumbagin is a potent inhibitor of the NF-κB signaling pathway, and suppressor of T-ALL cell proliferation. PMID:27018383

  4. Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia.

    PubMed

    Sanghvi, Viraj R; Mavrakis, Konstantinos J; Van der Meulen, Joni; Boice, Michael; Wolfe, Andrew L; Carty, Mark; Mohan, Prathibha; Rondou, Pieter; Socci, Nicholas D; Benoit, Yves; Taghon, Tom; Van Vlierberghe, Pieter; Leslie, Christina S; Speleman, Frank; Wendel, Hans-Guido

    2014-11-18

    The posttranscriptional control of gene expression by microRNAs (miRNAs) is highly redundant, and compensatory effects limit the consequences of the inactivation of individual miRNAs. This implies that only a few miRNAs can function as effective tumor suppressors. It is also the basis of our strategy to define functionally relevant miRNA target genes that are not under redundant control by other miRNAs. We identified a functionally interconnected group of miRNAs that exhibited a reduced abundance in leukemia cells from patients with T cell acute lymphoblastic leukemia (T-ALL). To pinpoint relevant target genes, we applied a machine learning approach to eliminate genes that were subject to redundant miRNA-mediated control and to identify those genes that were exclusively targeted by tumor-suppressive miRNAs. This strategy revealed the convergence of a small group of tumor suppressor miRNAs on the Myb oncogene, as well as their effects on HBP1, which encodes a transcription factor. The expression of both genes was increased in T-ALL patient samples, and each gene promoted the progression of T-ALL in mice. Hence, our systematic analysis of tumor suppressor miRNA action identified a widespread mechanism of oncogene activation in T-ALL.

  5. Genetic Inactivation of the PRC2 Complex in T-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Ntziachristos, Panagiotis; Tsirigos, Aristotelis; Van Vlierberghe, Pieter; Nedjic, Jelena; Trimarchi, Thomas; Flaherty, Maria Sol; Ferres-Marco, Dolors; da Ros, Vanina; Tang, Zuojian; Siegle, Jasmin; Asp, Patrik; Hadler, Michael; Rigo, Isaura; De Keersmaecker, Kim; Patel, Jay; Huynh, Tien; Utro, Filippo; Poglio, Sandrine; Samon, Jeremy B.; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M.; Rabadan, Raul; Levine, Ross L.; Brown, Stuart; Pflumio, Francoise; Dominguez, Maria; Ferrando, Adolfo; Aifantis, Iannis

    2011-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic activation of NOTCH1 signaling1. In this study we report the presence of loss-of-function mutations and deletions of EZH2 and SUZ12 genes, encoding critical components of the Polycomb Repressive Complex 2 (PRC2) complex2,3, in 25% of T-ALLs. To further study the role of the PRC2 complex in T-ALL, we used NOTCH1-induced animal models of the disease, as well as human T-ALL samples, and combined locus-specific and global analysis of NOTCH1-driven epigenetic changes. These studies demonstrated that activation of NOTCH1 specifically induces loss of the repressive mark lysine-27 tri-methylation of histone 3 (H3K27me3)4 by antagonizing the activity of the Polycomb Repressive Complex 2 (PRC2) complex. These studies demonstrate a tumor suppressor role for the PRC2 complex in human leukemia and suggest a hitherto unrecognized dynamic interplay between oncogenic NOTCH1 and PRC2 function for the regulation of gene expression and cell transformation. PMID:22237151

  6. TYK2-STAT1-BCL2 Pathway Dependence in T-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Sanda, Takaomi; Tyner, Jeffrey W.; Gutierrez, Alejandro; Ngo, Vu N.; Glover, Jason; Chang, Bill H.; Yost, Arla; Ma, Wenxue; Fleischman, Angela G.; Zhou, Wenjun; Yang, Yandan; Kleppe, Maria; Ahn, Yebin; Tatarek, Jessica; Kelliher, Michelle A.; Neuberg, Donna S.; Levine, Ross L.; Moriggl, Richard; Müller, Mathias; Gray, Nathanael S.; Jamieson, Catriona H. M.; Weng, Andrew P.; Staudt, Louis M.; Druker, Brian J.; Look, A. Thomas

    2013-01-01

    Targeted molecular therapy has yielded remarkable outcomes in certain cancers, but specific therapeutic targets remain elusive for many others. As a result of two independent RNA interference (RNAi) screens, we identified pathway dependence on a member of the JAK tyrosine kinase family, TYK2, and its downstream effector STAT1 in T-cell acute lymphoblastic leukemia (T-ALL). Gene knockdown experiments consistently demonstrated TYK2 dependence in both T-ALL primary specimens and cell lines, and a small-molecule inhibitor of JAK kinase activity induced T-ALL cell death. Activation of this TYK2-STAT1 pathway i n T-ALL cell lines occurs by gain-of-function TYK2 mutations or activation of IL-10 receptor signaling, and this pathway mediates T-ALL cell survival through upregulation of the anti-apoptotic protein BCL2. These findings indicate that in many T-ALL cases, the leukemic cells are dependent upon the TYK2-STAT1-BCL2 pathway for continued survival, supporting the development of molecular therapies targeting TYK2 and other components of this pathway. PMID:23471820

  7. Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia.

    PubMed

    Sanghvi, Viraj R; Mavrakis, Konstantinos J; Van der Meulen, Joni; Boice, Michael; Wolfe, Andrew L; Carty, Mark; Mohan, Prathibha; Rondou, Pieter; Socci, Nicholas D; Benoit, Yves; Taghon, Tom; Van Vlierberghe, Pieter; Leslie, Christina S; Speleman, Frank; Wendel, Hans-Guido

    2014-11-18

    The posttranscriptional control of gene expression by microRNAs (miRNAs) is highly redundant, and compensatory effects limit the consequences of the inactivation of individual miRNAs. This implies that only a few miRNAs can function as effective tumor suppressors. It is also the basis of our strategy to define functionally relevant miRNA target genes that are not under redundant control by other miRNAs. We identified a functionally interconnected group of miRNAs that exhibited a reduced abundance in leukemia cells from patients with T cell acute lymphoblastic leukemia (T-ALL). To pinpoint relevant target genes, we applied a machine learning approach to eliminate genes that were subject to redundant miRNA-mediated control and to identify those genes that were exclusively targeted by tumor-suppressive miRNAs. This strategy revealed the convergence of a small group of tumor suppressor miRNAs on the Myb oncogene, as well as their effects on HBP1, which encodes a transcription factor. The expression of both genes was increased in T-ALL patient samples, and each gene promoted the progression of T-ALL in mice. Hence, our systematic analysis of tumor suppressor miRNA action identified a widespread mechanism of oncogene activation in T-ALL. PMID:25406379

  8. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia

    PubMed Central

    Benyoucef, Aissa; Palii, Carmen G.; Wang, Chaochen; Porter, Christopher J.; Chu, Alphonse; Dai, Fengtao; Tremblay, Véronique; Rakopoulos, Patricia; Singh, Kulwant; Huang, Suming; Pflumio, Francoise; Hébert, Josée; Couture, Jean-Francois; Perkins, Theodore J.; Ge, Kai; Dilworth, F. Jeffrey; Brand, Marjorie

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities, gene expression signatures, and prognoses. However, it remains unclear whether T-ALL subtypes differ at the functional level, and, as such, T-ALL treatments are uniformly applied across subtypes, leading to variable responses between patients. Here we reveal the existence of a subtype-specific epigenetic vulnerability in T-ALL by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. Specifically, we identify UTX as a coactivator of TAL1 and show that it acts as a major regulator of the TAL1 leukemic gene expression program. Furthermore, we demonstrate that UTX, previously described as a tumor suppressor in T-ALL, is in fact a pro-oncogenic cofactor essential for leukemia maintenance in TAL1-positive (but not TAL1-negative) T-ALL. Exploiting this subtype-specific epigenetic vulnerability, we propose a novel therapeutic approach based on UTX inhibition through in vivo administration of an H3K27 demethylase inhibitor that efficiently kills TAL1-positive primary human leukemia. These findings provide the first opportunity to develop personalized epigenetic therapy for T-ALL patients. PMID:26944678

  9. Distinctive genotypes in infants with T-cell acute lymphoblastic leukaemia.

    PubMed

    Mansur, Marcela B; van Delft, Frederik W; Colman, Susan M; Furness, Caroline L; Gibson, Jane; Emerenciano, Mariana; Kempski, Helena; Clappier, Emmanuelle; Cave, Hélène; Soulier, Jean; Pombo-de-Oliveira, Maria S; Greaves, Mel; Ford, Anthony M

    2015-11-01

    Infant T-cell acute lymphoblastic leukaemia (iT-ALL) is a very rare and poorly defined entity with a poor prognosis. We assembled a unique series of 13 infants with T-ALL, which allowed us to identify genotypic abnormalities and to investigate prenatal origins. Matched samples (diagnosis/remission) were analysed by single nucleotide polymorphism-array to identify genomic losses and gains. In three cases, we identified a recurrent somatic deletion on chromosome 3. These losses result in the complete deletion of MLF1 and have not previously been described in T-ALL. We observed two cases with an 11p13 deletion (LMO2-related), one of which also harboured a deletion of RB1. Another case presented a large 11q14·1-11q23·2 deletion that included ATM and only five patients (38%) showed deletions of CDKN2A/B. Four cases showed NOTCH1 mutations; in one case FBXW7 was the sole mutation and three cases showed alterations in PTEN. KMT2A rearrangements (KMT2A-r) were detected in three out of 13 cases. For three patients, mutations and copy number alterations (including deletion of PTEN) could be backtracked to birth using neonatal blood spot DNA, demonstrating an in utero origin. Overall, our data indicates that iT-ALL has a diverse but distinctive profile of genotypic abnormalities when compared to T-ALL in older children and adults. PMID:26205622

  10. MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1

    PubMed Central

    Qian, Lu; Zhang, Wanggang; Lei, Bo; He, Aili; Ye, Lianhong; Li, Xingzhou; Dong, Xin

    2016-01-01

    The present study aimed to investigate the role of microRNA (miR)-101 in acute lymphoblastic leukemia progression and chemoresistance. Furthermore, a novel target gene of miR-101 was identified. Here, we confirmed that miR-101 was significantly downregulated in the blood samples of patients with T-cell acute lymphoblastic leukemia (T-ALL) compared with the healthy controls, as determined by reverse transcription quantitative polymerase chain reaction (RTqPCR) analysis. The in vitro experiments demonstrated that miR-101 significantly repressed the proliferation and invasion, and induced potent apoptosis in Jurkat cells, as determined by CCK-8, flow cytometer and cell invasion assays. Luciferase assay confirmed that Notch1 was a target gene of miR-101, and western blotting showed that miR-101 suppressed the expression of Notch1 at the protein level. Moreover, functional restoration assays revealed that Notch1 mediates the effects of miR-101 on Jurkat cell proliferation, apoptosis and invasion. miR-101 enhanced the sensitivity of Jurkat cells to the chemotherapeutic agent adriamycin. Taken together, our results show for the first time that miR-101 acts as a tumor suppressor in T-cell acute lymphoblastic leukaemia and it could enhance chemotherapeutic sensitivity. Furthermore, Notch1 was identified to be a novel target of miR-101. This study indicates that miR-101 may represent a potential therapeutic target for T-cell acute lymphoblastic leukemia intervention. PMID:27666896

  11. Investigating CD99 Expression in Leukemia Propagating Cells in Childhood T Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Cox, Charlotte V.; Diamanti, Paraskevi; Moppett, John P.; Blair, Allison

    2016-01-01

    A significant number of children with T-lineage acute lymphoblastic leukemia (T-ALL) fail to respond to therapy and experience early relapse. CD99 has been shown to be overexpressed on T-ALL cells and is considered to be a reliable detector of the disease. However, the relevance of CD99 overexpression in ALL has not been investigated in a functional context. The aim of this study was to investigate the functional capacity of CD99+ cells in childhood ALL and determine the suitability of CD99 as a therapeutic target. Flow cytometric analyses confirmed higher expression of CD99 in ALL blasts (81.5±22.7%) compared to normal hemopoietic stem cells (27.5±21.9%) and T cells (3.1±5.2%, P≤0.004). When ALL cells were sorted and assessed in functional assays, all 4 subpopulations (CD34+/CD99+, CD34+/CD99-, CD34-/CD99+ and CD34-/CD99-) could proliferate in vitro and establish leukemia in NSG mice. Leukemia propagating cell frequencies ranged from 1 in 300 to 1 in 7.4x104 but were highest in the CD34+/CD99- subpopulation. In addition, all four subpopulations had self-renewal ability in secondary NSG mice. Cells in each subpopulation contained patient specific TCR rearrangements and karyotypic changes that were preserved with passage through serial NSG transplants. Despite high levels of CD99 antigen on the majority of blast cells, leukemia initiating capacity in vivo was not restricted to cells that express this protein. Consequently, targeting CD99 alone would not eliminate all T-ALL cells with the ability to maintain the disease. The challenge remains to develop therapeutic strategies that can eliminate all leukemia cells with self-renewal capacity in vivo. PMID:27764235

  12. Rearrangement of variable region T cell receptor gamma genes in acute lymphoblastic leukemia. V gamma gene usage differs in mature and immature T cells.

    PubMed Central

    Hara, J; Benedict, S H; Yumura, K; Ha-Kawa, K; Gelfand, E W

    1989-01-01

    Using probes recognizing variable regions (V gamma) and joining regions (J gamma) of the T cell receptor (TCR) gamma gene, we have analyzed the usage of V gamma genes in 24 patients with T cell acute lymphoblastic leukemia (ALL) and 36 patients with B-precursor ALL. In CD3- T-ALL derived from immature T cells, V gamma genes more proximal to J gamma were frequently rearranged; V gamma 8, V gamma 9, V gamma 10, and V gamma 11 were used in 19 of 24 rearrangements. In contrast, CD3+ T-ALL derived from a more mature stage of T cell ontogeny, showed a high frequency of rearrangements involving V gamma genes distal to J gamma; V gamma 2, V gamma 3, V gamma 4, and V gamma 5 were used in 17 of 25 rearrangements. In B-precursor ALL, no notable bias of V gamma gene usage was observed. This probably reflects the possibility that TCR genes may not rearrange according to a T cell hierarchy when under control of a B cell gene program. Furthermore, deletions of those V gamma genes located 3' to rearranged V gamma genes were observed in all patients analyzed. This supports the theory that loop deletion is a major mechanism for TCR-gamma gene rearrangement. Images PMID:2522937

  13. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications

    PubMed Central

    Gianfelici, Valentina; Chiaretti, Sabina; Demeyer, Sofie; Di Giacomo, Filomena; Messina, Monica; La Starza, Roberta; Peragine, Nadia; Paoloni, Francesca; Geerdens, Ellen; Pierini, Valentina; Elia, Loredana; Mancini, Marco; De Propris, Maria Stefania; Apicella, Valerio; Gaidano, Gianluca; Testi, Anna Maria; Vitale, Antonella; Vignetti, Marco; Mecucci, Cristina; Guarini, Anna; Cools, Jan; Foà, Robin

    2016-01-01

    Despite therapeutic improvements, a sizable number of patients with T-cell acute lymphoblastic leukemia still have a poor outcome. To unravel the genomic background associated with refractoriness, we evaluated the transcriptome of 19 cases of refractory/early relapsed T-cell acute lymphoblastic leukemia (discovery cohort) by performing RNA-sequencing on diagnostic material. The incidence and prognostic impact of the most frequently mutated pathways were validated by Sanger sequencing on genomic DNA from diagnostic samples of an independent cohort of 49 cases (validation cohort), including refractory, relapsed and responsive cases. Combined gene expression and fusion transcript analyses in the discovery cohort revealed the presence of known oncogenes and identified novel rearrangements inducing overexpression, as well as inactivation of tumor suppressor genes. Mutation analysis identified JAK/STAT and RAS/PTEN as the most commonly disrupted pathways in patients with chemorefractory disease or early relapse, frequently in association with NOTCH1/FBXW7 mutations. The analysis on the validation cohort documented a significantly higher risk of relapse, inferior overall survival, disease-free survival and event-free survival in patients with JAK/STAT or RAS/PTEN alterations. Conversely, a significantly better survival was observed in patients harboring only NOTCH1/FBXW7 mutations: this favorable prognostic effect was abrogated by the presence of concomitant mutations. Preliminary in vitro assays on primary cells demonstrated sensitivity to specific inhibitors. These data document the negative prognostic impact of JAK/STAT and RAS/PTEN mutations in T-cell acute lymphoblastic leukemia and suggest the potential clinical application of JAK and PI3K/mTOR inhibitors in patients harboring mutations in these pathways. PMID:27151993

  14. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications.

    PubMed

    Gianfelici, Valentina; Chiaretti, Sabina; Demeyer, Sofie; Di Giacomo, Filomena; Messina, Monica; La Starza, Roberta; Peragine, Nadia; Paoloni, Francesca; Geerdens, Ellen; Pierini, Valentina; Elia, Loredana; Mancini, Marco; De Propris, Maria Stefania; Apicella, Valerio; Gaidano, Gianluca; Testi, Anna Maria; Vitale, Antonella; Vignetti, Marco; Mecucci, Cristina; Guarini, Anna; Cools, Jan; Foà, Robin

    2016-08-01

    Despite therapeutic improvements, a sizable number of patients with T-cell acute lymphoblastic leukemia still have a poor outcome. To unravel the genomic background associated with refractoriness, we evaluated the transcriptome of 19 cases of refractory/early relapsed T-cell acute lymphoblastic leukemia (discovery cohort) by performing RNA-sequencing on diagnostic material. The incidence and prognostic impact of the most frequently mutated pathways were validated by Sanger sequencing on genomic DNA from diagnostic samples of an independent cohort of 49 cases (validation cohort), including refractory, relapsed and responsive cases. Combined gene expression and fusion transcript analyses in the discovery cohort revealed the presence of known oncogenes and identified novel rearrangements inducing overexpression, as well as inactivation of tumor suppressor genes. Mutation analysis identified JAK/STAT and RAS/PTEN as the most commonly disrupted pathways in patients with chemorefractory disease or early relapse, frequently in association with NOTCH1/FBXW7 mutations. The analysis on the validation cohort documented a significantly higher risk of relapse, inferior overall survival, disease-free survival and event-free survival in patients with JAK/STAT or RAS/PTEN alterations. Conversely, a significantly better survival was observed in patients harboring only NOTCH1/FBXW7 mutations: this favorable prognostic effect was abrogated by the presence of concomitant mutations. Preliminary in vitro assays on primary cells demonstrated sensitivity to specific inhibitors. These data document the negative prognostic impact of JAK/STAT and RAS/PTEN mutations in T-cell acute lymphoblastic leukemia and suggest the potential clinical application of JAK and PI3K/mTOR inhibitors in patients harboring mutations in these pathways.

  15. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia.

    PubMed

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V; Soulier, Jean; Harrison, Christine J; Clappier, Emmanuelle; Cools, Jan

    2015-10-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia.

  16. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia.

    PubMed

    Patel, B; Kang, Y; Cui, K; Litt, M; Riberio, M S J; Deng, C; Salz, T; Casada, S; Fu, X; Qiu, Y; Zhao, K; Huang, S

    2014-02-01

    Long-range chromatin interactions control metazoan gene transcription. However, the involvement of intra- and interchromosomal interactions in development and oncogenesis remains unclear. TAL1/SCL is a critical transcription factor required for the development of all hematopoietic lineages; yet, aberrant TAL1 transcription often occurs in T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that oncogenic TAL1 expression is regulated by different intra- and interchromosomal loops in normal hematopoietic and leukemic cells, respectively. These intra- and interchromosomal loops alter the cell-type-specific enhancers that interact with the TAL1 promoter. We show that human SET1 (hSET1)-mediated H3K4 methylations promote a long-range chromatin loop, which brings the +51 enhancer in close proximity to TAL1 promoter 1 in erythroid cells. The CCCTC-binding factor (CTCF) facilitates this long-range enhancer/promoter interaction of the TAL1 locus in erythroid cells while blocking the same enhancer/promoter interaction of the TAL1 locus in human T-cell leukemia. In human T-ALL, a T-cell-specific transcription factor c-Maf-mediated interchromosomal interaction brings the TAL1 promoter into close proximity with a T-cell-specific regulatory element located on chromosome 16, activating aberrant TAL1 oncogene expression. Thus, our study reveals a novel molecular mechanism involving changes in three-dimensional chromatin interactions that activate the TAL1 oncogene in human T-cell leukemia. PMID:23698277

  17. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia

    PubMed Central

    Brentjens, Renier; Davila, Marco L; Riviere, Isabelle; Park, Jae; Wang, Xiuyan; Cowell, Lindsay G; Bartido, Shirley; Stefanski, Jolanta; Taylor, Clare; Olszewska, Malgorzata; Borquez-Ojeda, Oriana; Qu, Jinrong; Wasielewska, Teresa; He, Qing; Bernal, Yvette; Rijo, Ivelise V; Hedvat, Cyrus; Kobos, Rachel; Curran, Kevin; Steinherz, Peter; Jurcic, Joseph; Rosenblat, Todd; Maslak, Peter; Frattini, Mark; Sadelain, Michel

    2013-01-01

    Adults with relapsed B-acute lymphoblastic leukemia (ALL) have a dismal prognosis. Only those patients able to achieve a second remission with no minimal residual disease (MRD−) have a hope for long-term survival in the context of a subsequent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We have treated 5 relapsed B-ALL subjects with autologous T cells expressing a CD19-specific CD28/CD3ζ second generation dual-signaling chimeric antigen receptor (CAR) termed 19-28z. All patients with persistent morphological disease or MRD+ disease upon T cell infusion demonstrated rapid tumor eradication and achieved MRD-negative complete remissions as assessed by deep sequencing PCR. Therapy was well tolerated although significant cytokine elevations, specifically observed in those patients with morphologic evidence of disease at the time of treatment, required lymphotoxic steroid therapy to ameliorate cytokine-mediated toxicities. Significantly, cytokine elevations directly correlated to tumor burden at the time of CAR modified T cell infusions. Tumor cells from one patient with relapsed disease after CAR modified T cell therapy, ineligible for additional allo-HSCT therapy, exhibited persistent expression of CD19 and sensitivity to autologous 19-28z T cell mediated cytotoxicity suggesting potential clinical benefit of additional CAR modified T cell infusions. These results demonstrate the marked anti-tumor efficacy of 19-28z CAR modified T cells in patients with relapsed/refractory B-ALL and the reliability of this novel therapy to induce profound molecular remissions, an ideal bridge to potentially curative therapy with subsequent allo-HSCT. PMID:23515080

  18. Combination Chemotherapy and Imatinib Mesylate in Treating Children With Relapsed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Non-T, Non-B Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  19. Characterization of the genome-wide TLX1 binding profile in T-cell acute lymphoblastic leukemia.

    PubMed

    Durinck, K; Van Loocke, W; Van der Meulen, J; Van de Walle, I; Ongenaert, M; Rondou, P; Wallaert, A; de Bock, C E; Van Roy, N; Poppe, B; Cools, J; Soulier, J; Taghon, T; Speleman, F; Van Vlierberghe, P

    2015-12-01

    The TLX1 transcription factor is critically involved in the multi-step pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and often cooperates with NOTCH1 activation during malignant T-cell transformation. However, the exact molecular mechanism by which these T-cell specific oncogenes cooperate during transformation remains to be established. Here, we used chromatin immunoprecipitation followed by sequencing to establish the genome-wide binding pattern of TLX1 in human T-ALL. This integrative genomics approach showed that ectopic TLX1 expression drives repression of T cell-specific enhancers and mediates an unexpected transcriptional antagonism with NOTCH1 at critical target genes, including IL7R and NOTCH3. These phenomena coordinately trigger a TLX1-driven pre-leukemic phenotype in human thymic precursor cells, reminiscent of the thymus regression observed in murine TLX1 tumor models, and create a strong genetic pressure for acquiring activating NOTCH1 mutations as a prerequisite for full leukemic transformation. In conclusion, our results uncover a functional antagonism between cooperative oncogenes during the earliest phases of tumor development and provide novel insights in the multi-step pathogenesis of TLX1-driven human leukemia. PMID:26108691

  20. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Davila, Marco L.; Riviere, Isabelle; Wang, Xiuyan; Bartido, Shirley; Park, Jae; Curran, Kevin; Chung, Stephen S.; Stefanski, Jolanta; Borquez-Ojeda, Oriana; Olszewska, Malgorzata; Qu, Jinrong; Wasielewska, Teresa; He, Qing; Fink, Mitsu; Shinglot, Himaly; Youssif, Maher; Satter, Mark; Wang, Yongzeng; Hosey, James; Quintanilla, Hilda; Halton, Elizabeth; Bernal, Yvette; Bouhassira, Diana C. G.; Arcila, Maria E.; Gonen, Mithat; Roboz, Gail J.; Maslak, Peter; Douer, Dan; Frattini, Mark G.; Giralt, Sergio; Sadelain, Michel; Brentjens, Renier

    2015-01-01

    We report on 16 patients with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) that we treated with autologous T cells expressing the 19-28z chimeric antigen receptor (CAR) specific to the CD19 antigen. The overall complete response rate was 88%, which allowed us to transition most of these patients to a standard-of-care allogeneic hematopoietic stem cell transplant (allo-SCT). This therapy was as effective in high-risk patients with Philadelphia chromosome–positive (Ph+) disease as in those with relapsed disease after previous allo-SCT. Through systematic analysis of clinical data and serum cytokine levels over the first 21 days after T cell infusion, we have defined diagnostic criteria for a severe cytokine release syndrome (sCRS), with the goal of better identifying the subset of patients who will likely require therapeutic intervention with corticosteroids or interleukin-6 receptor blockade to curb the sCRS. Additionally, we found that serum C-reactive protein, a readily available laboratory study, can serve as a reliable indicator for the severity of the CRS. Together, our data provide strong support for conducting a multicenter phase 2 study to further evaluate 19-28z CAR T cells in B-ALL and a road map for patient management at centers now contemplating the use of CAR T cell therapy. PMID:24553386

  1. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    SciTech Connect

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong; Siddiqui, Rafat A.

    2011-07-29

    Highlights: {yields} 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. {yields} DIP-DHA resulted in increased activation of caspase-3, and caspase-7. {yields} DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  2. NUP214-ABL1-mediated cell proliferation in T-cell acute lymphoblastic leukemia is dependent on the LCK kinase and various interacting proteins

    PubMed Central

    De Keersmaecker, Kim; Porcu, Michaël; Cox, Luk; Girardi, Tiziana; Vandepoel, Roel; de Beeck, Joyce Op; Gielen, Olga; Mentens, Nicole; Bennett, Keiryn L.; Hantschel, Oliver

    2014-01-01

    The NUP214-ABL1 fusion protein is a constitutively active protein tyrosine kinase that is found in 6% of patients with T-cell acute lymphoblastic leukemia and that promotes proliferation and survival of T-lymphoblasts. Although NUP214-ABL1 is sensitive to ABL1 kinase inhibitors, development of resistance to these compounds is a major clinical problem, underlining the need for additional drug targets in the sparsely studied NUP214-ABL1 signaling network. In this work, we identify and validate the SRC family kinase LCK as a protein whose activity is absolutely required for the proliferation and survival of T-cell acute lymphoblastic leukemia cells that depend on NUP214-ABL1 activity. These findings underscore the potential of SRC kinase inhibitors and of the dual ABL1/SRC kinase inhibitors dasatinib and bosutinib for the treatment of NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. In addition, we used mass spectrometry to identify protein interaction partners of NUP214-ABL1. Our results strongly support that the signaling network of NUP214-ABL1 is distinct from that previously reported for BCR-ABL1. Moreover, we found that three NUP214-ABL1-interacting proteins, MAD2L1, NUP155, and SMC4, are strictly required for the proliferation and survival of NUP214-ABL1-positive T-cell acute lymphoblastic leukemia cells. In conclusion, this work identifies LCK, MAD2L1, NUP155 and SMC4 as four new potential drug targets in NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. PMID:23872305

  3. MiR-146b negatively regulates migration and delays progression of T-cell acute lymphoblastic leukemia

    PubMed Central

    Correia, Nádia C.; Fragoso, Rita; Carvalho, Tânia; Enguita, Francisco J.; Barata, João T.

    2016-01-01

    Previous results indicated that miR-146b-5p is downregulated by TAL1, a transcription factor critical for early hematopoiesis that is frequently overexpressed in T-cell acute lymphoblastic leukemia (T-ALL) where it has an oncogenic role. Here, we confirmed that miR-146b-5p expression is lower in TAL1-positive patient samples than in other T-ALL cases. Furthermore, leukemia T-cells display decreased levels of miR-146b-5p as compared to normal T-cells, thymocytes and other hematopoietic progenitors. MiR-146b-5p silencing enhances the in vitro migration and invasion of T-ALL cells, associated with increased levels of filamentous actin and chemokinesis. In vivo, miR-146b overexpression in a TAL1-positive cell line extends mouse survival in a xenotransplant model of human T-ALL. In contrast, knockdown of miR-146b-5p results in leukemia acceleration and decreased mouse overall survival, paralleled by faster tumor infiltration of the central nervous system. Our results suggest that miR-146b-5p is a functionally relevant microRNA gene in the context of T-ALL, whose negative regulation by TAL1 and possibly other oncogenes contributes to disease progression by modulating leukemia cell motility and disease aggressiveness. PMID:27550837

  4. Targeting leukemia stem cells: which pathways drive self-renewal activity in T-cell acute lymphoblastic leukemia?

    PubMed Central

    Belmonte, M.; Hoofd, C.; Weng, A.P.; Giambra, V.

    2016-01-01

    T-Cell acute lymphoblastic leukemia (t-all) is a malignancy of white blood cells, characterized by an uncontrolled accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and crowd into the bone marrow, preventing it from making normal blood cells and spilling out into the bloodstream. Recent studies suggest that only discrete cell populations that possess the ability to recreate the entire tumour might be responsible for the initiation and propagation of t-all. Those unique cells are commonly called “cancer stem cells” or, in the case of hematopoietic malignancies, “leukemia stem cells” (lscs). Like normal hematopoietic stem cells, lscs are thought to be capable of self-renewal, during which, by asymmetrical division, they give rise to an identical copy of themselves as well as to a daughter cell that is no longer capable of self-renewal activity and represents a more “differentiated” progeny. Here, we review the main pathways of self-renewal activity in lscs, focusing on their involvement in the maintenance and development of t-all. New stem cell–directed therapies and lsc-targeted agents are also discussed. PMID:26966402

  5. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia

    PubMed Central

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan

    2015-01-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  6. Alemtuzumab and Combination Chemotherapy in Treating Patients With Untreated Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2014-03-20

    Acute Undifferentiated Leukemia; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; L1 Adult Acute Lymphoblastic Leukemia; L1 Childhood Acute Lymphoblastic Leukemia; L2 Adult Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  7. Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia.

    PubMed

    Oliveira, Lucila H; Schiavinato, Josiane L; Fráguas, Mariane S; Lucena-Araujo, Antonio R; Haddad, Rodrigo; Araújo, Amélia G; Dalmazzo, Leandro F; Rego, Eduardo M; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A

    2015-10-01

    Recent evidence has shown that deregulated expression of members of the microRNA-29 (miR-29) family may play a critical role in human cancer, including hematological malignancies. However, the roles of miR-29 in the molecular pathophysiology of T-cell acute lymphoblastic leukemia (T-ALL) has not been investigated. Here, we show that lower levels of miR-29a were significantly associated with higher blast counts in the bone marrow and with increased disease-free survival in T-ALL patients. Furthermore, miR-29a levels are extremely reduced in T-ALL cells compared to normal T cells. Microarray analysis following introduction of synthetic miR-29a mimics into Jurkat cells revealed the downregulation of several predicted targets (CDK6, PXDN, MCL1, PIK3R1, and CXXC6), including targets with roles in active and passive DNA demethylation (such as DNMT3a, DNMT3b, and members of the TET family and TDG). Restoring miR-29a levels in Jurkat and Molt-4 T-ALL cells led to the demethylation of many genes commonly methylated in T-ALL. Overall, our results suggest that reduced miR-29a levels may contribute to the altered epigenetic status of T-ALL, highlighting its relevance in the physiopathology of this disease.

  8. An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study

    PubMed Central

    Bond, Jonathan; Marchand, Tony; Touzart, Aurore; Cieslak, Agata; Trinquand, Amélie; Sutton, Laurent; Radford-Weiss, Isabelle; Lhermitte, Ludovic; Spicuglia, Salvatore; Dombret, Hervé; Macintyre, Elizabeth; Ifrah, Norbert; Hamel, Jean-François; Asnafi, Vahid

    2016-01-01

    Gene expression studies have consistently identified a HOXA-overexpressing cluster of T-cell acute lymphoblastic leukemias, but it is unclear whether these constitute a homogeneous clinical entity, and the biological consequences of HOXA overexpression have not been systematically examined. We characterized the biology and outcome of 55 HOXA-positive cases among 209 patients with adult T-cell acute lymphoblastic leukemia uniformly treated during the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003 and -2005 studies. HOXA-positive patients had markedly higher rates of an early thymic precursor-like immunophenotype (40.8% versus 14.5%, P=0.0004), chemoresistance (59.3% versus 40.8%, P=0.026) and positivity for minimal residual disease (48.5% versus 23.5%, P=0.01) than the HOXA-negative group. These differences were due to particularly high frequencies of chemoresistant early thymic precursor-like acute lymphoblastic leukemia in HOXA-positive cases harboring fusion oncoproteins that transactivate HOXA. Strikingly, the presence of an early thymic precursor-like immunophenotype was associated with marked outcome differences within the HOXA-positive group (5-year overall survival 31.2% in HOXA-positive early thymic precursor versus 66.7% in HOXA-positive non-early thymic precursor, P=0.03), but not in HOXA-negative cases (5-year overall survival 74.2% in HOXA-negative early thymic precursor versus 57.2% in HOXA-negative non-early thymic precursor, P=0.44). Multivariate analysis further revealed that HOXA positivity independently affected event-free survival (P=0.053) and relapse risk (P=0.039) of chemoresistant T-cell acute lymphoblastic leukemia. These results show that the underlying mechanism of HOXA deregulation dictates the clinico-biological phenotype, and that the negative prognosis of early thymic precursor acute lymphoblastic leukemia is exclusive to HOXA-positive patients, suggesting that early treatment intensification is currently

  9. AZD1775 sensitizes T cell acute lymphoblastic leukemia cells to cytarabine by promoting apoptosis over DNA repair.

    PubMed

    Ford, James B; Baturin, Dmitry; Burleson, Tamara M; Van Linden, Annemie A; Kim, Yong-Mi; Porter, Christopher C

    2015-09-29

    While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics. We sought to determine if this strategy would be effective for T-ALL with clinically relevant anti-leukemia agents. We found that AZD1775 sensitizes T-ALL cells to several traditional anti-leukemia agents, acting synergistically with cytarabine by enhancing DNA damage and apoptosis. In addition to increased phosphorylation of H2AX at serine 139 (γH2AX), AZD1775 led to increased phosphorylation of H2AX at tyrosine 142, a signaling event associated with promotion of apoptosis over DNA repair. In a xenograft model of T-ALL, the addition of AZD1775 to cytarabine slowed leukemia progression and prolonged survival. Inhibition of WEE1 with AZD1775 sensitizes T-ALL to several anti-leukemia agents, particularly cytarabine and that mechanistically, AZD1775 promotes apoptosis over DNA repair in cells treated with cytarabine. These data support the development of clinical trials including AZD1775 in combination with conventional chemotherapy for acute leukemia. PMID:26334102

  10. The relevance of PTEN-AKT in relation to NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia.

    PubMed

    Mendes, Rui D; Canté-Barrett, Kirsten; Pieters, Rob; Meijerink, Jules P P

    2016-09-01

    The tumor suppressor phosphatase and tensin homolog (PTEN) negatively regulates phosphatidylinositol 3-kinase (PI3K)-AKT signaling and is often inactivated by mutations (including deletions) in a variety of cancer types, including T-cell acute lymphoblastic leukemia. Here we review mutation-associated mechanisms that inactivate PTEN together with other molecular mechanisms that activate AKT and contribute to T-cell leukemogenesis. In addition, we discuss how Pten mutations in mouse models affect the efficacy of gamma-secretase inhibitors to block NOTCH1 signaling through activation of AKT. Based on these models and on observations in primary diagnostic samples from patients with T-cell acute lymphoblastic leukemia, we speculate that PTEN-deficient cells employ an intrinsic homeostatic mechanism in which PI3K-AKT signaling is dampened over time. As a result of this reduced PI3K-AKT signaling, the level of AKT activation may be insufficient to compensate for NOTCH1 inhibition, resulting in responsiveness to gamma-secretase inhibitors. On the other hand, de novo acquired PTEN-inactivating events in NOTCH1-dependent leukemia could result in temporary, strong activation of PI3K-AKT signaling, increased glycolysis and glutaminolysis, and consequently gamma-secretase inhibitor resistance. Due to the central role of PTEN-AKT signaling and in the resistance to NOTCH1 inhibition, AKT inhibitors may be a promising addition to current treatment protocols for T-cell acute lymphoblastic leukemia. PMID:27582570

  11. The relevance of PTEN-AKT in relation to NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia

    PubMed Central

    Mendes, Rui D.; Canté-Barrett, Kirsten; Pieters, Rob; Meijerink, Jules P.P.

    2016-01-01

    The tumor suppressor phosphatase and tensin homolog (PTEN) negatively regulates phosphatidylinositol 3-kinase (PI3K)-AKT signaling and is often inactivated by mutations (including deletions) in a variety of cancer types, including T-cell acute lymphoblastic leukemia. Here we review mutation-associated mechanisms that inactivate PTEN together with other molecular mechanisms that activate AKT and contribute to T-cell leukemogenesis. In addition, we discuss how Pten mutations in mouse models affect the efficacy of gamma-secretase inhibitors to block NOTCH1 signaling through activation of AKT. Based on these models and on observations in primary diagnostic samples from patients with T-cell acute lymphoblastic leukemia, we speculate that PTEN-deficient cells employ an intrinsic homeostatic mechanism in which PI3K-AKT signaling is dampened over time. As a result of this reduced PI3K-AKT signaling, the level of AKT activation may be insufficient to compensate for NOTCH1 inhibition, resulting in responsiveness to gamma-secretase inhibitors. On the other hand, de novo acquired PTEN-inactivating events in NOTCH1-dependent leukemia could result in temporary, strong activation of PI3K-AKT signaling, increased glycolysis and glutaminolysis, and consequently gamma-secretase inhibitor resistance. Due to the central role of PTEN-AKT signaling and in the resistance to NOTCH1 inhibition, AKT inhibitors may be a promising addition to current treatment protocols for T-cell acute lymphoblastic leukemia. PMID:27582570

  12. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL).

    PubMed

    Mavrakis, Konstantinos J; Van Der Meulen, Joni; Wolfe, Andrew L; Liu, Xiaoping; Mets, Evelien; Taghon, Tom; Khan, Aly A; Setty, Manu; Setti, Manu; Rondou, Pieter; Vandenberghe, Peter; Delabesse, Eric; Benoit, Yves; Socci, Nicholas B; Leslie, Christina S; Van Vlierberghe, Pieter; Speleman, Frank; Wendel, Hans-Guido

    2011-07-01

    The importance of individual microRNAs (miRNAs) has been established in specific cancers. However, a comprehensive analysis of the contribution of miRNAs to the pathogenesis of any specific cancer is lacking. Here we show that in T-cell acute lymphoblastic leukemia (T-ALL), a small set of miRNAs is responsible for the cooperative suppression of several tumor suppressor genes. Cross-comparison of miRNA expression profiles in human T-ALL with the results of an unbiased miRNA library screen allowed us to identify five miRNAs (miR-19b, miR-20a, miR-26a, miR-92 and miR-223) that are capable of promoting T-ALL development in a mouse model and which account for the majority of miRNA expression in human T-ALL. Moreover, these miRNAs produce overlapping and cooperative effects on tumor suppressor genes implicated in the pathogenesis of T-ALL, including IKAROS (also known as IKZF1), PTEN, BIM, PHF6, NF1 and FBXW7. Thus, a comprehensive and unbiased analysis of miRNA action in T-ALL reveals a striking pattern of miRNA-tumor suppressor gene interactions in this cancer.

  13. Crucial role of the Rap G protein signal in Notch activation and leukemogenicity of T-cell acute lymphoblastic leukemia.

    PubMed

    Doi, Keiko; Imai, Takahiko; Kressler, Christopher; Yagita, Hideo; Agata, Yasutoshi; Vooijs, Marc; Hamazaki, Yoko; Inoue, Joe; Minato, Nagahiro

    2015-01-23

    The Rap G protein signal regulates Notch activation in early thymic progenitor cells, and deregulated Rap activation (Rap(high)) results in the development of Notch-dependent T-cell acute lymphoblastic leukemia (T-ALL). We demonstrate that the Rap signal is required for the proliferation and leukemogenesis of established Notch-dependent T-ALL cell lines. Attenuation of the Rap signal by the expression of a dominant-negative Rap1A17 or Rap1GAP, Sipa1, in a T-ALL cell line resulted in the reduced Notch processing at site 2 due to impaired maturation of Adam10. Inhibition of the Rap1 prenylation with a geranylgeranyl transferase inhibitor abrogated its membrane-anchoring to Golgi-network and caused reduced proprotein convertase activity required for Adam10 maturation. Exogenous expression of a mature form of Adam10 overcame the Sipa1-induced inhibition of T-ALL cell proliferation. T-ALL cell lines expressed Notch ligands in a Notch-signal dependent manner, which contributed to the cell-autonomous Notch activation. Although the initial thymic blast cells barely expressed Notch ligands during the T-ALL development from Rap(high) hematopoietic progenitors in vivo, the ligands were clearly expressed in the T-ALL cells invading extrathymic vital organs. These results reveal a crucial role of the Rap signal in the Notch-dependent T-ALL development and the progression.

  14. PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia

    PubMed Central

    Silveira, André Bortolini; Laranjeira, Angelo Brunelli Albertoni; Rodrigues, Gisele Olinto Libanio; Leal, Paulo César; Cardoso, Bruno António; Barata, João Taborda; Yunes, Rosendo Augusto; Zanchin, Nilson Ivo Tonin; Brandalise, Sílvia Regina; Yunes, José Andrés

    2015-01-01

    The PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. By gene expression microarray analysis of T-ALL cells treated with the PI3K inhibitor AS605240, we identified Myc as a prominent downstream target of the PI3K pathway. A significant association was found between the AS605240 gene expression signature and that of glucocorticoid resistance and relapse in T-ALL. AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy. PMID:25869207

  15. The Functional Role of PRC2 in Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) - Mechanisms and Opportunities.

    PubMed

    Bernt, Kathrin M; Hunger, Stephen P; Neff, Tobias

    2016-01-01

    Early T-Cell precursor acute lymphoblastic leukemia (ETP-ALL) is a relatively newly identified subset of T-lineage ALL. There are conflicting results regarding prognosis, and the genetic basis of this condition is variable. Here, we summarize the current status of the field and discuss the role of mutations in the Polycomb Repressive Complex 2 frequently identified in ETP-ALL patients. PMID:27242978

  16. The Functional Role of PRC2 in Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) – Mechanisms and Opportunities

    PubMed Central

    Bernt, Kathrin M.; Hunger, Stephen P.; Neff, Tobias

    2016-01-01

    Early T-Cell precursor acute lymphoblastic leukemia (ETP-ALL) is a relatively newly identified subset of T-lineage ALL. There are conflicting results regarding prognosis, and the genetic basis of this condition is variable. Here, we summarize the current status of the field and discuss the role of mutations in the Polycomb Repressive Complex 2 frequently identified in ETP-ALL patients. PMID:27242978

  17. T-cell acute lymphoblastic leukemia in association with Börjeson-Forssman-Lehmann syndrome due to a mutation in PHF6.

    PubMed

    Chao, Mwe Mwe; Todd, Matthew A; Kontny, Udo; Neas, Katherine; Sullivan, Michael J; Hunter, Alasdair G; Picketts, David J; Kratz, Christian P

    2010-10-01

    Börjeson-Forssman-Lehmann syndrome (BFLS) is a rare X-linked mental retardation syndrome that is caused by germline mutations in PHF6. We describe a 9-year-old male with BFLS, who developed T-cell acute lymphoblastic leukemia (T-ALL). The PHF6 gene is located on the X chromosome and encodes a protein with two PHD-type zinc finger domains and four nuclear localization sequences. Previously, overexpression of Phf6 was observed in murine T-cell lymphomas. Our observation indicates that BFLS may represent a cancer predisposition syndrome and that mutations of PHF6 contribute to T-ALL.

  18. Potential antileukemic effect of gamma delta T cells in acute lymphoblastic leukemia.

    PubMed

    Duval, M; Yotnda, P; Bensussan, A; Oudhiri, N; Guidal, C; Rohrlich, P; Boumsell, L; Grandchamp, B; Vilmer, E

    1995-05-01

    The immune response to leukemia is poorly understood. We postulated that nonmalignant T lymphocytes remaining within bone marrow from children with newly diagnosed ALL could be involved in this immune response. T lymphocytes which expressed gamma delta TCR comprised less than 1% of ALL marrow cells. A preferential outgrowth of gamma delta T cells within the CD3 population was observed when marrow cells were cultured with IL-2 alone or with stimulating feeder cells. These results, obtained in a series of 14 patients with precursor B-ALL, were significantly different when compared with expansions from normal marrow cells. In one patient, the clones established from the expanded population displayed different patterns of cytotoxicity against tumoral targets of the B cell lineage. Some clones expressing the TCR V delta 1 segment showed cytotoxic activity against a cell line derived from a pre-B ALL without activity against a LAK-sensitive B cell line. Using PCR amplification, one such clone was detected at high frequency, in the primary expansion of ALL marrow cells. These results suggest a prior activation in vivo of some gamma delta T cells by leukemic cells and provide some evidence on the role of these subsets in the immune response to leukemia.

  19. Haploidentical hematopoietic stem cell transplantation for paediatric high-risk T-cell acute lymphoblastic leukaemia.

    PubMed

    Xu, Zheng-Li; Huang, Xiao-Jun; Liu, Kai-Yan; Chen, Huan; Zhang, Xiao-Hui; Han, Wei; Chen, Yu-Hong; Wang, Feng-Rong; Wang, Jing-Zhi; Wang, Yu; Chen, Yao; Yan, Chen-Hua; Xu, Lan-Ping

    2016-06-01

    Paediatric HR T-cell ALL demonstrates dismal prognosis with chemotherapy, and poor outcomes could be improved with allo-SCT. HID-SCT is an almost immediately available choice; however, few studies have focused on the outcomes of HID-SCT for paediatric HR T-ALL. Forty-eight consecutive HR T-ALL children who underwent HID-SCT were included. Survival outcomes and factors predictive of outcomes were retrospectively analysed. Of the 48 patients, 35 were in CR1, 10 in CR2, and three in relapse. The cumulative incidence of grade 3/4 aGVHD was 10.4% and that of extensive cGVHD was 28.4%. The CIR at three yr was 30.8% and that of NRM at three yr was 14.7%. At a median follow-up of 20.0 (range 2.5-124.2) months, the three-yr LFS was 54.4%. Children who received transplants during CR1 had a better LFS (65.7% vs. 26.0%, p = 0.008) and a lower relapse rate (19.8% vs. 56.7%, p = 0.014) compared to those during non-CR1. HID-SCT is feasible for HR T-ALL children, and survival outcomes are better when performed in CR1 compared to non-CR1. Prospective clinical trials would be needed to confirm that. PMID:26996140

  20. microRNA-204 inhibits cell proliferation in T-cell acute lymphoblastic leukemia by down-regulating SOX4

    PubMed Central

    Yin, Jun-Jie; Liang, Bo; Zhan, Xin-Rong

    2015-01-01

    Background: MicroRNAs (miRNAs) are a group of small non-coding RNAs that play important roles in the pathogenesis of human diseases by negatively regulating gene expression. The aim of this study was to explore the effect of miR-204 on cell proliferation migration and invasion in T-cell acute lymphoblastic leukaemia (T-ALL). Method: miR-204 expression was determined in bone marrow samples from 32 leukemia patients and 32 healthy controls by quantitative real-time PCR (qRT-PCR). The effect of miR-204 on cell proliferation was evaluated by CCK8 assay, cell migration and invasion were evaluated by transwell migration and invasion assays, In addition, the regulation of SOX4 by miR-204 was evaluated by luciferase reporter assay and western blot. Results: our results revealed that miR-204 was low expressed in T-ALL. Cell proliferation assay showed that the cell proliferation ability was inhibited by miR-204 mimics. Moreover, migration and invasion assay suggested that overexpression of miR-204 could significantly suppressed the migration and invasion ability of T-ALL cells. Luciferase reporter assay confirmed that miR-204 directly bound to the 3’ untranslated region of SOX4, and western blot suggested that miR-204 inhibited the expression of SOX4 at the protein levels. Conclusions: Our findings indicated that miR-204 negatively regulates SOX4 and inhibited proliferation, migration and invasion of T-ALL cell lines. Thus, miR-204 might represent a potential therapeutic target for T-ALL intervention. PMID:26464665

  1. Co-existence of PHF6 and NOTCH1 mutations in adult T-cell acute lymphoblastic leukemia

    PubMed Central

    LI, MIN; XIAO, LICHAN; XU, JINGYAN; ZHANG, RUN; GUO, JINGJING; OLSON, JUSTIN; WU, YUJIE; LI, JIANYONG; SONG, CHUNHUA; GE, ZHENG

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) results from the collaboration of multiple genetic abnormalities in the transformation of T-cell progenitors. Plant homeodomain finger protein 6 (PHF6) has recently been established as a key tumor suppressor, which is mutated in T-ALL; however, the clinical significance of PHF6 mutations has not been fully determined in adult T-ALL. In the present study, amplification of the PHF6 exons was performed, followed by DNA sequencing to identify the genomic mutations and examine the expression of PHF6 in adult patients with T-ALL. The correlation between PHF6 mutations and clinical features was also analyzed using a χ2 test, and between PHF6 mutations and survival curve using the Kaplan-Meier methods. PHF6 mutations were detected in 27.1% of the Chinese adults with T-ALL (16/59), 10 of which were found to be novel mutations. A significantly lower expression level of PHF6 was observed in T-ALL patients with PHF6 mutations compared with those without mutations. Of the observed mutations in PHF6, 6/16 were frame-shift mutations, indicating a PHF6 dysfunction in those patients. Of note, PHF6 mutations were found to be significantly associated with older age, lower hemoglobin levels, higher frequency of CD13 positivity and higher incidence of splenomegaly or lymphadenopathy. Furthermore, PHF6 mutations were found to be significantly correlated with Notch homolog 1, translocation-associated (Drosophila) (NOTCH1) mutations. The patients with T-ALL with co-existence of the two mutations had a significantly shorter event-free survival and a poor prognosis. The present results indicated that PHF6 is inactivated in adult T-ALL, due to its low expression and mutations. The present data indicated the synergistic effect of PHF6 and NOTCH1 mutations, as well as their co-existence, on the oncogenesis of adult T-ALL, and their potential as a prognostic marker for the disease. PMID:27347093

  2. End of induction minimal residual disease alone is not a useful determinant for risk stratified therapy in pediatric T-cell acute lymphoblastic leukemia.

    PubMed

    Parekh, Chintan; Gaynon, Paul S; Abdel-Azim, Hisham

    2015-11-01

    The role of end of induction minimal residual disease (MRD) as determined by flow cytometry for treatment assignment in pediatric T-cell acute lymphoblastic leukemia (T-ALL) is not well defined. We studied 33 children with newly diagnosed T-ALL. Thirty-two of 33 patients remain in continuous complete remission at a median of 4 years. Nineteen patients were MRD positive at the end of induction and all remain in remission with augmented Berlin Frankfurt Münster-based therapy. One patient underwent hematopoietic stem cell transplant for rising MRD. Persistent end of induction MRD alone is not an indication to alter therapy in pediatric T-ALL.

  3. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia.

    PubMed

    Van der Meulen, Joni; Sanghvi, Viraj; Mavrakis, Konstantinos; Durinck, Kaat; Fang, Fang; Matthijssens, Filip; Rondou, Pieter; Rosen, Monica; Pieters, Tim; Vandenberghe, Peter; Delabesse, Eric; Lammens, Tim; De Moerloose, Barbara; Menten, Björn; Van Roy, Nadine; Verhasselt, Bruno; Poppe, Bruce; Benoit, Yves; Taghon, Tom; Melnick, Ari M; Speleman, Frank; Wendel, Hans-Guido; Van Vlierberghe, Pieter

    2015-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of leukemia that is mainly diagnosed in children and shows a skewed gender distribution toward males. In this study, we report somatic loss-of-function mutations in the X-linked histone H3K27me3 demethylase ubiquitously transcribed X (UTX) chromosome, in human T-ALL. Interestingly, UTX mutations were exclusively present in male T-ALL patients and allelic expression analysis revealed that UTX escapes X-inactivation in female T-ALL lymphoblasts and normal T cells. Notably, we demonstrate in vitro and in vivo that the H3K27me3 demethylase UTX functions as a bona fide tumor suppressor in T-ALL. Moreover, T-ALL driven by UTX inactivation exhibits collateral sensitivity to pharmacologic H3K27me3 inhibition. All together, our results show how a gender-specific and therapeutically relevant defect in balancing H3K27 methylation contributes to T-cell leukemogenesis. PMID:25320243

  4. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia.

    PubMed

    Mets, E; Van der Meulen, J; Van Peer, G; Boice, M; Mestdagh, P; Van de Walle, I; Lammens, T; Goossens, S; De Moerloose, B; Benoit, Y; Van Roy, N; Clappier, E; Poppe, B; Vandesompele, J; Wendel, H-G; Taghon, T; Rondou, P; Soulier, J; Van Vlierberghe, P; Speleman, F

    2015-04-01

    The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3'untranslated region-microRNA (miRNA) library screen and identified 33 putative MYB-targeting miRNAs. Subsequently, transcriptome data from two independent T-ALL cohorts and different subsets of normal T-cells were used to select miRNAs with relevance in the context of normal and malignant T-cell transformation. Hereby, miR-193b-3p was identified as a novel bona fide tumor-suppressor miRNA that targets MYB during malignant T-cell transformation thereby offering an entry point for efficient MYB targeting-oriented therapies for human T-ALL. PMID:25231743

  5. Pediatric posttransplant relapsed/refractory B-precursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab.

    PubMed

    Schlegel, Patrick; Lang, Peter; Zugmaier, Gerhard; Ebinger, Martin; Kreyenberg, Hermann; Witte, Kai-Erik; Feucht, Judith; Pfeiffer, Matthias; Teltschik, Heiko-Manuel; Kyzirakos, Christina; Feuchtinger, Tobias; Handgretinger, Rupert

    2014-07-01

    We report on posttransplant relapsed pediatric patients with B-precursor acute lymphoblastic leukemia with no further standard of care therapy who were treated with the T-cell engaging CD19/CD3-bispecific single-chain antibody construct blinatumomab on a compassionate use basis. Blast load was assessed prior to, during and after blinatumomab cycle using flow cytometry to detect minimal residual disease, quantitative polymerase chain reaction for rearrangements of the immunoglobulin or T-cell receptor genes, and bcr/abl mutation detection in one patient with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blinatumomab was administered as a 4-week continuous intravenous infusion at a dosage of 5 or 15 μg/m(2)/day. Nine patients received a total of 18 cycles. Four patients achieved complete remission after the first cycle of treatment; 2 patients showed a complete remission from the second cycle after previous reduction of blast load by chemotherapy. Three patients did not respond, of whom one patient proceeded to a second cycle without additional chemotherapy and again did not respond. Four patients were successfully retransplanted in molecular remission from haploidentical donors. After a median follow up of 398 days, the probability of hematologic event-free survival is 30%. Major toxicities were grade 3 seizures in one patient and grade 3 cytokine release syndrome in 2 patients. Blinatumomab can induce molecular remission in pediatric patients with posttransplant relapsed B-precursor acute lymphoblastic leukemia and facilitate subsequent allogeneic hematopoietic stem cell transplantation from haploidentical donor with subsequent long-term leukemia-free survival.

  6. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL).

    PubMed

    Tasian, Sarah K; Gardner, Rebecca A

    2015-10-01

    Relapsed and chemotherapy-refractory B-cell acute lymphoblastic leukemia (B-ALL) remain significant causes of cancer-associated morbidity and mortality for children and adults. Development of new molecularly targeted treatment strategies for patients with high-risk B-ALL is thus a major preclinical and clinical priority. Adoptive cellular therapy with patient-derived human T cells genetically engineered to express CD19 redirected chimeric antigen receptors (CD19 CAR T cells) is one immunotherapeutic modality that has recently demonstrated remarkable efficacy in re-inducing remission in patients with multiply relapsed B-ALL. Investigative teams at several major cancer centers are currently conducting phase I clinical trials in children and/or adults with relapsed/refractory B-ALL to assess the safety and to identify the maximally tolerated dose of each group's CD19 CAR T-cell product. All groups have reported major clinical toxicities associated with CD19 CAR T-cell treatment, including cytokine release syndrome (CRS) and macrophage activation syndrome, neurologic dysfunction and aplasia of normal B lymphocytes, while CD19 CAR T cells persist in vivo. Toxicities have generally been transient or manageable with supportive care measures. Some patients with life-threatening CD19 CAR T-cell induced sequelae have received anti-cytokine receptor antibody treatment to diminish CRS symptoms and/or corticosteroids to terminate CAR T-cell proliferation. Remarkably, 67-90% of children and adults with B-ALL treated with CD19 CAR T cells in these trials have achieved morphologic leukemia remission with many patients also in molecular remission. The duration of CD19 CAR T cell persistence in vivo has varied appreciably among treated patients and likely reflects differences in the CD19 CAR constructs utilized at each institution. CD19-positive and CD19-negative B-ALL relapses after CD19 CAR T-cell treatment have occurred in some patients. Phase II trials to assess the efficacy of

  7. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL)

    PubMed Central

    Gardner, Rebecca A.

    2015-01-01

    Relapsed and chemotherapy-refractory B-cell acute lymphoblastic leukemia (B-ALL) remain significant causes of cancer-associated morbidity and mortality for children and adults. Development of new molecularly targeted treatment strategies for patients with high-risk B-ALL is thus a major preclinical and clinical priority. Adoptive cellular therapy with patient-derived human T cells genetically engineered to express CD19 redirected chimeric antigen receptors (CD19 CAR T cells) is one immunotherapeutic modality that has recently demonstrated remarkable efficacy in re-inducing remission in patients with multiply relapsed B-ALL. Investigative teams at several major cancer centers are currently conducting phase I clinical trials in children and/or adults with relapsed/refractory B-ALL to assess the safety and to identify the maximally tolerated dose of each group’s CD19 CAR T-cell product. All groups have reported major clinical toxicities associated with CD19 CAR T-cell treatment, including cytokine release syndrome (CRS) and macrophage activation syndrome, neurologic dysfunction and aplasia of normal B lymphocytes, while CD19 CAR T cells persist in vivo. Toxicities have generally been transient or manageable with supportive care measures. Some patients with life-threatening CD19 CAR T-cell induced sequelae have received anti-cytokine receptor antibody treatment to diminish CRS symptoms and/or corticosteroids to terminate CAR T-cell proliferation. Remarkably, 67–90% of children and adults with B-ALL treated with CD19 CAR T cells in these trials have achieved morphologic leukemia remission with many patients also in molecular remission. The duration of CD19 CAR T cell persistence in vivo has varied appreciably among treated patients and likely reflects differences in the CD19 CAR constructs utilized at each institution. CD19-positive and CD19-negative B-ALL relapses after CD19 CAR T-cell treatment have occurred in some patients. Phase II trials to assess the efficacy

  8. Detection of T-cell receptor gamma chain V gene rearrangements using the polymerase chain reaction: application to the study of clonal disease cells in acute lymphoblastic leukemia.

    PubMed

    Taylor, J J; Rowe, D; Williamson, I K; Christmas, S E; Proctor, S J; Middleton, P G

    1991-05-01

    This report describes the development and characterization of a method for the amplification of rearranged V-J segments of the human T-cell receptor gamma chain (TCRG) locus using an adaptation of the polymerase chain reaction (PCR) technique. The technique uses a single pair of 'consensus' primers to amplify rearrangements involving the V gamma I subgroup genes, which are common in malignant cells from acute lymphoblastic leukemia (ALL) patients. Using this method we were able to detect rearrangements in the TCRG locus in disease cells from patients with T-cell ALL (12 of 12), common ALL (10 of 14), and Null cell ALL (2 of 2) at presentation. Monoallelic and biallelic rearrangements involving V gamma I subgroup genes were identified by restriction analysis of PCR products from DNA samples from a T-cell leukemic cell line, T-cell clones, and disease cells from patients with ALL of T-and B-cell lineage at presentation. These results confirmed the presence of cell clones within the presentation samples and, in one case, confirmed the persistence of the original malignant cell clone at relapse. This is a rapid and specific method for the detection and characterization of rearrangements of the TCRG locus without recourse to Southern blotting. Therefore, the PCR technique described herein can provide the basis for the study of clonal evolution and minimal residual disease on a high proportion of patients with ALL.

  9. Tacrolimus and Methotrexate With or Without Sirolimus in Preventing Graft-Versus-Host Disease in Young Patients Undergoing Donor Stem Cell Transplant for Acute Lymphoblastic Leukemia in Complete Remission

    ClinicalTrials.gov

    2014-01-23

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Graft Versus Host Disease; L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  10. The LCK gene is involved in the t(1;7)(p34;q34) in the T-cell acute lymphoblastic leukemia derived cell line, HSB-2.

    PubMed

    Burnett, R C; David, J C; Harden, A M; Le Beau, M M; Rowley, J D; Diaz, M O

    1991-11-01

    HSB-2 is a cell line derived from a patient who had T-cell acute lymphoblastic leukemia (T-cell ALL) with a t(1;7)(p34;q34). We used a genomic probe from the T-cell receptor beta (TCR beta) locus (7q34) to identify DNA rearrangements in HSB-2. Two rearranged BglII DNA fragments were cloned, and one of these clones was shown to contain the translocation breakpoint on the derivative chromosome I [der(I)]. We used a probe derived from this clone to isolate an unrearranged phage clone encompassing the breakpoint at Ip34. The restriction map of this clone was compared to the published maps of known protooncogenes located at Ip32-34. By restriction mapping, Southern blot analysis, and DNA sequencing we showed that the translocation breakpoint on chromosome I is located within the first intron of the LCK gene. The LCK gene codes for p56lck, a member of the SRC family of cytoplasmic tyrosine protein kinases. There are two classes of LCK transcripts (type I and type II), each expressed from a distinct promoter, and each having a unique 5' untranslated region (UTR); the protein coding regions of the two classes are identical. The breakpoint in the t(1;7) separates the two LCK promoters and juxtaposes the constant region of the TCR beta locus with the proximal promoter and with the protein-coding region of the LCK gene on the der(I) chromosome.

  11. Clonal evolution enhances leukemia propagating cell frequency in T-cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation

    PubMed Central

    Blackburn, Jessica S.; Liu, Sali; Wilder, Jayme L.; Dobrinski, Kimberly P.; Lobbardi, Riadh; Moore, Finola E.; Martinez, Sarah A.; Chen, Eleanor Y.; Lee, Charles; Langenau, David M.

    2014-01-01

    SUMMARY Clonal evolution and intratumoral heterogeneity drive cancer progression through unknown molecular mechanisms. To address this issue, functional differences between single T-cell acute lymphoblastic leukemia (T-ALL) clones were assessed using a zebrafish transgenic model. Functional variation was observed within individual clones, with a minority of clones enhancing growth rate and leukemia propagating potential with time. Akt pathway activation was acquired in a subset of these evolved clones, which increased the number of leukemia propagating cells through activating mTORC1, elevated growth rate likely by stabilizing the Myc protein, and rendered cells resistant to dexamethasone, which was reversed by combined treatment with an Akt inhibitor. Thus, T-ALL clones spontaneously and continuously evolve to drive leukemia progression even in the absence of therapy-induced selection. PMID:24613413

  12. Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia.

    PubMed

    Yotnda, P; Garcia, F; Peuchmaur, M; Grandchamp, B; Duval, M; Lemonnier, F; Vilmer, E; Langlade-Demoyen, P

    1998-07-15

    Cytotoxic T lymphocytes (CTL) are potent effector cells that could provide long term antitumor immunity if induced by appropriate vaccines. CTL recognize 8-14 amino acid-long peptides processed intracellularly and presented by MHC class I molecules. A well-characterized example of a potential tumor antigen in childhood pre-B Acute Lymphoblastic Leukemia (ALL) results from the chromosomal translocation 12;21 leading to the fusion of the ETV6 and AML1 genes. This translocation is observed in > 25% of ALL-patients. In this study, we have examined whether the chimeric ETV6-AML1 protein could serve as a tumor specific antigen for CTL in HLA-A2.1 individuals. We have identified a nonapeptide (RIAECILGM), encoded by the fusion region of the ETV6-AML1 protein, that binds to HLA-A2.1 molecules and induces specific primary CTL in peripheral blood lymphocytes from healthy donors. These CTL specifically lysed HLA-A2.1 tumor cells endogeneously expressing the ETV6-AML fusion protein. CTL with similar functional capacities were found with high frequencies and cloned from one patient's bone marrow indicating that ETV6-AML1-specific anti-ALL CTL are, at least in some patients, spontaneously stimulated and might participate to host antileukemia defense.

  13. Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia.

    PubMed Central

    Yotnda, P; Garcia, F; Peuchmaur, M; Grandchamp, B; Duval, M; Lemonnier, F; Vilmer, E; Langlade-Demoyen, P

    1998-01-01

    Cytotoxic T lymphocytes (CTL) are potent effector cells that could provide long term antitumor immunity if induced by appropriate vaccines. CTL recognize 8-14 amino acid-long peptides processed intracellularly and presented by MHC class I molecules. A well-characterized example of a potential tumor antigen in childhood pre-B Acute Lymphoblastic Leukemia (ALL) results from the chromosomal translocation 12;21 leading to the fusion of the ETV6 and AML1 genes. This translocation is observed in > 25% of ALL-patients. In this study, we have examined whether the chimeric ETV6-AML1 protein could serve as a tumor specific antigen for CTL in HLA-A2.1 individuals. We have identified a nonapeptide (RIAECILGM), encoded by the fusion region of the ETV6-AML1 protein, that binds to HLA-A2.1 molecules and induces specific primary CTL in peripheral blood lymphocytes from healthy donors. These CTL specifically lysed HLA-A2.1 tumor cells endogeneously expressing the ETV6-AML fusion protein. CTL with similar functional capacities were found with high frequencies and cloned from one patient's bone marrow indicating that ETV6-AML1-specific anti-ALL CTL are, at least in some patients, spontaneously stimulated and might participate to host antileukemia defense. PMID:9664088

  14. Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome–positive acute lymphoblastic leukemia

    PubMed Central

    Saito, Shoji; Nakazawa, Yozo; Sueki, Akane; Matsuda, Kazuyuki; Tanaka, Miyuki; Yanagisawa, Ryu; Maeda, Yasuhiro; Sato, Yuko; Okabe, Seiichi; Inukai, Takeshi; Sugita, Kanji; Wilson, Matthew H.; Rooney, Cliona M.; Koike, Kenichi

    2016-01-01

    Background aims To develop a treatment option for Philadelphia chromosome—positive acute lymphoblastic leukemia (Ph+ALL) resistant to tyrosine kinase inhibitors (TKIs), we evaluated the anti-leukemic activity of T cells non-virally engineered to express a CD19-specific chimeric antigen receptor (CAR). Methods A CD19.CAR gene was delivered into mononuclear cells from 10 mL of blood of healthy donors through the use of piggyBac-transposons and the 4-D Nucleofector System. Nucleofected cells were stimulated with CD3/CD28 antibodies, magnetically selected for the CD19.CAR, and cultured in interleukin-15–containing serum-free medium with autologous feeder cells for 21 days. To evaluate their cytotoxic potency, we co-cultured CAR T cells with seven Ph+ALL cell lines including three TKI-resistant (T315I–mutated) lines at an effector-to-target ratio of 1:5 or lower without cytokines. Results We obtained ~ 1.3 × 108 CART cells (CD4+, 25.4%; CD8+, 71.3%), co-expressing CD45RA and CCR7 up to ~80%. After 7-day co-culture, CAR T cells eradicated all tumor cells at the 1:5 and 1:10 ratios and substantially reduced tumor cell numbers at the 1:50 ratio. Kinetic analysis revealed up to 37-fold proliferation of CART cells during a 20-day culture period in the presence of tumor cells. On exposure to tumor cells, CAR T cells transiently and reproducibly upregulated the expression of transgene as well as tumor necrosis factor–related apoptosis-inducing ligand and interleukin-2. Conclusions We generated a clinically relevant number of CAR T cells from 10 mL of blood through the use of piggyBac-transposons, a 4D-Nulcleofector, and serum/xeno/tumor cell/virus-free culture system. CAR T cells exhibited marked cytotoxicity against Ph+ALL regardless of T315I mutation. PiggyBac-mediated CD19-specific T-cell therapy may provide an effective, inexpensive and safe option for drug-resistant Ph+ALL. PMID:25108652

  15. 3,3′-Diindolylmethane Induces G1 Arrest and Apoptosis in Human Acute T-Cell Lymphoblastic Leukemia Cells

    PubMed Central

    Shorey, Lyndsey E.; Hagman, Amanda M.; Williams, David E.; Ho, Emily; Dashwood, Roderick H.; Benninghoff, Abby D.

