Science.gov

Sample records for acute traumatic injury

  1. Management of acute traumatic spinal cord injuries.

    PubMed

    Shank, C D; Walters, B C; Hadley, M N

    2017-01-01

    Acute traumatic spinal cord injury (SCI) is a devastating disease process affecting tens of thousands of people across the USA each year. Despite the increase in primary prevention measures, such as educational programs, motor vehicle speed limits, automobile running lights, and safety technology that includes automobile passive restraint systems and airbags, SCIs continue to carry substantial permanent morbidity and mortality. Medical measures implemented following the initial injury are designed to limit secondary insult to the spinal cord and to stabilize the spinal column in an attempt to decrease devastating sequelae. This chapter is an overview of the contemporary management of an acute traumatic SCI patient from the time of injury through the stay in the intensive care unit. We discuss initial triage, immobilization, and transportation of the patient by emergency medical services personnel to a definitive treatment facility. Upon arrival at the emergency department, we review initial trauma protocols and the evidence-based recommendations for radiographic evaluation of the patient's vertebral column. Finally, we outline closed cervical spine reduction and various aggressive medical therapies aimed at improving neurologic outcome.

  2. Update on traumatic acute spinal cord injury. Part 1.

    PubMed

    Galeiras Vázquez, R; Ferreiro Velasco, M E; Mourelo Fariña, M; Montoto Marqués, A; Salvador de la Barrera, S

    2017-02-01

    Traumatic spinal cord injury requires a multidisciplinary approach both for specialized treatment of the acute phase and for dealing with the secondary complications. A suspicion or diagnosis of spinal cord injury is the first step for a correct management. A review is made of the prehospital management and characteristics of the acute phase of spinal cord injury. Respiratory monitoring for early selective intubation, proper identification and treatment of neurogenic shock are essential for the prevention of secondary spinal cord injury. The use of corticosteroids is currently not a standard practice in neuroprotective treatment, and hemodynamic monitoring and early surgical decompression constitute the cornerstones of adequate management. Traumatic spinal cord injury usually occurs as part of multiple trauma, and this can make diagnosis difficult. Neurological examination and correct selection of radiological exams prevent delayed diagnosis of spinal cord injuries, and help to establish the prognosis.

  3. Diffuse Brain Injury Induces Acute Post-Traumatic Sleep

    PubMed Central

    Rowe, Rachel K.; Striz, Martin; Bachstetter, Adam D.; Van Eldik, Linda J.; Donohue, Kevin D.; O'Hara, Bruce F.; Lifshitz, Jonathan

    2014-01-01

    Objective Clinical observations report excessive sleepiness immediately following traumatic brain injury (TBI); however, there is a lack of experimental evidence to support or refute the benefit of sleep following a brain injury. The aim of this study is to investigate acute post-traumatic sleep. Methods Sham, mild or moderate diffuse TBI was induced by midline fluid percussion injury (mFPI) in male C57BL/6J mice at 9:00 or 21:00 to evaluate injury-induced sleep behavior at sleep and wake onset, respectively. Sleep profiles were measured post-injury using a non-invasive, piezoelectric cage system. In separate cohorts of mice, inflammatory cytokines in the neocortex were quantified by immunoassay, and microglial activation was visualized by immunohistochemistry. Results Immediately after diffuse TBI, quantitative measures of sleep were characterized by a significant increase in sleep (>50%) for the first 6 hours post-injury, resulting from increases in sleep bout length, compared to sham. Acute post-traumatic sleep increased significantly independent of injury severity and time of injury (9:00 vs 21:00). The pro-inflammatory cytokine IL-1β increased in brain-injured mice compared to sham over the first 9 hours post-injury. Iba-1 positive microglia were evident in brain-injured cortex at 6 hours post-injury. Conclusion Post-traumatic sleep occurs for up to 6 hours after diffuse brain injury in the mouse regardless of injury severity or time of day. The temporal profile of secondary injury cascades may be driving the significant increase in post-traumatic sleep and contribute to the natural course of recovery through cellular repair. PMID:24416145

  4. Update on traumatic acute spinal cord injury. Part 2.

    PubMed

    Mourelo Fariña, M; Salvador de la Barrera, S; Montoto Marqués, A; Ferreiro Velasco, M E; Galeiras Vázquez, R

    2017-02-01

    The aim of treatment in acute traumatic spinal cord injury is to preserve residual neurologic function, avoid secondary injury, and restore spinal alignment and stability. In this second part of the review, we describe the management of spinal cord injury focusing on issues related to short-term respiratory management, where the preservation of diaphragmatic function is a priority, with prediction of the duration of mechanical ventilation and the need for tracheostomy. Surgical assessment of spinal injuries based on updated criteria is discussed, taking into account that although the type of intervention depends on the surgical team, nowadays treatment should afford early spinal decompression and stabilization. Within a comprehensive strategy in spinal cord injury, it is essential to identify and properly treat patient anxiety and pain associated to spinal cord injury, as well as to prevent and ensure the early diagnosis of complications secondary to spinal cord injury (thromboembolic disease, gastrointestinal and urinary disorders, pressure ulcers).

  5. Acute Cortical Transhemispheric Diaschisis after Unilateral Traumatic Brain Injury.

    PubMed

    Le Prieult, Florie; Thal, Serge C; Engelhard, Kristin; Imbrosci, Barbara; Mittmann, Thomas

    2017-03-01

    Focal neocortical brain injuries lead to functional alterations, which can spread beyond lesion-neighboring brain areas. The undamaged hemisphere and its associated disturbances after a unilateral lesion, so-called transhemispheric diaschisis, have been progressively disclosed over the last decades; they are strongly involved in the pathophysiology and, potentially, recovery of brain injuries. Understanding the temporal dynamics of these transhemispheric functional changes is crucial to decipher the role of the undamaged cortex in the processes of functional reorganization at different stages post-lesion. In this regard, little is known about the acute-subacute processes after 24-48 h in the brain hemisphere contralateral to injury. In the present study, we performed a controlled cortical impact to produce a unilateral traumatic brain injury (TBI) in the motor and somatosensory cortex of mice. In vitro extracellular multi-unit recordings from large neuronal populations, together with single-cell patch-clamp recordings in the cortical network contralateral to the lesion, revealed a strong, but transient, neuronal hyperactivity as early as 24-48 h post-TBI. This abnormal excitable state in the intact hemisphere was not accompanied by alterations in neuronal intrinsic properties, but it was associated with an impairment of the phasic gamma aminobutyric acid (GABA)ergic transmission and an increased expression of GABAA receptor subunits related to tonic inhibition exclusively in the contralateral hemisphere. These data unravel a series of early transhemispheric functional alterations after diffuse unilateral cortical injury, which may compensate and stabilize the disrupted brain functions. Therefore, our findings support the hypothesis that the undamaged hemisphere could play a significant role in early functional reorganization processes after a TBI.

  6. The Impact of Surgical Timing in Acute Traumatic Spinal Cord Injury

    DTIC Science & Technology

    2014-10-01

    1 AWARD NUMBER: W81XWH-13-1-0396 TITLE: The impact of surgical timing in acute traumatic spinal ...TYPE Annual 3. DATES COVERED 30 Sep 2013 – 29 Sep 2014 4. TITLE AND SUBTITLE The impact of surgical timing in acute traumatic spinal cord...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The optimal surgical timing following a traumatic spinal cord injury (SCI) remains controversial

  7. Traumatic forequarter amputation associated acute lung injury (ALI): report of one case.

    PubMed

    Liang, K; Gan, X; Deng, Z

    2012-07-01

    One case of traumatic forequarter amputation associated acute lung injury (ALI) was presented. A discussion reviewing the treatment guidelines for this devastating injury, and pointing out the importance of supporting the lung and preventing the development of acute respiratory distress syndrome (ARDS) was included.

  8. Investigating Metacognition, Cognition, and Behavioral Deficits of College Students with Acute Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Martinez, Sarah; Davalos, Deana

    2016-01-01

    Objective: Executive dysfunction in college students who have had an acute traumatic brain injury (TBI) was investigated. The cognitive, behavioral, and metacognitive effects on college students who endorsed experiencing a brain injury were specifically explored. Participants: Participants were 121 college students who endorsed a mild TBI, and 121…

  9. Mild Traumatic Brain Injury

    MedlinePlus

    ... Questions Glossary Contact Us Visitor Feedback mild Traumatic Brain Injury mild Traumatic Brain Injury VIDEO STORIES What is TBI Measuring Severity ... most common deployment injuries is a mild Traumatic Brain Injury (TBI). A mild TBI is an injury ...

  10. Neurosensory Symptom Complexes after Acute Mild Traumatic Brain Injury

    PubMed Central

    Szczupak, Mikhaylo; Kiderman, Alexander; Crawford, James; Murphy, Sara; Marshall, Kathryn; Pelusso, Constanza

    2016-01-01

    Mild Traumatic Brain Injury (mTBI) is a prominent public health issue. To date, subjective symptom complaints primarily dictate diagnostic and treatment approaches. As such, the description and qualification of these symptoms in the mTBI patient population is of great value. This manuscript describes the symptoms of mTBI patients as compared to controls in a larger study designed to examine the use of vestibular testing to diagnose mTBI. Five symptom clusters were identified: Post-Traumatic Headache/Migraine, Nausea, Emotional/Affective, Fatigue/Malaise, and Dizziness/Mild Cognitive Impairment. Our analysis indicates that individuals with mTBI have headache, dizziness, and cognitive dysfunction far out of proportion to those without mTBI. In addition, sleep disorders and emotional issues were significantly more common amongst mTBI patients than non-injured individuals. A simple set of questions inquiring about dizziness, headache, and cognitive issues may provide diagnostic accuracy. The consideration of other symptoms may be critical for providing prognostic value and treatment for best short-term outcomes or prevention of long-term complications. PMID:26727256

  11. Acute mild traumatic brain injury is not associated with white matter change on diffusion tensor imaging.

    PubMed

    Ilvesmäki, Tero; Luoto, Teemu M; Hakulinen, Ullamari; Brander, Antti; Ryymin, Pertti; Eskola, Hannu; Iverson, Grant L; Ohman, Juha

    2014-07-01

    This study was designed to (i) evaluate the influence of age on diffusion tensor imaging measures of white matter assessed using tract-based spatial statistics; (ii) determine if mild traumatic brain injury is associated with microstructural changes in white matter, in the acute phase following injury, in a large homogenous sample that was carefully screened for pre-injury medical, psychiatric, or neurological problems; and (iii) examine if injury severity is related to white matter changes. Participants were 75 patients with acute mild traumatic brain injury (age = 37.2 ± 12.0 years, 45 males and 30 females) and 40 controls (age = 40.6 ± 12.2 yrs, 20 males and 20 females). Age effects were analysed by comparing control subgroups aged 31-40, 41-50, and 51-60 years against a group of 18-30-year-old control subjects. Widespread statistically significant areas of abnormal diffusion tensor measures were observed in older groups. Patients and controls were compared using age and gender as covariates and in age- and gender-matched subgroups. Subgroups of patients with more severe injuries were compared to age-and gender-matched controls. No significant differences were detected in patient-control or severity analyses (all P-value > 0.01). In this large, carefully screened sample, acute mild traumatic brain injury was not associated with diffusion tensor imaging abnormalities detectable with tract-based spatial statistics.

  12. Neurogenic Fever after Acute Traumatic Spinal Cord Injury: A Qualitative Systematic Review

    PubMed Central

    Savage, Katherine E.; Oleson, Christina V.; Schroeder, Gregory D.; Sidhu, Gursukhman S.; Vaccaro, Alexander R.

    2016-01-01

    Study Design  Systematic review. Objective  To determine the incidence, pathogenesis, and clinical outcomes related to neurogenic fevers following traumatic spinal cord injury (SCI). Methods  A systematic review of the literature was performed on thermodysregulation secondary to acute traumatic SCI in adult patients. A literature search was performed using PubMed (MEDLINE), Cochrane Central Register of Controlled Trials, and Scopus. Using strict inclusion and exclusion criteria, seven relevant articles were obtained. Results  The incidence of fever of all origins (both known and unknown) after SCI ranged from 22.5 to 71.7% with a mean incidence of 50.6% and a median incidence of 50.0%. The incidence of fever of unknown origin (neurogenic fever) ranged from 2.6 to 27.8% with a mean incidence of 8.0% and a median incidence of 4.7%. Cervical and thoracic spinal injuries were more commonly associated with fever than lumbar injuries. In addition, complete injuries had a higher incidence of fever than incomplete injuries. The pathogenesis of neurogenic fever after acute SCI is not thoroughly understood. Conclusion  Neurogenic fevers are relatively common following an acute SCI; however, there is little in the scientific literature to help physicians prevent or treat this condition. The paucity of research underscored by this review demonstrates the need for further studies with larger sample sizes, focusing on incidence rate, clinical outcomes, and pathogenesis of neurogenic fever following acute traumatic SCI. PMID:27556002

  13. Review of Acute Traumatic Closed Mallet Finger Injuries in Adults

    PubMed Central

    Salazar Botero, Santiago; Hidalgo Diaz, Juan Jose; Benaïda, Anissa; Collon, Sylvie; Facca, Sybille

    2016-01-01

    In adults, mallet finger is a traumatic zone I lesion of the extensor tendon with either tendon rupture or bony avulsion at the base of the distal phalanx. High-energy mechanisms of injury generally occur in young men, whereas lower energy mechanisms are observed in elderly women. The mechanism of injury is an axial load applied to a straight digit tip, which is then followed by passive extreme distal interphalangeal joint (DIPJ) hyperextension or hyperflexion. Mallet finger is diagnosed clinically, but an X-ray should always be performed. Tubiana's classification takes into account the size of the bony articular fragment and DIPJ subluxation. We propose to stage subluxated fractures as stage III if the subluxation is reducible with a splint and as stage IV if not. Left untreated, mallet finger becomes chronic and leads to a swan-neck deformity and DIPJ osteoarthritis. The goal of treatment is to restore active DIPJ extension. The results of a six- to eight-week conservative course of treatment with a DIPJ splint in slight hyperextension for tendon lesions or straight for bony avulsions depends on patient compliance. Surgical treatments vary in terms of the approach, the reduction technique, and the means of fixation. The risks involved are stiffness, septic arthritis, and osteoarthritis. Given the lack of consensus regarding indications for treatment, we propose to treat all cases of mallet finger with a dorsal glued splint except for stage IV mallet finger, which we treat with extra-articular pinning. PMID:27019806

  14. Acute care alternate-level-of-care days due to delayed discharge for traumatic and non-traumatic brain injuries.

    PubMed

    Amy, Chen; Zagorski, Brandon; Chan, Vincy; Parsons, Daria; Vander Laan, Rika; Colantonio, Angela

    2012-05-01

    Alternate-level-of-care (ALC) days represent hospital beds that are taken up by patients who would more appropriately be cared for in other settings. ALC days have been found to be costly and may result in worse functional outcomes, reduced motor skills and longer lengths of stay in rehabilitation. This study examines the factors that are associated with acute care ALC days among patients with acquired brain injury (ABI). We used the Discharge Abstract Database to identify patients with ABI using International Classification of Disease-10 codes. From fiscal years 2007/08 to 2009/10, 17.5% of patients with traumatic and 14% of patients with non-traumatic brain injury had at least one ALC day. Significant predictors include having a psychiatric co-morbidity, increasing age and length of stay in acute care. These findings can inform planning for care of people with ABI in a publicly funded healthcare system.

  15. Psychological Characteristics in Acute Mild Traumatic Brain Injury: An MMPI-2 Study.

    PubMed

    Gass, Carlton S; Rogers, David; Kinne, Erica

    2017-01-01

    The psychological characteristics of acute traumatic brain injury (TBI) have received limited research focus, despite empirical evidence of their relevance for subsequent psychological adjustment and early therapeutic intervention. This study addressed a wide range of psychological features in 47 individuals who were hospitalized as a result of acute mild TBI (mTBI). Participants were screened from amongst consecutive TBI admissions for moderate to severe brain injury, and for pre-injury neurological, psychiatric, or substance abuse histories. Clinical and content scale scores on the MMPI-2 were explored in relation to patient gender, age, level of education, and extent of cognitive complaints. The results revealed diverse psychosocial problem areas across the sample, the most common of which were somatic and cognitive complaints, compromised insight, and a naively optimistic self-perception. The mediating roles of injury severity and demographic variables are discussed. Clinical implications and specific recommendations are presented.

  16. Age and Diet Affect Genetically Separable Secondary Injuries that Cause Acute Mortality Following Traumatic Brain Injury in Drosophila

    PubMed Central

    Katzenberger, Rebeccah J.; Ganetzky, Barry; Wassarman, David A.

    2016-01-01

    Outcomes of traumatic brain injury (TBI) vary because of differences in primary and secondary injuries. Primary injuries occur at the time of a traumatic event, whereas secondary injuries occur later as a result of cellular and molecular events activated in the brain and other tissues by primary injuries. We used a Drosophila melanogaster TBI model to investigate secondary injuries that cause acute mortality. By analyzing mortality percentage within 24 hr of primary injuries, we previously found that age at the time of primary injuries and diet afterward affect the severity of secondary injuries. Here, we show that secondary injuries peaked in activity 1–8 hr after primary injuries. Additionally, we demonstrate that age and diet activated distinct secondary injuries in a genotype-specific manner, and that concurrent activation of age- and diet-regulated secondary injuries synergistically increased mortality. To identify genes involved in secondary injuries that cause mortality, we compared genome-wide mRNA expression profiles of uninjured and injured flies under age and diet conditions that had different mortalities. During the peak period of secondary injuries, innate immune response genes were the predominant class of genes that changed expression. Furthermore, age and diet affected the magnitude of the change in expression of some innate immune response genes, suggesting roles for these genes in inhibiting secondary injuries that cause mortality. Our results indicate that the complexity of TBI outcomes is due in part to distinct, genetically controlled, age- and diet-regulated mechanisms that promote secondary injuries and that involve a subset of innate immune response genes. PMID:27754853

  17. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury

    PubMed Central

    Levy, Stewart; Carrick, Matthew; Mains, Charles W.; Slone, Denetta S.

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome. PMID:27642494

  18. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  19. The impact of acute hyponatraemia on severe traumatic brain injury in rats.

    PubMed

    Ke, C; Poon, W S; Ng, H K; Tang, N L; Chan, Y; Wang, J Y; Hsiang, J N

    2000-01-01

    The effect of experimental acute hyponatraemia on severe traumatic brain injury (TBI) was studied in a modified impact-acceleration model. The cortical contusional volume was quantified by image analysis on serial sections, injured axons were visualized and quantified by beta-Amyloid Precursor Protein (beta-APP) immunohistochemical staining. Regional brain water content was estimated by the wet-dry weight method. The experiment was conducted in Group I (injury only) and Group II (injury followed by acute hyponatraemia). Comparison between the two groups showed that acute hyponatraemia significantly increased contusional volume (3.24 +/- 0.70 mm3 vs. 1.80 +/- 0.65 mm3, P = 0.009) and the number of injured axons (128.7 +/- 44.3 vs. 41.7 +/- 50.1, P = 0.04) in the right thalamus & basal ganglia region. Water content of the brain stem region was also significantly increased by acute hyponatraemia (73.71 +/- 0.14% vs. 72.28 +/- 0.93%, P = 0.004). These results suggest that acute hyponatraemia potentiates secondary brain damage in severe TBI by augmentation of both focal contusion and diffuse axonal injury. The injured brain stem region is more susceptible to edema formation induced by experimental acute hyponatraemia.

  20. Apolipoprotein E-Mimetic COG1410 Reduces Acute Vasogenic Edema following Traumatic Brain Injury

    PubMed Central

    Cao, Fang; Wu, Yue; Zhong, Jianjun; Liu, Jieshi; Qin, Xinghu; Chen, Ligang; Vitek, Michael P.; Li, Fengqiao; Xu, Lu

    2016-01-01

    Abstract The degree of post-traumatic brain edema and dysfunction of the blood–brain barrier (BBB) influences the neurofunctional outcome after a traumatic brain injury (TBI). Previous studies have demonstrated that the administration of apolipoprotein E-mimetic peptide COG1410 reduces the brain water content after subarachnoid hemorrhage, intra-cerebral hemorrhage, and focal brain ischemia. However, the effects of COG1410 on vasogenic edema following TBI are not known. The current study evaluated the effects of 1 mg/kg daily COG1410 versus saline administered intravenously after a controlled cortical impact (CCI) injury on BBB dysfunction and vasogenic edema at an acute stage in mice. The results demonstrated that treatment with COG1410 suppressed the activity of matrix metalloproteinase-9, reduced the disruption of the BBB and Evans Blue dye extravasation, reduced the TBI lesion volume and vasogenic edema, and decreased the functional deficits compared with mice treated with vehicle, at an acute stage after CCI. These findings suggest that COG1410 is a promising preclinical therapeutic agent for the treatment of traumatic brain injury. PMID:26192010

  1. Effective factors on linguistic disorder during acute phase following traumatic brain injury in adults.

    PubMed

    Chabok, Shahrokh Yousefzadeh; Kapourchali, Sara Ramezani; Leili, Ehsan Kazemnezhad; Saberi, Alia; Mohtasham-Amiri, Zahra

    2012-06-01

    Traumatic brain injury (TBI) has been known to be the leading cause of breakdown and long-term disability in people under 45 years of age. This study highlights the effective factors on post-traumatic (PT) linguistic disorder and relations between linguistic and cognitive function after trauma in adults with acute TBI. A cross-sectional design was employed to study 60 post-TBI hospitalized adults aged 18-65 years. Post-traumatic (PT) linguistic disorder and cognitive deficit after TBI were respectively diagnosed using the Persian Aphasia Test (PAT) and Persian version of Mini-Mental State Examination (MMSE) at discharge. Primary post-resuscitation consciousness level was determined using the Glasgow Coma Scale (GCS). Paracilinical data was obtained by CT scan technique. Multiple logistic regression analysis illustrated that brain injury severity was the first powerful significant predictor of PT linguistic disorder after TBI and frontotemporal lesion was the second. It was also revealed that cognitive function score was significantly correlated with score of each language skill except repetition. Subsequences of TBI are more commonly language dysfunctions that demand cognitive flexibility. Moderate, severe and fronto-temporal lesion can increase the risk of processing deficit in linguistic macrostructure production and comprehension. The dissociation risk of cortical and subcortical pathways related to cognitive-linguistic processing due to intracranial lesions can augment possibility of lexical-semantic processing deficit in acute phase which probably contributes to later cognitive-communication disorder.

  2. Acute sports-related traumatic brain injury and repetitive concussion.

    PubMed

    Guskiewicz, Kevin M; Broglio, Steven P

    2015-01-01

    Concussions are described as functional, not structural injuries, and therefore cannot be easily detected through standard diagnostic imaging. The vast differences between individual athletes makes identifying and evaluating sport-related concussion one of the most complex and perplexing injuries faced by medical personnel. The literature, as well as most consensus statements, supports the use of a multifaceted approach to concussion evaluation on the sideline of the athletic field. Using a standardized clinical examination that is supported by objective measures of concussion-related symptoms, cognitive function, and balance provides clinicians with the ability to track recovery in an objective manner. When used in combination, these tests allow for more informed diagnosis and treatment plan, which should involve a graduated return to play progression. Establishing a comprehensive emergency action plan that can guide the on-field management of a more serious and potentially catastrophic brain injury is also essential. This review will address these management issues, as well as the recent concerns about the risk of long-term neurologic conditions believed to be associated with repetitive concussion.

  3. Corticosteroids in acute traumatic brain injury: systematic review of randomised controlled trials.

    PubMed Central

    Alderson, P.; Roberts, I.

    1997-01-01

    OBJECTIVE: To quantify the effectiveness and safety of corticosteroids in the treatment of acute traumatic brain injury. DESIGN: Systematic review of randomised controlled trials of corticosteroids in acute traumatic brain injury. Summary odds ratios were estimated as an inverse variance weighted average of the odds ratios for each study. SETTING: Randomised trials available by March 1996. SUBJECTS: The included trials with outcome data comprised 2073 randomised participants. RESULTS: The effect of corticosteroids on the risk of death was reported in 13 included trials. The pooled odds ratio for the 13 trials was 0.91 (95% confidence interval 0.74 to 1.12). Pooled absolute risk reduction was 1.8% (-2.5% to 5.7%). For the 10 trials that reported death or disability the pooled odds ratio was 0.90 (0.72 to 1.11). For infections of any type the pooled odds ratio was 0.92 (0.69 to 1.23) and for the seven trials reporting gastrointestinal bleeding it was 1.05 (0.44 to 2.52). With only those trials with the best quality of concealment of allocation, the pooled odds ratio estimates for death and death or disability became closer to unity. CONCLUSIONS: This systematic review of randomised controlled trials of corticosteroids in acute traumatic brain injury shows that there remains considerable uncertainty over their effects. Neither moderate benefits nor moderate harmful effects can be excluded. The widely practicable nature of the drugs and the importance of the health problem suggest that large simple trials are feasible and worth while to establish whether there are any benefits from use of corticosteroids in this setting. PMID:9224126

  4. GFAP-BDP as an Acute Diagnostic Marker in Traumatic Brain Injury: Results from the Prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study

    PubMed Central

    Yue, John K.; Puccio, Ava M.; Panczykowski, David M.; Inoue, Tomoo; McMahon, Paul J.; Sorani, Marco D.; Yuh, Esther L.; Lingsma, Hester F.; Maas, Andrew I.R.; Valadka, Alex B.; Manley, Geoffrey T.; Casey, Scott S.; Cheong, Maxwell; Cooper, Shelly R.; Dams-O'Connor, Kristen; Gordon, Wayne A.; Hricik, Allison J.; Hochberger, Kerri; Menon, David K.; Mukherjee, Pratik; Sinha, Tuhin K.; Schnyer, David M.; Vassar, Mary J.