    2012-01-01

    Certain bioactive food components, including indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) from cruciferous vegetables, have been shown to target cellular pathways regulating carcinogenesis. Previously, our laboratory showed that dietary I3C is an effective transplacental chemopreventive agent in a dibenzo[def,p]chrysene (DBC)-dependent model of murine T-cell lymphoblastic lymphoma. The primary objective of the present study was to extend our chemoprevention studies in mice to an analogous human neoplasm in cell culture. Therefore, we tested the hypothesis that I3C or DIM may be chemotherapeutic in human T-cell acute lymphoblastic leukemia (T-ALL) cells. Treatment of the T-ALL cell lines CCRF-CEM, CCRF-HSB2, SUP-T1 and Jurkat with DIM in vitro significantly reduced cell proliferation and viability at concentrations 8- to 25-fold lower than the parent compound I3C. DIM (7.5 µM) arrested CEM and HSB2 cells at the G1 phase of the cell cycle and 15 µM DIM significantly increased the percentage of apoptotic cells in all T-ALL lines. In CEM cells, DIM reduced protein expression of cyclin dependent kinases 4 and 6 (CDK4, CDK6) and D-type cyclin 3 (CCND3); DIM also significantly altered expression of eight transcripts related to human apoptosis (BCL2L10, CD40LG, HRK, TNF, TNFRSF1A, TNFRSF25, TNFSF8, TRAF4). Similar anticancer effects of DIM were observed in vivo. Dietary exposure to 100 ppm DIM significantly decreased the rate of growth of human CEM xenografts in immunodeficient SCID mice, reduced final tumor size by 44% and increased the apoptotic index compared to control-fed mice. Taken together, our results demonstrate a potential for therapeutic application of DIM in T-ALL. PMID:22514694

  16. C22:0- and C24:0-dihydroceramides Confer Mixed Cytotoxicity in T-Cell Acute Lymphoblastic Leukemia Cell Lines

    PubMed Central

    Holliday Jr., Michael W.; Cox, Stephen B.; Kang, Min H.; Maurer, Barry J.

    2013-01-01

    We previously reported that fenretinide (4-HPR) was cytotoxic to acute lymphoblastic leukemia (ALL) cell lines in vitro in association with increased levels of de novo synthesized dihydroceramides, the immediate precursors of ceramides. However, the cytotoxic potentials of native dihydroceramides have not been defined. Therefore, we determined the cytotoxic effects of increasing dihydroceramide levels via de novo synthesis in T-cell ALL cell lines and whether such cytotoxicity was dependent on an absolute increase in total dihydroceramide mass versus an increase of certain specific dihydroceramides. A novel method employing supplementation of individual fatty acids, sphinganine, and the dihydroceramide desaturase-1 (DES) inhibitor, GT-11, was used to increase de novo dihydroceramide synthesis and absolute levels of specific dihydroceramides and ceramides. Sphingolipidomic analyses of four T-cell ALL cell lines revealed strong positive correlations between cytotoxicity and levels of C22:0-dihydroceramide (ρ = 0.74–0.81, P ≤ 0.04) and C24:0-dihydroceramide (ρ = 0.84–0.90, P ≤ 0.004), but not between total or other individual dihydroceramides, ceramides, or sphingoid bases or phosphorylated derivatives. Selective increase of C22:0- and C24:0-dihydroceramide increased level and flux of autophagy marker, LC3B-II, and increased DNA fragmentation (TUNEL assay) in the absence of an increase of reactive oxygen species; pan-caspase inhibition blocked DNA fragmentation but not cell death. C22:0-fatty acid supplemented to 4-HPR treated cells further increased C22:0-dihydroceramide levels (P ≤ 0.001) and cytotoxicity (P ≤ 0.001). These data demonstrate that increases of specific dihydroceramides are cytotoxic to T-cell ALL cells by a caspase-independent, mixed cell death mechanism associated with increased autophagy and suggest that dihydroceramides may contribute to 4-HPR-induced cytotoxicity. The targeted increase of specific acyl chain dihydroceramides may

  17. Temsirolimus, Dexamethasone, Mitoxantrone Hydrochloride, Vincristine Sulfate, and Pegaspargase in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-07-09

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma

  18. Transplant Outcomes for Children with T Cell Acute Lymphoblastic Leukemia in Second Remission: A Report from the Center for International Blood and Marrow Transplant Research.

    PubMed

    Burke, Michael J; Verneris, Michael R; Le Rademacher, Jennifer; He, Wensheng; Abdel-Azim, Hisham; Abraham, Allistair A; Auletta, Jeffery J; Ayas, Mouhab; Brown, Valerie I; Cairo, Mitchell S; Chan, Ka Wah; Diaz Perez, Miguel A; Dvorak, Christopher C; Egeler, R Maarten; Eldjerou, Lamis; Frangoul, Haydar; Guilcher, Gregory M T; Hayashi, Robert J; Ibrahim, Ahmed; Kasow, Kimberly A; Leung, Wing H; Olsson, Richard F; Pulsipher, Michael A; Shah, Niketa; Shah, Nirali N; Thiel, Elizabeth; Talano, Julie-An; Kitko, Carrie L

    2015-12-01

    Survival for children with relapsed T cell acute lymphoblastic leukemia (T-ALL) is poor when treated with chemotherapy alone, and outcomes after allogeneic hematopoietic cell transplantation (HCT) is not well described. Two hundred twenty-nine children with T-ALL in second complete remission (CR2) received an HCT after myeloablative conditioning between 2000 and 2011 and were reported to the Center for International Blood and Marrow Transplant Research. Median age was 10 years (range, 2 to 18). Donor source was umbilical cord blood (26%), matched sibling bone marrow (38%), or unrelated bone marrow/peripheral blood (36%). Acute (grades II to IV) and chronic graft-versus-host disease occurred in, respectively, 35% (95% confidence interval [CI], 27% to 45%) and 26% (95% CI, 20% to 33%) of patients. Transplant-related mortality at day 100 and 3-year relapse rates were 13% (95% CI, 9% to 18%) and 30% (95% CI, 24% to 37%), respectively. Three-year overall survival and disease-free survival rates were 48% (95% CI, 41% to 55%) and 46% (95% CI, 39% to 52%), respectively. In multivariate analysis, patients with bone marrow relapse, with or without concurrent extramedullary relapse before HCT, were most likely to relapse (hazard ratio, 3.94; P = .005) as compared with isolated extramedullary disease. In conclusion, HCT for pediatric T-ALL in CR2 demonstrates reasonable and durable outcomes, and consideration for HCT is warranted. PMID:26327632

  19. Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case

    PubMed Central

    Knoechel, Birgit; Bhatt, Ami; Pan, Li; Pedamallu, Chandra S.; Severson, Eric; Gutierrez, Alejandro; Dorfman, David M.; Kuo, Frank C.; Kluk, Michael; Kung, Andrew L.; Zweidler-McKay, Patrick; Meyerson, Matthew; Blacklow, Stephen C.; DeAngelo, Daniel J.; Aster, Jon C.

    2015-01-01

    Notch pathway antagonists such as γ-secretase inhibitors (GSIs) are being tested in diverse cancers, but exceptional responses have yet to be reported. We describe the case of a patient with relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) who achieved a complete hematologic response following treatment with the GSI BMS-906024. Whole-exome sequencing of leukemic blasts revealed heterozygous gain-of-function driver mutations in NOTCH1, CSF3R, and PTPN11, and a homozygous/hemizygous loss-of-function mutation in DNMT3A. The three gain-of-function mutations were absent from remission marrow cells, but the DNMT3A mutation persisted in heterozygous form in remission marrow, consistent with an origin for the patient's ETP-ALL from clonal hematopoiesis. Ex vivo culture of ETP-ALL blasts confirmed high levels of activated NOTCH1 that were repressed by GSI treatment, and RNA-seq documented that GSIs downregulated multiple known Notch target genes. Surprisingly, one potential target gene that was unaffected by GSIs was MYC, a key Notch target in GSI-sensitive T-ALL of cortical T-cell type. H3K27ac super-enhancer landscapes near MYC showed a pattern previously reported in acute myeloid leukemia (AML) that is sensitive to BRD4 inhibitors, and in line with this ETP-ALL blasts downregulated MYC in response to the BRD4 inhibitor JQ1. To our knowledge, this is the first example of complete response of a Notch-mutated ETP-ALL to a Notch antagonist and is also the first description of chromatin landscapes associated with ETP-ALL. Our experience suggests that additional attempts to target Notch in Notch-mutated ETP-ALL are merited. PMID:27148573

  20. Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case.

    PubMed

    Knoechel, Birgit; Bhatt, Ami; Pan, Li; Pedamallu, Chandra S; Severson, Eric; Gutierrez, Alejandro; Dorfman, David M; Kuo, Frank C; Kluk, Michael; Kung, Andrew L; Zweidler-McKay, Patrick; Meyerson, Matthew; Blacklow, Stephen C; DeAngelo, Daniel J; Aster, Jon C

    2015-10-01

    Notch pathway antagonists such as γ-secretase inhibitors (GSIs) are being tested in diverse cancers, but exceptional responses have yet to be reported. We describe the case of a patient with relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) who achieved a complete hematologic response following treatment with the GSI BMS-906024. Whole-exome sequencing of leukemic blasts revealed heterozygous gain-of-function driver mutations in NOTCH1, CSF3R, and PTPN11, and a homozygous/hemizygous loss-of-function mutation in DNMT3A. The three gain-of-function mutations were absent from remission marrow cells, but the DNMT3A mutation persisted in heterozygous form in remission marrow, consistent with an origin for the patient's ETP-ALL from clonal hematopoiesis. Ex vivo culture of ETP-ALL blasts confirmed high levels of activated NOTCH1 that were repressed by GSI treatment, and RNA-seq documented that GSIs downregulated multiple known Notch target genes. Surprisingly, one potential target gene that was unaffected by GSIs was MYC, a key Notch target in GSI-sensitive T-ALL of cortical T-cell type. H3K27ac super-enhancer landscapes near MYC showed a pattern previously reported in acute myeloid leukemia (AML) that is sensitive to BRD4 inhibitors, and in line with this ETP-ALL blasts downregulated MYC in response to the BRD4 inhibitor JQ1. To our knowledge, this is the first example of complete response of a Notch-mutated ETP-ALL to a Notch antagonist and is also the first description of chromatin landscapes associated with ETP-ALL. Our experience suggests that additional attempts to target Notch in Notch-mutated ETP-ALL are merited. PMID:27148573

  1. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.

  2. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies. PMID:27635203

  3. Increased PKCα activity by Rack1 overexpression is responsible for chemotherapy resistance in T-cell acute lymphoblastic leukemia-derived cell line.

    PubMed

    Lei, Jie; Li, Qi; Gao, Ying; Zhao, Lei; Liu, Yanbo

    2016-01-01

    Chemoresistant mechanisms in T-cell acute lymphoblastic leukemia (T-ALL) patients are not clarified. The apoptotic signaling mediated by receptor of activated C kinase 1 (Rack1), protein kinase C (PKC) and FEM1 homolog b (FEM1b) was investigated in two T-ALL-derived cell lines (Jurkat and CCRF-CEM) following treatment with chemotherapy drugs vincristine and prednisone. Serum starvation or chemotherapeutic drugs significantly reduced Rack1 level and PKC activation, while promoted cellular apoptosis in both cell lines. Rack1 overexpression protected T-ALL cell against starvation or chemotherapeutic drug-induced apoptosis. Moreover, Rack1 overexpression reduced the level of cytochrome c and active caspase 3 as well as FEM1b and apoptotic protease activating factor-1 (Apaf-1), and inhibited induction of cellular apoptosis in chemotherapeutic drug-treated Jurkat cell. Interaction of Rack1 and PKCα, not PKCβ, was detected in both cell lines. Of note, Rack1 overexpression abrogated reduction of PKC kinase activity in chemotherapeutic drug-treated T-ALL cell. PKC kinase inhibitor Go6976 or siPKCα inhibited downregulation of FEM1b and/or Apaf-1, and thus increased cellular apoptosis in Rack1-overexpressed T-ALL cell receiving chemotherapeutic drugs. Accordingly, our data provided evidence that increased Rack1-mediated upregulation of PKC kinase activity may be responsible for the development of chemoresistance in T-ALL-derived cell line potentially by reducing FEM1b and Apaf-1 level. PMID:27644318

  4. Increased PKCα activity by Rack1 overexpression is responsible for chemotherapy resistance in T-cell acute lymphoblastic leukemia-derived cell line

    PubMed Central

    Lei, Jie; Li, Qi; Gao, Ying; Zhao, Lei; Liu, Yanbo

    2016-01-01

    Chemoresistant mechanisms in T-cell acute lymphoblastic leukemia (T-ALL) patients are not clarified. The apoptotic signaling mediated by receptor of activated C kinase 1 (Rack1), protein kinase C (PKC) and FEM1 homolog b (FEM1b) was investigated in two T-ALL-derived cell lines (Jurkat and CCRF-CEM) following treatment with chemotherapy drugs vincristine and prednisone. Serum starvation or chemotherapeutic drugs significantly reduced Rack1 level and PKC activation, while promoted cellular apoptosis in both cell lines. Rack1 overexpression protected T-ALL cell against starvation or chemotherapeutic drug-induced apoptosis. Moreover, Rack1 overexpression reduced the level of cytochrome c and active caspase 3 as well as FEM1b and apoptotic protease activating factor-1 (Apaf-1), and inhibited induction of cellular apoptosis in chemotherapeutic drug-treated Jurkat cell. Interaction of Rack1 and PKCα, not PKCβ, was detected in both cell lines. Of note, Rack1 overexpression abrogated reduction of PKC kinase activity in chemotherapeutic drug-treated T-ALL cell. PKC kinase inhibitor Go6976 or siPKCα inhibited downregulation of FEM1b and/or Apaf-1, and thus increased cellular apoptosis in Rack1-overexpressed T-ALL cell receiving chemotherapeutic drugs. Accordingly, our data provided evidence that increased Rack1-mediated upregulation of PKC kinase activity may be responsible for the development of chemoresistance in T-ALL-derived cell line potentially by reducing FEM1b and Apaf-1 level. PMID:27644318

  5. Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells.

    PubMed

    Silva, A; Gírio, A; Cebola, I; Santos, C I; Antunes, F; Barata, J T

    2011-06-01

    Interleukin-7 (IL-7) activates phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, thereby mediating viability, proliferation and growth of T-cell acute lymphoblastic leukemia (T-ALL) cells. Reactive oxygen species (ROS) can be upregulated by growth factors and are known to regulate proliferation and viability. Here, we show that IL-7 upregulates ROS in T-ALL cells in a manner that is dependent on PI3K/Akt/mTOR pathway activity and that relies on both NADPH oxidase and mitochondrial respiratory chain. Conversely, IL-7-induced activation of PI3K signaling pathway requires mitochondrial respiration and ROS. We have previously shown that IL-7-mediated activation of PI3K pathway drives the upregulation of the glucose transporter Glut1, promoting glucose uptake in T-ALL cells. Using phloretin to inhibit Glut function, we demonstrate that glucose uptake is mandatory for ROS upregulation in IL-7-treated T-ALL cells, suggesting that IL-7 stimulation leads to increased ROS via PI3K pathway activation and consequent upregulation of Glut1 and glucose uptake. Overall, our data reveal the existence of a critical crosstalk between PI3K/Akt signaling pathway and ROS that is essential for IL-7-mediated T-ALL cell survival, and that may constitute a novel target for therapeutic intervention. PMID:21455214

  6. Impact of PTEN abnormalities on outcome in pediatric patients with T-cell acute lymphoblastic leukemia treated on the MRC UKALL2003 trial.

    PubMed

    Jenkinson, S; Kirkwood, A A; Goulden, N; Vora, A; Linch, D C; Gale, R E

    2016-01-01

    PTEN gene inactivation by mutation or deletion is common in pediatric T-cell acute lymphoblastic leukemia (T-ALL), but the impact on outcome is unclear, particularly in patients with NOTCH1/FBXW7 mutations. We screened samples from 145 patients treated on the MRC UKALL2003 trial for PTEN mutations using heteroduplex analysis and gene deletions using single nucleotide polymorphism arrays, and related genotype to response to therapy and long-term outcome. PTEN loss-of-function mutations/gene deletions were detected in 22% (PTEN(ABN)). Quantification of mutant level indicated that 67% of mutated cases harbored more than one mutant, with up to four mutants detected, consistent with the presence of multiple leukemic sub-clones. Overall, 41% of PTEN(ABN) cases were considered to have biallelic abnormalities (mutation and/or deletion) with complete loss of PTEN in a proportion of cells. In addition, 9% of cases had N- or K-RAS mutations. Neither PTEN nor RAS genotype significantly impacted on response to therapy or long-term outcome, irrespective of mutant level, and there was no evidence that they changed the highly favorable outcome of patients with double NOTCH1/FBXW7 mutations. These results indicate that, for pediatric patients treated according to current protocols, routine screening for PTEN or RAS abnormalities at diagnosis is not warranted to further refine risk stratification.

  7. [Expression of SET-NUP214 fusion gene in patients with T-cell acute lymphoblastic leukemia and its clinical significance].

    PubMed

    Dai, Hai-Ping; Wang, Qian; Wu, Li-Li; Ping, Na-Na; Wu, Chun-Xiao; Xie, Jun-Dan; Pan, Jin-Lan; Xue, Yong-Quan; Wu, De-Pei; Chen, Su-Ning

    2012-10-01

    This study was aimed to investigate the occurrence and clinical significance of the SET-NUP214 fusion gene in patients with T-cell acute lymphoblastic leukemia (T-ALL), analyse clinical and biological characteristics in this disease. RT-PCR was used to detect the expression of SET-NUP214 fusion gene in 58 T-ALL cases. Interphase FISH and Array-CGH were used to detect the deletion of 9q34. Direct sequencing was applied to detect mutations of PHF6 and NOTCH1. The results showed that 6 out of 58 T-ALL cases (10.3%) were detected to have the SET-NUP214 fusion gene by RT-PCR. Besides T-lineage antigens, expression of CD13 and(or) CD33 were detected in all the 6 cases. Deletions of 9q34 were detected in 4 out of the 6 patients by FISH. Array-CGH results of 3 SET-NUP214 positive T-ALL patients confirmed that this fusion gene was resulted from a cryptic deletion of 9q34.11q34.13. PHF6 and NOTCH1 gene mutations were found in 4 and 5 out of 6 SET-NUP214 positive T-ALL patients, respectively. It is concluded that SET-NUP214 fusion gene is often resulted from del(9)(q34). PHF6 and NOTCH1 mutations may be potential leukemogenic event in SET-NUP214 fusion gene.

  8. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen.

    PubMed

    Lynch, James T; McEwen, Robert; Crafter, Claire; McDermott, Ultan; Garnett, Mathew J; Barry, Simon T; Davies, Barry R

    2016-04-19

    Selective phosphoinositide 3-kinase (PI3K)/AKT/mTOR inhibitors are currently under evaluation in clinical studies. To identify tumor types that are sensitive to PI3K pathway inhibitors we screened compounds targeting PI3Kα/δ (AZD8835), PI3Kβ/δ (AZD8186), AKT (AZD5363) and mTORC1/2 (AZD2014) against a cancer cell line panel (971 cell lines). There was an enrichment of hematological malignancies that were sensitive to AKT and mTOR inhibition, with the greatest degree of sensitivity observed in T-cell acute lymphoblastic leukemia (T-ALL). We found that all NOTCH mutant T-ALL cell lines were sensitive to AKT and mTORC1/2 inhibitors, with only partial sensitivity to agents that target the PI3K α, β or δ isoforms. Induction of apoptosis only occurred following AKTi treatment in cell lines with PTEN protein loss and high levels of active AKT. In summary, we have demonstrated that T-ALL cell lines show differential sensitivity to inhibition at different nodes in the PI3K/AKT/mTOR pathway and inhibiting AKT or mTOR may have a therapeutic benefit in this disease setting. PMID:26989080

  9. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen

    PubMed Central

    Lynch, James T.; McEwen, Robert; Crafter, Claire; McDermott, Ultan; Garnett, Mathew J.; Barry, Simon T.; Davies, Barry R.

    2016-01-01

    Selective phosphoinositide 3-kinase (PI3K)/AKT/mTOR inhibitors are currently under evaluation in clinical studies. To identify tumor types that are sensitive to PI3K pathway inhibitors we screened compounds targeting PI3Kα/δ (AZD8835), PI3Kβ/δ (AZD8186), AKT (AZD5363) and mTORC1/2 (AZD2014) against a cancer cell line panel (971 cell lines). There was an enrichment of hematological malignancies that were sensitive to AKT and mTOR inhibition, with the greatest degree of sensitivity observed in T-cell acute lymphoblastic leukemia (T-ALL). We found that all NOTCH mutant T-ALL cell lines were sensitive to AKT and mTORC1/2 inhibitors, with only partial sensitivity to agents that target the PI3K α, β or δ isoforms. Induction of apoptosis only occurred following AKTi treatment in cell lines with PTEN protein loss and high levels of active AKT. In summary, we have demonstrated that T-ALL cell lines show differential sensitivity to inhibition at different nodes in the PI3K/AKT/mTOR pathway and inhibiting AKT or mTOR may have a therapeutic benefit in this disease setting. PMID:26989080

  10. The NEDD8-activating enzyme inhibitor MLN4924 induces G2 arrest and apoptosis in T-cell acute lymphoblastic leukemia

    PubMed Central

    Han, Kun; Wang, Qingyang; Cao, Huanling; Qiu, Guihua; Cao, Junxia; Li, Xin; Wang, Jing; Shen, Beifen; Zhang, Jiyan

    2016-01-01

    The first-in-class compound MLN4924 is a small molecule inhibitor that selectively inactivates NEDD8-activating enzyme (NAE). The anticancer effects of MLN4924 have been attributed to impaired neddylation of Cullin proteins. Here, we show that treatment of T-cell acute lymphoblastic leukemia (T-ALL) cells with MLN4924 potently suppressed the neddylation of Cullins and the oncogenic growth of T-ALL cells in-vitro. Moreover, MLN4924 induced disease regression in an in vivo xenograft model. MLN4924 also induced cell cycle arrest at G2 phase and apoptosis in T-ALL cells. However, inhibition of the neddylation of Cullins alone could not explain the effects of MLN4924 in T-ALL cells. Gene expression profiling indicated ribosome function, steroid biosynthesis, and hematopoietic cell lineage pathways were affected by MLN4924 treatment. MLN4924 also induced nucleolar disruption, suggesting nucleolar stress signaling might contribute to the anticancer effects of MLN4924 in T-ALL cells. In addition, MLN4924 treatment reduced 14-3-3ξ\\δ protein levels in T-ALL cells. Thus, MLN4924 may inhibit T-ALL cell proliferation via several pathways. PMID:26993774

  11. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia

    PubMed Central

    Maude, Shannon L.; Dolai, Sibasish; Delgado-Martin, Cristina; Vincent, Tiffaney; Robbins, Alissa; Selvanathan, Arthavan; Ryan, Theresa; Hall, Junior; Wood, Andrew C.; Tasian, Sarah K.; Hunger, Stephen P.; Loh, Mignon L.; Mullighan, Charles G.; Wood, Brent L.; Hermiston, Michelle L.; Grupp, Stephan A.; Lock, Richard B.

    2015-01-01

    Early T-cell precursor (ETP) acute lymphoblastic leukemia (ALL) is a recently described subtype of T-ALL characterized by a unique immunophenotype and genomic profile, as well as a high rate of induction failure. Frequent mutations in cytokine receptor and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways led us to hypothesize that ETP-ALL is dependent on JAK/STAT signaling. Here we demonstrate aberrant activation of the JAK/STAT pathway in ETP-ALL blasts relative to non-ETP T-ALL. Moreover, ETP-ALL showed hyperactivation of STAT5 in response to interleukin-7, an effect that was abrogated by the JAK1/2 inhibitor ruxolitinib. In vivo, ruxolitinib displayed activity in 6 of 6 patient-derived murine xenograft models of ETP-ALL, with profound single-agent efficacy in 5 models. Ruxolitinib treatment decreased peripheral blast counts relative to pretreatment levels and compared with control (P < .01) in 5 of 6 ETP-ALL xenografts, with marked reduction in mean splenic blast counts (P < .01) in 6 of 6 samples. Surprisingly, both JAK/STAT pathway activation and ruxolitinib efficacy were independent of the presence of JAK/STAT pathway mutations, raising the possibility that the therapeutic potential of ruxolitinib in ETP-ALL extends beyond those cases with JAK mutations. These findings establish the preclinical in vivo efficacy of ruxolitinib in ETP-ALL, a biologically distinct subtype for which novel therapies are needed. PMID:25645356

  12. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    SciTech Connect

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang; Xue, Jun; Shao, Xue-jun

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.

  13. The molecular profile of adult T-cell acute lymphoblastic leukemia: mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL.

    PubMed

    Grossmann, Vera; Haferlach, Claudia; Weissmann, Sandra; Roller, Andreas; Schindela, Sonja; Poetzinger, Franziska; Stadler, Kathrin; Bellos, Frauke; Kern, Wolfgang; Haferlach, Torsten; Schnittger, Susanne; Kohlmann, Alexander

    2013-04-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and heterogeneous disease. The diagnosis is predominantly based on immunophenotyping. In addition to known cytogenetic abnormalities molecular mutations were recently identified. Here, 90 adult T-ALL cases were investigated for mutations in NOTCH1, FBXW7, PHF6, CDKN2A, DNMT3A, FLT3, PTEN, and RUNX1 using 454 next-generation amplicon sequencing and melting curve analyses. These data were further complemented by FISH, chromosome banding, array CGH, and CDKN2B promoter methylation analyses. NOTCH1 was the most frequently mutated gene with a 71.1% frequency followed by FBXW7 (18.9%), PHF6 (39.5%), DNMT3A (17.8%), RUNX1 (15.5%), PTEN (10.0%), CDKN2A (4.4%), FLT3-ITD (2.2%), and FLT3-TKD (1.1%). In total, 84/90 (93.3%) cases harbored at least one mutation. Combining these data with CDKN2A/B deletions and CDKN2B methylation status, we detected minimum one aberration in 89/90 (98.9%) patients. Survival analyses revealed the subtype as defined by the immunophenotype as the strongest independent prognostic factor. When restricting the survival analysis to the early T-ALL subtype, a strong association of RUNX1 (P = 0.027) and DNMT3A (P = 0.005) mutations with shorter overall survival was observed. In conclusion, RUNX1 and DNMT3A are frequently mutated in T-ALL and are associated with poor prognosis in early T-ALL.

  14. Genetic mutational profiling analysis of T cell acute lymphoblastic leukemia reveal mutant FBXW7 as a prognostic indicator for inferior survival.

    PubMed

    Yuan, Lan; Lu, Ling; Yang, Yongchen; Sun, Hengjuan; Chen, Xi; Huang, Yi; Wang, Xingjuan; Zou, Lin; Bao, Liming

    2015-11-01

    T cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplasm for which there are currently no adequate biomarkers for developing risk-adapted therapeutic regimens to improve the treatment outcome. In this prospective study of 83 Chinese patients (54 children and 29 adults) with de novo T-ALL, we analyzed mutations in 11 T-ALL genes: NOTCH1, FBXW7, PHF6, PTEN, N-RAS, K-RAS, WT1, IL7R, PIK3CA, PIK3RA, and AKT1. NOTCH1 mutations were identified in 51.9 and 37.9 % of pediatric and adult patients, respectively, and these patients showed improved overall survival (OS) and event-free survival (EFS). The FBXW7 mutant was present in 25.9 and 6.9 % of pediatric and adult patients, respectively, and was associated with inferior OS and EFS in pediatric T-ALL. Multivariate analysis revealed that mutant FBXW7 was an independent prognostic indicator for inferior EFS (hazard ratio [HR] 4.38; 95 % confidence interval [CI] 1.15-16.71; p = 0.03) and tended to be associated with reduced OS (HR 2.81; 95 % CI 0.91-8.69; p = 0.074) in pediatric T-ALL. Mutant PHF6 was present in 13 and 20.7 % of our childhood and adult cohorts, respectively, while PTEN mutations were noted in 11.1 % of the pediatric patients. PTEN and NOTCH1 mutations were almost mutually exclusive, while IL7R and WT1 mutations were rare in pediatric T-ALL and PTPN11 and AKT1 mutations were infrequent in adult T-ALL. This study revealed differences in the mutational profiles of pediatric and adult T-ALL and suggests mutant FBXW7 as an independent prognostic indicator for inferior survival in pediatric T-ALL.

  15. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    PubMed Central

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. PMID:27114702

  16. Pilot Study of Nelarabine in Combination With Intensive Chemotherapy in High-Risk T-Cell Acute Lymphoblastic Leukemia: A Report From the Children's Oncology Group

    PubMed Central

    Dunsmore, Kimberly P.; Devidas, Meenakshi; Linda, Stephen B.; Borowitz, Michael J.; Winick, Naomi; Hunger, Stephen P.; Carroll, William L.; Camitta, Bruce M.

    2012-01-01

    Purpose Children's Oncology Group study AALL00P2 was designed to assess the feasibility and safety of adding nelarabine to a BFM 86–based chemotherapy regimen in children with newly diagnosed T-cell acute lymphoblastic leukemia (T-ALL). Patients and Methods In stage one of the study, eight patients with a slow early response (SER) by prednisone poor response (PPR; ≥ 1,000 peripheral blood blasts on day 8 of prednisone prephase) received chemotherapy plus six courses of nelarabine 400 mg/m2 once per day; four patients with SER by high minimal residual disease (MRD; ≥ 1% at day 36 of induction) received chemotherapy plus five courses of nelarabine; 16 patients with a rapid early response (RER) received chemotherapy without nelarabine. In stage two, all patients received six 5-day courses of nelarabine at 650 mg/m2 once per day (10 SER patients [one by MRD, nine by PPR]) or 400 mg/m2 once per day (38 RER patients; 12 SER patients [three by MRD, nine by PPR]). Results The only significant difference in toxicities was decreased neutropenic infections in patients treated with nelarabine (42% with v 81% without nelarabine). Five-year event-free survival (EFS) rates were 73% for 11 stage one SER patients and 67% for 22 stage two SER patients treated with nelarabine versus 69% for 16 stage one RER patients treated without nelarabine and 74% for 38 stage two RER patients treated with nelarabine. Five-year EFS for all patients receiving nelarabine (n = 70) was 73% versus 69% for those treated without nelarabine (n = 16). Conclusion Addition of nelarabine to a BFM 86–based chemotherapy regimen was well tolerated and produced encouraging results in pediatric patients with T-ALL, particularly those with a SER, who have historically fared poorly. PMID:22734022

  17. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias

    PubMed Central

    Gusscott, Samuel; Jenkins, Catherine E.; Lam, Sonya H.; Giambra, Vincenzo; Pollak, Michael; Weng, Andrew P.

    2016-01-01

    Insulin-like growth factor 1 receptor (IGF1R) is a prevalent signaling pathway in human cancer that supports cell growth/survival and thus contributes to aggressive biological behavior. Much work has gone into development of IGF1R inhibitors; however, candidate agents including small molecule tyrosine kinase inhibitors and blocking antibodies have yet to fulfill their promise clinically. Understanding cellular features that define sensitivity versus resistance are important for effective patient selection and anticipation of outgrowth of a resistant clone. We previously identified an important role for IGF signaling in T-cell acute lymphoblastic leukemia (T-ALL) relying primarily upon genetically defined mouse models. We present here an assessment of IGF1R dependence in human T-ALL using a broad panel of 27 established cell lines that capture a spectrum of the genetic variation that might be encountered in clinical practice. We observed that a subset of cell lines are sensitive to IGF1R inhibition and are characterized by high levels of surface IGF1R expression and PTEN positivity. Interestingly, lentiviral expression or knock-down of PTEN in PTEN-negative/positive cell lines, respectively, had limited effects on their response to IGF1R inhibition, suggesting that PTEN contributes to, but does not define IGF dependence. Additionally, we characterize downstream PI3K/AKT signaling as dominant over RAS/RAF/MEK/ERK in mediating growth and/or survival in this context. Finally, we demonstrate that IGF and interleukin-7 (IL-7) fulfill non-overlapping roles in supporting T-ALL growth. These findings are significant in that they reveal cellular features and downstream mechanisms that may determine the response of an individual patient’s tumor to IGF1R inhibitor therapy. PMID:27532210

  18. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias.

    PubMed

    Gusscott, Samuel; Jenkins, Catherine E; Lam, Sonya H; Giambra, Vincenzo; Pollak, Michael; Weng, Andrew P

    2016-01-01

    Insulin-like growth factor 1 receptor (IGF1R) is a prevalent signaling pathway in human cancer that supports cell growth/survival and thus contributes to aggressive biological behavior. Much work has gone into development of IGF1R inhibitors; however, candidate agents including small molecule tyrosine kinase inhibitors and blocking antibodies have yet to fulfill their promise clinically. Understanding cellular features that define sensitivity versus resistance are important for effective patient selection and anticipation of outgrowth of a resistant clone. We previously identified an important role for IGF signaling in T-cell acute lymphoblastic leukemia (T-ALL) relying primarily upon genetically defined mouse models. We present here an assessment of IGF1R dependence in human T-ALL using a broad panel of 27 established cell lines that capture a spectrum of the genetic variation that might be encountered in clinical practice. We observed that a subset of cell lines are sensitive to IGF1R inhibition and are characterized by high levels of surface IGF1R expression and PTEN positivity. Interestingly, lentiviral expression or knock-down of PTEN in PTEN-negative/positive cell lines, respectively, had limited effects on their response to IGF1R inhibition, suggesting that PTEN contributes to, but does not define IGF dependence. Additionally, we characterize downstream PI3K/AKT signaling as dominant over RAS/RAF/MEK/ERK in mediating growth and/or survival in this context. Finally, we demonstrate that IGF and interleukin-7 (IL-7) fulfill non-overlapping roles in supporting T-ALL growth. These findings are significant in that they reveal cellular features and downstream mechanisms that may determine the response of an individual patient's tumor to IGF1R inhibitor therapy. PMID:27532210

  19. Laboratory Treated T Cells in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia, Non-Hodgkin Lymphoma, or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-16

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma

  20. Etoposide, Prednisone, Vincristine Sulfate, Cyclophosphamide, and Doxorubicin Hydrochloride With Asparaginase in Treating Patients With Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-10-24

    B Acute Lymphoblastic Leukemia; B Lymphoblastic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent B Lymphoblastic Lymphoma; Recurrent T Lymphoblastic Leukemia/Lymphoma; Refractory B Lymphoblastic Lymphoma; Refractory T Lymphoblastic Lymphoma; T Acute Lymphoblastic Leukemia; T Lymphoblastic Lymphoma

  1. Characterization of the CDR3 structure of the Vβ21 T cell clone in patients with P210(BCR-ABL)-positive chronic myeloid leukemia and B-cell acute lymphoblastic leukemia.

    PubMed

    Zha, Xianfeng; Chen, Shaohua; Yang, Lijian; Li, Bo; Chen, Yu; Yan, Xiaojuan; Li, Yangqiu

    2011-10-01

    The clonally expanded T cells identified in most cancer patients that respond to tumor-associated antigen such as P210(BCR-ABL) protein have definite, specific antitumor cytotoxicity. T cell receptor (TCR) Vβ CDR3 repertoire diversity was analyzed in patients with chronic myeloid leukemia (CML) and BCR-ABL(+) B-cell acute lymphoblastic leukemia (B-ALL) by GeneScan. A high frequency of oligoclonal expansion of the TCR Vβ21 subfamily was observed in the peripheral blood of CML and B-ALL patients. These clonally expanded Vβ21 T cells were correlated with the pathophysiologic process of CML. A conserved amino acid motif (SLxxV) was observed within the CDR3 region in only 3 patients with CML. Preferential usage of the Jβ segments was also observed in a minority of patients. The 3-dimensional structures of the CDR3 region containing the same motif or using the same Jβ segment displayed low similarity; on the contrary, the conformation of the CDR3 region containing no conserved motif in some T cell clones was highly similar. In conclusion, our findings indicate a high frequency of TCR Vβ21 subfamily expansion in p210(BCR-ABL)-positive CML and B-ALL patients. The characterization of the CDR3 structure was complex. Regrettably, at this time it was not possible to confirm that the Vβ21 T cell clones were derived from the stimulation of p210(BCR-ABL) protein.

  2. Primary T-cell lymphoblastic lymphoma in the middle ear.

    PubMed

    Li, Bo; Liu, Shixi; Yang, Hui; Wang, Weiya

    2016-03-01

    T-cell lymphoblastic lymphoma (T-LBL) is a highly aggressive lymphoma characterized by precursor T-cell malignancy and lymphadenopathy or mediastinal involvement. We present the case of an 11-year-old boy with a diagnosis of middle ear T-LBL, which manifested as a headache, hearing loss and peripheral facial paralysis. The child was given intensive chemotherapy and had a complete response. To our knowledge, this is the first case reported in the literature of T-LBL originating in the middle ear. This case aims to help clinicians to be vigilant about the possibility of primary lesions at atypical sites in some special diseases.

  3. Immune Thrombocytopenia in a Child with T Cell Lymphoblastic Lymphoma.

    PubMed

    Tokeji, Kayo; Sakaguchi, Sachi; Kurimoto, Tomoko; Fujimura, Junya; Shimizu, Toshiaki

    2016-01-01

    We describe the case of a 13-year-old boy who presented with persistent thrombocytopenia during maintenance chemotherapy with mercaptopurine and methotrexate for T cell lymphoblastic lymphoma. He was diagnosed with immune thrombocytopenia (ITP) after thorough investigations for the relapse of lymphoma and was successfully treated with immunoglobulin and steroids. ITP is known to be associated with chronic lymphocytic leukemia, Hodgkin lymphoma, and various types of non-Hodgkin lymphoma but rarely with T cell non-Hodgkin lymphoma or in children. Diagnosis of ITP with lymphoma is challenging due to the many factors affecting platelet counts, and ITP often complicates the diagnosis or treatment course of lymphoma. The underlying mechanism of ITP with NHL is still unclear. Drug-induced immunomodulation with a reduction of regulatory T cells might have contributed to the development of ITP in our case. PMID:27668103

  4. Immune Thrombocytopenia in a Child with T Cell Lymphoblastic Lymphoma

    PubMed Central

    Kurimoto, Tomoko; Fujimura, Junya; Shimizu, Toshiaki

    2016-01-01

    We describe the case of a 13-year-old boy who presented with persistent thrombocytopenia during maintenance chemotherapy with mercaptopurine and methotrexate for T cell lymphoblastic lymphoma. He was diagnosed with immune thrombocytopenia (ITP) after thorough investigations for the relapse of lymphoma and was successfully treated with immunoglobulin and steroids. ITP is known to be associated with chronic lymphocytic leukemia, Hodgkin lymphoma, and various types of non-Hodgkin lymphoma but rarely with T cell non-Hodgkin lymphoma or in children. Diagnosis of ITP with lymphoma is challenging due to the many factors affecting platelet counts, and ITP often complicates the diagnosis or treatment course of lymphoma. The underlying mechanism of ITP with NHL is still unclear. Drug-induced immunomodulation with a reduction of regulatory T cells might have contributed to the development of ITP in our case. PMID:27668103

  5. Acute lymphoblastic leukemia in a pygmy hippopotamus (Hexaprotodon liberiensis).

    PubMed

    McCurdy, Paul; Sangster, Cheryl; Lindsay, Scott; Vogelnest, Larry

    2014-12-01

    A captive, 31-yr-old, intact male pygmy hippopotamus presented with nonspecific signs of weight loss, inappetence, diarrhea, and lethargy. After 5 wk of diagnostic investigation and symptomatic treatment, an acute leukemic process with concurrent polycystic kidney disease was suspected. The animal's condition continued to deteriorate prompting euthanasia. Necropsy, histopathologic, and immunohistochemical examination confirmed acute T-cell lymphoblastic leukemia and polycystic kidneys. Acute T-cell lymphoblastic leukemia has not previously been documented in this species; however, polycystic kidney disease has been reported. This case report adds to the increasing number of pygmy hippopotamuses diagnosed with polycystic kidney disease and describes acute T-cell lymphoblastic leukemia, a previously unreported disease of this species.

  6. Acute lymphoblastic leukemia in a pygmy hippopotamus (Hexaprotodon liberiensis).

    PubMed

    McCurdy, Paul; Sangster, Cheryl; Lindsay, Scott; Vogelnest, Larry

    2014-12-01

    A captive, 31-yr-old, intact male pygmy hippopotamus presented with nonspecific signs of weight loss, inappetence, diarrhea, and lethargy. After 5 wk of diagnostic investigation and symptomatic treatment, an acute leukemic process with concurrent polycystic kidney disease was suspected. The animal's condition continued to deteriorate prompting euthanasia. Necropsy, histopathologic, and immunohistochemical examination confirmed acute T-cell lymphoblastic leukemia and polycystic kidneys. Acute T-cell lymphoblastic leukemia has not previously been documented in this species; however, polycystic kidney disease has been reported. This case report adds to the increasing number of pygmy hippopotamuses diagnosed with polycystic kidney disease and describes acute T-cell lymphoblastic leukemia, a previously unreported disease of this species. PMID:25632680

  7. AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia

    PubMed Central

    Moradi Manesh, Donya; El-Hoss, Jad; Evans, Kathryn; Richmond, Jennifer; Toscan, Cara E.; Bracken, Lauryn S.; Hedrick, Ashlee; Sutton, Rosemary; Marshall, Glenn M.; Wilson, William R.; Kurmasheva, Raushan T.; Billups, Catherine; Houghton, Peter J.; Smith, Malcolm A.; Carol, Hernan

    2015-01-01

    PR-104, a phosphate ester of the nitrogen mustard prodrug PR-104A, has shown evidence of efficacy in adult leukemia clinical trials. Originally designed to target hypoxic cells, PR-104A is independently activated by aldo-keto-reductase 1C3 (AKR1C3). The aim of this study was to test whether AKR1C3 is a predictive biomarker of in vivo PR-104 sensitivity. In a panel of 7 patient-derived pediatric acute lymphoblastic leukemia (ALL) xenografts, PR-104 showed significantly greater efficacy against T-lineage ALL (T-ALL) than B-cell-precursor ALL (BCP-ALL) xenografts. Single-agent PR-104 was more efficacious against T-ALL xenografts compared with a combination regimen of vincristine, dexamethasone, and l-asparaginase. Expression of AKR1C3 was significantly higher in T-ALL xenografts compared with BCP-ALL, and correlated with PR-104/PR-104A sensitivity in vivo and in vitro. Overexpression of AKR1C3 in a resistant BCP-ALL xenograft resulted in dramatic sensitization to PR-104 in vivo. Testing leukemic blasts from 11 patients confirmed that T-ALL cells were more sensitive than BCP-ALL to PR-104A in vitro, and that sensitivity correlated with AKR1C3 expression. Collectively, these results indicate that PR-104 shows promise as a novel therapy for relapsed/refractory T-ALL, and that AKR1C3 expression could be used as a biomarker to select patients most likely to benefit from such treatment in prospective clinical trials. PMID:26116659

  8. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation

    PubMed Central

    Kunz, Joachim B.; Rausch, Tobias; Bandapalli, Obul R.; Eilers, Juliane; Pechanska, Paulina; Schuessele, Stephanie; Assenov, Yassen; Stütz, Adrian M.; Kirschner-Schwabe, Renate; Hof, Jana; Eckert, Cornelia; von Stackelberg, Arend; Schrappe, Martin; Stanulla, Martin; Koehler, Rolf; Avigad, Smadar; Elitzur, Sarah; Handgretinger, Rupert; Benes, Vladimir; Weischenfeldt, Joachim; Korbel, Jan O.; Muckenthaler, Martina U.; Kulozik, Andreas E.

    2015-01-01

    Relapsed precursor T-cell acute lymphoblastic leukemia is characterized by resistance against chemotherapy and is frequently fatal. We aimed at understanding the molecular mechanisms resulting in relapse of T-cell acute lymphoblastic leukemia and analyzed 13 patients at first diagnosis, remission and relapse by whole exome sequencing, targeted ultra-deep sequencing, multiplex ligation dependent probe amplification and DNA methylation array. Compared to primary T-cell acute lymphoblastic leukemia, in relapse the number of single nucleotide variants and small insertions and deletions approximately doubled from 11.5 to 26. Targeted ultra-deep sequencing sensitively detected subclones that were selected for in relapse. The mutational pattern defined two types of relapses. While both are characterized by selection of subclones and acquisition of novel mutations, ‘type 1’ relapse derives from the primary leukemia whereas ‘type 2’ relapse originates from a common pre-leukemic ancestor. Relapse-specific changes included activation of the nucleotidase NT5C2 resulting in resistance to chemotherapy and mutations of epigenetic modulators, exemplified by SUZ12, WHSC1 and SMARCA4. While mutations present in primary leukemia and in relapse were enriched for known drivers of leukemia, relapse-specific changes revealed an association with general cancer-promoting mechanisms. This study thus identifies mechanisms that drive progression of pediatric T-cell acute lymphoblastic leukemia to relapse and may explain the characteristic treatment resistance of this condition. PMID:26294725

  9. Acute lymphoblastic leukaemia

    PubMed Central

    Inaba, Hiroto; Greaves, Mel; Mullighan, Charles G.

    2013-01-01

    Summary Acute lymphoblastic leukaemia (ALL) is seen in both children and adults, but its incidence peaks between ages 2 and 5 years. The causation of ALL is considered to be multi-factorial, including exogenous or endogenous exposures, genetic susceptibility, and chance. The survival rate of paediatric ALL has improved to approximately 90% in recent trials with risk stratification by biologic features of leukaemic cells and response to therapy, therapy modification based on patient pharmacodynamics and pharmacogenomics, and improved supportive care. However, innovative approaches are needed to further improve survival while reducing adverse effects. While most children can be cured, the prognosis of infants and adults with ALL remains poor. Recent genome-wide profiling of germline and leukaemic cell DNA has identified novel submicroscopic structural genetic alterations and sequence mutations that contribute to leukaemogenesis, define new ALL subtypes, influence responsiveness to treatment, and may provide novel prognostic markers and therapeutic targets for personalized medicine. PMID:23523389

  10. Vitamin E synthetic derivate-TPGS-selectively induces apoptosis in jurkat t cells via oxidative stress signaling pathways: implications for acute lymphoblastic leukemia.

    PubMed

    Ruiz-Moreno, Cristian; Jimenez-Del-Rio, Marlene; Sierra-Garcia, Ligia; Lopez-Osorio, Betty; Velez-Pardo, Carlos

    2016-09-01

    D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) is a water-soluble derivative of natural vitamin E commonly used as a drug delivery agent. Recently, TPGS alone has been reported to induce cell death in lung, breast and prostate cancer. However, the effect of TPGS on cancer cell viability remains unclear. Thus, this study was aimed to evaluate the cytotoxic effect of TPGS on human periphral blood lymphocytes (PBL) and on T cell acute lymphocytic leukemia (ALL) Jurkat clone E6-1 cells and its possible mechanism of action. PBL and Jurkat cells were treated with TPGS (10, 20, 40, 60, and 80 μM), and morphological changes in the cell nucleus, mitochondrial membrane potential (ΔΨm), and intracellular reactive oxygen species levels were determined by immune-fluorescence microscopy and flow cytometry. Cellular apoptosis markers were also evaluated by immunocytochemistry. In this study, TPGS induced apoptotic cell death in Jurkat cells, but not in PBL, in a dose-response manner with increasing nuclear DNA fragmentation, increasing cell cycle arrest, and decreasing ΔΨm. Additionally, TPGS increased dichlorofluorescein fluorescence intensity, indicative of H2O2 production, in a dose-independent fashion. TPGS increased DJ-1 Cys(106)-sulfonate, as a marker of intracellular stress and induced the activation of NF-κB, p53 and c-Jun transcription factors. Additionally, it increased the expression of apoptotic markers Bcl-2 related pro-apoptotic proteins Bax and PUMAand activated caspase-3. The antioxidant N-acetyl-L-cysteine and known pharmacological inhibitors protected the cells from the TPGS induced effects. In conclusion, TPGS selectively induces apoptosis in Jurkat cells through two independent but complementary H2O2-mediated signaling pathways. Our findings support the use of TPGS as a potential treatment for ALL. PMID:27364951

  11. Risk-Based Classification System of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-10-24

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  12. General Information about Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Lymphoblastic Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  13. General Information about Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Childhood Acute Lymphoblastic Leukemia Go to Health ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  14. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2013-07-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  15. Inhibition of γ-secretase activity synergistically enhances tumour necrosis factor-related apoptosis-inducing ligand induced apoptosis in T-cell acute lymphoblastic leukemia cells via upregulation of death receptor 5

    PubMed Central

    Greene, Lisa M.; Nathwani, Seema M.; Zisterer, Daniela M.

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a rare and aggressive hematopoietic malignancy prone to relapse and drug resistance. Half of all T-ALL patients exhibit mutations in Notch1, which leads to aberrant Notch1 associated signaling cascades. Notch1 activation is mediated by the γ-secretase cleavage of the Notch1 receptor into the active intracellular domain of Notch1 (NCID). Clinical trials of γ-secretase small molecule inhibitors (GSIs) as single agents for the treatment of T-ALL have been unsuccessful. The present study demonstrated, using immunofluorescence and western blotting, that blocking γ-secretase activity in T-ALL cells with N-[(3,5-difluorophenyl) acetyl]-L-alanyl-2-phenyl] glycine-1,1-dimethylethyl ester (DAPT) downregulated NCID and upregulated the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor 5 (DR5). Upregulation of DR5 restored the sensitivity of T-ALL cells to TRAIL. Combination index revealed that the combined treatment of DAPT and TRAIL synergistically enhanced apoptosis compared with treatment with either drug alone. TRAIL combined with the clinically evaluated γ-secretase inhibitor 3-[(1r, 4s)-4-(4-chlorophenylsulfonyl)-4-(2, 5-difluorophenyl) cyclohexyl] propanoic acid (MK-0752) also significantly enhanced TRAIL-induced cell death compared with either drug alone. DAPT/TRAIL apoptotic synergy was dependent on the extrinsic apoptotic pathway and was associated with a decrease in BH3 interacting-domain death agonist and x-linked inhibitor of apoptosis. In conclusion, γ-secretase inhibition represents a potential therapeutic strategy to overcome TRAIL resistance for the treatment of T-ALL.

  16. Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  17. Nivolumab and Dasatinib in Treating Patients With Relapsed or Refractory Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-25

    B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  18. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1.

    PubMed

    Matsushita, Kazuyuki; Kitamura, Kouichi; Rahmutulla, Bahityar; Tanaka, Nobuko; Ishige, Takayuki; Satoh, Mamoru; Hoshino, Tyuji; Miyagi, Satoru; Mori, Takeshi; Itoga, Sakae; Shimada, Hideaki; Tomonaga, Takeshi; Kito, Minoru; Nakajima-Takagi, Yaeko; Kubo, Shuji; Nakaseko, Chiaki; Hatano, Masahiko; Miki, Takashi; Matsuo, Masafumi; Fukuyo, Masaki; Kaneda, Atsushi; Iwama, Atsushi; Nomura, Fumio

    2015-03-10

    FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma tissues. Because FIRΔexon2 is considered to be a dominant negative regulator of FIR, FIR heterozygous knockout (FIR⁺/⁻) C57BL6 mice were generated. FIR complete knockout (FIR⁻/⁻) was embryonic lethal before E9.5; therefore, it is essential for embryogenesis. This strongly suggests that insufficiency of FIR is crucial for carcinogenesis. FIR⁺/⁻ mice exhibited prominent c-myc mRNA upregulation, particularly in the peripheral blood (PB), without any significant pathogenic phenotype. Furthermore, elevated FIRΔexon2/FIR mRNA expression was detected in human leukemia samples and cell lines. Because the single knockout of TP53 generates thymic lymphoma, FIR⁺/⁻TP53⁻/⁻ generated T-cell type acute lymphocytic/lymphoblastic leukemia (T-ALL) with increased organ or bone marrow invasion with poor prognosis. RNA-sequencing analysis of sorted thymic lymphoma cells revealed that the Notch signaling pathway was activated significantly in FIR⁺/⁻TP53⁻/⁻ compared with that in FIR⁺/⁺TP53⁻/⁻ mice. Notch1 mRNA expression in sorted thymic lymphoma cells was confirmed using qRT-PCR. In addition, flow cytometry revealed that c-myc mRNA was negatively correlated with FIR but positively correlated with Notch1 in sorted T-ALL/thymic lymphoma cells. Moreover, the knockdown of TP53 or c-myc using siRNA decreased Notch1 expression in cancer cells. In addition, an adenovirus vector encoding FIRΔexon2 cDNA increased bleomycin-induced DNA damage. Taken together, these data suggest that the altered expression of FIRΔexon2 increased Notch1 at least partially by activating c-Myc via a TP53-independent pathway. In

  19. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1

    PubMed Central

    Rahmutulla, Bahityar; Tanaka, Nobuko; Ishige, Takayuki; Satoh, Mamoru; Hoshino, Tyuji; Miyagi, Satoru; Mori, Takeshi; Itoga, Sakae; Shimada, Hideaki; Tomonaga, Takeshi; Kito, Minoru; Nakajima-Takagi, Yaeko; Kubo, Shuji; Nakaseko, Chiaki; Hatano, Masahiko; Miki, Takashi; Matsuo, Masafumi; Fukuyo, Masaki; Kaneda, Atsushi; Iwama, Atsushi; Nomura, Fumio

    2015-01-01

    FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma tissues. Because FIRΔexon2 is considered to be a dominant negative regulator of FIR, FIR heterozygous knockout (FIR+/−) C57BL6 mice were generated. FIR complete knockout (FIR−/−) was embryonic lethal before E9.5; therefore, it is essential for embryogenesis. This strongly suggests that insufficiency of FIR is crucial for carcinogenesis. FIR+/− mice exhibited prominent c-myc mRNA upregulation, particularly in the peripheral blood (PB), without any significant pathogenic phenotype. Furthermore, elevated FIRΔexon2/FIR mRNA expression was detected in human leukemia samples and cell lines. Because the single knockout of TP53 generates thymic lymphoma, FIR+/−TP53−/− generated T-cell type acute lymphocytic/lymphoblastic leukemia (T-ALL) with increased organ or bone marrow invasion with poor prognosis. RNA-sequencing analysis of sorted thymic lymphoma cells revealed that the Notch signaling pathway was activated significantly in FIR+/−TP53−/− compared with that in FIR+/+TP53−/− mice. Notch1 mRNA expression in sorted thymic lymphoma cells was confirmed using qRT-PCR. In addition, flow cytometry revealed that c-myc mRNA was negatively correlated with FIR but positively correlated with Notch1 in sorted T-ALL/thymic lymphoma cells. Moreover, the knockdown of TP53 or c-myc using siRNA decreased Notch1 expression in cancer cells. In addition, an adenovirus vector encoding FIRΔexon2 cDNA increased bleomycin-induced DNA damage. Taken together, these data suggest that the altered expression of FIRΔexon2 increased Notch1 at least partially by activating c-Myc via a TP53-independent pathway. In conclusion

  20. Haemophagocytic syndrome complicating acute lymphoblastic leukaemia.

    PubMed Central

    Stark, R.; Manoharan, A.

    1989-01-01

    A 41 year old female developed reactive haemophagocytic histiocytosis secondary to herpes simplex infection, during remission induction for acute lymphoblastic leukaemia. She recovered fully with acyclovir and supportive treatment. Previous publications on the association between acute lymphoblastic leukaemia and haemophagocytic syndrome are reviewed, and the nature of the haemophagocytic disorder is discussed. Images Figure 1 PMID:2687829

  1. Carfilzomib and Hyper-CVAD in Treating Patients With Newly Diagnosed Acute Lymphoblastic Leukemia or Lymphoma

    ClinicalTrials.gov

    2016-08-09

    Contiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia

  2. Risk-Adapted Chemotherapy in Treating Younger Patients With Newly Diagnosed Standard-Risk Acute Lymphoblastic Leukemia or Localized B-Lineage Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-09-23

    Adult B Lymphoblastic Lymphoma; Childhood B Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Childhood B Lymphoblastic Lymphoma; Down Syndrome; Stage I B Lymphoblastic Lymphoma; Stage II B Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  3. Treatment Option Overview (Childhood Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  4. Stages of Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  5. Risk Groups for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  6. Treatment Options for Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  7. Treatment Options for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  8. Treatment Option Overview (Adult Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  9. Blinatumomab and Combination Chemotherapy or Dasatinib, Prednisone, and Blinatumomab in Treating Older Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-10-19

    B Acute Lymphoblastic Leukemia; B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Recurrent Adult Acute Lymphoblastic Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  10. Increased post-induction intensification improves outcome in children and adolescents with a markedly elevated white blood cell count (≥200 × 10(9) /l) with T cell acute lymphoblastic leukaemia but not B cell disease: a report from the Children's Oncology Group.

    PubMed

    Hastings, Caroline; Gaynon, Paul S; Nachman, James B; Sather, Harland N; Lu, Xiaomin; Devidas, Meenakshi; Seibel, Nita L

    2015-02-01

    Children and adolescents presenting with a markedly elevated white blood cell (ME WBC) count (WBC ≥200 × 10(9) /l) comprise a unique subset of high-risk patients with acute lymphoblastic leukaemia (ALL). We evaluated the outcomes of the 251 patients (12% of the study population) with ME WBC treated on the Children's Cancer Group-1961 protocol. Patients were evaluated for early response to treatment by bone marrow morphology; those with a rapid early response were randomized to treatment regimens testing longer and stronger post-induction therapy. We found that ME WBC patients have a poorer outcome compared to those patients presenting with a WBC <200 × 10(9) /l (5-year event-free survival 62% vs. 73%, P = 0·0005). Longer duration of therapy worsened outcome for T cell ME WBC with a trend to poorer outcome in B-ALL ME WBC patients. Augmented therapy benefits T cell ME WBC patients, similar to the entire study cohort, however, there appeared to be no impact on survival for B-ALL ME WBC patients. ME WBC was not a prognostic factor for T cell patients. In patients with high risk features, B lineage disease in association with ME WBC has a negative impact on survival.

  11. High-Risk Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Bhojwani, Deepa; Howard, Scott C.; Pui, Ching-Hon

    2009-01-01

    Although most children with acute lymphoblastic leukemia (ALL) are cured, certain subsets have a high risk of relapse. Relapse risk can be predicted by early response to therapy, clinical and pharmacogenetic features of the host, and genetic characteristics of leukemic cells. Though early treatment response can be assessed by the peripheral blast cell count after 1 week of single-agent glucocorticoid treatment or percent of bone marrow blasts by morphology after 1 or 2 weeks of multiagent induction treatment, determination of minimal residual disease by polymerase chain reaction (PCR) or flow cytometry after 2 to 6 weeks of induction is the most precise and useful measure. Augmented therapy has improved outcome for the poor responders to initial treatment. Infants with mixed-lineage leukemia (MLL)–rearranged ALL comprise a very poor-risk group wherein further intensification of chemotherapy causes significant toxicity. Hybrid protocols incorporating drugs effective for acute myeloid leukemia could improve survival, a strategy being tested in international trials. Studies on the biology of MLL-induced leukemogenesis have prompted the development of novel targeted agents, currently under evaluation in clinical trials. Short-term outcomes of patients with Philadelphia chromosome (Ph)–positive ALL have improved significantly by adding tyrosine kinase inhibitors to standard chemotherapy regimens. New agents and methods to overcome resistance are under investigation, and allogeneic stem cell transplantation is recommended for certain subsets of patients, for example those with Ph+ and T-cell ALL with poor early response. Genome-wide interrogation of leukemic cell genetic abnormalities and germline genetic variations promise to identify new molecular targets for therapy. PMID:19778845

  12. Targeted Therapy in Treating Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2016-07-28

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia

  13. Erythrophagocytosis by acute lymphoblastic leukaemic cells.

    PubMed

    Foadi, M D; Slater, A M; Pegrum, G D

    1978-01-01

    Phagocytosis of erthyrocytes and platelets by bone marrow blast cells has been noted in 4 patients in the late relapse of acute lymphoblastic leukaemia (ALL). The underlying mechanism is unclear but prolonged course of the disease seems to be a major factor in the emergence of cells with phagocytic properties.

  14. A Novel Cryptic Three-Way Translocation t(2;9;18)(p23.2;p21.3;q21.33) with Deletion of Tumor Suppressor Genes in 9p21.3 and 13q14 in a T-Cell Acute Lymphoblastic Leukemia.

    PubMed

    Othman, Moneeb A K; Rincic, Martina; Melo, Joana B; Carreira, Isabel M; Alhourani, Eyad; Hunstig, Friederike; Glaser, Anita; Liehr, Thomas

    2014-01-01

    Acute leukemia often presents with pure chromosomal resolution; thus, aberrations may not be detected by banding cytogenetics. Here, a case of 26-year-old male diagnosed with T-cell acute lymphoblastic leukemia (T-ALL) and a normal karyotype after standard GTG-banding was studied retrospectively in detail by molecular cytogenetic and molecular approaches. Besides fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and high resolution array-comparative genomic hybridization (aCGH) were applied. Thus, cryptic chromosomal aberrations not observed before were detected: three chromosomes were involved in a cytogenetically balanced occurring translocation t(2;9;18)(p23.2;p21.3;q21.33). Besides a translocation t(10;14)(q24;q11) was identified, an aberration known to be common in T-ALL. Due to the three-way translocation deletion of tumor suppressor genes CDKN2A/INK4A/p16, CDKN2B/INK4B/p15, and MTAP/ARF/p14 in 9p21.3 took place. Additionally RB1 in 13q14 was deleted. This patient, considered to have a normal karyotype after low resolution banding cytogenetics, was treated according to general protocol of anticancer therapy (ALL-BFM 95).

  15. Hemiparesis in an Adolescent With Acute Lymphoblastic Leukemia: Everything Is Not Always What it Seems.

    PubMed

    Andina, David; Lassaletta, Alvaro; Sevilla, Julian; Gutierrez, Silvia; Madero, Luis

    2016-01-01

    Acute lymphoblastic leukemia is a common malignancy in childhood. Managing adverse events during treatment can result in very complex situations. A previously healthy adolescent diagnosed with T-cell acute lymphoblastic leukemia developed on day +55 of induction chemotherapy hemiparesis, dysesthesia, and facial palsy. Blood tests and brain imaging techniques were unremarkable. The patient was diagnosed with a conversion disorder, which completely resolved. Although rare in clinical practice, children and adolescents with cancer do not always have organic pathology explaining their symptoms. Psychiatric disorders such as those of the somatoform spectrum must be considered, particularly in patients with anxiety or depression.

  16. Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-08

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Cognitive Side Effects of Cancer Therapy; Long-Term Effects Secondary to Cancer Therapy in Children; Neurotoxicity Syndrome; Psychological Impact of Cancer; Untreated Childhood Acute Lymphoblastic Leukemia

  17. Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-09

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  18. T-cell Lymphoblastic Lymphoma in the Maxilla and Mandible of a Child: A Rare Case Report

    PubMed Central

    Dalirsani, Zohreh

    2015-01-01

    T-cell lymphoblastic lymphomas (T-LBL), defined as neoplasms of immature T cells, are the most common paediatric T-cell lymphoma. These account for approximately 90% of all lymphoblastic lymphomas. The primary manifestation of T-LBL rarely occurs in the oral cavity. In this case report, we describe a case of primary T-LBL affecting the maxilla and mandible of a 10-year-old male patient. This is the first case of T-LBL reported in this region. We emphasize that early diagnosis of aggressive lesions in the maxilla or mandible is one of the responsibilities of oral physicians, who can help patients to overcome the many challenges of malignant diseases. PMID:26284200

  19. Entinostat and Clofarabine in Treating Patients With Newly Diagnosed, Relapsed, or Refractory Poor-Risk Acute Lymphoblastic Leukemia or Bilineage/Biphenotypic Leukemia

    ClinicalTrials.gov

    2014-07-16

    Acute Leukemias of Ambiguous Lineage; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  20. Update on developmental therapeutics for acute lymphoblastic leukemia.

    PubMed

    Smith, Malcolm A

    2009-07-01

    This is an exciting time in drug development for acute lymphoblastic leukemia (ALL). A confluence of trends makes it likely that highly effective new agents for ALL will be identified in the coming decade. One contributory factor is the development of more representative preclinical models of ALL for testing and prioritizing novel agents. Another important trend in ALL drug development is the increasing understanding at the molecular level of the genomic changes that occur in B-precursor and T-cell ALL. A final important trend is the increasing availability of new agents against relevant molecular targets. Molecularly targeted agents of interest discussed in this review include novel antibody-based drugs targeted against leukemia surface antigens, proteasome inhibitors, mTOR inhibitors, JAK inhibitors, Aurora A kinase inhibitors, and inhibitors of Bcl-2 family proteins. PMID:20425431

  1. Biology and treatment of adult acute lymphoblastic leukemia.

    PubMed Central

    Levitt, L; Lin, R

    1996-01-01

    The molecular analysis of acute lymphoblastic leukemia (ALL) has provided exciting insights into the pathogenesis of this disease. This disease is heterogenous and can be subtyped based on chromosomal, immunophenotypic, and structural criteria. The varying prognostic implications of different ALL subtypes markedly influence the treatment decisions in adults. Many patients with T-cell ALL can be cured with chemotherapy alone. In contrast, patients with early B-lineage ALL with certain chromosomal abnormalities, especially the Philadelphia chromosome, do not have durable responses to chemotherapy and should receive a bone marrow transplantation if an HLA-matched donor is available. Recent reports have shown improved results for adults with B-cell ALL (Burkitt's) after intensive alternating cycles of chemotherapy containing high doses of methotrexate and cyclophosphamide. Future clinical and laboratory investigation should lead to the development of novel and possibly more effective treatments specifically tailored for different subsets of ALL. PMID:8775728

  2. Acute respiratory distress syndrome associated with tumor lysis syndrome in a child with acute lymphoblastic leukemia.

    PubMed

    Macaluso, Alessandra; Genova, Selene; Maringhini, Silvio; Coffaro, Giancarlo; Ziino, Ottavio; D'Angelo, Paolo

    2015-02-24

    Tumor lysis syndrome is a serious and dangerous complication usually associated with antiblastic treatment in some malignancies characterized by high cell turn-over. Mild or severe electrolyte abnormalities including high serum levels of uric acid, potassium, phosphorus, creatinine, bun and reduction of calcium can be responsible for multi-organ failure, involving mostly kidneys, heart and central nervous system. Renal damage can be followed by acute renal failure, weight gain, progressive liver impairment, overproduction of cytokines, and subsequent maintenance of multi-organ damage. Life-threatening acute respiratory failure associated with tumor lysis syndrome is rare. We describe a child with T-cell acute lymphoblastic leukemia, who developed an unusually dramatic tumor lysis syndrome, after administration of the first low doses of steroid, that was rapidly associated with severe acute respiratory distress syndrome. Subsequent clinical course and treatment modalities that resulted in the gradual and full recovery of the child are also described. PMID:25918625

  3. Acute Respiratory Distress Syndrome Associated with Tumor Lysis Syndrome in a Child with Acute Lymphoblastic Leukemia

    PubMed Central

    Macaluso, Alessandra; Genova, Selene; Maringhini, Silvio; Coffaro, Giancarlo; Ziino, Ottavio; D’Angelo, Paolo

    2015-01-01

    Tumor lysis syndrome is a serious and dangerous complication usually associated with antiblastic treatment in some malignancies characterized by high cell turn-over. Mild or severe electrolyte abnormalities including high serum levels of uric acid, potassium, phosphorus, creatinine, bun and reduction of calcium can be responsible for multi-organ failure, involving mostly kidneys, heart and central nervous system. Renal damage can be followed by acute renal failure, weight gain, progressive liver impairment, overproduction of cytokines, and subsequent maintenance of multi-organ damage. Life-threatening acute respiratory failure associated with tumor lysis syndrome is rare. We describe a child with T-cell acute lymphoblastic leukemia, who developed an unusually dramatic tumor lysis syndrome, after administration of the first low doses of steroid, that was rapidly associated with severe acute respiratory distress syndrome. Subsequent clinical course and treatment modalities that resulted in the gradual and full recovery of the child are also described. PMID:25918625

  4. Dasatinib and Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-08

    Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Childhood B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  5. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development.

    PubMed

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments.

  6. Nanomedicine approaches in acute lymphoblastic leukemia.

    PubMed

    Tatar, Andra-Sorina; Nagy-Simon, Timea; Tomuleasa, Ciprian; Boca, Sanda; Astilean, Simion

    2016-09-28

    Acute lymphoblastic leukemia (ALL) is the malignancy with the highest incidence amongst children (26% of all cancer cases), being surpassed only by the cancers of the brain and of the nervous system. The most recent research on ALL is focusing on new molecular therapies, like targeting specific biological structures in key points in the cell cycle, or using selective inhibitors for transmembranary proteins involved in cell signalling, and even aiming cell surface receptors with specifically designed antibodies for active targeting. Nanomedicine approaches, especially by the use of nanoparticle-based compounds for the delivery of drugs, cancer diagnosis or therapeutics may represent new and modern ways in the near future anti-cancer therapies. This review offers an overview on the recent role of nanomedicine in the detection and treatment of acute lymphoblastic leukemia as resulting from a thorough literature survey. A short introduction on the basics of ALL is presented followed by the description of the conventional methods used in the ALL detection and treatment. We follow our discussion by introducing some of the general nano-strategies used for cancer detection and treatment. The detailed role of organic and inorganic nanoparticles in ALL applications is further presented, with a special focus on gold nanoparticle-based nanocarriers of antileukemic drugs. PMID:27460684

  7. Nanomedicine approaches in acute lymphoblastic leukemia.

    PubMed

    Tatar, Andra-Sorina; Nagy-Simon, Timea; Tomuleasa, Ciprian; Boca, Sanda; Astilean, Simion

    2016-09-28

    Acute lymphoblastic leukemia (ALL) is the malignancy with the highest incidence amongst children (26% of all cancer cases), being surpassed only by the cancers of the brain and of the nervous system. The most recent research on ALL is focusing on new molecular therapies, like targeting specific biological structures in key points in the cell cycle, or using selective inhibitors for transmembranary proteins involved in cell signalling, and even aiming cell surface receptors with specifically designed antibodies for active targeting. Nanomedicine approaches, especially by the use of nanoparticle-based compounds for the delivery of drugs, cancer diagnosis or therapeutics may represent new and modern ways in the near future anti-cancer therapies. This review offers an overview on the recent role of nanomedicine in the detection and treatment of acute lymphoblastic leukemia as resulting from a thorough literature survey. A short introduction on the basics of ALL is presented followed by the description of the conventional methods used in the ALL detection and treatment. We follow our discussion by introducing some of the general nano-strategies used for cancer detection and treatment. The detailed role of organic and inorganic nanoparticles in ALL applications is further presented, with a special focus on gold nanoparticle-based nanocarriers of antileukemic drugs.