    2013-01-01

    Abstract Reliable diagnosis of traumatic brain injury (TBI) is a major public health need. Glial fibrillary acidic protein (GFAP) is expressed in the central nervous system, and breakdown products (GFAP-BDP) are released following parenchymal brain injury. Here, we evaluate the diagnostic accuracy of elevated levels of plasma GFAP-BDP in TBI. Participants were identified as part of the prospective Transforming Research And Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. Acute plasma samples (<24 h post-injury) were collected from patients presenting with brain injury who had CT imaging. The ability of GFAP-BDP level to discriminate patients with demonstrable traumatic lesions on CT, and with failure to return to pre-injury baseline at 6 months, was evaluated by the area under the receiver operating characteristic curve (AUC). Of the 215 patients included for analysis, 83% had mild, 4% had moderate, and 13% had severe TBI; 54% had acute traumatic lesions on CT. The ability of GFAP-BDP level to discriminate patients with traumatic lesions on CT as evaluated by AUC was 0.88 (95% confidence interval [CI], 0.84–0.93). The optimal cutoff of 0.68 ng/mL for plasma GFAP-BDP level was associated with a 21.61 odds ratio for traumatic findings on head CT. Discriminatory ability of unfavorable 6 month outcome was lower, AUC 0.65 (95% CI, 0.55–0.74), with a 2.07 odds ratio. GFAP-BDP levels reliably distinguish the presence and severity of CT scan findings in TBI patients. Although these findings confirm and extend prior studies, a larger prospective trial is still needed to validate the use of GFAP-BDP as a routine diagnostic biomarker for patient care and clinical research. The term “mild” continues to be a misnomer for this patient population, and underscores the need for evolving classification strategies for TBI targeted therapy. (ClinicalTrials.gov number NCT01565551; NIH Grant 1RC2 NS069409) PMID:23489259

  5. Acute evaluation of conversational discourse skills in traumatic brain injury.

    PubMed

    LeBlanc, Joanne; de Guise, Elaine; Champoux, Marie-Claude; Couturier, Céline; Lamoureux, Julie; Marcoux, Judith; Maleki, Mohammed; Feyz, Mitra

    2014-12-01

    This study looked at performance on the conversational discourse checklist of the Protocole Montréal d'évaluation de la communication (D-MEC) in 195 adults with TBI of all severity hospitalized in a Level 1 Trauma Centre. To explore validity, results were compared to findings on tests of memory, mental flexibility, confrontation naming, semantic and letter category naming, verbal reasoning, and to scores on the Montreal Cognitive Assessment. The relationship to outcome as measured with the Disability Rating Scale (DRS), the Extended Glasgow Outcome Scale (GOS-E), length of stay, and discharge destinations was also determined. Patients with severe TBI performed significantly worse than mild and moderate groups (χ(2)(KW2df) = 24.435, p = .0001). The total D-MEC score correlated significantly with all cognitive and language measures (p < .05). It also had a significant moderate correlation with the DRS total score (r = -.6090, p < .0001) and the GOS-E score (r = .539, p < .0001), indicating that better performance on conversational discourse was associated with a lower disability rating and better global outcome. Finally, the total D-MEC score was significantly different between the discharge destination groups (F(3,90) = 20.19, p < .0001). Thus, early identification of conversational discourse impairment in acute care post-TBI was possible with the D-MEC and could allow for early intervention in speech-language pathology.

  6. Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: a longitudinal perspective.

    PubMed

    Ling, Josef M; Peña, Amanda; Yeo, Ronald A; Merideth, Flannery L; Klimaj, Stefan; Gasparovic, Charles; Mayer, Andrew R

    2012-04-01

    Mild traumatic brain injury is the most prevalent neurological insult and frequently results in neurobehavioural sequelae. However, little is known about the pathophysiology underlying the injury and how these injuries change as a function of time. Although diffusion tensor imaging holds promise for in vivo characterization of white matter pathology, both the direction and magnitude of anisotropic water diffusion abnormalities in axonal tracts are actively debated. The current study therefore represents both an independent replication effort (n = 28) of our previous findings (n = 22) of increased fractional anisotropy during semi-acute injury, as well as a prospective study (n = 26) on the putative recovery of diffusion abnormalities. Moreover, new analytical strategies were applied to capture spatially heterogeneous white matter injuries, which minimize implicit assumptions of uniform injury across diverse clinical presentations. Results indicate that whereas a general pattern of high anisotropic diffusion/low radial diffusivity was present in various white matter tracts in both the replication and original cohorts, this pattern was only consistently observed in the genu of the corpus callosum across both samples. Evidence for a greater number of localized clusters with increased anisotropic diffusion was identified across both cohorts at trend levels, confirming heterogeneity in white matter injury. Pooled analyses (50 patients; 50 controls) suggested that measures of diffusion within the genu were predictive of patient classification, albeit at very modest levels (71% accuracy). Finally, we observed evidence of recovery in lesion load in returning patients across a 4-month interval, which was correlated with a reduction in self-reported post-concussive symptomatology. In summary, the corpus callosum may serve as a common point of injury in mild traumatic brain injury secondary to anatomical (high frequency of long unmyelinated fibres) and biomechanics factors. A

  7. Beneficial Effect of Erythropoietin Short Peptide on Acute Traumatic Brain Injury.

    PubMed

    Wang, Bo; Kang, Mitchell; Marchese, Michelle; Rodriguez, Esther; Lu, Wei; Li, Xintong; Maeda, Yasuhiro; Dowling, Peter

    2016-04-01

    There is currently no effective medical treatment for traumatic brain injury (TBI). Beyond the immediate physical damage caused by the initial impact, additional damage evolves due to the inflammatory response that follows brain injury. Here we show that therapy with JM4, a low molecular weight 19-amino acid nonhematopoietic erythropoietin (EPO) peptidyl fragment, containing amino acids 28-46 derived from the first loop of EPO, markedly reduces acute brain injury. Mice underwent controlled cortical injury and received either whole molecule EPO, JM4, or sham-treatment with phosphate-buffered saline. Animals treated with JM4 peptide exhibited a large decrease in number of dead neural cells and a marked reduction in lesion size at both 3 and 8 days postinjury. Therapy with JM4 also led to improved functional recovery and we observed a treatment window for JM4 peptide that remained open for at least 9 h postinjury. The full-length EPO molecule was divided into a series of 6 contiguous peptide segments; the JM4-containing segment and the adjoining downstream region contained the bulk of the death attenuating effects seen with intact EPO molecule following TBI. These findings indicate that the JM4 molecule substantially blocks cell death and brain injury following acute brain trauma and, as such, presents an excellent opportunity to explore the therapeutic potential of a small-peptide EPO derivative in the medical treatment of TBI.

  8. QuickBrain MRI for the detection of acute pediatric traumatic brain injury.

    PubMed

    Sheridan, David C; Newgard, Craig D; Selden, Nathan R; Jafri, Mubeen A; Hansen, Matthew L

    2017-02-01

    OBJECTIVE The current gold-standard imaging modality for pediatric traumatic brain injury (TBI) is CT, but it confers risks associated with ionizing radiation. QuickBrain MRI (qbMRI) is a rapid brain MRI protocol that has been studied in the setting of hydrocephalus, but its ability to detect traumatic injuries is unknown. METHODS The authors performed a retrospective cohort study of pediatric patients with TBI who were undergoing evaluation at a single Level I trauma center between February 2010 and December 2013. Patients who underwent CT imaging of the head and qbMRI during their acute hospitalization were included. Images were reviewed independently by 2 neuroradiology fellows blinded to patient identifiers. Image review consisted of identifying traumatic mass lesions and their intracranial compartment and the presence or absence of midline shift. CT imaging was used as the reference against which qbMRI was measured. RESULTS A total of 54 patients met the inclusion criteria; the median patient age was 3.24 years, 65% were male, and 74% were noted to have a Glasgow Coma Scale score of 14 or greater. The sensitivity and specificity of qbMRI to detect any lesion were 85% (95% CI 73%-93%) and 100% (95% CI 61%-100%), respectively; the sensitivity increased to 100% (95% CI 89%-100%) for clinically important TBIs as previously defined. The mean interval between CT and qbMRI was 27.5 hours, and approximately half of the images were obtained within 12 hours. CONCLUSIONS In this retrospective pilot study, qbMRI demonstrated reasonable sensitivity and specificity for detecting a lesion or injury seen with neuroimaging (radiographic TBI) and clinically important acute pediatric TBI.

  9. Neuroprotective effects of bloodletting at Jing points combined with mild induced hypothermia in acute severe traumatic brain injury

    PubMed Central

    Tu, Yue; Miao, Xiao-mei; Yi, Tai-long; Chen, Xu-yi; Sun, Hong-tao; Cheng, Shi-xiang; Zhang, Sai

    2016-01-01

    Bloodletting at Jing points has been used to treat coma in traditional Chinese medicine. Mild induced hypothermia has also been shown to have neuroprotective effects. However, the therapeutic effects of bloodletting at Jing points and mild induced hypothermia alone are limited. Therefore, we investigated whether combined treatment might have clinical effectiveness for the treatment of acute severe traumatic brain injury. Using a rat model of traumatic brain injury, combined treatment substantially alleviated cerebral edema and blood-brain barrier dysfunction. Furthermore, neurological function was ameliorated, and cellular necrosis and the inflammatory response were lessened. These findings suggest that the combined effects of bloodletting at Jing points (20 μL, twice a day, for 2 days) and mild induced hypothermia (6 hours) are better than their individual effects alone. Their combined application may have marked neuroprotective effects in the clinical treatment of acute severe traumatic brain injury. PMID:27482221

  10. Traumatic Brain Injury

    MedlinePlus

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  11. Experimental traumatic brain injury

    PubMed Central

    2010-01-01

    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury. PMID:20707892

  12. Accelerated recovery from acute brain injuries: clinical efficacy of neurotrophic treatment in stroke and traumatic brain injuries.

    PubMed

    Bornstein, N; Poon, W S

    2012-04-01

    Stroke is one of the most devastating vascular diseases in the world as it is responsible for almost five million deaths per year. Almost 90% of all strokes are ischemic and mainly due to atherosclerosis, cardiac embolism and small-vessel disease. Intracerebral or subarachnoid hemorrhage can lead to hemorrhagic stroke, which usually has the poorest prognosis. Cerebrolysin is a peptide preparation which mimics the action of a neurotrophic factor, protecting stroke-injured neurons and promoting neuroplasticity and neurogenesis. Cerebrolysin has been widely studied as a therapeutic tool for both ischemic and hemorrhagic stroke, as well as traumatic brain injury. In ischemic stroke, Cerebrolysin given as an adjuvant therapy to antiplatelet and rheologically active medication resulted in accelerated improvement in global, neurological and motor functions, cognitive performance and activities of daily living. Cerebrolysin was also safe and well tolerated when administered in patients suffering from hemorrhagic stroke. Traumatic brain injury leads to transient or chronic impairments in physical, cognitive, emotional and behavioral functions. This is associated with deficits in the recognition of basic emotions, the capacity to interpret the mental states of others, and executive functioning. Pilot clinical studies with adjuvant Cerebrolysin in the acute and postacute phases of the injury have shown faster recovery, which translates into an earlier onset of rehabilitation and shortened hospitalization time.

  13. Calorie and Protein Intake in Acute Rehabilitation Inpatients with Traumatic Spinal Cord Injury Versus Other Diagnoses

    PubMed Central

    2013-01-01

    Background: Obesity and its consequences affect patients with spinal cord injury (SCI). There is a paucity of data with regard to the dietary intake patterns of patients with SCI in the acute inpatient rehabilitation setting. Our hypothesis is that acute rehabilitation inpatients with SCI consume significantly more calories and protein than other inpatient rehabilitation diagnoses. Objective: To compare calorie and protein intake in patients with new SCI versus other diagnoses (new traumatic brain injury [TBI], new stroke, and Parkinson’s disease [PD]) in the acute inpatient rehabilitation setting. Methods: The intake of 78 acute rehabilitation inpatients was recorded by registered dieticians utilizing once-weekly calorie and protein intake calculations. Results: Mean ± SD calorie intake (kcal) for the SCI, TBI, stroke, and PD groups was 1,967.9 ± 611.6, 1,546.8 ± 352.3, 1,459.7 ± 443.2, and 1,459.4 ± 434.6, respectively. ANOVA revealed a significant overall group difference, F(3, 74) = 4.74, P = .004. Mean ± SD protein intake (g) for the SCI, TBI, stroke, and PD groups was 71.5 ± 25.0, 61.1 ± 12.8, 57.6 ± 16.6, and 55.1 ± 19.1, respectively. ANOVA did not reveal an overall group difference, F(3, 74) = 2.50, P = .066. Conclusions: Given the diet-related comorbidities and energy balance abnormalities associated with SCI, combined with the intake levels demonstrated in this study, education with regard to appropriate calorie intake in patients with SCI should be given in the acute inpatient rehabilitation setting. PMID:23960707

  14. Clinical and imaging assessment of acute combat mild traumatic brain injury in Afghanistan

    PubMed Central

    Mac Donald, Christine L.; Rivet, Dennis; Ritter, John; May, Todd; Barefield, Maria; Duckworth, Josh; LaBarge, Donald; Asher, Dean; Drinkwine, Benjamin; Woods, Yvette; Connor, Michael; Brody, David L.

    2015-01-01

    Objective: To evaluate whether diffusion tensor imaging (DTI) will noninvasively reveal white matter changes not present on conventional MRI in acute blast-related mild traumatic brain injury (mTBI) and to determine correlations with clinical measures and recovery. Methods: Prospective observational study of 95 US military service members with mTBI enrolled within 7 days from injury in Afghanistan and 101 healthy controls. Assessments included Rivermead Post-Concussion Symptoms Questionnaire (RPCSQ), Post-Traumatic Stress Disorder Checklist Military (PCLM), Beck Depression Inventory (BDI), Balance Error Scoring System (BESS), Automated Neuropsychological Assessment Metrics (ANAM), conventional MRI, and DTI. Results: Significantly greater impairment was observed in participants with mTBI vs controls: RPCSQ (19.7 ± 12.9 vs 3.6 ± 7.1, p < 0.001), PCLM (32 ± 13.2 vs 20.9 ± 7.1, p < 0.001), BDI (7.4 ± 6.8 vs 2.5 ± 4.9, p < 0.001), and BESS (18.2 ± 8.4 vs 15.1 ± 8.3, p = 0.01). The largest effect size in ANAM performance decline was in simple reaction time (mTBI 74.5 ± 148.4 vs control −11 ± 46.6 milliseconds, p < 0.001). Fractional anisotropy was significantly reduced in mTBI compared with controls in the right superior longitudinal fasciculus (0.393 ± 0.022 vs 0.405 ± 0.023, p < 0.001). No abnormalities were detected with conventional MRI. Time to return to duty correlated with RPCSQ (r = 0.53, p < 0.001), ANAM simple reaction time decline (r = 0.49, p < 0.0001), PCLM (r = 0.47, p < 0.0001), and BDI (r = 0.36 p = 0.0005). Conclusions: Somatic, behavioral, and cognitive symptoms and performance deficits are substantially elevated in acute blast-related mTBI. Postconcussive symptoms and performance on measures of posttraumatic stress disorder, depression, and neurocognitive performance at initial presentation correlate with return-to-duty time. Although changes in fractional anisotropy are uncommon and subtle, DTI is more sensitive than conventional MRI in

  15. Sympathoadrenal Activation is Associated with Acute Traumatic Coagulopathy and Endotheliopathy in Isolated Brain Injury

    PubMed Central

    Di Battista, Alex P.; Rizoli, Sandro B.; Lejnieks, Brandon; Min, Arimie; Shiu, Maria Y.; Peng, Henry T.; Baker, Andrew J.; Hutchison, Michael G.; Churchill, Nathan; Inaba, Kenji; Nascimento, Bartolomeu B.; de Oliveira Manoel, Airton Leonardo; Beckett, Andrew; Rhind, Shawn G.

    2016-01-01

    ABSTRACT Background: Acute coagulopathy after traumatic brain injury (TBI) involves a complex multifactorial hemostatic response that is poorly characterized. Objectives: To examine early posttraumatic alterations in coagulofibrinolytic, endothelial, and inflammatory blood biomarkers in relation to sympathetic nervous system (SNS) activation and 6-month patient outcomes, using multivariate partial least-squares (PLS) analysis. Patients and Methods: A multicenter observational study of 159 adult isolated TBI patients admitted to the emergency department at an urban level I trauma center, was performed. Plasma concentrations of 6 coagulofibrinolytic, 10 vascular endothelial, 19 inflammatory, and 2 catecholamine biomarkers were measured by immunoassay on admission and 24 h postinjury. Neurological outcome at 6 months was assessed using the Extended Glasgow Outcome Scale. PLS-discriminant analysis was used to identify salient biomarker contributions to unfavorable outcome, whereas PLS regression analysis was used to evaluate the covariance between SNS correlates (catecholamines) and biomarkers of coagulopathy, endotheliopathy, and inflammation. Results: Biomarker profiles in patients with an unfavorable outcome displayed procoagulation, hyperfibrinolysis, glycocalyx and endothelial damage, vasculature activation, and inflammation. A strong covariant relationship was evident between catecholamines and biomarkers of coagulopathy, endotheliopathy, and inflammation at both admission and 24 h postinjury. Conclusions: Biomarkers of coagulopathy and endotheliopathy are associated with poor outcome after TBI. Catecholamine levels were highly correlated with endotheliopathy and coagulopathy markers within the first 24 h after injury. Further research is warranted to characterize the pathogenic role of SNS-mediated hemostatic alterations in isolated TBI. PMID:27206278

  16. Progressive Return to Activity Following Acute Concussion/Mild Traumatic Brain Injury: Guidance for the Primary Care Manager in Deployed and Non-deployed Settings (BRIEFING SLIDES)

    DTIC Science & Technology

    2014-01-01

    Progressive Return to Activity Following Acute Concussion /Mild Traumatic Brain Injury Guidance for the Primary Care Manager in Deployed and Non...Following Acute Concussion /Mild Traumatic Brain Injury: Guidance for the Primary Care Manager in Deployed and Non-deployed Settings (BRIEFING SLIDES) 5a...Prescribed by ANSI Std Z39-18 2 Describe the role of this clinical recommendation and overall goal for recovery following concussion /mTBI Understand the

  17. Traumatic Brain Injuries. Guidelines Paper.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver. Special Education Services Unit.

    This paper on traumatic brain injuries begins with statistics on the incidence of the disorder, especially as they relate to Colorado. Traumatic brain injury is then defined, and problems caused by traumatic brain injury are discussed. The components of effective programming for students with traumatic brain injuries are described, followed by the…

  18. Readmission to Acute Care Hospital during Inpatient Rehabilitation for Traumatic Brain Injury

    PubMed Central

    Hammond, Flora M.; Horn, Susan D.; Smout, Randall J.; Beaulieu, Cynthia L.; Barrett, Ryan S.; Ryser, David K.; Sommerfeld, Teri

    2015-01-01

    Objective To investigate frequency, reasons, and factors associated with readmission to acute care (RTAC) during inpatient rehabilitation for traumatic brain injury (TBI). Design Prospective observational cohort. Setting Inpatient rehabilitation. Participants 2,130 consecutive admissions for TBI rehabilitation. Interventions Not applicable. Main Outcome Measure(s) RTAC incidence, RTAC causes, rehabilitation length of stay (RLOS), and rehabilitation discharge location. Results 183 participants (9%) experienced RTAC for a total 210 episodes. 161 patients experienced 1 RTAC episode, 17 had 2, and 5 had 3. Mean days from rehabilitation admission to first RTAC was 22 days (SD 22). Mean duration in acute care during RTAC was 7 days (SD 8). 84 participants (46%) had >1 RTAC episode for medical reasons, 102 (56%) had >1 RTAC for surgical reasons, and RTAC reason was unknown for 6 (3%) participants. Most common surgical RTAC reasons were: neurosurgical (65%), pulmonary (9%), infection (5%), and orthopedic (5%); most common medical reasons were infection (26%), neurologic (23%), and cardiac (12%). Older age, history of coronary artery disease, history of congestive heart failure, acute care diagnosis of depression, craniotomy or craniectomy during acute care, and presence of dysphagia at rehabilitation admission predicted patients with RTAC. RTAC was less likely for patients with higher admission Functional Independence Measure Motor scores and education less than high school diploma. RTAC occurrence during rehabilitation was significantly associated with longer RLOS and smaller likelihood of discharge home. Conclusion(s) Approximately 9% of patients with TBI experience RTAC during inpatient rehabilitation for various medical and surgical reasons. This information may help inform interventions aimed at reducing interruptions in rehabilitation due to RTAC. RTACs were associated with longer RLOS and discharge to an institutional setting. PMID:26212405

  19. Serum neurogranin measurement as a biomarker of acute traumatic brain injury

    PubMed Central

    Yang, Jun; Korley, Frederick K.; Dai, Min; Everett, Allen D.

    2015-01-01

    Objectives Neurogranin (NRGN) is a small neuronal protein that plays an important role in synaptic signaling by regulating calmodulin (CaM) availability. In this study, we developed an ELISA to measure NRGN quantitatively in serum samples from a cohort of acute traumatic brain injury (TBI) patients and a non-TBI control cohort, and explored the potential value of NRGN as a circulating biomarker for TBI. Design and methods Recombinant His-NRGN protein was used to develop mouse monoclonal capture and rabbit polyclonal detection antibodies, and they were used to develop a sandwich ELISA. After validation, we used this ELISA to measure serum samples from a cohort of typical adult acute TBI patients (N = 76 TBI cases) and non-TBI control patients (N = 150 controls). Results The NRGN ELISA lower limit of detection was 0.055 ng/mL, lower limit of quantification was 0.2 ng/mL, and interassay CVs were ≤ 10.7%. The average recovery was 99.9% (range from 97.2–102%). Serum NRGN concentrations in TBI cases were significantly higher than in controls (median values were 0.18 ng/mL vs. 0.02 ng/mL, p < 0.0001), but did not discriminate TBI cases with intracranial hemorrhage (p = 0.09). Conclusions We have developed a highly sensitive and reproducible ELISA for measuring circulating NRGN in blood samples. Serum NRGN concentrations in acute TBI patients were significantly higher than in controls, indicating that NRGN could have utility as a circulating biomarker for acute TBI. This report provides evidence to support larger and controlled TBI clinical studies for NRGN validation and prediction of outcomes. PMID:26025774

  20. Continuous Renal Replacement Therapy for Acute Renal Failure in Patients with Traumatic Brain Injury

    PubMed Central

    Park, Chang-Yong; Choi, Hyun-Yong; You, Nam-Kyu; Roh, Tae Hoon; Seo, Sook Jin

    2016-01-01

    Objective The purpose of this study was to investigate the impact of continuous renal replacement therapy (CRRT) on survival and relevant factors in patients who underwent CRRT after traumatic brain injury (TBI). Methods We retrospectively reviewed the laboratory, clinical, and radiological data of 29 patients who underwent CRRT among 1,190 TBI patients treated at our institution between April 2011 and June 2015. There were 20 men and 9 women, and the mean age was 60.2 years. The mean initial Glasgow Coma Scale score was 9.2, and the mean injury severity score was 24. Kaplan-Meier method and Cox regression were used for analysis of survival and relevant factors. Results The actuarial median survival time of the 29 patients was 163 days (range, 3-317). Among the above 29 patients, 22 died with a median survival time of 8 days (range, 3-55). The causes of death were TBI-related in 8, sepsis due to pneumonia or acute respiratory distress syndrome (ARDS) in 4, and multi-organ failure in 10. Among the various factors, urine quantity of more than 500 mL for 24-hours before receiving CRRT was a significant and favorable factor for survival in the multivariate analysis (p=0.026). Conclusion According to our results, we suggest that early intervention with CRRT may be beneficial in the treatment of TBI patients with impending acute renal failure (ARF). To define the therapeutic advantages of early CRRT in the TBI patients with ARF, a well-designed and controlled study with more cases is required. PMID:27857914

  1. Cognitive Training for Post-Acute Traumatic Brain Injury: A Systematic Review and Meta-Analysis

    PubMed Central

    Hallock, Harry; Collins, Daniel; Lampit, Amit; Deol, Kiran; Fleming, Jennifer; Valenzuela, Michael

    2016-01-01

    Objective: To quantitatively aggregate effects of cognitive training (CT) on cognitive and functional outcome measures in patients with traumatic brain injury (TBI) more than 12-months post-injury. Design: We systematically searched six databases for non-randomized and randomized controlled trials of CT in TBI patients at least 12-months post-injury reporting cognitive and/or functional outcomes. Main Measures: Efficacy was measured as standardized mean difference (Hedges’ g) of post-training change. We investigated heterogeneity across studies using subgroup analyses and meta-regressions. Results: Fourteen studies encompassing 575 patients were included. The effect of CT on overall cognition was small and statistically significant (g = 0.22, 95%CI 0.05 to 0.38; p = 0.01), with low heterogeneity (I2 = 11.71%) and no evidence of publication bias. A moderate effect size was found for overall functional outcomes (g = 0.32, 95%CI 0.08 to 0.57, p = 0.01) with low heterogeneity (I2 = 14.27%) and possible publication bias. Statistically significant effects were also found only for executive function (g = 0.20, 95%CI 0.02 to 0.39, p = 0.03) and verbal memory (g = 0.32, 95%CI 0.14 to 0.50, p < 0.01). Conclusion: Despite limited studies in this field, this meta-analysis indicates that CT is modestly effective in improving cognitive and functional outcomes in patients with post-acute TBI and should therefore play a more significant role in TBI rehabilitation. PMID:27833541

  2. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury.

  3. Traumatic injuries in agriculture.

    PubMed

    Hard, D L; Myers, J R; Gerberich, S G

    2002-02-01

    The National Coalition for Agricultural Safety and Health (NCASH) in 1988 addressed issues in agriculture and noted "a sense of urgency... arose from the recognition of the unabating epidemic of traumatic death and injury in American farming . . ." This article provides an update to the NCASH conference on traumatic injuries in agriculture, a history on how the facts and figures were arrived at for the NCASH conference, and a current report on the status of traumatic injuries in agriculture in the U.S. Fatal and nonfatal injuries are addressed along with national and regional surveillance systems. The Census of Fatal Occupational Injuries (CFOI) was used for reporting national agricultural production fatal injuries from 1992-1998 (25.8 deaths per 100,000 workers), the Traumatic Injury Surveillance of Farmers (TISF) 1993-1995 was used to report nonfatal injuries occurring nationally (7.5/100 workers), and Regional Rural Injury Studies I and II (RRIS-I and RRIS-II) were used to illustrate a regional approach along with in-depth, specific analyses. Fatality rates, which showed some decline in the 1980s, were fairly constant during the 1990s. Changes in nonfatal injury rates for this sector could not be assessed due to a lack of benchmark data. The main concerns identified in the 1989 NCASH report continue today: tractors are the leading cause of farm-related death due mostly to overturns; older farmers continue to be at the highest risk for farm fatalities; and traumatic injuries continue to be a major concern for youth living or working on U.S. farms. Fatal and nonfatal traumatic injuries associated with agricultural production are a major public health problem that needs to be addressed through comprehensive approaches that include further delineation of the problem, particularly in children and older adults, and identification of specific risk factors through analytic efforts. Continued development of relevant surveillance systems and implementation of appropriate

  4. Acute Alcohol Intoxication Prolongs Neuroinflammation without Exacerbating Neurobehavioral Dysfunction following Mild Traumatic Brain Injury

    PubMed Central

    Teng, Sophie X.

    2014-01-01

    Abstract Traumatic brain injury (TBI) represents a leading cause of death and disability among young persons with ∼1.7 million reported cases in the United States annually. Although acute alcohol intoxication (AAI) is frequently present at the time of TBI, conflicting animal and clinical reports have failed to establish whether AAI significantly impacts short-term outcomes after TBI. The objective of this study was to determine whether AAI at the time of TBI aggravates neurobehavioral outcomes and neuroinflammatory sequelae post-TBI. Adult male Sprague-Dawley rats were surgically instrumented with gastric and vascular catheters before a left lateral craniotomy. After recovery, rats received either a primed constant intragastric alcohol infusion (2.5 g/kg+0.3 g/kg/h for 15 h) or isocaloric/isovolumic dextrose infusion followed by a lateral fluid percussion TBI (∼1.4 J, ∼30 ms). TBI induced apnea and a delay in righting reflex. AAI at the time of injury increased the TBI induced delay in righting reflex without altering apnea duration. Neurological and behavioral dysfunction was observed at 6 h and 24 h post-TBI, and this was not exacerbated by AAI. TBI induced a transient upregulation of cortical interleukin (IL)-6 and monocyte chemotactic protein (MCP)-1 mRNA expression at 6 h, which was resolved at 24 h. AAI did not modulate the inflammatory response at 6 h but prevented resolution of inflammation (IL-1, IL-6, tumor necrosis factor-α, and MCP-1 expression) at 24 h post-TBI. AAI at the time of TBI did not delay the recovery of neurological and neurobehavioral function but prevented the resolution of neuroinflammation post-TBI. PMID:24050411

  5. Pituitary dysfunction in traumatic brain injury: Is evaluation in the acute phase worthwhile?

    PubMed Central

    Dalwadi, Pradip P.; Bhagwat, Nikhil M.; Tayde, Parimal S.; Joshi, Ameya S.; Varthakavi, Premlata K.

    2017-01-01

    Introduction: Traumatic brain injury (TBI) is an under-recognized cause of hypopituitarism. According to recent data, it could be more frequent than previously known. However, there is a scarcity of data in Indian population. Aims: The main aim of the study was to determine the prevalence of pituitary hormone deficiencies in the acute phase of TBI. The secondary objectives were to correlate the severity of trauma with basal hormone levels and to determine whether initial hormone deficiencies predict mortality. Subjects and Methods: Forty-nine TBI patients (41 men and 8 women) were included in this study. Pituitary functions were evaluated within 24 h of admission. Results: Gonadotropin deficiency was found in 65.3% patient while 46.9% had low insulin-like growth factor-1, 12.24% had cortisol level <7 mcg/dl. Cortisol and prolactin level were positively correlated with the severity of TBI suggestive of stress response. Free triiodothyronine (fT3) and free thyroxine were significantly lower in patients with increasing severity of tuberculosis. Logistic regression analysis revealed that mortality after TBI was unrelated to the basal pituitary hormone levels except low T3 level, which was found to be positively related to mortality. Conclusions: Pituitary dysfunction is common after TBI and the most commonly affected axes are growth hormone and gonadotropin axis. Low fT3 correlates best with mortality. During the acute phase of TBI, at least an assessment of cortisol is vital as undetected cortisol deficiency can be life-threatening PMID:28217503

  6. The acute phase of mild traumatic brain injury is characterized by a distance-dependent neuronal hypoactivity.

    PubMed

    Johnstone, Victoria P A; Shultz, Sandy R; Yan, Edwin B; O'Brien, Terence J; Rajan, Ramesh

    2014-11-15

    The consequences of mild traumatic brain injury (TBI) on neuronal functionality are only now being elucidated. We have now examined the changes in sensory encoding in the whisker-recipient barrel cortex and the brain tissue damage in the acute phase (24 h) after induction of TBI (n=9), with sham controls receiving surgery only (n=5). Injury was induced using the lateral fluid percussion injury method, which causes a mixture of focal and diffuse brain injury. Both population and single cell neuronal responses evoked by both simple and complex whisker stimuli revealed a suppression of activity that decreased with distance from the locus of injury both within a hemisphere and across hemispheres, with a greater extent of hypoactivity in ipsilateral barrel cortex compared with contralateral cortex. This was coupled with an increase in spontaneous output in Layer 5a, but only ipsilateral to the injury site. There was also disruption of axonal integrity in various regions in the ipsilateral but not contralateral hemisphere. These results complement our previous findings after mild diffuse-only TBI induced by the weight-drop impact acceleration method where, in the same acute post-injury phase, we found a similar depth-dependent hypoactivity in sensory cortex. This suggests a common sequelae of events in both diffuse TBI and mixed focal/diffuse TBI in the immediate post-injury period that then evolve over time to produce different long-term functional outcomes.

  7. The Acute Phase of Mild Traumatic Brain Injury Is Characterized by a Distance-Dependent Neuronal Hypoactivity

    PubMed Central

    Johnstone, Victoria P.A.; Shultz, Sandy R.; Yan, Edwin B.; O'Brien, Terence J.

    2014-01-01

    Abstract The consequences of mild traumatic brain injury (TBI) on neuronal functionality are only now being elucidated. We have now examined the changes in sensory encoding in the whisker-recipient barrel cortex and the brain tissue damage in the acute phase (24 h) after induction of TBI (n=9), with sham controls receiving surgery only (n=5). Injury was induced using the lateral fluid percussion injury method, which causes a mixture of focal and diffuse brain injury. Both population and single cell neuronal responses evoked by both simple and complex whisker stimuli revealed a suppression of activity that decreased with distance from the locus of injury both within a hemisphere and across hemispheres, with a greater extent of hypoactivity in ipsilateral barrel cortex compared with contralateral cortex. This was coupled with an increase in spontaneous output in Layer 5a, but only ipsilateral to the injury site. There was also disruption of axonal integrity in various regions in the ipsilateral but not contralateral hemisphere. These results complement our previous findings after mild diffuse-only TBI induced by the weight-drop impact acceleration method where, in the same acute post-injury phase, we found a similar depth-dependent hypoactivity in sensory cortex. This suggests a common sequelae of events in both diffuse TBI and mixed focal/diffuse TBI in the immediate post-injury period that then evolve over time to produce different long-term functional outcomes. PMID:24927383

  8. Traumatic Brachial Artery Injuries

    PubMed Central

    Ergunes, Kazim; Yilik, Levent; Ozsoyler, Ibrahim; Kestelli, Mert; Ozbek, Cengiz; Gurbuz, Ali

    2006-01-01

    We performed this retrospective study to analyze our strategies for managing and surgically treating brachial artery injuries. Fifty-seven patients with a total of 58 traumatic brachial artery injuries underwent surgery at our institution, from August 1996 through November 2004. Fifty-four patients were male and 3 were female (age range, 7 to 75 years; mean, 29.4 years). Forty-four of the patients had penetrating injuries (18 had stab wounds; 16, window glass injuries; and 10, industrial accidents), 10 had blunt trauma injuries (traffic accidents), and 3 had gunshot injuries. Fourteen patients (24.6%) had peripheral nerve injury. All patients underwent Doppler ultrasonographic examination. The repair of the 58 arterial injuries involved end-to-end anastomosis for 32 injuries (55.2%), reverse saphenous vein graft interpositional grafts for 18 (31%), and primary repair for 8 (13.8%). Venous continuity was achieved in 11 (84.6%) of 13 patients who had major venous injuries. Nine of the 57 patients (15.8%) required primary fasciotomy. Follow-up showed that 5 of the 14 patients with peripheral nerve injury had apparent disabilities due to nerve injury. One patient underwent amputation. There were no deaths. We believe that good results can be achieved in patients with brachial artery injuries by use of careful physical examination, Doppler ultrasonography, and restoration of viability with vascular repair and dbridement of nonviable tissues. Traumatic neurologic injury frequently leads to disability of the extremities. PMID:16572866

  9. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury

    PubMed Central

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J.; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  10. Targeting pro-inflammatory cytokines following joint injury: acute intra-articular inhibition of interleukin-1 following knee injury prevents post-traumatic arthritis

    PubMed Central

    2014-01-01

    Introduction Post-traumatic arthritis (PTA) is a progressive, degenerative response to joint injury, such as articular fracture. The pro-inflammatory cytokines, interleukin 1(IL-1) and tumor necrosis factor alpha (TNF-α), are acutely elevated following joint injury and remain elevated for prolonged periods post-injury. To investigate the role of local and systemic inflammation in the development of post-traumatic arthritis, we targeted both the initial acute local inflammatory response and a prolonged 4 week systemic inflammatory response by inhibiting IL-1 or TNF-α following articular fracture in the mouse knee. Methods Anti-cytokine agents, IL-1 receptor antagonist (IL-1Ra) or soluble TNF receptor II (sTNFRII), were administered either locally via an acute intra-articular injection or systemically for a prolonged 4 week period following articular fracture of the knee in C57BL/6 mice. The severity of arthritis was then assessed at 8 weeks post-injury in joint tissues via histology and micro computed tomography, and systemic and local biomarkers were assessed in serum and synovial fluid. Results Intra-articular inhibition of IL-1 significantly reduced cartilage degeneration, synovial inflammation, and did not alter bone morphology following articular fracture. However, systemic inhibition of IL-1, and local or systemic inhibition of TNF provided no benefit or conversely led to increased arthritic changes in the joint tissues. Conclusion These results show that intra-articular IL-1, rather than TNF-α, plays a critical role in the acute inflammatory phase of joint injury and can be inhibited locally to reduce post-traumatic arthritis following a closed articular fracture. Targeted local inhibition of IL-1 following joint injury may represent a novel treatment option for PTA. PMID:24964765

  11. Traumatic Brain Injury and Dystonia

    MedlinePlus

    Traumatic Brain Injury & Dystonia Traumatic brain injury (TBI) occurs when a sudden trauma damages to the brain. TBI can occur when the head suddenly and violently hits an object, or when an object pierces the skull and ...

  12. Novel Mechanism for Reducing Acute and Chronic Neurodegeneration After Traumatic Brain Injury

    DTIC Science & Technology

    2016-07-01

    and Morris water maze. 3. Measured time course of GOT levels in blood and levels after iv injection of 130ug/kg of rGOT. 4. Completed sectioning of...Traumatic Brain Injury, Glutamate, GOT enzyme, Oxaloacetate, Fluid percussion, Morris water maze, Rotarod, Behavior 4 Accomplishments: What...experiments examining effects of rGOT and rGOT + OxAc on outcome on rotarod and Morris water maze. 3. Measured time course of GOT levels in blood and

  13. Elevated serum lactoferrin and neopterin are associated with postoperative infectious complications in patients with acute traumatic spinal cord injury

    PubMed Central

    Du, Gang; Wei, Chengshou; Gu, Song; Tang, Jun

    2013-01-01

    Introduction Several studies have shown that lactoferrin (LF) and neopterin (NT) are correlated with infection. The aim of this study is to determine whether serum levels of LF and NT are associated with postoperative infectious complications in patients with acute traumatic spinal cord injury. Material and methods A total of 268 patients with acute traumatic spinal cord injury who underwent spinal surgery were enrolled in this study. Serum levels of LF, NT, and C-reactive protein (CRP), in addition to white blood cell count (WBC) and erythrocyte sedimentation rate (ESR), were measured preoperatively and 24 h postoperatively. Results In total, 22 of 268 patients (8.2%) developed postoperative infectious complications. The levels of serum LF, NT, and CRP were significantly higher in the infected patients than in the non-infected patients. No significant differences were observed in postoperative WBC count and ESR between the two groups. Multivariate logistic regression revealed that LF (OR: 1.004 (1.002–1.007)), NT (OR: 1.137 (1.054–1.227)), and CRP (OR: 1.023 (1.002–1.044)) were significantly associated with the presence of postoperative infectious complications. The area under receiver operating characteristic curves for LF, NT, and CRP was 0.709, 0.779, and 0.629, respectively. Conclusions Elevated serum concentrations of LF and NT are associated with early infection after surgery. Compared to CRP, elevated levels of LF and NT are better indicators for predicting postoperative infectious complications in patients with acute traumatic spinal cord injury. PMID:24273571

  14. Traumatic injuries in revue dancers.

    PubMed

    Wanke, Eileen M; Arendt, Michael; Mill, Helmgard; Koch, Franziska; Wanke, Alice; Groneberg, David A

    2014-03-01

    Revue productions are a combination of dancing and singing, musical and spoken sequences, and acrobatics, performed with or without a story line, and characterized by a versatility of dance styles and a high number of performances (over 250 in a 10-month season). The aim of this quantitative single cohort study is to evaluate work-related traumatic injuries in this dance genre. Data were obtained from work accident reports of the German Social Accident Insurance Institution for the public sector in Berlin (UKB) involving 440 revue dancers (183 males and 257 females). Analysis was conducted with Excel 2007 and PASW Statistics 18. One out of three female dancers and one out of two male dancers sustained an acute injury in the course of a theatrical season (0.22 injuries per 1,000 hours). The incidence rate was 0.44 for males and 0.31 for females, with the lower extremity as the most commonly injured body region, followed by the spine. Of all occupational accidents, 75.1% happened on stage, with 69% during performances. The dance partner and dance floor were the most common exogenous factors resulting in a traumatic injury. Of all traumatic injuries, 81.7% occurred in the first 3 hours after starting work. Gender specific differences could be observed. Due to the limited availability of comparable studies of other forms of professional dance, in this study revue dance is largely considered as an independent genre.

  15. Traumatic facial nerve injury.

    PubMed

    Lee, Linda N; Lyford-Pike, Sofia; Boahene, Kofi Derek O

    2013-10-01

    Facial nerve trauma can be a devastating injury resulting in functional deficits and psychological distress. Deciding on the optimal course of treatment for patients with traumatic facial nerve injuries can be challenging, as there are many critical factors to be considered for each patient. Choosing from the great array of therapeutic options available can become overwhelming to both patients and physicians, and in this article, the authors present a systematic approach to help organize the physician's thought process.

  16. A Case of Acute Traumatic Aortic Injury of a Right-sided Aortic Arch with Rupture of an Aberrant Left Subclavian Artery

    PubMed Central

    Taif, Sawsan; Al Kalbani, Jokha

    2013-01-01

    Acute traumatic aortic injury is a potentially lethal condition with most patients die at the scene of the accidents. Rapid deceleration due to motor vehicle accidents is the commonest mechanism of injury. These injuries can be successfully repaired in the few patients who survive the initial trauma if proper diagnosis and rapid treatment are provided. The occurrence of acute traumatic aortic injury in patients with congenital abnormality of the aortic arch has been rarely reported; however, it renders the diagnosis and treatment more difficult. In this paper, we describe an extremely rare case of aortic injury in a young patient who had a right sided aortic arch with rupture of an aberrant left subclavian artery. The patient was suspected to have a Kommerell’s diverticulum in the aberrant subclavian artery origin. This injury resulted in an unusually huge pseudoaneurysm involving part of the mediastinum and extending into the neck. Unfortunately; patient succumbed in spite of surgical intervention. PMID:24421931

  17. Cerebral Vascular Injury in Traumatic Brain Injury.

    PubMed

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI.

  18. The neuropathology of traumatic brain injury.

    PubMed

    Mckee, Ann C; Daneshvar, Daniel H

    2015-01-01

    Traumatic brain injury, a leading cause of mortality and morbidity, is divided into three grades of severity: mild, moderate, and severe, based on the Glasgow Coma Scale, the loss of consciousness, and the development of post-traumatic amnesia. Although mild traumatic brain injury, including concussion and subconcussion, is by far the most common, it is also the most difficult to diagnose and the least well understood. Proper recognition, management, and treatment of acute concussion and mild traumatic brain injury are the fundamentals of an emerging clinical discipline. It is also becoming increasingly clear that some mild traumatic brain injuries have persistent, and sometimes progressive, long-term debilitating effects. Evidence indicates that a single traumatic brain injury can precipitate or accelerate multiple age-related neurodegenerations, increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease, and that repetitive mild traumatic brain injuries can provoke the development of a tauopathy, chronic traumatic encephalopathy. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus, septal abnormalities, and abnormal deposits of hyperphosphorylated tau (τ) as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy frequently occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including Alzheimer's disease, Lewy body disease, and motor neuron disease. Currently, chronic traumatic encephalopathy can be diagnosed only at

  19. Assessing blood granulocyte colony-stimulating factor as a potential biomarker of acute traumatic brain injury in mice and humans.

    PubMed

    Banks, William A; Dohi, Kenji; Hansen, Kim; Thompson, Hilaire J

    2016-02-01

    Previous work has found that serum G-CSF was acutely elevated in mice 24h but not one week after controlled cortical impact (CCI). The purpose of this study was to investigate whether blood G-CSF correlates with the elevated brain cytokines in mice after CCI and also if it correlates with traumatic brain injury (TBI) in humans. Here, we found in mice undergoing CCI, a procedure that induces direct injury to the brain, that serum G-CSF correlated directly or indirectly with several brain cytokines, indicating it is a useful marker for the neuroinflammation of TBI. A pilot study in humans (phase I, n=19) confirmed that plasma G-CSF is acutely elevated on day 1 (p<0.001) of TBI and has returned to baseline by one week. In a second human sample (phase II) (n=80), we found plasma G-CSF peaks about 12h after arriving in the emergency department (41.6+/-5.4 pg/ml). Aging was weakly associated (p<0.05) with a less robust elevation in serum G-CSF, but there was no difference with gender. ISS, a measure of total severity of injury, correlated with the degree of elevation in serum G-CSF (r=.419; p<0.05), but severity of head injury (via AIS) did not. The latter may have been because of the statistically narrow range of head injuries among our cases and the high number of cases diagnosed with closed head injury (a non-codable diagnosis). In conclusion, plasma G-CSF may be a useful biomarker of TBI, correlating with neuroinflammation in the animal model and in the human studies with time since injury and total severity of injury. As such, it may be useful in determining whether TBI has occurred within the last 24h.

  20. OCT imaging of acute vascular changes following mild traumatic brain injury in mice (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chico-Calero, Isabel; Shishkov, Milen; Welt, Jonathan; Blatter, Cedric; Vakoc, Benjamin J.

    2016-03-01

    While most people recover completely from mild traumatic brain injuries (mTBIs) and concussions, a subset develop lasting neurological disorders. Understanding the complex pathophysiology of these injuries is critical to developing improved prognostic and therapeutic approaches. Multiple studies have shown that the structure and perfusion of brain vessels are altered after mTBI. It is possible that these vascular injuries contribute to or trigger neurodegeneration. Intravital microscopy and mouse models of TBI offer a powerful platform to study the vascular component of mTBI. Because optical coherence tomography based angiography is based on perfusion contrast and is not significantly degraded by vessel leakage or blood brain barrier disruption, it is uniquely suited to studies of brain perfusion in the setting of trauma. However, existing TBI imaging models require surgical exposure of the brain at the time of injury which conflates TBI-related vascular changes with those caused by surgery. In this work, we describe a modified cranial window preparation based on a flexible, transparent polyurethane membrane. Impact injuries were delivered directly through this membrane, and imaging was performed immediately after injury without the need for additional surgical procedures. Using this model, we demonstrate that mTBI induces a transient cessation of flow in the capillaries and smaller vessels near the injury point. Reperfusion is observed in all animals within 3 hours of injury. This work describes new insight into the transient vascular changes induced by mTBI, and demonstrates more broadly the utility of the OCT/polyurethane window model platform in preclinical studies of mTBI.

  1. Traumatic brain injury and post-acute decline: what role does environmental enrichment play? A scoping review

    PubMed Central

    Frasca, Diana; Tomaszczyk, Jennifer; McFadyen, Bradford J.; Green, Robin E.

    2013-01-01

    Objectives: While a growing number of studies provide evidence of neural and cognitive decline in traumatic brain injury (TBI) survivors during the post-acute stages of injury, there is limited research as of yet on environmental factors that may influence this decline. The purposes of this paper, therefore, are to (1) examine evidence that environmental enrichment (EE) can influence long-term outcome following TBI, and (2) examine the nature of post-acute environments, whether they vary in degree of EE, and what impact these variations have on outcomes. Methods: We conducted a scoping review to identify studies on EE in animals and humans, and post-discharge experiences that relate to barriers to recovery. Results: One hundred and twenty-three articles that met inclusion criteria demonstrated the benefits of EE on brain and behavior in healthy and brain-injured animals and humans. Nineteen papers on post-discharge experiences revealed that variables such as insurance coverage, financial, and social support, home therapy, and transition from hospital to home, can have an impact on clinical outcomes. Conclusion: There is evidence to suggest that lack of EE, whether from lack of resources or limited ability to engage in such environments, may play a role in post-acute cognitive and neural decline. Maximizing EE in the post-acute stages of TBI may improve long-term outcomes for the individual, their family and society. PMID:23616755

  2. Traumatic brain injury

    PubMed Central

    Risdall, Jane E.; Menon, David K.

    2011-01-01

    There is an increasing incidence of military traumatic brain injury (TBI), and similar injuries are seen in civilians in war zones or terrorist incidents. Indeed, blast-induced mild TBI has been referred to as the signature injury of the conflicts in Iraq and Afghanistan. Assessment involves schemes that are common in civilcian practice but, in common with civilian TBI, takes little account of information available from modern imaging (particularly diffusion tensor magnetic resonance imaging) and emerging biomarkers. The efficient logistics of clinical care delivery in the field may have a role in optimizing outcome. Clinical care has much in common with civilian TBI, but intracranial pressure monitoring is not always available, and protocols need to be modified to take account of this. In addition, severe early oedema has led to increasing use of decompressive craniectomy, and blast TBI may be associated with a higher incidence of vasospasm and pseudoaneurysm formation. Visual and/or auditory deficits are common, and there is a significant risk of post-traumatic epilepsy. TBI is rarely an isolated finding in this setting, and persistent post-concussive symptoms are commonly associated with post-traumatic stress disorder and chronic pain, a constellation of findings that has been called the polytrauma clinical triad. PMID:21149359

  3. Traumatic brain injuries.

    PubMed

    Blennow, Kaj; Brody, David L; Kochanek, Patrick M; Levin, Harvey; McKee, Ann; Ribbers, Gerard M; Yaffe, Kristine; Zetterberg, Henrik

    2016-11-17

    Traumatic brain injuries (TBIs) are clinically grouped by severity: mild, moderate and severe. Mild TBI (the least severe form) is synonymous with concussion and is typically caused by blunt non-penetrating head trauma. The trauma causes stretching and tearing of axons, which leads to diffuse axonal injury - the best-studied pathogenetic mechanism of this disorder. However, mild TBI is defined on clinical grounds and no well-validated imaging or fluid biomarkers to determine the presence of neuronal damage in patients with mild TBI is available. Most patients with mild TBI will recover quickly, but others report persistent symptoms, called post-concussive syndrome, the underlying pathophysiology of which is largely unknown. Repeated concussive and subconcussive head injuries have been linked to the neurodegenerative condition chronic traumatic encephalopathy (CTE), which has been reported post-mortem in contact sports athletes and soldiers exposed to blasts. Insights from severe injuries and CTE plausibly shed light on the underlying cellular and molecular processes involved in mild TBI. MRI techniques and blood tests for axonal proteins to identify and grade axonal injury, in addition to PET for tau pathology, show promise as tools to explore CTE pathophysiology in longitudinal clinical studies, and might be developed into diagnostic tools for CTE. Given that CTE is attributed to repeated head trauma, prevention might be possible through rule changes by sports organizations and legislators.