  8. Cancer procoagulant in acute lymphoblastic leukemia.

    PubMed

    Alessio, M G; Falanga, A; Consonni, R; Bassan, R; Minetti, B; Donati, M B; Barbui, T

    1990-08-01

    In a previous study we characterized cancer procoagulant (CP), a 68 kd cysteine proteinase which directly activates coagulation factor X in various subtypes (from M1 to M5) of acute non-lymphoblastic leukemia (ANLL). The aim of this study was to determine whether CP is also expressed by acute lymphoblastic leukemia (ALL) cells. Blasts from 25 ALL patients were extracted and tested for their procoagulant properties. 16 samples (64%) shortened the recalcification time of normal human plasma, and 9 (36%) did not. 8 of the 16 active samples showed properties compatible with CP, i.e. independence from factor VII in triggering blood coagulation and sensitivity to cysteine proteinase inhibitors. Selected samples also cross-reacted with a polyclonal antibody raised against purified CP. The specific activity of CP in ALL extracts was significantly lower than in most ANLL types previously studied (all but M4). These finding indicate that CP can be a property of the lymphoid phenotype although its expression may be lower than in the myeloid phenotype.

  9. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance

    PubMed Central

    Pitt, Lauren A.; Tikhonova, Anastasia N.; Hu, Hai; Trimarchi, Thomas; King, Bryan; Gong, Yixiao; Sanchez-Martin, Marta; Tsirigos, Aris; Littman, Dan R.; Ferrando, Adolfo; Morrison, Sean J.; Fooksman, David R.

    2015-01-01

    SUMMARY The role of the microenvironment in T cell acute lymphoblastic leukemia (T-ALL), or any acute leukemia, is poorly understood. Here we demonstrate that T-ALL cells are in direct, stable contact with CXCL12-producing bone marrow stroma. Cxcl12 deletion from vascular endothelial, but not perivascular, cells impeded tumor growth, suggesting a vascular niche for T-ALL. Moreover, genetic targeting of CXCR4 in murine T-ALL after disease onset led to rapid, sustained disease remission, and CXCR4 antagonism suppressed human T-ALL in primary xenografts. Loss of CXCR4 targeted key T-ALL regulators, including the MYC pathway, and decreased leukemia initiating cell activity in vivo. Our data identify a T-ALL niche, and suggest targeting CXCL12/CXCR4 signaling as a powerful therapeutic approach for T-ALL. PMID:26058075

  10. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development

    PubMed Central

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments. PMID:26216197

  11. Treatment of Childhood Acute Lymphoblastic Leukemia Without Prophylactic Cranial Irradiation

    PubMed Central

    Pui, Ching-Hon; Campana, Dario; Pei, Deqing; Bowman, W. Paul; Sandlund, John T.; Kaste, Sue C.; Ribeiro, Raul C.; Rubnitz, Jeffrey E.; Raimondi, Susana C.; Onciu, Mihaela; Coustan-Smith, Elaine; Kun, Larry E.; Jeha, Sima; Cheng, Cheng; Howard, Scott C.; Simmons, Vickey; Bayles, Amy; Metzger, Monika L.; Boyett, James M.; Leung, Wing; Handgretinger, Rupert; Downing, James R.; Evans, William E.; Relling, Mary V.

    2009-01-01

    Background We conducted a clinical trial to test whether prophylactic cranial irradiation could be omitted in all children with newly diagnosed acute lymphoblastic leukemia. Methods A total of 498 evaluable patients were enrolled. Treatment intensity was based on presenting features and the level of minimal residual disease after remission induction treatment. Continuous complete remission was compared between the 71 patients who previously would have received prophylactic cranial irradiation and the 56 historical controls who received it. Results The 5-year event-free and overall survival probabilities (95% confidence interval) for all 498 patients were 85.6% (79.9% to 91.3%) and 93.5% (89.8% to 97.2%), respectively. The 5-year cumulative risk of isolated central-nervous-system (CNS) relapse was 2.7% (1.1% to 4.2%), and that of any CNS relapse (isolated plus combined) was 3.9% (1.9% to 5.9%). The 71 patients had significantly better continuous complete remission than the 56 historical controls (P=0.04). All 11 patients with isolated CNS relapse remain in second remission for 0.4 to 5.5 years. CNS leukemia (CNS-3 status) or a traumatic lumbar puncture with blasts at diagnosis and a high level of minimal residual disease (≥ 1%) after 6 weeks of remission induction were significantly associated with poorer event-free survival. Risk factors for CNS relapse included the presence of the t(1;19)[TCF3-PBX1], any CNS involvement at diagnosis, and T-cell immunophenotype. Common adverse effects included allergic reactions to L-asparaginase, osteonecrosis, thrombosis, and disseminated fungal infection. Conclusions With effective risk-adjusted chemotherapy, prophylactic cranial irradiation can be safely omitted in the treatment of childhood acute lymphoblastic leukemia. PMID:19553647

  12. Acute lymphoblastic leukemia and developmental biology

    PubMed Central

    Campos-Sanchez, Elena; Toboso-Navasa, Amparo; Romero-Camarero, Isabel; Barajas-Diego, Marcos

    2011-01-01

    The latest scientific findings in the field of cancer research are redefining our understanding of the molecular and cellular basis of the disease, moving the emphasis toward the study of the mechanisms underlying the alteration of the normal processes of cellular differentiation. The concepts best exemplifying this new vision are those of cancer stem cells and tumoral reprogramming. The study of the biology of acute lymphoblastic leukemias (ALLs) has provided seminal experimental evidence supporting these new points of view. Furthermore, in the case of B cells, it has been shown that all the stages of their normal development show a tremendous degree of plasticity, allowing them to be reprogrammed to other cellular types, either normal or leukemic. Here we revise the most recent discoveries in the fields of B-cell developmental plasticity and B-ALL research and discuss their interrelationships and their implications for our understanding of the biology of the disease. PMID:22031225

  13. Pharmacogenetics of childhood acute lymphoblastic leukemia.

    PubMed

    Lopez-Lopez, Elixabet; Gutierrez-Camino, Angela; Bilbao-Aldaiturriaga, Nerea; Pombar-Gomez, Maria; Martin-Guerrero, Idoia; Garcia-Orad, Africa

    2014-07-01

    Acute lymphoblastic leukemia (ALL) is the major pediatric cancer in developed countries. Although treatment outcome has improved owing to advances in chemotherapy, there is still a group of patients for which therapy fails while some patients experience severe toxicity. In the last few years, several pharmacogenetic studies have been performed to search for markers of outcome and toxicity in pediatric ALL. However, to date, TPMT is the only pharmacogenetic marker in ALL with clinical guidelines for drug dosing. In this article, we will provide an overview of the most important findings carried out in pharmacogenetics for pediatric ALL, such as the interest drawn by methotrexate transporters in the context of methotrexate treatment. Even if most of the studies are centered on coding genes, we will also point to new approaches focusing on noncoding regions and epigenetic variation that could be interesting for consideration in the near future.

  14. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults.

    PubMed

    Lee, Kum Ja; Chow, Vivian; Weissman, Ashley; Tulpule, Sunil; Aldoss, Ibrahim; Akhtari, Mojtaba

    2016-01-01

    Adults with relapsed or refractory B-cell acute lymphoblastic leukemia have a dismal prognosis with a short median overall survival that can be measured in months. Because most patients will have chemotherapy-resistant disease, allogeneic hematopoietic stem cell transplantation remains the only potentially curative treatment. Despite advances in current management, patients continue to have poor outcomes and lack of durable responses. Thus, new therapies with alternative modes of actions are currently being investigated. Blinatumomab is a novel bispecific T-cell engager that simultaneously binds CD3-positive cytotoxic T-cells and CD19-positive B-cells, resulting in selective lysis of tumor cells. It has shown promising results in patients with relapsed or refractory acute lymphoblastic leukemia or those achieving hematologic response with persistent minimum residual disease. Future clinical trials will answer questions regarding its optimal place in the treatment paradigm. Dose-limiting toxicities include immunological toxicities and cytokine release syndrome. However, most patients tolerate the therapy relatively well. This review will focus on the pharmacology, clinical efficacy, and safety of blinatumomab in the treatment of adult B-cell acute lymphoblastic leukemia while highlighting its unique drug warnings and toxicity management. PMID:27601914

  15. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults

    PubMed Central

    Lee, Kum Ja; Chow, Vivian; Weissman, Ashley; Tulpule, Sunil; Aldoss, Ibrahim; Akhtari, Mojtaba

    2016-01-01

    Adults with relapsed or refractory B-cell acute lymphoblastic leukemia have a dismal prognosis with a short median overall survival that can be measured in months. Because most patients will have chemotherapy-resistant disease, allogeneic hematopoietic stem cell transplantation remains the only potentially curative treatment. Despite advances in current management, patients continue to have poor outcomes and lack of durable responses. Thus, new therapies with alternative modes of actions are currently being investigated. Blinatumomab is a novel bispecific T-cell engager that simultaneously binds CD3-positive cytotoxic T-cells and CD19-positive B-cells, resulting in selective lysis of tumor cells. It has shown promising results in patients with relapsed or refractory acute lymphoblastic leukemia or those achieving hematologic response with persistent minimum residual disease. Future clinical trials will answer questions regarding its optimal place in the treatment paradigm. Dose-limiting toxicities include immunological toxicities and cytokine release syndrome. However, most patients tolerate the therapy relatively well. This review will focus on the pharmacology, clinical efficacy, and safety of blinatumomab in the treatment of adult B-cell acute lymphoblastic leukemia while highlighting its unique drug warnings and toxicity management.

  16. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults

    PubMed Central

    Lee, Kum Ja; Chow, Vivian; Weissman, Ashley; Tulpule, Sunil; Aldoss, Ibrahim; Akhtari, Mojtaba

    2016-01-01

    Adults with relapsed or refractory B-cell acute lymphoblastic leukemia have a dismal prognosis with a short median overall survival that can be measured in months. Because most patients will have chemotherapy-resistant disease, allogeneic hematopoietic stem cell transplantation remains the only potentially curative treatment. Despite advances in current management, patients continue to have poor outcomes and lack of durable responses. Thus, new therapies with alternative modes of actions are currently being investigated. Blinatumomab is a novel bispecific T-cell engager that simultaneously binds CD3-positive cytotoxic T-cells and CD19-positive B-cells, resulting in selective lysis of tumor cells. It has shown promising results in patients with relapsed or refractory acute lymphoblastic leukemia or those achieving hematologic response with persistent minimum residual disease. Future clinical trials will answer questions regarding its optimal place in the treatment paradigm. Dose-limiting toxicities include immunological toxicities and cytokine release syndrome. However, most patients tolerate the therapy relatively well. This review will focus on the pharmacology, clinical efficacy, and safety of blinatumomab in the treatment of adult B-cell acute lymphoblastic leukemia while highlighting its unique drug warnings and toxicity management. PMID:27601914

  17. T-cell-mediated ganglionitis associated with acute sensory neuronopathy.

    PubMed

    Hainfellner, J A; Kristoferitsch, W; Lassmann, H; Bernheimer, H; Neisser, A; Drlicek, M; Beer, F; Budka, H

    1996-04-01

    A 67-year-old man presented with acute painful sensory loss, areflexia, ataxia, urinary retention, and severe constipation and became unable to walk within 2 weeks. He died suddenly 5 weeks after the onset of symptoms. Autopsy revealed widespread inflammation of sensory and autonomic ganglia with immunocytochemical evidence of a CD8+ T cell-mediated cytotoxic attack against ganglion neurons. This observation suggests a novel pathogenetic mechanism of immune-mediated human ganglion cell damage comparable to mechanisms operating in polymyositis.

  18. Deletion of Pten in CD45-expressing cells leads to development of T-cell lymphoblastic lymphoma but not myeloid malignancies

    PubMed Central

    Mirantes, Cristina; Dosil, Maria Alba; Hills, David; Yang, Jian; Eritja, Núria; Santacana, Maria; Gatius, Sònia; Vilardell, Felip; Medvinsky, Alexander; Matias-Guiu, Xavier

    2016-01-01

    Since its discovery in the late 1990s, Pten has turned out to be one of the most important tumor suppressor genes. Pten loss results in increased activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is associated with increased proliferation, survival, and neoplastic growth. Here, we have addressed the effects of conditional deletion of Pten in hematopoietic cells by crossing Pten conditional knockout mice with a knock-in mouse expressing the Cre recombinase in the CD45 locus. CD45 is also known as leukocyte common antigen, and it is expressed in virtually all white cells and in hematopoietic stem cells. Using a reporter mouse, we demonstrate that CD45:Cre mouse displays recombinase activity in both myeloid and lymphoid cells. However, deletion of Pten in CD45-expressing cells induces development of T-cell acute lymphoblastic leukemia and lymphoma, but not other hematologic malignancies. PMID:26773036

  19. Outcomes after Induction Failure in Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Schrappe, Martin; Hunger, Stephen P.; Pui, Ching-Hon; Saha, Vaskar; Gaynon, Paul S.; Baruchel, André; Conter, Valentino; Otten, Jacques; Ohara, Akira; Versluys, Anne Birgitta; Escherich, Gabriele; Heyman, Mats; Silverman, Lewis B.; Horibe, Keizo; Mann, Georg; Camitta, Bruce M.; Harbott, Jochen; Riehm, Hansjörg; Richards, Sue; Devidas, Meenakshi; Zimmermann, Martin

    2012-01-01

    BACKGROUND Failure of remission-induction therapy is a rare but highly adverse event in children and adolescents with acute lymphoblastic leukemia (ALL). METHODS We identified induction failure, defined by the persistence of leukemic blasts in blood, bone marrow, or any extramedullary site after 4 to 6 weeks of remission-induction therapy, in 1041 of 44,017 patients (2.4%) 0 to 18 years of age with newly diagnosed ALL who were treated by a total of 14 cooperative study groups between 1985 and 2000. We analyzed the relationships among disease characteristics, treatments administered, and outcomes in these patients. RESULTS Patients with induction failure frequently presented with high-risk features, including older age, high leukocyte count, leukemia with a T-cell phenotype, the Philadelphia chromosome, and 11q23 rearrangement. With a median follow-up period of 8.3 years (range, 1.5 to 22.1), the 10-year survival rate (±SE) was estimated at only 32±1%. An age of 10 years or older, T-cell leukemia, the presence of an 11q23 rearrangement, and 25% or more blasts in the bone marrow at the end of induction therapy were associated with a particularly poor outcome. High hyperdiploidy (a modal chromosome number >50) and an age of 1 to 5 years were associated with a favorable outcome in patients with precursor B-cell leukemia. Allogeneic stem-cell transplantation from matched, related donors was associated with improved outcomes in T-cell leukemia. Children younger than 6 years of age with precursor B-cell leukemia and no adverse genetic features had a 10-year survival rate of 72±5% when treated with chemotherapy only. CONCLUSIONS Pediatric ALL with induction failure is highly heterogeneous. Patients who have T-cell leukemia appear to have a better outcome with allogeneic stem-cell transplantation than with chemotherapy, whereas patients who have precursor B-cell leukemia without other adverse features appear to have a better outcome with chemotherapy. (Funded by Deutsche

  20. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    PubMed Central

    Dobrovinskaya, Oxana; Valencia-Cruz, Georgina; Castro-Sánchez, Luis; Bonales-Alatorre, Edgar O.; Liñan-Rico, Liliana; Pottosin, Igor

    2016-01-01

    Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options. PMID:27630569

  1. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    PubMed Central

    Dobrovinskaya, Oxana; Valencia-Cruz, Georgina; Castro-Sánchez, Luis; Bonales-Alatorre, Edgar O.; Liñan-Rico, Liliana; Pottosin, Igor

    2016-01-01

    Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.

  2. Advances in the Genetics and Therapy of Acute Lymphoblastic Leukemia.

    PubMed

    Chiaretti, Sabina; Gianfelici, Valentina; O'Brien, Susan M; Mullighan, Charles G

    2016-01-01

    Acute lymphoblastic leukemia (ALL) remains an important cause of morbidity in children and adults. In this article, we highlight advances in the genetics and therapy of three key subtypes of ALL: T-cell ALL, BCR-ABL1 (Philadelphia [Ph] chromosone-positive), and Ph-like ALL. T-ALL is an aggressive disease that accounts for about 15% and 25% of ALL among pediatric and adult cohorts, respectively, and exhibits a multistep nature of cancer initiation and progression. The integration of cytogenetics, molecular biology, and immunophenotype analyses has led to the identification of defined T-ALL subgroups, such as early T-cell precursor ALL and novel lesions with a prognostic role, for which specific inhibitors are being developed. Ph-positive ALL was historically regarded as a subtype of ALL with a poor prognosis, and allogeneic stem cell transplant was recommended for all patients who could undergo this procedure. The deep complete responses seen with combination tyrosine kinase inhibitors (TKIs) and chemotherapy in Ph-positive ALL, and the reports of long-term survival among some patients not undergoing allogeneic stem cell transplant, has raised the question of whether there is a subset of patients who could be cured without this intervention. Ph-like ALL is a subtype of B-progenitor ALL common among older children and adults and associated with a diverse range of genetic alterations that activate kinase signaling. Ph-like ALL is also associated with poor outcome, for which precision medicine trials identifying kinase alterations and testing TKI therapy are being developed. PMID:27249738

  3. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia.

    PubMed

    Dobrovinskaya, Oxana; Valencia-Cruz, Georgina; Castro-Sánchez, Luis; Bonales-Alatorre, Edgar O; Liñan-Rico, Liliana; Pottosin, Igor

    2016-01-01

    Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca(2+) signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options. PMID:27630569

  4. Molecular analysis of childhood acute lymphoblastic leukemia in Israel.

    PubMed

    Blau, O; Avigad, S; Frisch, A; Kilim, Y; Stark, B; Kodman, Y; Luria, D; Cohen, I J; Zaizov, R

    1998-06-01

    Ninety-two Israeli children with acute lymphoblastic leukemia (ALL) (67 B-lineage and 25 T-lineage) were analyzed for the immunological antigen receptor gene configuration. Thirty-nine of the patients (27 B-lineage and 12 T-lineage) relapsed. The incidence of the identified rearrangements within the immunoglobulin heavy chain (IgH) and T-cell receptor (TCR)beta, gamma and delta genes, at diagnosis, was in accordance with previous studies from other countries. Furthermore, the clinical relevance of bi/oligoclonal status, at diagnosis, and clonal selection was determined in this long-term follow-up study (median 112 months). A similar relapse rate was observed among the B-lineage patients with bi/oligoclonal and monoclonal patterns indicated by IgH gene rearrangement. Based on our results, we suggest that bi/oligoclonality has no prognostic significance (P=0.8533). Clonal variations between diagnosis and subsequent relapses were detected in 60% (12/20) of the patients; 64% (7/11) B-lineage and 55% (5/9) T-lineage. Clonal selection significantly correlated with shorter duration of remission and earlier recurrence (P=0.0025).

  5. Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration

    PubMed Central

    Yang, Jun J.; Hunger, Stephen P.; Pieters, Rob; Schrappe, Martin; Biondi, Andrea; Vora, Ajay; Baruchel, André; Silverman, Lewis B.; Schmiegelow, Kjeld; Escherich, Gabriele; Horibe, Keizo; Benoit, Yves C.M.; Izraeli, Shai; Yeoh, Allen Eng Juh; Liang, Der-Cherng; Downing, James R.; Evans, William E.; Relling, Mary V.; Mullighan, Charles G.

    2015-01-01

    Purpose To review the impact of collaborative studies on advances in the biology and treatment of acute lymphoblastic leukemia (ALL) in children and adolescents. Methods A review of English literature on childhood ALL focusing on collaborative studies was performed. The resulting article was reviewed and revised by the committee chairs of the major ALL study groups. Results With long-term survival rates for ALL approaching 90% and the advent of high-resolution genome-wide analyses, several international study groups or consortia were established to conduct collaborative research to further improve outcome. As a result, treatment strategies have been improved for several subtypes of ALL, such as infant, MLL-rearranged, Philadelphia chromosome–positive, and Philadelphia chromosome–like ALL. Many recurrent genetic abnormalities that respond to tyrosine kinase inhibitors and multiple genetic determinants of drug resistance and toxicities have been identified to help develop targeted therapy. Several genetic polymorphisms have been recognized that show susceptibility to developing ALL and that help explain the racial/ethnic differences in the incidence of ALL. Conclusion The information gained from collaborative studies has helped decipher the heterogeneity of ALL to help improve personalized treatment, which will further advance the current high cure rate and the quality of life for children and adolescents with ALL. PMID:26304874

  6. Epigenetic deregulation in pediatric acute lymphoblastic leukemia

    PubMed Central

    Chatterton, Zac; Morenos, Leah; Mechinaud, Francoise; Ashley, David M; Craig, Jeffrey M; Sexton-Oates, Alexandra; Halemba, Minhee S; Parkinson-Bates, Mandy; Ng, Jane; Morrison, Debra; Carroll, William L; Saffery, Richard; Wong, Nicholas C

    2014-01-01

    Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (>50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes. PMID:24394348

  7. Acute lymphoblastic leukemia: age and biology.

    PubMed

    Foà, Robin

    2011-06-22

    Acute lymphoblastic leukemia (ALL) is the most frequent neoplasm in children, while being relatively rare in adults. The outcome of children with ALL is far superior than that observed in adults, whose survival rates generally do not exceed 40%. A retrospective analysis recently carried out on a large series of cases enrolled in the AIEOP and GIMEMA protocols for the treatment of pediatric and adult ALL has documented specific differences among the various age cohorts examined, particularly in terms of incidence of molecular rearrangements, with the BCR/ABL rearrangement being detected in more than half of patients in the 6(th) decade of life. These findings highlight the importance of a precise diagnostic screening at all ages, since elderly patients might benefit more from targeted approaches, that are associated with less toxic effects. Furthermore, extended biologic approaches aimed at identifying novel therapeutic targets should be regarded as a main goal to refine our therapeutic armamentarium.Finally, the introduction of pediatric-like protocols is progressively changing the outcome of young adult patients, although an important caveat is represented by the comorbidities and toxic effects associated with more aggressive chemotherapy; therefore, patients' fitness should always be carefully considered.

  8. MINIMAL RESIDUAL DISEASE IN ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Campana, Dario

    2009-01-01

    In patients with acute lymphoblastic leukemia (ALL), monitoring of minimal residual disease (MRD) offers a way to precisely assess early treatment response and detect relapse. Established methods to study MRD are flow cytometric detection of abnormal immunophenotypes, polymerase chain reaction (PCR) amplification of antigen-receptor genes, and PCR amplification of fusion transcripts. The strong correlation between MRD levels and risk of relapse in childhood ALL is well established; studies in adult patients also support its prognostic value. Hence, results of MRD studies can be used to select treatment intensity and duration, and estimate the optimal timing for hematopoietic stem cell transplantation. Practical issues in the implementation of MRD assays in clinical studies include determining the most informative time point to study MRD, the levels of MRD that will trigger changes in treatment intensity, as well as the relative cost and informative power of different methodologies. The identification of new markers of leukemia and the use of increasingly refined assays should further facilitate routine monitoring of MRD and help clarifying the cellular and biologic features of leukemic cells that resist chemotherapy in vivo. PMID:19100372

  9. Blinatumomab: Bridging the Gap in Adult Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia.

    PubMed

    Folan, Stephanie A; Rexwinkle, Amber; Autry, Jane; Bryan, Jeffrey C

    2016-08-01

    Adult patients with acute lymphoblastic leukemia who relapse after frontline therapy have extremely poor outcomes despite advances in chemotherapy and hematopoietic stem cell transplantation. Blinatumomab is a first-in-class bispecific T-cell engager that links T cells to tumor cells leading to T-cell activation and tumor cell lysis. In December 2014, the Food and Drug Administration approved blinatumomab for treatment of relapsed or refractory Philadelphia chromosome-negative precursor B-cell acute lymphoblastic leukemia. In a phase II trial, blinatumomab produced response rates of 43%, and 40% of patients achieving a complete remission proceeded to hematopoietic stem cell transplantation. Early use of blinatumomab was complicated with adverse effects, including cytokine release syndrome and neurotoxicity. Management strategies, including dexamethasone premedication and 2-step dose escalation during the first cycle of blinatumomab, have decreased the incidence and severity of these adverse effects. Blinatumomab currently is being studied for other B-cell malignancies and has the potential to benefit many patients with CD19+ malignancies in the future. PMID:27521320

  10. Acute lymphoblastic leukemia in children with associated genetic conditions other than Down's syndrome. The AIEOP experience.

    PubMed

    Ziino, Ottavio; Rondelli, Roberto; Micalizzi, Concetta; Luciani, Matteo; Conter, Valentino; Aricò, Maurizio

    2006-01-01

    We retrospectively reviewed the databases of seven studies on acute lymphoblastic leukemia (ALL) by the Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP) to identify patients with associated genetic disease, other than Down's syndrome. Forty-two patients were reported to have associated genetic conditions that included beta-thalassemia (n=10), ataxia-telangiectasia (n=5), neurofibromatosis (n=3), Sotos syndrome (n=2) and other individual conditions. Patients with ataxia-telangiectasia, all with T-cell ALL, had a higher frequency of adverse events.

  11. [Vaccination of chickenpox in children with acute lymphoblastic leukaemia].

    PubMed

    Navajas, A; Astigarraga, I; Fernández-Teijeiro, A; Aga, M; Redondo, M L; Roig, A; Corral, J

    1999-04-01

    Varicella vaccine has shown its efficacy to prevent the disease and complications in healthy and immunodeficient children. In this article the authors evaluate the immunologic status of acute lymphoblastic leukaemia at diagnosis and at follow up and the development of chickenpox and/or herpes zoster. Children with negative serology and continuous complete remission of acute lymphoblastic leukaemia for one year were vaccinated. Of 71 children diagnosed of acute lymphoblastic leukaemia from 1983 to 1996, 25 received the vaccine and seroconversion was obtained in 76% after one dose and 92% after the second dose. Vaccine tolerance was adequate. The incidence of herpes zoster infection was decreased in vaccinated children during chemotherapy compared to the wild-virus infected ones. Nowadays that vaccine for healthy children is recommended, we consider a priority to protect from chickenpox the children affected by leukaemia that are in continuous complete remission of the disease.

  12. Defective CD8 T Cell Memory Following Acute Infection Without CD4 T Cell Help

    NASA Astrophysics Data System (ADS)

    Sun, Joseph C.; Bevan, Michael J.

    2003-04-01

    The CD8+ cytotoxic T cell response to pathogens is thought to be CD4+ helper T cell independent because infectious agents provide their own inflammatory signals. Mice that lack CD4+ T cells mount a primary CD8 response to Listeria monocytogenes equal to that of wild-type mice and rapidly clear the infection. However, protective memory to a challenge is gradually lost in the former animals. Memory CD8+ T cells from normal mice can respond rapidly, but memory CD8+ T cells that are generated without CD4 help are defective in their ability to respond to secondary encounters with antigen. The results highlight a previously undescribed role for CD4 help in promoting protective CD8 memory development.

  13. Characteristics of A20 gene polymorphisms in T-cell acute lymphocytic leukemia.

    PubMed

    Zhu, Lihua; Zhang, Fan; Shen, Qi; Chen, Shaohua; Wang, Xu; Wang, Liang; Yang, Lijian; Wu, Xiuli; Huang, Suming; Schmidt, Christian A; Li, Yangqiu

    2014-12-01

    A20 is a repressor of NF-κB and was recently shown to be frequently inactivated by deletions or mutations in several types of lymphomas including T-cell lymphoma. Little is known about the characteristics of A20 mutations in T-cell acute lymphoblastic leukemia (T-ALL). In this study, we analyzed A20 polymorphisms and characterized their features in 11 cases with T-ALL, 30 samples from healthy Chinese individuals, and 3 cells lines including CCRF-CEM, Molt-4, and Toledo cells. Two frequent A20 polymorphisms were found: a CCT deletion at position 12384 and a nucleotide exchange (A to C) at position 13751 (rs2307859 and rs661561). The homozygous form (CC) of rs661561 was detected in all 10 cases with detectable T-ALL, while only 80% (24/30) of the healthy controls had this genotype. We found one T-ALL case without the above frequent single-nucleotide polymorphisms (SNPs) in which a T to G mutation at position 12486 was found, which results in an amino acid exchange (Phe127Cys; rs2230926). Similar results were found in Molt-4 cells, which lack the frequent SNPs but have a heterozygous polymorphism at position 13749 (C > T) (rs5029948). Interestingly, the T-ALL case with the Phe127Cys mutation and Molt-4 cells demonstrated a high A20 copy number as measured by real-time polymerase chain reaction amplification with three primer sets that cover different regions of the A20 gene, corresponding to a high A20 and low NF-κB expression level. In conclusion, we characterized the features of A20 polymorphisms in T-ALL, and found that a low frequency A20 mutation, which was thought to be involved in malignant T-ALL development, might function differently in T cell lymphomas.

  14. Optimizing asparaginase therapy for acute lymphoblastic leukemia.

    PubMed

    Rizzari, Carmelo; Conter, Valentino; Starý, Jan; Colombini, Antonella; Moericke, Anja; Schrappe, Martin

    2013-03-01

    Asparaginases are important agents used in the treatment of children with acute lymphoblastic leukemia (ALL). Three types of asparaginase are currently available: two are derived from Escherichia coli [native asparaginase and pegylated asparaginase (PEG-asparaginase)] and one from Erwinia chrysanthemi (crisantaspase). All three products share the same mechanism of action but have different pharmacokinetic properties, which do not make them easily interchangeable. Among the known toxicities and side-effects, allergic reactions and silent inactivation represent the most important limitations to the prolonged use of any asparaginase product, with associated reduced therapeutic effects and poorer outcomes. Routine real time monitoring can help to identify patients with silent inactivation and facilitate a switch to a different product to ensure continued depletion of asparagine, completion of the treatment schedule and maintenance of outcomes. However, the most appropriate second-line treatment is still a matter of debate. PEG-asparaginase has lower immunogenicity and a longer half-life than native Escherichia coli (E. coli) asparaginase, which makes it useful for both first-line and second-line use with a reduced number of doses. However, PEG-asparaginase displays cross-reactivity with native E. coli asparaginase that may harm its therapeutic effects. Crisantaspase does not display cross-reactivity to either of the E. coli-derived products, which has made crisantaspase the second-line treatment option in a number of recent protocols. As crisantaspase has a much shorter biological half-life than the E. coli-derived products, the appropriate dosage and administration schedule are of paramount importance in delivering treatment with this product. In the ongoing trial AIEOP-BFM ALL 2009 (Associazione Italiana Ematologia Oncologia Pediatrica - Berlin-Franklin-Munster), in which PEG-asparaginase is used first-line, one dose of PEG-asparaginase is substituted by seven doses

  15. Improved Prognosis for Older Adolescents With Acute Lymphoblastic Leukemia

    PubMed Central

    Pui, Ching-Hon; Pei, Deqing; Campana, Dario; Bowman, W. Paul; Sandlund, John T.; Kaste, Sue C.; Ribeiro, Raul C.; Rubnitz, Jeffrey E.; Coustan-Smith, Elaine; Jeha, Sima; Cheng, Cheng; Metzger, Monika L.; Bhojwani, Deepa; Inaba, Hiroto; Raimondi, Susana C.; Onciu, Mihaela; Howard, Scott C.; Leung, Wing; Downing, James R.; Evans, William E.; Relling, Mary V.

    2011-01-01

    Purpose The prognosis for older adolescents and young adults with acute lymphoblastic leukemia (ALL) has been historically much worse than that for younger patients. We reviewed the outcome of older adolescents (age 15 to 18 years) treated in four consecutive Total Therapy studies to determine if recent improved treatment extended to this high-risk group. Patients and Methods Between 1991 and 2007, 963 pediatric patients, including 89 older adolescents, were enrolled on Total Therapy studies XIIIA, XIIIB, XIV, and XV. In the first three studies, treatment selection was based on presenting clinical features and leukemic cell genetics. In study XV, the level of residual disease was used to guide treatment, which featured intensive methotrexate, glucocorticoid, vincristine, and asparaginase, as well as early triple intrathecal therapy for higher-risk ALL. Results The 89 older adolescents were significantly more likely to have T-cell ALL, the t(4;11)(MLL-AF4), and detectable minimal residual disease during or at the end of remission induction; they were less likely to have the t(12;21)(ETV6-RUNX1) compared with younger patients. In the first three studies, the 44 older adolescents had significantly poorer event-free survival and overall survival than the 403 younger patients. This gap in prognosis was abolished in study XV: event-free survival rates at 5 years were 86.4% ± 5.2% (standard error) for the 45 older adolescents and 87.4% ± 1.7% for the 453 younger patients; overall survival rates were 87.9% ± 5.1% versus 94.1% ± 1.2%, respectively. Conclusion Most older adolescents with ALL can be cured with risk-adjusted intensive chemotherapy without stem-cell transplantation. PMID:21172890

  16. Neurodevelopmental Sequelae of Pediatric Acute Lymphoblastic Leukemia and Its Treatment

    ERIC Educational Resources Information Center

    Janzen, Laura A.; Spiegler, Brenda J.

    2008-01-01

    This review will describe the neurocognitive outcomes associated with pediatric acute lymphoblastic leukemia (ALL) and its treatment. The literature is reviewed with the aim of addressing methodological issues, treatment factors, risks and moderators, special populations, relationship to neuroimaging findings, and directions for future research.…

  17. Combination Chemotherapy and Rituximab in Treating Young Patients With Recurrent or Refractory Non-Hodgkin's Lymphoma or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; L3 Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma

  18. Deficiencies of Circulating Mucosal-associated Invariant T Cells and Natural Killer T Cells in Patients with Acute Cholecystitis.

    PubMed

    Kim, Jung-Chul; Jin, Hye-Mi; Cho, Young-Nan; Kwon, Yong-Soo; Kee, Seung-Jung; Park, Yong-Wook

    2015-05-01

    Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play crucial roles in a variety of diseases, including autoimmunity, infectious diseases, and cancers. However, little is known about the roles of these invariant T cells in acute cholecystitis. The purposes of this study were to examine the levels of MAIT cells and NKT cells in patients with acute cholecystitis and to investigate potential relationships between clinical parameters and these cell levels. Thirty patients with pathologically proven acute cholecystitis and 47 age- and sex-matched healthy controls were enrolled. Disease grades were classified according to the revised Tokyo guidelines (TG13) for the severity assessment for acute cholecystitis. Levels of MAIT and NKT cells in peripheral blood were measured by flow cytometry. Circulating MAIT and NKT cell numbers were significantly lower in acute cholecystitis patients than in healthy controls, and these deficiencies in MAIT cells and NKT cell numbers were associated with aging in acute cholecystitis patients. Notably, a reduction in NKT cell numbers was found to be associated with severe TG13 grade, death, and high blood urea nitrogen levels. The study shows numerical deficiencies of circulating MAIT and NKT cells and age-related decline of these invariant T cells. In addition, NKT cell deficiency was associated with acute cholecystitis severity and outcome. These findings provide an information regarding the monitoring of these changes in circulating MAIT and NKT cell numbers during the course of acute cholecystitis and predicting prognosis.

  19. CPI-613 and Bendamustine Hydrochloride in Treating Patients With Relapsed or Refractory T-Cell Non-Hodgkin Lymphoma or Hodgkin Lymphoma

    ClinicalTrials.gov

    2016-07-26

    Adult Lymphocyte Depletion Hodgkin Lymphoma; Adult Lymphocyte Predominant Hodgkin Lymphoma; Adult Mixed Cellularity Hodgkin Lymphoma; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Nodular Sclerosis Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Hepatosplenic T-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia

  20. Minimal Disseminated Disease in Childhood T-Cell Lymphoblastic Lymphoma: A Report From the Children's Oncology Group

    PubMed Central

    Coustan-Smith, Elaine; Sandlund, John T.; Perkins, Sherrie L.; Chen, Helen; Chang, Myron; Abromowitch, Minnie; Campana, Dario

    2009-01-01

    Purpose Disease dissemination to the bone marrow is detected at diagnosis in approximately 15% of children with T-cell lymphoblastic lymphoma (T-LL). It is unclear whether the remaining patients have submicroscopic systemic disease and, if so, what is the clinical significance of this finding. Patients and Methods Using a flow cytometric method that can detect one T-LL cell among 10,000 normal cells, we examined bone marrow and peripheral-blood samples collected from 99 children with T-LL at diagnosis, as well as blood samples collected from 42 patients during treatment. Results In 71 (71.7%) of the 99 marrow samples obtained at diagnosis, T-LL cells represented 0.01% to 31.6% (median, 0.22%) of mononuclear cells; 57 of the 71 T-LL–positive samples were from patients with stage II/III disease. Results of studies in bilateral marrow aspirates were highly concordant. Two-year event-free survival (EFS) was 68.1% ± 11.1% (SE) for patients with ≥ 1% T-LL cells in bone marrow versus 90.7% ± 4.4% for those with lower levels of marrow involvement (P = .031); EFS for patients with ≥ 5% lymphoblasts was 51.9% ± 18.0% (P = .009). T-LL cells were as prevalent in blood as in marrow; monitoring residual T-LL cells in blood during remission induction therapy identified patients with slower disease clearance. Conclusion More than two thirds of children with T-LL have disseminated disease at diagnosis, a proportion much higher than previously demonstrated. Measurements of disease dissemination at diagnosis might provide useful prognostic information, which can be further refined by monitoring response to therapy through blood testing. PMID:19546402

  1. Nilotinib and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-10-29

    B-cell Adult Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  2. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk B Acute Lymphoblastic Leukemia and Ph-Like TKI Sensitive Mutations

    ClinicalTrials.gov

    2016-11-02

    B Acute Lymphoblastic Leukemia; Bone Necrosis; Central Nervous System Leukemia; Cognitive Side Effects of Cancer Therapy; Neurotoxicity Syndrome; Pain; Testicular Leukemia; Therapy-Related Toxicity; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  3. [Lineage switch - conversion of acute lymphoblastic leukaemia to acute myeloid leukaemia in 4 years old girl].

    PubMed

    Szpecht, Dawid; Derwich, Katarzyna; Wachowiak, Jacek; Konatkowska, Benigna; Dworacki, Grzegorz

    2008-01-01

    We report a case of a 4-year-old girl with diagnosed proB acute lymphoblastic leukaemia with co-expression CD33 antigen, treated according to Acute Lymphoblastic Leukaemia Intercontinental - Berlin Frankfurt Münster 2002 (ALL-IC BFM 2002) protocol for standard risk group. Haematological remission was obtained on day 33 of induction treatment (on time). During induction and consolidation therapy there were no early serious adverse effects. The late isolated bone marrow relapse of acute myeloid leukaemia, type 7 was noted in our patient. We recognized this case as a lineage switch acute lymphoblastic leukaemia to acute myeloid leukaemia. In spite of Ida Flag regimen and following Acute Myeloid Leukaemia - Berlin Frankfurt Münster 2004 (AML-BFM 2004) protocol were administered, the clinical and haematological remission was not achieved and the patient died because of disease progression (circulatory and respiratory insufficiency).

  4. Expansion of Inefficient HIV-Specific CD8 T Cells during Acute Infection

    PubMed Central

    Eller, Michael A.; Goonetilleke, Nilu; Tassaneetrithep, Boonrat; Eller, Leigh Anne; Costanzo, Margaret C.; Johnson, Susan; Betts, Michael R.; Krebs, Shelly J.; Slike, Bonnie M.; Nitayaphan, Sorachai; Rono, Kathleen; Tovanabutra, Sodsai; Maganga, Lucas; Kibuuka, Hannah; Jagodzinski, Linda; Peel, Sheila; Rolland, Morgane; Marovich, Mary A.; Kim, Jerome H.; Michael, Nelson L.; Robb, Merlin L.

    2016-01-01

    ABSTRACT Attrition within the CD4+ T cell compartment, high viremia, and a cytokine storm characterize the early days after HIV infection. When the first emerging HIV-specific CD8+ T cell responses gain control over viral replication it is incomplete, and clearance of HIV infection is not achieved even in the rare cases of individuals who spontaneously control viral replication to nearly immeasurably low levels. Thus, despite their partial ability to control viremia, HIV-specific CD8+ T cell responses are insufficient to clear HIV infection. Studying individuals in the first few days of acute HIV infection, we detected the emergence of a unique population of CD38+ CD27− CD8+ T cells characterized by the low expression of the CD8 receptor (CD8dim). Interestingly, while high frequencies of HIV-specific CD8+ T cell responses occur within the CD38+ CD27− CD8dim T cell population, the minority populations of CD8bright T cells are significantly more effective in inhibiting HIV replication. Furthermore, the frequency of CD8dim T cells directly correlates with viral load and clinical predictors of more rapid disease progression. We found that a canonical burst of proliferative cytokines coincides with the emergence of CD8dim T cells, and the size of this population inversely correlates with the acute loss of CD4+ T cells. These data indicate, for the first time, that early CD4+ T cell loss coincides with the expansion of a functionally impaired HIV-specific CD8dim T cell population less efficient in controlling HIV viremia. IMPORTANCE A distinct population of activated CD8+ T cells appears during acute HIV infection with diminished capacity to inhibit HIV replication and is predictive of viral set point, offering the first immunologic evidence of CD8+ T cell dysfunction during acute infection. PMID:26842474

  5. Inotuzumab ozogamicin in the treatment of acute lymphoblastic leukemia.

    PubMed

    Dahl, Jenny; Marx, Kayleigh; Jabbour, Elias

    2016-01-01

    Over 90% of leukemic blasts in patients with acute lymphoblastic leukemia express the marker CD22. Inotuzumab ozogamicin (INO) is a CD22-directed humanized monoclonal antibody conjugated to the potent cytotoxin, calicheamicin, via an acid labile linker. INO has shown high rates of response in the treatment of relapsed and refractory (R/R) ALL in single-agent studies, with fewer adverse effects than traditional cytotoxic chemotherapy. Given this experience, studies are now being done to evaluate INO in combination with low-intensity chemotherapy as frontline treatment for older adults with ALL and patients with R/R disease. Herein we will discuss the use of INO in the treatment of acute lymphoblastic leukemia.

  6. Fludarabine Phosphate and Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Has Responded to Treatment With Imatinib Mesylate, Dasatinib, or Nilotinib

    ClinicalTrials.gov

    2016-07-18

    Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia

  7. Effect of Taurine on Febrile Episodes in Acute Lymphoblastic Leukemia

    PubMed Central

    Islambulchilar, Mina; Asvadi, Iraj; Sanaat, Zohreh; Esfahani, Ali; Sattari, Mohammadreza

    2015-01-01

    Purpose: The purpose of our study was to evaluate the effect of oral taurine on the incidence of febrile episodes during chemotherapy in young adults with acute lymphoblastic leukemia. Methods: Forty young adults with acute lymphoblastic leukemia, at the beginning of maintenance course of their chemotherapy, were eligible for this study. The study population was randomized in a double blind manner to receive either taurine or placebo (2 gram per day orally). Life quality and side effects including febrile episodes were assessed using questionnaire. Data were analyzed using Pearson’s Chi square test. Results: Of total forty participants, 43.8% were female and 56.3 % were male. The mean age was 19.16±1.95 years (ranges: 16-23 years). The results indicated that the levels of white blood cells are significantly (P<0.05) increased in taurine treated group. There was no elevation in blasts count. A total of 70 febrile episodes were observed during study, febrile episodes were significantly (P<0.05) lower in taurine patients in comparison to the control ones. Conclusion: The overall incidence of febrile episodes and infectious complications in acute lymphoblastic leukemia patients receiving taurine was lower than placebo group. Taurine’s ability to increase leukocyte count may result in lower febrile episodes. PMID:25789226

  8. Blinatumomab for the Treatment of Philadelphia Chromosome-Negative, Precursor B-cell Acute Lymphoblastic Leukemia.

    PubMed

    Wolach, Ofir; Stone, Richard M

    2015-10-01

    Blinatumomab is a CD19/CD3 bispescific antibody designed to redirect T cells toward malignant B cells and induce their lysis. It recently gained accelerated approval by the FDA for the treatment of relapsed or refractory Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia (RR-ALL). In the phase II trial that served as the basis for approval, blinatumomab demonstrated significant single-agent activity and induced remission [complete remission (CR) and CR with incomplete recovery of peripheral blood counts (CRh)] in 43% of 189 adult patients with RR-ALL; the majority of responders (82%) also attained negative minimal residual disease (MRD(-)) status that did not generally translate into long-term remissions in most cases. Additional studies show that blinatumomab can induce high response rates associated with lasting remissions in patients in first remission treated for MRD positivity, suggesting a role for blinatumomab in the upfront, MRD-positive setting. Blinatumomab infusion follows a predictable immunopharmacologic profile, including early cytokine release that can be associated with a clinical syndrome, T-cell expansion, and B-cell depletion. Neurologic toxicities represent a unique toxicity that shares similarities with adverse effects of other T-cell engaging therapies. Further studies are needed to clarify the optimal disease setting and timing for blinatumomab therapy. Additional insights into the pathogenesis, risk factors, and prevention of neurologic toxicities as well as a better understanding of the clinical consequences and biologic pathways that are associated with drug resistance are needed. PMID:26283683

  9. Clonal analysis of childhood acute lymphoblastic leukemia with "cytogenetically independent" cell populations.

    PubMed Central

    Pui, C H; Raskind, W H; Kitchingman, G R; Raimondi, S C; Behm, F G; Murphy, S B; Crist, W M; Fialkow, P J; Williams, D L

    1989-01-01

    Acute lymphoblastic leukemia (ALL) is generally regarded as a clonal disease in which a single abnormal progenitor cell gives rise to neoplastic progeny. Five of 463 cases of childhood ALL with adequately banded leukemic cells were found to have two cytogenetically independent cell populations. In addition, two of the four cases tested had more than two rearranged immunoglobulin genes and (or) T cell receptor genes. To investigate the clonality of these unusual leukemias, we examined the neoplastic cells for X-linked markers extrinsic to the disease. Leukemic cells from each of the three patients heterozygous for an X-linked, restriction fragment length polymorphism showed a single active parental allele, suggesting that both apparently independent cell populations developed from a common progenitor. These cases provide evidence that leukemogenesis involves a multistep process of mutation and suggest that karyotypic abnormalities may be a late event of malignant transformation. Images PMID:2566623

  10. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia

    PubMed Central

    Herranz, Daniel; Ambesi-Impiombato, Alberto; Sudderth, Jessica; Sánchez-Martín, Marta; Belver, Laura; Tosello, Valeria; Xu, Luyao; Wendorff, Agnieszka A.; Castillo, Mireia; Haydu, J. Erika; Márquez, Javier; Matés, José M.; Kung, Andrew L.; Rayport, Stephen; Cordon-Cardo, Carlos; DeBerardinis, Ralph J.; Ferrando, Adolfo A.

    2015-01-01

    Activating mutations in NOTCH1 are common in T-cell acute lymphoblastic leukemia (TALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of clinical response to anti-NOTCH1 therapies. Mechanistically, inhibition of NOTCH1 signaling in T-ALL induces a metabolic shutdown with prominent inhibition of glutaminolysis and triggers autophagy as a salvage pathway supporting leukemia cell metabolism. Consequently, both inhibition of glutaminolysis and inhibition of autophagy strongly and synergistically enhance the antileukemic effects of anti-NOTCH1 therapies. Moreover, we demonstrate that Pten loss induces increased glycolysis and consequently rescues leukemic cell metabolism abrogating the antileukemic effects of NOTCH1 inhibition. Overall, these results identify glutaminolysis as a major node in cancer metabolism controlled by NOTCH1 and as therapeutic target for the treatment of T-ALL. PMID:26390244

  11. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia

    PubMed Central

    Ramsey, Laura B.; Janke, Laura J.; Payton, Monique A.; Cai, Xiangjun; Paugh, Steven W.; Karol, Seth E.; Kamdem, Landry Kamdem; Cheng, Cheng; Williams, Richard T.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia. PMID:26252865

  12. Recurrent Intrathecal Methotrexate Induced Neurotoxicity in an Adolescent with Acute Lymphoblastic Leukemia: Serial Clinical and Radiologic Findings

    PubMed Central

    Brugnoletti, Fulvia; Morris, E. Brannon; Laningham, Fred H.; Patay, Zoltán; Pauley, Jennifer L; Pui, Ching-Hon; Jeha, Sima; Inaba, Hiroto

    2008-01-01

    Systemic and intrathecal methotrexate (MTX) are integral components of acute lymphoblastic leukemia (ALL) therapy, but can be associated with neurotoxicity. We describe here the case of an adolescent male with T-cell ALL who developed recurrent episodes of subacute neurotoxicity characterized by slurred speech, emotional lability, and hemiparesis after intrathecal MTX administration. Serial magnetic resonance imaging with diffusion-weighted imaging showed recurrent areas of restricted diffusion within cerebral hemispheric white matter, which correlated chronologically with the administration of intrathecal therapy and severity of clinical symptoms. Resolution of diffusion abnormalities did not preclude further toxicity and a large lesion could cause persisting symptoms. PMID:18831032

  13. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  14. Spontaneous Proliferation of H2M-/- CD4 T Cells Results in Unusual Acute Hepatocellular Necrosis

    PubMed Central

    Do, Jeong-su; Baldwin, William M.; Min, Booki

    2014-01-01

    Naïve CD4 T cells are triggered to undergo spontaneous proliferation, a proliferative response induced in response to homeostatic stimulation, when exposed to severe lymphopenic environments. They spontaneously acquire proinflammatory effector phenotypes, playing a major role in inducing chronic inflammation in the intestine that is believed to be induced by T cell recognition of commensal antigens. While the antigens inducing the T cell responses and inflammation are being extensively investigated, the role of clonality of T cells involved in this process remains poorly understood. In this study, we utilized naïve CD4 T cells isolated from B6 H2M−/− mice, in which MHCII molecules are complexed with a single CLIP molecule, and examined spontaneous proliferation and intestinal inflammation of CD4 T cells expressing limited T cell receptor repertoire diversity. We found that H2M−/− CD4 T cells undergo robust spontaneous proliferation, differentiate into IFNγ-producing Th1 type effector cells, and, most unexpectedly, induce severe acute hepatocellular necrosis. T cell interaction with MHCII molecule on cells of hematopoietic origin was essential to induce the pathology. Interestingly, B cells are fully capable of preventing necrotic inflammation via IL-10-independent and B7-H1-dependent mechanism. This could be a useful animal model to examine T cell-mediated liver inflammation and B cell-mediated immune regulation. PMID:25313460

  15. Testis Scintigraphy in a Patient with Acute Lymphoblastic Leukemia

    PubMed Central

    Şencan Eren, Mine; Koç, Murat; Ören, Hale; Özkal, Şermin; Durak, Hatice

    2014-01-01

    Acute lymphoblastic leukemia (ALL) is a pediatric malignancy associated with remissions and relapses. Common relapsing sitesare meninges, testis and ovary. Testicular scintigraphy is a highly specific modality used mainly in the differential diagnosis of testicular torsion and epidydimitis/epidydimo-orchitis. There is only one interesting image on leukemic infiltration with scrotal scintigraphy in the literature. The aim of this case presentation is to report that although the scintigraphic appearance of testicular torsion was observed in a patient with the diagnosis of ALL, testicular ALL infiltration was revealed in pathologic examination. Conflict of interest:None declared. PMID:24653935

  16. Building better therapy for children with acute lymphoblastic leukemia.

    PubMed

    Carroll, William L; Raetz, Elizabeth A

    2005-04-01

    Childhood acute lymphoblastic leukemia is one of the most curable of all human cancers, but new approaches are urgently needed for children who relapse and to avoid severe side effects of curative therapy. Work from the laboratories of Rob Pieters and William Evans, including a paper in this issue of Cancer Cell, has led to the identification of genes whose expression correlates with drug crossresistance and long term outcome. The goal is now to integrate these and other findings using gene expression technology into the care of children with the most common pediatric malignancy. PMID:15837616

  17. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia.

    PubMed

    Wu, David; Sherwood, Anna; Fromm, Jonathan R; Winter, Stuart S; Dunsmore, Kimberly P; Loh, Mignon L; Greisman, Harvey A; Sabath, Daniel E; Wood, Brent L; Robins, Harlan

    2012-05-16

    High-throughput sequencing (HTS) of lymphoid receptor genes is an emerging technology that can comprehensively assess the diversity of the immune system. Here, we applied HTS to the diagnosis of T-lineage acute lymphoblastic leukemia/lymphoma. Using 43 paired patient samples, we then assessed minimal residual disease (MRD) at day 29 after treatment. The variable regions of TCRB and TCRG were sequenced using an Illumina HiSeq platform after performance of multiplexed polymerase chain reaction, which targeted all potential V-J rearrangement combinations. Pretreatment samples were used to define clonal T cell receptor (TCR) complementarity-determining region 3 (CDR3) sequences, and paired posttreatment samples were evaluated for MRD. Abnormal T lymphoblast identification by multiparametric flow cytometry was concurrently performed for comparison. We found that TCRB and TCRG HTS not only identified clonality at diagnosis in most cases (31 of 43 for TCRB and 27 of 43 for TCRG) but also detected subsequent MRD. As expected, HTS of TCRB and TCRG identified MRD that was not detected by flow cytometry in a subset of cases (25 of 35 HTS compared with 13 of 35, respectively), which highlights the potential of this technology to define lower detection thresholds for MRD that could affect clinical treatment decisions. Thus, next-generation sequencing of lymphoid receptor gene repertoire may improve clinical diagnosis and subsequent MRD monitoring of lymphoproliferative disorders.

  18. Inotuzumab ozogamicin in the management of acute lymphoblastic leukaemia.

    PubMed

    Morley, N J; Marks, D I

    2016-01-01

    Whilst most adult patients with acute lymphoblastic leukaemia will go into remission with standard induction chemotherapy, many will relapse. Response rates to standard salvage chemotherapy regimens are low and the outlook on relapse is very poor and associated with significant morbidity and mortality hence the need for newer targeted approaches. Inotuzumab ozogamicin (previously known as CMC-544) is an antibody-drug conjugate and consists of a monoclonal anti-CD22 antibody bound to calicheamicin. The target, CD22, is widely expressed on acute lymphoblastic leukaemia cells making it a potential therapeutic target. The calicheamicin is delivered intracellularly and causes leukaemia cell apoptosis. Overall response rates of 57% were observed in a Phase II study and the final results of a Phase III randomised controlled trial comparing this drug to the investigator choice 'standard of care' chemotherapy are eagerly awaited. Whilst initial results are promising, there have been concerns regarding liver toxicity and the incidence of veno-occlusive disease of the liver especially in patients who have previously received or go on to allogeneic stem cell transplant.

  19. Fanconi Syndrome: A Rare Initial Presentation of Acute Lymphoblastic Leukemia.

    PubMed

    Sahu, Kamal Kant; Law, Arjun Datt; Jain, Nidhi; Khadwal, Alka; Suri, Vikas; Malhotra, Pankaj; Varma, Subhash Chander

    2016-06-01

    A-14-year old boy, presented with a short history of excessive thirst and increased urine output. Clinical examination showed pallor, generalized lymphadenopathy and hepatosplenomegaly. For evaluation of his polyuric state he underwent routine laboratory investigations, including renal function test, acid-base studies, urine analysis. Blood tests suggested hypokalemia, hypouricemia, hypocalcemia and hyperchloremia with normal liver and kidney function tests. The arterial blood gas analysis was suggestive of normal anion gap metabolic acidosis. Urine analysis was suggestive of hyperuricosuria, hypercalciuria and glycosuria with a positive urine anion gap. His hemogram showed pancytopenia with differential count showing 88% blasts. Bone marrow examination and flowcytometry confirmed the diagnosis of B cell acute lymphoblastic leukemia. Hence this case was atypical and very interesting in the sense that the Fanconi syndrome is very rare to be an initial presenting feature of acute lymphoblastic leukemia. The patient was started on oral as well intravenous supplementation with potassium, bicarbonate, calcium and phosphorus. Simultaneously, as per the modified BFM -90 protocol (four drug based regimen-Prednisolone, vincristine, daunorubicin, cyclophosphamide along with l-asparaginase), he was started on induction protocol. By the end of 3rd week of induction therapy, his urine output started normalizing and finally settled at the end of induction therapy. At present he is in the maintenance phase of chemotherapy. PMID:27408343

  20. Targeting signaling pathways in acute lymphoblastic leukemia: new insights.

    PubMed

    Harrison, Christine J

    2013-01-01

    The genetics of acute lymphoblastic leukemia are becoming well understood and the incidence of individual chromosomal abnormalities varies considerably with age. Cytogenetics provide reliable risk stratification for treatment: high hyperdiploidy and ETV6-RUNX1 are good risk, whereas BCR-ABL1, MLL rearrangements, and hypodiploidy are poor risk. Nevertheless, some patients within the good- and intermediate-risk groups will unpredictably relapse. With advancing technologies in array-based approaches (single nucleotide polymorphism arrays) and next-generation sequencing to study the genome, increasing numbers of new genetic changes are being discovered. These include deletions of B-cell differentiation and cell cycle control genes, as well as mutations of genes in key signaling pathways. Their associations and interactions with established cytogenetic subgroups and with each other are becoming elucidated. Whether they have a link to outcome is the most important factor for refinement of risk factors in relation to clinical trials. For several newly identified abnormalities, including intrachromosomal amplification of chromosome 21 (iAMP21), that are associated with a poor prognosis with standard therapy, appropriately modified treatment has significantly improved outcome. After the successful use of tyrosine kinase inhibitors in the treatment of BCR-ABL1-positive acute lymphoblastic leukemia, patients with alternative ABL1 translocations and rearrangements involving PDGFRB may benefit from treatment with tyrosine kinase inhibitors. Other aberrations, for example, CRLF2 overexpression and JAK2 mutations, are also providing potential novel therapeutic targets with the prospect of reduced toxicity.

  1. Comparison between qualitative and real-time polymerase chain reaction to evaluate minimal residual disease in children with acute lymphoblastic leukemia

    PubMed Central

    Paula, Francisco Danilo Ferreira; Elói-Santos, Silvana Maria; Xavier, Sandra Guerra; Ganazza, Mônica Aparecida; Jotta, Patricia Yoshioka; Yunes, José Andrés; Viana, Marcos Borato; Assumpção, Juliana Godoy

    2015-01-01

    Introduction Minimal residual disease is an important independent prognostic factor that can identify poor responders among patients with acute lymphoblastic leukemia. Objective The aim of this study was to analyze minimal residual disease using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements by conventional polymerase chain reaction followed by homo-heteroduplex analysis and to compare this with real-time polymerase chain reaction at the end of the induction period in children with acute lymphoblastic leukemia. Methods Seventy-four patients diagnosed with acute lymphoblastic leukemia were enrolled. Minimal residual disease was evaluated by qualitative polymerase chain reaction in 57 and by both tests in 44. The Kaplan–Meier and multivariate Cox methods and the log-rank test were used for statistical analysis. Results Nine patients (15.8%) were positive for minimal residual disease by qualitative polymerase chain reaction and 11 (25%) by real-time polymerase chain reaction considering a cut-off point of 1 × 10−3 for precursor B-cell acute lymphoblastic leukemia and 1 × 10−2 for T-cell acute lymphoblastic leukemia. Using the qualitative method, the 3.5-year leukemia-free survival was significantly higher in children negative for minimal residual disease compared to those with positive results (84.1% ± 5.6% versus 41.7% ± 17.3%, respectively; p-value = 0.004). There was no significant association between leukemia-free survival and minimal residual disease by real-time polymerase chain reaction. Minimal residual disease by qualitative polymerase chain reaction was the only variable significantly correlated to leukemia-free survival. Conclusion Given the difficulties in the implementation of minimal residual disease monitoring by real-time polymerase chain reaction in most treatment centers in Brazil, the qualitative polymerase chain reaction strategy may be a cost-effective alternative. PMID:26670399

  2. Allosuppressor- and allohelper-T cells in acute and chronic graft-vs. -host (GVH) disease. III. Different Lyt subsets of donor T cells induce different pathological syndromes

    SciTech Connect

    Rolink, A.G.; Gleichmann, E.

    1983-08-01

    Previous work from this laboratory has led to the hypothesis that the stimulatory pathological symptoms of chronic graft-vs.-host disease (GVHD) are caused by alloreactive donor T helper (TH) cells, whereas the suppressive pathological symptoms of acute GVHD are caused by alloreactive T suppressor (TS) cells of the donor. We analyzed the Lyt phenotypes of B10 donor T cells required for the induction of either acute or chronic GVHD in H-2-different (B10 X DBA/2)F1 recipients. When nonirradiated F1 mice were used as the recipients, we found unseparated B10 T cells induced only a moderate formation of systemic lupus erythematosus (SLE)-like autoantibodies, but a high percentage of lethal GVHD (LGVHD). In contrast, Lyt-1+2- donor T cells were unable to induce LGVHD in these recipients but were capable of inducing a vigorous formation of SLE-like autoantibodies and severe immune-complex glomerulonephritis. Lyt-1-2+ T cells were incapable of inducing either acute or chronic GVHD. The sensitivity and accuracy of the GVH system were increased by using irradiated F1 mice as recipients and then comparing donor-cell inocula that contained similar numbers of T lymphocytes. Donor-cell inocula were used that had been tested for their allohelper and allosuppressor effects on F1 B cells in vitro. In the irradiated F1 recipients unseparated donor T cells were superior to T cell subsets in inducing LGVHD. In contrast Lyt-1+2- T cells, but neither unseparated T cells nor Lyt-1-2+ T cells, were capable of inducing a vigorous formation of SLE-like auto-antibodies. We conclude that the stimulatory pathological symptoms of chronic GVHD are caused by Lyt-1+2- allohelper T cells. In contrast, the development of the suppressive pathological symptoms of acute GVHD appears to involve alloreactive Lyt-1+2+ T suppressor cells.

  3. [Tumor lysis syndrome in a pregnancy complicated with acute lymphoblastic leukemia].

    PubMed

    Álvarez-Goris, M P; Sánchez-Zamora, R; Torres-Aguilar, A A; Briones Garduño, J C

    2016-04-01

    Acute leukemia is rare during pregnancy, affects about 1 in 75,000 pregnancies, of all leukemias diagnosed only 28% are acute lymphoblastic leukemia, this is a risk factor to develop spontaneous tumor lysis syndrome, it's a oncologic complication potentially deadly if the prophylactic treatment its avoided. Cases of acute lymphoblastic leukemia associated with pregnancy has been poorly documented in the literature the association of these two entities to pregnancy is the first report published worldwide, so the information is limited. PMID:27443101

  4. Acute Pancreatitis and Diabetic Ketoacidosis following L-Asparaginase/Prednisone Therapy in Acute Lymphoblastic Leukemia.

    PubMed

    Quintanilla-Flores, Dania Lizet; Flores-Caballero, Miguel Ángel; Rodríguez-Gutiérrez, René; Tamez-Pérez, Héctor Eloy; González-González, José Gerardo

    2014-01-01

    Acute pancreatitis and diabetic ketoacidosis are unusual adverse events following chemotherapy based on L-asparaginase and prednisone as support treatment for acute lymphoblastic leukemia. We present the case of a 16-year-old Hispanic male patient, in remission induction therapy for acute lymphoblastic leukemia on treatment with mitoxantrone, vincristine, prednisone, and L-asparaginase. He was hospitalized complaining of abdominal pain, nausea, and vomiting. Hyperglycemia, acidosis, ketonuria, low bicarbonate levels, hyperamylasemia, and hyperlipasemia were documented, and the diagnosis of diabetic ketoacidosis was made. Because of uncertainty of the additional diagnosis of acute pancreatitis as the cause of abdominal pain, a contrast-enhanced computed tomography was performed resulting in a Balthazar C pancreatitis classification.

  5. Acute Pancreatitis and Diabetic Ketoacidosis following L-Asparaginase/Prednisone Therapy in Acute Lymphoblastic Leukemia

    PubMed Central

    Quintanilla-Flores, Dania Lizet; Flores-Caballero, Miguel Ángel; Rodríguez-Gutiérrez, René; Tamez-Pérez, Héctor Eloy; González-González, José Gerardo

    2014-01-01

    Acute pancreatitis and diabetic ketoacidosis are unusual adverse events following chemotherapy based on L-asparaginase and prednisone as support treatment for acute lymphoblastic leukemia. We present the case of a 16-year-old Hispanic male patient, in remission induction therapy for acute lymphoblastic leukemia on treatment with mitoxantrone, vincristine, prednisone, and L-asparaginase. He was hospitalized complaining of abdominal pain, nausea, and vomiting. Hyperglycemia, acidosis, ketonuria, low bicarbonate levels, hyperamylasemia, and hyperlipasemia were documented, and the diagnosis of diabetic ketoacidosis was made. Because of uncertainty of the additional diagnosis of acute pancreatitis as the cause of abdominal pain, a contrast-enhanced computed tomography was performed resulting in a Balthazar C pancreatitis classification. PMID:24716037

  6. Expansion of CD8+CD57+ T Cells in an Immunocompetent Patient with Acute Toxoplasmosis

    PubMed Central

    García-Muñoz, R.; Rodríguez-Otero, P.; Galar, A.; Merino, J.; Beunza, J. J.; Páramo, J. A.; Lecumberri, R.

    2009-01-01

    CD57+ T cells increase in several viral infections like cytomegalovirus, herpesvirus, parvovirus, HIV and hepatitis C virus and are associated with several clinical conditions related to immune dysfunction and ageing. We report for the first time an expansion of CD8+ CD57+ T cells in a young patient with an acute infection with Toxoplasma gondii. Our report supports the concept that CD8+ CD57+ T cells could be important in the control of chronic phase of intracellular microorganisms and that the high numbers of these cells may reflect the continuing survey of the immune system, searching for parasite proliferation in the tissues. PMID:19946421

  7. Expansion of CD8+CD57+ T Cells in an Immunocompetent Patient with Acute Toxoplasmosis.

    PubMed

    García-Muñoz, R; Rodríguez-Otero, P; Galar, A; Merino, J; Beunza, J J; Páramo, J A; Lecumberri, R

    2009-01-01

    CD57+ T cells increase in several viral infections like cytomegalovirus, herpesvirus, parvovirus, HIV and hepatitis C virus and are associated with several clinical conditions related to immune dysfunction and ageing. We report for the first time an expansion of CD8+ CD57+ T cells in a young patient with an acute infection with Toxoplasma gondii. Our report supports the concept that CD8+ CD57+ T cells could be important in the control of chronic phase of intracellular microorganisms and that the high numbers of these cells may reflect the continuing survey of the immune system, searching for parasite proliferation in the tissues.

  8. Immaturity associated antigens are lost during induction for T cell lymphoblastic leukemia: implications for minimal residual disease detection

    PubMed Central

    Roshal, Mikhail; Fromm, Jonathan R; Winter, Stuart; Dunsmore, Kimberly; Wood, Brent

    2011-01-01

    Background Induction chemotherapy for acute leukemia often leads to antigenic shifts in residual abnormal blast populations. Studies in precursor B cell ALL (B-ALL) and AML have demonstrated that chemotherapy commonly results in the loss of antigens associated with immaturity, limiting their utility for minimal residual disease (MRD) detection. Little information is available about the stability of these antigens in precursor T cell ALL (T-ALL) though it is presumed that CD99 and TdT are highly informative based on limited studies. Methods In a longitudinal investigation, we explored patterns of lineage specific and immaturity associated antigens in T-ALL in a large cohort of patients treated under the multicenter Children's Oncology Group (COG) protocol. All samples were analyzed using multicolor flow cytometry in a standardized fashion at a single institution. Results We report that markers of immaturity particularly, TdT and CD99 dramatically decline on leukemic blasts during therapy. CD34 and CD10 expression is confined to a minority of pre-treatment samples and is also not stable. In contrast, lineage associated markers including CD2, CD3, CD4, CD5, CD7 and CD8 failed to show significant trends. Conclusions Our study strongly argues for expansion of immunophenotyping panels for T-ALL MRD to decrease reliance on immature antigens. This study represents the first demonstration of consistent immunophenotypic shifts in T-ALL. PMID:20155852

  9. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia.

    PubMed

    Beldjord, Kheira; Chevret, Sylvie; Asnafi, Vahid; Huguet, Françoise; Boulland, Marie-Laure; Leguay, Thibaut; Thomas, Xavier; Cayuela, Jean-Michel; Grardel, Nathalie; Chalandon, Yves; Boissel, Nicolas; Schaefer, Beat; Delabesse, Eric; Cavé, Hélène; Chevallier, Patrice; Buzyn, Agnès; Fest, Thierry; Reman, Oumedaly; Vernant, Jean-Paul; Lhéritier, Véronique; Béné, Marie C; Lafage, Marina; Macintyre, Elizabeth; Ifrah, Norbert; Dombret, Hervé

    2014-06-12

    With intensified pediatric-like therapy and genetic disease dissection, the field of adult acute lymphoblastic leukemia (ALL) has evolved recently. In this new context, we aimed to reassess the value of conventional risk factors with regard to new genetic alterations and early response to therapy, as assessed by immunoglobulin/T-cell receptor minimal residual disease (MRD) levels. The study was performed in 423 younger adults with Philadelphia chromosome-negative ALL in first remission (265 B-cell precursor [BCP] and 158 T-cell ALL), with cumulative incidence of relapse (CIR) as the primary end point. In addition to conventional risk factors, the most frequent currently available genetic alterations were included in the analysis. A higher specific hazard of relapse was independently associated with postinduction MRD level ≥10(-4) and unfavorable genetic characteristics (ie, MLL gene rearrangement or focal IKZF1 gene deletion in BCP-ALL and no NOTCH1/FBXW7 mutation and/or N/K-RAS mutation and/or PTEN gene alteration in T-cell ALL). These 2 factors allowed definition of a new risk classification that is strongly associated with higher CIR and shorter relapse-free and overall survival. These results indicate that genetic abnormalities are important predictors of outcome in adult ALL not fully recapitulated by early response to therapy. Patients included in this study were treated in the multicenter GRAALL-2003 and GRAALL-2005 trials. Both trials were registered at http://www.clinicaltrials.gov as #NCT00222027 and #NCT00327678, respectively. PMID:24740809

  10. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia.