  4. Evaluation of an Acute RNAi-Mediated Therapeutic for Visual Dysfunction Associated with Traumatic Brain Injury

    DTIC Science & Technology

    2013-10-01

    water from the brain to the blood and significantly impacts on brain swelling. We also show cognitive improvement in mice with focal cerebral...brain injury ( TBI ) is the leading cause of death in children and young adults globally. Malignant cerebral edema plays a major role in the...pathophysiology which evolves after severe TBI . Added to this is the significant morbidity and mortality from cerebral edema associated with acute stroke

  5. The influence of time from injury to surgery on motor recovery and length of hospital stay in acute traumatic spinal cord injury: an observational Canadian cohort study.

    PubMed

    Dvorak, Marcel F; Noonan, Vanessa K; Fallah, Nader; Fisher, Charles G; Finkelstein, Joel; Kwon, Brian K; Rivers, Carly S; Ahn, Henry; Paquet, Jérôme; Tsai, Eve C; Townson, Andrea; Attabib, Najmedden; Bailey, Christopher S; Christie, Sean D; Drew, Brian; Fourney, Daryl R; Fox, Richard; Hurlbert, R John; Johnson, Michael G; Linassi, A G; Parent, Stefan; Fehlings, Michael G

    2015-05-01

    To determine the influence of time from injury to surgery on neurological recovery and length of stay (LOS) in an observational cohort of individuals with traumatic spinal cord injury (tSCI), we analyzed the baseline and follow-up motor scores of participants in the Rick Hansen Spinal Cord Injury Registry to specifically assess the effect of an early (less than 24 h from injury) surgical procedure on motor recovery and on LOS. One thousand four hundred and ten patients who sustained acute tSCIs with baseline American Spinal Injury Association Impairment Scale (AIS) grades A, B, C, or D and were treated surgically were analyzed to determine the effect of the timing of surgery (24, 48, or 72 h from injury) on motor recovery and LOS. Depending on the distribution of data, we used different types of generalized linear models, including multiple linear regression, gamma regression, and negative binomial regression. Persons with incomplete AIS B, C, and D injuries from C2 to L2 demonstrated motor recovery improvement of an additional 6.3 motor points (SE=2.8 p<0.03) when they underwent surgical treatment within 24 h from the time of injury, compared with those who had surgery later than 24 h post-injury. This beneficial effect of early surgery on motor recovery was not seen in the patients with AIS A complete SCI. AIS A and B patients who received early surgery experienced shorter hospital LOS. While the issues of when to perform surgery and what specific operation to perform remain controversial, this work provides evidence that for an incomplete acute tSCI in the cervical, thoracic, or thoracolumbar spine, surgery performed within 24 h from injury improves motor neurological recovery. Early surgery also reduces LOS.

  6. New perspectives on central and peripheral immune responses to acute traumatic brain injury

    PubMed Central

    2012-01-01

    Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain. PMID:23061919

  7. Neurosurgical Treatment Variation of Traumatic Brain Injury: Evaluation of Acute Subdural Hematoma Management in Belgium and The Netherlands.

    PubMed

    van Essen, Thomas A; de Ruiter, Godard C W; Kho, Kuan H; Peul, Wilco C

    2017-02-15

    Several recent global traumatic brain injury (TBI) initiatives rely on practice variation in diagnostic and treatment methods to answer effectiveness questions. One of these scientific dilemmas, the surgical management of the traumatic acute subdural hematoma (ASDH) might be variable among countries, among centers within countries, and even among neurosurgeons within a center, and hence be amenable for a comparative effectiveness study. The aim of our questionnaire, therefore, was to explore variations in treatment for ASDH among neurosurgeons in similar centers in a densely populated geographical area. An online questionnaire, involving treatment decisions on six case vignettes of ASDH, was sent to 93 neurosurgeons in The Netherlands and Belgium. Clinical and radiological variables differed per case. Sixty neurosurgeons filled out the questionnaire (response rate 65%). For case vignettes with severe TBI and an ASDH, there was a modest variation in the decision to evacuate the hematoma and a large variation in the decision to combine the evacuation with a decompressive craniectomy. The main reasons for operating were "neurological condition" and "mass effect." For ASDH and mild/moderate TBI, there was large variation in the decision of whether to operate or not, whereas "hematoma size" was the predominant motivation for surgery. Significant inter-center variation for the decision to evacuate the hematoma was observed (p = 0.01). Most pronounced was that 1 out of 7 (14%) neurosurgeons in one region chose a surgical strategy compared with 9 out of 10 (90%) in another region for the same scenario. In conclusion, variation exists in the neurosurgical management of TBI within an otherwise homogeneous setting. This variation supports the methodology of the international Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) initiative, and shaped the Dutch Neurotraumatology Quality Registry (Net-QuRe) initiative.

  8. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial

    PubMed Central

    Xiao, Guomin; Wei, Jing; Yan, Weiqi; Wang, Weimin; Lu, Zhenhui

    2008-01-01

    Background Severe traumatic brain injury (TBI) has been increasing with greater incidence of injuries from traffic or sporting accidents. Although there are a number of animal models of TBI using progesterone for head injury, the effects of progesterone on neurologic outcome of acute TBI patients remain unclear. The aim of the present clinical study was to assess the longer-term efficacy of progesterone on the improvement in neurologic outcome of patients with acute severe TBI. Methods A total of 159 patients who arrived within 8 hours of injury with a Glasgow Coma Score ≤ 8 were enrolled in the study. A prospective, randomized, placebo-controlled trial of progesterone was conducted in the Neurotrauma Center of our teaching hospital. The patients were randomized to receive either progesterone or placebo. The primary endpoint was the Glasgow Outcome Scale score 3 months after brain injury. Secondary efficacy endpoints included the modified Functional Independence Measure score and mortality. In a follow-up protocol at 6 months, the Glasgow Outcome Scale and the modified Functional Independence Measure scores were again determined. Results Of the 159 patients randomized, 82 received progesterone and 77 received placebo. The demographic characteristics, the mechanism of injury, and the time of treatment were compared for the two groups. After 3 months and 6 months of treatment, the dichotomized Glasgow Outcome Scale score analysis exhibited more favorable outcomes among the patients who were given progesterone compared with the control individuals (P = 0.034 and P = 0.048, respectively). The modified Functional Independence Measure scores in the progesterone group were higher than those in the placebo group at both 3-month and 6-month follow-up (P < 0.05 and P < 0.01). The mortality rate of the progesterone group was significantly lower than that of the placebo group at 6-month follow-up (P < 0.05). The mean intracranial pressure values 72 hours and 7 days after

  9. An acute osteomyelitis model in traumatized rat tibiae involving sand as a foreign body, thermal injury, and bimicrobial contamination.

    PubMed

    McPherson, James C; Runner, Royce R; Shapiro, Brian; Walsh, Douglas S; Stephens-DeValle, Julie; Buxton, Thomas B

    2008-08-01

    The multfactorial nature of bone injuries in modern warfare and emergency trauma patients warrants enhancement of existing models. To develop a more appropriate model, rat tibiae (n = 195) were mechanically injured, divided into 2 groups (with or without thermal injury), and contaminated with a range of Staphylococcus aureus (Cowan 1) inocula. In some experiments, S. aureus inocula also contained Escherichia coli or foreign bodies (sand or soil). The primary outcome measure was the amount of S. aureus remaining in the tibia (tibial bacterial load) 24 h after contamination, reported as log10 cfu/g bone. S. aureus showed ID50 and ID95 values of 72 and 977 cfu, respectively. Values were lower than seen previously by using S. aureus strain SMH. S. aureus tibial bacterial loads were higher in tibiae with mechanical and thermal injury (log10 4.15 +/- 0.27 cfu/g) versus mechanical injury alone (log10 3.1 +/- 0.47 cfu/g, P = 0.028). The addition of E. coli to the S. aureus inoculum had no effect on tibial bacterial loads (S. aureus only, log10 4.24 +/- 0.92 cfu/g; S. aureus + E. coli, log10 4.1 +/- 1.0 cfu/g, P = 0.74). Sand, added as a foreign body, increased tibial bacterial load. Combined mechanical and thermal trauma of the tibia is associated with increased S. aureus tibial bacterial loads, increasing the risk of acute osteomyelitis. Understanding the interplay of mechanical and thermal injuries, bimicrobial contamination, and foreign bodies may improve our understanding of traumatic bone injuries and the pathogenesis of osteomyelitis.

  10. Early Administration of Selenium in Patients with Acute Traumatic Brain Injury: A Randomized Double-blinded Controlled Trial

    PubMed Central

    Moghaddam, Omid Moradi; Lahiji, Mohammad Niakan; Hassani, Valiollah; Mozari, Shakiba

    2017-01-01

    Aim: The present study was carried out to examine this hypothesis that administration of selenium can prevent the development of injuries by brain trauma and thus can modulate patients’ functional recovery and also improve posttraumatic outcome. Materials and Methods: This double-blinded controlled trial was carried out on 113 patients who were hospitalized following traumatic brain injury (TBI) with Glasgow Coma Scale score of 4–12 that were randomly assigned to receive selenium within 8 h after injury plus standard treatment group or routine standard treatment alone as the control. The primary endpoint was to assess patients’ functional recovery at 2 months after the injury based on extended Glasgow Outcome Scale score (GOS-E). Secondary outcomes included the changes in Full Outline of Unresponsiveness score (FOUR) score, Sequential Organ Failure Assessment (SOFA) score, and acute physiology and chronic health evaluation (APACHE) III score, side effects of selenium, length of Intensive Care Unit (ICU) stay, and length of hospital stay. Results: There was no difference in the length of ICU and hospital stay, the trend of the change in FOUR and SOFA scores within 15 days of first interventions, and the mean APACHE III score on the 1st and 15th days between the two groups. Mortality was 15.8% in selenium group and 19.6% in control group with no between-group difference. No difference was revealed between the two groups in appropriate outcome according to GOS-E score at 60 ± 10 days and also 30 ± 5 days according to the severity of TBI. Conclusion: This human trial study could not demonstrate beneficial effects of intravenous infusion of selenium in the improvement of outcomes in patients with acute TBI. PMID:28250601

  11. Traumatic Brain Injury and Aggression.

    ERIC Educational Resources Information Center

    Miller, Laurence

    1994-01-01

    Persons who have suffered traumatic injury to the brain may subsequently display aggressive behavior. Three main syndromes of aggression following traumatic brain injury are described: (1) episodic dyscontrol; (2) frontal lobe disinhibition; and (3) exacerbation of premorbid antisociality. The neuropsychological substrates of these syndromes are…

  12. Amplitude of Low-Frequency Fluctuations in Multiple-Frequency Bands in Acute Mild Traumatic Brain Injury.

    PubMed

    Zhan, Jie; Gao, Lei; Zhou, Fuqing; Bai, Lijun; Kuang, Hongmei; He, Laichang; Zeng, Xianjun; Gong, Honghan

    2016-01-01

    Functional disconnectivity during the resting state has been observed in mild traumatic brain injury (mTBI) patients during the acute stage. However, it remains largely unknown whether the abnormalities are related to specific frequency bands of the low-frequency oscillations (LFO). Here, we used the amplitude of low-frequency fluctuations (ALFF) to examine the amplitudes of LFO in different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz; and typical: 0.01-0.08 Hz) in patients with acute mTBI. A total of 24 acute mTBI patients and 24 age-, sex-, and education-matched healthy controls participated in this study. In the typical band, acute mTBI patients showed lower standardized ALFF in the right middle frontal gyrus and higher standardized ALFF in the right lingual/fusiform gyrus and left middle occipital gyrus. Further analyses showed that the difference between groups was concentrated in a narrower (slow-4) frequency band. In the slow-5 band, mTBI patients only exhibited higher standardized ALFF in the occipital areas. No significant correlation between the mini-mental state examination score and the standardized ALFF value was found in any brain region in the three frequency bands. Finally, no significant interaction between frequency bands and groups was found in any brain region. We concluded that the abnormality of spontaneous brain activity in acute mTBI patients existed in the frontal lobe as well as in distributed brain regions associated with integrative, sensory, and emotional roles, and the abnormal spontaneous neuronal activity in different brain regions could be better detected by the slow-4 band. These findings might contribute to a better understanding of local neural psychopathology of acute mTBI. Future studies should take the frequency bands into account when measuring intrinsic brain activity of mTBI patients.

  13. Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage.

    PubMed

    Doshi, Hardik; Wiseman, Natalie; Liu, Jun; Wang, Wentao; Welch, Robert D; O'Neil, Brian J; Zuk, Conor; Wang, Xiao; Mika, Valerie; Szaflarski, Jerzy P; Haacke, E Mark; Kou, Zhifeng

    2015-01-01

    Mild traumatic brain injury (mTBI) is a significant public health care burden in the United States. However, we lack a detailed understanding of the pathophysiology following mTBI and its relation to symptoms and recovery. With advanced magnetic resonance imaging (MRI), we can investigate brain perfusion and oxygenation in regions known to be implicated in symptoms, including cortical gray matter and subcortical structures. In this study, we assessed 14 mTBI patients and 18 controls with susceptibility weighted imaging and mapping (SWIM) for blood oxygenation quantification. In addition to SWIM, 7 patients and 12 controls had cerebral perfusion measured with arterial spin labeling (ASL). We found increases in regional cerebral blood flow (CBF) in the left striatum, and in frontal and occipital lobes in patients as compared to controls (p = 0.01, 0.03, 0.03 respectively). We also found decreases in venous susceptibility, indicating increases in venous oxygenation, in the left thalamostriate vein and right basal vein of Rosenthal (p = 0.04 in both). mTBI patients had significantly lower delayed recall scores on the standardized assessment of concussion, but neither susceptibility nor CBF measures were found to correlate with symptoms as assessed by neuropsychological testing. The increased CBF combined with increased venous oxygenation suggests an increase in cerebral blood flow that exceeds the oxygen demand of the tissue, in contrast to the regional hypoxia seen in more severe TBI. This may represent a neuroprotective response following mTBI, which warrants further investigation.

  14. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses

    PubMed Central

    Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark

    2015-01-01

    Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363

  15. Prior CT imaging history for patients who undergo PAN CT for acute traumatic injury

    PubMed Central

    Kenter, Jeremy; Blow, Osbert; Krall, Scott P.; Gest, Albert; Smith, Cynthia

    2015-01-01

    Objective. A single PAN scan may provide more radiation to a patient than is felt to be safe within a one-year period. Our objective was to determine how many patients admitted to the trauma service following a PAN scan had prior CT imaging within our six-hospital system. Methods. We performed a secondary analysis of a prospectively collected trauma registry. The study was based at a level-two trauma center and five affiliated hospitals, which comprise 70.6% of all Emergency Department visits within a twelve county region of southern Texas. Electronic medical records were reviewed dating from the point of trauma evaluation back to December 5, 2005 to determine evidence of prior CT imaging. Results. There were 867 patients were admitted to the trauma service between January 1, 2012 and December 31, 2012. 460 (53%) received a PAN scan and were included in the study group. The mean age of the study group was 37.7 ± 1.54 years old, 24.8% were female, and the mean ISS score was 13.4 ± 1.07. The most common mechanism of injury was motor vehicle collision (47%). 65 (14%; 95% CI [11–18]%) of the patients had at least one prior CT. The most common prior studies performed were: CT head (29%; 19–42%), CT Face (29%; 19–42%) and CT Abdomen and Pelvis (18%; 11–30%). Conclusion. Within our trauma registry, 14% of patients had prior CT imaging within our hospital system before their traumatic event and PAN scan. PMID:26056616

  16. Victoria Symptom Validity Test performance in acute severe traumatic brain injury: implications for test interpretation.

    PubMed

    Macciocchi, Stephen N; Seel, Ronald T; Alderson, Amy; Godsall, Robert

    2006-08-01

    Effort testing has become commonplace in clinical practice. Recent research has shown that performance on effort tests is highly correlated with performance on neuropsychological measures. Clinical application of effort testing is highly dependent on research derived interpretive guidelines. The Victoria Symptom Validity Test (VSVT) is one of many measures currently used in clinical practice. The VSVT has recommended interpretive guidelines published in the test manual, but the samples used in developing interpretive guidelines are small and heterogeneous and concern has been expressed regarding high false negative rates. In this study, a homogeneous sample of acute, severely brain injured persons were used to assess the sensitivity of the VSVT. Results confirmed that acute, severely brain injured persons (N=71) perform very well on the VSVT. The severe brain injury population is 99% likely to have between 44.1 and 46.8 correct VSVT Combined Score responses. While the VSVT was insensitive to memory dysfunction, the presence of severe visual perceptual (Benton Visual Form Discrimination Score<21) and verbal fluency (Controlled Oral Word Association Score<15) deficits predicted poor performance on the VSVT. These results provide further evidence that performance expectations currently incorporated in the VSVT manual interpretative criteria are too conservative. Empirically based alternative criteria for interpreting VSVT Combined Scores in the TBI population are presented.

  17. Comparison of acute and chronic traumatic brain injury using semi-automatic multimodal segmentation of MR volumes.

    PubMed

    Irimia, Andrei; Chambers, Micah C; Alger, Jeffry R; Filippou, Maria; Prastawa, Marcel W; Wang, Bo; Hovda, David A; Gerig, Guido; Toga, Arthur W; Kikinis, Ron; Vespa, Paul M; Van Horn, John D

    2011-11-01

    Although neuroimaging is essential for prompt and proper management of traumatic brain injury (TBI), there is a regrettable and acute lack of robust methods for the visualization and assessment of TBI pathophysiology, especially for of the purpose of improving clinical outcome metrics. Until now, the application of automatic segmentation algorithms to TBI in a clinical setting has remained an elusive goal because existing methods have, for the most part, been insufficiently robust to faithfully capture TBI-related changes in brain anatomy. This article introduces and illustrates the combined use of multimodal TBI segmentation and time point comparison using 3D Slicer, a widely-used software environment whose TBI data processing solutions are openly available. For three representative TBI cases, semi-automatic tissue classification and 3D model generation are performed to perform intra-patient time point comparison of TBI using multimodal volumetrics and clinical atrophy measures. Identification and quantitative assessment of extra- and intra-cortical bleeding, lesions, edema, and diffuse axonal injury are demonstrated. The proposed tools allow cross-correlation of multimodal metrics from structural imaging (e.g., structural volume, atrophy measurements) with clinical outcome variables and other potential factors predictive of recovery. In addition, the workflows described are suitable for TBI clinical practice and patient monitoring, particularly for assessing damage extent and for the measurement of neuroanatomical change over time. With knowledge of general location, extent, and degree of change, such metrics can be associated with clinical measures and subsequently used to suggest viable treatment options.

  18. White matter microstructure in chronic moderate-to-severe traumatic brain injury: Impact of acute-phase injury-related variables and associations with outcome measures.

    PubMed

    Håberg, A K; Olsen, A; Moen, K G; Schirmer-Mikalsen, K; Visser, E; Finnanger, T G; Evensen, K A I; Skandsen, T; Vik, A; Eikenes, L

    2015-07-01

    This study examines how injury mechanisms and early neuroimaging and clinical measures impact white matter (WM) fractional anisotropy (FA), mean diffusivity (MD), and tract volumes in the chronic phase of traumatic brain injury (TBI) and how WM integrity in the chronic phase is associated with different outcome measures obtained at the same time. Diffusion tensor imaging (DTI) at 3 T was acquired more than 1 year after TBI in 49 moderate-to-severe-TBI survivors and 50 matched controls. DTI data were analyzed with tract-based spatial statistics and automated tractography. Moderate-to-severe TBI led to widespread FA decreases, MD increases, and tract volume reductions. In severe TBI and in acceleration/deceleration injuries, a specific FA loss was detected. A particular loss of FA was also present in the thalamus and the brainstem in all grades of diffuse axonal injury. Acute-phase Glasgow Coma Scale scores, number of microhemorrhages on T2*, lesion volume on fluid-attenuated inversion recovery, and duration of posttraumatic amnesia were associated with more widespread FA loss and MD increases in chronic TBI. Episodes of cerebral perfusion pressure <70 mmHg were specifically associated with reduced MD. Neither episodes of intracranial pressure >20 mmHg nor acute-phase Rotterdam CT scores were associated with WM changes. Glasgow Outcome Scale Extended scores and performance-based cognitive control functioning were associated with FA and MD changes, but self-reported cognitive control functioning was not. In conclusion, FA loss specifically reflects the primary injury severity and mechanism, whereas FA and MD changes are associated with objective measures of general and cognitive control functioning.

  19. Evaluation after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  20. Children's Memory for Traumatic Injury.

    ERIC Educational Resources Information Center

    Peterson, Carole; Bell, Michael

    1996-01-01

    Three- through 13-year olds were interviewed a few days after a hospital stay for traumatic injury, and again six months later. Children provided considerable information about the injury and hospital stay and made few commission errors; children's distress at the time of injury did not affect their recall of the event, but distress during the…

  1. Traumatic Alterations in Consciousness: Traumatic Brain Injury

    PubMed Central

    Blyth, Brian J.; Bazarian, Jeffrey J.

    2010-01-01

    Mild traumatic brain injury (mTBI) refers to the clinical condition of transient alteration of consciousness as a result of traumatic injury to the brain. The priority of emergency care is to identify and facilitate the treatment of rare but potentially life threatening intra-cranial injuries associated with mTBI through the judicious application of appropriate imaging studies and neurosurgical consultation. Although post-mTBI symptoms quickly and completely resolve in the vast majority of cases, a significant number of patients will complain of lasting problems that may cause significant disability. Simple and early interventions such as patient education and appropriate referral can reduce the likelihood of chronic symptoms. Although definitive evidence is lacking, mTBI is likely to be related to significant long-term sequelae such as Alzheimer's disease and other neurodegenerative processes. PMID:20709244

  2. Modeling the Patient Journey from Injury to Community Reintegration for Persons with Acute Traumatic Spinal Cord Injury in a Canadian Centre

    PubMed Central

    Santos, Argelio; Gurling, James; Dvorak, Marcel F.; Noonan, Vanessa K.; Fehlings, Michael G.; Burns, Anthony S.; Lewis, Rachel; Soril, Lesley; Fallah, Nader; Street, John T.; Bélanger, Lise; Townson, Andrea; Liang, Liping; Atkins, Derek

    2013-01-01

    Background A patient’s journey through the health care system is influenced by clinical and system processes across the continuum of care. Methods To inform optimized access to care and patient flow for individuals with traumatic spinal cord injury (tSCI), we developed a simulation model that can examine the full impact of therapeutic or systems interventions across the care continuum for patients with traumatic spinal cord injuries. The objective of this paper is to describe the detailed development of this simulation model for a major trauma and a rehabilitation centre in British Columbia (BC), Canada, as part of the Access to Care and Timing (ACT) project and is referred to as the BC ACT Model V1.0. Findings To demonstrate the utility of the simulation model in clinical and administrative decision-making we present three typical scenarios that illustrate how an investigator can track the indirect impact(s) of medical and administrative interventions, both upstream and downstream along the continuum of care. For example, the model was used to estimate the theoretical impact of a practice that reduced the incidence of pressure ulcers by 70%. This led to a decrease in acute and rehabilitation length of stay of 4 and 2 days, respectively and a decrease in bed utilization of 9% and 3% in acute and rehabilitation. Conclusion The scenario analysis using the BC ACT Model V1.0 demonstrates the flexibility and value of the simulation model as a decision-making tool by providing estimates of the effects of different interventions and allowing them to be objectively compared. Future work will involve developing a generalizable national Canadian ACT Model to examine differences in care delivery and identify the ideal attributes of SCI care delivery. PMID:24023623

  3. The impact of physical therapy in patients with severe traumatic brain injury during acute and post-acute rehabilitation according to coma duration

    PubMed Central

    Lendraitienė, Eglė; Petruševičienė, Daiva; Savickas, Raimondas; Žemaitienė, Ieva; Mingaila, Sigitas

    2016-01-01

    [Purpose] The aim of study was to evaluate the impact of physical therapy on the recovery of motor and mental status in patients who sustained a severe traumatic brain injury, according to coma duration in acute and post-acute rehabilitation. [Subjects and Methods] The study population comprised patients with levels of consciousness ranging from 3 to 8 according to Glasgow Coma Scale score. The patients were divided into 2 groups based on coma duration as follows: group 1, those who were in a coma up to 1 week, and group 2, those who were in a coma for more than 2 weeks. The recovery of the patients’ motor function was evaluated according to the Motor Assessment Scale and the recovery of mental status according to the Mini-Mental State Examination. [Results] The evaluation of motor and mental status recovery revealed that the patients who were in a coma up to 1 week recovered significantly better after physical therapy during the acute rehabilitation than those who were in a coma for longer than 2 weeks. [Conclusion] The recovery of motor and mental status of the patients in acute rehabilitation was significantly better for those in a coma for a shorter period. PMID:27512262

  4. Fever of unknown origin following traumatic brain injury.

    PubMed

    Jackson, R D; Mysiw, W J

    1991-01-01

    Fever is a common complication of a traumatic brain injury, occurring during both the acute-care phase and the rehabilitation phase of recovery. The aetiology of fever in this population may remain obscure because of the presence of cognitive confusion associated with post-traumatic amnesia interfering with history taking and the difficult physical examination. We present a case where recovery from a traumatic brain injury was complicated by a fever of unknown origin that proved to be secondary to lateral sinus thrombophlebitis. This case emphasises the importance of a thorough knowledge of the differential diagnosis for fever that is unique to the traumatic brain injury population.

  5. Psychosis following traumatic brain injury.

    PubMed

    Arciniegas, David B; Harris, Susie N; Brousseau, Kristin M

    2003-11-01

    Psychosis is a relatively infrequent but potentially serious and debilitating consequence of traumatic brain injury (TBI), and one about which there is considerable scientific uncertainty and disagreement. There are several substantial clinical, epidemiological, and neurobiological differences between the post-traumatic psychoses and the primary psychotic disorders. The recognition of these differences may facilitate identification and treatment of patients whose psychosis is most appropriately regarded as post-traumatic. In the service of assisting psychiatrists and other mental health clinicians in the diagnosis and treatment of persons with post-traumatic psychoses, this article will review post-traumatic psychosis, including definitions relevant to describing the clinical syndrome, as well as epidemiologic, neurobiological, and neurogenetic factors attendant to it. An approach to evaluation and treatment will then be offered, emphasizing identification of the syndrome of post-traumatic psychosis, consideration of the differential diagnosis of this condition, and careful selection and administration of treatment interventions.

  6. Peripheral Inflammatory Markers and Antioxidant Response during the Post-Acute and Chronic Phase after Severe Traumatic Brain Injury

    PubMed Central

    Licastro, Federico; Hrelia, Silvana; Porcellini, Elisa; Malaguti, Marco; Di Stefano, Cristina; Angeloni, Cristina; Carbone, Ilaria; Simoncini, Laura; Piperno, Roberto

    2016-01-01

    Traumatic brain injury (TBI) is a mechanical insult to the brain caused by external forces and associated with inflammation and oxidative stress. The patients may show different profiles of neurological recovery and a combination of oxidative damage and inflammatory processes can affect their courses. It is known that an overexpression of cytokines can be seen in peripheral blood in the early hours/days after the injury, but little is known about the weeks and months encompassing the post-acute and chronic phases. In addition, no information is available about the antioxidant responses mediated by the major enzymes that regulate reactive oxygen species levels: superoxide dismutase, catalase, peroxidases, and GSH-related enzymes. This study investigates the 6-month trends of inflammatory markers and antioxidant responses in 22 severe TBI patients with prolonged disorders of consciousness, consecutively recruited in a dedicated neurorehabilitation facility. Patients with a high degree of neurological impairment often show an uncertain outcome. In addition, the profiles of plasma activities were related to the neurological recovery after 12 months. Venous peripheral blood samples were taken blindly as soon as clinical signs and laboratory markers confirmed the absence of infections, 3 and 6 months later. The clinical and neuropsychological assessment continued up to 12 months. Nineteen patients completed the follow-up. In the chronic phase, persistent high plasma levels of cytokines can interfere with cognitive functioning and higher post-acute levels of cytokines [interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL1b, IL6] are associated with poorer cognitive recoveries 12 months later. Moreover, higher IFN-γ, higher TNF-α, and lower glutathione peroxidase activity are associated with greater disability. The results add evidence of persistent inflammatory response, provide information about long-term imbalance of antioxidant activity, and suggest that

  7. Peripheral Inflammatory Markers and Antioxidant Response during the Post-Acute and Chronic Phase after Severe Traumatic Brain Injury.

    PubMed

    Licastro, Federico; Hrelia, Silvana; Porcellini, Elisa; Malaguti, Marco; Di Stefano, Cristina; Angeloni, Cristina; Carbone, Ilaria; Simoncini, Laura; Piperno, Roberto

    2016-01-01

    Traumatic brain injury (TBI) is a mechanical insult to the brain caused by external forces and associated with inflammation and oxidative stress. The patients may show different profiles of neurological recovery and a combination of oxidative damage and inflammatory processes can affect their courses. It is known that an overexpression of cytokines can be seen in peripheral blood in the early hours/days after the injury, but little is known about the weeks and months encompassing the post-acute and chronic phases. In addition, no information is available about the antioxidant responses mediated by the major enzymes that regulate reactive oxygen species levels: superoxide dismutase, catalase, peroxidases, and GSH-related enzymes. This study investigates the 6-month trends of inflammatory markers and antioxidant responses in 22 severe TBI patients with prolonged disorders of consciousness, consecutively recruited in a dedicated neurorehabilitation facility. Patients with a high degree of neurological impairment often show an uncertain outcome. In addition, the profiles of plasma activities were related to the neurological recovery after 12 months. Venous peripheral blood samples were taken blindly as soon as clinical signs and laboratory markers confirmed the absence of infections, 3 and 6 months later. The clinical and neuropsychological assessment continued up to 12 months. Nineteen patients completed the follow-up. In the chronic phase, persistent high plasma levels of cytokines can interfere with cognitive functioning and higher post-acute levels of cytokines [interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL1b, IL6] are associated with poorer cognitive recoveries 12 months later. Moreover, higher IFN-γ, higher TNF-α, and lower glutathione peroxidase activity are associated with greater disability. The results add evidence of persistent inflammatory response, provide information about long-term imbalance of antioxidant activity, and suggest that

  8. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    PubMed

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury.

  9. Traumatic brain injury and epilepsy: Underlying mechanisms leading to seizure.

    PubMed

    Lucke-Wold, Brandon P; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Chen, Yi-Wen; Smith, Kelly E; Huber, Jason D; Matsumoto, Rae; Rosen, Charles L; Tucker, Eric S; Richter, Erich

    2015-12-01

    Post-traumatic epilepsy continues to be a major concern for those experiencing traumatic brain injury. Post-traumatic epilepsy accounts for 10-20% of epilepsy cases in the general population. While seizure prophylaxis can prevent early onset seizures, no available treatments effectively prevent late-onset seizure. Little is known about the progression of neural injury over time and how this injury progression contributes to late onset seizure development. In this comprehensive review, we discuss the epidemiology and risk factors for post-traumatic epilepsy and the current pharmacologic agents used for treatment. We highlight limitations with the current approach and offer suggestions for remedying the knowledge gap. Critical to this pursuit is the design of pre-clinical models to investigate important mechanistic factors responsible for post-traumatic epilepsy development. We discuss what the current models have provided in terms of understanding acute injury and what is needed to advance understanding regarding late onset seizure. New model designs will be used to investigate novel pathways linking acute injury to chronic changes within the brain. Important components of this transition are likely mediated by toll-like receptors, neuroinflammation, and tauopathy. In the final section, we highlight current experimental therapies that may prove promising in preventing and treating post-traumatic epilepsy. By increasing understanding about post-traumatic epilepsy and injury expansion over time, it will be possible to design better treatments with specific molecular targets to prevent late-onset seizure occurrence following traumatic brain injury.

  10. Sleep and Traumatic Brain Injury.

    PubMed

    Baumann, Christian R

    2016-03-01

    Post-traumatic sleep-wake disturbances are frequent and often chronic complications after traumatic brain injury. The most prevalent sleep-wake disturbances are insomnia, excessive daytime sleepiness, and pleiosomnia, (i.e., increased sleep need). These disturbances are probably of multifactorial origin, but direct traumatic damage to key brain structures in sleep-wake regulation is likely to contribute. Diagnosis and treatment consist of standard approaches, but because of misperception of sleep-wake behavior in trauma patients, subjective testing alone may not always suffice.

  11. Knowledge of Traumatic Brain Injury among Educators

    ERIC Educational Resources Information Center

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  12. Traumatic Brain Injury

    MedlinePlus

    ... brain to bump against the inside of your skull. Common TBIs, such as concussions, can happen during ... an object, like a bullet or piece of skull, pierces your brain. Symptoms of a traumatic brain ...

  13. Multimodal Approach to Testing the Acute Effects of Mild Traumatic Brain Injury (mTBI)

    DTIC Science & Technology

    2015-03-01

    included several key staff changes, a major instrument acquisition, repairs and upgrades to the MEG , combined with substantial progress with patient...patients to non-head trauma controls in the first days after injury. Multiple modalities of behavioral, electrophysiological, and most strikingly, MEG ...changes were found. The MEG of all mTBI patients had delta activity in the frontal lobes that was absent in all controls. A scientific abstract on

  14. Plasma Anti-Glial Fibrillary Acidic Protein Autoantibody Levels during the Acute and Chronic Phases of Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study.

    PubMed

    Wang, Kevin K W; Yang, Zhihui; Yue, John K; Zhang, Zhiqun; Winkler, Ethan A; Puccio, Ava M; Diaz-Arrastia, Ramon; Lingsma, Hester F; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Gordon, Wayne A; Okonkwo, David O; Manley, Geoffrey T; Cooper, Shelly R; Dams-O'Connor, Kristen; Hricik, Allison J; Inoue, Tomoo; Maas, Andrew I R; Menon, David K; Schnyer, David M; Sinha, Tuhin K; Vassar, Mary J

    2016-07-01

    We described recently a subacute serum autoantibody response toward glial fibrillary acidic protein (GFAP) and its breakdown products 5-10 days after severe traumatic brain injury (TBI). Here, we expanded our anti-GFAP autoantibody (AutoAb[GFAP]) investigation to the multicenter observational study Transforming Research and Clinical Knowledge in TBI Pilot (TRACK-TBI Pilot) to cover the full spectrum of TBI (Glasgow Coma Scale 3-15) by using acute (<24 h) plasma samples from 196 patients with acute TBI admitted to three Level I trauma centers, and a second cohort of 21 participants with chronic TBI admitted to inpatient TBI rehabilitation. We find that acute patients self-reporting previous TBI with loss of consciousness (LOC) (n = 43) had higher day 1 AutoAb[GFAP] (mean ± standard error: 9.11 ± 1.42; n = 43) than healthy controls (2.90 ± 0.92; n = 16; p = 0.032) and acute patients reporting no previous TBI (2.97 ± 0.37; n = 106; p < 0.001), but not acute patients reporting previous TBI without LOC (8.01 ± 1.80; n = 47; p = 0.906). These data suggest that while exposure to TBI may trigger the AutoAb[GFAP] response, circulating antibodies are elevated specifically in acute TBI patients with a history of TBI. AutoAb[GFAP] levels for participants with chronic TBI (average post-TBI time 176 days or 6.21 months) were also significantly higher (15.08 ± 2.82; n = 21) than healthy controls (p < 0.001). These data suggest a persistent upregulation of the autoimmune response to specific brain antigen(s) in the subacute to chronic phase after TBI, as well as after repeated TBI insults. Hence, AutoAb[GFAP] may be a sensitive assay to study the dynamic interactions between post-injury brain and patient-specific autoimmune responses across acute and chronic settings after TBI.

  15. Traumatic brain injury results in acute rarefication of the vascular network.

    PubMed

    Obenaus, Andre; Ng, Michelle; Orantes, Amanda M; Kinney-Lang, Eli; Rashid, Faisal; Hamer, Mary; DeFazio, Richard A; Tang, Jiping; Zhang, John H; Pearce, William J

    2017-03-22

    The role of the cerebrovascular network and its acute response to TBI is poorly defined and emerging evidence suggests that cerebrovascular reactivity is altered. We explored how cortical vessels are physically altered following TBI using a newly developed technique, vessel painting. We tested our hypothesis that a focal moderate TBI results in global decrements to structural aspects of the vasculature. Rats (naïve, sham-operated, TBI) underwent a moderate controlled cortical impact. Animals underwent vessel painting perfusion to label the entire cortex at 1 day post TBI followed by whole brain axial and coronal images using a wide-field fluorescence microscope. Cortical vessel network characteristics were analyzed for classical angiographic features (junctions, lengths) wherein we observed significant global (both hemispheres) reductions in vessel junctions and vessel lengths of 33% and 22%, respectively. Biological complexity can be quantified using fractal geometric features where we observed that fractal measures were also reduced significantly by 33%, 16% and 13% for kurtosis, peak value frequency and skewness, respectively. Acutely after TBI there is a reduction in vascular network and vascular complexity that are exacerbated at the lesion site and provide structural evidence for the bilateral hemodynamic alterations that have been reported in patients after TBI.

  16. Traumatic Brain Injury Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  17. MISCLASSIFICATION OF ACUTE RESPIRATORY DISTRESS SYNDROME AFTER TRAUMATIC INJURY: THE COST OF LESS RIGOROUS APPROACHES

    PubMed Central

    Hendrickson, Carolyn M; Dobbins, Sarah; Redick, Brittney J; Greenberg, Molly D; Calfee, Carolyn S; Cohen, Mitchell Jay

    2015-01-01

    BACKGROUND Adherence to rigorous research protocols for identifying acute respiratory distress syndrome (ARDS) after trauma is variable. To examine how misclassification of ARDS may bias observational studies in trauma populations, we evaluated the agreement of two methods for adjudicating ARDS after trauma: the gold standard, direct review of chest radiographs and review of dictated radiology reports, a commonly used alternative. METHODS This nested cohort study included 123 mechanically ventilated patients between 2005–2008, with at least one PaO2:FiO2 <300 within the first 8 days of admission. Two blinded physician investigators adjudicated ARDS by two methods. The investigators directly reviewed all chest radiographs to evaluate for bilateral infiltrates. Several months later, blinded to their previous assessments, they adjudicated ARDS using a standardized rubric to classify radiology reports. A kappa statistics was calculated. Regression analyses quantified the association between established risk factors as well as important clinical outcomes and ARDS determined by the aforementioned methods as well as hypoxemia as a surrogate marker. RESULTS The kappa was 0.47 for the observed agreement between ARDS adjudicated by direct review of chest radiographs and ARDS adjudicated by review of radiology reports. Both the magnitude and direction of bias on the estimates of association between ARDS and established risk factors as well as clinical outcomes varied by method of adjudication. CONCLUSION Classification of ARDS by review of dictated radiology reports had only moderate agreement with the gold standard, ARDS adjudicated by direct review of chest radiographs. While the misclassification of ARDS had varied effects on the estimates of associations with established risk factors, it tended to weaken the association of ARDS with important clinical outcomes. A standardized approach to ARDS adjudication after trauma by direct review of chest radiographs will minimize

  18. Traumatic Brain Injury

    DTIC Science & Technology

    2010-03-01

    symptoms which delays treatment and may lead to worse outcomes of care. The military culture values and esteems physical and mental toughness. In this...culture service members suffering mental health problems fear being ostracized , humiliated, and belittled. They also fear negative career... self regulate and inhibit behavioral responses. The individual’s ability to emotionally cope with a traumatic event in the immediate aftermath of a

  19. Severe Traumatic Brain Injury

    MedlinePlus

    ... Submit Button Connect with the CDC Injury Center File Formats Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel ...

  20. A brief overview of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) within the Department of Defense.

    PubMed

    Jaffee, Michael S; Meyer, Kimberly S

    2009-11-01

    The current conflicts in the Middle East have yielded increasing awareness of the acute and chronic effect of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD). The increasing frequency of exposure to blast and multiple deployments potentially impact the probability that a service member may sustain one of these injuries. The 2008 International Conference on Behavioral Health and Traumatic Brain Injury united experts in the fields of behavioral health and traumatic brain injury to address these significant health concerns. This article summarizes current Department of Defense (DOD) initiatives related to TBI and PTSD.

  1. A prospective study of the influence of acute alcohol intoxication versus chronic alcohol consumption on outcome following traumatic brain injury.

    PubMed

    Lange, Rael T; Shewchuk, Jason R; Rauscher, Alexander; Jarrett, Michael; Heran, Manraj K S; Brubacher, Jeffrey R; Iverson, Grant L

    2014-08-01

    The purpose of the study was to disentangle the relative contributions of day-of-injury alcohol intoxication and pre-injury alcohol misuse on outcome from TBI. Participants were 142 patients enrolled from a Level 1 Trauma Center (in Vancouver, Canada) following a traumatic brain injury (TBI; 43 uncomplicated mild TBI and 63 complicated mild-severe TBI) or orthopedic injury [36 trauma controls (TC)]. At 6-8 weeks post-injury, diffusion tensor imaging (DTI) of the whole brain was undertaken using a Phillips 3T scanner. Participants also completed neuropsychological testing, an evaluation of lifetime alcohol consumption (LAC), and had blood alcohol levels (BALs) taken at the time of injury. Participants in the uncomplicated mild TBI and complicated mild-severe TBI groups had higher scores on measures of depression and postconcussion symptoms (d = 0.45-0.83), but not anxiety, compared with the TC group. The complicated mild-severe TBI group had more areas of abnormal white matter on DTI measures (all p < .05; d = 0.54-0.61) than the TC group. There were no difference between groups on all neurocognitive measures. Using hierarchical regression analyses and generalized linear modeling, LAC and BAL did provide a unique contribution toward the prediction of attention and executive functioning abilities; however, the variance accounted for was small. LAC and BAL did not provide a unique and meaningful contribution toward the prediction of self-reported symptoms, DTI measures, or the majority of neurocognitive measures. In this study, BAL and LAC were not predictive of mental health symptoms, postconcussion symptoms, cognition, or white-matter changes at 6-8 weeks following TBI.

  2. Traumatic brain injury among Indiana state prisoners.

    PubMed

    Ray, Bradley; Sapp, Dona; Kincaid, Ashley

    2014-09-01

    Research on traumatic brain injury among inmates has focused on comparing the rate of traumatic brain injury among offenders to the general population, but also how best to screen for traumatic brain injury among this population. This study administered the short version of the Ohio State University Traumatic Brain Injury Identification Method to all male inmates admitted into Indiana state prisons were screened for a month (N = 831). Results indicate that 35.7% of the inmates reported experiencing a traumatic brain injury during their lifetime and that these inmates were more likely to have a psychiatric disorder and a prior period of incarceration than those without. Logistic regression analysis finds that a traumatic brain injury predicts the likelihood of prior incarceration net of age, race, education, and psychiatric disorder. This study suggests that brief instruments can be successfully implemented into prison screenings to help divert inmates into needed treatment.

  3. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  4. Preconditioning for traumatic brain injury.

    PubMed

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W Dalton; Bullock, M Ross

    2013-02-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury have been shown to induce consequent protection against post-TBI neuronal death. This concept termed "preconditioning" is achieved by exposure to different pre-injury stressors to achieve the induction of "tolerance" to the effect of the TBI. However, the precise mechanisms underlying this "tolerance" phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review, we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditioning studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible future clinical situations, in which pre-TBI preconditioning could be considered.

  5. Inflammatory neuroprotection following traumatic brain injury

    PubMed Central

    Russo, Matthew V.; McGavern, Dorian B.

    2017-01-01

    Traumatic brain injury (TBI) elicits an inflammatory response in the central nervous system (CNS) that involves both resident and peripheral immune cells. Neuroinflammation can persist for years following a single TBI and may contribute to neurodegeneration. However, administration of anti-inflammatory drugs shortly after injury was not effective in the treatment of TBI patients. Some components of the neuroinflammatory response seem to play a beneficial role in the acute phase of TBI. Indeed, following CNS injury, early inflammation can set the stage for proper tissue regeneration and recovery, which can, perhaps, explain why general immunosuppression in TBI patients is disadvantageous. Here, we discuss some positive attributes of neuroinflammation and propose that inflammation be therapeutically guided in TBI patients rather than globally suppressed. PMID:27540166

  6. Traumatic brain injury-induced sleep disorders

    PubMed Central

    Viola-Saltzman, Mari; Musleh, Camelia

    2016-01-01

    Sleep disturbances are frequently identified following traumatic brain injury, affecting 30%–70% of persons, and often occur after mild head injury. Insomnia, fatigue, and sleepiness are the most frequent sleep complaints after traumatic brain injury. Sleep apnea, narcolepsy, periodic limb movement disorder, and parasomnias may also occur after a head injury. In addition, depression, anxiety, and pain are common brain injury comorbidities with significant influence on sleep quality. Two types of traumatic brain injury that may negatively impact sleep are acceleration/deceleration injuries causing generalized brain damage and contact injuries causing focal brain damage. Polysomnography, multiple sleep latency testing, and/or actigraphy may be utilized to diagnose sleep disorders after a head injury. Depending on the disorder, treatment may include the use of medications, positive airway pressure, and/or behavioral modifications. Unfortunately, the treatment of sleep disorders associated with traumatic brain injury may not improve neuropsychological function or sleepiness. PMID:26929626

  7. Acute Axonal Degeneration Drives Development of Cognitive, Motor, and Visual Deficits after Blast-Mediated Traumatic Brain Injury in Mice

    PubMed Central

    Voorhees, Jaymie R.; Genova, Rachel M.; Britt, Jeremiah K.; McDaniel, Latisha; Harper, Matthew M.

    2016-01-01

    Abstract Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain (WldS) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve–dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI. PMID:27822499

  8. Acute Axonal Degeneration Drives Development of Cognitive, Motor, and Visual Deficits after Blast-Mediated Traumatic Brain Injury in Mice.

    PubMed

    Yin, Terry C; Voorhees, Jaymie R; Genova, Rachel M; Davis, Kevin C; Madison, Ashley M; Britt, Jeremiah K; Cintrón-Pérez, Coral J; McDaniel, Latisha; Harper, Matthew M; Pieper, Andrew A

    2016-01-01

    Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain (WldS) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve-dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI.

  9. Diabetes Insipidus after Traumatic Brain Injury

    PubMed Central

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  10. Bench-to-Bedside and Bedside Back to the Bench; Seeking a Better Understanding of the Acute Pathophysiological Process in Severe Traumatic Brain Injury

    PubMed Central

    Agoston, Denes V.

    2015-01-01

    Despite substantial investments, traumatic brain injury (TBI) remains one of the major disorders that lack specific pharmacotherapy. To a substantial degree, this situation is due to lack of understanding of the pathophysiological process of the disease. Experimental TBI research offers controlled, rapid, and cost-effective means to identify the pathophysiology but translating experimental findings into clinical practice can be further improved by using the same or similar outcome measures and clinically relevant time points. The pathophysiology during the acute phase of severe TBI is especially poorly understood. In this Mini review, I discuss some of the incongruences between current clinical practices and needs versus information provided by experimental TBI research as well as the benefits of designing animal experiments with translation into clinical practice in mind. PMID:25852631

  11. Acute Traumatic Coagulopathy

    DTIC Science & Technology

    2014-12-01

    injury, levels of cytokines and hor- mones, such as adrenaline and vasopressin, rise, and cytokine, hormone and thrombin production lead to endothelial...BC, Rhee P, et al. Impact of the duration of plateletstorage in critically ill trauma patients. J Trauma 2011; 71:1766 1773. 79. Falati S, Liu Q

  12. Hypopituitarism after traumatic brain injury.

    PubMed

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana I; Casanueva, Felipe F

    2015-03-01

    The prevalence of hypopituitarism after traumatic brain (TBI) injury is widely variable in the literature; a meta-analysis determined a pooled prevalence of anterior hypopituitarism of 27.5%. Growth hormone deficiency is the most prevalent hormone insufficiency after TBI; however, the prevalence of each type of pituitary deficiency is influenced by the assays used for diagnosis, severity of head trauma, and time of evaluation. Recent studies have demonstrated improvement in cognitive function and cognitive quality of life with substitution therapy in GH-deficient patients after TBI.

  13. Traumatic Brain Injury: A Challenge for Educators

    ERIC Educational Resources Information Center

    Bullock, Lyndal M.; Gable, Robert A.; Mohr, J. Darrell

    2005-01-01

    In this article, the authors provide information designed to enhance the knowledge and understanding of school personnel about traumatic brain injury (TBI). The authors specifically define TBI and enumerate common characteristics associated with traumatic brain injury, discuss briefly the growth and type of services provided, and offer some…

  14. Evaluating the relationship between memory functioning and cingulum bundles in acute mild traumatic brain injury using diffusion tensor imaging.

    PubMed

    Wu, Trevor C; Wilde, Elisabeth A; Bigler, Erin D; Yallampalli, Ragini; McCauley, Stephen R; Troyanskaya, Maya; Chu, Zili; Li, Xiaoqi; Hanten, Gerri; Hunter, Jill V; Levin, Harvey S

    2010-02-01

    Compromised memory functioning is one of the commonly reported cognitive sequelae seen following mild traumatic brain injury (mTBI). Diffusion tensor imaging (DTI) has been shown to be sufficiently sensitive at detecting early microstructural pathological alterations after mTBI. Given its location and shape, the cingulate, which is comprised of the cingulate gyrus (gray matter) and cingulum bundles (white matter), is selectively vulnerable to mTBI. In this study we examined the integrity of cingulum bundles using DTI, and the relationship between cingulum bundles and memory functioning. Twelve adolescents with mTBI and 11 demographically-matched healthy controls were studied. All participants with mTBI had a Glasgow Coma Scale score of 15, and were without intracranial findings on CT scan. Brain scans were performed on average 2.92 days post-injury, and all participants were administered the Verbal Selective Reminding Test (VSRT), an episodic verbal learning and memory task. Participants with mTBI had a significantly lower apparent diffusion coefficient (ADC) bilaterally than controls (p < 0.001). Despite the marginal significance of the group difference in fractional anisotropy (FA), the effect size between groups was moderate (d = 0.66). Cognitively, healthy controls performed better than the TBI group on immediate and delayed recall; however, the difference did not reach statistical significance. In the mTBI group, FA of the left cingulum bundle was significantly correlated with 30-min delayed recall (r = -0.56, p = 0.05). A marginally significant correlation was found between ADC of the left cingulum bundle and the total words of immediate recall (r = 0.59, p = 0.07). No significant correlation was found between DTI metrics and memory functioning for the control group. These preliminary findings indicate that cingulate injury likely contributes to the cognitive sequelae seen during the early phase post-mTBI.

  15. Traumatic Brain Injury in Sports: A Review

    PubMed Central

    Sahler, Christopher S.; Greenwald, Brian D.