    PubMed

    Beldjord, Kheira; Chevret, Sylvie; Asnafi, Vahid; Huguet, Françoise; Boulland, Marie-Laure; Leguay, Thibaut; Thomas, Xavier; Cayuela, Jean-Michel; Grardel, Nathalie; Chalandon, Yves; Boissel, Nicolas; Schaefer, Beat; Delabesse, Eric; Cavé, Hélène; Chevallier, Patrice; Buzyn, Agnès; Fest, Thierry; Reman, Oumedaly; Vernant, Jean-Paul; Lhéritier, Véronique; Béné, Marie C; Lafage, Marina; Macintyre, Elizabeth; Ifrah, Norbert; Dombret, Hervé

    2014-06-12

    With intensified pediatric-like therapy and genetic disease dissection, the field of adult acute lymphoblastic leukemia (ALL) has evolved recently. In this new context, we aimed to reassess the value of conventional risk factors with regard to new genetic alterations and early response to therapy, as assessed by immunoglobulin/T-cell receptor minimal residual disease (MRD) levels. The study was performed in 423 younger adults with Philadelphia chromosome-negative ALL in first remission (265 B-cell precursor [BCP] and 158 T-cell ALL), with cumulative incidence of relapse (CIR) as the primary end point. In addition to conventional risk factors, the most frequent currently available genetic alterations were included in the analysis. A higher specific hazard of relapse was independently associated with postinduction MRD level ≥10(-4) and unfavorable genetic characteristics (ie, MLL gene rearrangement or focal IKZF1 gene deletion in BCP-ALL and no NOTCH1/FBXW7 mutation and/or N/K-RAS mutation and/or PTEN gene alteration in T-cell ALL). These 2 factors allowed definition of a new risk classification that is strongly associated with higher CIR and shorter relapse-free and overall survival. These results indicate that genetic abnormalities are important predictors of outcome in adult ALL not fully recapitulated by early response to therapy. Patients included in this study were treated in the multicenter GRAALL-2003 and GRAALL-2005 trials. Both trials were registered at http://www.clinicaltrials.gov as #NCT00222027 and #NCT00327678, respectively.

  11. Undiagnosed, untreated acute lymphoblastic leukemia presenting as suspected child abuse.

    PubMed

    McClain, J L; Clark, M A; Sandusky, G E

    1990-05-01

    Natural disease being mistaken for child abuse is rare. A two-year-old child was found unresponsive at home and transported to a local hospital, where she expired in the emergency room. Several cutaneous contusions were observed. Prior to the autopsy it was learned that an anonymous report of "child abuse" had been previously filed concerning this child. At autopsy there were multiple metasynchronous cutaneous contusions, but no radiologic or gross evidence of other injuries. A pericardial effusion, massive hepatosplenomegaly and generalized lymphadenopathy were apparent. The bone marrow, liver, spleen, lymph nodes, kidneys, pancreas, heart, stomach, and dura mater showed a monotonous lymphocytic infiltrate. Immunocytochemical studies confirmed the diagnosis of acute lymphoblastic leukemia of childhood. This case reaffirms the need for an objective examination of all cases by a forensic pathologist. PMID:2189946

  12. Inherited genetic variants associated with childhood acute lymphoblastic leukemia risk.

    PubMed

    Takagi, Masatoshi; Urayama, Kevin

    2016-07-01

    Numerous efforts have been made to elucidate the roles of individual genetic background factors in the risk of childhood acute lymphoblastic leukemia. Most have taken the form of case-control studies focusing on specific candidate gene polymorphisms. Recently, a more rigorous and comprehensive approach referred to as a genome-wide association study (GWAS) has been widely utilized and has achieved success. Case-control studies evaluating candidate gene associations have shown cumulative evidence of a role for folate metabolism and xenobiotic metabolism/transport pathway genetic variants. In addition, single nucleotide polymorphism (SNP)s identified by GWAS appear to indicate a strong role for genes encoding transcription factors involved in cellular differentiation. Further studies are needed to clarify the accumulating evidence obtained from both candidate gene and genome-wide investigations. PMID:27498736

  13. [Acute lymphoblastic leukemia of T progenitors: from biology to clinics].

    PubMed

    Genescà, Eulàlia; Ribera, Jordi; Ribera, Josep-Maria

    2015-03-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer in children and the main cause of morbidity among childhood blood disorders. There are 2 subtypes according to the affected lymphoid progenitor: B-ALL and T-ALL. The T-ALL is the less common and, although historically was associated with poor prognosis in both adults and children, at present, treatment outcomes do not differ significantly between the 2 types of ALL. The T-ALL subtype is the most complex and heterogeneous at the genetic level and currently the one with less new therapeutic alternatives available. This trend is changing thanks to the remarkable progress upon understanding its biology. This review summarizes the most recent and important biological findings in T-ALL and their possible therapeutic implications.

  14. How to manage asparaginase hypersensitivity in acute lymphoblastic leukemia.

    PubMed

    Burke, Michael J

    2014-12-01

    Outcomes for children with acute lymphoblastic leukemia (ALL) have improved significantly in recent decades, primarily due to dose-intensified, multi-agent chemotherapy regimens, of which asparaginase has played a prominent role. Despite this success, hypersensitivity remains a significant problem, often requiring the termination of asparaginase. Failure to complete the entire asparaginase therapy course due to clinical hypersensitivity, subclinical hypersensitivity (i.e., silent inactivation), or other treatment-related toxicity is associated with poor ALL outcomes. Thus, it is critical to rapidly identify patients who develop clinical/subclinical hypersensitivity and switch these patients to an alternate asparaginase formulation. This article provides an overview of asparaginase hypersensitivity, identification and management of hypersensitivity and subclinical hypersensitivity, and issues related to switching patients to asparaginase Erwinia chrysanthemi following hypersensitivity reaction.

  15. Childhood Acute Lymphoblastic Leukemia: Integrating Genomics into Therapy

    PubMed Central

    Tasian, Sarah K; Loh, Mignon L; Hunger, Stephen P

    2015-01-01

    Acute lymphoblastic leukemia (ALL), the most common malignancy of childhood, is a genetically complex entity that remains a major cause of childhood cancer-related mortality. Major advances in genomic and epigenomic profiling during the past decade have appreciably enhanced knowledge of the biology of de novo and relapsed ALL and have facilitated more precise risk stratification of patients. These achievements have also provided critical insights regarding potentially targetable lesions for development of new therapeutic approaches in the era of precision medicine. This review delineates the current genetic landscape of childhood ALL with emphasis upon patient outcomes with contemporary treatment regimens, as well as therapeutic implications of newly identified genomic alterations in specific subsets of ALL. PMID:26194091

  16. THE GENOMIC LANDSCAPE OF HYPODIPLOID ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Holmfeldt, Linda; Wei, Lei; Diaz-Flores, Ernesto; Walsh, Michael; Zhang, Jinghui; Ding, Li; Payne-Turner, Debbie; Churchman, Michelle; Andersson, Anna; Chen, Shann-Ching; McCastlain, Kelly; Becksfort, Jared; Ma, Jing; Wu, Gang; Patel, Samir N.; Heatley, Susan L.; Phillips, Letha A.; Song, Guangchun; Easton, John; Parker, Matthew; Chen, Xiang; Rusch, Michael; Boggs, Kristy; Vadodaria, Bhavin; Hedlund, Erin; Drenberg, Christina; Baker, Sharyn; Pei, Deqing; Cheng, Cheng; Huether, Robert; Lu, Charles; Fulton, Robert S.; Fulton, Lucinda L.; Tabib, Yashodhan; Dooling, David J.; Ochoa, Kerri; Minden, Mark; Lewis, Ian D.; To, L. Bik; Marlton, Paula; Roberts, Andrew W.; Raca, Gordana; Stock, Wendy; Neale, Geoffrey; Drexler, Hans G.; Dickins, Ross A.; Ellison, David W.; Shurtleff, Sheila A.; Pui, Ching-Hon; Ribeiro, Raul C.; Devidas, Meenakshi; Carroll, Andrew J.; Heerema, Nyla A.; Wood, Brent; Borowitz, Michael J.; Gastier-Foster, Julie M.; Raimondi, Susana C.; Mardis, Elaine R.; Wilson, Richard K.; Downing, James R.; Hunger, Stephen P.; Loh, Mignon L.; Mullighan, Charles G.

    2013-01-01

    The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole genome and exome sequencing of 40 cases, identified two subtypes that differ in severity of aneuploidy, transcriptional profile and submicroscopic genetic alterations. Near haploid cases with 24–31 chromosomes harbor alterations targeting receptor tyrosine kinase- and Ras signaling (71%) and the lymphoid transcription factor IKZF3 (AIOLOS; 13%). In contrast, low hypodiploid ALL with 32–39 chromosomes are characterized by TP53 alterations (91.2%) which are commonly present in non-tumor cells, and alterations of IKZF2 (HELIOS; 53%) and RB1 (41%). Both near haploid and low hypodiploid tumors exhibit activation of Ras- and PI3K signaling pathways, and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia. PMID:23334668

  17. Isolated central nervous system relapse of acute lymphoblastic leukemia.

    PubMed

    Sung, Sang-Hyun; Jang, In-Seok

    2014-10-01

    Acute lymphoblastic leukemia (ALL) is the most common form of childhood cancer and may exhibit central nervous system (CNS) involvement. Advances in chemotherapy and effective CNS prophylaxis have significantly decreased the incidence of CNS relapse of ALL to 5-10%. Here, we report the case of a patient with isolated CNS relapse of standard risk group pre-B-cell type ALL in an 11-year-old girl, relapsed 3 years after successful completion of chemotherapy. An 11-year-old girl visited our hospital complaining of headache, dizziness, vomiting, and visual field defects. Neurological examination revealed left-side homonymous hemianopsia. Brain magnetic resonance imaging showed a large irregular dural-based sulcal hematoma in the right parietal and occipital lobes. Surgery to remove the hematoma revealed the existence of hematopoietic malignancy after pathologic evaluation. Bone marrow biopsy was subsequently performed but showed no evidence of malignancy. PMID:25408936

  18. [Acute lymphoblastic leukemia of T progenitors: from biology to clinics].

    PubMed

    Genescà, Eulàlia; Ribera, Jordi; Ribera, Josep-Maria

    2015-03-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer in children and the main cause of morbidity among childhood blood disorders. There are 2 subtypes according to the affected lymphoid progenitor: B-ALL and T-ALL. The T-ALL is the less common and, although historically was associated with poor prognosis in both adults and children, at present, treatment outcomes do not differ significantly between the 2 types of ALL. The T-ALL subtype is the most complex and heterogeneous at the genetic level and currently the one with less new therapeutic alternatives available. This trend is changing thanks to the remarkable progress upon understanding its biology. This review summarizes the most recent and important biological findings in T-ALL and their possible therapeutic implications. PMID:24667111

  19. A Revised Definition for Cure of Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Pui, CH; Pei, D; Campana, D; Cheng, C; Sandlund, JT; Bowman, WP; Hudson, MM; Ribeiro, RC; Raimondi, SC; Jeha, S; Howard, SC; Bhojwani, D; Inaba, H; Rubnitz, JE; Metzger, ML; Gruber, TA; Coustan-Smith, E; Downing, JR; Leung, WH; Relling, MV; Evans, WE

    2014-01-01

    With improved contemporary therapy, we re-assess long-term outcome in patients completing treatment for childhood acute lymphoblastic leukemia to determine when cure can be declared with a high degree of confidence. In 6 successive clinical trials between 1984 and 2007, 1291(84.5%) patients completed all therapy in continuous complete remission. The post-therapy cumulative risk of relapse or development of a second neoplasm and the event-free survival rate and overall survival were analyzed according to the presenting features and the three treatment periods defined by relative outcome. Over the three treatment periods, there has been progressive increase in the rate of event-free survival (65.2% vs. 74.8% vs. 85.1% [P<0.001]) and overall survival (76.5% vs. 81.1% vs. 91.7% [P<0.001]) at 10 years. The most important predictor of outcome after completion of therapy was the type of treatment. In the most recent treatment period, which omitted the use of prophylactic cranial irradiation, the post-treatment cumulative risk of relapse was 6.4%, death in remission 1.5%, and development of a second neoplasm 2.3% at 10 years, with all relapses except one occurring within 4 years off therapy. None of the 106 patients with the t(9;22)/BCR-ABL1, t(1;19)/TCF3-PBX1 or t(4;11)/MLL-AFF1 had relapsed after 2 years from completion of therapy. These findings demonstrate that with contemporary effective therapy that excludes cranial irradiation, approximately 6% of children with acute lymphoblastic leukemia may relapse after completion of treatment, and those who remain in remission at 4 years post-treatment may be considered cured (i.e., less than 1 % chance of relapse). PMID:24781017

  20. Increased frequencies of CD4+CD25high regulatory T cells in acute dengue infection

    PubMed Central

    Lühn, Kerstin; Simmons, Cameron P.; Moran, Edward; Dung, Nguyen Thi Phuong; Chau, Tran Nguyen Bich; Quyen, Nguyen Than Ha; Thao, Le Thi Thu; Van Ngoc, Tran; Dung, Nguyen Minh; Wills, Bridget; Farrar, Jeremy; McMichael, Andrew J.; Dong, Tao; Rowland-Jones, Sarah

    2007-01-01

    Dengue virus infection is an increasingly important tropical disease, causing 100 million cases each year. Symptoms range from mild febrile illness to severe hemorrhagic fever. The pathogenesis is incompletely understood, but immunopathology is thought to play a part, with antibody-dependent enhancement and massive immune activation of T cells and monocytes/macrophages leading to a disproportionate production of proinflammatory cytokines. We sought to investigate whether a defective population of regulatory T cells (T reg cells) could be contributing to immunopathology in severe dengue disease. CD4+CD25highFoxP3+ T reg cells of patients with acute dengue infection of different severities showed a conventional phenotype. Unexpectedly, their capacity to suppress T cell proliferation and to secrete interleukin-10 was not altered. Moreover, T reg cells suppressed the production of vasoactive cytokines after dengue-specific stimulation. Furthermore, T reg cell frequencies and also T reg cell/effector T cell ratios were increased in patients with acute infection. A strong indication that a relative rise of T reg cell/effector T cell ratios is beneficial for disease outcome comes from patients with mild disease in which this ratio is significantly increased (P < 0.0001) in contrast to severe cases (P = 0.2145). We conclude that although T reg cells expand and function normally in acute dengue infection, their relative frequencies are insufficient to control the immunopathology of severe disease. PMID:17452519

  1. HIV-1-Specific CD8 T Cells Exhibit Limited Cross-Reactivity during Acute Infection.

    PubMed

    Du, Victor Y; Bansal, Anju; Carlson, Jonathan; Salazar-Gonzalez, Jesus F; Salazar, Maria G; Ladell, Kristin; Gras, Stephanie; Josephs, Tracy M; Heath, Sonya L; Price, David A; Rossjohn, Jamie; Hunter, Eric; Goepfert, Paul A

    2016-04-15

    Prior work has demonstrated that HIV-1-specific CD8 T cells can cross-recognize variant epitopes. However, most of these studies were performed in the context of chronic infection, where the presence of viral quasispecies makes it difficult to ascertain the true nature of the original antigenic stimulus. To overcome this limitation, we evaluated the extent of CD8 T cell cross-reactivity in patients with acute HIV-1 clade B infection. In each case, we determined the transmitted founder virus sequence to identify the autologous epitopes restricted by individual HLA class I molecules. Our data show that cross-reactive CD8 T cells are infrequent during the acute phase of HIV-1 infection. Moreover, in the uncommon instances where cross-reactive responses were detected, the variant epitopes were poorly recognized in cytotoxicity assays. Molecular analysis revealed that similar antigenic structures could be cross-recognized by identical CD8 T cell clonotypes mobilized in vivo, yet even subtle differences in a single TCR-accessible peptide residue were sufficient to disrupt variant-specific reactivity. These findings demonstrate that CD8 T cells are highly specific for autologous epitopes during acute HIV-1 infection. Polyvalent vaccines may therefore be required to provide optimal immune cover against this genetically labile pathogen. PMID:26983786

  2. HIV-1-specific CD8 T cells exhibit limited cross-reactivity during acute infection

    PubMed Central

    Du, Victor Y.; Bansal, Anju; Carlson, Jonathan; Salazar-Gonzalez, Jesus F.; Salazar, Maria G.; Ladell, Kristin; Gras, Stephanie; Josephs, Tracy M.; Heath, Sonya; Price, David A.; Rossjohn, Jamie; Hunter, Eric; Goepfert, Paul A.

    2016-01-01

    Prior work has demonstrated that HIV-1-specific CD8 T cells can cross-recognize variant epitopes. However, the majority of these studies were performed in the context of chronic infection, where the presence of viral quasispecies makes it difficult to ascertain the true nature of the original antigenic stimulus. To overcome this limitation, we evaluated the extent of CD8 T-cell cross-reactivity in patients with acute HIV-1 clade B infection. In each case, we determined the transmitted founder virus sequence to identify the autologous epitopes restricted by individual HLA class I molecules. Our data show that cross-reactive CD8 T cells are infrequent during the acute phase of HIV-1 infection. Moreover, in the uncommon instances where cross-reactive responses were detected, the variant epitopes were poorly recognized in cytotoxicity assays. Molecular analysis revealed that similar antigenic structures could be cross-recognized by identical CD8 T-cell clonotypes mobilized in vivo, yet even subtle differences in a single TCR-accessible peptide residue were sufficient to disrupt variant-specific reactivity. These findings demonstrate that CD8 T cells are highly specific for autologous epitopes during acute HIV-1 infection. Polyvalent vaccines may therefore be required to provide optimal immune cover against this genetically labile pathogen. PMID:26983786

  3. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection

    PubMed Central

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961

  4. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection.

    PubMed

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells.

  5. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection.

    PubMed

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961

  6. Selectively increased expression and functions of chemokine receptor CCR9 on CD4+ T cells from patients with T-cell lineage acute lymphocytic leukemia.

    PubMed

    Qiuping, Zhang; Qun, Li; Chunsong, Hu; Xiaolian, Zhang; Baojun, Huang; Mingzhen, Yang; Chengming, Lao; Jinshen, He; Qingping, Gao; Kejian, Zhang; Zhimin, Sun; Xuejun, Zhang; Junyan, Liu; Jinquan, Tan

    2003-10-01

    In a total of 38 typical T-cell lineage acute lymphocytic leukemia (T-ALL) and T-cell lineage chronic lymphocytic leukemia (T-CLL) cases investigated, we found that CC chemokine receptor CCR9 was selectively and frequently expressed on T-ALL CD4+ T cells, was moderately expressed on T-CLL CD4+ T cells, and was rarely expressed on normal CD4+ T cells. These findings were demonstrated at protein and mRNA levels using flow cytometry and real-time quantitative reverse transcription-PCR technique and were verified by digital confocal microscopy and Northern blotting. Thymus-expressed chemokine, a ligand for CCR9, selectively induced T-ALL CD4+ T-cell chemotaxis and adhesion. Interleukin (IL)-2 and IL-4, together, down-regulated the expression and functions of CCR9 in T-ALL CD4+ T cells including chemotaxis and adhesion. It was also demonstrated that IL-2 and IL-4, together, internalized CCR9 on T-ALL CD4+ T cells and subsequently inhibited functions of CCR9 in these cells. Thymus-expressed chemokine mRNA was highly expressed in CD4+ T cells, involving lymph node and skin in T-ALL patients, and was expressed at moderate levels in lymph node and skin tissues in T-CLL patients. Our findings may provide new clues to understanding various aspects of T-ALL CD4+ T cells, such as functional expression of CCR9-thymus-expressed chemokine receptor-ligand pairs as well as the effects of IL-2 and IL-4, which may be especially important in cytokine/chemokine environment for the pathophysiological events of T-ALL CD4+ T-cell trafficking. PMID:14559839

  7. Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute Lymphoblastic Leukemia and Its Therapeutic Targeting

    PubMed Central

    Knight, Thomas; Irving, Julie Anne Elizabeth

    2014-01-01

    Deregulation of the Ras/Raf/MEK/extracellular signal-regulated kinase pathway is a common event in childhood acute lymphoblastic leukemia and is caused by point mutation, gene deletion, and chromosomal translocation of a vast array of gene types, highlighting its importance in leukemia biology. Pathway activation can be therapeutically exploited and may guide new therapies needed for relapsed acute lymphoblastic leukemia and other high risk subgroups. PMID:25009801

  8. A t(4;11)(q21;p15) in a case of T-cell lymphoma and a case of acute myelogenous leukemia.

    PubMed

    Thangavelu, Maya; Huang, Bing; Lemieux, Marilyn; Tom, Winston; Richkind, Kathleen E

    2002-01-15

    The translocation (4;11)(q21;p15) has been observed in acute lymphoblastic as well as acute myeloid leukemias (ALL and AML, respectively). We report the first case of T-cell lymphoma with t(4;11)(q21;p15) and a case of AML. The clinical history of and cytogenetics in the latter is suggestive of a secondary leukemia; his karyotype revealed emergence of a t(3;11)(q21;q13) in addition to the t(4;11). Previously reported cases with t(4;11)(q21;p15) are reviewed, clinical and morphological characteristics of cases with t(4;11)(q21;q23) and t(4;11)(q21;p15) are compared, and chromosome abnormalities involving the NUP98 gene in hematologic malignant disorders are reviewed.

  9. Proposal for the standardization of flow cytometry protocols to detect minimal residual disease in acute lymphoblastic leukemia.

    PubMed

    Ikoma, Maura Rosane Valério; Beltrame, Miriam Perlingeiro; Ferreira, Silvia Inês Alejandra Cordoba Pires; Souto, Elizabeth Xisto; Malvezzi, Mariester; Yamamoto, Mihoko

    2015-01-01

    Minimal residual disease is the most powerful predictor of outcome in acute leukemia and is useful in therapeutic stratification for acute lymphoblastic leukemia protocols. Nowadays, the most reliable methods for studying minimal residual disease in acute lymphoblastic leukemia are multiparametric flow cytometry and polymerase chain reaction. Both provide similar results at a minimal residual disease level of 0.01% of normal cells, that is, detection of one leukemic cell in up to 10,000 normal nucleated cells. Currently, therapeutic protocols establish the minimal residual disease threshold value at the most informative time points according to the appropriate methodology employed. The expertise of the laboratory in a cancer center or a cooperative group could be the most important factor in determining which method should be used. In Brazil, multiparametric flow cytometry laboratories are available in most leukemia treatment centers, but multiparametric flow cytometry processes must be standardized for minimal residual disease investigations in order to offer reliable and reproducible results that ensure quality in the clinical application of the method. The Minimal Residual Disease Working Group of the Brazilian Society of Bone Marrow Transplantation (SBTMO) was created with that aim. This paper presents recommendations for the detection of minimal residual disease in acute lymphoblastic leukemia based on the literature and expertise of the laboratories who participated in this consensus, including pre-analytical and analytical methods. This paper also recommends that both multiparametric flow cytometry and polymerase chain reaction are complementary methods, and so more laboratories with expertise in immunoglobulin/T cell receptor (Ig/TCR) gene assays are necessary in Brazil.

  10. Proposal for the standardization of flow cytometry protocols to detect minimal residual disease in acute lymphoblastic leukemia.

    PubMed

    Ikoma, Maura Rosane Valério; Beltrame, Miriam Perlingeiro; Ferreira, Silvia Inês Alejandra Cordoba Pires; Souto, Elizabeth Xisto; Malvezzi, Mariester; Yamamoto, Mihoko

    2015-01-01

    Minimal residual disease is the most powerful predictor of outcome in acute leukemia and is useful in therapeutic stratification for acute lymphoblastic leukemia protocols. Nowadays, the most reliable methods for studying minimal residual disease in acute lymphoblastic leukemia are multiparametric flow cytometry and polymerase chain reaction. Both provide similar results at a minimal residual disease level of 0.01% of normal cells, that is, detection of one leukemic cell in up to 10,000 normal nucleated cells. Currently, therapeutic protocols establish the minimal residual disease threshold value at the most informative time points according to the appropriate methodology employed. The expertise of the laboratory in a cancer center or a cooperative group could be the most important factor in determining which method should be used. In Brazil, multiparametric flow cytometry laboratories are available in most leukemia treatment centers, but multiparametric flow cytometry processes must be standardized for minimal residual disease investigations in order to offer reliable and reproducible results that ensure quality in the clinical application of the method. The Minimal Residual Disease Working Group of the Brazilian Society of Bone Marrow Transplantation (SBTMO) was created with that aim. This paper presents recommendations for the detection of minimal residual disease in acute lymphoblastic leukemia based on the literature and expertise of the laboratories who participated in this consensus, including pre-analytical and analytical methods. This paper also recommends that both multiparametric flow cytometry and polymerase chain reaction are complementary methods, and so more laboratories with expertise in immunoglobulin/T cell receptor (Ig/TCR) gene assays are necessary in Brazil. PMID:26670404

  11. T-cell receptor gamma/delta expressing acute leukemia emerging from sideroblastic anemia: morphological, immunological, and cytogenetic features.

    PubMed

    Meckenstock, G; Fonatsch, C; Heyll, A; Schneider, E M; Kögler, G; Söhngen, D; Aul, C; Schneider, W

    1992-01-01

    Striking numerical and structural chromosome abnormalities (-Y, +8, i(7q), del (10)(q24), and del (11)(q21)) were detected by cytogenetic analysis in a patient's bone marrow with morphological features of both acute lymphoblastic leukemia and myelodysplastic disorder. Surface marker analysis characterized blast cells to be CD2+ CD7+ CD3+ CD4- CD8- expressing gamma/delta-T-cell receptor antigen and coexpressing CD11b and CD16. Exhibiting an identical phenotype as the leukemic cells, a prominent gamma/delta-TCR+ lymphocyte population was found in the bone marrow as well as in the peripheral blood. Cells of the latter compartment coexpressed CD56 and HLA-DR antigens and exhibited nonspecific cytotoxic activity. In the bone marrow cells NSCA could be induced after stimulation with interleukin 2 in vitro. Morphological, immunological, and cytogenetic findings suggest that gamma/delta-T-ALL emerged from a myelodysplastic disorder after sequential steps of malignant transformation. Leukemic cells with "mixed lineage" character may provide evidence for a common progenitor cell in the bone marrow. Assuming that the leukemic cells represent the malignant counterpart of normal CD3+ gamma/delta-TCR+ cells the results may contribute to our understanding of the origin and differentiation as well as the possible steps of malignant transformation of a gamma/delta-TCR+ lymphocyte population.

  12. New mouse model of acute adult T-cell leukemia generated by transplantation of AKT, BCLxL, and HBZ-transduced T cells.

    PubMed

    Kasugai, Yumiko; Yoshida, Noriaki; Ohshima, Koichi; Matsuo, Keitaro; Seto, Masao; Tsuzuki, Shinobu

    2016-08-01

    Adult T-cell leukemia/lymphoma (ATL) develops in human T-cell leukemia virus type 1 (HTLV-1) carriers. Although the HTLV-1-encoded HBZ gene is critically involved, HBZ alone is insufficient and additional, cooperative "hits" are required for the development of ATL. Candidate cooperative hits are being defined, but methods to rapidly explore their roles in ATL development in collaboration with HBZ are lacking. Here, we present a new mouse model of acute type ATL that can be generated rapidly by transplanting in vitro-induced T cells that have been retrovirally transduced with HBZ and two cooperative genes, BCLxL and AKT, into mice. Co-transduction of HBZ and BCLxL/AKT allowed these T cells to grow in vitro in the absence of cytokines (Flt3-ligand and interleukin-7), which did not occur with any two-gene combination. Although transplanted T cells were a mixture of cells transduced with different combinations of the genes, tumors that developed in mice were composed of HBZ/BCLxL/AKT triply transduced T cells, showing the synergistic effect of the three genes. The genetic/epigenetic landscape of ATL has only recently been elucidated, and the roles of additional "hits" in ATL pathogenesis remain to be explored. Our model provides a versatile tool to examine the roles of these hits, in collaboration with HBZ, in the development of acute ATL. PMID:27223899

  13. LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome

    PubMed Central

    Malumbres, Raquel; Fresquet, Vicente; Roman-Gomez, Jose; Bobadilla, Miriam; Robles, Eloy F.; Altobelli, Giovanna G.; Calasanz, M.ª José; Smeland, Erlend B.; Aznar, Maria Angela; Agirre, Xabier; Martin-Palanco, Vanesa; Prosper, Felipe; Lossos, Izidore S.; Martinez-Climent, Jose A.

    2011-01-01

    Background LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored. Design and Methods We measured LMO2 expression by real time RT-PCR in 247 acute lymphoblastic leukemia patient samples with cytogenetic data (144 of them also with survival and immunophenotypical data) and in normal hematopoietic and lymphoid cells. Results B-cell acute lymphoblastic leukemia cases expressed variable levels of LMO2 depending on immunophenotypical and cytogenetic features. Thus, the most immature subtype, pro-B cells, displayed three-fold higher LMO2 expression than pre-B cells, common-CD10+ or mature subtypes. Additionally, cases with TEL-AML1 or MLL rearrangements exhibited two-fold higher LMO2 expression compared to cases with BCR-ABL rearrangements or hyperdyploid karyotype. Clinically, high LMO2 expression correlated with better overall survival in adult patients (5-year survival rate 64.8% (42.5%–87.1%) vs. 25.8% (10.9%–40.7%), P= 0.001) and constituted a favorable independent prognostic factor in B-ALL with normal karyotype: 5-year survival rate 80.3% (66.4%–94.2%) vs. 63.0% (46.1%–79.9%) (P= 0.043). Conclusions Our data indicate that LMO2 expression depends on the molecular features and the differentiation stage of B-cell acute lymphoblastic leukemia cells. Furthermore, assessment of LMO2 expression in adult patients with a normal karyotype, a group which lacks molecular prognostic factors, could be of clinical relevance. PMID:21459790

  14. T-independent and T-dependent B lymphoblasts: helper T cells prime for interleukin 2-induced growth and secretion of immunoglobulins that utilize downstream heavy chains.

    PubMed

    Forman, M S; Puré, E

    1991-03-01

    Resting B cells enlarge, enter the cell cycle, and change their surface phenotype when activated via the surface immunoglobulin (Ig) receptor, but subsequent cell growth and antibody production is relatively limited. To identify stimuli that might prime B cells for enhanced function in vitro, we have compared the effects of anti-Ig with helper T (Th) cells on the formation of B lymphoblasts and the subsequent ability of the blasts to grow and secrete Ig. The B blasts first were induced by either anti-Ig, anti-Ig plus T cell-derived lymphokines, or alloreactive T blasts. Each population of B blasts showed enhanced expression of cell surface adhesion molecules, interleukin 2 receptor (IL-2R) p55, and MHC products, as well as decreased expression of IgD. The allo-activated B blasts were distinctive in expressing low levels of Thy-1 and increased reactivity with peanut agglutinin, a marker of germinal center B blasts in situ. The function of the different populations of B blasts was also different. Whereas anti-Ig or anti-Ig plus lymphokines primed for enhanced responses to lipopolysaccharide (LPS), the B blasts induced by Th cells were insensitive to LPS. B lymphoblasts that had been activated in the presence of helper factors or Th cells responded vigorously to recombinant IL-2 with growth and Ig secretion, and this response was enhanced in the presence of anti-Ig. The B blasts activated directly by Th cells, but not by anti-Ig plus lymphokines, were primed to secrete high levels of IgG1 and IgA. Therefore, the phenotype and function of a B lymphoblast depends upon the manner in which it is primed. When primed by Th cells, IL-2 proves to be the predominant mediator of clonal expansion and antibody secretion.

  15. Comparative assessment of therapeutic safety of norcantharidin, N-farnesyloxy-norcantharimide, and N-farnesyl-norcantharimide against Jurkat T cells relative to human normal lymphoblast

    PubMed Central

    Chang, Ming-Che; Wu, Jin-Yi; Liao, Hui-Fen; Chen, Yu-Jen; Kuo, Cheng-Deng

    2016-01-01

    Abstract The therapeutic safety of an anticancer drug is one of the most important concerns of the physician treating the cancer patient. Half maximal inhibitory concentration (IC50) and hillslope are usually used to represent the strength and sensitivity of an anticancer drug on cancer cells. The therapeutic safety of the anticancer drug can be assessed by comparing the IC50 and hillslope of anticancer drugs on cancer cells relative to normal cells. Since there are situations where “more anticancer activity” implies “more toxicity,” the safety of an anticancer drug in these situations is hard to evaluate by using IC50 and hillslope alone. In a previous study, the “net effect” index was devised to represent the net therapeutic effects of one anticancer drug relative to the other. However, the therapeutic safety of one specific anticancer drug alone was not defined in the “net effect” index. This study introduced the “safety index (SI)” to quantify the degree of safety of an anticancer drug by using 4-parameter logistic model on cancer cells relative to normal cells. The therapeutic safety of norcantharidin (NCTD), N-farnesyloxy-norcantharimide (NOC15), and N-farnesyl-norcantharimide (NC15) in the treatment of Jurkat T cells relative to human normal lymphoblast was compared using the newly defined SI. We found that the SI of NOC15 and NC15 was significantly higher than that of NCTD, suggesting that both NOC15 and NC15 can damage more cancer cells and less normal cells than NCTD. We conclude that both NOC15 and NC15 are safer anticancer drugs than NCTD in the treatment of Jurkat T cells relative to human normal lymphoblast. The SI can be further applied to the screening, developments, and applications of anticancer drugs in the future. PMID:27495082

  16. Aberrations of chromosomes 9 and 22 in acute lymphoblastic leukemia cases detected by ES-fluorescence in situ hybridization.

    PubMed

    Cetin, Zafer; Yakut, Sezin; Karadogan, Ihsan; Kupesiz, Alphan; Timuragaoglu, Aysen; Salim, Ozan; Tezcan, Gulsun; Alanoglu, Guchan; Ozbalci, Demircan; Hazar, Volkan; Yesilipek, Mehmet Akif; Undar, Levent; Luleci, Guven; Berker, Sibel

    2012-05-01

    A reciprocal translocation between chromosomes 9 and 22 creates oncogenic BCR/ABL fusion in the breakpoint region of the derivative chromosome 22. The aim of this study was to evaluate the importance of atypical fluorescence in situ hybridization (FISH) signal patterns in pediatric and adult acute lymphoblastic leukemia (ALL) cases. We evaluated t(9;22) translocation in 208 cases with ALL (294 tests), including 139 childhood and 69 adult cases by FISH technique using BCR/ABL extra signal (ES) probe. FISH signal patterns observed in pediatric ALL cases were as follows; Major-BCR/ABL (M-BCR/ABL) (1.4%), minor-BCR/ABL (m-BCR/ABL) (3.6%), trisomy 9 (4.3%), trisomy 22 (4.3%), trisomy or tetrasomy of both chromosomes 9 and 22 (2.9%), monosomy 9 (1.4%), monosomy 22 (0.7%), ABL gene amplification (1.4%), derivative chromosome 9 deletion (1.4%), and extra copies of the Philadelphia chromosome (1.4%). FISH signal patterns observed in adult ALL cases were as follows; M-BCR/ABL (5.8%), m-BCR/ABL (11.6%), two different cell clones with major and minor BCR/ABL signal pattern (2.9%), extra copies of Philadelphia chromosome (4.3%), derivative chromosome 9 deletion (1.4%), trisomy 9 (2.9%), tetraploidy (1.4%), monosomy 9 (1.4%), trisomy 22 (1.4%), and coexistence of both trisomy 22 and monosomy 9 (1.4%). Trisomy 9, trisomy 22, and polyploidy of chromosomes 9 and 22 were specific atypical FISH signal patterns for childhood B cell acute lymphoblastic leukemia (B-ALL) patients. However, monosomy 9 and ABL gene amplification were highly specific for childhood T cell acute lymphoblastic leukemia (T-ALL) patients. Our report presents the correlation between atypical FISH signal patterns and clinical findings of a large group of ALL cases. PMID:22360868

  17. Acute myeloid leukaemia after treatment for acute lymphoblastic leukaemia in girl with Bloom syndrome

    PubMed Central

    Adams, Madeleine; Jenney, Meriel; Lazarou, Laz; White, Rhian; Birdsall, Sanda; Staab, Timo; Schindler, Detlev; Meyer, Stefan

    2014-01-01

    Bloom syndrome (BS) is an inherited genomic instability disorder caused by disruption of the BLM helicase and confers an extreme cancer predisposition. Here we report on a girl with BS who developed acute lymphoblastic leukaemia (ALL) at age nine, and treatment-related acute myeloid leukaemia (t-AML) aged 12. She was compound heterozygous for the novel BLM frameshift deletion c.1624delG and the previously described c.3415C>T nonsense mutation. Two haematological malignancies in a child with BS imply a fundamental role for BLM for normal haematopoiesis, in particular in the presence of genotoxic stress. PMID:24932421

  18. IKZF1 rs4132601 polymorphism and acute lymphoblastic leukemia susceptibility: a meta-analysis.

    PubMed

    Li, Shihui; Ren, Lili; Fan, Li; Wang, Guangsheng

    2015-04-01

    Several studies have been conducted to examine the association between IKZF1 rs4132601 polymorphism and acute lymphoblastic leukemia (ALL) risk. However, the conclusions remain controversial. We therefore performed a meta-analysis. PubMed, Embase, Web of Science, Weipu and Chinese Biomedical Literature (CBM) databases were searched. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. A total of 15 case-control studies with 8333 cases and 36 036 controls were included in this meta-analysis. The results suggested that rs4132601 was associated with an increased ALL risk. Significant associations were found among Caucasians and Hispanics but not among Asians. In subgroup analysis by age group, both adults and children showed increased ALL risk. In subgroup analysis by subtype of ALL, significantly increased risks were observed in B-cell ALL and B hyperdiploid ALL, but not in T-cell ALL. This study suggests that IKZF1 rs4132601polymorphism is a risk factor for ALL. PMID:25012940

  19. A pre-clinical model of resistance to induction therapy in pediatric acute lymphoblastic leukemia.

    PubMed

    Samuels, A L; Beesley, A H; Yadav, B D; Papa, R A; Sutton, R; Anderson, D; Marshall, G M; Cole, C H; Kees, U R; Lock, R B

    2014-01-01

    Relapse and acquired drug resistance in T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. This study was designed to establish a preclinical model of resistance to induction therapy in childhood T-ALL to examine the emergence of drug resistance and identify novel therapies. Patient-derived T-ALL xenografts in immune-deficient (non-obese diabetic/severe combined immunodeficient) mice were exposed to a four-drug combination of vincristine, dexamethasone (DEX), L-asparaginase and daunorubicin (VXLD). 'Relapse' xenografts were characterized by responses to drugs, changes in gene expression profiles and Connectivity Map (CMap) prediction of strategies to reverse drug resistance. Two of four xenografts developed ex vivo and in vivo drug resistance. Both resistant lines showed altered lipid and cholesterol metabolism, yet they had a distinct drug resistance pattern. CMap analyses reinforced these features, identifying the cholesterol pathway inhibitor simvastatin (SVT) as a potential therapy to overcome resistance. Combined ex vivo with DEX, SVT was significantly synergistic, yet when administered in vivo with VXLD it did not delay leukemia progression. Synergy of SVT with established chemotherapy may depend on higher drug doses than are tolerable in this model. Taken together, we have developed a clinically relevant in vivo model of T-ALL suitable to examine the emergence of drug resistance and to identify novel therapies.

  20. A pre-clinical model of resistance to induction therapy in pediatric acute lymphoblastic leukemia.

    PubMed

    Samuels, A L; Beesley, A H; Yadav, B D; Papa, R A; Sutton, R; Anderson, D; Marshall, G M; Cole, C H; Kees, U R; Lock, R B

    2014-01-01

    Relapse and acquired drug resistance in T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. This study was designed to establish a preclinical model of resistance to induction therapy in childhood T-ALL to examine the emergence of drug resistance and identify novel therapies. Patient-derived T-ALL xenografts in immune-deficient (non-obese diabetic/severe combined immunodeficient) mice were exposed to a four-drug combination of vincristine, dexamethasone (DEX), L-asparaginase and daunorubicin (VXLD). 'Relapse' xenografts were characterized by responses to drugs, changes in gene expression profiles and Connectivity Map (CMap) prediction of strategies to reverse drug resistance. Two of four xenografts developed ex vivo and in vivo drug resistance. Both resistant lines showed altered lipid and cholesterol metabolism, yet they had a distinct drug resistance pattern. CMap analyses reinforced these features, identifying the cholesterol pathway inhibitor simvastatin (SVT) as a potential therapy to overcome resistance. Combined ex vivo with DEX, SVT was significantly synergistic, yet when administered in vivo with VXLD it did not delay leukemia progression. Synergy of SVT with established chemotherapy may depend on higher drug doses than are tolerable in this model. Taken together, we have developed a clinically relevant in vivo model of T-ALL suitable to examine the emergence of drug resistance and to identify novel therapies. PMID:25083816

  1. Acute lymphoblastic leukemia: A single center experience with Berlin, Frankfurt, and Munster-95 protocol

    PubMed Central

    Radhakrishnan, Venkatraman; Gupta, Sumant; Ganesan, Prasanth; Rajendranath, Rejiv; Ganesan, Trivadi S.; Rajalekshmy, Kamalalayan Raghavan; Sagar, Tenali Gnana

    2015-01-01

    Background: There is a paucity of data on the outcome following the treatment for acute lymphoblastic leukemia (ALL) from developing countries. Materials and Methods: Two hundred and thirty-eight consecutive patients with ALL <30 years of age diagnosed between January 2005 and December 2011 were analyzed retrospectively. Patients were treated modified Berlin, Frankfurt, and Munster 95 protocol. Event-free survival (EFS) was calculated using Kaplan–Meier survival analysis and variables were compared using log-rank test. Results: The EFS was 63.4% at a median follow-up was 32.7 months. On univariate analysis National Cancer Institute (NCI) risk stratification, sex, white blood cell count, day 8 blast clearance, and income were significantly associated with EFS. However, on multivariate analysis only female sex (P = 0.01) and day 8 blast clearance (P = 0.006) were significantly associated with EFS. Seventy-four of 238 (31%) patients had recurrent leukemia. The common sites of relapse were bone marrow in 55/74 (75%) patients and central nervous system in 11/74 (20%) patients. Conclusion: Compared to western data, there was an increased proportion of NCI high-risk patients and T-cell immunophenotype in our study. There has been an improvement in outcome of patients with ALL at our center over the last 2 decades. Female sex and clearance of blast in peripheral blood by day 8 of induction was associated with better EFS. PMID:26811597

  2. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies

    PubMed Central

    van der Velden, Vincent H. J.; Brüggemann, Monika; Orfao, Alberto

    2015-01-01

    Monitoring of minimal residual disease (MRD) has become routine clinical practice in frontline treatment of virtually all childhood acute lymphoblastic leukemia (ALL) and in many adult ALL patients. MRD diagnostics has proven to be the strongest prognostic factor, allowing for risk group assignment into different treatment arms, ranging from significant treatment reduction to mild or strong intensification. Also in relapsed ALL patients and patients undergoing stem cell transplantation, MRD diagnostics is guiding treatment decisions. This is also why the efficacy of innovative drugs, such as antibodies and small molecules, are currently being evaluated with MRD diagnostics within clinical trials. In fact, MRD measurements might well be used as a surrogate end point, thereby significantly shortening the follow-up. The MRD techniques need to be sensitive (≤10−4), broadly applicable, accurate, reliable, fast, and affordable. Thus far, flow cytometry and polymerase chain reaction (PCR) analysis of rearranged immunoglobulin and T-cell receptor genes (allele-specific oligonucleotide [ASO]-PCR) are claimed to meet these criteria, but classical flow cytometry does not reach a solid 10−4, whereas classical ASO-PCR is time-consuming and labor intensive. Therefore, 2 high-throughput technologies are being explored, ie, high-throughput sequencing and next-generation (multidimensional) flow cytometry, both evaluating millions of sequences or cells, respectively. Each of them has specific advantages and disadvantages. PMID:25999452

  3. Absence of Association between CCR5 rs333 Polymorphism and Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    de Oliveira, Carlos Eduardo Coral; Perim, Aparecida de Lourdes; Ozawa, Patricia Midori Murobushi; Freire Vitiello, Glauco Akelinghton; Losi Guembarovski, Roberta; Watanabe, Maria Angelica Ehara

    2014-01-01

    Acute lymphoblastic leukemia (ALL) is a malignant disorder that originates from one single hematopoietic precursor committed to B- or T-cell lineage. Ordinarily, these cells express CCR5 chemokine receptor, which directs the immune response to a cellular pattern and is involved in cancer pathobiology. The genetic rs333 polymorphism of CCR5 (Δ32), results in a diminished receptor expression, thus leading to impaired cell trafficking. The objective of the present study was to investigate the effect of CCR5 chemokine receptor rs333 polymorphism in the pathogenesis of ALL. The genotype distribution was studied in 79 patients and compared with 80 control subjects, in a childhood population of Southern Brazil. Genotyping was performed using DNA samples amplified by polymerase chain reaction with sequence-specific primers (PCR-SSP). The homozygous (Δ32/Δ32) deletion was not observed in any subject involved in the study. Heterozygous genotype was not associated with ALL risk (OR 0.7%; 95% CI 0.21–2.32; P > 0.05), nor recurrence status of ALL (OR 0.86; 95% CI 0.13–5.48; P > 0.05). This work demonstrated, for the first time, no significant differences in the frequency of the CCR5/Δ32 genotype between ALL and control groups, indicating no effect of this genetic variant on the ALL susceptibility and recurrence risk. PMID:24822066

  4. Dynamics of cytotoxic T cell subsets during immunotherapy predicts outcome in acute myeloid leukemia

    PubMed Central

    Sander, Frida Ewald; Rydström, Anna; Bernson, Elin; Kiffin, Roberta; Riise, Rebecca; Aurelius, Johan; Anderson, Harald; Brune, Mats; Foà, Robin; Hellstrand, Kristoffer; Thorén, Fredrik B.; Martner, Anna

    2016-01-01

    Preventing relapse after chemotherapy remains a challenge in acute myeloid leukemia (AML). Eighty-four non-transplanted AML patients in first complete remission received relapse-preventive immunotherapy with histamine dihydrochloride and low-dose interleukin-2 in an international phase IV trial (ClinicalTrials.gov; NCT01347996). Blood samples were drawn during cycles of immunotherapy and analyzed for CD8+ (cytotoxic) T cell phenotypes in blood. During the first cycle of therapy, a re-distribution of cytotoxic T cells was observed comprising a reduction of T effector memory cells and a concomitant increase of T effector cells. The dynamics of T cell subtypes during immunotherapy prognosticated relapse and survival, in particular among older patients and remained significantly predictive of clinical outcome after correction for potential confounders. Presence of CD8+ T cells with specificity for leukemia-associated antigens identified patients with low relapse risk. Our results point to novel aspects of T cell-mediated immunosurveillance in AML and provide conceivable biomarkers in relapse-preventive immunotherapy. PMID:26863635

  5. A 50-Year Journey to Cure Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Pui, Ching-Hon; Evans, William E.

    2013-01-01

    The 50th anniversary of Seminars in Hematology coincides with the 50th of St. Jude Children’s Research Hospital, and both milestones are inexorably linked to studies contributing to the cure of childhood acute lymphoblastic leukemia (ALL). We thought it fitting, therefore, to mark these events by traveling back in time to point out some of the achievements, institutions, study groups and individuals that have made cure of childhood ALL a reality. In many instances, progress was driven by new ideas, while in others it was driven by new experimental tools that allowed more precise assessment of the biology of leukemic blasts and their utility in selecting therapy. We also discuss a number of contemporary advances that point the way to exciting future directions. Whatever pathways are taken, a clear challenge will be to use emerging genome-based or immunologic-based treatment options in ways that will enhance, rather than duplicate or compromise, recent gains in outcome with classic cytotoxic chemotherapy. The theme of this journey serves as a reminder of the chief ingredient of any research directed to a catastrophic disease such as ALL. It is the audacity of a small group of investigators who confronted a childhood cancer with the goal of cure, not palliation, as their mindset. PMID:23953334

  6. The molecular genetic makeup of acute lymphoblastic leukemia.

    PubMed

    Mullighan, Charles G

    2012-01-01

    Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention. Mutations in genes regulating lymphoid development are a hallmark of ALL, and alterations of the lymphoid transcription factor gene IKZF1 (IKAROS) are associated with a high risk of treatment failure in B-ALL. Approximately 20% of B-ALL cases harbor genetic alterations that activate kinase signaling that may be amenable to treatment with tyrosine kinase inhibitors, including rearrangements of the cytokine receptor gene CRLF2; rearrangements of ABL1, JAK2, and PDGFRB; and mutations of JAK1 and JAK2. Whole-genome sequencing has also identified novel targets of mutation in aggressive T-lineage ALL, including hematopoietic regulators (ETV6 and RUNX1), tyrosine kinases, and epigenetic regulators. Challenges for the future are to comprehensively identify and experimentally validate all genetic alterations driving leukemogenesis and treatment failure in childhood and adult ALL and to implement genomic profiling into the clinical setting to guide risk stratification and targeted therapy.

  7. Is this acute lymphoblastic leukaemia or juvenile rheumatoid arthritis.

    PubMed

    Kirubakaran, Chellam; Scott, Julius Xavier; Ebenezer, Sam

    2011-08-01

    Arthritis could be a presenting feature of acute lymphoblastic leukaemia (ALL) and could be wrongly diagnosed as juvenile rheumatoid arthritis (JRA). Clinical and laboratory parameters might differentiate ALL and JRA in children who present with arthritis. Out of a total of 250 children of ALL, 10 were referred to the department of child health and paediatric haemato-oncology of Christian Medical College, Vellore during 1990-2002. They were compared with 10 age-matched children who had systematic onset of JRA. The age groups in ALL and JRA were 6.05 +/- 2.45 years and 5.47 +/- 4.4 years respectively. Severe pain as evidenced by inability to walk was found in children but one child with JRA was unable to walk (p < 0.05). Lymphocytosis was noticed in 7 children (70%) with ALL whereas none had in JRA group. ESR was elevated in all cases in both the groups. One case in each group had antinuclear antibody positivity. It can be concluded that ALL can masquerade as systematic onset of JRA. So paediatricians should be careful enough while diagnosing the disease process.

  8. Transplant Outcomes for Children with Hypodiploid Acute Lymphoblastic Leukemia

    PubMed Central

    Mehta, Parinda A.; Zhang, Mei-Jie; Eapen, Mary; He, Wensheng; Seber, Adriana; Gibson, Brenda; Camitta, Bruce M.; Kitko, Carrie L.; Dvorak, Christopher C.; Nemecek, Eneida R.; Frangoul, Haydar A.; Abdel-Azim, Hisham; Kasow, Kimberly A.; Lehmann, Leslie; Vicent, Marta Gonzalez; Diaz Pérez, Miguel A.; Ayas, Mouhab; Qayed, Muna; Carpenter, Paul A.; Jodele, Sonata; Lund, Troy C.; Leung, Wing H.; Davies, Stella M.

    2015-01-01

    Children with hypodiploid acute lymphoblastic leukemia (ALL) have inferior outcomes despite intensive risk adapted chemotherapy regimens. We describe 78 children with hypodiploid ALL who underwent hematopoietic stem cell transplant (HSCT) between 1990 and 2010. Thirty nine (50%) patients had ≤ 43 chromosomes, 12 (15%) had 44 chromosomes and 27 (35%) had 45 chromosomes. Forty three (55%) patients were transplanted in first remission (CR1) while 35 (45%) were transplanted in ≥CR2. Twenty nine patients (37%) received a graft from a related donor and 49 (63%) from an unrelated donor. All patients received a myeloablative conditioning regimen. The 5-year probabilities of leukemia-free survival (LFS), overall survival (OS), relapse, and treatment related mortality (TRM) for the entire cohort were 51%, 56%, 27% and 22% respectively. Multivariate analysis confirmed that mortality risks were higher for patients transplanted in CR2 (HR 2.16, p=0.05), with chromosome number ≤43 (HR 2.15, p=0.05) and for those transplanted in the first decade of the study period (HR 2.60, p=0.01). Similarly, treatment failure risks were higher with chromosome number ≤43 (HR 2.28, p=0.04) and the earlier transplant period (HR 2.51, p=0.01). Although survival is better with advances in donor selection and supportive care, disease-related risk factors significantly influence transplantation outcomes. PMID:25865650

  9. Economic evaluation of treatment for acute lymphoblastic leukaemia in childhood.

    PubMed

    Rae, C; Furlong, W; Jankovic, M; Moghrabi, Albert; Naqvi, A; Sala, A; Samson, Y; DePauw, S; Feeny, D; Barr, R

    2014-11-01

    Berlin-Frankfurt-Munster (BFM) and Dana-Farber Cancer Institute (DFCI) consortia's treatment strategies for acute lymphoblastic leukaemia (ALL) in children are widely used. We compared the health effects and monetary costs of hospital treatments for these two strategies. Parents of children treated at seven centres in Canada, Italy and the USA completed health-related quality of life (HRQL) assessments during four active treatment phases and at 2 years after treatment. Mean HRQL scores were used to calculate quality-adjusted life years (QALYs) for a period of 5 years following diagnosis. Total costs of treatment were determined from variables in administrative databases in a universally accessible and publicly funded healthcare system. Valid HRQL assessments (n = 1200) were collected for 307 BFM and 317 DFCI patients, with costs measured for 66 BFM and 28 DFCI patients. QALYs per patient were <1.0% greater for BFM than DFCI. Median HRQL scores revealed no difference in QALYs. The difference in mean total costs for BFM (US$88 480) and DFCI (US$93 026) was not significant (P = 0.600). This study provides no evidence of superiority for one treatment strategy over the other. Current BFM or DFCI strategies should represent conventional management for the next economic evaluation of treatments for ALL in childhood. PMID:24393150

  10. Stem Cell Hierarchy and Clonal Evolution in Acute Lymphoblastic Leukemia

    PubMed Central

    Lang, Fabian; Wojcik, Bartosch; Rieger, Michael A.

    2015-01-01

    Cancer is characterized by a remarkable intertumoral, intratumoral, and cellular heterogeneity that might be explained by the cancer stem cell (CSC) and/or the clonal evolution models. CSCs have the ability to generate all different cells of a tumor and to reinitiate the disease after remission. In the clonal evolution model, a consecutive accumulation of mutations starting in a single cell results in competitive growth of subclones with divergent fitness in either a linear or a branching succession. Acute lymphoblastic leukemia (ALL) is a highly malignant cancer of the lymphoid system in the bone marrow with a dismal prognosis after relapse. However, stabile phenotypes and functional data of CSCs in ALL, the so-called leukemia-initiating cells (LICs), are highly controversial and the question remains whether there is evidence for their existence. This review discusses the concepts of CSCs and clonal evolution in respect to LICs mainly in B-ALL and sheds light onto the technical controversies in LIC isolation and evaluation. These aspects are important for the development of strategies to eradicate cells with LIC capacity. Common properties of LICs within different subclones need to be defined for future ALL diagnostics, treatment, and disease monitoring to improve the patients' outcome in ALL. PMID:26236346

  11. BCL6 modulation of acute lymphoblastic leukemia response to chemotherapy

    PubMed Central

    Slone, William L.; Moses, Blake S.; Hare, Ian; Evans, Rebecca; Piktel, Debbie; Gibson, Laura F.

    2016-01-01

    The bone marrow niche has a significant impact on acute lymphoblastic leukemia (ALL) cell phenotype. Of clinical relevance is the frequency with which quiescent leukemic cells, in this niche, survive treatment and contribute to relapse. This study suggests that marrow microenvironment regulation of BCL6 in ALL is one factor that may be involved in the transition between proliferative and quiescent states of ALL cells. Utilizing ALL cell lines, and primary patient tumor cells we observed that tumor cell BCL6 protein abundance is decreased in the presence of primary human bone marrow stromal cells (BMSC) and osteoblasts (HOB). Chemical inhibition, or shRNA knockdown, of BCL6 in ALL cells resulted in diminished ALL proliferation. As many chemotherapy regimens require tumor cell proliferation for optimal efficacy, we investigated the consequences of constitutive BCL6 expression in leukemic cells during co-culture with BMSC or HOB. Forced chronic expression of BCL6 during co-culture with BMSC or HOB sensitized the tumor to chemotherapy induced cell death. Combination treatment of caffeine, which increases BCL6 expression in ALL cells, with chemotherapy extended the event free survival of mice. These data suggest that BCL6 is one factor, modulated by microenvironment derived cues that may contribute to regulation of ALL therapeutic response. PMID:27015556

  12. Premature adiposity rebound in children treated for acute lymphoblastic leukemia.

    PubMed

    Reilly, J J; Kelly, A; Ness, P; Dorosty, A R; Wallace, W H; Gibson, B E; Emmett, P M

    2001-06-01

    The adiposity rebound (AR), when body mass index begins to increase after its nadir in childhood, is a critical period for the regulation of energy balance and adult obesity risk. The aim of the present study was to test whether children treated for acute lymphoblastic leukemia (ALL) experience premature AR. This might, in part, explain their tendency to develop obesity. Timing of AR was assessed by visual inspection of body mass index plots in 68 patients treated for ALL in first remission. This sample comprised all eligible patients treated in Scotland between 1991 and 1998, age 30 months or less at the time of diagnosis. Timing of AR in patients was compared against a cohort of 889 healthy British children studied during the 1990s using the same method. AR occurred significantly earlier in the patients treated for ALL (chi(2) test, P < 0.001). The AR had occurred in 43% (29 of 68) of the patients and 4% (40 of 889) of the comparison group by age 37 months. At 49 months AR had occurred in 81% (55 of 68) of the patients and 21% (190 of 889) of the comparison group. Treatment of ALL is associated with a significantly advanced AR. This might, in part, explain the extremely high prevalence of obesity in long-term survivors. Clinical management should focus on minimizing excess weight gain during therapy to reduce long-term obesity risk.

  13. Management of adult Ph-positive acute lymphoblastic leukemia.

    PubMed

    Chiaretti, Sabina; Foà, Robin

    2015-01-01

    Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) has been regarded for decades as the ALL subgroup with the worse outcome. It represents the most frequent genetic subtype of adult ALL, and increases progressively with age. The introduction of tyrosine kinase inhibitors (TKIs) has enabled to obtain complete hematologic remissions (CHRs) in virtually all patients, including the elderly, to improve disease-free survival and overall survival, as well as to increase the percentage of patients who can undergo an allogeneic stem cell transplant (allo-SCT).The current management of adult Ph+ ALL patients relies on the use of a TKI with or without chemotherapy followed by an allo-SCT, which still remains the only curative option. Minimal residual disease screening is permitting not only a better stratification of patients, but has also allowed to reconsider the role of autologous stem cell transplant for a set of patients who do not have a donor or are not eligible for an allo-SCT. At present, clinical challenges are represented by the emergence of resistant mutations, particularly the gatekeeper T315I, for which alternative approaches, comprising novel TKIs or therapies based on the combination of TKI with immunotherapeutic strategies, are being considered in order to overcome resistance.

  14. Genetic and epigenetic characterization of hypodiploid acute lymphoblastic leukemia

    PubMed Central

    Safavi, Setareh; Olsson, Linda; Biloglav, Andrea; Veerla, Srinivas; Blendberg, Molly; Tayebwa, Johnbosco; Behrendtz, Mikael; Castor, Anders; Hansson, Markus; Johansson, Bertil; Paulsson, Kajsa

    2015-01-01

    Purpose To investigate the genetic and epigenetic landscape of hypodiploid (<45 chromosomes) acute lymphoblastic leukemia (ALL). Methods Single nucleotide polymorphism array, whole exome sequencing, RNA sequencing, and methylation array analyses were performed on eleven hypodiploid ALL cases. Results In line with previous studies, mutations in IKZF3 and FLT3 were detected in near-haploid (25–30 chromosomes) cases. Low hypodiploidy (31–39 chromosomes) was associated with somatic TP53 mutations. Notably, mutations of this gene were also found in 3/3 high hypodiploid (40–44 chromosomes) cases, suggesting that the mutational patterns are similar in low hypodiploid and high hypodiploid ALL. The high hypodiploid ALLs frequently displayed substantial cell-to-cell variability in chromosomal content, indicative of chromosomal instability; a rare phenomenon in ALL. Gene expression analysis showed that genes on heterodisomic chromosomes were more highly expressed in hypodiploid cases. Cases clustered according to hypodiploid subtype in the unsupervised methylation analyses, but there was no association between chromosomal copy number and methylation levels. A comparison between samples obtained at diagnosis and relapse showed that the relapse did not arise from the major diagnostic clone in 3/4 cases. Conclusion Taken together, our data support the conclusion that near-haploid and low hypodiploid ALL are different with regard to mutational profiles and also suggest that ALL cases with high hypodiploidy may harbor chromosomal instability. PMID:26544893

  15. Pediatric Acute Lymphoblastic Leukemia and Exposure to Pesticides

    PubMed Central

    Soldin, Offie P.; Nsouly-Maktabi, Hala; Genkinger, Jeanine M.; Loffredo, Christopher A.; Ortega-Garcia, Juan Antonio; Colantino, Drew; Barr, Dana B.; Luban, Naomi L.; Shad, Aziza T.; Nelson, David

    2013-01-01

    Organophosphates are pesticides ubiquitous in the environment and have been hypothesized as one of the risk factors for acute lymphoblastic leukemia (ALL). In this study, we evaluated the associations of pesticide exposure in a residential environment with the risk for pediatric ALL. This is a case–control study of children newly diagnosed with ALL, and their mothers (n = 41 child–mother pairs) were recruited from Georgetown University Medical Center and Children's National Medical Center in Washington, DC, between January 2005 and January 2008. Cases and controls were matched for age, sex, and county of residence. Environmental exposures were determined by questionnaire and by urinalysis of pesticide metabolites using isotope dilution gas chromatography–high-resolution mass spectrometry. We found that more case mothers (33%) than controls (14%) reported using insecticides in the home (P < 0.02). Other environmental exposures to toxic substances were not significantly associated with the risk of ALL. Pesticide levels were higher in cases than in controls (P < 0.05). Statistically significant differences were found between children with ALL and controls for the organophosphate metabolites diethylthiophosphate (P < 0.03) and diethyldithiophosphate (P < 0.05). The association of ALL risk with pesticide exposure merits further studies to confirm the association. PMID:19571777

  16. Mechanism of relapse in pediatric acute lymphoblastic leukemia.

    PubMed

    Henderson, Michelle J; Choi, Seoyeon; Beesley, Alex H; Sutton, Rosemary; Venn, Nicola C; Marshall, Glenn M; Kees, Ursula R; Haber, Michelle; Norris, Murray D

    2008-05-15

    Relapse following initial chemotherapy remains a barrier to survival in approximately 20% of children suffering from acute lymphoblastic leukemia (ALL). Recently, to investigate the mechanism of relapse, we analysed clonal populations in 27 pairs of matched diagnosis and relapse ALL samples using PCR-based detection of multiple antigen receptor gene rearrangements. These clonal markers revealed the emergence of apparently new populations at relapse in 13 patients. In those cases where the new 'relapse clone' could be detected in the diagnosis population, there was a close correlation between length of first remission and quantity of the relapse clone in the diagnosis sample. A shorter length of time to first relapse correlated with a higher quantity of the relapsing clone at diagnosis. This observation, together with demonstrated differential chemosensitivity between sub-clones at diagnosis, indicates that relapse in ALL patients may commonly involve selection of a minor intrinsically resistant sub-clone that is undetectable by routine PCR-based methods. From a clinical perspective, relapse prediction may be improved with strategies to detect minor potentially resistant sub-clones early during treatment, hence allowing intensification of therapy. Together with the availability of relevant in vivo experimental models and powerful technology for detailed analysis of patient specimens, this new information will help shape future experimentation towards targeted therapy for high-risk ALL.

  17. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity

    PubMed Central

    Jacoby, Elad; Nguyen, Sang M.; Fountaine, Thomas J.; Welp, Kathryn; Gryder, Berkley; Qin, Haiying; Yang, Yinmeng; Chien, Christopher D.; Seif, Alix E.; Lei, Haiyan; Song, Young K.; Khan, Javed; Lee, Daniel W.; Mackall, Crystal L.; Gardner, Rebecca A.; Jensen, Michael C.; Shern, Jack F.; Fry, Terry J.

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor (CAR) expressing T cells targeting the CD19 B lineage receptor has demonstrated marked success in relapsed pre-B-cell acute lymphoblastic leukaemia (ALL). Persisting CAR-T cells generate sustained pressure against CD19 that may drive unique mechanisms of resistance. Pre-B ALL originates from a committed pre-B cell or an earlier progenitor, with potential to reprogram into other hematopoietic lineages. Here we report changes in lineage markers including myeloid conversion in patients following CD19 CAR therapy. Using murine ALL models we study the long-term effects of CD19 CAR-T cells and demonstrate partial or complete lineage switch as a consistent mechanism of CAR resistance depending on the underlying genetic oncogenic driver. Deletion of Pax5 or Ebf1 recapitulates lineage reprogramming occurring during CD19 CAR pressure. Our findings establish lineage switch as a mechanism of CAR resistance exposing inherent plasticity in genetic subtypes of pre-B-cell ALL. PMID:27460500

  18. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity.

    PubMed

    Jacoby, Elad; Nguyen, Sang M; Fountaine, Thomas J; Welp, Kathryn; Gryder, Berkley; Qin, Haiying; Yang, Yinmeng; Chien, Christopher D; Seif, Alix E; Lei, Haiyan; Song, Young K; Khan, Javed; Lee, Daniel W; Mackall, Crystal L; Gardner, Rebecca A; Jensen, Michael C; Shern, Jack F; Fry, Terry J

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor (CAR) expressing T cells targeting the CD19 B lineage receptor has demonstrated marked success in relapsed pre-B-cell acute lymphoblastic leukaemia (ALL). Persisting CAR-T cells generate sustained pressure against CD19 that may drive unique mechanisms of resistance. Pre-B ALL originates from a committed pre-B cell or an earlier progenitor, with potential to reprogram into other hematopoietic lineages. Here we report changes in lineage markers including myeloid conversion in patients following CD19 CAR therapy. Using murine ALL models we study the long-term effects of CD19 CAR-T cells and demonstrate partial or complete lineage switch as a consistent mechanism of CAR resistance depending on the underlying genetic oncogenic driver. Deletion of Pax5 or Ebf1 recapitulates lineage reprogramming occurring during CD19 CAR pressure. Our findings establish lineage switch as a mechanism of CAR resistance exposing inherent plasticity in genetic subtypes of pre-B-cell ALL. PMID:27460500

  19. Acute Cardiac Rejection Requires Directly Cytotoxic CD4 T cells: A Parallel Pathway between Fas and Perforin1

    PubMed Central

    Grazia, Todd J.; Plenter, Robert J.; Weber, Sarah M.; Lepper, Helen M.; Victorino, Francisco; Zamora, Martin R.; Pietra, Biagio A.; Gill, Ronald G.

    2009-01-01

    Background CD4 T cells can suffice as effector cells to mediate primary acute cardiac allograft rejection. While CD4 T cells can readily kill appropriate target cells in vitro, the corresponding role of such cytolytic activity for mediating allograft rejection in vivo is unknown. Therefore, we determined whether the cytolytic effector molecules perforin and/or FasL (CD95L) were necessary for CD4 T cell-mediated rejection in vivo. Methods Wild type C3H(H-2k) or Fas (CD95)-deficient C3Hlpr (H-2k) hearts were transplanted into immune-deficient C57B6rag−/− (H-2b) mice. Recipients then were reconstituted with naïve purified CD4 T cells from either wild-type, perforin (pfp)-deficient, or FasL (gld)-deficient T cell donors. Results In vitro, alloreactive CD4 T cells were competent to lyse donor MHC class II+ target cells, largely by a Fas-dependent mechanism. In vivo, the individual disruption of either donor Fas expression (lpr) or CD4 T cell-derived perforin had no signifcant impact on acute rejection. However, FasL-deficient (gld) CD4 T cells demonstrated delayed allograft rejection. Importantly, the simultaneous removal of both donor Fas expression and CD4 T cell perforin completely abrograted acute rejection, despite the persistence of CD4 T cells within the graft. Conclusions Results demonstrate that the direct rejection of cardiac allografts by CD4 effector T cells requires the alternative contribution of graft Fas expression and T cell perforin expression. To our knowledge, this is the first demonstration that cytolytic activity by CD4 T cells can play an obligate role for primary acute allograft rejection in vivo. PMID:20061916

  20. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells.

    PubMed

    Torelli, Giovanni F; Peragine, Nadia; Raponi, Sara; Pagliara, Daria; De Propris, Maria S; Vitale, Antonella; Bertaina, Alice; Barberi, Walter; Moretta, Lorenzo; Basso, Giuseppe; Santoni, Angela; Guarini, Anna; Locatelli, Franco; Foà, Robin

    2014-07-01

    In this study, we aimed to investigate the pathways of recognition of acute lymphoblastic leukemia blasts by natural killer cells and to verify whether differences in natural killer cell activating receptor ligand expression among groups defined by age of patients, or presence of cytogenetic/molecular aberrations correlate with the susceptibility to recognition and killing. We analyzed 103 newly diagnosed acute lymphoblastic leukemia patients: 46 adults and 57 children. Pediatric blasts showed a significantly higher expression of Nec-2 (P=0.03), ULBP-1 (P=0.01) and ULBP-3 (P=0.04) compared to adult cells. The differential expression of these ligands between adults and children was confined to B-lineage acute lymphoblastic leukemia with no known molecular alterations. Within molecularly defined subgroups of patients, a high surface expression of NKG2D and DNAM1 ligands was found on BCR-ABL(+) blasts, regardless of patient age. Accordingly, BCR-ABL(+) blasts proved to be significantly more susceptible to natural killer-dependent lysis than B-lineage blasts without molecular aberrations (P=0.03). Cytotoxic tests performed in the presence of neutralizing antibodies indicated a pathway of acute lymphoblastic leukemia cell recognition in the setting of the Nec-2/DNAM-1 interaction. These data provide a biological explanation of the different roles played by alloreactive natural killer cells in pediatric versus adult acute lymphoblastic leukemia and suggest that new natural killer-based strategies targeting specific subgroups of patients, particularly those BCR-ABL(+), are worth pursuing further.