    2012-01-01

    Traumatic brain injury (TBI) is a clinical diagnosis of neurological dysfunction following head trauma, typically presenting with acute symptoms of some degree of cognitive impairment. There are an estimated 1.7 to 3.8 million TBIs each year in the United States, approximately 10 percent of which are due to sports and recreational activities. Most brain injuries are self-limited with symptom resolution within one week, however, a growing amount of data is now establishing significant sequelae from even minor impacts such as headaches, prolonged cognitive impairments, or even death. Appropriate diagnosis and treatment according to standardized guidelines are crucial when treating athletes who may be subjected to future head trauma, possibly increasing their likelihood of long-term impairments. PMID:22848836

  16. Neurorestorative Treatments for Traumatic Brain Injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2011-01-01

    Traumatic brain injury (TBI) remains a major cause of death and permanent disability worldwide, especially in children and young adults. A total of 1.5 million people experience head trauma each year in the United States, with an annual economic cost exceeding $56 billion. Unfortunately, almost all Phase III TBI clinical trials have yet to yield a safe and effective neuroprotective treatment, raising questions regarding the use of neuroprotective strategies as the primary therapy for acute brain injuries. Recent preclinical data suggest that neurorestorative strategies that promote angiogenesis (formation of new blood vessels from pre-existing endothelial cells), axonal remodeling (axonal sprouting and pruning), neurogenesis (generation of new neurons) and synaptogenesis (formation of new synapses) provide promising opportunities for the treatment of TBI. This review discusses select cell-based and pharmacological therapies that activate and amplify these endogenous restorative brain plasticity processes to promote both repair and regeneration of injured brain tissue and functional recovery after TBI. PMID:21122475

  17. Sedation in Traumatic Brain Injury

    PubMed Central

    Flower, Oliver; Hellings, Simon

    2012-01-01

    Several different classes of sedative agents are used in the management of patients with traumatic brain injury (TBI). These agents are used at induction of anaesthesia, to maintain sedation, to reduce elevated intracranial pressure, to terminate seizure activity and facilitate ventilation. The intent of their use is to prevent secondary brain injury by facilitating and optimising ventilation, reducing cerebral metabolic rate and reducing intracranial pressure. There is limited evidence available as to the best choice of sedative agents in TBI, with each agent having specific advantages and disadvantages. This review discusses these agents and offers evidence-based guidance as to the appropriate context in which each agent may be used. Propofol, benzodiazepines, narcotics, barbiturates, etomidate, ketamine, and dexmedetomidine are reviewed and compared. PMID:23050154

  18. Paintball-related traumatic liver injury.

    PubMed

    Luck, Joshua; Bell, Daniel; Bashir, Gareth

    2016-04-27

    Paintball is a popular recreational sport played at both amateur and professional level. Ocular injuries are well recognised, although there is a growing body of literature documenting superficial vascular as well as deep solid organ injuries. An 18-year-old man presented with signs and symptoms consistent with acute appendicitis. Intraoperatively, a grade III liver injury was identified and packed before a relook at 48 h. No further active bleeding was identified; however, follow-up ultrasound at 3 weeks demonstrated non-resolution of a large subcapsular haematoma. The patient was readmitted for a short period of observation and discharged with repeat ultrasound scheduled for 3 months. This represents the first report of paintball-related blunt traumatic injury to the liver. Solid organ injuries of this nature have only been reported three times previously-all in the urological setting. This case also highlights issues surrounding the use of routine follow-up imaging in blunt liver trauma and provides a concise discussion of the relevant literature.

  19. Rho kinase inhibition following traumatic brain injury in mice promotes functional improvement and acute neuron survival but has little effect on neurogenesis, glial responses or neuroinflammation.

    PubMed

    Bye, Nicole; Christie, Kimberly J; Turbic, Alisa; Basrai, Harleen S; Turnley, Ann M

    2016-05-01

    Inhibition of the Rho/Rho kinase pathway has been shown to be beneficial in a variety of neural injuries and diseases. In this manuscript we investigate the role of Rho kinase inhibition in recovery from traumatic brain injury using a controlled cortical impact model in mice. Mice subjected to a moderately severe TBI were treated for 1 or 4 weeks with the Rho kinase inhibitor Y27632, and functional outcomes and neuronal and glial cell responses were analysed at 1, 7 and 35 days post-injury. We hypothesised that Y27632-treated mice would show functional improvement, with augmented recruitment of neuroblasts from the SVZ and enhanced survival of newborn neurons in the pericontusional cortex, with protection against neuronal degeneration, neuroinflammation and modulation of astrocyte reactivity and blood-brain-barrier permeability. While Rho kinase inhibition enhanced recovery of motor function after trauma, there were no substantial increases in the recruitment of DCX(+) neuroblasts or the number of BrdU(+) or EdU(+) labelled newborn neurons in the pericontusional cortex of Y27632-treated mice. Inhibition of Rho kinase significantly reduced the number of degenerating cortical neurons at 1day post-injury compared to saline controls but had no longer term effect on neuronal degeneration, with only modest effects on astrocytic reactivity and macrophage/microglial responses. Overall, this study showed that Rho kinase contributes to acute neurodegenerative processes in the injured cortex but does not play a significant role in SVZ neural precursor cell-derived adult neurogenesis, glial responses or blood-brain barrier permeability following a moderately severe brain injury.

  20. Acute traumatic posterior elbow dislocation in children.

    PubMed

    Lieber, Justus; Zundel, Sabine M; Luithle, Tobias; Fuchs, Jörg; Kirschner, Hans-Joachim

    2012-09-01

    Traumatic posterior dislocation of the elbow is often associated with significant morbidity and incomplete recovery. The aim of this study was to retrospectively analyse the outcome of 33 children (median age 10.8 years). Patients underwent reduction and assessment of stability under general anaesthesia. Pure dislocations (n=10) were immobilized, whereas unstable fractures (n=23) were stabilized. Refixation of ligaments was performed if stability was not achieved by fracture stabilization alone. Immobilization was continued for 26 (pure dislocations) or 35 days (associated injuries), respectively. Results were excellent (n=9) or good (n=1) after pure dislocation. Results were excellent (n=15), good (n=7) or poor (n=1) in children with associated injuries. Accurate diagnosis, concentric stable reduction of the elbow as well as stable osteosynthesis of displaced fractures are associated with good results in children with acute posterior elbow dislocations.

  1. Parent Perceptions of How Nurse Encounters Can Provide Caring Support for the Family in Early Acute Care Following Children’s Severe Traumatic Brain Injury

    PubMed Central

    Roscigno, Cecelia I.

    2016-01-01

    Objective A child’s severe traumatic brain injury (TBI) creates a family crisis requiring extensive cultural, informational, psychological, and environmental support. Nurses need to understand parents’ expectations of caring in early acute care so they can tailor their attitudes, beliefs, and behaviors appropriately to accommodate the family’s needs. Methods In a previous qualitative study of 42 parents or caregivers from 37 families of children with moderate to severe TBI, parents of children with severe TBI (n = 25) described their appraisals of nurse caring and uncaring behaviors in early acute care. Swanson’s theory of caring was used to categorize parents’ descriptions in order to inform nursing early acute care practices and family-centered care. Results Caring nurse encounters included: (a) involving parents in the care of their child and reflecting on all socio-cultural factors shaping family resources and responses (knowing); (b) respecting that family grief can be co-mingled with resilience, and that parents are typically competent to be involved in decision-making (maintaining belief); (d) actively listening and engaging parents in order to fully understand family values and needs (being with); (e) decreasing parents’ workload to get information, emotional support, and providing a safe cultural, psychological, and physical environment for the family (doing for), and; (f) providing anticipatory guidance to navigate the early acute care system and giving assistance to learn and adjust to their situation (enabling). Conclusion Application of Swanson’s caring theory is prescriptive in helping individual nurses and early acute care systems to meet important family needs following children’s severe TBI. PMID:26871242

  2. Fluid markers of traumatic brain injury.

    PubMed

    Zetterberg, Henrik; Blennow, Kaj

    2015-05-01

    Traumatic brain injury (TBI) occurs when an external force traumatically injures the brain. Whereas severe TBI can be diagnosed using a combination of clinical signs and standard neuroimaging techniques, mild TBI (also called concussion) is more difficult to detect. This is where fluid markers of injury to different cell types and subcellular compartments in the central nervous system come into play. These markers are often proteins, peptides or other molecules with selective or high expression in the brain, which can be measured in the cerebrospinal fluid or blood as they leak out or get secreted in response to the injury. Here, we review the literature on fluid markers of neuronal, axonal and astroglial injury to diagnose mild TBI and to predict clinical outcome in patients with head trauma. We also discuss chronic traumatic encephalopathy, a progressive neurodegenerative disease in individuals with a history of multiple mild TBIs in a biomarker context. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

  3. Neurostimulation for traumatic brain injury.

    PubMed

    Shin, Samuel S; Dixon, C Edward; Okonkwo, David O; Richardson, R Mark

    2014-11-01

    Traumatic brain injury (TBI) remains a significant public health problem and is a leading cause of death and disability in many countries. Durable treatments for neurological function deficits following TBI have been elusive, as there are currently no FDA-approved therapeutic modalities for mitigating the consequences of TBI. Neurostimulation strategies using various forms of electrical stimulation have recently been applied to treat functional deficits in animal models and clinical stroke trials. The results from these studies suggest that neurostimulation may augment improvements in both motor and cognitive deficits after brain injury. Several studies have taken this approach in animal models of TBI, showing both behavioral enhancement and biological evidence of recovery. There have been only a few studies using deep brain stimulation (DBS) in human TBI patients, and future studies are warranted to validate the feasibility of this technique in the clinical treatment of TBI. In this review, the authors summarize insights from studies employing neurostimulation techniques in the setting of brain injury. Moreover, they relate these findings to the future prospect of using DBS to ameliorate motor and cognitive deficits following TBI.

  4. Assessment of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  5. Critical care management of traumatic brain injury.

    PubMed

    Menon, D K; Ercole, A

    2017-01-01

    Traumatic brain injury (TBI) is a growing global problem, which is responsible for a substantial burden of disability and death, and which generates substantial healthcare costs. High-quality intensive care can save lives and improve the quality of outcome. TBI is extremely heterogeneous in terms of clinical presentation, pathophysiology, and outcome. Current approaches to the critical care management of TBI are not underpinned by high-quality evidence, and many of the current therapies in use have not shown benefit in randomized control trials. However, observational studies have informed the development of authoritative international guidelines, and the use of multimodality monitoring may facilitate rational approaches to optimizing acute physiology, allowing clinicians to optimize the balance between benefit and risk from these interventions in individual patients. Such approaches, along with the emerging impact of advanced neuroimaging, genomics, and protein biomarkers, could lead to the development of precision medicine approaches to the intensive care management of TBI.

  6. Acute kidney injury during pregnancy.

    PubMed

    Van Hook, James W

    2014-12-01

    Acute kidney injury complicates the care of a relatively small number of pregnant and postpartum women. Several pregnancy-related disorders such as preeclampsia and thrombotic microangiopathies may produce acute kidney injury. Prerenal azotemia is another common cause of acute kidney injury in pregnancy. This manuscript will review pregnancy-associated acute kidney injury from a renal functional perspective. Pathophysiology of acute kidney injury will be reviewed. Specific conditions causing acute kidney injury and treatments will be compared.

  7. Traumatic Rib Injury: Patterns, Imaging Pitfalls, Complications, and Treatment.

    PubMed

    Talbot, Brett S; Gange, Christopher P; Chaturvedi, Apeksha; Klionsky, Nina; Hobbs, Susan K; Chaturvedi, Abhishek

    2017-01-01

    The ribs are frequently affected by blunt or penetrating injury to the thorax. In the emergency department setting, it is vital for the interpreting radiologist to not only identify the presence of rib injuries but also alert the clinician about organ-specific injury, specific traumatic patterns, and acute rib trauma complications that require emergent attention. Rib injuries can be separated into specific morphologic fracture patterns that include stress, buckle, nondisplaced, displaced, segmental, and pathologic fractures. Specific attention is also required for flail chest and for fractures due to pediatric nonaccidental trauma. Rib fractures are associated with significant morbidity and mortality, both of which increase as the number of fractured ribs increases. Key complications associated with rib fracture include pain, hemothorax, pneumothorax, extrapleural hematoma, pulmonary contusion, pulmonary laceration, acute vascular injury, and abdominal solid-organ injury. Congenital anomalies, including supernumerary or accessory ribs, vestigial anterior ribs, bifid ribs, and synostoses, are common and should not be confused with traumatic pathologic conditions. Nontraumatic mimics of traumatic rib injury, with or without fracture, include metastatic disease, primary osseous neoplasms (osteosarcoma, chondrosarcoma, Ewing sarcoma, Langerhans cell histiocytosis, and osteochondroma), fibrous dysplasia, and Paget disease. Principles of management include supportive and procedural methods of alleviating pain, treating complications, and stabilizing posttraumatic deformity. By recognizing and accurately reporting the imaging findings, the radiologist will add value to the care of patients with thoracic trauma. Online supplemental material is available for this article. (©)RSNA, 2017.

  8. World Trade Center Health Program; Addition of New-Onset Chronic Obstructive Pulmonary Disease and WTC-Related Acute Traumatic Injury to the List of WTC-Related Health Conditions. Final rule.

    PubMed

    2016-07-05

    The World Trade Center (WTC) Health Program conducted a review of published, peer-reviewed epidemiologic studies regarding potential evidence of chronic obstructive pulmonary disease (COPD) and acute traumatic injury among individuals who were responders to or survivors of the September 11, 2001, terrorist attacks. The Administrator of the WTC Health Program (Administrator) found that these studies provide substantial evidence to support a causal association between each of these health conditions and 9/11 exposures. As a result, the Administrator is publishing a final rule to add both new-onset COPD and WTC-related acute traumatic injury to the List of WTC-Related Health Conditions eligible for treatment coverage in the WTC Health Program.

  9. Acute post-traumatic stress symptoms and age predict outcome in military blast concussion.

    PubMed

    Mac Donald, Christine L; Adam, Octavian R; Johnson, Ann M; Nelson, Elliot C; Werner, Nicole J; Rivet, Dennis J; Brody, David L

    2015-05-01

    High rates of adverse outcomes have been reported following blast-related concussive traumatic brain injury in US military personnel, but the extent to which such adverse outcomes can be predicted acutely after injury is unknown. We performed a prospective, observational study of US military personnel with blast-related concussive traumatic brain injury (n = 38) and controls (n = 34) enrolled between March and September 2012. Importantly all subjects returned to duty and did not require evacuation. Subjects were evaluated acutely 0-7 days after injury at two sites in Afghanistan and again 6-12 months later in the United States. Acute assessments revealed heightened post-concussive, post-traumatic stress, and depressive symptoms along with worse cognitive performance in subjects with traumatic brain injury. At 6-12 months follow-up, 63% of subjects with traumatic brain injury and 20% of controls had moderate overall disability. Subjects with traumatic brain injury showed more severe neurobehavioural, post-traumatic stress and depression symptoms along with more frequent cognitive performance deficits and more substantial headache impairment than control subjects. Logistic regression modelling using only acute measures identified that a diagnosis of traumatic brain injury, older age, and more severe post-traumatic stress symptoms provided a good prediction of later adverse global outcomes (area under the receiver-operating characteristic curve = 0.84). Thus, US military personnel with concussive blast-related traumatic brain injury in Afghanistan who returned to duty still fared quite poorly on many clinical outcome measures 6-12 months after injury. Poor global outcome seems to be largely driven by psychological health measures, age, and traumatic brain injury status. The effects of early interventions and longer term implications of these findings are unknown.

  10. Traumatic injuries in patients with diabetes mellitus

    PubMed Central

    El-Menyar, Ayman; Mekkodathil, Ahammed; Al-Thani, Hassan

    2016-01-01

    Diabetes mellitus (DM) is associated with increased in-hospital morbidity and mortality in patients sustained traumatic injuries. Identification of risk factors of traumatic injuries that lead to hospital admissions and death in DM patients is crucial to set effective preventive strategies. We aimed to conduct a traditional narrative literature review to describe the role of hypoglycemia as a risk factor of driving and fall-related traumatic injuries. DM poses significant burden as a risk factor and predictor of worse outcomes in traumatic injuries. Although there is no consensus on the impact and clear hazards of hyperglycemia in comparison to the hypoglycemia, both extremes of DM need to be carefully addressed and taken into consideration for proper management. Moreover, physicians, patients, and concerned authorities should be aware of all these potential hazards to share and establish the right management plans. PMID:27162438

  11. External Validation and Recalibration of Risk Prediction Models for Acute Traumatic Brain Injury among Critically Ill Adult Patients in the United Kingdom.

    PubMed

    Harrison, David A; Griggs, Kathryn A; Prabhu, Gita; Gomes, Manuel; Lecky, Fiona E; Hutchinson, Peter J A; Menon, David K; Rowan, Kathryn M

    2015-10-01

    This study validates risk prediction models for acute traumatic brain injury (TBI) in critical care units in the United Kingdom and recalibrates the models to this population. The Risk Adjustment In Neurocritical care (RAIN) Study was a prospective, observational cohort study in 67 adult critical care units. Adult patients admitted to critical care following acute TBI with a last pre-sedation Glasgow Coma Scale score of less than 15 were recruited. The primary outcomes were mortality and unfavorable outcome (death or severe disability, assessed using the Extended Glasgow Outcome Scale) at six months following TBI. Of 3626 critical care unit admissions, 2975 were analyzed. Following imputation of missing outcomes, mortality at six months was 25.7% and unfavorable outcome 57.4%. Ten risk prediction models were validated from Hukkelhoven and colleagues, the Medical Research Council (MRC) Corticosteroid Randomisation After Significant Head Injury (CRASH) Trial Collaborators, and the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) group. The model with the best discrimination was the IMPACT "Lab" model (C index, 0.779 for mortality and 0.713 for unfavorable outcome). This model was well calibrated for mortality at six months but substantially under-predicted the risk of unfavorable outcome. Recalibration of the models resulted in small improvements in discrimination and excellent calibration for all models. The risk prediction models demonstrated sufficient statistical performance to support their use in research and audit but fell below the level required to guide individual patient decision-making. The published models for unfavorable outcome at six months had poor calibration in the UK critical care setting and the models recalibrated to this setting should be used in future research.

  12. External Validation and Recalibration of Risk Prediction Models for Acute Traumatic Brain Injury among Critically Ill Adult Patients in the United Kingdom

    PubMed Central

    Griggs, Kathryn A.; Prabhu, Gita; Gomes, Manuel; Lecky, Fiona E.; Hutchinson, Peter J. A.; Menon, David K.; Rowan, Kathryn M.

    2015-01-01

    Abstract This study validates risk prediction models for acute traumatic brain injury (TBI) in critical care units in the United Kingdom and recalibrates the models to this population. The Risk Adjustment In Neurocritical care (RAIN) Study was a prospective, observational cohort study in 67 adult critical care units. Adult patients admitted to critical care following acute TBI with a last pre-sedation Glasgow Coma Scale score of less than 15 were recruited. The primary outcomes were mortality and unfavorable outcome (death or severe disability, assessed using the Extended Glasgow Outcome Scale) at six months following TBI. Of 3626 critical care unit admissions, 2975 were analyzed. Following imputation of missing outcomes, mortality at six months was 25.7% and unfavorable outcome 57.4%. Ten risk prediction models were validated from Hukkelhoven and colleagues, the Medical Research Council (MRC) Corticosteroid Randomisation After Significant Head Injury (CRASH) Trial Collaborators, and the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) group. The model with the best discrimination was the IMPACT “Lab” model (C index, 0.779 for mortality and 0.713 for unfavorable outcome). This model was well calibrated for mortality at six months but substantially under-predicted the risk of unfavorable outcome. Recalibration of the models resulted in small improvements in discrimination and excellent calibration for all models. The risk prediction models demonstrated sufficient statistical performance to support their use in research and audit but fell below the level required to guide individual patient decision-making. The published models for unfavorable outcome at six months had poor calibration in the UK critical care setting and the models recalibrated to this setting should be used in future research. PMID:25898072

  13. Disequilibrium after Traumatic Brain Injury: Vestibular Mechanisms

    DTIC Science & Technology

    2012-09-01

    and a tracking of these measures over time both as a means to document and understand the normal recovery process and response to treatment and to...N, Macdonald R, Rutks I, Sayer NA, Dobscha SK and Wilt TJ. Prevalence, assessment, and treatment of mild traumatic brain injury and posttraumatic...potentially modifiable factors. 0078 Chiropractic Sacro Occipital Technique (SOT) and Cranial Treatment Model for Traumatic Brain Injury Along with

  14. Combining Biochemical and Imaging Markers to Improve Diagnosis and Characterization of Mild Traumatic Brain Injury in the Acute Setting: Results from a Pilot Study

    PubMed Central

    Kou, Zhifeng; Gattu, Ramtilak; Kobeissy, Firas; Welch, Robert D.; O’Neil, Brian J.; Woodard, John L.; Ayaz, Syed Imran; Kulek, Andrew; Kas-Shamoun, Robert; Mika, Valerie; Zuk, Conor; Tomasello, Francesco; Mondello, Stefania

    2013-01-01

    Background Mild traumatic brain injury (mTBI) is a significant healthcare burden and its diagnosis remains a challenge in the emergency department. Serum biomarkers and advanced magnetic resonance imaging (MRI) techniques have already demonstrated their potential to improve the detection of brain injury even in patients with negative computed tomography (CT) findings. The objective of this study was to determine the clinical value of a combinational use of both blood biomarkers and MRI in mTBI detection and their characterization in the acute setting (within 24 hours after injury). Methods Nine patients with mTBI were prospectively recruited from the emergency department. Serum samples were collected at the time of hospital admission and every 6 hours up to 24 hours post injury. Neuronal (Ubiquitin C-terminal Hydrolase-L1 [UCH-L1]) and glial (glial fibrillary acidic protein [GFAP]) biomarker levels were analyzed. Advanced MRI data were acquired at 9±6.91 hours after injury. Patients’ neurocognitive status was assessed by using the Standard Assessment of Concussion (SAC) instrument. Results The median serum levels of UCH-L1 and GFAP on admission were increased 4.9 folds and 10.6 folds, respectively, compared to reference values. Three patients were found to have intracranial hemorrhages on SWI, all of whom had very high GFAP levels. Total volume of brain white matter (WM) with abnormal fractional anisotropy (FA) measures of diffusion tensor imaging (DTI) were negatively correlated with patients’ SAC scores, including delayed recall. Both increased and decreased DTI-FA values were observed in the same subjects. Serum biomarker level was not correlated with patients’ DTI data nor SAC score. Conclusions Blood biomarkers and advanced MRI may correlate or complement each other in different aspects of mTBI detection and characterization. GFAP might have potential to serve as a clinical screening tool for intracranial bleeding. UCH-L1 complements MRI in injury

  15. Haemostatic drugs for traumatic brain injury

    PubMed Central

    Perel, Pablo; Roberts, Ian; Shakur, Haleema; Thinkhamrop, Bandit; Phuenpathom, Nakornchai; Yutthakasemsunt, Surakrant

    2014-01-01

    Background Traumatic brain injury (TBI) is a leading cause of death and disability. Intracranial bleeding is a common complication of TBI, and intracranial bleeding can develop or worsen after hospital admission. Haemostatic drugs may reduce the occurrence or size of intracranial bleeds and consequently lower the morbidity and mortality associated with TBI. Objectives To assess the effects of haemostatic drugs on mortality, disability and thrombotic complications in patients with traumatic brain injury. Search methods We searched the electronic databases: Cochrane Injuries Group Specialised Register (3 February 2009), CENTRAL (The Cochrane Library 2009, Issue 1), MEDLINE (1950 to Week 3 2009), PubMed (searched 3 February 2009 (last 180 days)), EMBASE (1980 to Week 4 2009), CINAHL (1982 to January 2009), ISI Web of Science: Science Citation Index Expanded (SCI-EXPANDED) (1970 to January 2009), ISI Web of Science: Conference Proceedings Citation Index - Science (CPCI-S) (1990 to January 2009). Selection criteria We included published and unpublished randomised controlled trials comparing haemostatic drugs (antifibrinolytics: aprotinin, tranexamic acid (TXA), aminocaproic acid or recombined activated factor VIIa (rFVIIa)) with placebo, no treatment, or other treatment in patients with acute traumatic brain injury. Data collection and analysis Two review authors independently examined all electronic records, and extracted the data. We judged that there was clinical heterogeneity between trials so we did not attempt to pool the results of the included trials. The results are reported separately. Main results We included two trials. One was a post-hoc analysis of 30 TBI patients from a randomised controlled trial of rFVIIa in blunt trauma patients. The risk ratio for mortality at 30 days was 0.64 (95% CI 0.25 to 1.63) for rFVIIa compared to placebo. This result should be considered with caution as the subgroup analysis was not pre-specified for the trial. The other trial

  16. Traumatic Brain Injury by a Closed Head Injury Device Induces Cerebral Blood Flow Changes and Microhemorrhages

    PubMed Central

    Kallakuri, Srinivasu; Bandaru, Sharath; Zakaria, Nisrine; Shen, Yimin; Kou, Zhifeng; Zhang, Liying; Haacke, Ewart Mark; Cavanaugh, John M

    2015-01-01

    Objectives: Traumatic brain injury is a poly-pathology characterized by changes in the cerebral blood flow, inflammation, diffuse axonal, cellular, and vascular injuries. However, studies related to understanding the temporal changes in the cerebral blood flow following traumatic brain injury extending to sub-acute periods are limited. In addition, knowledge related to microhemorrhages, such as their detection, localization, and temporal progression, is important in the evaluation of traumatic brain injury. Materials and Methods: Cerebral blood flow changes and microhemorrhages in male Sprague Dawley rats at 4 h, 24 h, 3 days, and 7 days were assessed following a closed head injury induced by the Marmarou impact acceleration device (2 m height, 450 g brass weight). Cerebral blood flow was measured by arterial spin labeling. Microhemorrhages were assessed by susceptibility-weighted imaging and Prussian blue histology. Results: Traumatic brain injury rats showed reduced regional and global cerebral blood flow at 4 h and 7 days post-injury. Injured rats showed hemorrhagic lesions in the cortex, corpus callosum, hippocampus, and brainstem in susceptibility-weighted imaging. Injured rats also showed Prussian blue reaction products in both the white and gray matter regions up to 7 days after the injury. These lesions were observed in various areas of the cortex, corpus callosum, hippocampus, thalamus, and midbrain. Conclusions: These results suggest that changes in cerebral blood flow and hemorrhagic lesions can persist for sub-acute periods after the initial traumatic insult in an animal model. In addition, microhemorrhages otherwise not seen by susceptibility-weighted imaging are present in diverse regions of the brain. The combination of altered cerebral blood flow and microhemorrhages can potentially be a source of secondary injury changes following traumatic brain injury and may need to be taken into consideration in the long-term care of these cases. PMID:26605126

  17. A State-of-the-Science Overview of Randomized Controlled Trials Evaluating Acute Management of Moderate-to-Severe Traumatic Brain Injury.

    PubMed

    Bragge, Peter; Synnot, Anneliese; Maas, Andrew I; Menon, David K; Cooper, D James; Rosenfeld, Jeffrey V; Gruen, Russell L

    2016-08-15

    Moderate-to-severe traumatic brain injury (TBI) remains a major global challenge, with rising incidence, unchanging mortality and lifelong impairments. State-of-the-science reviews are important for research planning and clinical decision support. This review aimed to identify randomized controlled trials (RCTs) evaluating interventions for acute management of moderate/severe TBI, synthesize key RCT characteristics and findings, and determine their implications on clinical practice and future research. RCTs were identified through comprehensive database and other searches. Key characteristics, outcomes, risk of bias, and analysis approach were extracted. Data were narratively synthesized, with a focus on robust (multi-center, low risk of bias, n > 100) RCTs, and three-dimensional graphical figures also were used to explore relationships between RCT characteristics and findings. A total of 207 RCTs were identified. The 191 completed RCTs enrolled 35,340 participants (median, 66). Most (72%) were single center and enrolled less than 100 participants (69%). There were 26 robust RCTs across 18 different interventions. For 74% of 392 comparisons across all included RCTs, there was no significant difference between groups. Positive findings were broadly distributed with respect to RCT characteristics. Less than one-third of RCTs demonstrated low risk of bias for random sequence generation or allocation concealment, less than one-quarter used covariate adjustment, and only 7% employed an ordinal analysis approach. Considerable investment of resources in producing 191 completed RCTs for acute TBI management has resulted in very little translatable evidence. This may result from broad distribution of research effort, small samples, preponderance of single-center RCTs, and methodological shortcomings. More sophisticated RCT design, large multi-center RCTs in priority areas, increased focus on pre-clinical research, and alternatives to RCTs, such as comparative

  18. The clinical spectrum of sport-related traumatic brain injury.

    PubMed

    Jordan, Barry D

    2013-04-01

    Acute and chronic sports-related traumatic brain injuries (TBIs) are a substantial public health concern. Various types of acute TBI can occur in sport, but detection and management of cerebral concussion is of greatest importance as mismanagement of this syndrome can lead to persistent or chronic postconcussion syndrome (CPCS) or diffuse cerebral swelling. Chronic TBI encompasses a spectrum of disorders that are associated with long-term consequences of brain injury, including chronic traumatic encephalopathy (CTE), dementia pugilistica, post-traumatic parkinsonism, post-traumatic dementia and CPCS. CTE is the prototype of chronic TBI, but can only be definitively diagnosed at autopsy as no reliable biomarkers of this disorder are available. Whether CTE shares neuropathological features with CPCS is unknown. Evidence suggests that participation in contact-collision sports may increase the risk of neurodegenerative disorders such as Alzheimer disease, but the data are conflicting. In this Review, the spectrum of acute and chronic sport-related TBI is discussed, highlighting how examination of athletes involved in high-impact sports has advanced our understanding of pathology of brain injury and enabled improvements in detection and diagnosis of sport-related TBI.

  19. Neurological consequences of traumatic brain injuries in sports.

    PubMed

    Ling, Helen; Hardy, John; Zetterberg, Henrik

    2015-05-01

    Traumatic brain injury (TBI) is common in boxing and other contact sports. The long term irreversible and progressive aftermath of TBI in boxers depicted as punch drunk syndrome was described almost a century ago and is now widely referred as chronic traumatic encephalopathy (CTE). The short term sequelae of acute brain injury including subdural haematoma and catastrophic brain injury may lead to death, whereas mild TBI, or concussion, causes functional disturbance and axonal injury rather than gross structural brain damage. Following concussion, symptoms such as dizziness, nausea, reduced attention, amnesia and headache tend to develop acutely but usually resolve within a week or two. Severe concussion can also lead to loss of consciousness. Despite the transient nature of the clinical symptoms, functional neuroimaging, electrophysiological, neuropsychological and neurochemical assessments indicate that the disturbance of concussion takes over a month to return to baseline and neuropathological evaluation shows that concussion-induced axonopathy may persist for years. The developing brains in children and adolescents are more susceptible to concussion than adult brain. The mechanism by which acute TBI may lead to the neurodegenerative process of CTE associated with tau hyperphosphorylation and the development of neurofibrillary tangles (NFTs) remains speculative. Focal tau-positive NFTs and neurites in close proximity to focal axonal injury and foci of microhaemorrhage and the predilection of CTE-tau pathology for perivascular and subcortical regions suggest that acute TBI-related axonal injury, loss of microvascular integrity, breach of the blood brain barrier, resulting inflammatory cascade and microglia and astrocyte activation are likely to be the basis of the mechanistic link of TBI and CTE. This article provides an overview of the acute and long-term neurological consequences of TBI in sports. Clinical, neuropathological and the possible pathophysiological

  20. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage.

    PubMed

    Villapol, Sonia; Balarezo, María G; Affram, Kwame; Saavedra, Juan M; Symes, Aviva J

    2015-11-01

    See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and

  1. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage

    PubMed Central

    Balarezo, María G.; Affram, Kwame; Saavedra, Juan M.; Symes, Aviva J.

    2015-01-01

    See Moon (doi:10.1093/awv239) for a scientific commentary on this article. Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan’s blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking

  2. [Acute radiation injury].

    PubMed

    Saito, Tsutomu

    2012-03-01

    Cell death due to DNA damage by ionizing radiation causes acute radiation injury of tissues and organs. Frequency and severity of the injuries increase according to dose increase, when the dose becomes more than threshold dose. The threshold dose of acute human radiation death is 1 Gy and LD50 of human is 4 Gy. Human dies due to the cerebrovascular syndrome, the gastrointestinal syndrome or the hematopoetic syndrome, when he received more than 20 Gy, 10-20 Gy or 3-8 Gy to his total body, respectively. Any tissue or organ, including embryo and fetus, does not show the acute injury, when it received less than 100 mSv. Acute injuries are usually reversible, and late injuries are sometimes irreversible.

  3. Purines: forgotten mediators in traumatic brain injury.

    PubMed

    Jackson, Edwin K; Boison, Detlev; Schwarzschild, Michael A; Kochanek, Patrick M

    2016-04-01

    Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI.

  4. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure

    PubMed Central

    Zhou, Bao-chun; Liu, Li-jun; Liu, Bing

    2016-01-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO2) and oxygen partial pressure (PaO2). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO2 were measured. The controls were also examined for rSO2 and PaO2, but received no treatment. rSO2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth. PMID:27857747

  5. Sleep in traumatic brain injury.

    PubMed

    Mazwi, Nicole L; Fusco, Heidi; Zafonte, Ross

    2015-01-01

    Sleep disturbances affect more than half of survivors of traumatic brain injury (TBI) and have the potential to undermine rehabilitation, recovery, and outcomes. Normal sleep architecture has been well-described and the neurophysiology of sleep is becoming better understood in recent years, though this complex process continues to be dissected for better appreciation. There are numerous types of sleep disorder, most of which fall under two categories: dyssomnias and parasomnias. In more challenging scenarios patients may be plagued with more than one dyssomnia and/or parasomnia simultaneously, complicating the diagnostic and therapeutic approach. Objective and subjective methods are used to evaluate sleep disorders and help distinguish them from psychiatric and environmental contributors to poor sleep. There are several pharmacologic and nonpharmacologic treatments options for sleep disturbances after TBI, many of which have been particularly helpful in restoring adequate quantity and quality of sleep for survivors. However, to date no consensus has been established regarding how to treat this entity, and it may be that a multimodal approach is ultimately best.

  6. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an...

  7. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an...

  8. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an...

  9. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an...

  10. Traumatic Brain Injury: Looking Back, Looking Forward

    ERIC Educational Resources Information Center

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  11. Resource Guide on Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Monfore, Dorothea

    2005-01-01

    The purpose of this resource guide on traumatic brain injury (TBI) is to provide assistance to educators, families, and professionals who may be striving to increase their knowledge and understanding of brain injury. This guide will hopefully become an initial resource. It provides: a glossary of TBI Terms; contact information for and brief…

  12. Traumatic Brain Injury. Fact Sheet Number 18.

    ERIC Educational Resources Information Center

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet describes traumatic brain injury (TBI), an injury of the brain caused by the head being hit by something or being shaken violently. It discusses the incidence of TBI, and describes its symptoms as changes in thinking and reasoning, understanding words, remembering things, paying attention, solving problems, thinking abstractly,…

  13. Understanding Traumatic Brain Injury: An Introduction

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  14. Behavioral Considerations Associated with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Mayfield, Joan; Homack, Susan

    2005-01-01

    Children who sustain traumatic brain injury (TBI) can experience significant cognitive deficits. These deficits may significantly impair their functioning in the classroom, resulting in the need for academic and behavioral modifications. Behavior and social problems can be the direct or indirect result of brain injury. Difficulties in paying…

  15. Investigating Microstructural Abnormalities and Neurocognition in Sub-Acute and Chronic Traumatic Brain Injury Patients with Normal-Appearing White Matter: A Preliminary Diffusion Tensor Imaging Study

    PubMed Central

    Hashim, Eyesha; Caverzasi, Eduardo; Papinutto, Nico; Lewis, Caroline E.; Jing, Ruiwei; Charles, Onella; Zhang, Shudong; Lin, Amy; Graham, Simon J.; Schweizer, Tom A.; Bharatha, Aditya; Cusimano, Michael D.

    2017-01-01

    For a significant percentage of subjects, with chronic traumatic brain injury (TBI), who report persisting cognitive impairment and functional loss, the diagnosis is often impeded by the fact that routine neuroimaging often does not reveal any abnormalities. In this paper, we used diffusion tensor imaging (DTI) to investigate the apparently normal white matter (as assessed by routine magnetic resonance imaging) in the brains of 19 subjects with sub-acute (9) and chronic (10) TBI. We also assessed memory, executive function, and visual-motor coordination in these subjects. Using a voxel-wise approach, we investigated if parameters of diffusion were significantly different between TBI subjects and 17 healthy controls (HC), who were demographically matched to the TBI group. We also investigated if changes in DTI parameters were associated with neuropsychological performance in either group. Our results indicate significantly increased mean and axial diffusivity (MD and AD, respectively) values in widespread brain locations in TBI subjects, while controlling for age, sex, and time since injury. HC performed significantly better than the TBI subjects on tests of memory and executive function, indicating the persisting functional loss in chronic TBI. We found no correlation between diffusion parameters and performance on test of executive function in either group. We found negative correlation between FA and composite memory scores, and positive correlation between RD and visuomotor coordination test scores, in various tracts in both groups. Our study suggests that changes in MD and AD can indicate persisting micro-structure abnormalities in normal-appearing white matter in the brains of subjects with chronic TBI. Our results also suggest that FA in major white matter tracts is correlated with memory in health and in disease, alike; larger and longitudinal studies are needed to discern potential differences in these correlations in the two groups. PMID:28373856

  16. Investigating Microstructural Abnormalities and Neurocognition in Sub-Acute and Chronic Traumatic Brain Injury Patients with Normal-Appearing White Matter: A Preliminary Diffusion Tensor Imaging Study.

    PubMed

    Hashim, Eyesha; Caverzasi, Eduardo; Papinutto, Nico; Lewis, Caroline E; Jing, Ruiwei; Charles, Onella; Zhang, Shudong; Lin, Amy; Graham, Simon J; Schweizer, Tom A; Bharatha, Aditya; Cusimano, Michael D

    2017-01-01

    For a significant percentage of subjects, with chronic traumatic brain injury (TBI), who report persisting cognitive impairment and functional loss, the diagnosis is often impeded by the fact that routine neuroimaging often does not reveal any abnormalities. In this paper, we used diffusion tensor imaging (DTI) to investigate the apparently normal white matter (as assessed by routine magnetic resonance imaging) in the brains of 19 subjects with sub-acute (9) and chronic (10) TBI. We also assessed memory, executive function, and visual-motor coordination in these subjects. Using a voxel-wise approach, we investigated if parameters of diffusion were significantly different between TBI subjects and 17 healthy controls (HC), who were demographically matched to the TBI group. We also investigated if changes in DTI parameters were associated with neuropsychological performance in either group. Our results indicate significantly increased mean and axial diffusivity (MD and AD, respectively) values in widespread brain locations in TBI subjects, while controlling for age, sex, and time since injury. HC performed significantly better than the TBI subjects on tests of memory and executive function, indicating the persisting functional loss in chronic TBI. We found no correlation between diffusion parameters and performance on test of executive function in either group. We found negative correlation between FA and composite memory scores, and positive correlation between RD and visuomotor coordination test scores, in various tracts in both groups. Our study suggests that changes in MD and AD can indicate persisting micro-structure abnormalities in normal-appearing white matter in the brains of subjects with chronic TBI. Our results also suggest that FA in major white matter tracts is correlated with memory in health and in disease, alike; larger and longitudinal studies are needed to discern potential differences in these correlations in the two groups.

  17. Effect of acute poly(ADP-ribose) polymerase inhibition by 3-AB on blood-brain barrier permeability and edema formation after focal traumatic brain injury in rats.

    PubMed

    Lescot, Thomas; Fulla-Oller, Laurence; Palmier, Bruno; Po, Christelle; Beziaud, Tiphaine; Puybasset, Louis; Plotkine, Michel; Gillet, Brigitte; Meric, Philippe; Marchand-Leroux, Catherine

    2010-06-01

    Recent evidence supports a crucial role for matrix metalloproteinase-9 (MMP-9) in blood-brain barrier (BBB) disruption and vasogenic edema formation after traumatic brain injury (TBI). Although the exact causes of MMP-9 upregulation after TBI are not fully understood, several arguments suggest a contribution of the enzyme poly(ADP-ribose)polymerase (PARP) in the neuroinflammatory response leading to MMP-9 activation. The objectives of this study were to evaluate the effect of PARP inhibition by 3-aminobenzamide (3-AB) (1) on MMP-9 upregulation and BBB integrity, (2) on edema formation as assessed by magnetic resonance imaging (MRI), (3) on neuron survival as assessed by (1)H magnetic resonance spectroscopy ((1)H-MRS), and (4) on neurological deficits at the acute phase of TBI. Western blots and zymograms showed blunting of MMP-9 upregulation 6 h after TBI. BBB permeability was decreased at the same time point in 3-AB-treated rats compared to vehicle-treated rats. Cerebral MRI showed less "free" water in 3-AB-treated than in vehicle-treated rats 6 h after TBI. MRI findings 24 h after TBI indicated predominant cytotoxic edema, and at this time point no significant differences were found between 3-AB- and vehicle-treated rats with regard to MMP-9 upregulation, BBB permeability, or MRI changes. At both 6 and 24 h, neurological function was better in the 3-AB-treated than in the vehicle-treated rats. These data suggest that PARP inhibition by 3-AB protected the BBB against hyperpermeability induced by MMP-9 upregulation, thereby decreasing vasogenic edema formation 6 h after TBI. Furthermore, our data confirm the neuroprotective effect of 3-AB at the very acute phase of TBI.

  18. Systemic manifestations of traumatic brain injury.

    PubMed

    Gaddam, Samson Sujit Kumar; Buell, Thomas; Robertson, Claudia S

    2015-01-01

    Traumatic brain injury (TBI) affects functioning of various organ systems in the absence of concomitant non-neurologic organ injury or systemic infection. The systemic manifestations of TBI can be mild or severe and can present in the acute phase or during the recovery phase. Non-neurologic organ dysfunction can manifest following mild TBI or severe TBI. The pathophysiology of systemic manifestations following TBI is multifactorial and involves an effect on the autonomic nervous system, involvement of the hypothalamic-pituitary axis, release of inflammatory mediators, and treatment modalities used for TBI. Endocrine dysfunction, electrolyte imbalance, and respiratory manifestations are common following TBI. The influence of TBI on systemic immune response, coagulation cascade, cardiovascular system, gastrointestinal system, and other systems is becoming more evident through animal studies and clinical trials. Systemic manifestations can independently act as risk factors for mortality and morbidity following TBI. Some conditions like neurogenic pulmonary edema and disseminated intravascular coagulation can adversely affect the outcome. Early recognition and treatment of systemic manifestations may improve the clinical outcome following TBI. Further studies are required especially in the field of neuroimmunology to establish the role of various biochemical cascades, not only in the pathophysiology of TBI but also in its systemic manifestations and outcome.

  19. The neuropathology and neurobiology of traumatic brain injury.

    PubMed

    Blennow, Kaj; Hardy, John; Zetterberg, Henrik

    2012-12-06

    The acute and long-term consequences of traumatic brain injury (TBI) have received increased attention in recent years. In this Review, we discuss the neuropathology and neural mechanisms associated with TBI, drawing on findings from sports-induced TBI in athletes, in whom acute TBI damages axons and elicits both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE). We also consider how the neuropathology and neurobiology of CTE in many ways resembles other neurodegenerative illnesses such as Alzheimer's disease, particularly with respect to mismetabolism and aggregation of tau, β-amyloid, and TDP-43. Finally, we explore how translational research in animal models of acceleration/deceleration types of injury relevant for concussion together with clinical studies employing imaging and biochemical markers may further elucidate the neurobiology of TBI and CTE.

  20. Anesthesia for Patients with Traumatic Brain Injuries.

    PubMed

    Bhattacharya, Bishwajit; Maung, Adrian A

    2016-12-01

    Traumatic brain injury (TBI) represents a wide spectrum of disease and disease severity. Because the primary brain injury occurs before the patient enters the health care system, medical interventions seek principally to prevent secondary injury. Anesthesia teams that provide care for patients with TBI both in and out of the operating room should be aware of the specific therapies and needs of this unique and complex patient population.

  1. What Can I Do to Help Prevent Traumatic Brain Injury?

    MedlinePlus

    ... Cancel Submit Search The CDC Traumatic Brain Injury & Concussion Note: Javascript is disabled or is not supported ... this page: About CDC.gov . Traumatic Brain Injury & Concussion Basic Information Get the Facts Signs and Symptoms ...

  2. Post-traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury

    DTIC Science & Technology

    2014-10-01

    Mindfulness Training for Mild Traumatic Brain Injury PRINCIPAL INVESTIGATOR: Sutapa Ford, PhD CONTRACTING ORGANIZATION...other documentation. PT090084: “Post-traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury (Contract...Psychological Health: 5a. CONTRACT NUMBER Mindfulness Training for Mild Traumatic Brain Injury” 5b. GRANT NUMBER W81XWH

  3. Discriminating military and civilian traumatic brain injuries.

    PubMed

    Reid, Matthew W; Velez, Carmen S

    2015-05-01

    Traumatic brain injury (TBI) occurs at higher rates among service members than civilians. Explosions from improvised explosive devices and mines are the leading cause of TBI in the military. As such, TBI is frequently accompanied by other injuries, which makes its diagnosis and treatment difficult. In addition to postconcussion symptoms, those who sustain a TBI commonly report chronic pain and posttraumatic stress symptoms. This combination of symptoms is so typical they have been referred to as the "polytrauma clinical triad" among injured service members. We explore whether these symptoms discriminate civilian occurrences of TBI from those of service members, as well as the possibility that repeated blast exposure contributes to the development of chronic traumatic encephalopathy (CTE). This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

  4. The Evolution of Post-Traumatic Stress Disorder following Moderate-to-Severe Traumatic Brain Injury.

    PubMed

    Alway, Yvette; Gould, Kate Rachel; McKay, Adam; Johnston, Lisa; Ponsford, Jennie

    2016-05-01

    Increasing evidence indicates that post-traumatic stress disorder (PTSD) may develop following traumatic brain injury (TBI), despite most patients having no conscious memory of their accident. This prospective study examined the frequency, timing of onset, symptom profile, and trajectory of PTSD and its psychiatric comorbidities during the first 4 years following moderate-to-severe TBI. Participants were 85 individuals (78.8% male) with moderate or severe TBI recruited following admission to acute rehabilitation between 2005 and 2010. Using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Disorders (SCID-I), participants were evaluated for pre- and post-injury PTSD soon after injury and reassessed at 6 months, 12 months, 2 years, 3 years, and 4 years post-injury. Over the first 4 years post-injury, 17.6% developed injury-related PTSD, none of whom had PTSD prior to injury. PTSD onset peaked between 6 and 12 months post-injury. The majority of PTSD cases (66.7%) had a delayed-onset, which for a third was preceded by subsyndromal symptoms in the first 6 months post-injury. PTSD frequency increased over the first year post-injury, remained stable during the second year, and gradually declined thereafter. The majority of subjects with PTSD experienced a chronic symptom course and all developed one or more than one comorbid psychiatric disorder, with mood, other anxiety, and substance-use disorders being the most common. Despite event-related amnesia, post-traumatic stress symptoms, including vivid re-experiencing phenomena, may develop following moderate-to-severe TBI. Onset is typically delayed and symptoms may persist for several years post-injury.

  5. Traumatic Axonal Injury: Mechanisms and Translational Opportunities.

    PubMed

    Hill, Ciaran S; Coleman, Michael P; Menon, David K

    2016-05-01

    Traumatic axonal injury (TAI) is an important pathoanatomical subgroup of traumatic brain injury (TBI) and a major driver of mortality and functional impairment. Experimental models have provided insights into the effects of mechanical deformation on the neuronal cytoskeleton and the subsequent processes that drive axonal injury. There is also increasing recognition that axonal or white matter loss may progress for years post-injury and represent one mechanistic framework for progressive neurodegeneration after TBI. Previous trials of novel therapies have failed to make an impact on clinical outcome, in both TBI in general and TAI in particular. Recent advances in understanding the cellular and molecular mechanisms of injury have the potential to translate into novel therapeutic targets.

  6. Traumatic musculotendinous injuries of the knee: diagnosis with MR imaging.

    PubMed

    Bencardino, J T; Rosenberg, Z S; Brown, R R; Hassankhani, A; Lustrin, E S; Beltran, J

    2000-10-01

    Magnetic resonance (MR) imaging is the imaging modality of choice for evaluation of acute traumatic musculotendinous injuries of the knee. Three discrete categories of acute injuries to the musculotendinous unit can be defined: muscle contusion, myotendinous strain, and tendon avulsion. Among the quadriceps muscles, the rectus femoris is the most susceptible to injury at the myotendinous junction due to its superficial location, predominance of type II fibers, eccentric muscle action, and extension across two joints. Among the muscles of the pes anserinus, the sartorius is the most susceptible to strain injury due to its superficial location and biarticular course. The classic fusiform configuration of the semimembranosus along with a propensity for eccentric actions also make it prone to strain injury. MR imaging findings associated with rupture of the iliotibial tract include discontinuity and edema, which are best noted on coronal images. The same mechanism of injury that tears the arcuate ligament from its fibular insertion can also result in avulsion injury of the biceps femoris. The gastrocnemius muscle is prone to strain injury due to its action across two joints and its superficial location. Injuries of the muscle belly and myotendinous junction of the popliteus are far more common than tendinous injuries.

  7. Epidemiology and sociodemographic aspects of ocular traumatic injuries in Iran.

    PubMed

    Jafari, Alireza Keshtkar; Anvari, Faramarz; Ameri, Ahmad; Bozorgui, Shima; Shahverdi, Nooshin

    2010-12-01

    Although the incidence of ocular trauma has been clearly described in developed countries, few published data are available on the epidemiology and the effects of parameters that can influence the incidence and severity of ocular injuries in Iran. The present study tried to determine epidemiological aspects of ocular traumatic injuries and evaluate their effects on different types of ocular injury. The case series included 1950 consecutive patients with acute ophthalmic trauma presented to the emergency ward of Farabi Hospital in Tehran. Information was collected by interviewing patients and having them fill in a questionnaire. The final diagnosis was made by a medical resident. If there was a difficulty or doubt in diagnosis or classification, confirmation of diagnosis was made by senior faculty. Ocular injuries were classified into globe and non-globe injuries according to the site of injury. Mechanical globe injuries were classified according to Birmingham Eye Trauma Terminology (BETT) into closed and open injuries. The mean age of patients was 28.8 ± 12.8 years; 87.6% were male. The most common causes of injury were work-related (49.0%) and chance events (42.0%). The most frequent ocular injury was globe injury (95.6%), including mechanical (77.6% closed and 5.9% open), chemical (7.6%), photic (2.3%) and thermal (2.2%) injuries. Non-globe injury also occurred in 10.8% of patients; both globe and non-globe injuries occurred in 6.5% of patients. The hospitalization rate in all patients was 8.8%. Previous history of eye trauma was significantly more common in the group with isolated globe injuries (P < 0.001). History of eye trauma is a risk factor for globe injuries and female gender is a risk factor only for non-globe injuries. These two factors may predict future eye injury and increase its risk by 5.2 and 1.6 times, respectively.