  1. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia.

    PubMed

    Karawajew, Leonid; Dworzak, Michael; Ratei, Richard; Rhein, Peter; Gaipa, Giuseppe; Buldini, Barbara; Basso, Giuseppe; Hrusak, Ondrej; Ludwig, Wolf-Dieter; Henze, Günter; Seeger, Karl; von Stackelberg, Arend; Mejstrikova, Ester; Eckert, Cornelia

    2015-07-01

    Multiparametric flow cytometry is an alternative approach to the polymerase chain reaction method for evaluating minimal residual disease in treatment protocols for primary acute lymphoblastic leukemia. Given considerable differences between primary and relapsed acute lymphoblastic leukemia treatment regimens, flow cytometric assessment of minimal residual disease in relapsed leukemia requires an independent comprehensive investigation. In the present study we addressed evaluation of minimal residual disease by flow cytometry in the clinical trial for childhood relapsed acute lymphoblastic leukemia using eight-color flow cytometry. The major challenge of the study was to reliably identify low amounts of residual leukemic cells against the complex background of regeneration, characteristic of follow-up samples during relapse treatment. In a prospective study of 263 follow-up bone marrow samples from 122 patients with B-cell precursor acute lymphoblastic leukemia, we tested various B-cell markers, adapted the antibody panel to the treatment protocol, and evaluated its performance by a blinded parallel comparison with the polymerase chain reaction data. The resulting eight-color single-tube panel showed a consistently high overall concordance (P<0.001) and, under optimal conditions, sensitivity similar to that of the reference polymerase chain reaction method. Overall, evaluation of minimal residual disease by flow cytometry can be successfully integrated into the clinical management of relapsed childhood acute lymphoblastic leukemia either as complementary to the polymerase chain reaction or as an independent risk stratification tool. ALL-REZ BFM 2002 clinical trial information: NCT00114348.

  2. CD8+ T-cells count in acute myocardial infarction in HIV disease in a predominantly male cohort.

    PubMed

    Badejo, Oluwatosin A; Chang, Chung-Chou; So-Armah, Kaku A; Tracy, Russell P; Baker, Jason V; Rimland, David; Butt, Adeel A; Gordon, Adam J; Rinaldo, Charles R; Kraemer, Kevin; Samet, Jeffrey H; Tindle, Hilary A; Goetz, Matthew B; Rodriguez-Barradas, Maria C; Bedimo, Roger; Gibert, Cynthia L; Leaf, David A; Kuller, Lewis H; Deeks, Steven G; Justice, Amy C; Freiberg, Matthew S

    2015-01-01

    Human Immunodeficiency Virus- (HIV-) infected persons have a higher risk for acute myocardial infarction (AMI) than HIV-uninfected persons. Earlier studies suggest that HIV viral load, CD4+ T-cell count, and antiretroviral therapy are associated with cardiovascular disease (CVD) risk. Whether CD8+ T-cell count is associated with CVD risk is not clear. We investigated the association between CD8+ T-cell count and incident AMI in a cohort of 73,398 people (of which 97.3% were men) enrolled in the U.S. Veterans Aging Cohort Study-Virtual Cohort (VACS-VC). Compared to uninfected people, HIV-infected people with high baseline CD8+ T-cell counts (>1065 cells/mm3) had increased AMI risk (adjusted HR=1.82, P<0.001, 95% CI: 1.46 to 2.28). There was evidence that the effect of CD8+ T-cell tertiles on AMI risk differed by CD4+ T-cell level: compared to uninfected people, HIV-infected people with CD4+ T-cell counts≥200 cells/mm3 had increased AMI risk with high CD8+ T-cell count, while those with CD4+ T-cell counts<200 cells/mm3 had increased AMI risk with low CD8+ T-cell count. CD8+ T-cell counts may add additional AMI risk stratification information beyond that provided by CD4+ T-cell counts alone.

  3. Thrombosis in children with acute lymphoblastic leukemia: part I. Epidemiology of thrombosis in children with acute lymphoblastic leukemia.

    PubMed

    Athale, Uma H; Chan, Anthony K C

    2003-01-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. With the advent of aggressive multimodality therapy, ALL has become a curable disease for majority of pediatric patients. Thromboembolism (TE) is a well-recognized serious complication in association with ALL leading to significant morbidity. It can be potentially fatal in over 50% of the affected patients. Development of TE does interfere with the scheduled treatment plan for ALL and, thus, ultimate outcome from ALL. Recent evidence indicates that concomitant administration of asparaginase and steroids is likely to be associated with higher incidence of TE, especially in children with at least one prothrombotic risk factor. In addition, older children and patients with high risk ALL may be at higher risk for developing TE. However, the epidemiology and the exact pathogenesis of this entity have not yet been clearly defined. To reduce the incidence of TE and its impact on overall outcome as well as on the quality of life in children undergoing treatment for ALL, further studies to define the epidemiology of TE in relation to the biology of ALL and chemotherapy protocols are urgently needed. The purpose of this review is to evaluate the current knowledge of TE in association with ALL in children, especially in relation with the treatment protocols and genetic background. This review will be published in three parts. The first part will review the available information regarding epidemiology of TE in children with ALL. PMID:14678808

  4. Assessing Compliance With Mercaptopurine Treatment in Younger Patients With Acute Lymphoblastic Leukemia in First Remission | Division of Cancer Prevention

    Cancer.gov

    This randomized phase III trial studies compliance to a mercaptopurine treatment intervention compared to standard of care in younger patients with acute lymphoblastic leukemia in remission. Assessing ways to help patients who have acute lymphoblastic leukemia to take their medications as prescribed may help them in taking their medications more consistently and may improve treatment outcomes. |

  5. Mixed lymphocyte cultures can predict TCR Vbeta repertoires of T cells infiltrating kidney transplants during acute rejection episodes.

    PubMed

    Paraoan, Marius T; Bakran, Ali; Hammad, Abdul; Sells, Robert A; Christmas, Stephen E

    2005-12-27

    Alloreactive T cell populations can show skewing of T-cell antigen receptor (TCR) Vbeta gene usage. The aims of the experiments were to compare in vivo and in vitro T cell alloresponses against donor alloantigens for TCR Vbeta gene usage. T-cell cultures from renal biopsies taken during acute rejection and pretransplant mixed lymphocyte cultures (MLC) were established from five renal transplant patients. TCR Vbeta gene usage, assessed with Vbeta family specific antibodies, showed that up to five different Vbeta families were significantly expanded. In four of five cases, there was close concordance between Vbeta families expanded from the biopsy and in MLC. T-cell clones from one renal biopsy were specific for the mismatched donor alloantigen and showed similar TCR Vbeta gene usage to the original T-cell line. The results show very similar patterns of TCR Vbeta gene usage in alloreactive T cells generated ex vivo or in vitro.

  6. Acute Lymphoblastic Leukemia in a Young Adult Presenting as Hepatitis and Acute Kidney Injury

    PubMed Central

    Heincelman, Marc; Karakala, Nithin; Rockey, Don C.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) in adults is a relatively rare malignancy. The typical presentation includes signs and symptoms associated with bone marrow failure, including fevers, infections, fatigue, and excessive bruising. In this article, we report an unusual systemic presentation of ALL in a previously healthy 18-year-old man. He initially presented with several-day history of nausea and vomiting, 10-pound weight loss, and right upper quadrant abdominal pain with evidence of acute hepatocellular liver injury (elevations in aspartate aminotransferase/alanine aminotransferase) and elevation in serum creatinine. Further history revealed that he just joined the Marine Corp; in preparation, he had been lifting weights and taking protein and creatine supplements. A complete serological evaluation for liver disease was negative and creatine phosphokinase was normal. His aspartate aminotransferase and alanine aminotransferase declined, and he was discharged with expected improvement. However, he returned one week later with continued symptoms and greater elevation of aminotransferases. Liver biopsy was nondiagnostic, revealing scattered portal and lobular inflammatory cells (primarily lymphocytes) felt to be consistent with drug-induced liver injury or viral hepatitis. Given his elevated creatinine, unresponsive to aggressive volume expansion, a kidney biopsy was performed, revealing normal histology. He subsequently developed an extensive left lower extremity deep venous thrombosis. Given his deep venous thrombosis, his peripheral blood was sent for flow cytometry, which revealed lymphoblasts. Bone marrow biopsy revealed 78% blasts with markers consistent with acute B-cell lymphoblastic leukemia. This report emphasizes that right upper quadrant abdominal pain with liver test abnormalities may be the initial presentation of a systemic illness such as ALL. PMID:27722178

  7. Early Gag Immunodominance of the HIV-Specific T-Cell Response during Acute/Early Infection Is Associated with Higher CD8+ T-Cell Antiviral Activity and Correlates with Preservation of the CD4+ T-Cell Compartment

    PubMed Central

    Ghiglione, Yanina; Falivene, Juliana; Socias, María Eugenia; Laufer, Natalia; Coloccini, Romina Soledad; Rodriguez, Ana María; Ruiz, María Julia; Pando, María Ángeles; Giavedoni, Luis David; Cahn, Pedro; Sued, Omar; Salomon, Horacio; Gherardi, María Magdalena

    2013-01-01

    The important role of the CD8+ T-cell response on HIV control is well established. Moreover, the acute phase of infection represents a proper scenario to delineate the antiviral cellular functions that best correlate with control. Here, multiple functional aspects (specificity, ex vivo viral inhibitory activity [VIA] and polyfunctionality) of the HIV-specific CD8+ T-cell subset arising early after infection, and their association with disease progression markers, were examined. Blood samples from 44 subjects recruited within 6 months from infection (primary HIV infection [PHI] group), 16 chronically infected subjects, 11 elite controllers (EC), and 10 healthy donors were obtained. Results indicated that, although Nef dominated the anti-HIV response during acute/early infection, a higher proportion of early anti-Gag T cells correlated with delayed progression. Polyfunctional HIV-specific CD8+ T cells were detected at early time points but did not associate with virus control. Conversely, higher CD4+ T-cell set points were observed in PHI subjects with higher HIV-specific CD8+ T-cell VIA at baseline. Importantly, VIA levels correlated with the magnitude of the anti-Gag cellular response. The advantage of Gag-specific cells may result from their enhanced ability to mediate lysis of infected cells (evidenced by a higher capacity to degranulate and to mediate VIA) and to simultaneously produce IFN-γ. Finally, Gag immunodominance was associated with elevated plasma levels of interleukin 2 (IL-2) and macrophage inflammatory protein 1β (MIP-1β). All together, this study underscores the importance of CD8+ T-cell specificity in the improved control of disease progression, which was related to the capacity of Gag-specific cells to mediate both lytic and nonlytic antiviral mechanisms at early time points postinfection. PMID:23616666

  8. Flavopiridol in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia

  9. Sorafenib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  10. The evolution of clinical trials for infant acute lymphoblastic leukemia

    PubMed Central

    Kotecha, R S; Gottardo, N G; Kees, U R; Cole, C H

    2014-01-01

    Acute lymphoblastic leukemia (ALL) in infants has a significantly inferior outcome in comparison with older children. Despite initial improvements in survival of infants with ALL since establishment of the first pediatric cooperative group ALL trials, the poor outcome has plateaued in recent years. Historically, infants were treated on risk-adapted childhood ALL protocols. These studies were pivotal in identifying the need for infant-specific protocols, delineating prognostic categories and the requirement for a more unified approach between study groups to overcome limitations in accrual because of low incidence. This subsequently led to the development of collaborative infant-specific studies. Landmark outcomes have included the elimination of cranial radiotherapy following the discovery of intrathecal and high-dose systemic therapy as a superior and effective treatment strategy for central nervous system disease prophylaxis, with improved neurodevelopmental outcome. Universal prospective identification of independent adverse prognostic factors, including presence of a mixed lineage leukemia rearrangement and young age, has established the basis for risk stratification within current trials. The infant-specific trials have defined limits to which conventional chemotherapeutic agents can be intensified to optimize the balance between treatment efficacy and toxicity. Despite variations in therapeutic intensity, there has been no recent improvement in survival due to the equilibrium between relapse and toxicity. Ultimately, to improve the outcome for infants with ALL, key areas still to be addressed include identification and adaptation of novel prognostic markers and innovative therapies, establishing the role of hematopoietic stem cell transplantation in first complete remission, treatment strategies for relapsed/refractory disease and monitoring and timely intervention of late effects in survivors. This would be best achieved through a single unified

  11. Molecular allelokaryotyping of relapsed pediatric acute lymphoblastic leukemia.

    PubMed

    Kawamata, Norihiko; Ogawa, Seishi; Seeger, Karl; Kirschner-Schwabe, Renate; Huynh, Thien; Chen, John; Megrabian, Nairi; Harbott, Jochen; Zimmermann, Martin; Henze, Günter; Schrappe, Martin; Bartram, Claus R; Koeffler, H Phillip

    2009-06-01

    Acute lymphoblastic leukemia (ALL) cells at relapse are frequently more resistant to treatment than primary clones and this may be caused by further genetic changes in the ALL cells at relapse. These acquired genomic abnormalities have not been fully characterized. To examine the additional genomic alterations of ALL at relapse, we performed single nucleotide polymorphism genomic microarry (SNP-chip) analysis on 14 ALL bone marrow samples at initial diagnosis, remission and relapse. Only two cases at initial diagnosis had a normal appearing genome by SNP-chip. All 14 cases had genomic alterations at relapse; and 10 of these had additional genomic abnormalities not present at diagnosis. Deletion of either the INK4A/ARF gene (2 cases) or the NF2 gene (2 cases) at 22q12.2 was an acquired genomic change at relapse. Loss of heterozygosity with normal copy number [uniparental disomy (UPD)] was detected in 3 cases as an additional genomic change at relapse. Interestingly, several genomic alterations, especially deletions, detected at initial diagnosis, disappeared at relapse, suggesting the ALL cells at relapse were minor clones at initial diagnosis and emerged at relapse. For several cases, trisomy at initial diagnosis changed to either UPD (2 cases) or normal appearing genome (2 cases). Further, we found disruption of PTPRD gene occurring at intron 23 as an additional genomic abnormality in one case. In summary, additional genomic changes are very common events in ALL at relapse; whether these abnormalities are associated with resistance to treatment remains to clarified in further studies.

  12. Rituximab in B-Lineage Adult Acute Lymphoblastic Leukemia.

    PubMed

    Maury, Sébastien; Chevret, Sylvie; Thomas, Xavier; Heim, Dominik; Leguay, Thibaut; Huguet, Françoise; Chevallier, Patrice; Hunault, Mathilde; Boissel, Nicolas; Escoffre-Barbe, Martine; Hess, Urs; Vey, Norbert; Pignon, Jean-Michel; Braun, Thorsten; Marolleau, Jean-Pierre; Cahn, Jean-Yves; Chalandon, Yves; Lhéritier, Véronique; Beldjord, Kheira; Béné, Marie C; Ifrah, Norbert; Dombret, Hervé

    2016-09-15

    Background Treatment with rituximab has improved the outcome for patients with non-Hodgkin's lymphoma. Patients with B-lineage acute lymphoblastic leukemia (ALL) may also have the CD20 antigen, which is targeted by rituximab. Although single-group studies suggest that adding rituximab to chemotherapy could improve the outcome in such patients, this hypothesis has not been tested in a randomized trial. Methods We randomly assigned adults (18 to 59 years of age) with CD20-positive, Philadelphia chromosome (Ph)-negative ALL to receive chemotherapy with or without rituximab, with event-free survival as the primary end point. Rituximab was given during all treatment phases, for a total of 16 to 18 infusions. Results From May 2006 through April 2014, a total of 209 patients were enrolled: 105 in the rituximab group and 104 in the control group. After a median follow-up of 30 months, event-free survival was longer in the rituximab group than in the control group (hazard ratio, 0.66; 95% confidence interval [CI], 0.45 to 0.98; P=0.04); the estimated 2-year event-free survival rates were 65% (95% CI, 56 to 75) and 52% (95% CI, 43 to 63), respectively. Treatment with rituximab remained associated with longer event-free survival in a multivariate analysis. The overall incidence rate of severe adverse events did not differ significantly between the two groups, but fewer allergic reactions to asparaginase were observed in the rituximab group. Conclusions Adding rituximab to the ALL chemotherapy protocol improved the outcome for younger adults with CD20-positive, Ph-negative ALL. (Funded by the Regional Clinical Research Office, Paris, and others; ClinicalTrials.gov number, NCT00327678 .). PMID:27626518

  13. Nanoparticle targeted therapy against childhood acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Satake, Noriko; Lee, Joyce; Xiao, Kai; Luo, Juntao; Sarangi, Susmita; Chang, Astra; McLaughlin, Bridget; Zhou, Ping; Kenney, Elaina; Kraynov, Liliya; Arnott, Sarah; McGee, Jeannine; Nolta, Jan; Lam, Kit

    2011-06-01

    The goal of our project is to develop a unique ligand-conjugated nanoparticle (NP) therapy against childhood acute lymphoblastic leukemia (ALL). LLP2A, discovered by Dr. Kit Lam, is a high-affinity and high-specificity peptidomimetic ligand against an activated α4β1 integrin. Our study using 11 fresh primary ALL samples (10 precursor B ALL and 1 T ALL) showed that childhood ALL cells expressed activated α4β1 integrin and bound to LLP2A. Normal hematopoietic cells such as activated lymphocytes and monocytes expressed activated α4β1 integrin; however, normal hematopoietic stem cells showed low expression of α4β1 integrin. Therefore, we believe that LLP2A can be used as a targeted therapy for childhood ALL. The Lam lab has developed novel telodendrimer-based nanoparticles (NPs) which can carry drugs efficiently. We have also developed a human leukemia mouse model using immunodeficient NOD/SCID/IL2Rγ null mice engrafted with primary childhood ALL cells from our patients. LLP2A-conjugated NPs will be evaluated both in vitro and in vivo using primary leukemia cells and this mouse model. NPs will be loaded first with DiD near infra-red dye, and then with the chemotherapeutic agents daunorubicin or vincristine. Both drugs are mainstays of current chemotherapy for childhood ALL. Targeting properties of LLP2A-conjugated NPs will be evaluated by fluorescent microscopy, flow cytometry, MTS assay, and mouse survival after treatment. We expect that LLP2A-conjugated NPs will be preferentially delivered and endocytosed to leukemia cells as an effective targeted therapy.

  14. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice

    PubMed Central

    Fiume, Giuseppe; Scialdone, Annarita; Albano, Francesco; Rossi, Annalisa; Maria Tuccillo, Franca; Rea, Domenica; Palmieri, Camillo; Caiazzo, Elisabetta; Cicala, Carla; Bellevicine, Claudio; Falcone, Cristina; Vecchio, Eleonora; Pisano, Antonio; Ceglia, Simona; Mimmi, Selena; Iaccino, Enrico; Laurentiis, Annamaria de; Pontoriero, Marilena; Agosti, Valter; Troncone, Giancarlo; Mignogna, Chiara; Palma, Giuseppe; Arra, Claudio; Mallardo, Massimo; Maria Buonaguro, Franco; Scala, Giuseppe; Quinto, Ileana

    2015-01-01

    Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4+ and CD8+ T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation. PMID:26343909

  15. Drugs under preclinical and clinical study for treatment of acute and chronic lymphoblastic leukemia

    PubMed Central

    Jacob, Joe Antony; Salmani, Jumah Masoud Mohammad; Chen, Baoan

    2016-01-01

    Targeted therapy has modernized the treatment of both chronic and acute lymphoblastic leukemia. The introduction of monoclonal antibodies and combinational drugs has increased the survival rate of patients. Preclinical studies with various agents have resulted in positive outputs with Phase III trial drugs and monoclonal antibodies entering clinical trials. Most of the monoclonal antibodies target the CD20 and CD22 receptors. This has led to the approval of a few of these drugs by the US Food and Drug Administration. This review focuses on the drugs under preclinical and clinical study in the ongoing efforts for treatment of acute and chronic lymphoblastic leukemia. PMID:27382259

  16. Second Malignant Neoplasms After Treatment of Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Schmiegelow, Kjeld; Levinsen, Mette Frandsen; Attarbaschi, Andishe; Baruchel, Andre; Devidas, Meenakshi; Escherich, Gabriele; Gibson, Brenda; Heydrich, Christiane; Horibe, Keizo; Ishida, Yasushi; Liang, Der-Cherng; Locatelli, Franco; Michel, Gérard; Pieters, Rob; Piette, Caroline; Pui, Ching-Hon; Raimondi, Susana; Silverman, Lewis; Stanulla, Martin; Stark, Batia; Winick, Naomi; Valsecchi, Maria Grazia

    2013-01-01

    Purpose Second malignant neoplasms (SMNs) after diagnosis of childhood acute lymphoblastic leukemia (ALL) are rare events. Patients and Methods We analyzed data on risk factors and outcomes of 642 children with SMNs occurring after treatment for ALL from 18 collaborative study groups between 1980 and 2007. Results Acute myeloid leukemia (AML; n = 186), myelodysplastic syndrome (MDS; n = 69), and nonmeningioma brain tumor (n = 116) were the most common types of SMNs and had the poorest outcome (5-year survival rate, 18.1% ± 2.9%, 31.1% ± 6.2%, and 18.3% ± 3.8%, respectively). Five-year survival estimates for AML were 11.2% ± 2.9% for 125 patients diagnosed before 2000 and 34.1% ± 6.3% for 61 patients diagnosed after 2000 (P < .001); 5-year survival estimates for MDS were 17.1% ± 6.4% (n = 36) and 48.2% ± 10.6% (n = 33; P = .005). Allogeneic stem-cell transplantation failed to improve outcome of secondary myeloid malignancies after adjusting for waiting time to transplantation. Five-year survival rates were above 90% for patients with meningioma, Hodgkin lymphoma, thyroid carcinoma, basal cell carcinoma, and parotid gland tumor, and 68.5% ± 6.4% for those with non-Hodgkin lymphoma. Eighty-nine percent of patients with brain tumors had received cranial irradiation. Solid tumors were associated with cyclophosphamide exposure, and myeloid malignancy was associated with topoisomerase II inhibitors and starting doses of methotrexate of at least 25 mg/m2 per week and mercaptopurine of at least 75 mg/m2 per day. Myeloid malignancies with monosomy 7/5q− were associated with high hyperdiploid ALL karyotypes, whereas 11q23/MLL-rearranged AML or MDS was associated with ALL harboring translocations of t(9;22), t(4;11), t(1;19), and t(12;21) (P = .03). Conclusion SMNs, except for brain tumors, AML, and MDS, have outcomes similar to their primary counterparts. PMID:23690411

  17. Deficient Innate Immunity, Thymopoiesis, and Gene Expression Response to Radiation in Survivors of Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Leung, Wing; Neale, Geoffrey; Behm, Fred; Iyengar, Rekha; Finkelstein, David; Kastan, Michael B.; Pui, Ching-Hon

    2010-01-01

    Background Survivors of childhood acute lymphoblastic leukemia (ALL) are at an increased risk of developing secondary malignant neoplasms. Radiation and chemotherapy can cause mutations and cytogenetic abnormalities and induce genomic instability. Host immunity and appropriate DNA damage responses are critical inhibitors of carcinogenesis. Therefore, we sought to determine the long-term effects of ALL treatment on immune function and response to DNA damage. Methods Comparative studies on 14 survivors in first complete remission and 16 siblings were conducted. Results In comparison to siblings on the cells that were involved in adaptive immunity, the patients had either higher numbers (CD19+ B cells and CD4+CD25+ T regulatory cells) or similar numbers (αβT cells and CD45RO+/RA− memory T cells) in the blood. In contrast, patients had lower numbers of all lymphocyte subsets involved in innate immunity (γδT cells and all NK subsets, including KIR2DL1+ cells, KIR2DL2/L3+ cells, and CD16+ cells), and lower natural cytotoxicity against K562 leukemia cells. Thymopoiesis was lower in patients, as demonstrated by less CD45RO−/RA+ Naïve T cell and less SjTREC levels in the blood, whereas the Vβ spectratype complexity score was similar. Array of gene expression response to low-dose radiation showed that about 70% of the probesets had a reduced response in patients. One of these genes, SCHIP-1, was also among the top-ranked single nucleotide polymorphisms (SNPs) during the whole genome scanning by SNP microarray analysis. Conclusion ALL survivors were deficient in innate immunity, thymopoiesis, and DNA damage responses to radiation. These defects may contribute to their increased likelihood of second malignancy. PMID:20413363

  18. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus.

    PubMed

    Schmiegelow, Kjeld; Attarbaschi, Andishe; Barzilai, Shlomit; Escherich, Gabriele; Frandsen, Thomas Leth; Halsey, Christina; Hough, Rachael; Jeha, Sima; Kato, Motohiro; Liang, Der-Cherng; Mikkelsen, Torben Stamm; Möricke, Anja; Niinimäki, Riitta; Piette, Caroline; Putti, Maria Caterina; Raetz, Elizabeth; Silverman, Lewis B; Skinner, Roderick; Tuckuviene, Ruta; van der Sluis, Inge; Zapotocka, Ester

    2016-06-01

    Although there are high survival rates for children with acute lymphoblastic leukaemia, their outcome is often counterbalanced by the burden of toxic effects. This is because reported frequencies vary widely across studies, partly because of diverse definitions of toxic effects. Using the Delphi method, 15 international childhood acute lymphoblastic leukaemia study groups assessed acute lymphoblastic leukaemia protocols to address toxic effects that were to be considered by the Ponte di Legno working group. 14 acute toxic effects (hypersensitivity to asparaginase, hyperlipidaemia, osteonecrosis, asparaginase-associated pancreatitis, arterial hypertension, posterior reversible encephalopathy syndrome, seizures, depressed level of consciousness, methotrexate-related stroke-like syndrome, peripheral neuropathy, high-dose methotrexate-related nephrotoxicity, sinusoidal obstructive syndrome, thromboembolism, and Pneumocystis jirovecii pneumonia) that are serious but too rare to be addressed comprehensively within any single group, or are deemed to need consensus definitions for reliable incidence comparisons, were selected for assessment. Our results showed that none of the protocols addressed all 14 toxic effects, that no two protocols shared identical definitions of all toxic effects, and that no toxic effect definition was shared by all protocols. Using the Delphi method over three face-to-face plenary meetings, consensus definitions were obtained for all 14 toxic effects. In the overall assessment of outcome of acute lymphoblastic leukaemia treatment, these expert opinion-based definitions will allow reliable comparisons of frequencies and severities of acute toxic effects across treatment protocols, and facilitate international research on cause, guidelines for treatment adaptation, preventive strategies, and development of consensus algorithms for reporting on acute lymphoblastic leukaemia treatment. PMID:27299279

  19. Acute liver failure as a rare initial manifestation of peripheral T-cell lymphoma

    PubMed Central

    Davis, Michael L; Hashemi, Nikroo

    2010-01-01

    Acute liver failure (ALF) is an uncommon disease in the United States, affecting more than 2 000 people each year. Of all the various causes, malignant infiltration is one of the least well known and carries with it a high mortality. We describe a case of ALF as the presenting manifestation of peripheral T-cell lymphoma in an elderly woman. By reporting this case, we hope to increase early recognition of this disease process in order to potentially improve treatment outcomes. PMID:21160947

  20. Relative osteopenia after treatment for acute lymphoblastic leukemia.

    PubMed

    Warner, J T; Evans, W D; Webb, D K; Bell, W; Gregory, J W

    1999-04-01

    Osteoporosis in adult life is associated with a significant morbidity and may be predisposed to by osteopenia and failure to reach peak bone mass in childhood. Children treated for acute lymphoblastic leukemia (ALL) may be at risk of osteopenia as a result of previous therapy or as a consequence of the disease process itself. Dual energy x-ray absorptiometry measurements of bone mineral content (BMC) for the whole body and at the lumbar spine and hip were taken in 35 (14 male) long-term survivors of ALL and compared with results in 20 (10 male) survivors of other malignancies and 31 (17 male) healthy sibling controls. The measured BMC was expressed as a percentage of a predicted value derived from the control group and based on the variables that had influence upon it. BMC (%) was reduced at the spine in the ALL group compared with controls [92.4 (8.0)% versus 100.4 (9.7)%, respectively; p < 0.005] and at the hip compared with both other malignancies and controls [89.0 (11.5)% versus 96.1 (11.7)% and 100.4 (9.2)%, respectively; p < 0.0005]. Increasing length of time off therapy was associated with a significant increase in %BMC at both the spine and the hip. For the spine, this association was significantly different between the ALL group and other malignancies, suggesting that any gain in %BMC after therapy was slower in children treated for ALL. Both exercise capacity and levels of physical activity were correlated with %BMC at the hip (r = 0.44, p < 0.001 and r = 0.29, p < 0.01, respectively). Previous exposure to methotrexate, ifosfamide, and bleomycin was associated with a reduction in %BMC at the spine. Exposure to 6-mercaptopurine and cisplatin was associated with a reduction at the hip. In conclusion, children treated for ALL are osteopenic. The mechanism is probably multifactorial but is partially related to previous chemotherapy, limited exercise capacity, and relative physical inactivity.

  1. Oxindole alkaloids from Uncaria tomentosa induce apoptosis in proliferating, G0/G1-arrested and bcl-2-expressing acute lymphoblastic leukaemia cells.

    PubMed

    Bacher, Nicole; Tiefenthaler, Martin; Sturm, Sonja; Stuppner, Hermann; Ausserlechner, Michael J; Kofler, Reinhard; Konwalinka, Günther

    2006-03-01

    Natural products are still an untapped source of promising lead compounds for the generation of antineoplastic drugs. Here, we investigated for the first time the antiproliferative and apoptotic effects of highly purified oxindole alkaloids, namely isopteropodine (A1), pteropodine (A2), isomitraphylline (A3), uncarine F (A4) and mitraphylline (A5) obtained from Uncaria tomentosa, a South American Rubiaceae, on human lymphoblastic leukaemia T cells (CCRF-CEM-C7H2). Four of the five tested alkaloids inhibited proliferation of acute lymphoblastic leukaemia cells. Furthermore, the antiproliferative effect of the most potent alkaloids pteropodine (A2) and uncarine F (A4) correlated with induction of apoptosis. After 48 h, 100 micromol/l A2 or A4 increased apoptotic cells by 57%. CEM-C7H2 sublines with tetracycline-regulated expression of bcl-2, p16ink4A or constitutively expressing the cowpox virus protein crm-A were used for further studies of the apoptosis-inducing properties of these alkaloids. Neither overexpression of bcl-2 or crm-A nor cell-cycle arrest in G0/G1 phase by tetracycline-regulated expression of p16INK4A could prevent alkaloid-induced apoptosis. Our results show the strong apoptotic effects of pteropodine and uncarine F on acute leukaemic lymphoblasts and recommend the alkaloids for further studies in xenograft models.

  2. Protection of acute GVHD by all-trans retinoic acid through suppression of T cell expansion and induction of regulatory T cells through IL-2 signaling.

    PubMed

    Yang, Haojun; Gu, Jian; Zhu, Qin; Lu, Hao; Wang, Kunpeng; Ni, Xuhao; Lu, Yunjie; Lu, Ling

    2015-10-01

    All-trans retinoic acid (atRA), the active derivative of vitamin A, has been shown to regulate Treg and T effector cell differentiation. However, the potential use of atRA as a treatment for acute graft-verse-host disease (aGVHD) has not been realized. Here we studied the ability of atRA to prevent and treat acute-GVHD in the B6-to-F1(D2B6F1) murine model. Our results showed that atRA consistently displayed a potent ability to control aGVHD development and reduce mortality by suppressing the expansion of donor T cells and inhibiting cytokine expression from donor CD8 cells. Interestingly, CD4(+)Foxp3(+) regulatory T cells were markedly increased in the spleens of atRA-treated mice. In vitro treatment with atRA inhibited T cell proliferation in a dose-dependent manner. Injection of an anti-IL-2 antibody impaired the protection by atRA in aGVHD. Therefore, these results strongly implicate atRA as a novel therapeutic strategy for controlling aGVHD progression and treating other inflammatory diseases. PMID:25864619

  3. Delayed Neurotoxicity Associated with Therapy for Children with Acute Lymphoblastic Leukemia

    ERIC Educational Resources Information Center

    Cole, Peter D.; Kamen, Barton A.

    2006-01-01

    Most children diagnosed today with acute lymphoblastic leukemia (ALL) will be cured. However, treatment entails risk of neurotoxicity, causing deficits in neurocognitive function that can persist in the years after treatment is completed. Many of the components of leukemia therapy can contribute to adverse neurologic sequelae, including…

  4. An Initial Reintegration Treatment of Children with Acute Lymphoblastic Leukemia (ALL).

    ERIC Educational Resources Information Center

    Lurie, Michelle; Kaufman, Nadeen

    2001-01-01

    Evaluated the cognitive, psychological, and social adjustment of pediatric acute lymphoblastic leukemia (ALL) patients and assessed how their needs could best be met through reintegration programs focusing on learning/ educational needs. Findings from three case studies highlight the need for ALL patients to be provided with comprehensive programs…

  5. Management and treatment of osteonecrosis in children and adolescents with acute lymphoblastic leukemia

    PubMed Central

    te Winkel, Mariël L.; Pieters, Rob; Wind, Ernst-Jan D.; Bessems, J.H.J.M. (Gert); van den Heuvel-Eibrink, Marry M.

    2014-01-01

    There is no consensus regarding how to manage osteonecrosis in pediatric acute lymphoblastic leukemia patients. Therefore, we performed a quality assessment of the literature with the result of a search strategy using the MESH terms osteonecrosis, children, childhood cancer, surgery, bisphosphonates, 6 hydroxymethyl-glutaryl CoA reductase inhibitors, anticoagulants and hyperbaric oxygen, and terms related to these MESH terms. A randomized controlled trial showed that osteonecrosis can be prevented by intermittent, instead of continuous, corticosteroid administration. The studies on interventions after onset of osteonecrosis were of low-quality evidence. Seven pediatric acute lymphoblastic leukemia studies described non-surgical interventions; bisphosphonates (n=5), hyperbaric oxygen therapy (n=1), or prostacyclin analogs (n=1). Safety and efficacy studies are lacking. Five studies focused on surgical interventions; none was of sufficient quality to draw definite conclusions. In conclusion, preventing osteonecrosis is feasible in a proportion of the pediatric acute lymphoblastic leukemia patients by discontinuous, instead of continuous, steroid scheduling. The questions as to how to treat childhood acute lymphoblastic leukemia patients with osteonecrosis cannot be answered as good-quality studies are lacking. PMID:24598854

  6. Induction of apoptosis in acute lymphoblastic leukemia cells by isolated fractions from strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberries contain phytochemicals that have anti-inflammatory and anti-cancer activity. We investigated the ability of isolated fractions from strawberry extracts to induce apoptotic cell death in three pre-B acute lymphoblastic leukemia (ALL) lines, including SEM and RS4;11 cell lines derived fr...

  7. Mucoepidermoid carcinoma of parotid gland as a subsequent neoplasm in children treated for acute lymphoblastic leukemia.

    PubMed

    Sukumaran Nair, Reghu K; Rajeswari, Binitha; Thankamony, Priyakumari; Parukuttyamma, Kusumakumary

    2015-01-01

    We report two cases of mucoepidermoid carcinoma occurring as a second neoplasm following treatment for acute lymphoblastic leukemia. Both patients underwent parotidectomy as the primary treatment. One of them received irradiation in addition to surgery. We discuss the risk of developing MEC as a second malignancy, prognosis, and treatment options. PMID:26458645

  8. The seventh international childhood acute lymphoblastic leukemia workshop report: Palermo, Italy, January 29--30, 2005.

    PubMed

    Aricó, M; Baruchel, A; Bertrand, Y; Biondi, A; Conter, V; Eden, T; Gadner, H; Gaynon, P; Horibe, K; Hunger, S P; Janka-Schaub, G; Masera, G; Nachman, J; Pieters, R; Schrappe, M; Schmiegelow, K; Valsecchi, M G; Pui, C-H

    2005-07-01

    Between 1995 and 2004, six International Childhood Acute Lymphoblastic Leukemia (ALL) Workshop have been held, and the completion of several collaborative projects has established the clinical relevance and treatment options for several specific genetic subtypes of ALL. This meeting report summarizes the data presented in the seventh meeting and the discussion.

  9. High hyperdiploid childhood acute lymphoblastic leukemia: Chromosomal gains as the main driver event.

    PubMed

    Paulsson, Kajsa

    2016-01-01

    High hyperdiploid childhood acute lymphoblastic leukemia is characterized by multiple chromosomal gains. Recent results show that this subtype harbors relatively few genetic abnormalities besides the extra chromosomes, which appear to arise early and are likely the main driver event. Secondary hits primarily target genes in the rat sarcoma (RAS) signaling pathway and histone modifiers. PMID:27308574

  10. Quantification of TEL-AML1 transcript for minimal residual disease assessment in childhood acute lymphoblastic leukaemia.

    PubMed

    Drunat, S; Olivi, M; Brunie, G; Grandchamp, B; Vilmer, E; Bièche, I; Cavé, H

    2001-08-01

    Strategies currently used for residual disease detection in acute lymphoblastic leukaemia (ALL) rely on polymerase chain reaction (PCR) detection of immunoglobulin and T-cell receptor rearrangements. The TEL-AML1 fusion transcript, which is associated with t(12;21) (p13;q22), is found in 25% of childhood B-cell precursor ALL, and represents an interesting alternative target. We compared two methods for quantitating TEL-AML1 fusion transcripts: competitive PCR and real-time PCR. These techniques showed similar sensitivity (5 x 10(-5)) and reproducibility. Giving highly correlated results, both techniques can be conveniently used for TEL-AML1 transcript quantification. The constancy of TEL-AML1 expression was evaluated by measuring TEL-AML1 transcripts at different steps of the cell cycle, and in 21 cases of ALL at diagnosis. No major variation in TEL-AML1 expression was observed during the cell cycle or in 20/21 of the ALL patients. Residual disease was then determined after completion of induction therapy in 20 patients with a TEL-AML1-positive ALL. Seven patients out of 20 (35%) were still positive, including two patients with high level of residual blasts (close to or beyond 10(-2)). When comparison was possible, results obtained using TEL-AML1 quantification were in accordance with those obtained using T-cell receptor rearrangements analysis.

  11. [Acute intestinal obstruction revealing enteropathy associated t-cell lymphoma, about a case].

    PubMed

    Garba, Abdoul Aziz; Adamou, Harissou; Magagi, Ibrahim Amadou; Brah, Souleymane; Habou, Oumarou

    2016-01-01

    Enteropathy associated T-cell lymphoma (EATL) is a rare complication of celiac disease (CD). We report a case of EATL associated with CD revealed by acute intestinal obstruction. A North African woman of 38 years old with a history of infertility and chronic abdominal pain was admitted in emergency with acute intestinal obstruction. During the surgery, we found a tumor on the small intestine with mesenteric lymphadenopathy. Histology and immunohistochemistry of the specimen objectified a digestive T lymphoma CD3+ and immunological assessment of celiac disease was positive. The diagnosis of EATL was thus retained. Chemotherapy (CHOEP protocol) was established as well as gluten-free diet with a complete response to treatment. The EATL is a rare complication of CD that can be revealed by intestinal obstruction. The prognosis can be improved by early treatment involving surgery and chemotherapy. Its prevention requires early diagnosis of celiac and gluten-free diets. PMID:27217874

  12. Recurrent precursor-B acute lymphoblastic leukemia presenting as a cervical malignancy.

    PubMed

    Kazi, Sofia; Szporn, Arnold Howard; Strauchen, James A; Chen, Hua; Kalir, Tamara

    2013-03-01

    A 59 year old woman with a history of acute lymphoblastic leukemia in remission presented with right flank pain. An abdominal ultrasound showed mild to moderate right hydronephrosis due to obstruction, and computed tomography scan showed a bulky mass near the cervix, concerning for cervical or uterine malignancy. A Papanicolaou smear was suspicious for malignancy, and immunocytochemical stains were positive for terminal deoxynucleotidyl transferase (TdT) and cluster of differentiation (CD)-10, focally positive for CD34 and CD79a, and negative for CD3, CD20, and paired box protein-5 (PAX-5). Cervical biopsies showed an infiltrating population of cells with immunophenotype similar to the cells on cervical cytology. The cytologic and histologic workup was compatible with infiltration of the uterine cervix by recurrent precursor-B acute lymphoblastic leukemia. A bone marrow biopsy showed normocellular marrow without evidence of tumor or infiltrative disease. Complete blood count and peripheral blood smear showed no evidence of leukemic involvement. Acute lymphoblastic leukemia diagnosed on cervical Pap smear has been very rarely reported. The majority of cases of hematologic malignancy involving the uterine cervix present with vaginal bleeding. To our knowledge, only three cases of recurrent precursor-B acute lymphoblastic leukemia in the uterine cervix have been reported, two of which occurred in pediatric patients. One pediatric patient presented with vomiting and abdominal pain, and was found to have hydronephrosis on imaging. This is perhaps the first case of precursor-B acute lymphoblastic leukemia diagnosed on cervical cytology in an adult patient with hydronephrosis and without vaginal bleeding.

  13. CD8+ T-Cells Count in Acute Myocardial Infarction in HIV Disease in a Predominantly Male Cohort

    PubMed Central

    Chang, Chung-Chou; So-Armah, Kaku A.; Baker, Jason V.; Butt, Adeel A.; Gordon, Adam J.; Rinaldo, Charles R.; Samet, Jeffrey H.; Tindle, Hilary A.; Goetz, Matthew B.; Rodriguez-Barradas, Maria C.; Bedimo, Roger; Gibert, Cynthia L.; Kuller, Lewis H.; Deeks, Steven G.; Justice, Amy C.; Freiberg, Matthew S.

    2015-01-01

    Human Immunodeficiency Virus- (HIV-) infected persons have a higher risk for acute myocardial infarction (AMI) than HIV-uninfected persons. Earlier studies suggest that HIV viral load, CD4+ T-cell count, and antiretroviral therapy are associated with cardiovascular disease (CVD) risk. Whether CD8+ T-cell count is associated with CVD risk is not clear. We investigated the association between CD8+ T-cell count and incident AMI in a cohort of 73,398 people (of which 97.3% were men) enrolled in the U.S. Veterans Aging Cohort Study-Virtual Cohort (VACS-VC). Compared to uninfected people, HIV-infected people with high baseline CD8+ T-cell counts (>1065 cells/mm3) had increased AMI risk (adjusted HR = 1.82, P < 0.001, 95% CI: 1.46 to 2.28). There was evidence that the effect of CD8+ T-cell tertiles on AMI risk differed by CD4+ T-cell level: compared to uninfected people, HIV-infected people with CD4+ T-cell counts ≥200 cells/mm3 had increased AMI risk with high CD8+ T-cell count, while those with CD4+ T-cell counts <200 cells/mm3 had increased AMI risk with low CD8+ T-cell count. CD8+ T-cell counts may add additional AMI risk stratification information beyond that provided by CD4+ T-cell counts alone. PMID:25688354

  14. Stroma-supported culture in childhood B-lineage acute lymphoblastic leukemia cells predicts treatment outcome.

    PubMed Central

    Kumagai, M; Manabe, A; Pui, C H; Behm, F G; Raimondi, S C; Hancock, M L; Mahmoud, H; Crist, W M; Campana, D

    1996-01-01

    We developed a stroma cell culture system that suppresses apoptosis of malignant cells from cases of B-lineage acute lymphoblastic leukemia. By multiparameter flow cytometric measurements of cell recovery after culture on stromal layers, we assessed the growth potential of 70 cases of newly diagnosed B-lineage acute lymphoblastic leukemia and related the findings of treatment outcome in a single program of chemotherapy. The numbers of leukemic cells recovered after 7 d of culture ranged from < 1 to 292% (median, 91%). The basis of poor cell recoveries from stromal layers appeared to be a propensity of the lymphoblasts to undergo apoptosis. The probability of event-free survival at 4 yr of follow-up was 50 +/- 9% (SE) among patients with higher cell recoveries ( > 91%), and 94 +/- 6% among those with reduced cell recoveries (+/- 91%; P = 0.0003). The prognostic value of leukemic cell recovery after culture exceeded estimates for all other recognized high-risk features and remained the most significant after adjustment with all competing covariates. Thus, the survival ability of leukemic cells on bone marrow-derived stromal layers reflects aggressiveness of the disease and is a powerful, independent predictor of treatment outcome in children with B-lineage acute lymphoblastic leukemia. PMID:8609232

  15. Immune reconstitution during maintenance therapy in children with acute lymphoblastic leukemia, relation to co-existing infection.

    PubMed

    El-Chennawi, Farha A; Al-Tonbary, Youssef A; Mossad, Youssef M; Ahmed, Mona A

    2008-08-01

    therapy. In conclusion, persistent immunosuppression is documented in children with acute lymphoblastic leukemia during maintenance therapy. Reconstitution of B lymphocytes and Natural killer cells occurs early while T cell reconstitution shows delayed recovery of both T helper and T suppressor cells. Immunosupression during maintenance therapy has no major clinical impact in terms of increased incidence or severity of systemic infections. PMID:18796245

  16. Peripheral blood mononuclear cells and regulatory T cells in acute viral hepatitis.

    PubMed Central

    Barnaba, V; Tamburrini, E; Laghi, V; Cauda, R; Levrero, M; Ruocco, G; Ortona, L; Balsano, F

    1985-01-01

    During acute viral hepatitis, we observed a significant decrease in OKT4/OKT8 ratio with a significant increase in the OKT8 positive subset in acute type B and non-A-non-B hepatitis. This altered ratio persisted in type B for a long time until HBsAg antibody became detectable, while it soon returned to normal in type A and non-A-non-B hepatitis. In the majority of acute hepatitis the altered ratio is because of an increase and not to a decrease in the whole T cell population, as described in chronic HBV infection. The number of HNK-1 positive cells remained raised during the recovery phase of type B and non-A-non-B hepatitis, a finding consistent with the hypothesis that NK cells play a role in the host defence against B and non-A-non-B virus infections. Serum beta 2-microglobulin concentrations were increased only in acute hepatitis B and non-A-non-B where immunological mechanisms are suspected to be involved, and showed a good correlation with the population of activated OKIa positive cells. PMID:2862096

  17. Monoclonal Antibody Therapy in Treating Patients With Chronic Lymphocytic Leukemia, Lymphocytic Lymphoma, Acute Lymphoblastic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  18. CD123 redirected multiple virus-specific T cells for acute myeloid leukemia.

    PubMed

    Zhou, Li; Liu, Xin; Wang, Xingbing; Sun, Zimin; Song, Xiao-Tong

    2016-02-01

    Hematopoietic stem cell transplantation (HSCT) has been increasingly used as a curative treatment for acute myeloid leukemia (AML). However, relapse rates after HSCT in complete remission (CR) are reported between 30% and 70%. In addition, numerous studies suggested that secondary viral infection from a variety of viruses including Epstein-Barr virus (EBV), adenovirus (Adv), and cytomegalovirus (CMV) are among the most common causes of death post-HSCT. Currently, chimeric antigen receptor (CAR)-based T cells have been developed to treat AML in clinical studies, while virus-specific cytotoxic T cells (VST) have been proven to be able to effectively prevent or treat viral infection after HSCT. Thus it would be desirable to develop T cells with the ability of simultaneously targeting AML relapse and viral infection. In this article, we now describe the generation of VST cells that are engineered to express CAR for a specific AML cell-surface antigen CD123 (CD123-CAR-VST). Using Dendritic cells (DCs) pulsed with EBV, Adv, and CMV peptides as sources of viral antigens, we generated VST from A2 donor peripheral mononuclear cells (PBMC). VST were then transduced with retroviral vector encoding CD123-CAR to generate CD123-CAR-VST. We demonstrated that CD123-CAR-VST recognized EBV, Adv, and CMV epitopes and had HLA-restricted virus-specific cytotoxic effector function against EBV target. In addition, CD123-CAR-VST retained the specificity against CD123-positive AML cell lines such as MOLM13 and THP-1 in vitro. Thus our results suggested that CD123-CAR-VST might be a valuable candidate to simultaneously prevent or treat relapse and viral infection in AML HSCT recipients. PMID:26740053

  19. Oral complications and dental care in children with acute lymphoblastic leukaemia.

    PubMed

    Valéra, Marie-Cécile; Noirrit-Esclassan, Emmanuelle; Pasquet, Marléne; Vaysse, Fréderic

    2015-08-01

    Acute leukaemia is the most common type of childhood cancer, the acute lymphoblastic type accounting for the majority of cases. Children affected by leukaemia receive various forms of treatments including chemotherapeutic agents and stem cell transplants. Leukaemia and its treatment can directly or indirectly affect oral health and further dental treatments. The oral complications include mucositis, opportunistic infections, gingival inflammation and bleeding, xerostomia and carious lesions. An additional consideration in children is the impact of the treatments on the developing dentition and on orofacial growth. The aim of this review is to describe the oral complications in children with acute lymphoblastic leukaemia and the methods of prevention and management before, during and after the cancer treatment.

  20. [Ocular infiltration in the anterior chamber in a female infant with acute non-lymphoblastic leukemia].

    PubMed

    Garrido Colino, C; Mateos González, M; Torres Valdivieso, M; López Pérez, J; Melero Moreno, C; Vivanco Martínez, J

    2001-07-01

    Unlike myeloid sarcoma, ocular involvement is unusual in acute non-lymphoblastic leukemia.A 9-month-old female infant with acute non-lymphoblastic leukemia M5 and evidence of active central nervous system (CNS) disease showed infiltration of the anterior chamber during therapy. At that time, the CNS disease was in completed remission. She was treated with topical corticosteroids, chemotherapy and bilateral ocular radiotherapy (total dose 1,000 cGy). The ocular manifestations responded well to treatment but hematologic response was poor. The patient died a few months later. Any ophthalmic manifestation in children with leukemia should be detected and treated early. Radiotherapy is warranted in infiltration of the anterior chamber of the eye. The presence of ocular, central CNS or bone marrow involvement indicates poor prognosis in acute childhood leukemia.

  1. T Cell Immunity to the Alkyl Hydroperoxide Reductase of Burkholderia pseudomallei: A Correlate of Disease Outcome in Acute Melioidosis.

    PubMed

    Reynolds, Catherine; Goudet, Amélie; Jenjaroen, Kemajittra; Sumonwiriya, Manutsanun; Rinchai, Darawan; Musson, Julie; Overbeek, Saskia; Makinde, Julia; Quigley, Kathryn; Manji, Jiten; Spink, Natasha; Yos, Pagnarith; Wuthiekanun, Vanaporn; Bancroft, Gregory; Robinson, John; Lertmemongkolchai, Ganjana; Dunachie, Susanna; Maillere, Bernard; Holden, Matthew; Altmann, Daniel; Boyton, Rosemary

    2015-05-15

    There is an urgent need for a better understanding of adaptive immunity to Burkholderia pseudomallei, the causative agent of melioidosis that is frequently associated with sepsis or death in patients in Southeast Asia and Northern Australia. The imperative to identify vaccine targets is driven both by the public health agenda in these regions and biological threat concerns. In several intracellular bacterial pathogens, alkyl hydroperoxidase reductases are upregulated as part of the response to host oxidative stress, and they can stimulate strong adaptive immunity. We show that alkyl hydroperoxidase reductase (AhpC) of B. pseudomallei is strongly immunogenic for T cells of 'humanized' HLA transgenic mice and seropositive human donors. Some T cell epitopes, such as p6, are able to bind diverse HLA class II heterodimers and stimulate strong T cell immunity in mice and humans. Importantly, patients with acute melioidosis who survive infection show stronger T cell responses to AhpC relative to those who do not. Although the sequence of AhpC is virtually invariant among global B. pseudomallei clinical isolates, a Cambodian isolate varies only in C-terminal truncation of the p6 T cell epitope, raising the possibility of selection by host immunity. This variant peptide is virtually unable to stimulate T cell immunity. For an infection in which there has been debate about centrality of T cell immunity in defense, these observations support a role for T cell immunity to AhpC in disease protection.

  2. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts.

    PubMed

    Tao, Qianshan; Pan, Ying; Wang, Yiping; Wang, Huiping; Xiong, Shudao; Li, Qing; Wang, Jia; Tao, Lili; Wang, Zhitao; Wu, Fan; Zhang, Rui; Zhai, Zhimin

    2015-11-15

    Tumor immune escape mechanism mediated by CD4+CD25+regulatory T cells (Tregs) is a key factor in the pathogenesis of acute myeloid leukemia (AML). IL-35, as a novel inhibitory cytokine, is produced by Tregs specially and regulates functions of Tregs in murine. However, IL-35 expression of Tregs in human is still disputed, and its role in AML is yet to be elucidated. In this study, we found that IL-35 was expressed highly in peripheral blood plasma of adult patients with AML and significantly correlated with the clinical stages of malignancy. Tregs-derived from adult AML patients produced IL-35 in a stimulation-dependent manner. IL-35 promoted AML blasts immune escape by expanding Tregs and inhibiting CD4+CD25-effector T cells (Teffs). Furthermore, IL-35 directly promoted the proliferation of AML blasts and reduced the apoptosis of AML blasts. Together, our study demonstrates that IL-35-derived from Tregs promotes the growth of adult AML blasts, suggesting that IL-35 has an important role in the pathogenesis of AML.

  3. [Acute liver failure due to T cell lymphoma without hepatic infiltration].

    PubMed

    Ortega López Juan, J; López Espinosa, J; Roqueta Mas, J; Sabado Alvarez, C; Ruiz Marcellan, C; Iglesias Berengué, J

    2003-01-01

    Hepatomegaly and alterations in hepatic function are common to all patients with sickle-cell disease. In these patients, hepatic sickling is a manifestation of severe intrahepatic vaso-oclusive crises, even at levels of 25 % HbS and hematocrits of more than 45-50 %, which in 10 % of cases can lead to acute hepatic failure (AHF). AHF can be due to a variety of causes, including hematologic malignancies, but T cell lymphoma, which is usually secondary to diffuse hepatic infiltration and ischemia, is an exceptional cause, although other mechanisms can be involved. Cytokines released by lymphomas have recently been implicated as a cause of AHF.We describe a black girl with sickle cell disease, who developed AHF due to T cell lymphoma without lymphomatous infiltration of the liver. The only mechanism found to explain the clinical findings was release of cytokines by lymphoma. In patients with AHF of unknown etiology we propose early liver biopsy, because prognosis depends on the presence or absence of hepatic tumour infiltration. If AHF develops in a patient with diagnosed malignant disease, cytokine release may be the cause of AHF. Consequently, early diagnosis of the underlying disease and provision of liver support, as well as direct removal of inflammatory mediators from the circulation by exchange transfusion or other methods, should be the main priorities. PMID:12628121

  4. The reduced soluble fibrinogen-like protein 2 and regulatory T cells in acute coronary syndrome

    PubMed Central

    Liu, Kun; Li, Ting; Huang, Shiyuan; Long, Rui; You, Ya; Liu, Jinping

    2016-01-01

    Soluble fibrinogen-like protein 2, sfgl2, is the new effector of CD4+CD25+FOXP3+ regulatory T cell (Treg) and exerts immunosuppressive activity. We design this study to investigate the possible role of sfgl2 in atherosclerosis. A total of 58 acute coronary syndrome (ACS) patients, together with 22 stable angina (SA) patients and 31 normal coronary artery (NCA) people were enrolled in our study. Serum level of sfgl2 and plasma level of Treg were respectively measured. In line with the change of Treg, serum level of sfgl2 in ACS (8.70 ng/mL) was significantly decreased (P = 0.003), compared with that in SA (11.86 ng/mL) and NCA (17.55 ng/mL). Both sfgl2 and Treg level were obviously decreased in ACS; Sfgl2 may play a protective role in atherosclerosis. PMID:26515143

  5. Regulatory T cells are decreased in acute RHDV lethal infection of adult rabbits.

    PubMed

    Teixeira, Luzia; Marques, Raquel M; Aguas, Artur P; Ferreira, Paula G

    2012-08-15

    Rabbit hemorrhagic disease virus (RHDV) is the etiologic agent of rabbit hemorrhagic disease (RHD), an acute lethal infection that kills 90% of adult rabbits due to severe acute liver inflammation. Interestingly, young rabbits are naturally resistant to RHDV infection. Here, we have compared naturally occurring CD4(+)Foxp3(+) regulatory T cells (Tregs) between young and adult rabbits after infection by RHDV. The number and frequency of Tregs was decreased in the spleen of adult rabbits 24h after the RHDV infection; this was in contrast with the unchanged number and frequency of splenic Tregs found in young rabbits after the same infection. Also, serum levels of IL-10 and TGF-β were enhanced in the infected adult rabbits whereas no alteration was observed in infected young rabbits. However, this increase is accompanied by a burst of pro-inflammatory cytokines, but seems not able to prevent the death of the animals with severe acute liver inflammation in few days after infection. Since Tregs downregulate inflammation, we conclude that their decrease may contribute to the natural susceptibility of adult rabbits to RHDV infection.

  6. Nelarabine in the Treatment of Refractory T-Cell Malignancies

    PubMed Central

    Roecker, Andrew M.; Stockert, Amy; Kisor, David F.

    2010-01-01

    Nelarabine is a nucleoside analog indicated for the treatment of adult and pediatric patients with T-cell acute lymphoblastic leukemia (T-ALL) or T-cell lymphoblastic lymphoma (T-LBL) that is refractory or has relapsed after treatment with at least two chemotherapy regimens. After being first synthesized in the late 1970s and receiving FDA approval in 2005, the appropriate use of nelarabine for refractory hematologic malignancies is still being elucidated. Nelarabine is the prodrug of 9-β-D-arabinofuranosylguanine (ara-G) which when phosphorylated intracellularly to ara-G triphosphate (ara-GTP), preferentially accumulates in cancerous T-cells. Dose-dependent toxicities, including neurotoxicity and myelosuppression, have been documented and may, in turn, limit the ability to appropriately treat the diagnosed malignancy. This article will summarize the pharmacologic properties of nelarabine and will address the current place in therapy nelarabine holds based upon the results of the available clinical trials to date. PMID:21151585

  7. Higher risk for acute childhood lymphoblastic leukaemia in Swedish population centres 1973-94

    PubMed Central

    Hjalmars, U; Gustafsson, G

    1999-01-01

    A population-based sample of acute childhood leukaemia cases in Sweden 1973–94 was analysed by a geographical information system (GIS) for spatial leukaemia distribution in relation to population density. The annual incidence rate for acute lymphoblastic leukaemia (ALL) was 3.6, and for acute non-lymphoblastic leukaemia (ANLL) 0.7, cases per 100 000 children. Incidence rates in population centres, constituting 1.3% of Sweden's land area and approximately 80% of the population, compared with the rest of Sweden showed a statistically significant excess of ALL [odds ratio (OR) 1.68; 95% confidence interval (CI) 1.44–1.95], but not ANLL (OR 1.13; 95% CI 0.98–1.32). An increasing trend, however not statistically significant, was found for ALL incidence with both increasing population density in parishes and increasing degree of urbanity in municipalities. These findings support the theories that some environmental factors associated with high population density, such as infectious agents, may be of aetiological importance for childhood acute lymphoblastic leukaemia. © 1999 Cancer Research Campaign PMID:10408689

  8. Acute lymphoblastic leukemia in children and adolescents: prognostic factors and analysis of survival

    PubMed Central

    Lustosa de Sousa, Daniel Willian; de Almeida Ferreira, Francisco Valdeci; Cavalcante Félix, Francisco Helder; de Oliveira Lopes, Marcos Vinicios

    2015-01-01

    Objective To describe the clinical and laboratory features of children and adolescents with acute lymphoblastic leukemia treated at three referral centers in Ceará and evaluate prognostic factors for survival, including age, gender, presenting white blood cell count, immunophenotype, DNA index and early response to treatment. Methods Seventy-six under 19-year-old patients with newly diagnosed acute lymphoblastic leukemia treated with the Grupo Brasileiro de Tratamento de Leucemia da Infância – acute lymphoblastic leukemia-93 and -99 protocols between September 2007 and December 2009 were analyzed. The diagnosis was based on cytological, immunophenotypic and cytogenetic criteria. Associations between variables, prognostic factors and response to treatment were analyzed using the chi-square test and Fisher's exact test. Overall and event-free survival were estimated by Kaplan–Meier analysis and compared using the log-rank test. A Cox proportional hazards model was used to identify independent prognostic factors. Results The average age at diagnosis was 6.3 ± 0.5 years and males were predominant (65%). The most frequently observed clinical features were hepatomegaly, splenomegaly and lymphadenopathy. Central nervous system involvement and mediastinal enlargement occurred in 6.6% and 11.8%, respectively. B-acute lymphoblastic leukemia was more common (89.5%) than T-acute lymphoblastic leukemia. A DNA index >1.16 was found in 19% of patients and was associated with favorable prognosis. On Day 8 of induction therapy, 95% of the patients had lymphoblast counts <1000/μL and white blood cell counts <5.0 × 109/L. The remission induction rate was 95%, the induction mortality rate was 2.6% and overall survival was 72%. Conclusion The prognostic factors identified are compatible with the literature. The 5-year overall and event-free survival rates were lower than those reported for developed countries. As shown by the multivariate analysis, age and baseline white

  9. Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen receptor–expressing T cells

    PubMed Central

    Lynn, Rachel C.; Poussin, Mathilde; Kalota, Anna; Feng, Yang; Low, Philip S.; Dimitrov, Dimiter S.

    2015-01-01

    T cells expressing a chimeric antigen receptor (CAR) can produce dramatic results in lymphocytic leukemia patients; however, therapeutic strategies for myeloid leukemia remain limited. Folate receptor β (FRβ) is a myeloid-lineage antigen expressed on 70% of acute myeloid leukemia (AML) patient samples. Here, we describe the development and evaluation of the first CARs specific for human FRβ (m909) in vitro and in vivo. m909 CAR T cells exhibited selective activation and lytic function against engineered C30-FRβ as well as endogenous FRβ+ AML cell lines in vitro. In mouse models of human AML, m909 CAR T cells mediated the regression of engrafted FRβ+ THP1 AML in vivo. In addition, we demonstrated that treatment of AML with all-trans retinoic acid (ATRA) enhanced FRβ expression, resulting in improved immune recognition by m909 CAR T cells. Because many cell surface markers are shared between AML blasts and healthy hematopoietic stem and progenitor cells (HSCs), we evaluated FRβ expression and recognition of HSCs by CAR T cells. m909 CAR T cells were not toxic against healthy human CD34+ HSCs in vitro. Our results indicate that FRβ is a promising target for CAR T-cell therapy of AML, which may be augmented by combination with ATRA. PMID:25887778

  10. Rapid selection of escape mutants by the first CD8 T cell responses in acute HIV-1 infection

    SciTech Connect

    Korber, Bette Tina Marie

    2008-01-01

    The recent failure of a vaccine that primes T cell responses to control primary HIV-1 infection has raised doubts about the role of CD8+ T cells in early HIV-1 infection. We studied four patients who were identified shortly after HIV-1 infection and before seroconversion. In each patient there was very rapid selection of multiple HIV-1 escape mutants in the transmitted virus by CD8 T cells, including examples of complete fixation of non-synonymous substitutions within 2 weeks. Sequencing by single genome amplification suggested that the high rate of virus replication in acute infection gave a selective advantage to virus molecules that contained simultaneous and gained sequential T cell escape mutations. These observations show that whilst early HIV-1 specific CD8 T cells can act against virus, rapid escape means that these T cell responses are unlikely to benefit the patient and may in part explain why current HIV-1 T cell vaccines may not be protective.

  11. Unusual fungal sepsis of Alternaria alternata in acute lymphoblastic leukaemia in an adult patient.

    PubMed

    Jain, S; Tarai, B; Tuli, P; Das, P

    2015-01-01

    We report a case of unusual fungal sepsis of Alternaria alternata in a patient of acute lymphoblastic leukaemia in 62-year-old male who presented with complaints of 'off and on' fever with decreased oral intake. On evaluation, haemogram showed low platelet count and 68% blast cells in peripheral blood. On flow cytometry of peripheral blood, the gated blasts (approximately 55%) highly express CD45, CD10, CD19, CD22 and condition was diagnosed as acute lymphoblastic leukaemia. He was started on standard induction treatment along with supportive therapies. During the course of treatment, two sets of paired blood cultures were sent 48 h apart. All of blood cultures were done on Bac-T alert 3D system. All of them yielded fungus. The fungus was then grown on Sabouraud's Dextrose agar media. It was identified as A. alternata. The patient condition worsened and later had cardiac arrest in ICU and could not be revived.

  12. A rare metabolic complication of acute lymphoblastic leukemia in childhood: lactic acidosis.

    PubMed

    Gökçe, Müge; Unal, Sule; Gülşen, Hayriye; Başaran, Ozge; Cetin, Mualla; Gümrük, Fatma; Beşbaş, Nesrin; Gürgey, Aytemiz

    2012-01-01

    A 13-year-old boy presented with nausea, fatigue, weight loss, and bone pain for two months. Complete blood count and serum renal and liver function tests were all normal. Blood gas analysis revealed severe metabolic acidosis with high anion gap. Lactate level was 61.2 mmol/L. Abdominal ultrasonography yielded bilateral nephromegaly and hepatomegaly with increased echogenicity. Peripheral blood smear revealed 2% blasts. Bone marrow aspiration showed 'Common ALL Antigen'-negative acute lymphoblastic leukemia by flow cytometric analysis. Metabolic acidosis dissolved as soon as chemotherapy was begun. Lactic acidosis at the presentation of acute lymphoblastic leukemia--especially with low tumor burden--is a very rare and almost always fatal complication. Our patient is still alive and in remission, which is a point of interest in this child.

  13. Prophylaxis and treatment of acute lymphoblastic leukemia relapse after allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Chen, Runzhe; Campbell, Jos L; Chen, Baoan

    2015-01-01

    Relapse of acute lymphoblastic leukemia remains a major cause of death in patients following allogeneic hematopoietic stem cell transplantation. Several factors may affect the concurrence and outcome of relapse, which include graft-versus-host disease, minimal residual disease or intrinsic factors of the disease, and transplantation characteristics. The mainstay of relapse prevention and treatment is donor leukocyte infusions, targeted therapies, second transplantation, and other novel therapies. In this review, we mainly focus on addressing the impact of graft-versus-host disease on relapse and the prophylaxis and treatment of acute lymphoblastic leukemia relapse following allogeneic hematopoietic stem cell transplantation. We also make recommendations for critical strategies to prevent relapse after transplantation and challenges that must be addressed to ensure success. PMID:25709473

  14. Supportive medical care for children with acute lymphoblastic leukemia in low- and middle-income countries.

    PubMed

    Ceppi, Francesco; Antillon, Federico; Pacheco, Carlos; Sullivan, Courtney E; Lam, Catherine G; Howard, Scott C; Conter, Valentino

    2015-10-01

    In the last two decades, remarkable progress in the treatment of children with acute lymphoblastic leukemia has been achieved in many low- and middle-income countries (LMIC), but survival rates remain significantly lower than those in high-income countries. Inadequate supportive care and consequent excess mortality from toxicity are important causes of treatment failure for children with acute lymphoblastic leukemia in LMIC. This article summarizes practical supportive care recommendations for healthcare providers practicing in LMIC, starting with core approaches in oncology nursing care, management of tumor lysis syndrome and mediastinal masses, nutritional support, use of blood products for anemia and thrombocytopenia, and palliative care. Prevention and treatment of infectious diseases are described in a parallel paper. PMID:26013005

  15. The molecular genetic makeup of acute lymphoblastic leukemia | Office of Cancer Genomics

    Cancer.gov

    Abstract: Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention.

  16. Alloreactive T Cells to Identify Risk HLA Alleles for Retransplantation After Acute Accelerated Steroid-Resistant Rejection.

    PubMed

    Leyking, S; Wolf, M; Mihm, J; Schaefer, M; Bohle, R M; Fliser, D; Sester, M; Sester, U

    2015-10-01

    The risk of rejection by cellular alloreactivity to the transplant donor is not routinely assessed. Here we analyzed alloreactive T cells in kidney transplant recipients and report how their detection may have helped to prevent rejection of a second kidney graft in a patient with a history of acute accelerated steroid-resistant nonhumoral rejection. Alloreactive CD4 and CD8 T cells were quantified using a flow-cytometric mixed lymphocyte reaction assay based on interferon-γ induction. A group of 16 nonrejecting transplant recipients did not show any alloreactive T-cell immunity to their respective donors, whereas alloreactivity to third-party controls was detectable. In the patient with rejection, HLA-specific antibodies were not detectable before and shortly after rejection, but after transplantation the patient showed exceptionally high frequencies of alloreactive T cells against 2 of 11 HLA-typed controls (0.604% and 0.791% alloreactive CD4 T cells and 0.792% and 0.978% alloreactive CD8 T cells) who shared HLA alleles (HLA-A*24, -B*44, -C*02, -DQB1*5) with the kidney donor. These HLA alleles were subsequently excluded for allocation of a second graft. No alloreactive T cells were observed toward the second kidney donor, and this transplantation was performed successfully. Thus, shared HLA alleles between the donor and third-party controls may suggest that alloreactive T cells had contributed to rejection of the first graft. The rejecting patient highlights that determination of cellular alloreactivity before transplantation may be applied to identify unacceptable mismatches and to reduce the risk for acute cellular rejection episodes. PMID:26518945

  17. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Myeloid Leukemia in Remission; Donor; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  18. Alpha 4 beta 7 integrin expression is associated with the leukemic evolution of human and murine T-cell lymphoblastic lymphomas.

    PubMed Central

    Dolcetti, R.; Giardini, R.; Doglioni, C.; Cariati, R.; Pomponi, F.; D'Orazi, C.; Rao, S.; Lazarovits, A. I.; Butcher, E. C.; Boiocchi, M.

    1997-01-01

    We have previously shown that the in vivo coordinated expression of individual alpha 4 and beta 7 integrin chains correlated with the leukemic potential displayed by cell lines derived from murine lymphoblastic T-cell lymphomas (T-LBLs) when transplanted subcutaneously into syngeneic AKR mice. In the present study, by using immunofluorescence and immunocytochemical analyses, we have confirmed that the in vivo up-regulation of the alpha 4 beta 7 heterodimeric complex is associated with the leukemic behavior of AKR T-LBLs. In addition, when compared with the parental, highly leukemic NQ22 cells, the variant cell line NQ22V exhibited a reduced leukemic potential that was invariably associated with a delayed alpha 4 beta 7 up-regulation in vivo Moreover, the leukemic cell line SJ-1, derived from a spontaneous T-LBL of the SJL strain, also displayed high levels of alpha 4 beta 7 expression with a pattern of tissue distribution similar to that of NQ22 cells from leukemic AKR animals. Of note, in most of the tissues involved by murine T-LBL dissemination, and particularly in liver, kidney, and lung, alpha 4 beta 7-positive leukemic cells were always located around strongly VCAM-1-positive vascular spaces. These findings are consistent with a possible role of alpha 4 beta 7/VCAM-1 interactions in the extravasation and, consequently, in the leukemic dissemination of murine T-LBL cells. Immunocytochemical analysis carried out in 11 human T-LBLs showed that pathological lymph nodes from all 7 cases with bone marrow infiltration at presentation carried alpha 4 beta 7-positive cells, whereas all 4 aleukemic T-LBLs were repeatedly alpha 4 beta 7 negative, also in metachronous lesions. These findings suggest that alpha 4 beta 7-positive human T-LBLs may represent a distinct clinicopathological entity. In addition, alpha 4 beta 7 expression was significantly more prevalent in younger patients (< 11 years; P = 0.02), further supporting such a hypothesis. Moreover, as in murine T

  19. Minimal Residual Disease Evaluation in Childhood Acute Lymphoblastic Leukemia: A Clinical Evidence Review

    PubMed Central

    2016-01-01

    Background Leukemia accounts for nearly a third of childhood cancers in Canada, with acute lymphoblastic leukemia (ALL) comprising nearly 80% of cases. Identification of prognostic factors that allow risk stratification and tailored treatment have improved overall survival. However, nearly a quarter of patients considered standard risk on the basis of conventional prognostic factors still relapse, and relapse is associated with increased morbidity and mortality. Relapse is thought to result from extremely low levels of leukemic cells left over once complete remission is reached, termed minimal residual disease (MRD). Poor event-free survival (EFS) as well as overall survival for those who are classified as MRD-positive have been substantiated in seminal studies demonstrating the prognostic value of MRD for EFS in the past few decades. This review sought to further elucidate the relationship between MRD and EFS by looking at relapse, the primary determinant of EFS and the biological mechanism through which MRD is thought to act. This evidence review aimed to ascertain whether MRD is an independent prognostic factor for relapse and to assess the effect of MRD-directed treatment on patient-important outcomes in childhood ALL. Methods Large prospective cohort studies with a priori multivariable analysis that includes potential confounders are required to draw confirmatory conclusions about the independence of a prognostic factor. Data on the prognostic value of MRD for relapse measured by molecular methods (polymerase chain reaction [PCR] of immunoglobulin or T-cell receptor rearrangements) or flow cytometry for leukemia-associated immunophenotypes or difference-from-normal approach were abstracted from included studies. Relevant data on relapse, EFS, and overall survival were abstracted from randomized controlled trials (RCTs) evaluating the effect of MRD-directed treatment. Results A total of 2,832 citations were reviewed, of which 12 studies were included in this

  20. Methotrexate-induced chemical meningitis in patients with acute lymphoblastic leukemia/lymphoma

    PubMed Central

    Jacob, Linu A.; Sreevatsa, Aparna; Chinnagiriyappa, Lakshmaiah K.; Dasappa, Lokanatha; Suresh, T. M.; Babu, Govind

    2015-01-01

    Background: Intrathecal methotrexate (ITMTX) is an important component in the treatment as well as prophylaxis of leukemia/lymphoma. ITMTX can cause chemical meningitis characterized by vomiting, headache, and fever lasting 2-5 days with spontaneous resolution of symptoms which differentiates this syndrome from bacterial meningitis. Objective: This prospective observational study was carried out to determine incidence of post-ITMTX syndrome in patients receiving prophylactic ITMTX as part of Berlin-Frankfurt-Munster (BFM) protocol. Materials and Methods: Patients aged 15-50 years receiving BFM 90 or BFM 95 protocol for acute lymphoblastic leukemia or lymphoblastic lymphoma were followed up for post-ITMTX syndrome, defined as vomiting, headache and fever between 38° and 39°C following ITMTX. Results: Thirty-three patients received a total of 297 courses of ITMTX. Of the 297 doses of ITMTX, 20 episodes (6.7%) of post-ITMTX syndrome were observed. The incidence of post-ITMTX syndrome was highest after the second dose of ITMTX (24%). The most common symptom of post-ITMTX syndrome was headache which was seen in 17 (85%) patients. Seventeen (85%) patients had vomiting, 10 (50%) patients had fever, and 4 (20%) patients had backache. Meningeal signs were present in 2 (10%) patients. Conclusions: Post-ITMTX syndrome is not uncommon in adult patients receiving prophylactic ITMTX for treatment of acute lymphoblastic leukemia and lymphoblastic lymphoma. Patients develop a toxic syndrome closely mimicking acute bacterial meningitis but spontaneous recovery is seen without any neurological sequelae. PMID:26019420

  1. High Disease-Free Survival with Enhanced Protection against Relapse after Double-Unit Cord Blood Transplantation When Compared with T Cell-Depleted Unrelated Donor Transplantation in Patients with Acute Leukemia and Chronic Myelogenous Leukemia.

    PubMed

    Ponce, Doris M; Hilden, Patrick; Devlin, Sean M; Maloy, Molly; Lubin, Marissa; Castro-Malaspina, Hugo; Dahi, Parastoo; Hsu, Katharine; Jakubowski, Ann A; Kernan, Nancy A; Koehne, Guenther; O'Reilly, Richard J; Papadopoulos, Esperanza B; Perales, Miguel-Angel; Sauter, Craig; Scaradavou, Andromachi; Tamari, Roni; van den Brink, Marcel R M; Young, James W; Giralt, Sergio; Barker, Juliet N

    2015-11-01

    Double-unit cord blood (DCB) grafts are a rapidly available stem cell source for adults with high-risk leukemias. However, how disease-free survival (DFS) after DCB transplantation (DCBT) compares to that of unrelated donor transplantation (URDT) is not fully established. We analyzed 166 allograft recipients (66 8/8 HLA-matched URDT, 45 7/8 HLA-matched URDT, and 55 DCBT) ages 16 to 60 years with high-risk acute leukemia or chronic myelogenous leukemia (CML). URDT and DCBT recipients were similar except DCBT recipients were more likely to have lower weight and non-European ancestry and to receive intermediate-intensity conditioning. All URDT recipients received a CD34(+) cell-selected (T cell-depleted) graft. Overall, differences between the 3-year transplantation-related mortality were not significant (8/8 URDT, 18%; 7/8 URDT, 39%; and DCBT, 24%; P = .108), whereas the 3-year relapse risk was decreased after DCBT (8/8 URDT, 23%; 7/8 URDT, 20%; and DCBT 9%, P = .037). Three-year DFS was 57% in 8/8 URDT, 41% in 7/8 URDT, and 68% in DCBT recipients (P = .068), and the 3-year DFS in DCBT recipients was higher than that of 7/8 URDT recipients (P = .021). In multivariate analysis in acute leukemia patients, factors adversely associated with DFS were female gender (hazard ratio [HR], 1.68; P = .031), diagnosis of acute lymphoblastic leukemia (HR, 2.09; P = .004), and 7/8 T cell-depleted URDT (HR, 1.91; P = .037). High DFS can be achieved in adults with acute leukemia and CML with low relapse rates after DCBT. Our findings support performing DCBT in adults in preference to HLA-mismatched T cell-depleted URDT and suggest DCBT is a readily available alternative to T cell-depleted 8/8 URDT, especially in patients requiring urgent transplantation.

  2. Yttrium Y 90 Anti-CD45 Monoclonal Antibody BC8 Followed by Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-09-29

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Acute Myeloid Leukemia

  3. Mcl-1 regulates effector and memory CD8 T-cell differentiation during acute viral infection.

    PubMed

    Kim, Eui Ho; Neldner, Brandon; Gui, Jingang; Craig, Ruth W; Suresh, M

    2016-03-01

    Mcl-1, an anti-apoptotic member of Bcl-2 family maintains cell viability during clonal expansion of CD8 T cells, but the cell intrinsic role of Mcl-1 in contraction of effectors or the number of memory CD8 T cells is unknown. Mcl-1 levels decline during the contraction phase but rebound to high levels in memory CD8 T cells. Therefore, by overexpressing Mcl-1 in CD8 T cells we asked whether limiting levels of Mcl-1 promote contraction of effectors and constrain CD8 T-cell memory. Mcl-1 overexpression failed to affect CD8 T-cell expansion, contraction or the magnitude of CD8 T-cell memory. Strikingly, high Mcl-1 levels enhanced mTOR phosphorylation and augmented the differentiation of terminal effector cells and effector memory CD8 T cells to the detriment of poly-cytokine-producing central memory CD8 T cells. Taken together, these findings provided unexpected insights into the role of Mcl-1 in the differentiation of effector and memory CD8 T cells.

  4. CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells

    SciTech Connect

    Yamazaki, Hiroto; Nishida, Hiroko; Iwata, Satoshi; Dang, Nam H.; Morimoto, Chikao

    2009-05-29

    Although cancer stem cells (CSCs) have been recently identified in myeloid leukemia, published data on lymphoid malignancy have been sparse. T-acute lymphoblastic leukemia (T-ALL) is characterized by the abnormal proliferation of T-cell precursors and is generally aggressive. As CD34 is the only positive-selection marker for CSCs in T-ALL, we performed extensive analysis of CD markers in T-ALL cell lines. We found that some of the tested lines consisted of heterogeneous populations of cells with various levels of surface marker expression. In particular, a small subpopulation of CD90 (Thy-1) and CD110 (c-Mpl) were shown to correlate with stem cell properties both in vitro and in transplantation experiments. As these markers are expressed on hematopoietic stem cells, our results suggest that stem cell-like population are enriched in CD90+/CD110+ fraction and they are useful positive-selection markers for the isolation of CSCs in some cases of T-ALL.

  5. Clonal origins of ETV6-RUNX1⁺ acute lymphoblastic leukemia: studies in monozygotic twins.

    PubMed

    Alpar, D; Wren, D; Ermini, L; Mansur, M B; van Delft, F W; Bateman, C M; Titley, I; Kearney, L; Szczepanski, T; Gonzalez, D; Ford, A M; Potter, N E; Greaves, M

    2015-04-01

    Studies on twins with concordant acute lymphoblastic leukemia (ALL) have revealed that ETV6-RUNX1 gene fusion is a common, prenatal genetic event with other driver aberrations occurring subclonally and probably postnatally. The fetal cell type that is transformed by ETV6-RUNX1 is not identified by such studies or by the analysis of early B-cell lineage phenotype of derived progeny. Ongoing, clonal immunoglobulin (IG) and cross-lineage T-cell receptor (TCR) gene rearrangements are features of B-cell precursor leukemia and commence at the pro-B-cell stage of normal B-cell lineage development. We reasoned that shared clonal rearrangements of IG or TCR genes by concordant ALL in twins would be informative about the fetal cell type in which clonal advantage is elicited by ETV6-RUNX1. Five pairs of twins were analyzed for all varieties of IG and TCR gene rearrangements. All pairs showed identical incomplete or complete variable-diversity-joining junctions coupled with substantial, subclonal and divergent rearrangements. This pattern was endorsed by single-cell genetic scrutiny in one twin pair. Our data suggest that the pre-leukemic initiating function of ETV6-RUNX1 fusion is associated with clonal expansion early in the fetal B-cell lineage. PMID:25388957

  6. Myeloid Antigen-positive T Cell Acute Lymphocytic Leukemia with t(14;18) and Trisomy 10: Report of a Case and Literature Review.

    PubMed

    Lin, Guoqiang; Liu, Limin; Zhao, Guangsheng; Si, Yejun; Zhang, Xingxia; Sun, Yumei; Lu, Shuhua; Zhang, Yanming

    2015-08-01

    The chromosomal translocation t(14;18)(q32;q21) is commonly associated with neoplasms of follicular center cell origin and has also been reported in cases of chronic lymphocytic leukemia. However, T cell acute lymphoblastic (or lymphocytic) leukemia (T-ALL) with t(14;18)(q32;q21) has been rarely reported. Here, we report a case of myeloid antigen-positive T-ALL (My+T-ALL) with t(14;18)(q32;q21) and trisomy 10. This is the first reported case of My+T-ALL (L2) with such chromosomal abnormalities. Other published de novo ALL cases, with t(14;18)(q32;q21) and without a documented history of lymphoma, are summarized and reviewed in this report. The patient in this study was treated with remission induction therapy and intensive chemotherapy, followed by maintenance therapy. As of this writing, he has remained in remission for more than 3 years and has presented a better clinical outcome compared with other reported adult ALL patients with t(14;18)(q32;q21).

  7. Clinically relevant deoxycytidine levels are high enough to profoundly alter 9-beta-D-arabinofuranosylguanine cytotoxicity for human T-cell acute leukemia cells in vitro.

    PubMed

    Cohen, J D; Strock, D J; Teik, J E; LaGuardia, E A; Katz, T B

    1999-01-01

    Plasma deoxycytidine levels can vary markedly during chemotherapy, from < 0.05 microM to at least 10.3 microM in T-cell acute lymphoblastic leukemia (T-ALL). This study demonstrates that clinically relevant deoxycytidine levels can dramatically protect human T-ALL cells against 9-beta-D-arabinofuranosylguanine (araG), a promising drug in this leukemia. At 0.4, 1.2, 3.6, and 10.8 microM deoxycytidine, the dose of araG required to kill 50% of MOLT3 T-ALL cells increased 4.23 +/- 1.95-(mean +/- SEM), 23.1 +/- 5.42-, 39.3 +/- 19.3-, and 67.0 +/- 11.5-fold compared to araG without deoxycytidine. Such deoxycytidine concentrations sharply reduced intracellular araG levels and blocked inhibition of DNA synthesis even in the presence of 160 and 640 microM araG. These data offer the first evidence that clinically relevant deoxycytidine levels could profoundly modulate araG toxicity in T-ALL.

  8. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies.

    PubMed

    Mamonkin, Maksim; Rouce, Rayne H; Tashiro, Haruko; Brenner, Malcolm K

    2015-08-20

    Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms.

  9. Acute Activation of Metabolic Syndrome Components in Pediatric Acute Lymphoblastic Leukemia Patients Treated with Dexamethasone

    PubMed Central

    Warris, Lidewij T.; van den Akker, Erica L. T.; Bierings, Marc B.; van den Bos, Cor; Zwaan, Christian M.; Sassen, Sebastiaan D. T.; Tissing, Wim J. E.; Veening, Margreet A.; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Although dexamethasone is highly effective in the treatment of pediatric acute lymphoblastic leukemia (ALL), it can cause serious metabolic side effects. Because studies regarding the effects of dexamethasone are limited by their small scale, we prospectively studied the direct effects of treating pediatric ALL with dexamethasone administration with respect to activation of components of metabolic syndrome (MetS); in addition, we investigated whether these side effects were correlated with the level of dexamethasone. Fifty pediatric patients (3–16 years of age) with ALL were studied during a 5-day dexamethasone course during the maintenance phase of the Dutch Childhood Oncology Group ALL-10 and ALL-11 protocols. Fasting insulin, glucose, total cholesterol, HDL, LDL, and triglycerides levels were measured at baseline (before the start of dexamethasone; T1) and on the fifth day of treatment (T2). Dexamethasone trough levels were measured at T2. We found that dexamethasone treatment significantly increased the following fasting serum levels (P<0.05): HDL, LDL, total cholesterol, triglycerides, glucose, and insulin. In addition, dexamethasone increased insulin resistance (HOMA-IR>3.4) from 8% to 85% (P<0.01). Dexamethasone treatment also significantly increased the diastolic and systolic blood pressure. Lastly, dexamethasone trough levels (N = 24) were directly correlated with high glucose levels at T2, but not with other parameters. These results indicate that dexamethasone treatment acutely induces three components of the MetS. Together with the weight gain typically associated with dexamethasone treatment, these factors may contribute to the higher prevalence of MetS and cardiovascular risk among survivors of childhood leukemia who received dexamethasone treatment. PMID:27362350

  10. Donor Peripheral Blood Stem Cell Transplant and Pretargeted Radioimmunotherapy in Treating Patients With High-Risk Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-03-01

    Chronic Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ringed Sideroblasts; Secondary Acute Myeloid Leukemia

  11. PS-341 in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myeloid Leukemia in Blast Phase, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  12. L-Asparaginase II Produced by Salmonella Typhimurium Inhibits T Cell Responses and Mediates Virulence

    PubMed Central

    Kullas, Amy L.; McClelland, Michael; Yang, Hee-Jeong; Tam, Jason W.; Torres, AnnMarie; Porwollik, Steffen; Mena, Patricio; McPhee, Joseph B.; Bogomolnaya, Lydia; Andrews-Polymenis, Helene; van der Velden, Adrianus W.M.

    2013-01-01

    SUMMARY Salmonella enterica serovar Typhimurium avoids clearance by the host immune system by suppressing T cell responses; however, the mechanisms that mediate this immunosuppression remain unknown. We show that S. Typhimurium inhibit T cell responses by producing L-Asparaginase II, which catalyzes the hydrolysis of L-asparagine to aspartic acid and ammonia. L-Asparaginase II is necessary and sufficient to suppress T cell blastogenesis, cytokine production, and proliferation and to downmodulate expression of the T cell receptor. Furthermore, S. Typhimurium-induced inhibition of T cells in vitro is prevented upon addition of L-asparagine. S. Typhimurium lacking the L-Asparaginase II gene (STM3106) are unable to inhibit T cell responses and exhibit attenuated virulence in vivo. L-Asparaginases are used to treat acute lymphoblastic leukemia through mechanisms that likely involve amino acid starvation of leukemic cells, and these findings indicate that pathogens similarly use L-asparagine deprivation to limit T cell responses. PMID:23245323

  13. CD8 T-cell recognition of acquired alloantigen promotes acute allograft rejection

    PubMed Central

    Harper, Simon J. F.; Ali, Jason M.; Wlodek, Elizabeth; Negus, Marg C.; Harper, Ines G.; Chhabra, Manu; Qureshi, M. Saeed; Mallik, Mekhola; Bolton, Eleanor; Bradley, J. Andrew; Pettigrew, Gavin J.

    2015-01-01

    Adaptive CD8 T-cell immunity is the principal arm of the cellular alloimmune response, but its development requires help. This can be provided by CD4 T cells that recognize alloantigen “indirectly,” as self-restricted allopeptide, but this process remains unexplained, because the target epitopes for CD4 and CD8 T-cell recognition are “unlinked” on different cells (recipient and donor antigen presenting cells (APCs), respectively). Here, we test the hypothesis that the presentation of intact and processed MHC class I alloantigen by recipient dendritic cells (DCs) (the “semidirect” pathway) allows linked help to be delivered by indirect-pathway CD4 T cells for generating destructive cytotoxic CD8 T-cell alloresponses. We show that CD8 T-cell–mediated rejection of murine heart allografts that lack hematopoietic APCs requires host secondary lymphoid tissue (SLT). SLT is necessary because within it, recipient dendritic cells can acquire MHC from graft parenchymal cells and simultaneously present it as intact protein to alloreactive CD8 T cells and as processed peptide alloantigen for recognition by indirect-pathway CD4 T cells. This enables delivery of essential help for generating cytotoxic CD8 T-cell responses that cause rapid allograft rejection. In demonstrating the functional relevance of the semidirect pathway to transplant rejection, our findings provide a solution to a long-standing conundrum as to why SLT is required for CD8 T-cell allorecognition of graft parenchymal cells and suggest a mechanism by which indirect-pathway CD4 T cells provide help for generating effector cytotoxic CD8 T-cell alloresponses at late time points after transplantation. PMID:26420874

  14. Randomized trial of radiation-free central nervous system prophylaxis comparing intrathecal triple therapy with liposomal cytarabine in acute lymphoblastic leukemia

    PubMed Central

    Bassan, Renato; Masciulli, Arianna; Intermesoli, Tamara; Audisio, Ernesta; Rossi, Giuseppe; Pogliani, Enrico Maria; Cassibba, Vincenzo; Mattei, Daniele; Romani, Claudio; Cortelezzi, Agostino; Corti, Consuelo; Scattolin, Anna Maria; Spinelli, Orietta; Tosi, Manuela; Parolini, Margherita; Marmont, Filippo; Borlenghi, Erika; Fumagalli, Monica; Cortelazzo, Sergio; Gallamini, Andrea; Marfisi, Rosa Maria; Oldani, Elena; Rambaldi, Alessandro

    2015-01-01

    Developing optimal radiation-free central nervous system prophylaxis is a desirable goal in acute lymphoblastic leukemia, to avoid the long-term toxicity associated with cranial irradiation. In a randomized, phase II trial enrolling 145 adult patients, we compared intrathecal liposomal cytarabine (50 mg: 6/8 injections in B-/T-cell subsets, respectively) with intrathecal triple therapy (methotrexate/cytarabine/prednisone: 12 injections). Systemic therapy included methotrexate plus cytarabine or L-asparaginase courses, with methotrexate augmented to 2.5 and 5 g/m2 in Philadelphia-negative B- and T-cell disease, respectively. The primary study objective was the comparative assessment of the risk/benefit ratio, combining the analysis of feasibility, toxicity and efficacy. In the liposomal cytarabine arm 17/71 patients (24%) developed grade 3–4 neurotoxicity compared to 2/74 (3%) in the triple therapy arm (P=0.0002), the median number of episodes of neurotoxicity of any grade was one per patient compared to zero, respectively (P=0.0001), and even though no permanent disabilities or deaths were registered, four patients (6%) discontinued intrathecal prophylaxis on account of these toxic side effects (P=0.06). Neurotoxicity worsened with liposomal cytarabine every 14 days (T-cell disease), and was improved by the adjunct of intrathecal dexamethasone. Two patients in the liposomal cytarabine arm suffered from a meningeal relapse (none with T-cell disease, only one after high-dose chemotherapy) compared to four in the triple therapy arm (1 with T-cell disease). While intrathecal liposomal cytarabine could contribute to improved, radiation-free central nervous system prophylaxis, the toxicity reported in this trial does not support its use at 50 mg and prompts the investigation of a lower dosage. (clinicaltrials.gov identifier: NCT-00795756). PMID:25749825

  15. Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment.

    PubMed

    Garibaldi, Brian T; D'Alessio, Franco R; Mock, Jason R; Files, D Clark; Chau, Eric; Eto, Yoshiki; Drummond, M Bradley; Aggarwal, Neil R; Sidhaye, Venkataramana; King, Landon S

    2013-01-01

    Acute lung injury (ALI) causes significant morbidity and mortality. Fibroproliferation in ALI results in worse outcomes, but the mechanisms governing fibroproliferation remain poorly understood. Regulatory T cells (Tregs) are important in lung injury resolution. Their role in fibroproliferation is unknown. We sought to identify the role of Tregs in ALI fibroproliferation, using a murine model of lung injury. Wild-type (WT) and lymphocyte-deficient Rag-1(-/-) mice received intratracheal LPS. Fibroproliferation was characterized by histology and the measurement of lung collagen. Lung fibrocytes were measured by flow cytometry. To dissect the role of Tregs in fibroproliferation, Rag-1(-/-) mice received CD4(+)CD25(+) (Tregs) or CD4(+)CD25(-) Tcells (non-Tregs) at the time of LPS injury. To define the role of the chemokine (C-X-C motif) ligand 12 (CXCL12)-CXCR4 pathway in ALI fibroproliferation, Rag-1(-/-) mice were treated with the CXCR4 antagonist AMD3100 to block fibrocyte recruitment. WT and Rag-1(-/-) mice demonstrated significant collagen deposition on Day 3 after LPS. WT mice exhibited the clearance of collagen, but Rag-1(-/-) mice developed persistent fibrosis. This fibrosis was mediated by the sustained epithelial expression of CXCL12 (or stromal cell-derived factor 1 [SDF-1]) that led to increased fibrocyte recruitment. The adoptive transfer of Tregs resolved fibroproliferation by decreasing CXCL12 expression and subsequent fibrocyte recruitment. Blockade of the CXCL12-CXCR4 axis with AMD3100 also decreased lung fibrocytes and fibroproliferation. These results indicate a central role for Tregs in the resolution of ALI fibroproliferation by reducing fibrocyte recruitment along the CXCL12-CXCR4 axis. A dissection of the role of Tregs in ALI fibroproliferation may inform the design of new therapeutic tools for patients with ALI. PMID:23002097

  16. Segmentation of White Blood Cell from Acute Lymphoblastic Leukemia Images Using Dual-Threshold Method.

    PubMed

    Li, Yan; Zhu, Rui; Mi, Lei; Cao, Yihui; Yao, Di

    2016-01-01

    We propose a dual-threshold method based on a strategic combination of RGB and HSV color space for white blood cell (WBC) segmentation. The proposed method consists of three main parts: preprocessing, threshold segmentation, and postprocessing. In the preprocessing part, we get two images for further processing: one contrast-stretched gray image and one H component image from transformed HSV color space. In the threshold segmentation part, a dual-threshold method is proposed for improving the conventional single-threshold approaches and a golden section search method is used for determining the optimal thresholds. For the postprocessing part, mathematical morphology and median filtering are utilized to denoise and remove incomplete WBCs. The proposed method was tested in segmenting the lymphoblasts on a public Acute Lymphoblastic Leukemia (ALL) image dataset. The results show that the performance of the proposed method is better than single-threshold approach independently performed in RGB and HSV color space and the overall single WBC segmentation accuracy reaches 97.85%, showing a good prospect in subsequent lymphoblast classification and ALL diagnosis. PMID:27313659

  17. Taurine attenuates chemotherapy-induced nausea and vomiting in acute lymphoblastic leukemia.

    PubMed

    Islambulchilar, Mina; Asvadi, Iraj; Sanaat, Zohreh; Esfahani, Ali; Sattari, Mohammadreza

    2015-01-01

    Taurine has multiple physiological activities and it is decreased by chemotherapy. The purpose of our study was to evaluate the effect of oral taurine supplementation on the incidence of chemotherapy-induced nausea and vomiting in patients with acute lymphoblastic leukemia. Forty young patients aged over 16 (range: 16-23 years) suffering from acute lymphoblastic leukemia (all receiving same chemotherapy regimen) were recruited for the study at the beginning of maintenance course of their chemotherapy. The study population was randomized in a double-blind manner to receive either taurine or placebo (2 g per day orally, divided into two doses, taken 6 h after chemotherapeutic agents) for 6 months. Life quality and adverse effects including nausea and vomiting, taste and smell alterations, and weariness were assessed using a questionnaire. Data were analyzed using Pearson's Chi-square test. Of 40 participants, 32 finished the study (14 female and 18 male; mean age 19.2 ± 1.9 years). Four treatment and four placebo arm patients discontinued: one immigrated from the province, one died during the study, and six refused to continue. The results indicated that taurine-supplemented patients reported a significant (P < 0.05) improvement in chemotherapy-induced nausea and/or vomiting after taking taurine during study. Taurine significantly improved chemotherapy-induced taste and smell alterations (P < 0.05). Moreover, taurine significantly reduced weariness compared to placebo group (P < 0.05). This study showed that taurine co-administration decreased chemotherapy-induced nausea and vomiting during the maintenance therapy in acute lymphoblastic leukemia. PMID:25323734

  18. Association between childhood acute lymphoblastic leukemia and use of electrical appliances during pregnancy and childhood.

    PubMed

    Hatch, E E; Linet, M S; Kleinerman, R A; Tarone, R E; Severson, R K; Hartsock, C T; Haines, C; Kaune, W T; Friedman, D; Robison, L L; Wacholder, S

    1998-05-01

    As part of a comprehensive study of residential magnetic field exposure in nine midwestern and mid-Atlantic states, we evaluated the use of appliances by 640 patients with acute lymphoblastic leukemia, 0-14 years of age, diagnosed between 1989 and 1993, and 640 matched control children. Mothers were interviewed regarding use of electrical appliances during their pregnancy with the subject and the child's postnatal use. The risk of acute lymphoblastic leukemia was elevated in children whose mothers reported use of an electric blanket or mattress pad during pregnancy [odds ratio (OR) = 1.59; 95% confidence interval (CI) = 1.11-2.29] but was reduced for use of sewing machines during pregnancy (OR = 0.76; 95% CI = 0.59-0.98). The risk of acute lymphoblastic leukemia was increased with children's use of electric blankets or mattress pads (OR = 2.75; 95% CI = 1.52-4.98) and three other electrical appliances (hair dryers, video machines in arcades, and video games connected to a television), but the patterns of risk for duration in years of use and frequency of use were inconsistent for most appliances used by children. Risks rose with increasing number of hours per day children spent watching television, but risks were similar regardless of the usual distance from the television. The inconsistency in the dose-response patterns for many appliances, reporting and selection bias, and the lack of an effect for measured 60 Hertz magnetic fields or wire codes in our companion study must be considered before ascribing these associations to exposures from magnetic fields.

  19. [Nephrotoxicity evaluation of cytostatic agents in children with acute lymphoblastic leukemia].

    PubMed

    Tomaszewska, B; Zoch-Zwierz, W M

    1995-11-01

    Urinary excretion of the markers of tubular nephrotoxicity, total NAG and isoenzymes A and B and B-2-M, were evaluated in urine of 21 children with acute lymphoblastic leukaemia after the first injection of cytostatic administrated according to the BFM scheme: VCR + Rub, L-aspa, CY, Ara-C. Every administrated drug caused temporary elevation in urinary excretion of total NAG and isoenzyme B and B-2-M. GFR was unchanged. These results point to nephrotoxicity of cytostatics. Peak total NAG, isoenzyme B and B-2-M excretion was observed on the third day after L-aspa and Ara-C injection.

  20. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there?

    PubMed Central

    Mullighan, Charles G.; Evans, William E.; Relling, Mary V.

    2012-01-01

    Improved supportive care, more precise risk stratification, and personalized chemotherapy based on the characteristics of leukemic cells and hosts (eg, pharmacokinetics and pharmacogenetics) have pushed the cure rate of childhood acute lymphoblastic leukemia to near 90%. Further increase in cure rate can be expected from the discovery of additional recurrent molecular lesions, coupled with the development of novel targeted treatment through high-throughput genomics and innovative drug-screening systems. We discuss specific areas of research that promise to further refine current treatment and to improve the cure rate and quality of life of the patients. PMID:22730540

  1. Towards an understanding of the biology and targeted treatment of paediatric relapsed acute lymphoblastic leukaemia.

    PubMed

    Irving, Julie A E

    2016-03-01

    Acute lymphoblastic leukaemia is the most common childhood cancer and for those children who relapse, prognosis is poor and new therapeutic strategies are needed. Recurrent pathways implicated in relapse include RAS, JAK STAT, cell cycle, epigenetic regulation, B cell development, glucocorticoid response, nucleotide metabolism and DNA repair. Targeting these pathways is a rational therapeutic strategy and may deliver novel, targeted therapies into the clinic. Relapse often stems from a minor clone present at diagnosis and thus analysis of persisting leukaemia during upfront therapy may allow targeted drug intervention to prevent relapse.

  2. Out come of induction of remission in undernourished children with acute lymphoblastic leukaemia.

    PubMed

    Begum, M; Jahan, S; Tawfique, M; Mannan, M A

    2012-10-01

    Acute lymphoblastic leukaemia (ALL) is the most common childhood leukaemia. On the other hand under-nutrition is a common problem in our country. This prospective study was conducted to see the outcome of induction of remission in undernourished children with acute lymphoblastic leukaemia. This study was carried out in the department of Paediatric hematology and oncology of Bangabandhu Sheikh Mujib Medical University (BSMMU) during the period from November 2002 to October 2004. A total of sixty (60) children who were diagnosed as acute lymphoblastic leukaemia in 1 to 15 years of age were included in this study. But the children with previous history of congenital disease and that of chemotherapy or steroid were excluded from this study. Patients were divided into two groups on the basis of Z score of weight for age. Thirty (30) children those with Z score- 2 or less were classified as undernourished and was labeled as Group A and another thirty (30) patient those Z score above-2 were classified as well nourished and was placed in Group B, After inclusion into the study, completion of induction of remission was monitored by physical examination and laboratory investigations. The result showed that mean age in Group A was 77.16 ± 7.07 months and that in Group B was 74.13 ± 5.09 months with male preponderance in both the groups. Mean body weight in Group A was 14.55 ± 0.76 Kg and that in Group B was 21.40 ± 1.05 kg (p<0.001). Children in Group A required 39.06 ± 0.72 days to complete induction but in Group B it required 31.63 ± 0.17 days (p<0.04). Hospital stay in Group A children was 52.10 ± 1.08 days and in Group B 42.37 ± 0.50 (p<0.002). The result suggested that under nutrition has an influence on the out come of induction of remission in undernourished children with acute lymphoblastic leukaemia. So appropriate measures are essential to improve nutritional status of children for successful management of ALL in children.

  3. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia | Office of Cancer Genomics

    Cancer.gov

    Publication Abstract:  Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is characterized by a gene-expression profile similar to that of BCR-ABL1-positive ALL, alterations of lymphoid transcription factor genes, and a poor outcome. The frequency and spectrum of genetic alterations in Ph-like ALL and its responsiveness to tyrosine kinase inhibition are undefined, especially in adolescents and adults. We performed genomic profiling of 1725 patients with precursor B-cell ALL and detailed genomic analysis of 154 patients with Ph-like ALL.

  4. Transient ischemic cerebral lesions during induction chemotherapy for acute lymphoblastic leukemia.

    PubMed

    Pihko, H; Tyni, T; Virkola, K; Valanne, L; Sainio, K; Hovi, L; Saarinen, U M

    1993-11-01

    Ninety children were treated for acute lymphoblastic leukemia or non-Hodgkin lymphoma during 1986 through 1992 in the Children's Hospital, University of Helsinki, in Finland. During induction chemotherapy, nine of the children had visual hallucinations progressing to confusion and seizure. The symptoms were often preceded by severe constipation and significantly elevated blood pressure. Neuroradiologic examinations showed bilateral cortical or subcortical white matter lesions. Despite the stroke like manifestations, the lesions were reversible. The triangular shape and location of the lesions in the watershed areas between the major cerebral arteries suggest vascular ischemia as the cause.

  5. Unusual presentation of Erdheim-Chester disease in a child with acute lymphoblastic leukemia

    PubMed Central

    Vallonthaiel, Archana George; Mridha, Asit Ranjan; Gamanagatti, Shivanand; Jana, Manisha; Sharma, Mehar Chand; Khan, Shah Alam; Bakhshi, Sameer

    2016-01-01

    Erdheim-Chester disease (ECD) is an uncommon, non-familial, non-Langerhans cell histiocytosis, which involves skeletal system and soft tissue usually in middle aged and elderly patients. The characteristic radiologic features include bilateral, symmetric cortical osteosclerosis of the diaphyseal and metaphyseal parts of the long bones, or bilateral symmetrically abnormal intense 99mTechnetium labelling of the metaphyseal-diaphyseal region of the long bones, and computed tomography scan findings of “coated aorta” or “hairy kidneys”. ECD in childhood with osteolytic lesion is extremely rare. We describe an unusual case with an expansile lytic bone lesion at presentation in a case of acute lymphoblastic leukemia.

  6. Unusual presentation of Erdheim-Chester disease in a child with acute lymphoblastic leukemia.

    PubMed

    Vallonthaiel, Archana George; Mridha, Asit Ranjan; Gamanagatti, Shivanand; Jana, Manisha; Sharma, Mehar Chand; Khan, Shah Alam; Bakhshi, Sameer

    2016-08-28

    Erdheim-Chester disease (ECD) is an uncommon, non-familial, non-Langerhans cell histiocytosis, which involves skeletal system and soft tissue usually in middle aged and elderly patients. The characteristic radiologic features include bilateral, symmetric cortical osteosclerosis of the diaphyseal and metaphyseal parts of the long bones, or bilateral symmetrically abnormal intense (99m)Technetium labelling of the metaphyseal-diaphyseal region of the long bones, and computed tomography scan findings of "coated aorta" or "hairy kidneys". ECD in childhood with osteolytic lesion is extremely rare. We describe an unusual case with an expansile lytic bone lesion at presentation in a case of acute lymphoblastic leukemia. PMID:27648170

  7. Visuomotor function in children treated for acute lymphoblastic leukaemia with chemotherapy only.

    PubMed

    Knight, Sarah; McCarthy, Maria; Anderson, Vicki; Hutchinson, Esther; De Luca, Cinzia

    2014-01-01

    This study aimed to evaluate visuomotor function in children treated for acute lymphoblastic leukaemia (ALL). The performance of 64 children, 1-7 years post-chemotherapy for ALL, was compared to that of their healthy peers (n = 56) on visuomotor integration (VMI) and motor coordination (MC) tasks. Children posttreatment for ALL displayed significantly reduced VMI, but not MC, performances as compared to controls. Children treated on chemotherapy-only ALL regimes are at heightened risk for visuomotor integration deficits. Monitoring of visuomotor skills and implementation of appropriate interventions targeting higher level visuomotor integration skills should form an important component of any ALL long-term effects program. PMID:24571929

  8. Treatment of Childhood Acute Lymphoblastic Leukemia: Prognostic Factors and Clinical Advances.

    PubMed

    Vrooman, Lynda M; Silverman, Lewis B

    2016-10-01

    While the majority of children and adolescents with newly diagnosed childhood acute lymphoblastic leukemia (ALL) will be cured, as many as 20 % of patients will experience relapse. On current treatment regimens, the intensity of upfront treatment is stratified based upon prognostic factors with the aim of improving cure rates (for those at the highest risk of relapse) and minimizing treatment-related morbidity (for lower-risk patients). Here we review advances in the understanding of prognostic factors and their application. We also highlight novel treatment approaches aimed at improving outcomes in childhood ALL.

  9. Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia

    PubMed Central

    Kastner, Philippe; Dupuis, Arnaud; Gaub, Marie-Pierre; Herbrecht, Raoul; Lutz, Patrick; Chan, Susan

    2013-01-01

    The Ikaros transcription factor is crucial for many aspects of hematopoiesis. Loss of function mutations in IKZF1, the gene encoding Ikaros, have been implicated in adult and pediatric B cell acute lymphoblastic leukemia (B-ALL). These mutations result in haploinsufficiency of the Ikaros gene in approximately half of the cases. The remaining cases contain more severe or compound mutations that lead to the generation of dominant-negative proteins or complete loss of function. All IKZF1 mutations are associated with a poor prognosis. Here we review the current genetic, clinical and mechanistic evidence for the role of Ikaros as a tumor suppressor in B-ALL. PMID:23358883

  10. Gonadal function after 12-Gy testicular irradiation in childhood acute lymphoblastic leukemia

    SciTech Connect

    Castillo, L.A.; Craft, A.W.; Kernahan, J.; Evans, R.G.; Aynsley-Green, A. )

    1990-01-01

    Gonadal function was assessed in 15 boys with acute lymphoblastic leukemia (ALL) who had received testicular irradiation. The dose to the testes was 12 Gy in 12, 15 Gy in 1, and 24 Gy in 2 cases. All of those who had received 12 or 15 Gy had normal Leydig cell function, although high levels of gonadotropins suggest subclinical Leydig cell damage. The 2 who had 24 Gy had Leydig cell failure. All who were old enough to produce a semen specimen were azoospermic.

  11. Secondary acute lymphoblastic leukemia is an independent predictor of poor prognosis.

    PubMed

    Giri, Smith; Chi, Michelle; Johnson, Benny; McCormick, David; Jamy, Omer; Bhatt, Vijaya Raj; Martin, Mike G

    2015-12-01

    Compared to secondary acute myeloid leukemia, secondary acute lymphoblastic leukemia (sALL) is poorly characterized. We utilized data from the Surveillance, Epidemiology, and End Results (SEER) 13 database to further elucidate patient characteristics and prognostic factors in sALL. Cases of adult de novo acute lymphoblastic leukemia (ALL) and sALL in patients with primary breast, rectum, cervix, or ovarian cancers or lymphoma with a latency period of at least 12 months were identified within the SEER 13 database. Survival in sALL and de novo ALL were compared after propensity matching based on age, gender, race, ALL subtype, and year of diagnosis. 4124 cases of de novo ALL and 79 cases of sALL were identified. sALL patients were older at diagnosis (median 62 years vs. 44 years; p<0.01). Overall survival (OS) in sALL was lower than de novo ALL (median 8 months vs. 11 months), 1 year OS: 35% vs. 47% (p=0.05), 2 year OS: 16% vs. 31% (p<0.01), and 5 year OS: 7% vs. 21% (p<0.01). Multivariate analysis revealed sALL as an independent predictor of worsened survival (adjusted HR 1.54; 95% CI 1.16-2.04, p<0.01) after propensity matching.

  12. T Cells

    MedlinePlus

    ... or turn off the immune response. Cytotoxic or “killer” T cells directly attack and destroy cells bearing ... involve selective activation of helper T cells and killer T cells, with a corresponding decrease in regulatory ...

  13. Rebeccamycin Analog in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  14. Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence

    PubMed Central

    Schulze zur Wiesch, Julian; Ciuffreda, Donatella; Lewis-Ximenez, Lia; Kasprowicz, Victoria; Nolan, Brian E.; Streeck, Hendrik; Aneja, Jasneet; Reyor, Laura L.; Allen, Todd M.; Lohse, Ansgar W.; McGovern, Barbara; Chung, Raymond T.; Kwok, William W.; Kim, Arthur Y.

    2012-01-01

    Vigorous proliferative CD4+ T cell responses are the hallmark of spontaneous clearance of acute hepatitis C virus (HCV) infection, whereas comparable responses are absent in chronically evolving infection. Here, we comprehensively characterized the breadth, specificity, and quality of the HCV-specific CD4+ T cell response in 31 patients with acute HCV infection and varying clinical outcomes. We analyzed in vitro T cell expansion in the presence of interleukin-2, and ex vivo staining with HCV peptide-loaded MHC class II tetramers. Surprisingly, broadly directed HCV-specific CD4+ T cell responses were universally detectable at early stages of infection, regardless of the clinical outcome. However, persistent viremia was associated with early proliferative defects of the HCV-specific CD4+ T cells, followed by rapid deletion of the HCV-specific response. Only early initiation of antiviral therapy was able to preserve CD4+ T cell responses in acute, chronically evolving infection. Our results challenge the paradigm that HCV persistence is the result of a failure to prime HCV-specific CD4+ T cells. Instead, broadly directed HCV-specific CD4+ T cell responses are usually generated, but rapid exhaustion and deletion of these cells occurs in the majority of patients. The data further suggest a short window of opportunity to prevent the loss of CD4+ T cell responses through antiviral therapy. PMID:22213804

  15. Pediatric Medical Care System in China Has Significantly Reduced Abandonment of Acute Lymphoblastic Leukemia Treatment.

    PubMed

    Zhou, Qi; Hong, Dan; Lu, Jun; Zheng, Defei; Ashwani, Neetica; Hu, Shaoyan

    2015-04-01

    In this study, we have analyzed both administrative and clinical data from our hospital during 2002 to 2012 to evaluate the influence of government medical policies on reducing abandonment treatment in pediatric patients with acute lymphoblastic leukemia. Two policies funding for the catastrophic diseases and the new rural cooperative medical care system (NRCMS) were initiated in 2005 and 2011, respectively. About 1151 children diagnosed with acute lymphoblastic leukemia were enrolled in our study during this period and 316 cases abandoned treatment. Statistical differences in sex, age, number of children in the family, and family financial status were observed. Of most importance, the medical insurance coverage was critical for reducing abandonment treatment. However, 92 cases abandoning treatment after relapse did not show significant difference either in medical insurance coverage or in duration from first complete remission. In conclusion, financial crisis was the main reason for abandoning treatment. Government-funded health care expenditure programs reduced families' economic burden and thereby reduced the abandonment rate with resultant increased overall survival.

  16. Intragenic ERG Deletions Do Not Explain the Biology of ERG-Related Acute Lymphoblastic Leukemia

    PubMed Central

    Potuckova, Eliska; Zuna, Jan; Hovorkova, Lenka; Starkova, Julia; Stary, Jan; Trka, Jan; Zaliova, Marketa

    2016-01-01

    Intragenic ERG deletions occur in 3–5% of B-cell precursor acute lymphoblastic leukemia, specifically in B-other subtype lacking the classifying genetic lesions. They represent the only genetic lesion described so far present in the majority of cases clustering into a subgroup of B-other subtype characterized by a unique gene expression profile, probably sharing a common, however, not yet fully described, biological background. We aimed to elucidate whether ERG deletions could drive the specific biology of this ERG-related leukemia subgroup through expression of aberrant or decreased expression of wild type ERG isoforms. We showed that leukemic cells with endogenous ERG deletion express an aberrant transcript translated into two proteins in transfected cell lines and that one of these proteins colocalizes with wild type ERG. However, we did not confirm expression of the proteins in acute lymphoblastic leukemia cases with endogenous ERG deletion. ERG deletions resulted in significantly lower expression of wild type ERG transcripts compared to B-other cases without ERG deletion. However, cases with subclonal ERG deletion, clustering to the same ERG deletion associated subgroup, presented similar levels of wild type ERG as cases without ERG deletion. In conclusion, our data suggest that neither the expression of aberrant proteins from internally deleted allele nor the reduced expression of wild type ERG seem to provide a plausible explanation of the specific biology of ERG -related leukemia subgroup. PMID:27494621

  17. Pediatric Medical Care System in China Has Significantly Reduced Abandonment of Acute Lymphoblastic Leukemia Treatment

    PubMed Central

    Zhou, Qi; Hong, Dan; Lu, Jun; Zheng, Defei; Ashwani, Neetica

    2015-01-01

    In this study, we have analyzed both administrative and clinical data from our hospital during 2002 to 2012 to evaluate the influence of government medical policies on reducing abandonment treatment in pediatric patients with acute lymphoblastic leukemia. Two policies funding for the catastrophic diseases and the new rural cooperative medical care system (NRCMS) were initiated in 2005 and 2011, respectively. About 1151 children diagnosed with acute lymphoblastic leukemia were enrolled in our study during this period and 316 cases abandoned treatment. Statistical differences in sex, age, number of children in the family, and family financial status were observed. Of most importance, the medical insurance coverage was critical for reducing abandonment treatment. However, 92 cases abandoning treatment after relapse did not show significant difference either in medical insurance coverage or in duration from first complete remission. In conclusion, financial crisis was the main reason for abandoning treatment. Government-funded health care expenditure programs reduced families’ economic burden and thereby reduced the abandonment rate with resultant increased overall survival. PMID:25393454

  18. Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma

    ClinicalTrials.gov

    2016-10-25

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  19. CCI-779 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Myelodysplastic Syndromes, or Chronic Myelogenous Leukemia in Blastic Phase

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes

  20. Donor T Cells After Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2016-07-20

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood

  1. Acute lymphoblastic leukemia in a patient with MonoMAC syndrome/GATA2 haploinsufficiency.

    PubMed

    Koegel, Ashley K; Hofmann, Inga; Moffitt, Kristin; Degar, Barbara; Duncan, Christine; Tubman, Venée N

    2016-10-01

    Patients with GATA2 haploinsufficiency have a significant predisposition to developing cytopenias, unique infectious manifestations, and myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). We report a unique case of a patient who presented with B-cell acute lymphoblastic leukemia (B-ALL) and was subsequently diagnosed with monocytopenia and mycobacterium avium complex (MonoMAC) syndrome/GATA2 haploinsufficiency. The development of MDS/AML in patients with GATA2 haploinsufficiency is well described, however, the development of ALL has not been reported in the literature. ALL may be associated with GATA2 haploinsufficiency. Clinicians should be attuned to the features of the MonoMAC syndrome in patients with ALL that would prompt additional testing and alter treatment.

  2. Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy

    PubMed Central

    Mei, Lin; Ontiveros, Evelena P.; Griffiths, Elizabeth A.; Thompson, James E.; Wang, Eunice S.; Wetzler, Meir

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is a relatively rare disease in adults accounting for no more than 20% of all cases of acute leukemia. By contrast with the pediatric population, in whom significant improvements in long term survival and even cure have been achieved over the last 30 years, adult ALL remains a significant challenge. Overall survival in this group remains a relatively poor 20–40%. Modern research has focused on improved pharmacokinetics, novel pharmacogenetics and personalized principles to optimize the efficacy of the treatment while reducing toxicity. Here we review the pharmacogenetics of medications used in the management of patients with ALL, including L-asparaginase, glucocorticoids, 6-mercaptopruine, methotrexate, vincristine and tyrosine kinase inhibitors. Incorporating recent pharmacogenetic data, mainly from pediatric ALL, will provide novel perspective of predicting response and toxicity in both pediatric and adult ALL therapy. PMID:25614322

  3. Two Ocular Infections during Conventional Chemotherapy in a Patient with Acute Lymphoblastic Leukemia: A Case Report

    PubMed Central

    Taha, Ruba; Al Hijji, Ibrahim; El Omri, Halima; Al-Laftah, Fareed; Negm, Riham; Yassin, Mohammed; El Ayoubi, Hanadi

    2010-01-01

    Viral retinitis due to cytomegalovirus (CMV) infection is rare in patients with acute leukemia who did not receive hematopoietic stem cell transplantation. We report a case of CMV retinitis that developed in a 49-year-old patient with acute lymphoblastic leukemia. The patient was treated with salvage chemotherapy using a hyper-CVAD regimen and did not receive hematopoietic stem cell transplantation. The incidence of CMV retinitis in this subgroup of patients is not described in literature. He had a very complicated course during chemotherapy but was successfully treated, with preservation of visual acuity, and to date he is in complete remission. Interestingly, prior to CMV retinitis, the patient had been diagnosed with and treated for candida retinitis. This case shows the importance of eye examination and care in patients diagnosed with hematological malignancies. PMID:20740203

  4. Germline ETV6 Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and Thrombocytopenia.

    PubMed

    Topka, Sabine; Vijai, Joseph; Walsh, Michael F; Jacobs, Lauren; Maria, Ann; Villano, Danylo; Gaddam, Pragna; Wu, Gang; McGee, Rose B; Quinn, Emily; Inaba, Hiroto; Hartford, Christine; Pui, Ching-Hon; Pappo, Alberto; Edmonson, Michael; Zhang, Michael Y; Stepensky, Polina; Steinherz, Peter; Schrader, Kasmintan; Lincoln, Anne; Bussel, James; Lipkin, Steve M; Goldgur, Yehuda; Harit, Mira; Stadler, Zsofia K; Mullighan, Charles; Weintraub, Michael; Shimamura, Akiko; Zhang, Jinghui; Downing, James R; Nichols, Kim E; Offit, Kenneth

    2015-06-01

    Somatic mutations affecting ETV6 often occur in acute lymphoblastic leukemia (ALL), the most common childhood malignancy. The genetic factors that predispose to ALL remain poorly understood. Here we identify a novel germline ETV6 p. L349P mutation in a kindred affected by thrombocytopenia and ALL. A second ETV6 p. N385fs mutation was identified in an unrelated kindred characterized by thrombocytopenia, ALL and secondary myelodysplasia/acute myeloid leukemia. Leukemic cells from the proband in the second kindred showed deletion of wild type ETV6 with retention of the ETV6 p. N385fs. Enforced expression of the ETV6 mutants revealed normal transcript and protein levels, but impaired nuclear localization. Accordingly, these mutants exhibited significantly reduced ability to regulate the transcription of ETV6 target genes. Our findings highlight a novel role for ETV6 in leukemia predisposition.

  5. Laparoscopic cholecystectomy for acalculous cholecystitis in a neutropenic patient after chemotherapy for acute lymphoblastic leukemia

    PubMed Central

    Ejduk, Anna; Wróblewski, Tadeusz; Szczepanik, Andrzej B.

    2014-01-01

    Acute acalculous cholecystitis (ACC) is most frequently reported in critically ill patients following sepsis, extensive injury or surgery. It is rather uncommon as a chemotherapy-induced complication, which is usually life-threatening in neutropenic patients subjected to myelosuppressive therapy. A 23-year-old patient with acute lymphoblastic leukemia was subjected to myelosuppressive chemotherapy (cyclophosphamide, cytarabine, pegaspargase). After the first chemotherapy cycle the patient was neutropenic and feverish; she presented with vomiting and pain in the right epigastrium. Ultrasound demonstrated an acalculous gallbladder with wall thickening up to 14 mm. The ACC was diagnosed. Medical therapy included a broad spectrum antibiotic regimen and granulocyte-colony stimulating factors. On the second day after ACC diagnosis the patient's general condition worsened. Laparoscopic cholecystectomy was performed. The resected gallbladder showed no signs of bacterial or leukemic infiltrates. The postoperative course was uneventful. In the management of neutropenic patients with ACC surgical treatment is as important as pharmacological therapy. PMID:25337176

  6. Acute lymphoblastic leukemia in a patient with MonoMAC syndrome/GATA2 haploinsufficiency.

    PubMed

    Koegel, Ashley K; Hofmann, Inga; Moffitt, Kristin; Degar, Barbara; Duncan, Christine; Tubman, Venée N

    2016-10-01

    Patients with GATA2 haploinsufficiency have a significant predisposition to developing cytopenias, unique infectious manifestations, and myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). We report a unique case of a patient who presented with B-cell acute lymphoblastic leukemia (B-ALL) and was subsequently diagnosed with monocytopenia and mycobacterium avium complex (MonoMAC) syndrome/GATA2 haploinsufficiency. The development of MDS/AML in patients with GATA2 haploinsufficiency is well described, however, the development of ALL has not been reported in the literature. ALL may be associated with GATA2 haploinsufficiency. Clinicians should be attuned to the features of the MonoMAC syndrome in patients with ALL that would prompt additional testing and alter treatment. PMID:27232273

  7. BCR-ABL Translocation in Pediatric Acute Lymphoblastic Leukemia in Southern India.

    PubMed

    Sugapriya, D; Preethi, S; Shanthi, P; Chandra, N; Jeyaraman, G; Sachdanandam, P; Thilagavathy, S; Venkatadesilalu, S

    2012-03-01

    Cytogenetics and polymerase chain reaction (PCR) based assays provide important information regarding biologically defined and prognostically relevant subgroups in acute leukemias. We utilized karyotyping and molecular analysis by reverse transcriptase PCR for the BCR-ABL translocation, in addition to morphological study, cytochemistry and immunophenotyping, to study 24 cases of pediatric acute lymphoblastic leukemia (ALL). Our objective was to determine the frequency of the BCRABL translocation in childhood ALL from southern India. Karyotyping showed one case of hyperdiploidy, one case of t (12; 21) translocation and one case of 46, XY-21+mar. The BCR-ABL translocation was found in 8.3% of these cases. One of these was a cryptic translocation, the karyotype being normal. BCR-ABL positivity in ALL is associated with aggressive disease and has been shown to be a poor prognostic factor, especially in children. PMID:23449388

  8. Chronic Disseminated Candidiasis Complicated by Immune Reconstitution Inflammatory Syndrome in Child with Acute Lymphoblastic Leukemia

    PubMed Central

    Ukielska, Bogna; Jończyk-Potoczna, Katarzyna; Konatkowska, Benigna; Wachowiak, Jacek

    2016-01-01

    Hepatosplenic candidiasis also known as chronic disseminated candidiasis is a rare manifestation of invasive fungal infection typically observed in patients with acute leukemia in prolonged, deep neutropenia. Immune reconstitution inflammatory syndrome (IRIS) is an inflammatory disorder triggered by rapid resolution of neutropenia. Diagnosis and treatment of IRIS are still challenging due to a variety of clinical symptoms, lack of certain diagnostic criteria, and no standards of treatment. The diagnosis of IRIS is even more difficult in patients with hematological malignancies complicated by “probable” invasive fungal infection, when fungal pathogen is still uncertain. We report a case of probable hepatic candidiasis in 4-year-old boy with acute lymphoblastic leukemia. Despite proper antifungal therapy, there was no clinical and radiological improvement, so diagnosis of Candida-related IRIS was made and corticosteroid therapy was added to antifungal treatment achieving prompt resolution of infection symptoms. PMID:27800196

  9. Germline ETV6 Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and Thrombocytopenia

    PubMed Central

    Jacobs, Lauren; Maria, Ann; Villano, Danylo; Gaddam, Pragna; Wu, Gang; McGee, Rose B.; Quinn, Emily; Inaba, Hiroto; Hartford, Christine; Pui, Ching-hon; Pappo, Alberto; Edmonson, Michael; Zhang, Michael Y.; Stepensky, Polina; Steinherz, Peter; Schrader, Kasmintan; Lincoln, Anne; Bussel, James; Lipkin, Steve M.; Goldgur, Yehuda; Harit, Mira; Stadler, Zsofia K.; Mullighan, Charles; Weintraub, Michael; Shimamura, Akiko; Zhang, Jinghui; Downing, James R.; Nichols, Kim E.; Offit, Kenneth

    2015-01-01

    Somatic mutations affecting ETV6 often occur in acute lymphoblastic leukemia (ALL), the most common childhood malignancy. The genetic factors that predispose to ALL remain poorly understood. Here we identify a novel germline ETV6 p. L349P mutation in a kindred affected by thrombocytopenia and ALL. A second ETV6 p. N385fs mutation was identified in an unrelated kindred characterized by thrombocytopenia, ALL and secondary myelodysplasia/acute myeloid leukemia. Leukemic cells from the proband in the second kindred showed deletion of wild type ETV6 with retention of the ETV6 p. N385fs. Enforced expression of the ETV6 mutants revealed normal transcript and protein levels, but impaired nuclear localization. Accordingly, these mutants exhibited significantly reduced ability to regulate the transcription of ETV6 target genes. Our findings highlight a novel role for ETV6 in leukemia predisposition. PMID:26102509

  10. Genome-Wide Single-Nucleotide Polymorphism Array Analysis Improves Prognostication of Acute Lymphoblastic Leukemia/Lymphoma.

    PubMed

    Wang, Yunhong; Miller, Sue; Roulston, Diane; Bixby, Dale; Shao, Lina

    2016-07-01

    Chromosomal abnormalities are important for the risk stratification of acute lymphoblastic leukemia/lymphoma (ALL). However, approximately 30% of pediatric and 50% of adult patients lack abnormalities with clinical relevance by traditional cytogenetic analysis. We integrated cytogenetic, fluorescence in situ hybridization, and whole-genome single-nucleotide polymorphism array results from 60 consecutive clinical ALL cases. By cytogenetic and/or fluorescence in situ hybridization analyses, recurring abnormalities with clinical relevance were observed in 33 B-cell ALL (B-ALL), including t(9;22), hyperdiploidy, KMT2A translocation, ETV6-RUNX1, intrachromosomal amplification of chromosome 21, near haploidy or low hypodiploidy, and t(8;22). Single-nucleotide polymorphism array analysis found additional aberrations with prognostic or therapeutic implication in 21 B-ALL and two T-cell ALL, including IKZF1 deletion, intrachromosomal amplification of chromosome 21 (one case with a normal karyotype), low hypodiploidy (two cases with a normal karyotype), and one case each with fusion genes ETV6-NTRK3, CRLF2-P2RY8, NUP214-ABL1, and SET-NUP214. IKZF1 deletion was noted in nine B-ALL with t(9;22), one B-ALL with t(4;11), five B-ALL with a normal karyotype, and three B-ALL with nonrecurring karyotypic abnormalities. Combining single-nucleotide polymorphism array with chromosome and fluorescence in situ hybridization assays, the detection rate for clinically significant abnormal results increased from 56% to 75%. Whole-genome single-nucleotide polymorphism array analysis detects cytogenetically undetectable clinically significant aberrations and should be routinely applied at diagnosis of ALL. PMID:27161658

  11. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol.

    PubMed

    Van der Velden, V H J; Corral, L; Valsecchi, M G; Jansen, M W J C; De Lorenzo, P; Cazzaniga, G; Panzer-Grümayer, E R; Schrappe, M; Schrauder, A; Meyer, C; Marschalek, R; Nigro, L L; Metzler, M; Basso, G; Mann, G; Den Boer, M L; Biondi, A; Pieters, R; Van Dongen, J J M

    2009-06-01

    Acute lymphoblastic leukemia (ALL) in infants younger than 1 year is a rare but relatively homogeneous disease ( approximately 80% MLL gene rearranged, approximately 70% CD10-negative) when compared with childhood and adult ALL. Several studies in children and adults with ALL have shown that minimal residual disease (MRD) status is a strong and independent prognostic factor. We therefore evaluated the prognostic significance of MRD in infant ALL. Ninety-nine infant patients treated according to the Interfant-99 protocol were included in this study. MRD was analyzed by real-time quantitative PCR analysis of rearranged immunoglobulin genes, T-cell receptor genes and MLL genes at various time points (TP) during therapy. Higher MRD levels at the end of induction (TP2) and consolidation (TP3) were significantly associated with lower disease-free survival. Combined MRD information at TP2 and TP3 allowed recognition of three patients groups that significantly differed in outcome. All MRD-high-risk patients (MRD levels > or =10(-4) at TP3; 26% of patients) relapsed. MRD-low-risk patients (MRD level <10(-4) at both TP2 and TP3) constituted 44% of patients and showed a relapse-rate of only 13%, whereas remaining patients (MRD-medium-risk patients; 30% of patients) had a relapse rate of 31%. Comparison between the current Interfant-06 stratification at diagnosis and the here presented MRD-based stratification showed that both stratifications recognized different subgroups of patients. These data indicate that MRD diagnostics has added value for recognition of risk groups in infant ALL and that MRD diagnostics can be used for treatment intervention in infant ALL as well.

  12. High concordance of subtypes of childhood acute lymphoblastic leukemia within families: lessons from sibships with multiple cases of leukemia.

    PubMed

    Schmiegelow, K; Lausten Thomsen, U; Baruchel, A; Pacheco, C E; Pieters, Rob; Pombo-de-Oliveira, M S; Andersen, E W; Rostgaard, K; Hjalgrim, H; Pui, C-H

    2012-04-01

    Polymorphic genes have been linked to the risk of acute lymphoblastic leukemia (ALL). Surrogate markers for a low burden of early childhood infections are also related to increased risk for developing childhood ALL. It remains uncertain, whether siblings of children with ALL have an increased risk of developing ALL. This international collaboration identified 54 sibships with two (N = 51) or more (N = 3) cases of childhood ALL (ages <18 years). The 5-year event-free survival for 61 patients diagnosed after 1 January 1990 was 0.83 ± 0.05. Ages at diagnosis (Spearman correlation coefficient, r(S) = 0.41, P = 0.002) were significantly correlated, but not WBCs (r(S) = 0.23, P = 0.11). In 18 sibships with successful karyotyping in both cases, six were concordant for high-hyperdiploidy (N = 3), t(12;21) [ETV6/RUNX1] (N = 1), MLL rearrangement (N = 1) or t(1;19)(q23/p13) (N = 1). Eleven sibships were ALL-subtype concordant, being T-cell ALL (T-ALL) (N = 5, of a total of six sibships, where the first-born had T-ALL) or B-lineage ALL belonging to the same cytogenetic subset (N = 6), a finding that differs significantly from the expected chance distribution (κ: 0.58; P < 0.0001). These data indicate strong genetic and/or environmental risk factors for childhood ALL that are restricted to specific ALL subtypes, which must be taken into account, when performing epidemiological studies to reveal etiological factors. PMID:22005784

  13. Genome-Wide Single-Nucleotide Polymorphism Array Analysis Improves Prognostication of Acute Lymphoblastic Leukemia/Lymphoma.

    PubMed

    Wang, Yunhong; Miller, Sue; Roulston, Diane; Bixby, Dale; Shao, Lina

    2016-07-01

    Chromosomal abnormalities are important for the risk stratification of acute lymphoblastic leukemia/lymphoma (ALL). However, approximately 30% of pediatric and 50% of adult patients lack abnormalities with clinical relevance by traditional cytogenetic analysis. We integrated cytogenetic, fluorescence in situ hybridization, and whole-genome single-nucleotide polymorphism array results from 60 consecutive clinical ALL cases. By cytogenetic and/or fluorescence in situ hybridization analyses, recurring abnormalities with clinical relevance were observed in 33 B-cell ALL (B-ALL), including t(9;22), hyperdiploidy, KMT2A translocation, ETV6-RUNX1, intrachromosomal amplification of chromosome 21, near haploidy or low hypodiploidy, and t(8;22). Single-nucleotide polymorphism array analysis found additional aberrations with prognostic or therapeutic implication in 21 B-ALL and two T-cell ALL, including IKZF1 deletion, intrachromosomal amplification of chromosome 21 (one case with a normal karyotype), low hypodiploidy (two cases with a normal karyotype), and one case each with fusion genes ETV6-NTRK3, CRLF2-P2RY8, NUP214-ABL1, and SET-NUP214. IKZF1 deletion was noted in nine B-ALL with t(9;22), one B-ALL with t(4;11), five B-ALL with a normal karyotype, and three B-ALL with nonrecurring karyotypic abnormalities. Combining single-nucleotide polymorphism array with chromosome and fluorescence in situ hybridization assays, the detection rate for clinically significant abnormal results increased from 56% to 75%. Whole-genome single-nucleotide polymorphism array analysis detects cytogenetically undetectable clinically significant aberrations and should be routinely applied at diagnosis of ALL.

  14. Patterns of hematopoietic chimerism following bone marrow transplantation for childhood acute lymphoblastic leukemia from volunteer unrelated donors.

    PubMed

    Molloy, K; Goulden, N; Lawler, M; Cornish, J; Oakhill, A; Pamphilon, D; Potter, M; Steward, C; Langlands, K; Humphries, P; McCann, S R

    1996-04-01

    Hematopoietic chimerism was analyzed in serial bone marrow samples taken from 28 children following T-cell depleted unrelated donor bone marrow transplants (UD BMT) for acute lymphoblastic leukemia (ALL). Chimeric status was determined by polymerase chain reaction (PCR) of simple tandem repeat (STR) sequences (maximal sensitivity, 0.1%). At least two serial samples were examined in 23 patients. Of these, two had evidence of complete donor engraftment at all times and eight showed stable low level mixed chimerism (MC) (<1% recipient hematopoiesis). All 10 of these patients remain in remission with a minimum follow-up of 24 months. By contrast, 13 patients demonstrated a progressive return of recipient hematopoiesis. Five of these relapsed (4 to 9 months post BMT), one died of cytomegalovirus pneumonitis and seven remain in remission with a minimum follow-up of 24 months. Five children were excluded from serial analysis as two serial samples were not collected before either relapse (3) or graft rejection (2). We conclude that as with sibling transplants, ex vivo T depleted UD BMT in children with ALL is associated with a high incidence of MC. Stable donor engraftment and low level MC always correlated with continued remission. However, detection of a progressive return of recipient cells did not universally correlate with relapse, but highlighted those patients at greatest risk. Serial chimerism analysis by PCR of STRs provides a rapid and simple screening technique for the detection of relapse and the identification of patients with progressive MC who might benefit from detailed molecular analysis for minimal residual disease following matched volunteer UD BMT for childhood ALL.

  15. Immunophenotypic and functional characterization of ex vivo expanded natural killer cells for clinical use in acute lymphoblastic leukemia patients.

    PubMed

    Peragine, Nadia; Torelli, Giovanni F; Mariglia, Paola; Pauselli, Simona; Vitale, Antonella; Guarini, Anna; Foà, Robin

    2015-02-01

    The management of acute lymphoblastic leukemia (ALL) patients has witnessed profound changes in recent years. Nonetheless, most patients tend to relapse, underlining the need for new therapeutic approaches. The anti-leukemic potential of natural killer (NK) cells has over the years raised considerable interest. In this study, we developed an efficient method for the expansion and activation of NK cells isolated from healthy donors and ALL patients for clinical use. NK cell products were derived from peripheral blood mononuclear cells of 35 healthy donors and 4 B-lineage ALL by immunomagnetic CD3 T cell depletion followed by CD56 cell enrichment. Isolated NK cells were expanded and stimulated in serum-free medium supplemented with irradiated autologous feeder cells and autologous plasma in the presence of clinical grade interleukin (IL)-2 and IL-15 for 14 days. Healthy donor NK cells expanded on average 34.9 ± 10.4 fold and were represented, after expansion, by a highly pure population of CD3(-)CD56(+) cells showing a significant upregulation of natural cytotoxicity receptors, activating receptors and maturation markers. These expanded effectors showed cytolytic activity against K562 cells and, most importantly, against primary adult B-lineage ALL blasts. NK cells could be efficiently isolated and expanded-on average 39.5 ± 20.3 fold-also from primary B-lineage ALL samples of patients in complete remission. The expanded NK cells from these patients showed a significantly increased expression of the NKG2D- and DNAM1-activating receptors and were cytotoxic against K562 cells. These data provide the basis for developing new immunotherapeutic strategies for the management of ALL patients.

  16. Prognostic value of early response to treatment combined with conventional risk factors in pediatric acute lymphoblastic leukemia.

    PubMed

    Morimoto, Akira; Kuriyama, Kikuko; Hibi, Shigeyoshi; Todo, Shinjiro; Yoshihara, Takao; Kuroda, Hiroshi; Imashuku, Shibsaku

    2005-04-01

    To determine useful prognostic factors in treating childhood acute lymphoblastic leukemia (ALL), we correlated conventional risk factors and bone marrow response 14 days after induction chemotherapy. Our study included 116 precursor B-cell (n = 104) and T-cell (n = 12) ALL patients treated with our protocol between 1988 and 1999. The patients were classified into 3 initial risk groups on the basis of conventional risk factors (56 in the low-risk, 33 in the high-risk, and 27 in the very high-risk groups). All patients received similar systemic chemotherapy regimens before the evaluation of their bone marrow on day 14. We evaluated the marrow of 69 patients as M1 (less than 5% blasts), 25 as M2 (5%-25% blasts), and 22 as M3 (more than 25% blasts). Although all patients attained an initial complete remission (CR), relapse was noted in 33 of the 116 patients, and 15 patients died. All of the M1 marrow patients, irrespective of the initial risk group, showed the best event-free survival rate (85.1% +/- 3 4.4%), the lowest relapse rate (14.5%), and the highest attainment of a second CR (100%); they were defined as the new R1 prognostic group. The low-risk patients with M2 or M3 marrow (R2 group) had a relatively high relapse rate, but all of these relapsed patients were treated successfully with subsequent therapy. High- or very high-risk patients with M2 or M3 marrow (R3 group) had the worst prognosis. Our new prognostic definition (R1, R2, R3) incorporating day 14 marrow findings is useful to tailor early-phase treatments for better therapeutic results in childhood ALL.

  17. Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells.

    PubMed

    Verinaud, Liana; Lopes, Stefanie Costa Pinto; Prado, Isabel Cristina Naranjo; Zanucoli, Fábio; Alves da Costa, Thiago; Di Gangi, Rosária; Issayama, Luidy Kazuo; Carvalho, Ana Carolina; Bonfanti, Amanda Pires; Niederauer, Guilherme Francio; Duran, Nelson; Costa, Fábio Trindade Maranhão; Oliveira, Alexandre Leite Rodrigues; Höfling, Maria Alice da Cruz; Machado, Dagmar Ruth Stach; Thomé, Rodolfo

    2015-01-01

    Inflammation is a necessary process to control infection. However, exacerbated inflammation, acute or chronic, promotes deleterious effects in the organism. Violacein (viola), a quorum sensing metabolite from the Gram-negative bacterium Chromobacterium violaceum, has been shown to protect mice from malaria and to have beneficial effects on tumors. However, it is not known whether this drug possesses anti-inflammatory activity. In this study, we investigated whether viola administration is able to reduce acute and chronic autoimmune inflammation. For that purpose, C57BL/6 mice were intraperitoneally injected with 1 μg of LPS and were treated with viola (3.5mg/kg) via i.p. at the same time-point. Three hours later, the levels of inflammatory cytokines in the sera and phenotypical characterization of leukocytes were determined. Mice treated with viola presented a significant reduction in the production of inflammatory cytokines compared with untreated mice. Interestingly, although viola is a compound derived from bacteria, it did not induce inflammation upon administration to naïve mice. To test whether viola would protect mice from an autoimmune inflammation, Experimental Autoimmune Encephalomyelitis (EAE)-inflicted mice were given viola i.p. at disease onset, at the 10th day from immunization. Viola-treated mice developed mild EAE disease in contrast with placebo-treated mice. The frequencies of dendritic cells and macrophages were unaltered in EAE mice treated with viola. However, the sole administration of viola augmented the levels of splenic regulatory T cells (CD4+Foxp3+). We also found that adoptive transfer of viola-elicited regulatory T cells significantly reduced EAE. Our study shows, for the first time, that violacein is able to modulate acute and chronic inflammation. Amelioration relied in suppression of cytokine production (in acute inflammation) and stimulation of regulatory T cells (in chronic inflammation). New studies must be conducted in order to

  18. Epstein-Barr Virus-positive T-cell Lymphoproliferative Disease Following Umbilical Cord Blood Transplantation for Acute Myeloid Leukemia.

    PubMed

    Yui, Shunsuke; Yamaguchi, Hiroki; Imadome, Ken-ichi; Arai, Ayako; Takahashi, Mikiko; Ohashi, Ryuji; Tamai, Hayato; Moriya, Keiichi; Nakayama, Kazutaka; Shimizu, Akira; Inokuchi, Koiti

    2016-01-01

    We report a case of the extremely rare condition Epstein-Barr virus (EBV)-positive T-cell lymphoproliferative disease (LPD) which occurred after umbilical cord blood transplantation. A 25-year-old Japanese man underwent cord blood transplantation from a male human leukocyte antigen 4/6-matched donor due to acute myeloid leukemia with trisomy 8. Bone marrow examination on day 30 showed chimerism with at least 90% donor cells and complete hematological response. Chronic symptoms of graft-versus-host disease appeared only on the skin and were successfully treated with cyclosporine alone. Three years later, however, the patient experienced repeated cold-like symptoms and was hospitalized with liver dysfunction. A high fever developed and was followed by significant edema of the right side of the face. The EBV DNA copy number in whole peripheral blood was 2×10(4)/mL. Liver biopsy showed invasion of EBV-infected CD8-positive T cells. Southern blotting analysis of the whole peripheral blood showed that the T-cell receptor Cβ1 rearrangement was positive. On the basis of these results, EBV-positive T-cell LPD was diagnosed and treated with prednisolone, cyclosporine, and etoposide, followed by cyclophosphamide, doxorubicin, vincristine, and prednisone. However, the patient died of cardiac function failure, pneumonia, and pulmonary hemorrhage, all of unidentified cause. Most cases of EBV-related LPD after hematopoietic stem cell transplantation consist of EBV-positive B-cell LPD, and, to our knowledge, de novo EBV-positive T-cell LPD subsequent to transplantation has not been previously reported. PMID:26960588

  19. Placing Ion Channels into a Signaling Network of T Cells: From Maturing Thymocytes to Healthy T Lymphocytes or Leukemic T Lymphoblasts

    PubMed Central

    Delgado-Enciso, Iván; Best-Aguilera, Carlos; Rojas-Sotelo, Rocío Monserrat; Pottosin, Igor

    2015-01-01

    T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting “leukemogenic” signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility. PMID:25866806

  20. Comparative assessment of therapeutic safety of norcantharidin, N-farnesyloxy-norcantharimide, and N-farnesyl-norcantharimide against Jurkat T cells relative to human normal lymphoblast: A quantitative pilot study.

    PubMed

    Chang, Ming-Che; Wu, Jin-Yi; Liao, Hui-Fen; Chen, Yu-Jen; Kuo, Cheng-Deng

    2016-08-01

    The therapeutic safety of an anticancer drug is one of the most important concerns of the physician treating the cancer patient. Half maximal inhibitory concentration (IC50) and hillslope are usually used to represent the strength and sensitivity of an anticancer drug on cancer cells. The therapeutic safety of the anticancer drug can be assessed by comparing the IC50 and hillslope of anticancer drugs on cancer cells relative to normal cells. Since there are situations where "more anticancer activity" implies "more toxicity," the safety of an anticancer drug in these situations is hard to evaluate by using IC50 and hillslope alone. In a previous study, the "net effect" index was devised to represent the net therapeutic effects of one anticancer drug relative to the other. However, the therapeutic safety of one specific anticancer drug alone was not defined in the "net effect" index. This study introduced the "safety index (SI)" to quantify the degree of safety of an anticancer drug by using 4-parameter logistic model on cancer cells relative to normal cells. The therapeutic safety of norcantharidin (NCTD), N-farnesyloxy-norcantharimide (NOC15), and N-farnesyl-norcantharimide (NC15) in the treatment of Jurkat T cells relative to human normal lymphoblast was compared using the newly defined SI. We found that the SI of NOC15 and NC15 was significantly higher than that of NCTD, suggesting that both NOC15 and NC15 can damage more cancer cells and less normal cells than NCTD. We conclude that both NOC15 and NC15 are safer anticancer drugs than NCTD in the treatment of Jurkat T cells relative to human normal lymphoblast. The SI can be further applied to the screening, developments, and applications of anticancer drugs in the future. PMID:27495082

  1. Hickman to central venous catheter: A case of difficult venous access in a child suffering from acute lymphoblastic leukemia

    PubMed Central

    Chakraborty, Arunangshu; Agrawal, Sanjit; Datta, Taniya; Mitra, Suparna; Khemka, Rakhi

    2016-01-01

    Chemotherapy in children suffering from cancer usually requires placement of an indwelling central venous catheter (CVC). A child may need to undergo repeated procedures because of infection and occlusion of previous access devices. We present a case of CVC insertion in a child suffering from acute lymphoblastic leukemia where an innovative technique was employed.

  2. Novel in vivo model of inducible multidrug resistance in acute lymphoblastic leukemia with chromosomal translocation t(4;11)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute lymphoblastic leukemia (ALL) with translocation t(4;11) is found in 60-85% of infants with ALL and is classified as high-risk due to the generally poor prognosis for survival. Using the SEM cell line established from a patient with t(4;11) ALL, we evaluated the resistance of these cells to the...

  3. Corrigendum: The Associations Between Maternal Factors During Pregnancy and the Risk of Childhood Acute Lymphoblastic Leukemia: A Meta-Analysis.

    PubMed

    Yan, Kangkang; Xu, Xuejing; Liu, Xiaodong; Wang, Xikui; Hua, Shucheng; Wang, Chunpeng; Liu, Xin

    2016-05-01

    Because of the erroneous application of multiple publications, the conclusions of our recent paper (Pediatr Blood Cancer 2015;62:1162-70) were not reliable. The corrected results show that coffee drinking during pregnancy was risk factor for childhood acute lymphoblastic leukemia (OR = 1.44, 95% confidence interval = 1.07-1.92). PMID:26999072

  4. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia | Office of Cancer Genomics

    Cancer.gov

    There is incomplete understanding of genetic heterogeneity and clonal evolution during cancer progression. Here we use deep whole-exome sequencing to describe the clonal architecture and evolution of 20 pediatric B-acute lymphoblastic leukaemias from diagnosis to relapse. We show that clonal diversity is comparable at diagnosis and relapse and clonal survival from diagnosis to relapse is not associated with mutation burden.

  5. Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images Using K-Means Clustering and Support Vector Machine Classifier

    PubMed Central

    Amin, Morteza Moradi; Kermani, Saeed; Talebi, Ardeshir; Oghli, Mostafa Ghelich

    2015-01-01

    Acute lymphoblastic leukemia is the most common form of pediatric cancer which is categorized into three L1, L2, and L3 and could be detected through screening of blood and bone marrow smears by pathologists. Due to being time-consuming and tediousness of the procedure, a computer-based system is acquired for convenient detection of Acute lymphoblastic leukemia. Microscopic images are acquired from blood and bone marrow smears of patients with Acute lymphoblastic leukemia and normal cases. After applying image preprocessing, cells nuclei are segmented by k-means algorithm. Then geometric and statistical features are extracted from nuclei and finally these cells are classified to cancerous and noncancerous cells by means of support vector machine classifier with 10-fold cross validation. These cells are also classified into their sub-types by multi-Support vector machine classifier. Classifier is evaluated by these parameters: Sensitivity, specificity, and accuracy which values for cancerous and noncancerous cells 98%, 95%, and 97%, respectively. These parameters are also used for evaluation of cell sub-types which values in mean 84.3%, 97.3%, and 95.6%, respectively. The results show that proposed algorithm could achieve an acceptable performance for the diagnosis of Acute lymphoblastic leukemia and its sub-types and can be used as an assistant diagnostic tool for pathologists. PMID:25709941

  6. Revaccination of children after completion of standard chemotherapy for acute lymphoblastic leukaemia: a pilot study comparing different schedules.

    PubMed

    Lehrnbecher, Thomas; Schubert, Ralf; Allwinn, Regina; Dogan, Kader; Koehl, Ulrike; Grüttner, Hans-Peter

    2011-03-01

    Given that a significant proportion of children with acute lymphoblastic leukaemia (ALL) lose immune protection to tetanus, diphtheria, and poliomyelitis, revaccination is indicated after chemotherapy. Our randomized pilot study comparing different revaccination schedules suggests that children with ALL might be revaccinated with non-live vaccines as early as 3 months after chemotherapy.

  7. Hickman to central venous catheter: A case of difficult venous access in a child suffering from acute lymphoblastic leukemia

    PubMed Central

    Chakraborty, Arunangshu; Agrawal, Sanjit; Datta, Taniya; Mitra, Suparna; Khemka, Rakhi

    2016-01-01

    Chemotherapy in children suffering from cancer usually requires placement of an indwelling central venous catheter (CVC). A child may need to undergo repeated procedures because of infection and occlusion of previous access devices. We present a case of CVC insertion in a child suffering from acute lymphoblastic leukemia where an innovative technique was employed. PMID:27695218

  8. Granulomatous Amebic Encephalitis in a Child with Acute Lymphoblastic Leukemia Successfully Treated with Multimodal Antimicrobial Therapy and Hyperbaric Oxygen▿

    PubMed Central

    Maritschnegg, P.; Sovinz, P.; Lackner, H.; Benesch, M.; Nebl, A.; Schwinger, W.; Walochnik, J.; Urban, C.

    2011-01-01

    Acanthamoeba is the causative agent of granulomatous amebic encephalitis, a rare and usually fatal disease. We report a child with acute lymphoblastic leukemia who developed brain abscesses caused by Acanthamoeba during induction therapy. Multimodal antimicrobial chemotherapy and hyperbaric oxygen therapy resulted in complete resolution of symptoms and of pathology as seen by magnetic resonance imaging. PMID:21084511

  9. B-cell acute lymphoblastic leukemia associated with SET-NUP214 rearrangement: A case report and review of the literature

    PubMed Central

    ZHU, HONG-HU; ZHAO, XIAO-SU; QIN, YA-ZHEN; LAI, YUE-YUN; JIANG, HAO

    2016-01-01

    The SET nuclear proto-oncogene (SET)-nucleoporin (NUP)214 fusion gene, which results from cryptic t(9;9)(q34;q34) or del(9)(q34.11q34.13), is a rare genetic event in hematological malignancies. The majority of patients carrying SET-NUP214 experience T-cell acute lymphoblastic leukemia (T-ALL), but rarely experience acute undifferentiated leukemia or acute myeloid leukemia. The current study presents the case of a 19-year-old male patient with B-cell ALL (B-ALL) carrying the SET-NUP214 fusion gene, in addition to an fms-related tyrosine kinase 3-internal tandem duplication mutation and a complex karyotype abnormality. The patient exhibited chemotherapy resistance. To the best of our knowledge, the present study is the first report of a case of B-ALL carrying the SET-NUP214 fusion gene, and provides a review of the literature. PMID:27073532

  10. The Sox4/Tcf7l1 axis promotes progression of BCR-ABL-positive acute lymphoblastic leukemia.

    PubMed

    Ma, Haiqing; Mallampati, Saradhi; Lu, Yue; Sun, Baohua; Wang, Enze; Leng, Xiaohong; Gong, Yun; Shen, Haifa; Yin, C Cameron; Jones, Dan; Amin, Hesham M; You, M James; Zweidler-McKay, Patrick; Ma, Yupo; Kantarjian, Hagop M; Arlinghaus, Ralph B; Glassman, Armand; Sun, Xiaoping

    2014-10-01

    The transcription factor Sox4 plays an indispensable role in the development of early progenitor B cells from hematopoietic stem cells. However, its role in B-cell acute lymphoblastic leukemia, a malignant counterpart of normal progenitor B cells, is not fully understood. Here we show that SOX4 is highly expressed in human acute lymphoblastic leukemia cells. To systematically study the function of Sox4 in acute lymphoblastic leukemia, we established a genetically defined mouse leukemia model by transforming progenitor B cells carrying a floxed Sox4 allele and inducing deletion of the allele by the self-excising Cre recombinase. This model allowed us to work with two groups of leukemic cells that had either one copy or both copies of Sox4 deleted. We found that depletion of Sox4 in transformed cells in vitro reduced cell growth in vitro and the progression of leukemia in vivo. Moreover, depletion of Sox4 in leukemic cells in vivo prolonged the survival of the mice, suggesting that it could be a potential target in acute lymphoblastic leukemia therapy. Our microarray and bioChIP studies revealed that Tcf7l1 was the key gene directly regulated by Sox4. Knockdown of Tcf7l1 reduced cell proliferation, just as did knockout of Sox4, and ectopic expression of Tcf7l1 could reverse the effect of Sox4 knockout on cell proliferation. These data suggest that Sox4 and Tcf7l1 form a functional axis that promotes the progression of BCR-ABL-positive acute lymphoblastic leukemia.

  11. Cannabis Extract Treatment for Terminal Acute Lymphoblastic Leukemia with a Philadelphia Chromosome Mutation

    PubMed Central

    Singh, Yadvinder; Bali, Chamandeep

    2013-01-01

    Acute lymphoblastic leukemia (ALL) is a cancer of the white blood cells and is typically well treated with combination chemotherapy, with a remission state after 5 years of 94% in children and 30–40% in adults. To establish how aggressive the disease is, further chromosome testing is required to determine whether the cancer is myeloblastic and involves neutrophils, eosinophils or basophils, or lymphoblastic involving B or T lymphocytes. This case study is on a 14-year-old patient diagnosed with a very aggressive form of ALL (positive for the Philadelphia chromosome mutation). A standard bone marrow transplant, aggressive chemotherapy and radiation therapy were revoked, with treatment being deemed a failure after 34 months. Without any other solutions provided by conventional approaches aside from palliation, the family administered cannabinoid extracts orally to the patient. Cannabinoid resin extract is used as an effective treatment for ALL with a positive Philadelphia chromosome mutation and indications of dose-dependent disease control. The clinical observation in this study revealed a rapid dose-dependent correlation. PMID:24474921

  12. CCR7 Deficiency Exacerbates Injury in Acute Nephritis Due to Aberrant Localization of Regulatory T Cells

    PubMed Central

    Eller, Kathrin; Weber, Tobias; Pruenster, Monika; Wolf, Anna M.; Mayer, Gert

    2010-01-01

    The homing of dendritic cells and T cells to secondary lymphoid organs requires chemokine receptor 7 (CCR7) expression on these cells. T cells mediate the pathogenesis of experimental accelerated nephrotoxic serum nephritis (NTS), including its suppression by regulatory T cells (Tregs), but the contribution of CCR7 to this disease is unknown. Here, we compared the development of NTS in CCR7-knockout (KO) and wild-type (WT) mice. Compared with WT mice, CCR7KO mice developed more severe disease with significantly more inflammatory cells infiltrating the kidney. These cells included FoxP3+ Tregs, which were virtually absent from WT kidneys. The adoptive transfer of WT Tregs into CCR7KO mice at the time of immunization protected the recipients from disease; these cells homed to secondary lymphoid organs but not to kidneys. Conversely, adoptive transfer of CCR7KO Tregs into WT mice did not inhibit development of NTS. These data suggest that NTS can develop without CCR7 expression, but Treg-mediated disease suppression, which seems to occur in secondary lymphoid organs, requires CCR7. PMID:19917782

  13. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-09-09

    Acute Biphenotypic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Pancytopenia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia

  14. Cerebral venous thrombosis in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma during induction chemotherapy with l-asparaginase: The GRAALL experience.

    PubMed

    Couturier, Marie-Anne; Huguet, Françoise; Chevallier, Patrice; Suarez, Felipe; Thomas, Xavier; Escoffre-Barbe, Martine; Cacheux, Victoria; Pignon, Jean-Michel; Bonmati, Caroline; Sanhes, Laurence; Bories, Pierre; Daguindau, Etienne; Dorvaux, Véronique; Reman, Oumedaly; Frayfer, Jamile; Orvain, Corentin; Lhéritier, Véronique; Ifrah, Norbert; Dombret, Hervé; Hunault-Berger, Mathilde; Tanguy-Schmidt, Aline

    2015-11-01

    Central nervous system (CNS) thrombotic events are a well-known complication of acute lymphoblastic leukemia (ALL) induction therapy, especially with treatments including l-asparaginase (l-ASP). Data on risk factors and clinical evolution is still lacking in adult patients. We report on the clinical evolution of 22 CNS venous thrombosis cases occurring in 708 adults treated for ALL or lymphoblastic lymphoma (LL) with the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-induction protocol, which included eight L-ASP (6,000 IU/m(2) ) infusions. The prevalence of CNS thrombosis was 3.1%. CNS thrombosis occurred after a median of 18 days (range: 11-31) when patients had received a median of three l-ASP injections (range: 2-7). Patients with CNS thrombosis exhibited a median antithrombin (AT) nadir of 47.5% (range: 36-67%) at Day 17 (range: D3-D28), and 95% of them exhibited AT levels lower than 60%. There were no evident increase in hereditary thrombotic risk factors prevalence, and thrombosis occurred despite heparin prophylaxis which was performed in 90% of patients. Acquired AT deficiency was frequently detected in patients with l-ASP-based therapy, and patients with CNS thrombosis received AT prophylaxis (45%) less frequently than patients without CNS thrombosis (83%), P = 0.0002). CNS thrombosis was lethal in 5% of patients, while 20% had persistent sequelae. One patient received all planned l-ASP infusions without recurrence of CNS thrombotic whereas l-ASP injections were discontinued in 20 patients during the management of thrombosis without a significant impact on overall survival (P = 0.4). PMID:26214580

  15. BIM mediates oncogene inactivation-induced apoptosis in multiple transgenic mouse models of acute lymphoblastic leukemia

    PubMed Central

    Li, Yulin; Deutzmann, Anja; Choi, Peter S.; Fan, Alice C.; Felsher, Dean W.

    2016-01-01

    Oncogene inactivation in both clinical targeted therapies and conditional transgenic mouse cancer models can induce significant tumor regression associated with the robust induction of apoptosis. Here we report that in MYC-, RAS-, and BCR-ABL-induced acute lymphoblastic leukemia (ALL), apoptosis upon oncogene inactivation is mediated by the same pro-apoptotic protein, BIM. The induction of BIMin the MYC- and RAS-driven leukemia is mediated by the downregulation of miR-17-92. Overexpression of miR-17-92 blocked the induction of apoptosis upon oncogene inactivation in the MYC and RAS-driven but not in the BCR-ABL-driven ALL leukemia. Hence, our results provide novel insight into the mechanism of apoptosis upon oncogene inactivation and suggest that induction of BIM-mediated apoptosis may be an important therapeutic approach for ALL. PMID:27095570

  16. MTHFR polymorphisms' influence on outcome and toxicity in acute lymphoblastic leukemia patients.

    PubMed

    Chiusolo, Patrizia; Reddiconto, Giovanni; Farina, Giuliana; Mannocci, Alice; Fiorini, Alessia; Palladino, Mariangela; La Torre, Giuseppe; Fianchi, Luana; Sorà, Federica; Laurenti, Luca; Leone, Giuseppe; Sica, Simona

    2007-12-01

    Recently the influence of polymorphisms of different genes involved in metabolism of chemoterapic agents have been studied especially in childhood acute lymphoblastic leukemia (ALL). We evaluated the influence of C677T and A1298C methylenetetrahydrofolate reductase (MTHFR) polymorphisms on time to relapse and survival and on methotrexate (MTX) toxicity in 82 ALL adult patients. Relapse free survival and event free survival between homozygous wild-type and variant patients in both polymorphisms were not significantly different. However, we observed an association between 677TT variant and survival in a subset of ALL patients homogenously treated with MTX-based maintenance (p=0.02). In the same subgroup we confirmed the role of 677TT variant on toxicity during MTX treatment (p=0.003). PMID:17512587

  17. Deletion of chromosomal region 13q14.3 in childhood acute lymphoblastic leukemia.

    PubMed

    Cavé, H; Avet-Loiseau, H; Devaux, I; Rondeau, G; Boutard, P; Lebrun, E; Méchinaud, F; Vilmer, E; Grandchamp, B

    2001-03-01

    Deletion of the 13q14 chromosomal region is frequent in B cell chronic lymphocytic leukemia (B-CLL) and is believed to inactivate a tumor supressor gene (TSG) next to RB1. We studied microsatellite markers spanning the 13q14 chromosomal region in 138 children with acute lymphoblastic leukemia (ALL). Allelic loss was demonstrated in six cases (4.3%). Deletion did not include RB1 in two cases. In five patients, the deleted region overlapped that described in B-CLL. A sixth patient harbored a smaller deletion, slightly more telomeric than minimal deleted regions reported in B-CLL. Apparent differences in the delineation of the minimal deleted region could be due to the fact that the putative TSG is a very large gene, with some deletions affecting only a part of it. Our present findings suggest that at least some of its exons lie within a region of less than 100 kb more telomeric that previously thought.

  18. Gene Signature of High White Blood Cell Count in B-Precursor Acute Lymphoblastic Leukemia

    PubMed Central

    Dombkowski, Alan A.; Caldwell, J. Timothy; Chu, Roland; Xavier, Ana C.; Thummel, Ryan; Neely, Melody; Matherly, Larry H.; Ge, Yubin; Taub, Jeffrey W.

    2016-01-01

    In this study we sought to identify genetic factors associated with the presenting white blood cell (WBC) count in B-precursor acute lymphoblastic leukemia (BP-ALL). Using ETV6-RUNX1-positive BP-ALL patient samples, a homogeneous subtype, we identified 16 differentially expressed genes based on the presenting WBC count (< 50,000/cumm vs > 50,000). We further confirmed that IL1R1, BCAR3, KCNH2, PIR, and ZDHHC23 were differentially expressed in a larger cohort of ETV6-RUNX1-negative BP-ALL patient samples. Statistical analysis demonstrated that expression levels of these genes could accurately categorize high and low WBC count subjects using two independent patient sets, representing positive and negative ETV6-RUNX1 cases. Further studies in leukemia cell line models will better delineate the role of these genes in regulating the white blood cell count and potentially identify new therapeutic targets. PMID:27536776

  19. High Risk Pediatric Acute Lymphoblastic Leukemia: To Transplant or Not to Transplant?

    PubMed Central

    Pulsipher, Michael A.; Peters, Christina; Pui, Ching-Hon

    2010-01-01

    Because survival with both chemotherapy and allogeneic hematopoietic stem cell transplantation (HSCT) approaches to high risk pediatric acute lymphoblastic leukemia (ALL) generally improves through the years, regular comparisons of outcomes with either approach for a given indication are needed to decide when HSCT is indicated. Improvements in risk classification are allowing clinicians to identify patients at high risk for relapse early in their course of therapy. Whether patients defined as high risk by new methods will benefit from HSCT requires careful testing. Standardization and improvement of transplant approaches has led to equivalent survival outcomes with matched sibling and well-matched unrelated donors, however, survival using mismatched and haploidentical donors is generally worse. Trials comparing chemotherapy and HSCT must obtain sufficient data about therapy and stratify the analysis to assess the outcomes of best-chemotherapy with best-HSCT approaches. PMID:21195303

  20. Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia.

    PubMed

    Ma, Yussanne; Dobbins, Sara E; Sherborne, Amy L; Chubb, Daniel; Galbiati, Marta; Cazzaniga, Giovanni; Micalizzi, Concetta; Tearle, Rick; Lloyd, Amy L; Hain, Richard; Greaves, Mel; Houlston, Richard S

    2013-04-30

    Acute lymphoblastic leukemia (ALL) is the major pediatric cancer. At diagnosis, the developmental timing of mutations contributing critically to clonal diversification and selection can be buried in the leukemia's covert natural history. Concordance of ALL in monozygotic, monochorionic twins is a consequence of intraplacental spread of an initiated preleukemic clone. Studying monozygotic twins with ALL provides a unique means of uncovering the timeline of mutations contributing to clonal evolution, pre- and postnatally. We sequenced the whole genomes of leukemic cells from two twin pairs with ALL to comprehensively characterize acquired somatic mutations in ALL, elucidating the developmental timing of all genetic lesions. Shared, prenatal, coding-region single-nucleotide variants were limited to the putative initiating lesions. All other nonsynonymous single-nucleotide variants were distinct between tumors and, therefore, secondary and postnatal. These changes occurred in a background of noncoding mutational changes that were almost entirely discordant in twin pairs and likely passenger mutations acquired during leukemic cell proliferation. PMID:23569245

  1. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    PubMed Central

    Vilchis-Ordoñez, Armando; Contreras-Quiroz, Adriana; Dorantes-Acosta, Elisa; Reyes-López, Alfonso; Quintela-Nuñez del Prado, Henry Martin; Venegas-Vázquez, Jorge; Mayani, Hector; Ortiz-Navarrete, Vianney; López-Martínez, Briceida; Pelayo, Rosana

    2015-01-01

    B-cell acute lymphoblastic leukemia (B-ALL) is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow. PMID:26090405

  2. Fatal disseminated fusarium infection in acute lymphoblastic leukaemia in complete remission

    PubMed Central

    Austen, B; McCarthy, H; Wilkins, B; Smith, A; Duncombe, A

    2001-01-01

    Fusarium species are increasingly recognised as serious pathogens in the immunocompromised. The outcome in the context of persistent severe neutropenia has been almost universally fatal. However, there have been several case reports of successful treatment if neutrophil recovery can be achieved. This report presents the case of a fatality that occurred despite neutrophil recovery. A 67 year old man developed disseminated fusariosis during the neutropenic phase of induction chemotherapy for acute lymphoblastic leukaemia. Fusarium dimerum was isolated from blood cultures. This species is highly unusual and very few case reports exist in the literature. An initial response to amphotericin treatment coincided with neutrophil recovery but a subsequent relapse occurred, despite adequate neutrophil counts, which proved fatal. It is postulated that reseeding of the blood from an occult site, namely the right vitreum in this case, led to this secondary relapse despite achieving complete leukaemic remission. Key Words: fusarium • disseminated • neutropenia • remission PMID:11376027

  3. Advances in therapy for Philadelphia-positive acute lymphoblastic leukaemia of childhood and adolescence.

    PubMed

    Bleckmann, Kirsten; Schrappe, Martin

    2016-03-01

    The presence of the BCR/ABL1 fusion gene in childhood acute lymphoblastic leukaemia (ALL) is a rare finding and has been an adverse prognostic factor associated with a high risk of therapeutic failure. The current key components of treatment are intensive polychemotherapy and a BCR/ABL1 kinase domain inhibitor. This treatment approach has been applied in a few clinical trials by paediatric leukaemia study groups. Thus, this subtype of ALL serves as the first model system for truly targeted treatment. The role of haematopoietic stem cell transplantation (HSCT) is increasingly called into question, at least in a favourable, though not yet clearly defined, subset of patients. Currently, the choice of the most effective tyrosine kinase inhibitor is not yet settled, in particular, in view of potential reduction of overall treatment intensity.

  4. Molecular Analysis of Central Nervous System Disease Spectrum in Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Hicks, Chindo; Sitthi-Amorn, Jitsuda; Douglas, Jessica; Ramani, Ritika; Miele, Lucio; Vijayakumar, Vani; Karlson, Cynthia; Chipeta, James; Megason, Gail

    2016-01-01

    Treatment of the central nervous system (CNS) is an essential therapeutic component in childhood acute lymphoblastic leukemia (ALL). The goal of this study was to identify molecular signatures distinguishing patients with CNS disease from those without the disease in pediatric patients with ALL. We analyzed gene expression data from 207 pediatric patients with ALL. Patients without CNS were classified as CNS1, while those with mild and advanced CNS disease were classified as CNS2 and CNS3, respectively. We compared gene expression levels among the three disease classes. We identified gene signatures distinguishing the three disease classes. Pathway analysis revealed molecular networks and biological pathways dysregulated in response to CNS disease involvement. The identified pathways included the ILK, WNT, B-cell receptor, AMPK, ERK5, and JAK signaling pathways. The results demonstrate that transcription profiling could be used to stratify patients to guide therapeutic decision-making in pediatric ALL. PMID:26997880

  5. Acute lymphoblastic leukemia as second primary tumor in a patient with retinoblastoma

    PubMed Central

    Ganguly, Anasua; Kaliki, Swathi; Mohammad, Faraz Ali; Mishra, Dilip K.; Vanajakshi, S.; Reddy, Vijay Anand

    2016-01-01

    Second primary tumor (SPT) is defined as a second tumor that presents either simultaneously or after the diagnosis of an index tumor. Second primary malignancies are the leading cause of death in patients with heritable retinoblastoma (RB). Acute lymphoblastic leukemia (ALL), as SPT in RB patients, is extremely rare. To the best of our knowledge, only five cases of ALL as SPT in patients with RB has been documented in the literature. Herein, we report a case of a 6-year-old girl with bilateral RB, who developed ALL during the course of treatment of RB. This case highlights the importance of reviewing blood investigations regularly to diagnose leukemia as SPT in RB and also the necessity for proper counseling and lifelong follow-up in these patients. PMID:27433042

  6. Genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia cell line

    PubMed Central

    STOCZYNSKA-FIDELUS, EWELINA; PIASKOWSKI, SYLWESTER; PAWLOWSKA, ROZA; SZYBKA, MALGORZATA; PECIAK, JOANNA; HULAS-BIGOSZEWSKA, KRYSTYNA; WINIECKA-KLIMEK, MARTA; RIESKE, PIOTR

    2016-01-01

    Thorough examination of genetic heterogeneity of cell lines is uncommon. In order to address this issue, the present study analyzed the genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia (T-ALL) cell line. For this purpose, traditional techniques such as fluorescence in situ hybridization and immunocytochemistry were used, in addition to more advanced techniques, including cell sorting, Sanger sequencing and massive parallel sequencing. The results indicated that the RPMI-8402 cell line consists of several genetically different cell subpopulations. Furthermore, massive parallel sequencing of RPMI-8402 provided insight into the evolution of T-ALL carcinogenesis, since this cell line exhibited the genetic heterogeneity typical of T-ALL. Therefore, the use of cell lines for drug testing in future studies may aid the progress of anticancer drug research. PMID:26870252

  7. A case of Schizophyllum commune sinusitis following unrelated cord blood transplantation for acute lymphoblastic leukemia.

    PubMed

    Toya, Takashi; Shinohara, Akihito; Tatsuno, Keita; Seo, Sachiko; Nannya, Yasuhito; Ichikawa, Motoshi; Makimura, Koichi; Moriya, Kyoji; Kurokawa, Mineo

    2013-08-01

    Schizophyllum commune is a globally distributed basidiomycete fungus that is known as a rare cause of sinusitis, for which no prompt treatment has been established. We describe the first report of S. commune sinusitis following unrelated cord blood transplantation for acute lymphoblastic leukemia. Thirteen days after transplantation, a 23-year-old female developed maxillary and ethmoid sinusitis. The sinusitis was antimicrobial-resistant, and the sinus aspirate culture revealed white wooly mold, which was identified as S. commune by nucleotide sequencing. The patient was successfully treated with intravenous administration of liposomal amphotericin B for 2 months, followed by oral voriconazole. This report suggests the effectiveness of liposomal amphotericin B and voriconazole for S. commune infection in immunocompromised patients. Given the difficulty in distinguishing S. commune infection from aspergillosis by standard culture methods, the incidence of S. commune infection following allogeneic hematopoietic stem cell transplantation may be underestimated. Nucleotide sequencing may be useful in the diagnosis of S. commune infection.

  8. Gene Signature of High White Blood Cell Count in B-Precursor Acute Lymphoblastic Leukemia.

    PubMed

    Edwards, Holly; Rubenstein, Mara; Dombkowski, Alan A; Caldwell, J Timothy; Chu, Roland; Xavier, Ana C; Thummel, Ryan; Neely, Melody; Matherly, Larry H; Ge, Yubin; Taub, Jeffrey W

    2016-01-01

    In this study we sought to identify genetic factors associated with the presenting white blood cell (WBC) count in B-precursor acute lymphoblastic leukemia (BP-ALL). Using ETV6-RUNX1-positive BP-ALL patient samples, a homogeneous subtype, we identified 16 differentially expressed genes based on the presenting WBC count (< 50,000/cumm vs > 50,000). We further confirmed that IL1R1, BCAR3, KCNH2, PIR, and ZDHHC23 were differentially expressed in a larger cohort of ETV6-RUNX1-negative BP-ALL patient samples. Statistical analysis demonstrated that expression levels of these genes could accurately categorize high and low WBC count subjects using two independent patient sets, representing positive and negative ETV6-RUNX1 cases. Further studies in leukemia cell line models will better delineate the role of these genes in regulating the white blood cell count and potentially identify new therapeutic targets.

  9. Acute lymphoblastic leukemia as second primary tumor in a patient with retinoblastoma.

    PubMed

    Ganguly, Anasua; Kaliki, Swathi; Mohammad, Faraz Ali; Mishra, Dilip K; Vanajakshi, S; Reddy, Vijay Anand

    2016-01-01

    Second primary tumor (SPT) is defined as a second tumor that presents either simultaneously or after the diagnosis of an index tumor. Second primary malignancies are the leading cause of death in patients with heritable retinoblastoma (RB). Acute lymphoblastic leukemia (ALL), as SPT in RB patients, is extremely rare. To the best of our knowledge, only five cases of ALL as SPT in patients with RB has been documented in the literature. Herein, we report a case of a 6-year-old girl with bilateral RB, who developed ALL during the course of treatment of RB. This case highlights the importance of reviewing blood investigations regularly to diagnose leukemia as SPT in RB and also the necessity for proper counseling and lifelong follow-up in these patients. PMID:27433042

  10. The biology, pathogenesis and clinical aspects of acute lymphoblastic leukemia in children with Down syndrome.

    PubMed

    Lee, P; Bhansali, R; Izraeli, S; Hijiya, N; Crispino, J D

    2016-09-01

    Children with Down syndrome (DS) are at a 20-fold increased risk for acute lymphoblastic leukemia (DS-ALL). Although the etiology of this higher risk of developing leukemia remains largely unclear, the recent identification of CRLF2 (cytokine receptor like factor 2) and JAK2 mutations and study of the effect of trisomy of Hmgn1 and Dyrk1a (dual-specificity tyrosine phosphorylation-regulated kinase 1A) on B-cell development have shed significant new light on the disease process. Here we focus on the clinical features, biology and genetics of ALL in children with DS. We review the unique characteristics of DS-ALL on both the clinical and molecular levels and discuss the differences in treatments and outcomes in ALL in children with DS compared with those without DS. The identification of new biological insights is expected to pave the way for novel targeted therapies. PMID:27285583

  11. CYLD Regulates Noscapine Activity in Acute Lymphoblastic Leukemia via a Microtubule-Dependent Mechanism

    PubMed Central

    Yang, Yunfan; Ran, Jie; Sun, Lei; Sun, Xiaodong; Luo, Youguang; Yan, Bing; Tala; Liu, Min; Li, Dengwen; Zhang, Lei; Bao, Gang; Zhou, Jun

    2015-01-01

    Noscapine is an orally administrable drug used worldwide for cough suppression and has recently been demonstrated to disrupt microtubule dynamics and possess anticancer activity. However, the molecular mechanisms regulating noscapine activity remain poorly defined. Here we demonstrate that cylindromatosis (CYLD), a microtubule-associated tumor suppressor protein, modulates the activity of noscapine both in cell lines and in primary cells of acute lymphoblastic leukemia (ALL). Flow cytometry and immunofluorescence microscopy reveal that CYLD increases the ability of noscapine to induce mitotic arrest and apoptosis. Examination of cellular microtubules as well as in vitro assembled microtubules shows that CYLD enhances the effect of noscapine on microtubule polymerization. Microtubule cosedimentation and fluorescence titration assays further reveal that CYLD interacts with microtubule outer surface and promotes noscapine binding to microtubules. These findings thus demonstrate CYLD as a critical regulator of noscapine activity and have important implications for ALL treatment. PMID:25897332

  12. Generation of human acute lymphoblastic leukemia xenografts for use in oncology drug discovery.

    PubMed

    Holmfeldt, Linda; Mullighan, Charles G

    2015-01-01

    The establishment of reproducible mouse models of acute lymphoblastic leukemia (ALL) is necessary to provide in vivo therapeutic test systems that recapitulate human ALL, and for amplification of limited amounts of primary tumor material. A popular assay is the primary xenograft model that utilizes immunocompromised mice. The protocol includes injection of primary patient tumor specimens into mice with subsequent serial passaging of the tumors by retransplants of cells harvested from the mouse bone marrow and spleen. The tumors generated are then used for genomic profiling, ex vivo compound testing, mechanistic studies and retransplantation. Detailed in this unit are procedures for the establishment and maintenance of primary ALL xenograft panels for use in basic research and translational studies. PMID:25737157

  13. Generation of human acute lymphoblastic leukemia xenografts for use in oncology drug discovery

    PubMed Central

    Holmfeldt, Linda

    2015-01-01

    The establishment of reproducible mouse models of acute lymphoblastic leukemia (ALL) is necessary to provide in vivo therapeutic models that recapitulate human ALL, and for amplification of limiting amounts of primary tumor material. A frequently used model is the primary xenograft model that utilizes immunocompromised mice and involves injection of primary patient tumor specimens into mice, and subsequent serial passaging of the tumors by retransplants of cells harvested from the mouse bone marrow and spleen. The tumors generated can then be used for genomic profiling, ex vivo compound testing, mechanistic studies and retransplantation. This unit describes detailed procedures for the establishment and maintenance of primary ALL xenograft panels for potential use in basic research or translational studies. PMID:25737157

  14. Unusual presentation of Erdheim-Chester disease in a child with acute lymphoblastic leukemia

    PubMed Central

    Vallonthaiel, Archana George; Mridha, Asit Ranjan; Gamanagatti, Shivanand; Jana, Manisha; Sharma, Mehar Chand; Khan, Shah Alam; Bakhshi, Sameer

    2016-01-01

    Erdheim-Chester disease (ECD) is an uncommon, non-familial, non-Langerhans cell histiocytosis, which involves skeletal system and soft tissue usually in middle aged and elderly patients. The characteristic radiologic features include bilateral, symmetric cortical osteosclerosis of the diaphyseal and metaphyseal parts of the long bones, or bilateral symmetrically abnormal intense 99mTechnetium labelling of the metaphyseal-diaphyseal region of the long bones, and computed tomography scan findings of “coated aorta” or “hairy kidneys”. ECD in childhood with osteolytic lesion is extremely rare. We describe an unusual case with an expansile lytic bone lesion at presentation in a case of acute lymphoblastic leukemia. PMID:27648170

  15. X-linked agammaglobulinemia associated with B-precursor acute lymphoblastic leukemia.

    PubMed

    Hoshino, Akihiro; Okuno, Yusuke; Migita, Masahiro; Ban, Hideki; Yang, Xi; Kiyokawa, Nobutaka; Adachi, Yuichi; Kojima, Seiji; Ohara, Osamu; Kanegane, Hirokazu

    2015-02-01

    X-linked agammaglobulinemia (XLA) is clinically characterized by reduced number of peripheral B cells and diminished levels of serum immunoglobulins, and caused by a mutation in the Bruton's tyrosine kinase (BTK) gene, which play a pivotal role in signal transduction of pre-B-cell receptor (BCR) and BCR. B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common malignancy in children, and it may be associated with gene alterations that regulate B-cell development. Here we described a first case of XLA associated BCP-ALL. The whole-exome sequencing revealed a somatic mutation in MLL2 in the sample from the onset of BCP-ALL. This study suggests that the alterations of BTK and MLL2 synergistically function as leukemogenesis. PMID:25591849

  16. RBP2 Promotes Adult Acute Lymphoblastic Leukemia by Upregulating BCL2

    PubMed Central

    Wang, Xiaoming; Zhou, Minran; Fu, Yue; Sun, Ting; Chen, Jin; Qin, Xuemei; Yu, Yuan; Jia, Jihui; Chen, Chunyan

    2016-01-01

    Despite recent increases in the cure rate of acute lymphoblastic leukemia (ALL), adult ALL remains a high-risk disease that exhibits a high relapse rate. In this study, we found that the histone demethylase retinoblastoma binding protein-2 (RBP2) was overexpressed in both on-going and relapse cases of adult ALL, which revealed that RBP2 overexpression was not only involved in the pathogenesis of ALL but that its overexpression might also be related to relapse of the disease. RBP2 knockdown induced apoptosis and attenuated leukemic cell viability. Our results demonstrated that BCL2 is a novel target of RBP2 and supported the notion of RBP2 being a regulator of BCL2 expression via directly binding to its promoter. As the role of RBP2 in regulating apoptosis was confirmed, RBP2 overexpression and activation of BCL2 might play important roles in ALL development and progression. PMID:27008505

  17. ROLE OF MINIMAL RESIDUAL DISEASE MONITORING IN ADULT AND PEDIATRIC ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Campana, Dario

    2009-01-01

    SYNOPSIS Assays that measure minimal residual disease (MRD) can determine the response to treatment in patients with acute lymphoblastic leukemia (ALL) much more precisely than morphological screening of bone marrow smears. The clinical significance of MRD detected by flow cytometry or polymerase chain reaction-based methods in childhood ALL has been conclusively established. Hence, MRD is being used in several clinical trials to adjust treatment intensity. Similar findings have been gathered in adult patients with ALL, making MRD one of the most powerful and informative parameters to guide clinical management. This article discusses practical issues related to MRD methodologies and the evidence supporting the use of MRD for risk assignment in clinical trials. PMID:19825454

  18. Leydig-cell function in children after direct testicular irradiation for acute lymphoblastic leukemia

    SciTech Connect

    Brauner, R.; Czernichow, P.; Cramer, P.; Schaison, G.; Rappaport, R.

    1983-07-07

    To assess the effect of testicular irradiation on testicular endocrine function, we studied 12 boys with acute lymphoblastic leukemia who had been treated with direct testicular irradiation 10 months to 8 1/2 years earlier. Insufficient Leydig-cell function, manifested by a low response of plasma testosterone to chorionic gonadotropin or an increased basal level of plasma luteinizing hormone (or both), was observed in 10 patients, 7 of whom were pubertal. Two of these patients had a compensated testicular endocrine insufficiency with only high plasma concentrations of luteinizing hormone. Testosterone secretion was severely impaired in three pubertal boys studied more than four years after testicular irradiation. A diminished testicular volume indicating tubular atrophy was found in all pubertal patients, including three who had not received cyclophosphamide or cytarabine. These data indicate that testosterone insufficiency is a frequent complication of testicular irradiation, although some patients continue to have Leydig-cell activity for several years after therapy.

  19. Body composition and phase angle in Russian children in remission from acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Tseytlin, G. Ja; Khomyakova, I. A.; Nikolaev, D. V.; Konovalova, M. V.; Vashura, A. Yu; Tretyak, A. V.; Godina, E. Z.; Rudnev, S. G.

    2010-04-01

    Elevated degree of body fatness and changes in other body composition parameters are known to be common effects of treatment for acute lymphoblastic leukemia (ALL) in children. In order to study peculiarities of somatic growth and development in ALL survivors, we describe the results of BIA body composition analysis of 112 boys and 108 girls aged 5-18 years in remission from ALL (remission time range 1-13 years) compared to data from the same number of age- and sex-matched healthy controls (n=220). Detrimental effect on height in ALL boys was observed, whereas girls experienced additional weight gain compared to healthy subjects. In ALL patients, resistance, body fat, and percent body fat were significantly increased. The reactance, phase angle, absolute and relative values of skeletal muscle and body cell mass were significantly decreased. Principal component analysis revealed an early prevalence of adiposity traits in the somatic growth and development of ALL girls compared to healthy controls.

  20. Predicting the neurobehavioral side effects of dexamethasone in pediatric acute lymphoblastic leukemia.

    PubMed

    Warris, Lidewij T; van den Akker, Erica L T; Aarsen, Femke K; Bierings, Marc B; van den Bos, Cor; Tissing, Wim J E; Sassen, Sebastiaan D T; Veening, Margreet A; Zwaan, Christian M; Pieters, Rob; van den Heuvel-Eibrink, Marry M

    2016-10-01

    Although dexamethasone is an effective treatment for acute lymphoblastic leukemia (ALL), it can induce a variety of serious neurobehavioral side effects. We hypothesized that these side effects are influenced by glucocorticoid sensitivity at the tissue level. We therefore prospectively studied whether we could predict the occurrence of these side effects using the very low-dose dexamethasone suppression test (DST) or by measuring trough levels of dexamethasone. Fifty pediatric patients (3-16 years of age) with acute lymphoblastic leukemia (ALL) were initially included during the maintenance phase (with dexamethasone) of the Dutch ALL treatment protocol. As a marker of glucocorticoid sensitivity, the salivary very low-dose DST was used. A post-dexamethasone cortisol level <2.0nmol/L was considered a hypersensitive response. The neurobehavioral endpoints consisted of questionnaires regarding psychosocial and sleeping problems administered before and during the course of dexamethasone (6mg/m(2)), and dexamethasone trough levels were measured during dexamethasone treatment. Patients with a hypersensitive response to dexamethasone had more behavioral problems (N=11), sleeping problems, and/or somnolence (N=12) (P<0.05 for all three endpoints). The positive predictive values of the DST for psychosocial problems and sleeping problems were 50% and 30%, respectively. Dexamethasone levels were not associated with neurobehavioral side effects. We conclude that neither the very low-dose DST nor measuring dexamethasone trough levels can accurately predict dexamethasone-induced neurobehavioral side effects. However, patients with glucocorticoid hypersensitivity experienced significantly more symptoms associated with dexamethasone-induced depression. Future studies should elucidate further the mechanisms by which neurobehavioral side effects are influenced by glucocorticoid sensitivity. PMID:27448086

  1. Febrile neutropenia in children with acute lymphoblastic leukemia: single center experience

    PubMed Central

    Özdemir, Nihal; Tüysüz, Gülen; Çelik, Nigar; Yantri, Leman; Erginöz, Ethem; Apak, Hilmi; Özkan, Alp; Yıldız, İnci; Celkan, Tiraje

    2016-01-01

    Aim: An important life-threatening complication of intensive chemotherapy administered in children with leukemia is febrile neutropenia. The objective of this study was to evaluate the clinical features and consequences of febrile neutropenia attacks in children who were treated for acute lymphoblastic leukemia. Material and Methods: Nighty-six children who received chemotherapy for acute lymphoblastic leukemia in our center between January 1995 and December 2010 were included in the study. The data related to demographic characteristics, treatment features, relapse and febrile neutropenia incidences, risk factors, culture results and prognosis were retrospectively evaluated from the patients’ files. Results: A total of two hundred-ninety nine febrile neutropenia attacks observed in the patients during initial treatment and relapse treatment were evaluated. When the incidence of febrile neutropenia was evaluated by years, it was observed that the patients treated after year 2000 had statistically significantly more febrile neutopenia attacks compared to the patients treated before year 2000. When the incidences of febrile neutropenia during initial treatment and during relapse treatment were compared, it was observed that more febrile neutropenia attacks occured during relapse treatment. Fifty-nine percent of all febrile neutropenia attacks were fever of unknown origin. Eighty microorganisms grew in cultures during febrile neutropenia throughout treatment in 75 patients; 86% were bacterial infections (50% gram positive and 50% gram negative), 8% were viral infections and 6% were fungal infections. Coagulase negative staphylococcus (n=17) was the most frequent gram positive pathogen; E. Coli (n=17) was the most commonly grown gram negative pathogen. Conclusions: In this study, it was found that an increase in the incidence of febrile neutropenia occured in years. Increments in treatment intensities increase the incidence of febrile neutropenia while improving

  2. Clinical and haemato-pathological characteristics of adult acute lymphoblastic leukaemia.

    PubMed

    Islam, N; Rahman, M M; Aziz, M A; Begum, M; Ferdous, J; Rahman, M J

    2014-04-01

    Acute lymphoblastic leukaemia (ALL) is a heterogeneous group of disorders. It varies with respect to the morphologic, cytogenetic, molecular and immunologic features of the neoplastic cells reflecting the variable clinical-pathologic presentations and outcome of the patients. The aim of the study was to observe the clinical and haemato-pathological characteristics in newly diagnosed adult ALL patients. A total number of 61 patients morphologically diagnosed as acute lymphoblastic leukaemia aged 15 and above assigned for this observational study. The study was carried out in the Department of Haematology, BSMMU from January 2007 to December 2008. Among 61 patients, aged 15 to 80 years with median age 25 years, 79% were male and 21% were female. Most of the patients presented with anaemia (67%), fever (66%), lymphadenopathy (64%) and splenomegaly (57%). Other common clinical findings were hepatomegaly (39%), bone tenderness (44%) and bleeding manifestations (34%). Among haemato-pathological findings 67% patients had Hb level ≤10gm/dl, 46% patients had WBC count ≥30×10⁹/L, 67% patients had platelet count ≤100×10⁹/L, 93% patients had blast in peripheral blood and 61% patients had ≥90 % blasts in the bone marrow at the time of diagnosis. In this study adult ALL patients were analyzed only for their clinical and haemato-pathological characteristics. But their biologic characteristics were not analyzed due to lack of availability of facility. A progressive understanding of the biologic and genetic characteristics of ALL will allow us to identify different prognostic subgroups with specific molecular and cellular features. All the necessary measures have to be developed in our country in order to identify prognostically distinct subgroups of patients.

  3. Multispecific T cell response and negative HCV RNA tests during acute HCV infection are early prognostic factors of spontaneous clearance

    PubMed Central

    Spada, E; Mele, A; Berton, A; Ruggeri, L; Ferrigno, L; Garbuglia, A R; Perrone, M P; Girelli, G; Del Porto, P; Piccolella, E; Mondelli, M U; Amoroso, P; Cortese, R; Nicosia, A; Vitelli, A; Folgori, A

    2004-01-01

    Background/Aims: Hepatitis C virus (HCV) infection results in a high frequency of chronic disease. The aim of this study was to identify early prognostic markers of disease resolution by performing a comprehensive analysis of viral and host factors during the natural course of acute HCV infection. Methods: The clinical course of acute hepatitis C was determined in 34 consecutive patients. Epidemiological and virological parameters, as well as cell mediated immunity (CMI) and distribution of human leukocyte antigens (HLA) alleles were analysed. Results: Ten out of 34 patients experienced self-limiting infection, with most resolving patients showing fast kinetics of viral clearance: at least one negative HCV RNA test during this phase predicted a favourable outcome. Among other clinical epidemiological parameters measured, the self-limiting course was significantly associated with higher median peak bilirubin levels at the onset of disease, and with the female sex, but only the latter parameter was independently associated after multivariate analysis. No significant differences between self-limiting or chronic course were observed for the distribution of DRB1 and DQB1 alleles. HCV specific T cell response was more frequently detected during acute HCV infection, than in patients with chronic HCV disease. A significantly broader T cell response was found in patients with self-limiting infection than in those with chronic evolving acute hepatitis C. Conclusion: The results suggest that host related factors, in particular sex and CMI, play a crucial role in the spontaneous clearance of this virus. Most importantly, a negative HCV RNA test and broad CMI within the first month after onset of the symptoms represent very efficacious predictors of viral clearance and could thus be used as criteria in selecting candidates for early antiviral treatment. PMID:15479691

  4. TLR ligand induced IL-6 counter-regulates the anti-viral CD8+ T cell response during an acute retrovirus infection

    PubMed Central

    Wu, Weimin; Dietze, Kirsten K.; Gibbert, Kathrin; Lang, Karl S.; Trilling, Mirko; Yan, Huimin; Wu, Jun; Yang, Dongliang; Lu, Mengji; Roggendorf, Michael; Dittmer, Ulf; Liu, Jia

    2015-01-01

    We have previously shown that Toll-like receptor (TLR) agonists contribute to the control of viral infection by augmenting virus-specific CD8+ T-cell responses. It is also well established that signaling by TLRs results in the production of pro-inflammatory cytokines such as interleukin 6 (IL-6). However, how these pro-inflammatory cytokines influence the virus-specific CD8+ T-cell response during the TLR agonist stimulation remained largely unknown. Here, we investigated the role of TLR-induced IL-6 in shaping virus-specific CD8+ T-cell responses in the Friend retrovirus (FV) mouse model. We show that the TLR agonist induced IL-6 counter-regulates effector CD8+ T-cell responses. IL-6 potently inhibited activation and cytokine production of CD8+ T cells in vitro. This effect was mediated by a direct stimulation of CD8+ T cells by IL-6, which induced upregulation of STAT3 phosphorylation and SOCS3 and downregulated STAT4 phosphorylation and T-bet. Moreover, combining TLR stimulation and IL-6 blockade during an acute FV infection resulted in enhanced virus-specific CD8+ T-cell immunity and better control of viral replication. These results have implications for our understanding of the role of TLR induced pro-inflammatory cytokines in regulating effector T cell responses and for the development of therapeutic strategies to overcome T cell dysfunction in chronic viral infections. PMID:25994622

  5. ZFX controls propagation and prevents differentiation of acute T-lymphoblastic and myeloid leukemia

    PubMed Central

    Weisberg, Stuart P.; Smith-Raska, Matthew R.; Esquilin, Jose M.; Zhang, Ji; Arenzana, Teresita L.; Lau, Colleen M.; Churchill, Michael; Pan, Haiyan; Klinakis, Apostolos; Dixon, Jack E.; Mirny, Leonid A.; Mukherjee, Siddhartha; Reizis, Boris

    2014-01-01

    Summary Tumor-propagating cells in acute leukemia maintain a stem/progenitor-like immature phenotype and proliferative capacity. Acute myeloid leukemia (AML) and acute T-lymphoblastic leukemia (T-ALL) originate from different lineages through distinct oncogenic events such as MLL fusions and Notch signaling, respectively. We found that Zfx, a transcription factor that controls hematopoietic stem cell self-renewal, controls the initiation and maintenance of AML caused by MLL-AF9 fusion and of T-ALL caused by Notch1 activation. In both leukemia types, Zfx prevents differentiation and activates gene sets characteristic of immature cells of the respective lineages. In addition, endogenous Zfx contributes to gene induction and transformation by Myc overexpression in myeloid progenitors. Key Zfx target genes include the mitochondrial enzymes Ptpmt1 and Idh2, whose overexpression partially rescues the propagation of Zfx-deficient AML. These results show that distinct leukemia types maintain their undifferentiated phenotype and self-renewal by exploiting a common stem cell-related genetic regulator. PMID:24485662

  6. Long-term Results Of the Pediatric Oncology Group Studies For Childhood Acute Lymphoblastic Leukemia 1984-2001: A Report From The Children’s Oncology Group

    PubMed Central

    Salzer, Wanda L.; Devidas, Meenakshi; Carroll, William L.; Winick, Naomi; Pullen, Jeanette; Hunger, Stephen P.; Camitta, Bruce A.

    2015-01-01

    From 1984-2001, the Pediatric Oncology Group (POG) conducted 12 acute lymphoblastic leukemia (ALL) studies. 10-year event free survival (EFS) for patients >12 months of age with B-precursor ALL on Acute Leukemia in Children 14, 15, and 16 series were 66.7 ± 1.2%, 68.1 ± 1.4% and 73.2 ± 2.1%, respectively. Intermediate dose methotrexate (ID MTX; 1 g/m2) improved outcomes for standard risk patients (10-year EFS 77.5 ± 2.7% vs. 66.3 ± 3.1% for oral MTX). Neither MTX intensification (2.5 g/m2) nor addition of cytosine arabinoside/daunomycin/teniposide improved outcomes for higher risk patients. Intermediate dose mercaptopurine (1 g/m2) failed to improve outcomes for either group. 10-year EFS for patients with T-cell ALL, POG 8704 and 9404, were 49.1 ± 3.1% and 72.2 ± 4.7%, respectively. Intensive asparaginase (10-year EFS 61.8% vs 42.7%) and high dose MTX (5 g/m2) (10-year EFS 78.0% vs. 65.8%) improved outcomes. There was a non-significant improvement in EFS for infants (10-year EFS 17.7 ± 7.2% to 31.9 ± 8.3%). Prognostic indicators for B-precursor ALL were age and WBC at diagnosis, gender, central nervous system disease, DNA index, and cytogenetic abnormalities. Only gender was prognostic in T-cell ALL. In infants, WBC and MLL translocation were linked to inferior outcome. PMID:20016527

  7. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling

    PubMed Central

    Goossens, Steven; Radaelli, Enrico; Blanchet, Odile; Durinck, Kaat; Van der Meulen, Joni; Peirs, Sofie; Taghon, Tom; Tremblay, Cedric S.; Costa, Magdaline; Ghahremani, Morvarid Farhang; De Medts, Jelle; Bartunkova, Sonia; Haigh, Katharina; Schwab, Claire; Farla, Natalie; Pieters, Tim; Matthijssens, Filip; Van Roy, Nadine; Best, J. Adam; Deswarte, Kim; Bogaert, Pieter; Carmichael, Catherine; Rickard, Adam; Suryani, Santi; Bracken, Lauryn S.; Alserihi, Raed; Canté-Barrett, Kirsten; Haenebalcke, Lieven; Clappier, Emmanuelle; Rondou, Pieter; Slowicka, Karolina; Huylebroeck, Danny; Goldrath, Ananda W.; Janzen, Viktor; McCormack, Matthew P.; Lock, Richard B.; Curtis, David J.; Harrison, Christine; Berx, Geert; Speleman, Frank; Meijerink, Jules P. P.; Soulier, Jean; Van Vlierberghe, Pieter; Haigh, Jody J.

    2015-01-01

    Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model. PMID:25565005

  8. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling.

    PubMed

    Goossens, Steven; Radaelli, Enrico; Blanchet, Odile; Durinck, Kaat; Van der Meulen, Joni; Peirs, Sofie; Taghon, Tom; Tremblay, Cedric S; Costa, Magdaline; Farhang Ghahremani, Morvarid; De Medts, Jelle; Bartunkova, Sonia; Haigh, Katharina; Schwab, Claire; Farla, Natalie; Pieters, Tim; Matthijssens, Filip; Van Roy, Nadine; Best, J Adam; Deswarte, Kim; Bogaert, Pieter; Carmichael, Catherine; Rickard, Adam; Suryani, Santi; Bracken, Lauryn S; Alserihi, Raed; Canté-Barrett, Kirsten; Haenebalcke, Lieven; Clappier, Emmanuelle; Rondou, Pieter; Slowicka, Karolina; Huylebroeck, Danny; Goldrath, Ananda W; Janzen, Viktor; McCormack, Matthew P; Lock, Richard B; Curtis, David J; Harrison, Christine; Berx, Geert; Speleman, Frank; Meijerink, Jules P P; Soulier, Jean; Van Vlierberghe, Pieter; Haigh, Jody J

    2015-01-01

    Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model. PMID:25565005

  9. Lack of variant specific CD8+ T-cell response against mutant and pre-existing variants leads to outgrowth of particular clones in acute hepatitis C

    PubMed Central

    2013-01-01

    Background CTL escape mutations have been described during acute hepatitis C in patients who developed chronic disease later on. Our aim was to investigate the mutual relationship between HCV specific CD8+ T cells and evolution of the viral sequence during early acute HCV infection. Results We sequenced multiple clones of NS3 1406 epitope in 4 HLA-A*02 patients with acute hepatitis C genotype 1b infection. Pentamers specific for the variants were used to monitor the corresponding CD8+ T cell response. We observed outgrowth of mutations, which induced only a weak and thus potentially insufficient CD8+ T cell response. In one patient we observed outgrowth of variant epitopes with similarities to a different genotype rather than de novo mutations most probably due to a lack of responsiveness to these likely pre-existing variants. We could show that in acute hepatitis C CTL escape mutations occur much earlier than demonstrated in previous studies. Conclusions The adaption of the virus to a new host is characterized by a high and rapid variability in epitopes under CD8+ T cell immune pressure. This adaption takes place during the very early phase of acute infection and strikingly some sequences were reduced below the limit of detection at some time points but were detected at high frequency again at later time points. Independent of the observed variability, HCV-specific CD8+ T cell responses decline and no adaption to different or new antigens during the course of infection could be detected. PMID:24073713

  10. Quantitative variation of the common acute lymphoblastic leukemia antigen (gp100) on leukemic marrow blasts.

    PubMed Central

    Look, A T; Melvin, S L; Brown, L K; Dockter, M E; Roberson, P K; Murphy, S B

    1984-01-01

    Marrow blasts from children with B cell precursor acute lymphoblastic leukemia (ALL) were studied for differences in quantitative expression of the common ALL antigen (CALLA). Of 42 untreated patients, 35 had detectable amounts of CALLA by flow cytometric (FCM) analysis of J-5 monoclonal antibody binding. Using an FCM technique that provides correlated measurements of a given cell surface antigen, cell size, and DNA content, we detected increased CALLA expression as lymphoblasts moved from G0/G1 phase through S phase of the cell cycle. The density of the antigen (per unit of blast surface area) remained relatively constant over the same interval, indicating that the change was not due to S phase-specific enhancement of CALLA expression. Eight cases had hyperdiploid cellular DNA content and in seven of these, only cells with clonal abnormalities of DNA content expressed the CALLA marker. Mean amounts of CALLA for each patient ranged widely within the study group, from very high to marginally detectable. This variation had no discernible relation to cell size, stem-line DNA content, percentage of cells in S phase, or the presence or absence of cytoplasmic immunoglobulin. Results of a univariate proportional hazards analysis showed that both quantitative level of CALLA for S phase cells (P = 0.048) and white blood cell count (P = 0.012) had made significant contributions to treatment outcome. Patients with relative amounts of CALLA less than the median value for the entire CALLA+ group had a higher rate of failure, which was virtually identical to that for the seven HLA-DR+ patients whose blasts lacked detectable CALLA. The observed interpatient variation in quantitative expression of CALLA is consistent with recognized steps in B cell precursor differentiation and may be useful in distinguishing patients with a less favorable prognosis. Images PMID:6233301

  11. Acute encephalomyelitis complicated with severe neurological sequelae after intrathecal administration of methotrexate in a patient with acute lymphoblastic leukemia.

    PubMed

    Nishikawa, Takuro; Okamoto, Yasuhiro; Maruyama, Shinsuke; Tanabe, Takayuki; Kurauchi, Koichiro; Kodama, Yuichi; Nakagawa, Shunsuke; Shinkoda, Yuichi; Kawano, Yoshifumi

    2014-11-01

    A four-year-old girl on maintenance therapy for acute lymphoblastic leukemia (ALL) complained of a headache and low back pain on the day she received her 21st intrathecal methotrexate (it-MTX) administration, and the next day experienced numbness and pain in her foot. This numbness gradually spread to her hand. She thereafter developed a fever and was hospitalized on day 8. After antibiotic therapy, the fever disappeared. However, her lower limbs became paralyzed, and she also developed urinary retention. On day 12, her paralysis progressed upwards, and she also developed paralysis of the upper limbs. Finally, she experienced convulsions with an impairment of consciousness. A magnetic resonance imaging study of the brain and spinal cord showed abnormal signals in the brain cortex and anterior horn. Accordingly, we diagnosed acute encephalomyelitis associated with it-MTX. High-dose intravenous immunoglobulin, steroid pulse therapy, plasma exchange, and dextromethorphan administration were initiated, while she received mechanical ventilation. Despite this intensive treatment, she suffered severe neurological damage and had to be maintained on mechanical ventilation due to persistent flaccid quadriplegia one year after the onset. When patients have symptoms of ascending paralysis during it-MTX treatment, clinicians should carefully consider the possibility of acute encephalomyelitis due to it-MTX. PMID:25501412

  12. T cell receptor gamma and delta rearrangements in hematologic malignancies. Relationship to lymphoid differentiation.

    PubMed Central

    Griesinger, F; Greenberg, J M; Kersey, J H

    1989-01-01

    We have studied recombinatorial events of the T cell receptor delta and gamma chain genes in hematopoietic malignancies and related these to normal stages of lymphoid differentiation. T cell receptor delta gene recombinatorial events were found in 91% of acute T cell lymphoblastic leukemia, 68% of non-T, non-B lymphoid precursor acute lymphoblastic leukemia (ALL) and 80% of mixed lineage acute leukemias. Mature B-lineage leukemias and acute nonlymphocytic leukemias retained the T-cell receptor delta gene in the germline configuration. The incidence of T cell receptor gamma and delta was particularly high in CD10+CD19+ non-T, non-B lymphoid precursor ALL. In lymphoid precursor ALL, T cell receptor delta was frequently rearranged while T cell receptor gamma was in the germline configuration. This suggests that TCR delta rearrangements may precede TCR gamma rearrangements in lymphoid ontogeny. In T-ALL, only concordant T cell receptor delta and gamma rearrangements were observed. Several distinct rearrangements were defined using a panel of restriction enzymes. Most of the rearrangements observed in T-ALL represented joining events of J delta 1 to upstream regions. In contrast, the majority of rearrangements in lymphoid precursor ALL most likely represented D-D or V-D rearrangements, which have been found to be early recombinatorial events of the TCR delta locus. We next analyzed TCR delta rearrangements in five CD3+TCR gamma/delta+ ALL and cell lines. One T-ALL, which demonstrated a different staining pattern with monoclonal antibodies against the products of the TCR gamma/delta genes than the PEER cell line, rearranges J delta 1 to a currently unidentified variable region. Images PMID:2547833

  13. Tracking of Peptide-Specific CD4+ T-Cell Responses after an Acute Resolving Viral Infection: a Study of Parvovirus B19▿

    PubMed Central

    Kasprowicz, Victoria; Isa, Adiba; Tolfvenstam, Thomas; Jeffery, Katie; Bowness, Paul; Klenerman, Paul

    2006-01-01

    The evolution of peptide-specific CD4+ T-cell responses to acute viral infections of humans is poorly understood. We analyzed the response to parvovirus B19 (B19), a ubiquitous and clinically significant pathogen with a compact and conserved genome. The magnitude and breadth of the CD4+ T-cell response to the two B19 capsid proteins were investigated using a set of overlapping peptides and gamma interferon-specific enzyme-linked immunospot assays of peripheral blood mononuclear cells (PBMCs) from a cohort of acutely infected individuals who presented with acute arthropathy. These were compared to those for a cohort of B19-specific immunoglobulin M-negative (IgM−), IgG+ remotely infected individuals. Both cohorts of individuals were found to make broad CD4+ responses. However, while the responses following acute infection were detectable ex vivo, responses in remotely infected individuals were only detected after culture. One epitope (LASEESAFYVLEHSSFQLLG) was consistently targeted by both acutely (10/12) and remotely (6/7) infected individuals. This epitope was DRB1*1501 restricted, and a major histocompatibility complex peptide tetramer stained PBMCs from acutely infected individuals in the range of 0.003 to 0.042% of CD4+ T cells. Tetramer-positive populations were initially CD62Llo; unlike the case for B19-specific CD8+ T-cell responses, however, CD62L was reexpressed at later times, as responses remained stable or declined slowly. This first identification of B19 CD4+ T-cell epitopes, including a key immunodominant peptide, provides the tools to investigate the breadth, frequency, and functions of cellular responses to this virus in a range of specific clinical settings and gives an important reference point for analysis of peptide-specific CD4+ T cells during acute and persistent virus infections of humans. PMID:16943301

  14. Plasmacytoid Dendritic Cells Die by the CD8 T Cell-Dependent Perforin Pathway during Acute Nonviral Inflammation.

    PubMed

    Mossu, Adrien; Daoui, Anna; Bonnefoy, Francis; Aubergeon, Lucie; Saas, Philippe; Perruche, Sylvain

    2016-09-01

    Regulation of the inflammatory response involves the control of dendritic cell survival. To our knowledge, nothing is known about the survival of plasmacytoid dendritic cells (pDC) in such situation. pDC are specialized in type I IFN (IFN-I) secretion to control viral infections, and IFN-I also negatively regulate pDC survival during the course of viral infections. In this study, we asked about pDC behavior in the setting of virus-free inflammation. We report that pDC survival was profoundly reduced during different nonviral inflammatory situations in the mouse, through a mechanism independent of IFN-I and TLR signaling. Indeed, we demonstrated that during inflammation, CD8(+) T cells induced pDC apoptosis through the perforin pathway. The data suggest, therefore, that pDC have to be turned down during ongoing acute inflammation to not initiate autoimmunity. Manipulating CD8(+) T cell response may therefore represent a new therapeutic opportunity for the treatment of pDC-associated autoimmune diseases, such as lupus or psoriasis. PMID:27448589

  15. [Differential diagnosis of reduced uptake images revealed by bone scan: about a case of acute lymphoblastic leukemia].

    PubMed

    Bahadi, Nisrine; Biyi, Abdelhamid; Oueriagli, Salah Nabih; Doudouh, Abderrahim

    2016-01-01

    If increased uptake during bone scan usually bring to light many bone pathologies, reduced uptakes are a rare occurrence and they require careful analysis to avoid erroneous interpretations. We report the case of a 17-year old admitted with diffuse bone pain, hypercalcemia and thrombopenia. Bone scan showed areas of low uptakes. Bone marrow tests allowed the diagnosis of acute lymphoblastic leukemia. This case report aims to discuss the main differential diagnoses based on such bone scan abnormalities. PMID:27642484

  16. Secondary pure erythroid leukaemia in relapsed acute lymphoblastic leukaemia: lineage switch or chemotherapy effect?

    PubMed

    Gupta, Sanjeev Kumar; Kumar, Rajive; Chharchhodawala, Taher; Kumar, Lalit

    2014-05-19

    Pure erythroid leukaemia is a rare subtype of acute myeloid leukaemia (AML) and its occurrence at acute lymphoblastic leukaemia (ALL) relapse has not been reported earlier. A 39-year-old man received chemotherapy for Philadelphia-negative B cell ALL. Subsequently, he developed pure erythroid leukaemia with >80% immature erythroid precursors in bone marrow showing block positivity on periodic acid-Schiff stain, expressing CD71, CD34 but lacking CD235a. The interval between exposure to multidrug chemotherapy including cyclophosphamide and AML diagnosis was 2 years and 9 months. No cytogenetic abnormality was detected at the time of relapse. The patient died 2 weeks after starting AML chemotherapy. The relatively narrow time interval (usually 5-10 years) between chemotherapy and AML development and normal karyotype at relapse raises a possibility of lineage switch besides therapy-related AML as the likely pathogenesis. Further exploration of such cases may unravel the pathways responsible for lineage assignment in pluripotent stem cells.

  17. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene

    PubMed Central

    Othman, Moneeb A. K.; Grygalewicz, Beata; Pienkowska-Grela, Barbara; Rincic, Martina; Rittscher, Katharina; Melo, Joana B.; Carreira, Isabel M.; Meyer, Britta; Marzena, Watek

    2015-01-01

    MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5′ region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL. PMID:25699572

  18. Successful cord blood transplantation in an adult acute lymphoblastic leukemia patient with congenital heart disease.

    PubMed

    Kowata, Shugo; Fujishima, Yukiteru; Suzuki, Yuzo; Tsukushi, Yasuhiko; Oyake, Tatsuo; Togawa, Ryou; Oyama, Kotaro; Ikai, Akio; Ito, Shigeki; Ishida, Yoji

    2016-08-01

    Recent advances in surgical corrections and supportive care for congenital heart disease have resulted in increasing numbers of adult survivors who may develop hematological malignancies. Treatments including chemotherapy for such patients may cause serious hemodynamic or cardiac complications, especially in those receiving stem cell transplantation. We present a 29-year-old woman with acute lymphoblastic leukemia and congenital heart disease. She had been diagnosed with pulmonary atresia with an intact ventricular septum at birth, and the anomaly was surgically corrected according to the Fontan technique at age 9 years. Her induction chemotherapy required modifications due to poor cardiac status with Fontan circulation. However, after surgical procedures including total cavopulmonary connection and aortic valve replacement at first complete remission, her cardiac status was significantly improved. Subsequently, she underwent cord blood stem cell transplantation at the third complete remission. She required intensive supportive care for circulatory failure as a pre-engraftment immune reaction and stage III acute graft versus host disease of the gut, but recovered from these complications. She was discharged on day 239, and remained in complete remission at 1-year post-transplantation. PMID:27599417

  19. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene.

    PubMed

    Othman, Moneeb A K; Grygalewicz, Beata; Pienkowska-Grela, Barbara; Rincic, Martina; Rittscher, Katharina; Melo, Joana B; Carreira, Isabel M; Meyer, Britta; Marzena, Watek; Liehr, Thomas

    2015-05-01

    MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5' region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL. PMID:25699572

  20. No difference in outcome between children and adolescents transplanted for acute lymphoblastic leukemia in second remission.

    PubMed

    Dini, Giorgio; Zecca, Marco; Balduzzi, Adriana; Messina, Chiara; Masetti, Riccardo; Fagioli, Franca; Favre, Claudio; Rabusin, Marco; Porta, Fulvio; Biral, Erika; Ripaldi, Mimmo; Iori, Anna Paola; Rognoni, Carla; Prete, Arcangelo; Locatelli, Franco

    2011-12-15

    Acute lymphoblastic leukemia (ALL) in second complete remission is one of the most common indications for allogeneic hematopoietic stem cell transplantation (HSCT) in pediatric patients. We compared the outcome after HCST of adolescents, aged 14 to 18 years, with that of children (ie, patients < 14 years of age). Enrolled in the study were 395 patients given the allograft between January 1990 and December 2007; both children (334) and adolescents (61) were transplanted in the same pediatric institutions. All patients received a myeloablative regimen that included total body irradiation in the majority of them. The donor was an HLA-identical sibling for 199 patients and an unrelated volunteer in the remaining 196 patients. Children and adolescents had a comparable cumulative incidence of transplantation-related mortality, disease recurrence, and of both acute and chronic graft-versus-host disease. The 10-year probability of overall survival and event-free survival for the whole cohort of patients were 57% (95% confidence interval, 52%-62%) and 54% (95% confidence interval, 49%-59%), respectively, with no difference between children and adolescents. This study documents that adolescents with ALL in second complete remission given HSCT in pediatric centers have an outcome that does not differ from that of patients younger than 14 years of age.

  1. Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance

    PubMed Central

    2012-01-01

    Background We carried out a candidate gene association study in pediatric acute lymphoblastic leukemia (ALL) to identify possible genetic risk factors in a Hungarian population. Methods The results were evaluated with traditional statistical methods and with our newly developed Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method. We collected genomic DNA and clinical data from 543 children, who underwent chemotherapy due to ALL, and 529 healthy controls. Altogether 66 single nucleotide polymorphisms (SNPs) in 19 candidate genes were genotyped. Results With logistic regression, we identified 6 SNPs in the ARID5B and IKZF1 genes associated with increased risk to B-cell ALL, and two SNPs in the STAT3 gene, which decreased the risk to hyperdiploid ALL. Because the associated SNPs were in linkage in each gene, these associations corresponded to one signal per gene. The odds ratio (OR) associated with the tag SNPs were: OR = 1.69, P = 2.22x10-7 for rs4132601 (IKZF1), OR = 1.53, P = 1.95x10-5 for rs10821936 (ARID5B) and OR = 0.64, P = 2.32x10-4 for rs12949918 (STAT3). With the BN-BMLA we confirmed the findings of the frequentist-based method and received additional information about the nature of the relations between the SNPs and the disease. E.g. the rs10821936 in ARID5B and rs17405722 in STAT3 showed a weak interaction, and in case of T-cell lineage sample group, the gender showed a weak interaction with three SNPs in three genes. In the hyperdiploid patient group the BN-BMLA detected a strong interaction among SNPs in the NOTCH1, STAT1, STAT3 and BCL2 genes. Evaluating the survival rate of the patients with ALL, the BN-BMLA showed that besides risk groups and subtypes, genetic variations in the BAX and CEBPA genes might also influence the probability of survival of the patients. Conclusions In the present study we confirmed the roles of genetic variations in ARID5B and IKZF1 in the susceptibility to B-cell ALL

  2. Adhesion- and Degranulation-Promoting Adapter Protein Promotes CD8 T Cell Differentiation and Resident Memory Formation and Function during an Acute Infection.

    PubMed

    Fiege, Jessica K; Beura, Lalit K; Burbach, Brandon J; Shimizu, Yoji

    2016-09-15

    During acute infections, naive Ag-specific CD8 T cells are activated and differentiate into effector T cells, most of which undergo contraction after pathogen clearance. A small population of CD8 T cells persists as memory to protect against future infections. We investigated the role of adhesion- and degranulation-promoting adapter protein (ADAP) in promoting CD8 T cell responses to a systemic infection. Naive Ag-specific CD8 T cells lacking ADAP exhibited a modest expansion defect early after Listeria monocytogenes or vesicular stomatitis virus infection but comparable cytolytic function at the peak of response. However, reduced numbers of ADAP-deficient CD8 T cells were present in the spleen after the peak of the response. ADAP deficiency resulted in a greater frequency of CD127(+) CD8 memory precursors in secondary lymphoid organs during the contraction phase. Reduced numbers of ADAP-deficient killer cell lectin-like receptor G1(-) CD8 resident memory T (TRM) cell precursors were present in a variety of nonlymphoid tissues at the peak of the immune response, and consequently the total numbers of ADAP-deficient TRM cells were reduced at memory time points. TRM cells that did form in the absence of ADAP were defective in effector molecule expression. ADAP-deficient TRM cells exhibited impaired effector function after Ag rechallenge, correlating with defects in their ability to form T cell-APC conjugates. However, ADAP-deficient TRM cells responded to TGF-β signals and recruited circulating memory CD8 T cells. Thus, ADAP regulates CD8 T cell differentiation events following acute pathogen challenge that are critical for the formation and selected functions of TRM cells in nonlymphoid tissues. PMID:27521337

  3. Ex Vivo T Cell Depleted versus Unmodified Allografts in Patients with Acute Myeloid Leukemia in First Complete Remission

    PubMed Central

    Bayraktar, Ulas D.; de Lima, Marcos; Saliba, Rima M.; Maloy, Molly; Castro-Malaspina, Hugo R.; Chen, Julianne; Rondon, Gabriela; Chiattone, Alexander; Jakubowski, Ann A.; Boulad, Farid; Kernan, Nancy A.; O'Reilly, Richard J.; Champlin, Richard E.; Giralt, Sergio; Andersson, Borje S.; Papadopoulos, Esperanza B.

    2014-01-01

    Purpose To retrospectively compare the clinical outcomes after transplantation of T cell depleted (TCD) and unmodified allografts in patients with acute myeloid leukemia (AML) in first complete remission (CR1). Patients and methods Patients received TCD grafts at Memorial Sloan-Kettering Cancer Center (MSKCC, N=115) between 2001 and 2010 using the following preparative regimens: Hyperfractionated total body irradiation (HFTBI) /thiotepa /fludarabine; HFTBI /thiotepa /cyclophosphamide; i.v. busulfan/melphalan/fludarabine. T cell depletion was performed by one of two immunomagnetic CD34+ cell selection methods for peripheral blood grafts or by soybean lectin agglutination followed by sRBC-rosette depletion for bone marrow grafts. No additional graft-versus-host disease (GVHD) prophylaxis was administered. Patients received unmodified grafts at MD Anderson Cancer Center (MDACC, N=181) after conditioning with busulfan /fludarabine and GVHD prophylaxis with tacrolimus /mini-methotrexate. Patients with unrelated or HLA-mismatched donors received anti-thymocyte globulin (ATG) at both centers with some recipients of matched related donor TCD transplants also receiving ATG depending upon the preparative regimen. Results TCD graft recipients were more likely to be older, receive a mismatched transplant, and have peripheral blood used as the graft source. The incidences of grade 2-4 acute GVHD and chronic GVHD were significantly lower in the TCD graft group (5% vs. 18% and 13% vs. 53%). Three-year relapse-free (RFS) and overall survival (OS) rates were 58% and 57% in recipients of TCD grafts, and 60% and 66% in recipients of unmodified grafts (P=NS). Conclusion Survival and RFS are similar after TCD and conventional transplants from related/unrelated donors in patients with AML in CR1 but TCD significantly reduces GVHD. PMID:23467126

  4. High Throughput Drug Sensitivity Assay and Genomics- Guided Treatment of Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-05-19

    Acute Leukemia of Ambiguous Lineage; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  5. Residential Levels of Polybrominated Diphenyl Ethers and Risk of Childhood Acute Lymphoblastic Leukemia in California

    PubMed Central

    Colt, Joanne S.; Deziel, Nicole C.; Whitehead, Todd P.; Reynolds, Peggy; Gunier, Robert B.; Nishioka, Marcia; Dahl, Gary V.; Rappaport, Stephen M.; Buffler, Patricia A.; Metayer, Catherine

    2014-01-01

    Background: House dust is a major source of exposure to polybrominated diphenyl ethers (PBDEs), which are found at high levels in U.S. homes. Methods: We studied 167 acute lymphoblastic leukemia (ALL) cases 0–7 years of age and 214 birth certificate controls matched on date of birth, sex, and race/ethnicity from the Northern California Childhood Leukemia Study. In 2001–2007, we sampled carpets in the room where the child spent the most time while awake; we used a high-volume small-surface sampler or we took dust from the home vacuum. We measured concentrations of 14 PBDE congeners including penta (28, 47, 99, 100, 153, 154), octa (183, 196, 197, 203), and decaBDEs (206–209). Odds ratios (ORs) were calculated using logistic regression, adjusting for demographics, income, year of dust collection, and sampling method. Results: BDE-47, BDE-99, and BDE-209 were found at the highest concentrations (medians, 1,173, 1,579, and 938 ng/g, respectively). Comparing the highest to lowest quartile, we found no association with ALL for summed pentaBDEs (OR = 0.7; 95% CI: 0.4, 1.3), octaBDEs (OR = 1.3; 95% CI: 0.7, 2.3), or decaBDEs (OR = 1.0; 95% CI: 0.6, 1.8). Comparing homes in the highest concentration (nanograms per gram) tertile to those with no detections, we observed significantly increased ALL risk for BDE-196 (OR = 2.1; 95% CI: 1.1, 3.8), BDE-203 (OR = 2.0; 95% CI: 1.1, 3.6), BDE-206 (OR = 2.1; 95% CI: 1.1, 3.9), and BDE-207 (OR = 2.0; 95% CI: 1.03, 3.8). Conclusion: We found no association with ALL for common PBDEs, but we observed positive associations for specific octa and nonaBDEs. Additional studies with repeated sampling and biological measures would be informative. Citation: Ward MH, Colt JS, Deziel NC, Whitehead TP, Reynolds P, Gunier RB, Nishioka M, Dahl GV, Rappaport SM, Buffler PA, Metayer C. 2014. Residential levels of polybrominated diphenyl ethers and risk of childhood acute lymphoblastic leukemia in California. Environ Health Perspect 122:1110–1116

  6. [A comparative cytogenetic analysis in large scale between adult and childhood patients with acute lymphoblastic leukemia].

    PubMed

    Liu, Xu-Ping; Zhu, Xiao-Fan; Wang, Jian-Xiang; Mi, Ying-Chang; Zou, Yao; Chen, Yu-Mei; Li, Cheng-Wen; Dai, Yun; Qin, Shuang; Xiao, Ji-Gang; Xu, Fang-Yun; Gong, Jin-Ying; Wang, Si-Ping; Yu, Cheng-Long; Fan, Jing

    2009-12-01

    This study was purposed to comparatively analyze the cytogenetic characteristics between 566 cases of adult acute lymphoblastic leukemia (aALL) and 586 cases of childhood acute lymphoblastic leukemia (cALL). The cytogenetic analysis of all the patients was performed, and the FISH detection for partial patients was carried out. The result showed that the difference of chromosome abnormality between cALL and aALL was statistically significant. The percentage of abnormal karyotypes in aALL was 62.0%, including mainly t(9;22)(q34;q11), hypodiploidy, hyperdiploidy (47 - 50), abn(6q), abn(9p) and -7, most of which conferring an unfavorable prognosis. The percentage of abnormal karyotypes in cALL was 39.2%, composed mainly of high hyperdiploidy, hypodiploidy, TEL/AML1(+), +8, hyperdiploidy (47 - 50) and +21, etc, most of which conferring a favorable prognosis. The incidences of abnormal karyotypes, total hypodiploidy, total hyperdiploidy (47 - 50), t(9;22)(q34;q11), -7, abn(7q), abn(14q32) and +Ph in aALL were significantly higher than those of cALL (p < 0.05), whereas the incidences of normal karyotype (N), high hyperdiploidy, +8, +21*2 and TEL/AML1(+) in cALL were significantly higher than those of aALL (p < 0.05). 20.5% of aALL were Ph+ aALL, with 63.8% of which being with additional abnormalities, composed mainly of +Ph, -7, i (9q+), 9p-, +8, +21, +X, 6q-, abn(14q32) and +14. In contrast, only 4.4% of cALL were Ph+ aALL, with 42.3% of which being with additional abnormalities, including mainly abn(9p), abn(7p), -7, 17p- and +21. It is concluded that almost every chromosome is involved in the numerical and structural abnormalities and complex karyotypes are common. The significant difference of chromosome abnormality exists between aALL and cALL.

  7. Common mechanism of chromosome inversion in B- and T-cell tumors: relevance to lymphoid development.

    PubMed

    Denny, C T; Hollis, G F; Hecht, F; Morgan, R; Link, M P; Smith, S D; Kirsch, I R

    1986-10-10

    An inversion of chromosome 14 present in the tumor cells of a patient with childhood acute lymphoblastic leukemia of B-cell lineage was shown to be the result of a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of a T-cell receptor alpha chain. This rearrangement resulted in the formation of a hybrid gene, part immunoglobulin and part T-cell receptor. Furthermore, this hybrid gene was transcribed into messenger RNA with a completely open reading frame. Thus, two loci felt to be normally activated at distinct and disparate points in lymphocyte development were unified and expressed in this tumor.

  8. Frequent and sex-biased deletion of SLX4IP by illegitimate V(D)J-mediated recombination in childhood acute lymphoblastic leukemia.

    PubMed

    Meissner, Barbara; Bartram, Thies; Eckert, Cornelia; Trka, Jan; Panzer-Grümayer, Renate; Hermanova, Ivana; Ellinghaus, Eva; Franke, Andre; Möricke, Anja; Schrauder, André; Teigler-Schlegel, Andrea; Dörge, Petra; von Stackelberg, Arend; Basso, Giuseppe; Bartram, Claus R; Kirschner-Schwabe, Renate; Bornhäuser, Beat; Bourquin, Jean-Pierre; Cazzaniga, Giovanni; Hauer, Julia; Attarbaschi, Andishe; Izraeli, Shai; Zaliova, Marketa; Cario, Gunnar; Zimmermann, Martin; Avigad, Smadar; Sokalska-Duhme, Magdalena; Metzler, Markus; Schrappe, Martin; Koehler, Rolf; Te Kronnie, Geertruy; Stanulla, Martin

    2014-02-01

    Acute lymphoblastic leukemia (ALL) accounts for ∼25% of pediatric malignancies. Of interest, the incidence of ALL is observed ∼20% higher in males relative to females. The mechanism behind the phenomenon of sex-specific differences is presently not understood. Employing genome-wide genetic aberration screening in 19 ALL samples, one of the most recurrent lesions identified was monoallelic deletion of the 5' region of SLX4IP. We characterized this deletion by conventional molecular genetic techniques and analyzed its interrelationships with biological and clinical characteristics using specimens and data from 993 pediatric patients enrolled into trial AIEOP-BFM ALL 2000. Deletion of SLX4IP was detected in ∼30% of patients. Breakpoints within SLX4IP were defined to recurrent positions and revealed junctions with typical characteristics of illegitimate V(D)J-mediated recombination. In initial and validation analyses, SLX4IP deletions were significantly associated with male gender and ETV6/RUNX1-rearranged ALL (both overall P < 0.0001). For mechanistic validation, a second recurrent deletion affecting TAL1 and caused by the same molecular mechanism was analyzed in 1149 T-cell ALL patients. Validating a differential role by sex of illegitimate V(D)J-mediated recombination at the TAL1 locus, 128 out of 1149 T-cell ALL samples bore a deletion and males were significantly more often affected (P = 0.002). The repeatedly detected association of SLX4IP deletion with male sex and the extension of the sex bias to deletion of the TAL1 locus suggest that differential illegitimate V(D)J-mediated recombination events at specific loci may contribute to the consistent observation of higher incidence rates of childhood ALL in boys compared with girls. PMID:24045615

  9. Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  10. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    SciTech Connect

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.

  11. Blinatumomab vs historical standard therapy of adult relapsed/refractory acute lymphoblastic leukemia

    PubMed Central

    Gökbuget, N; Kelsh, M; Chia, V; Advani, A; Bassan, R; Dombret, H; Doubek, M; Fielding, A K; Giebel, S; Haddad, V; Hoelzer, D; Holland, C; Ifrah, N; Katz, A; Maniar, T; Martinelli, G; Morgades, M; O'Brien, S; Ribera, J-M; Rowe, J M; Stein, A; Topp, M; Wadleigh, M; Kantarjian, H

    2016-01-01

    We compared outcomes from a single-arm study of blinatumomab in adult patients with B-precursor Ph-negative relapsed/refractory acute lymphoblastic leukemia (R/R ALL) with a historical data set from Europe and the United States. Estimates of complete remission (CR) and overall survival (OS) were weighted by the frequency distribution of prognostic factors in the blinatumomab trial. Outcomes were also compared between the trial and historical data using propensity score methods. The historical cohort included 694 patients with CR data and 1112 patients with OS data compared with 189 patients with CR and survival data in the blinatumomab trial. The weighted analysis revealed a CR rate of 24% (95% CI: 20–27%) and a median OS of 3.3 months (95% CI: 2.8–3.6) in the historical cohort compared with a CR/CRh rate of 43% (95% CI: 36–50%) and a median OS of 6.1 months (95% CI: 4.2–7.5) in the blinatumomab trial. Propensity score analysis estimated increased odds of CR/CRh (OR=2.68, 95% CI: 1.67–4.31) and improved OS (HR=0.536, 95% CI: 0.394–0.730) with blinatumomab. The analysis demonstrates the application of different study designs and statistical methods to compare novel therapies for R/R ALL with historical data. PMID:27662202

  12. Outcome of B-Cell Acute Lymphoblastic Leukemia in Brazilian Children: Immunophenotypical, Hematological, and Clinical Evaluation.

    PubMed

    Cézar, Rodrigo S; Cerqueira, Bruno A V; da Paz, Silvana de Souza; Barbosa, Cynara G; de Moura Neto, José P; Barreto, José H de S; Goncalves, Marilda de S

    2015-08-01

    The aim of this study is to investigate the clinical, hematological, and immunophenotypic characteristics of Brazilian children with B-cell acute lymphoblastic leukemia (B-ALL) to identify prognostic biomarkers of the disease. Thirty-three children newly diagnosed with B-ALL were followed between March 2004 and December 2009. Information about the demographic profile, diagnosis, immunophenotype, clinical manifestations, and disease outcome were gathered from the patients' medical records. Of the 33 patients with B-ALL, 18 were male and 15 female. Eighteen patients were classified as high risk; 13 as low risk, and 2 as true low risk. The frequencies of cluster of differentiation (CD)10, CD19, and CD20 antigens were 69.7%, 81.8%, and 18.2%, respectively. Six patients (18.2%) had aberrant expression of myeloid antigens. At diagnosis, patients immunopositive for CD20 had elevated white blood cell counts (P = 0.018) and lower platelet counts (P = 0.017). The 6-year overall survival was 67.5%± 3.47%. Our results demonstrate the distinct immunophenotypic and prognostic characteristics of patients with B-ALL, which can be related to the Brazilian racial admixture. Consequently, these results will most likely aid in the selection of additional prognostic markers and their use in monitoring the clinical manifestations and treatment response among B-ALL patients. PMID:26056790

  13. Transcription-coupled genetic instability marks acute lymphoblastic leukemia structural variation hotspots

    PubMed Central

    Heinäniemi, Merja; Vuorenmaa, Tapio; Teppo, Susanna; Kaikkonen, Minna U; Bouvy-Liivrand, Maria; Mehtonen, Juha; Niskanen, Henri; Zachariadis, Vasilios; Laukkanen, Saara; Liuksiala, Thomas; Teittinen, Kaisa; Lohi, Olli

    2016-01-01

    Progression of malignancy to overt disease requires multiple genetic hits. Activation-induced deaminase (AID) can drive lymphomagenesis by generating off-target DNA breaks at loci that harbor highly active enhancers and display convergent transcription. The first active transcriptional profiles from acute lymphoblastic leukemia (ALL) patients acquired here reveal striking similarity at structural variation (SV) sites. Specific transcriptional features, namely convergent transcription and Pol2 stalling, were detected at breakpoints. The overlap was most prominent at SV with recognition motifs for the recombination activating genes (RAG). We present signal feature analysis to detect vulnerable regions and quantified from human cells how convergent transcription contributes to R-loop generation and RNA polymerase stalling. Wide stalling regions were characterized by high DNAse hypersensitivity and unusually broad H3K4me3 signal. Based on 1382 pre-B-ALL patients, the ETV6-RUNX1 fusion positive patients had over ten-fold elevation in RAG1 while high expression of AID marked pre-B-ALL lacking common cytogenetic changes. DOI: http://dx.doi.org/10.7554/eLife.13087.001 PMID:27431763

  14. L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase

    PubMed Central

    Pieters, Rob; Hunger, Stephen P; Boos, Joachim; Rizzari, Carmelo; Silverman, Lewis; Baruchel, Andre; Goekbuget, Nicola; Schrappe, Martin; Pui, Ching-Hon

    2010-01-01

    Asparaginases are a cornerstone of treatment protocols for acute lymphoblastic leukemia (ALL) and are used for remission induction and intensification treatment in all pediatric regimens and in the majority of adult protocols. Extensive clinical data have shown that intensive asparaginase treatment improves clinical outcomes in childhood ALL. Three asparaginase preparations are available; the native asparaginase derived from Escherichia coli (E. coli-asparaginase), a pegylated form of this enzyme (PEG-asparaginase) and a product isolated from Erwinia chrysanthemi, i.e. Erwinia asparaginase. Clinical hypersensitivity reactions and silent inactivation due to antibodies against E.coli-asparaginase, lead to inactivation of E-Coli asparaginase in up to 60% of cases. Current treatment protocols include E. coli-asparaginase or PEG-asparaginase for first-line treatment of ALL. Typically, patients exhibiting sensitivity to one formulation of asparaginase are switched to another product to ensure they receive the most efficacious treatment regimen possible. Erwinia asparaginase is used as a second- or third-line treatment in European and US protocols. Despite the universal inclusion of asparaginase in such treatment protocols, there is much debate regarding the optimal formulation and dosage of these agents. This manuscript provides an overview of available evidence to make recommendations for optimal use of Erwinia asparaginase in the treatment of ALL. PMID:20824725

  15. Intracellular Signaling Pathways Involved in Childhood Acute Lymphoblastic Leukemia; Molecular Targets.

    PubMed

    Layton Tovar, Cristian Fabián; Mendieta Zerón, Hugo

    2016-06-01

    Acute lymphoblastic leukemia (ALL) is a malignant disease characterized by an uncontrolled proliferation of immature lymphoid cells. ALL is the most common hematologic malignancy in early childhood, and it reaches peak incidence between the ages of 2 and 3 years. The prognosis of ALL is associated with aberrant gene expression, in addition to the presence of numerical or structural chromosomal alterations, age, race, and immunophenotype. The Relapse rate with regard to pharmacological treatment rises in childhood; thus, the expression of biomarkers associated with the activation of cell signaling pathways is crucial to establish the disease prognosis. Intracellular pathways involved in ALL are diverse, including Janus kinase/Signal transducers and transcription activators (JAK-STAT), Phosphoinositide-3-kinase-protein kinase B (PI3K-AKT), Ras mitogen-activated protein kinase (Ras-MAPK), Glycogen synthase kinase-3β (GSK-3β), Nuclear factor-kappa beta (NF-κB), and Hypoxia-inducible transcription factor 1α (HIF-1α), among others. In this review, we present several therapeutic targets, intracellular pathways, and molecular markers that are being studied extensively at present.

  16. Progress in Treatment of Viral Infections in Children with Acute Lymphoblastic Leukemia

    PubMed Central

    Moschovi, Maria; Adamaki, Maria; Vlahopoulos, Spiros A.

    2016-01-01

    In children, the most commonly encountered type of leukemia is acute lymphoblastic leukemia (ALL). An important source of morbidity and mortality in ALL are viral infections. Even though allogeneic transplantations, which are often applied also in ALL, carry a recognized risk for viral infections, there are multiple factors that make ALL patients susceptible to viral infections. The presence of those factors has an influence in the type and severity of infections. Currently available treatment options do not guarantee a positive outcome for every case of viral infection in ALL, without significant side effects. Side effects can have very serious consequences for the ALL patients, which include nephrotoxicity. For this reason a number of strategies for personalized intervention have been already clinically tested, and experimental approaches are being developed. Adoptive immunotherapy, which entails administration of ex vivo grown immune cells to a patient, is a promising approach in general, and for transplant recipients in particular. The ex vivo grown cells are aimed to strengthen the immune response to the virus that has been identified in the patients’ blood and tissue samples. Even though many patients with weakened immune system can benefit from progress in novel approaches, a viral infection still poses a very significant risk for many patients. Therefore, preventive measures and supportive care are very important for ALL patients. PMID:27471584

  17. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Moorman, Anthony V

    2016-04-01

    Acute lymphoblastic leukemia (ALL) is a heterogeneous disease at the genetic level. Chromosomal abnormalities are used as diagnostic, prognostic and predictive biomarkers to provide subtype, outcome and drug response information. t(12;21)/ETV6-RUNX1 and high hyper-diploidy are good-risk prognostic biomarkers whereas KMT2A(MLL) translocations, t(17;19)/TCF3-HLF, haploidy or low hypodiploidy are high-risk biomarkers. t(9;22)/BCR-ABL1 patients require targeted treatment (imatinib/dasatinib), whereas iAMP21 patients achieve better outcomes when treated intensively. High-risk genetic biomarkers are four times more prevalent in adults compared to children. The application of genomic technologies to cases without an established abnormality (B-other) reveals copy number alterations which can be used either individually or in combination as prognostic biomarkers. Transcriptome sequencing studies have identified a network of fusion genes involving kinase genes -ABL1,ABL2,PDGFRB,CSF1R,CRLF2,JAK2 and EPOR in-vitro and in-vivo studies along with emerging clinical observations indicate that patients with a kinase-activating aberration may respond to treatment with small molecular inhibitors like imatinib/dasatinib and ruxolitinib. Further work is required to determine the true frequency of these abnormalities across the age spectrum and the optimal way to incorporate such inhibitors into protocols. In conclusion, genetic biomarkers are playing an increasingly important role in the management of patients with ALL. PMID:27033238

  18. The risk factors for thrombosis in children with acute lymphoblastic leukemia.

    PubMed

    Sivaslioglu, Selda; Gursel, Turkiz; Kocak, Ulker; Kaya, Zuhre

    2014-09-01

    We aimed to scrutinize the risk factors for thrombosis in children with acute lymphoblastic leukemia treated with the Berlin-Frankfurt-Münster 95 protocol. The study population was 82 children younger than 16 years of age. The children were followed up for 10 years until January 2007. Thrombosis occurred in 10 (12%) of 82 patients during the treatment course, mainly after the M protocol. The most common risk factor was factor V Leiden (FVL; 15.6%). This was followed by methyleneterahydrofolate reductase (MTHFR; 9.3%), elevated lipoprotein (1.5%), and prothrombin (PT) 20210A (1.5%) in descending order. The risk of thrombosis was found to be significantly high in patients with FVL mutation (odds ratio = 7.1, 95% confidence interval = 1.6-30.5). The risk of thrombosis was not significant in patients with MTHFR and PT20210A mutation (P = .2). Age, catheter usage, FVL mutation, and prednisolone treatment are significant risk factors for thromboemboli occurrence.

  19. Current Strategies for the Detection of Minimal Residual Disease in Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Rocha, Juliana Maria Camargos; Xavier, Sandra Guerra; de Lima Souza, Marcelo Eduardo; Assumpção, Juliana Godoy; Murao, Mitiko; de Oliveira, Benigna Maria

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Current treatment strategies for childhood ALL result in long-term remission for approximately 90% of patients. However, the therapeutic response is worse among those who relapse. Several risk stratification approaches based on clinical and biological aspects have been proposed to intensify treatment in patients with high risk of relapse and reduce toxicity on those with a greater probability of cure. The detection of residual leukemic cells (minimal residual disease, MRD) is the most important prognostic factor to identify high-risk patients, allowing redefinition of chemotherapy. In the last decades, several standardized research protocols evaluated MRD using immunophenotyping by flow cytometry and/or real-time quantitative polymerase chain reaction at different time points during treatment. Both methods are highly sensitive (10−3 a 10−5), but expensive, complex, and, because of that, require qualified staff and frequently are restricted to reference centers. The aim of this article was to review technical aspects of immunophenotyping by flow cytometry and real-time quantitative polymerase chain reaction to evaluate MRD in ALL. PMID:27158437

  20. Altered neutrophil immunophenotypes in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Oliveira, Elen; Bacelar, Thiago S.; Ciudad, Juana; Ribeiro, Maria Cecília M.; Garcia, Daniela R.N.; Sedek, Lukasz; Maia, Simone F.; Aranha, Daniel B.; Machado, Indyara C.; Ikeda, Arissa; Baglioli, Bianca F.; Lopez-Duarte, Nathalia; Teixeira, Lisandra A. C.; Szczepanski, Tomasz; Silva, Maria Luiza M.; Land, Marcelo G.P.

    2016-01-01

    An increasing number of evidences suggest a genetic predisposition in acute lymphoblastic leukemia (ALL) that might favor the occurrence of the driver genetic alterations. Such genetic background might also translate into phenotypic alterations of residual hematopoietic cells. Whether such phenotypic alterations are present in bone marrow (BM) cells from childhood B-cell precursor (BCP)-ALL remains to be investigated. Here we analyzed the immunophenotypic profile of BM and peripheral blood (PB) maturing/matured neutrophils from 118 children with BCP-ALL and their relationship with the features of the disease. Our results showed altered neutrophil phenotypes in most (77%) BCP-ALL cases. The most frequently altered marker was CD10 (53%), followed by CD33 (34%), CD13 (15%), CD15/CD65 (10%) and CD123 (7%). Of note, patients with altered neutrophil phenotypes had younger age (p = 0.03) and lower percentages of BM maturing neutrophils (p = 0.004) together with greater BM lymphocyte (p = 0.04), and mature B-cell (p = 0.03) counts. No significant association was found between an altered neutrophil phenotype and other disease features. These findings point out the potential existence of an altered residual hematopoiesis in most childhood BCP-ALL cases. PMID:27028865

  1. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias.

    PubMed

    Andersson, Anna K; Ma, Jing; Wang, Jianmin; Chen, Xiang; Gedman, Amanda Larson; Dang, Jinjun; Nakitandwe, Joy; Holmfeldt, Linda; Parker, Matthew; Easton, John; Huether, Robert; Kriwacki, Richard; Rusch, Michael; Wu, Gang; Li, Yongjin; Mulder, Heather; Raimondi, Susana; Pounds, Stanley; Kang, Guolian; Shi, Lei; Becksfort, Jared; Gupta, Pankaj; Payne-Turner, Debbie; Vadodaria, Bhavin; Boggs, Kristy; Yergeau, Donald; Manne, Jayanthi; Song, Guangchun; Edmonson, Michael; Nagahawatte, Panduka; Wei, Lei; Cheng, Cheng; Pei, Deqing; Sutton, Rosemary; Venn, Nicola C; Chetcuti, Albert; Rush, Amanda; Catchpoole, Daniel; Heldrup, Jesper; Fioretos, Thoas; Lu, Charles; Ding, Li; Pui, Ching-Hon; Shurtleff, Sheila; Mullighan, Charles G; Mardis, Elaine R; Wilson, Richard K; Gruber, Tanja A; Zhang, Jinghui; Downing, James R

    2015-04-01

    Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole-genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non-MLL-R cases) and 20 older children (MLL-R cases) with leukemia. Our data show that infant MLL-R ALL has one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite this paucity of mutations, we detected activating mutations in kinase-PI3K-RAS signaling pathway components in 47% of cases. Surprisingly, these mutations were often subclonal and were frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (mean of 6.5 mutations/case versus 1.3 mutations/case, P = 7.15 × 10(-5)) and had frequent mutations (45%) in epigenetic regulators, a category of genes that, with the exception of MLL, was rarely mutated in infant MLL-R ALL.

  2. Transcription-coupled genetic instability marks acute lymphoblastic leukemia structural variation hotspots.

    PubMed

    Heinäniemi, Merja; Vuorenmaa, Tapio; Teppo, Susanna; Kaikkonen, Minna U; Bouvy-Liivrand, Maria; Mehtonen, Juha; Niskanen, Henri; Zachariadis, Vasilios; Laukkanen, Saara; Liuksiala, Thomas; Teittinen, Kaisa; Lohi, Olli

    2016-01-01

    Progression of malignancy to overt disease requires multiple genetic hits. Activation-induced deaminase (AID) can drive lymphomagenesis by generating off-target DNA breaks at loci that harbor highly active enhancers and display convergent transcription. The first active transcriptional profiles from acute lymphoblastic leukemia (ALL) patients acquired here reveal striking similarity at structural variation (SV) sites. Specific transcriptional features, namely convergent transcription and Pol2 stalling, were detected at breakpoints. The overlap was most prominent at SV with recognition motifs for the recombination activating genes (RAG). We present signal feature analysis to detect vulnerable regions and quantified from human cells how convergent transcription contributes to R-loop generation and RNA polymerase stalling. Wide stalling regions were characterized by high DNAse hypersensitivity and unusually broad H3K4me3 signal. Based on 1382 pre-B-ALL patients, the ETV6-RUNX1 fusion positive patients had over ten-fold elevation in RAG1 while high expression of AID marked pre-B-ALL lacking common cytogenetic changes. PMID:27431763

  3. L-asparaginase in the treatment of patients with acute lymphoblastic leukemia

    PubMed Central

    Egler, Rachel A.; Ahuja, Sanjay P.; Matloub, Yousif

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a hematologic malignancy that predominantly occurs in children between 2 and 10 years of age. L-asparaginase is an integral component of treatment for patients with ALL and since its introduction into pediatric treatment protocols in the 1960s, survival rates in children have progressively risen to nearly 90%. Outcomes for adolescent and young adult (AYA) patients, aged 15-39 years and diagnosed with ALL, have historically been less favorable. However, recent reports suggest substantially increased survival in AYA patients treated on pediatric-inspired protocols that include a greater cumulative dose of asparaginase. All  currently available asparaginases share the same mechanism of action - the deamination and depletion of serum asparagine levels - yet each displays a markedly different pharmacokinetic profile. Pegylated asparaginase derived from the bacterium Escherichia coli is used as first-line therapy; however, up to 30% of patients develop a treatment-limiting hypersensitivity reaction. Patients who experience a hypersensitivity reaction to an E. coli-derived asparaginase can continue treatment with Erwinia chrysanthemi asparaginase. Erwinia asparaginase is immunologically distinct from E. coli-derived asparaginases and exhibits no cross-reactivity. Studies have shown that with adequate dosing, therapeutic levels of Erwinia asparaginase activity can be achieved, and patients switched to Erwinia asparaginase due to hypersensitivity can obtain outcomes similar to patients who do not experience a hypersensitivity reaction. Therapeutic drug monitoring may be required to ensure that therapeutic levels of asparaginase activity are maintained. PMID:27440950

  4. RALLE pilot: response-guided therapy for marrow relapse in acute lymphoblastic leukemia in children.

    PubMed

    Saarinen-Pihkala, Ulla M; Parto, Katriina; Riikonen, Pekka; Lähteenmäki, Päivi M; Békàssy, Albert N; Glomstein, Anders; Möttönen, Merja

    2012-05-01

    Despite improved treatment results of childhood acute lymphoblastic leukemia (ALL), 20% to 30% have a relapse, and then the outcome is very poor. We studied 40 children with ALL marrow relapse piloting an ALL relapse protocol with well-known drugs and drug combinations by using a concept of response-guided design. We also measured response in logarithmic fashion. Our primary end points were achievement of M1 marrow status, minimal residual disease status below 10, and second remission. The remission induction rate was 90% with 10% induction mortality. After the A blocks (dexamethasone, vincristine, idarubicin and pegylated L-asparaginase), 85% had M1 status, 39% had minimal residual disease ≤1×10, and 66% had 2 to 3 log response. After B1 block (cyclo, VP-16) the figures were 92%, 58%, and 83%, respectively. Twenty-five of 40 patients received allogeneic stem cell transplantation. Three-year event-free survival of the whole cohort was 37%, and the relapse rate was 38%. Three-year event-free survival by risk group was 53% for late, 34% for early, and 21% for very early relapses. An ALL marrow relapse nonresponsive to steroids, vincristine, asparaginase, anthracyclines, and alkylating agents is uncommon, and these classic drugs can still be advocated for induction of ALL relapse. The problems lie in creating a consolidation capable of preventing particularly posttransplant relapses.

  5. Acute lymphoblastic leukemia masquerading as juvenile rheumatoid arthritis: diagnostic pitfall and association with survival.

    PubMed

    Marwaha, Ram Kumar; Kulkarni, Ketan Prasad; Bansal, Deepak; Trehan, Amita

    2010-03-01

    Acute lymphoblastic leukemia (ALL) often presents with osteoarthritic manifestations which may lead to misdiagnosis with juvenile rheumatoid arthritis (JRA). This study was designed to identify ALL patients with initial diagnosis of JRA, compare their clinicolaboratory characteristics and outcome with other ALL patients treated at our center. Case records of 762 patients with ALL were analyzed. Information regarding the clinical-demographic profile, therapy and outcome were recorded. Of the children, 49 (6.4%) had initial presentation mimicking JRA. Asymmetric oligoarthritis was the most common pattern of joint involvement. Majority presented with fever, pallor, arthritis, night pain, and bone pain. None of the routine prognostic factors including age, gender, lymphadenopathy, hepatosplenomegaly, total leukocytes count (TLC), and platelet count were significantly associated with relapse/death. The mean symptom-presentation interval (SPI), hemoglobin was significantly higher whilst the TLC was significantly lower in these patients compared to other ALL patients. The 5 year overall-survival was better than other patients with ALL (p = 0.06, by logrank test). Significantly longer SPI in these patients underscores the need for prompt and early investigations to rule out ALL in patients of JRA with atypical features and pointers of ALL. Children with ALL-mimicking JRA may belong to a subgroup of ALL with a better prognosis.

  6. Precocious and premature puberty associated with treatment of acute lymphoblastic leukaemia.

    PubMed

    Leiper, A D; Stanhope, R; Kitching, P; Chessells, J M

    1987-11-01

    Early puberty in 28 children (23 girls, five boys) treated for acute lymphoblastic leukaemia (ALL) at a mean age of 4.0 years (range 1.4-7.8) is described. All but one had received prophylactic cranial irradiation (1800-2400 cGy) and three children had received additional cranial or craniospinal irradiation as treatment for relapse of their leukaemia. Mean age for the onset of puberty was 8.8 (SD 0.8) years in the girls and 9.3 (0.8) years in the boys; this is greater than two standard deviations from the mean for normal girls and boys. Five children (three girls, two boys) had precocious puberty. The onset of puberty occurred at greater than two standard deviations from the mean for normal girls and boys in 14(13%) girls and 4(3%) boys treated at less than eight years of age between 1970 and 1985. In a group of 55 girls treated for ALL who had survived in first remission for six years or more from diagnosis, there was a relation between young age at onset of treatment and early menarche. We suggest that premature activation of the hypothalamic-pituitary-gonadal axis occurs as a consequence of hypothalamic dysfunction due to cranial irradiation. Precocious and premature puberty in children treated for ALL may be an important factor in contributing to short stature.

  7. Developing "Care Assistant": A smartphone application to support caregivers of children with acute lymphoblastic leukaemia.

    PubMed

    Wang, Jingting; Yao, Nengliang; Wang, Yuanyuan; Zhou, Fen; Liu, Yanyan; Geng, Zhaohui; Yuan, Changrong

    2016-04-01

    Acute lymphoblastic leukaemia (ALL) is the most common childhood malignancy. Caring for children with ALL is an uncommon experience for parents without medical training. They urgently need professional assistance when their children are recovering at home. This paper documents the process of developing an Android application (app) "Care Assistant" for family caregivers of children with ALL. Key informant interviews and focus group studies were used before programming the app. The key informants and focus group members included: caregivers of children with ALL, cancer care physicians and nurses, and software engineers. We found several major challenges faced by caregivers: limited access to evidence-based clinic information, lack of financial and social assistance, deficient communications with doctors or nurses, lack of disease-related knowledge, and inconvenience of tracking treatments and testing results. This feedback was used to develop "Care Assistant". This app has eight modules: personal information, treatment tracking, family care, financial and social assistance, knowledge centre, self-assessment questionnaires, interactive platform, and reminders. We have also developed a web-based administration portal to manage the app. The usability and effectiveness of "Care Assistant" will be evaluated in future studies. PMID:26271029

  8. Fetal growth and body size genes and risk of childhood acute lymphoblastic leukemia.

    PubMed

    Chokkalingam, Anand P; Metayer, Catherine; Scelo, Ghislaine; Chang, Jeffrey S; Schiffman, Joshua; Urayama, Kevin Y; Ma, Xiaomei; Hansen, Helen M; Feusner, James H; Barcellos, Lisa F; Wiencke, John K; Wiemels, Joseph L; Buffler, Patricia A

    2012-09-01

    Accumulating evidence suggests that childhood acute lymphoblastic leukemia (ALL) may be initiated in utero or early in the postnatal period. High birth weight (or rapid fetal growth) is associated with risk of ALL, but the mechanisms are not understood. In a population-based epidemiologic study of childhood ALL, we utilized a haplotype-based approach to assess the role of eight genes involved in fetal growth and body size regulation in 377 childhood ALL cases and 448 controls. We found significant haplotype associations with risk of childhood ALL for IGF1 among non-Hispanics and Hispanics together (p = 0.002), for IGF2 among Hispanics (p = 0.040), and for IGF2R among Hispanics and non-Hispanics (p = 0.051 and 0.009, respectively). No haplotype associations were observed for IGF1R or the studied genes involved in body size regulation, including LEP, LEPR, GHRL, and NPY. Our study is the first to identify an association between the genes involved in the IGF axis and risk of childhood ALL. These findings for childhood ALL emphasize the importance of fetal growth, when lymphoid progenitor cells are not yet fully differentiated and therefore more susceptible to malignant transformation. Additional studies are needed to confirm these findings and identify specific causal variants.

  9. The pre-B-cell receptor checkpoint in acute lymphoblastic leukaemia.

    PubMed

    Eswaran, J; Sinclair, P; Heidenreich, O; Irving, J; Russell, L J; Hall, A; Calado, D P; Harrison, C J; Vormoor, J

    2015-08-01

    The B-cell receptor (BCR) and its immature form, the precursor-BCR (pre-BCR), have a central role in the control of B-cell development, which is dependent on a sequence of cell-fate decisions at specific antigen-independent checkpoints. Pre-BCR expression provides the first checkpoint, which controls differentiation of pre-B to immature B-cells in normal haemopoiesis. Pre-BCR signalling regulates and co-ordinates diverse processes within the pre-B cell, including clonal selection, proliferation and subsequent maturation. In B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), B-cell development is arrested at this checkpoint. Moreover, malignant blasts avoid clonal extinction by hijacking pre-BCR signalling in favour of the development of BCP-ALL. Here, we discuss three mechanisms that occur in different subtypes of BCP-ALL: (i) blocking pre-BCR expression; (ii) activating pre-BCR-mediated pro-survival and pro-proliferative signalling, while inhibiting cell cycle arrest and maturation; and (iii) bypassing the pre-BCR checkpoint and activating pro-survival signalling through pre-BCR independent alternative mechanisms. A complete understanding of the BCP-ALL-specific signalling networks will highlight their application in BCP-ALL therapy.

  10. The potential of clofarabine in MLL-rearranged infant acute lymphoblastic leukaemia.

    PubMed

    Stumpel, Dominique J P M; Schneider, Pauline; Pieters, Rob; Stam, Ronald W

    2015-09-01

    MLL-rearranged acute lymphoblastic leukaemia (ALL) in infants is the most difficult-to-treat type of childhood ALL, displaying a chemotherapy-resistant phenotype, and unique histone modifications, gene expression signatures and DNA methylation patterns. MLL-rearranged infant ALL responds remarkably well to nucleoside analogue drugs in vitro, such as cytarabine and cladribine, and to the demethylating agents decitabine and zebularine as measured by cytotoxicity assays. These observations led to the inclusion of cytarabine into the treatment regimens currently used for infants with ALL. However, survival chances for infants with MLL-rearranged ALL do still not exceed 30-40%. Here we explored the in vitro potential of the novel nucleoside analogue clofarabine for MLL-rearranged infant ALL. Therefore we used both cell line models as well as primary patient cells. Compared with other nucleoside analogues, clofarabine effectively targeted primary MLL-rearranged infant ALL cells at the lowest concentrations, with median LC50 values of ∼25 nM. Interestingly, clofarabine displayed synergistic cytotoxic effects in combination with cytarabine. Furthermore, at concentrations of 5-10nM clofarabine induced demethylation of the promoter region of the tumour suppressor gene FHIT (Fragile Histidine Triad), a gene typically hypermethylated in MLL-rearranged ALL. Demethylation of the FHIT promoter region was accompanied by subtle re-expression of this gene both at the mRNA and protein level. We conclude that clofarabine is an interesting candidate for further studies in MLL-rearranged ALL in infants.

  11. Psychological Impact of Chemotherapy for Childhood Acute Lymphoblastic Leukemia on Patients and Their Parents

    PubMed Central

    Sherief, Laila M.; Kamal, Naglaa M.; Abdalrahman, Hadel M.; Youssef, Doaa M.; Alhady, Mohamed A Abd; Ali, Adel SA; Elbasset, Maha Aly Abd; Hashim, Hiatham M.

    2015-01-01

    Abstract To assess the self-esteem of pediatric patients on chemotherapy for acute lymphoblastic leukemia (ALL) and psychological status of their parents. The psychological status of 178 children receiving chemotherapy for ALL and their parents was assessed using parenting stress index (PSI) to determine the degree of stress the parents are exposed to using parent's and child's domains. Self-esteem Scale was used to determine the psychological status of patients. The study revealed significant low level of self-esteem in 84.83% of patients. Their parents had significant psychological stress. PSI was significantly associated with parents’ low sense of competence, negative attachment to their children, feeling of high restriction, high depression, poor relation to spouse, high social isolation variables of parent's domains. It was significantly associated with low distraction, negative parents’ reinforcement, low acceptability, and high demanding variables of child's domains. Long duration of disease was the most detrimental factor among demographic data of the patients. Chemotherapy for ALL has a significant impact on the psychological status of both patients and their parents with high prevalence of low self-esteem in children and high degree of stress in their parents. PMID:26705211

  12. Current Strategies for the Detection of Minimal Residual Disease in Childhood Acute Lymphoblastic Leukemia.

    PubMed

    Rocha, Juliana Maria Camargos; Xavier, Sandra Guerra; de Lima Souza, Marcelo Eduardo; Assumpção, Juliana Godoy; Murao, Mitiko; de Oliveira, Benigna Maria

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Current treatment strategies for childhood ALL result in long-term remission for approximately 90% of patients. However, the therapeutic response is worse among those who relapse. Several risk stratification approaches based on clinical and biological aspects have been proposed to intensify treatment in patients with high risk of relapse and reduce toxicity on those with a greater probability of cure. The detection of residual leukemic cells (minimal residual disease, MRD) is the most important prognostic factor to identify high-risk patients, allowing redefinition of chemotherapy. In the last decades, several standardized research protocols evaluated MRD using immunophenotyping by flow cytometry and/or real-time quantitative polymerase chain reaction at different time points during treatment. Both methods are highly sensitive (10(-3) a 10(-5)), but expensive, complex, and, because of that, require qualified staff and frequently are restricted to reference centers. The aim of this article was to review technical aspects of immunophenotyping by flow cytometry and real-time quantitative polymerase chain reaction to evaluate MRD in ALL. PMID:27158437

  13. Dengue fever causing febrile neutropenia in children with acute lymphoblastic leukemia: an unknown entity.

    PubMed

    Ramzan, Mohammed; Yadav, Satya Prakash; Dinand, Veronique; Sachdeva, Anupam

    2013-06-01

    Dengue fever is endemic in many parts of the world but it has not been described as a cause of febrile neutropenia. We describe here clinical features, laboratory values and outcome in 10 children with acute lymphoblastic leukemia (ALL) and with dengue fever as a cause of febrile neutropenia. These data are compared to an age-matched control population of 22 children with proven dengue infection without ALL. Except for fever in all patients and plethoric face in one patient, typical symptoms of dengue such as abdominal pain, myalgias, and headaches, were absent. Mean duration of hospital stay was 6.3±2.0 days in ALL patients vs. 5.0±2.0 in controls (p=0.096). Median platelet count was 13,000/cmm (range 1000-28,000) in cases vs. 31,500 (range 13,000-150,000) in controls (p=0.018). Mean time for recovery for platelet was 6.0±1.3days in ALL patients vs. 2.5±0.9days in controls (p<0.001). All 10 patients survived. In endemic areas, high suspicion of dengue fever should be maintained in children with ALL and febrile neutropenia although typical symptoms may be lacking. Platelet recovery may be significantly delayed.

  14. Psychological Impact of Chemotherapy for Childhood Acute Lymphoblastic Leukemia on Patients and Their Parents.

    PubMed

    Sherief, Laila M; Kamal, Naglaa M; Abdalrahman, Hadel M; Youssef, Doaa M; Abd Alhady, Mohamed A; Ali, Adel S A; Abd Elbasset, Maha Aly; Hashim, Hiatham M

    2015-12-01

    To assess the self-esteem of pediatric patients on chemotherapy for acute lymphoblastic leukemia (ALL) and psychological status of their parents.The psychological status of 178 children receiving chemotherapy for ALL and their parents was assessed using parenting stress index (PSI) to determine the degree of stress the parents are exposed to using parent's and child's domains. Self-esteem Scale was used to determine the psychological status of patients.The study revealed significant low level of self-esteem in 84.83% of patients. Their parents had significant psychological stress. PSI was significantly associated with parents' low sense of competence, negative attachment to their children, feeling of high restriction, high depression, poor relation to spouse, high social isolation variables of parent's domains. It was significantly associated with low distraction, negative parents' reinforcement, low acceptability, and high demanding variables of child's domains. Long duration of disease was the most detrimental factor among demographic data of the patients.Chemotherapy for ALL has a significant impact on the psychological status of both patients and their parents with high prevalence of low self-esteem in children and high degree of stress in their parents. PMID:26705211

  15. The Mutational Landscape in Pediatric Acute Lymphoblastic Leukemia Deciphered by Whole Genome Sequencing

    PubMed Central

    Lindqvist, Carl Mårten; Nordlund, Jessica; Ekman, Diana; Johansson, Anna; Moghadam, Behrooz Torabi; Raine, Amanda; Övernäs, Elin; Dahlberg, Johan; Wahlberg, Per; Henriksson, Niklas; Abrahamsson, Jonas; Frost, Britt-Marie; Grandér, Dan; Heyman, Mats; Larsson, Rolf; Palle, Josefine; Söderhäll, Stefan; Forestier, Erik; Lönnerholm, Gudmar; Syvänen, Ann-Christine; Berglund, Eva C

    2015-01-01

    Genomic characterization of pediatric acute lymphoblastic leukemia (ALL) has identified distinct patterns of genes and pathways altered in patients with well-defined genetic aberrations. To extend the spectrum of known somatic variants in ALL, we performed whole genome and transcriptome sequencing of three B-cell precursor patients, of which one carried the t(12;21)ETV6-RUNX1 translocation and two lacked a known primary genetic aberration, and one T-ALL patient. We found that each patient had a unique genome, with a combination of well-known and previously undetected genomic aberrations. By targeted sequencing in 168 patients, we identified KMT2D and KIF1B as novel putative driver genes. We also identified a putative regulatory non-coding variant that coincided with overexpression of the growth factor MDK. Our results contribute to an increased understanding of the biological mechanisms that lead to ALL and suggest that regulatory variants may be more important for cancer development than recognized to date. The heterogeneity of the genetic aberrations in ALL renders whole genome sequencing particularly well suited for analysis of somatic variants in both research and diagnostic applications. PMID:25355294

  16. Differential microRNA expression in childhood B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Ju, Xiuli; Li, Dong; Shi, Qing; Hou, Huaishui; Sun, Nianzheng; Shen, Baijun

    2009-01-01

    MiRNAs play important roles in the development of both hematopoiesis and leukemogenesis. The analysis of differential microRNA expression profiles may be a powerful tool to allow us insight on the mechanisms of childhood B-cell precursor acute lymphoblastic leukemia (pre-B-ALL). The present study provides an informative profile of the expression of miRNAs in pre-B-ALL using two independent and quantitative methods: miRNA chip and qRT-PCR of mature miRNA from 40 newly diagnosed pre-B-ALL children. Additionally, putative hematopoiesis-specific target genes were analyzed with informatics technique. Both approaches showed that miR-222, miR-339, and miR-142-3p were dramatically overexpressed in pre-B-ALL patients, and downregulation of hsa-miR-451 and hsa-miR-373* was confirmed. The results of this study offer a comprehensive and quantitative profile of miRNA expression in pre-B-ALL and their healthy counterpart, suggesting that miRNAs could play a primary role in the disease itself.

  17. Childhood Acute Lymphoblastic Leukemia and Indicators of Early Immune Stimulation: A Childhood Leukemia International Consortium Study

    PubMed Central

    Rudant, Jérémie; Lightfoot, Tracy; Urayama, Kevin Y.; Petridou, Eleni; Dockerty, John D.; Magnani, Corrado; Milne, Elizabeth; Spector, Logan G.; Ashton, Lesley J.; Dessypris, Nikolaos; Kang, Alice Y.; Miller, Margaret; Rondelli, Roberto; Simpson, Jill; Stiakaki, Eftichia; Orsi, Laurent; Roman, Eve; Metayer, Catherine; Infante-Rivard, Claire; Clavel, Jacqueline

    2015-01-01

    The associations between childhood acute lymphoblastic leukemia (ALL) and several proxies of early stimulation of the immune system, that is, day-care center attendance, birth order, maternally reported common infections in infancy, and breastfeeding, were investigated by using data from 11 case-control studies participating in the Childhood Leukemia International Consortium (enrollment period: 1980–2010). The sample included 7,399 ALL cases and 11,181 controls aged 2–14 years. The data were collected by questionnaires administered to the parents. Pooled odds ratios and 95% confidence intervals were estimated by unconditional logistic regression adjusted for age, sex, study, maternal education, and maternal age. Day-care center attendance in the first year of life was associated with a reduced risk of ALL (odds ratio = 0.77, 95% confidence interval: 0.71, 0.84), with a marked inverse trend with earlier age at start (P < 0.0001). An inverse association was also observed with breastfeeding duration of 6 months or more (odds ratio = 0.86, 95% confidence interval: 0.79, 0.94). No significant relationship with a history of common infections in infancy was observed even though the odds ratio was less than 1 for more than 3 infections. The findings of this large pooled analysis reinforce the hypothesis that day-care center attendance in infancy and prolonged breastfeeding are associated with a decreased risk of ALL. PMID:25731888

  18. Formation of trisomies and their parental origin in hyperdiploid childhood acute lymphoblastic leukemia.

    PubMed

    Paulsson, Kajsa; Panagopoulos, Ioannis; Knuutila, Sakari; Jee, Kowan Ja; Garwicz, Stanislaw; Fioretos, Thoas; Mitelman, Felix; Johansson, Bertil

    2003-10-15

    High hyperdiploidy, common in childhood acute lymphoblastic leukemia (ALL) with a favorable prognosis, is characterized by specific trisomies. Virtually nothing is known about its formation or pathogenetic impact. We evaluated 10 patients with ALL using 38 microsatellite markers mapped to 18 of the 24 human chromosomes to investigate the mechanisms underlying hyperdiploidy and to ascertain the parental origin of the trisomies. Based on the results, doubling of a near-haploid clone and polyploidization with subsequent losses of chromosomes could be excluded. The finding of equal allele dosage for tetrasomy 21 suggests that hyperdiploidy originates in a single aberrant mitosis, though a sequential gain of chromosomes other than 21 in consecutive cell divisions remains a possibility. Our study, the first to address experimentally the parental origin of trisomies in ALL, revealed no preferential duplication of maternally or paternally inherited copies of X, 4, 6, 9, 10, 17, 18, and 21. Trisomy 8 was of paternal origin in 4 of 4 patients (P =.125), and +14 was of maternal origin in 7 of 8 patients (P =.0703). Thus, the present results indicate that imprinting is not pathogenetically important in hyperdiploid childhood ALL, with the possible exception of the observed parental skewness of +8 and +14. PMID:12829594

  19. Venous thromboembolism prevention during asparaginase-based therapy for acute lymphoblastic leukemia

    PubMed Central

    Sibai, H.; Seki, J.T.; Wang, T.Q.; Sakurai, N.; Atenafu, E.G.; Yee, K.W.L.; Schuh, A.C.; Gupta, V.; Minden, M.D.; Schimmer, A.D.; Brandwein, J.M.

    2016-01-01

    Background Venous thromboembolism (vte) is a recognized complication in patients treated with asparaginase-containing chemotherapy regimens; the optimal preventive strategy is unclear. We assessed the safety and efficacy of prophylaxis using low-dose low molecular weight heparin in adult patients with acute lymphoblastic leukemia in complete remission treated with an asparaginase-based post-remission chemotherapy regimen. Methods As part of the intensification phase of the Dana-Farber Cancer Institute 91-01 regimen, asparaginase was administered weekly to 41 consecutive patients for 21–30 weeks; these patients also received prophylaxis with enoxaparin 40 mg daily (60 mg for patients ≥80 kg). Outcomes were assessed against outcomes in a comparable cohort of 99 patients who received the same chemotherapy regimen without anticoagulation prophylaxis. Results The overall rate of symptomatic venous thrombosis was not significantly different in the prophylaxis and non-prophylaxis cohorts (18.92% and 21.74% respectively). Among patients receiving prophylaxis, vte occurred in higher proportion in those who weighed at least 80 kg (42.86% vs. 4.35%, p = 0.0070). No major bleeding complications occurred in the prophylaxis group (minor bleeding: 8.1%). Conclusions Prophylaxis with low-dose enoxaparin during the intensification phase was safe, but was not associated with a lower overall proportion of vte. PMID:27536184

  20. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Moorman, Anthony V.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a heterogeneous disease at the genetic level. Chromosomal abnormalities are used as diagnostic, prognostic and predictive biomarkers to provide subtype, outcome and drug response information. t(12;21)/ETV6-RUNX1 and high hyper-diploidy are good-risk prognostic biomarkers whereas KMT2A (MLL) translocations, t(17;19)/TCF3-HLF, haploidy or low hypodiploidy are high-risk biomarkers. t(9;22)/BCR-ABL1 patients require targeted treatment (imatinib/dasatinib), whereas iAMP21 patients achieve better outcomes when treated intensively. High-risk genetic biomarkers are four times more prevalent in adults compared to children. The application of genomic technologies to cases without an established abnormality (B-other) reveals copy number alterations which can be used either individually or in combination as prognostic biomarkers. Transcriptome sequencing studies have identified a network of fusion genes involving kinase genes - ABL1, ABL2, PDGFRB, CSF1R, CRLF2, JAK2 and EPOR. In vitro and in vivo studies along with emerging clinical observations indicate that patients with a kinase-activating aberration may respond to treatment with small molecular inhibitors like imatinib/dasatinib and ruxolitinib. Further work is required to determine the true frequency of these abnormalities across the age spectrum and the optimal way to incorporate such inhibitors into protocols. In conclusion, genetic biomarkers are playing an increasingly important role in the management of patients with ALL. PMID:27033238

  1. An advanced fragment analysis-based individualized subtype classification of pediatric acute lymphoblastic leukemia

    PubMed Central

    Zhang, Han; Cheng, Hao; Wang, Qingqing; Zeng, Xianping; Chen, Yanfen; Yan, Jin; Sun, Yanran; Zhao, Xiaoxi; Li, Weijing; Gao, Chao; Gong, Wenyu; Li, Bei; Zhang, Ruidong; Nan, Li; Wu, Yong; Bao, Shilai; Han, Jing-Dong J.; Zheng, Huyong

    2015-01-01

    Pediatric acute lymphoblastic leukemia (ALL) is the most common neoplasm and one of the primary causes of death in children. Its treatment is highly dependent on the correct classification of subtype. Previously, we developed a microarray-based subtype classifier based on the relative expression levels of 62 marker genes, which can predict 7 different ALL subtypes with an accuracy as high as 97% in completely independent samples. Because the classifier is based on gene expression rank values rather than actual values, the classifier enables an individualized diagnosis, without the need to reference the background distribution of the marker genes in a large number of other samples, and also enables cross platform application. Here, we demonstrate that the classifier can be extended from a microarray-based technology to a multiplex qPCR-based technology using the same set of marker genes as the advanced fragment analysis (AFA). Compared to microarray assays, the new assay system makes the convenient, low cost and individualized subtype diagnosis of pediatric ALL a reality and is clinically applicable, particularly in developing countries. PMID:26196328

  2. PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia

    PubMed Central

    Dang, Jinjun; Wei, Lei; de Ridder, Jeroen; Su, Xiaoping; Rust, Alistair G.; Roberts, Kathryn G.; Payne-Turner, Debbie; Cheng, Jinjun; Ma, Jing; Qu, Chunxu; Wu, Gang; Song, Guangchun; Huether, Robert G.; Schulman, Brenda; Janke, Laura; Zhang, Jinghui; Downing, James R.; van der Weyden, Louise; Adams, David J.

    2015-01-01

    Alterations of genes encoding transcriptional regulators of lymphoid development are a hallmark of B-progenitor acute lymphoblastic leukemia (B-ALL) and most commonly involve PAX5, encoding the DNA-binding transcription factor paired-box 5. The majority of PAX5 alterations in ALL are heterozygous, and key PAX5 target genes are expressed in leukemic cells, suggesting that PAX5 may be a haploinsufficient tumor suppressor. To examine the role of PAX5 alterations in leukemogenesis, we performed mutagenesis screens of mice heterozygous for a loss-of-function Pax5 allele. Both chemical and retroviral mutagenesis resulted in a significantly increased penetrance and reduced latency of leukemia, with a shift to B-lymphoid lineage. Genomic profiling identified a high frequency of secondary genomic mutations, deletions, and retroviral insertions targeting B-lymphoid development, including Pax5, and additional genes and pathways mutated in ALL, including tumor suppressors, Ras, and Janus kinase-signal transducer and activator of transcription signaling. These results show that in contrast to simple Pax5 haploinsufficiency, multiple sequential alterations targeting lymphoid development are central to leukemogenesis and contribute to the arrest in lymphoid maturation characteristic of ALL. This cross-species analysis also validates the importance of concomitant alterations of multiple cellular growth, signaling, and tumor suppression pathways in the pathogenesis of B-ALL. PMID:25855603

  3. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia

    PubMed Central

    Ma, Xiaotu; Edmonson, Michael; Yergeau, Donald; Muzny, Donna M.; Hampton, Oliver A.; Rusch, Michael; Song, Guangchun; Easton, John; Harvey, Richard C.; Wheeler, David A.; Ma, Jing; Doddapaneni, HarshaVardhan; Vadodaria, Bhavin; Wu, Gang; Nagahawatte, Panduka; Carroll, William L.; Chen, I-Ming; Gastier-Foster, Julie M.; Relling, Mary V.; Smith, Malcolm A.; Devidas, Meenakshi; Auvil, Jaime M. Guidry; Downing, James R.; Loh, Mignon L.; Willman, Cheryl L.; Gerhard, Daniela S.; Mullighan, Charles G.; Hunger, Stephen P.; Zhang, Jinghui

    2015-01-01

    There is incomplete understanding of genetic heterogeneity and clonal evolution during cancer progression. Here we use deep whole-exome sequencing to describe the clonal architecture and evolution of 20 pediatric B-acute lymphoblastic leukaemias from diagnosis to relapse. We show that clonal diversity is comparable at diagnosis and relapse and clonal survival from diagnosis to relapse is not associated with mutation burden. Six pathways were frequently mutated, with NT5C2, CREBBP, WHSC1, TP53, USH2A, NRAS and IKZF1 mutations enriched at relapse. Half of the leukaemias had multiple subclonal mutations in a pathway or gene at diagnosis, but mostly with only one, usually minor clone, surviving therapy to acquire additional mutations and become the relapse founder clone. Relapse-specific mutations in NT5C2 were found in nine cases, with mutations in four cases being in descendants of the relapse founder clone. These results provide important insights into the genetic basis of treatment failure in ALL and have implications for the early detection of mutations driving relapse. PMID:25790293