  8. Mapping the Connectome Following Traumatic Brain Injury.

    PubMed

    Hannawi, Yousef; Stevens, Robert D

    2016-05-01

    There is a paucity of accurate and reliable biomarkers to detect traumatic brain injury, grade its severity, and model post-traumatic brain injury (TBI) recovery. This gap could be addressed via advances in brain mapping which define injury signatures and enable tracking of post-injury trajectories at the individual level. Mapping of molecular and anatomical changes and of modifications in functional activation supports the conceptual paradigm of TBI as a disorder of large-scale neural connectivity. Imaging approaches with particular relevance are magnetic resonance techniques (diffusion weighted imaging, diffusion tensor imaging, susceptibility weighted imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, and positron emission tomographic methods including molecular neuroimaging). Inferences from mapping represent unique endophenotypes which have the potential to transform classification and treatment of patients with TBI. Limitations of these methods, as well as future research directions, are highlighted.

  9. Influence of Combat Blast-Related Mild Traumatic Brain Injury Acute Symptoms on Mental Health and Service Discharge Outcomes

    DTIC Science & Technology

    2013-08-15

    of consciousness (LOC) (34.5%), and tinnitus (33.2%). LOC was predictive of PTSD (odds ratio [OR] 1.54; 95% confidence interval [Cl] 1.18, 2.00) and...in hearing; ear numbness, pressure; NOT tinnitus /pain Tinnitus Ringing/buzzing in one or both ears Visual deficit Visual loss, blurry not due to...LOC, altered mental status, amnesia, headache, tinnitus ), previous blast exposure, and history of previous concussion. Age at time of injury (five year

  10. Reducing Secondary Insults in Traumatic Brain Injury

    DTIC Science & Technology

    2013-04-01

    persons, and leaves 99,000 persons permanently disabled [1]. The total cost for treatment and rehabilitation of patients with brain injuries is...registry based or retrospective or include only secondary insults that occur in the intensive care unit ( ICU ) setting. Most prior investigations have...in the surgical and neurosurgical ICU diagnosed with a traumatic brain injury requiring a diagnostic procedure were eligible for the study. The study

  11. Acute Traumatic Coagulopathy: Initiated by Hypoperfusion

    PubMed Central

    Brohi, Karim; Cohen, Mitchell J.; Ganter, Michael T.; Matthay, Michael A.; Mackersie, Robert C.; Pittet, Jean-François

    2007-01-01

    Objectives: Coagulopathy following major trauma is conventionally attributed to activation and consumption of coagulation factors. Recent studies have identified an acute coagulopathy present on admission that is independent of injury severity. We hypothesized that early coagulopathy is due to tissue hypoperfusion, and investigated derangements in coagulation associated with this. Methods: This was a prospective cohort study of major trauma patients admitted to a single trauma center. Blood was drawn within 10 minutes of arrival for analysis of partial thromboplastin and prothrombin times, prothrombin fragments 1+2, fibrinogen, thrombomodulin, protein C, plasminogen activator inhibitor-1, and d-dimers. Base deficit (BD) was used as a measure of tissue hypoperfusion. Results: A total of 208 patients were enrolled. Patients without tissue hypoperfusion were not coagulopathic, irrespective of the amount of thrombin generated. Prolongation of the partial thromboplastin and prothrombin times was only observed with an increased BD. An increasing BD was associated with high soluble thrombomodulin and low protein C levels. Low protein C levels were associated with prolongation of the partial thromboplastin and prothrombin times and hyperfibrinolysis with low levels of plasminogen activator inhibitor-1 and high d-dimer levels. High thrombomodulin and low protein C levels were significantly associated with increased mortality, blood transfusion requirements, acute renal injury, and reduced ventilator-free days. Conclusions: Early traumatic coagulopathy occurs only in the presence of tissue hypoperfusion and appears to occur without significant consumption of coagulation factors. Alterations in the thrombomodulin-protein C pathway are consistent with activated protein C activation and systemic anticoagulation. Admission plasma thrombomodulin and protein C levels are predictive of clinical outcomes following major trauma. PMID:17457176

  12. Traumatic dental injuries and Alpine skiing.

    PubMed

    Gassner, R; Vàsquez Garcia, J; Leja, W; Stainer, M

    2000-06-01

    The purpose of this study was to determine the occurrence and type of traumatic dental injuries after maxillofacial injuries as a result of Alpine skiing. During an 8-year period (from January 1991 to December 1998) 7600 patients with facial injuries were registered at the Department of Oral and Maxillofacial Surgery, University of Innsbruck, Austria. Of 784 patients with skiing-related facial injuries (524 males, 260 females) 326 (41.6%) sustained injuries to 639 teeth. The age groups predominantly affected were between 7 and 32 years. Luxation injuries occurred in 338 (53%) teeth, fractures accounted for 270 tooth injuries (42%), and only 35 (5%) were lost at the place of the accident. Of skiers with traumatic dental injuries 58% had concomitant soft tissue injuries, while 23.3% had associated facial bone fractures. The most common causes of injury were falls in 42% (329 patients) and collisions with other persons in 24.1% (189 patients). Being hit by one's own sports equipment (11%) was the third most common cause. Collisions with obstacles accounted for 9% and lift accidents for 5.6% of injuries. The probability of suffering dentoalveolar trauma during skiing varied depending on the injury mechanism. There was a 2-fold risk for dentoalveolar trauma when colliding with objects, a 3.5-fold risk when hit by one's own equipment and a 8.5-fold risk during lift accidents. Dental injuries occurred in about 2% of all injured skiers. Dental health professionals should be aware of the high incidence and the distribution of dental trauma and facial injuries caused by skiing.

  13. Catecholamines and cognition after traumatic brain injury

    PubMed Central

    Jenkins, Peter O.; Mehta, Mitul A.

    2016-01-01

    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. PMID:27256296

  14. Inappropriate treatment of traumatic dental injuries.

    PubMed

    Dorney, B

    1999-08-01

    Traumatic dental injuries are emergencies that must be treated expediently and efficiently to reduce pain and to restore function and appearance. With an increase in the incidence of traumatic dental injuries in our community (I) it is essential that the dental practitioner has "up-to-date" knowledge of dental trauma. The peak incidences of injury are 2-4 years and 8-10 years of age, with statistics revealing 30% of children suffer trauma to the primary dentition, and 22% of children suffer trauma to the permanent dentition by the age of 14 (I). The male to female ratio is 2:1. Aside from the emergency treatment and clinical decisions that must be made at the time of injury there is a need for long-term follow-up because of the high incidences of complications (2, 3). The factors that will influence the extent of injury will be energy impact, the direction of the impacting object, its shape and its resilience (4). Recent articles have raised concerns about inappropriate treatment for traumatic dental injuries (5, 6). This report will look at one such case.

  15. Narrative Language in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  16. Reality Lessons in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Adams, Elaine Parker; Adams, Albert A., Jr.

    2008-01-01

    This article goes beyond the typical guidance on how to address the educational needs of students with traumatic brain injury (TBI). A survivor of TBI and his parent advocate describe real-life encounters in the education arena and offer ways to respond to the problems depicted in the situations. Their candor enhances educator awareness of the…

  17. Traumatic Brain Injury: Perspectives from Educational Professionals

    ERIC Educational Resources Information Center

    Mohr, J. Darrell; Bullock, Lyndal M.

    2005-01-01

    This article reports the outcomes from 2 focus groups conducted to ascertain professional educators' perceptions regarding their (a) level of preparedness for working with students with traumatic brain injury (TBI), (b) ideas regarding ways to improve support to students and families, and (c) concerns about meeting the diverse needs of children…

  18. Working with Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  19. Psychiatric disorders and traumatic brain injury

    PubMed Central

    Schwarzbold, Marcelo; Diaz, Alexandre; Martins, Evandro Tostes; Rufino, Armanda; Amante, Lúcia Nazareth; Thais, Maria Emília; Quevedo, João; Hohl, Alexandre; Linhares, Marcelo Neves; Walz, Roger

    2008-01-01

    Psychiatric disorders after traumatic brain injury (TBI) are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed. PMID:19043523

  20. [A man with severe traumatic brain injury].

    PubMed

    Oudeman, Eline A; Martins Jarnalo, Carine O; van Ouwerkerk, Willem J R

    2013-01-01

    We present a 41-year-old man with severe traumatic brain injury. Cranial imaging studies revealed cerebral contusion and a longitudinal fracture of the temporal bone. Several days later brain herniated into the left external auditory canal. Imaging studies showed the known skull fracture with a direct connection between the external acoustic meatus and the intracranial structures.

  1. Traumatic Brain Injury and Personality Change

    ERIC Educational Resources Information Center

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  2. Traumatic Brain Injury and Vocational Rehabilitation.

    ERIC Educational Resources Information Center

    Corthell, David W., Ed.

    Intended to serve as a resource guide on traumatic brain injury for rehabilitation practitioners, the book's 10 chapters are grouped into sections which provide an introduction and examine aspects of evaluation, treatment and placement planning, and unresolved issues. Chapters have the following titles and authors: "Scope of the Problem" (Marilyn…

  3. School Reentry Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Deidrick, Kathleen K. M.; Farmer, Janet E.

    2005-01-01

    Successful school reentry following traumatic brain injury (TBI) is critical to recovery. Physical, cognitive, behavioral, academic, and social problems can affect a child's school performance after a TBI. However, early intervention has the potential to improve child academic outcomes and promote effective coping with any persistent changes in…

  4. Traumatic Brain Injury. Quick Turn Around (QTA).

    ERIC Educational Resources Information Center

    Markowitz, Joy; Linehan, Patrice

    This brief paper summarizes information concerning use of the traumatic brain injury (TBI) disability classification by states and the nature of state-level activities related to the education of children and youth with TBI. It notes addition of the TBI disability category to the Individuals with Disabilities Education Act in 1990 and provides the…

  5. Traumatic Brain Injury: A Guidebook for Educators.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Office for Special Education Services.

    This guidebook is designed to help New York school staff better understand the specialized needs of students with traumatic brain injury (TBI) and appropriately apply educational interventions to improve special and general education services for these students. It provides information on the following areas: (1) the causes, incidence, and…

  6. Traumatic brain injury and posttraumatic stress disorder.

    PubMed

    Bahraini, Nazanin H; Breshears, Ryan E; Hernández, Theresa D; Schneider, Alexandra L; Forster, Jeri E; Brenner, Lisa A

    2014-03-01

    Given the upsurge of research in posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI), much of which has focused on military samples who served in Iraq and Afghanistan, the purpose of this article is to review the literature published after September 11th, 2001 that addresses the epidemiology, pathophysiology, evaluation, and treatment of PTSD in the context of TBI.

  7. [Acute Kidney Injury].

    PubMed

    Brix, Silke; Stahl, Rolf

    2017-02-01

    Acute kidney injury (AKI) is an important part of renal diseases and a common clinical problem. AKI is an acute decline in renal function. Due to a lack of therapeutic options, prevention and optimal management of patients with AKI are the most important strategies. Although seldom the sole cause of patients' death, AKI is associated with a significant increase in mortality. Our objective is to draw the attention towards the prevention of AKI of non-renal causes.

  8. Acute injuries in orienteerers.

    PubMed

    Kujala, U M; Nylund, T; Taimela, S

    1995-02-01

    The aim of this study was to characterize the type and severeity of acute injuries occurring in Finnish orienteerers in 1987 to 1991. The study is based on the orienteering license insurance records accounting for 2189 orienteering injuries during 69268 person-years of exposure in active orienteerers. Of these orienteerers, 73.0% were male; 73.5% (N = 1608) of all injuries occurred in males, so the injury rate was similar in males and females. The rate was highest in orienteerers 20 to 24 years of age and lowest in children. Injuries occurred most commonly during May to September (78.9% or all injuries), the months which include the orienteering competition season, and were more common during competitions (59.8%) than during training. A high number of the injuries occurred during weekends (58.9% of injuries) including 68.1% of all competition injuries and 44.9% of all training injuries. The lower limbs were involved in 1611 (73.6%) of cases, the ankle (28.7%) and the knee (23.2%) being the two most common injury locations. Sprains, strains and contusions were the most common injuries. Wounds were proportionally more common in males than in females while ankle sprains were more common in females. Fractures, seven open and 94 closed, accounted for 4.6% of injuries; they were most common in the hand/wrist/forearm (N = 44) and ankle (N = 16), and were more frequent during competition (62.3%) than during training. The most important areas for preventive measures seem to be the ankle and the knee.

  9. Neglected Thoraco Lumbar Traumatic Spine Injuries

    PubMed Central

    Khatri, Kavin; Sharma, Vijay; Gupta, Babita; Gamanagatti, Shivanand

    2016-01-01

    Study Design Retrospective study. Purpose To outline the etiology, complications and management difficulties encountered in the management of neglected thoracolumbar spine injuries. Overview of Literature The English literature describes overlooked diagnosis as the most common cause of neglected spine injuries. However, the reasons differ in developing or under-developed nations. Moreover, there is scarcity of literature about the neglected spinal injuries. Methods Patients presenting with thoracolumbar traumatic injuries who had not received any form of treatment for more than three weeks were included in the study. The demographic details, operative procedure performed and complications encountered, along with American Spinal Injury Association grade and spinal cord independence measure score recorded on the history sheets were noted. The data were analyzed. Results Forty patients were included in the study. Inadequate treatment at the first contact hospital (45%) followed by late presentation (38%) and missed injury (17%) were the major etiological factors for the neglected traumatic injuries in the thoracolumbar spine. The most common complications seen in the management of these cases were pressure sores (58%), back pain (57%), urinary tract infection (42%) and residual kyphotic deformity (42%). Conclusions Management of neglected thoracolumbar injuries is challenging. The delay in presentation should not prevent spine surgeon in proceeding with operative intervention as good results can be expected. PMID:27559447

  10. Effects of electromyostimulation on muscle and bone in men with acute traumatic spinal cord injury: A randomized clinical trial

    PubMed Central

    Arija-Blázquez, Alfredo; Ceruelo-Abajo, Silvia; Díaz-Merino, María S.; Godino-Durán, Juan Antonio; Martínez-Dhier, Luís; Martin, José L. R.; Florensa-Vila, José

    2014-01-01

    Objective To study the effect of 14 weeks of electromyostimulation (EMS) training (47 minutes/day, 5 days/week) on both muscle and bone loss prevention in persons with recent, complete spinal cord injury (SCI). Design Prospective, experimental, controlled, single-blind randomized trial with external blind evaluation by third parties. Methods Eight men with recent SCI (8 weeks from injury; ASIA Impairment Scale (AIS) “A”) were randomized into the intervention or the control groups. Cross-sectional area of the quadriceps femoris (QF) muscle was quantified using magnetic resonance imaging. Bone mineral density changes were assessed with a dual-energy X-ray absorptiometry. Several bone biomarkers (i.e. total testosterone, cortisol, growth hormone, insulin-growth factor I, osteocalcin, serum type I collagen C-telopeptide), lipid, and lipoprotein profiles were quantified. A standard oral glucose tolerance test was performed before and after the 14-week training. All analyses were conducted at the beginning and after the intervention. Results The intervention group showed a significant increase in QF muscle size when compared with the control group. Bone losses were similar in both groups. Basal levels of bone biomarkers did not change over time. Changes in lipid and lipoprotein were similar in both groups. Glucose and insulin peaks moved forward after the training in the intervention group. Conclusions This study indicates that skeletal muscle of patients with complete SCI retains the ability to grow in response to a longitudinal EMS training, while bone does not respond to similar external stimulus. Increases in muscle mass might have induced improvements in whole body insulin-induced glucose uptake. PMID:24090427

  11. [Neuroendocrine dysfunctions and their consequences following traumatic brain injury].

    PubMed

    Czirják, Sándor; Rácz, Károly; Góth, Miklós

    2012-06-17

    Posttraumatic hypopituitarism is of major public health importance because it is more prevalent than previously thought. The prevalence of hypopituitarism in children with traumatic brain injury is unknown. Most cases of posttraumatic hypopituitarism remain undiagnosed and untreated in the clinical practice, and it may contribute to the severe morbidity seen in patients with traumatic brain injury. In the acute phase of brain injury, the diagnosis of adrenal insufficiency should not be missed. Determination of morning serum cortisol concentration is mandatory, because adrenal insufficiency can be life threatening. Morning serum cortisol lower than 200 nmol/L strongly suggests adrenal insufficiency. A complete hormonal investigation should be performed after one year of the trauma. Isolated growth hormone deficiency is the most common deficiency after traumatic brain injury. Sports-related chronic repetitive head trauma (because of boxing, kickboxing, football and ice hockey) may also result in hypopituitarism. Close co-operation between neurosurgeons, endocrinologists, rehabilitation physicians and representatives of other disciplines is important to provide better care for these patients.

  12. Post-traumatic stress disorder and traumatic brain injury.

    PubMed

    Motzkin, Julian C; Koenigs, Michael R

    2015-01-01

    Disentangling the effects of "organic" neurologic damage and psychological distress after a traumatic brain injury poses a significant challenge to researchers and clinicians. Establishing a link between traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) has been particularly contentious, reflecting difficulties in establishing a unique diagnosis for conditions with overlapping and sometimes contradictory symptom profiles. However, each disorder is linked to a variety of adverse health outcomes, underscoring the need to better understand how neurologic and psychiatric risk factors interact following trauma. Here, we present data showing that individuals with a TBI are more likely to develop PTSD, and that individuals with PTSD are more likely to develop persistent cognitive sequelae related to TBI. Further, we describe neurobiological models of PTSD, highlighting how patterns of neurologic damage typical in TBI may promote or protect against the development of PTSD in brain-injured populations. These data highlight the unique course of PTSD following a TBI and have important diagnostic, prognostic, and treatment implications for individuals with a dual diagnosis.

  13. Neuropsychiatry of Pediatric Traumatic Brain Injury

    PubMed Central

    Max, Jeffrey E.

    2014-01-01

    Synopsis Pediatric traumatic brain injury (TBI) is a major public health problem. Psychiatric disorders with onset before the injury appear to be more common than population base rates. Novel (postinjury onset) psychiatric disorders (NPD) are also common and complicate child function after injury. Novel disorders include personality change due to TBI, secondary attention-deficit/hyperactivity disorder (SADHD), as well as other disruptive behavior disorders, and internalizing disorders. This article reviews preinjury psychiatric disorders as well as biopsychosocial risk factors and treatments for NPD. PMID:24529428

  14. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    PubMed Central

    Reifschneider, Kent; Auble, Bethany A.; Rose, Susan R.

    2015-01-01

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life. PMID:26287247

  15. Imaging in Chronic Traumatic Encephalopathy and Traumatic Brain Injury

    PubMed Central

    Shetty, Teena; Raince, Avtar; Manning, Erin; Tsiouris, Apostolos John

    2016-01-01

    Context: The diagnosis of chronic traumatic encephalopathy (CTE) can only be made pathologically, and there is no concordance of defined clinical criteria for premorbid diagnosis. The absence of established criteria and the insufficient imaging findings to detect this disease in a living athlete are of growing concern. Evidence Acquisition: The article is a review of the current literature on CTE. Databases searched include Medline, PubMed, JAMA evidence, and evidence-based medicine guidelines Cochrane Library, Hospital for Special Surgery, and Cornell Library databases. Study Design: Clinical review. Level of Evidence: Level 4. Results: Chronic traumatic encephalopathy cannot be diagnosed on imaging. Examples of imaging findings in common types of head trauma are discussed. Conclusion: Further study is necessary to correlate the clinical and imaging findings of repetitive head injuries with the pathologic diagnosis of CTE. PMID:26733590

  16. Is respiration-induced variation in the photoplethysmogram associated with major hypovolemia in patients with acute traumatic injuries?

    PubMed

    Chen, Liangyou; Reisner, Andrew T; Gribok, Andrei; Reifman, Jaques

    2010-11-01

    It has been widely accepted that metrics related to respiration-induced waveform variation (RIWV) of the photoplethysmogram (PPG) have been associated with hypovolemia in mechanically ventilated patients and in controlled laboratory environments. In this retrospective study, we investigated if PPG RIWV metrics have diagnostic value for patients with acute hemorrhagic hypovolemia in the prehospital environment. Photoplethysmogram waveforms and basic vital signs were recorded in trauma patients during prehospital transport. Retrospectively, we used automated algorithms to select patient records with all five basic vital signs and 45 s or longer continuous, clean PPG segments. From these segments, we identified the onset and peak of individual heartbeats and computed waveform variations in the beats' peaks and amplitudes: (1) as the range between the maximum and the minimum (max-min) values and (2) as their interquartile range (IQR). We evaluated their receiver operating characteristic (ROC) curves for major hemorrhage. Separately, we tested whether RIWV metrics have potential independent information beyond basic vital signs by applying multivariate regression. In 344 patients, RIWV max-min yielded areas under the ROC curves (AUCs) not significantly better than a random AUC of 0.50. Respiration-induced waveform variation computed as IQR yielded ROC AUCs of 0.65 (95% confidence interval, 0.54-0.76) and of 0.64 (0.51-0.75), for peak and amplitude measures, respectively. The IQR metrics added independent information to basic vital signs (P < 0.05), but only moderately improved the overall AUC. Photoplethysmogram RIWV measured as IQR is preferable over max-min, and using PPG RIWV may enhance physiologic monitoring of spontaneously breathing patients outside strictly controlled laboratory environments.

  17. Students with Traumatic Brain Injury: Making the Transition from Hospital to School.

    ERIC Educational Resources Information Center

    Mira, Mary P.; Tyler, Janet Siantz

    1991-01-01

    This paper uses a case study of a 16-year-old girl with traumatic brain injury (TBI) to present information on the demographics of head injury, neuropathology, recovery patterns, acute rehabilitation, educationally significant effects, behavioral sequelae, the school as a vehicle for rehabilitation, a transition model, school reentry, and…

  18. Posttraumatic rehabilitation and one year outcome following acute traumatic brain injury (TBI): data from the well defined population based German Prospective Study 2000-2002.

    PubMed

    von Wild, K R H

    2008-01-01

    Follow-up examination to review the one-year outcome of patients after craniocerebral trauma with respect to health related quality of life (QoL) and social reintegration. The data are derived from the prospective controlled, well defined population based, multiple centre study that was performed in Germany for the first time in the years 2000-2001 with emphasis on quality management (structural, process, outcome) and regarding the patient's age, physical troubles, and impaired mental-cognitive, neurobehavioral functioning. TBI severity assessment is according to the Glasgow Coma Scale (GCS) score. Early outcome after rehabilitation is assessed by the Glasgow Outcome Scale (GOS) score of patients following rehabilitation and of 63% of all TBI with the aid of follow-up examination (simplified questionnaire) after one year. Catchment areas are Hanover (industrial) and Münster (more rural) with 2,114 million inhabitants. TBI is diagnosed according to ICD 10 S-02, S-04, S-06, S-07, S-09 with at least two of the following symptoms: dizziness or vomiting; retrograde or anterograde amnesia, impaired consciousness, skull fracture, and/or focal neurological impairment. Within one year 6.783 patients (58% male) were examined in the regional hospitals after acute TBI. The regional TBI incidence regarding hospital admission was 321/100.000 TBI. 28% of patients were < 1 to 15 years, 18% > 65 years of age. GCS was only assessed in 55% of patients. They were 90.9% mild, 3.9% moderate, and 5.2% severe TBI. A total of 5.221 TBI (= 77%) was hospitalised; 1.4% of them died. Only 258 patients (= 4.9%) of the hospitalized TBI received in-hospital neurorehabilitation (73% male), 68% within one month after injury. They were 10.9% severe, 23.4% moderate, and 65.7 mild TBI. 5% were < 16 years, 25% > 65 years. One-year follow-up examinations of 4307 individuals (= 63.5% of all TBI) are discussed. A total of 883 patients (= 20.6%) reported posttraumatic troubles, one half were > 64 years

  19. Traumatic brain injury imaging research roadmap.

    PubMed

    Wintermark, M; Coombs, L; Druzgal, T J; Field, A S; Filippi, C G; Hicks, R; Horton, R; Lui, Y W; Law, M; Mukherjee, P; Norbash, A; Riedy, G; Sanelli, P C; Stone, J R; Sze, G; Tilkin, M; Whitlow, C T; Wilde, E A; York, G; Provenzale, J M

    2015-03-01

    The past decade has seen impressive advances in the types of neuroimaging information that can be acquired in patients with traumatic brain injury. However, despite this increase in information, understanding of the contribution of this information to prognostic accuracy and treatment pathways for patients is limited. Available techniques often allow us to infer the presence of microscopic changes indicative of alterations in physiology and function in brain tissue. However, because histologic confirmation is typically lacking, conclusions reached by using these techniques remain solely inferential in almost all cases. Hence, a need exists for validation of these techniques by using data from large population samples that are obtained in a uniform manner, analyzed according to well-accepted procedures, and correlated with closely monitored clinical outcomes. At present, many of these approaches remain confined to population-based research rather than diagnosis at an individual level, particularly with regard to traumatic brain injury that is mild or moderate in degree. A need and a priority exist for patient-centered tools that will allow advanced neuroimaging tools to be brought into clinical settings. One barrier to developing these tools is a lack of an age-, sex-, and comorbidities-stratified, sequence-specific, reference imaging data base that could provide a clear understanding of normal variations across populations. Such a data base would provide researchers and clinicians with the information necessary to develop computational tools for the patient-based interpretation of advanced neuroimaging studies in the clinical setting. The recent "Joint ASNR-ACR HII-ASFNR TBI Workshop: Bringing Advanced Neuroimaging for Traumatic Brain Injury into the Clinic" on May 23, 2014, in Montreal, Quebec, Canada, brought together neuroradiologists, neurologists, psychiatrists, neuropsychologists, neuroimaging scientists, members of the National Institute of Neurologic

  20. Traumatic aortic injury: CT findings, mimics, and therapeutic options

    PubMed Central

    Lantz, Eric J.; Johnson, C. Michael; Young, Philip M.

    2014-01-01

    Objective Traumatic aortic injury (TAI) is rare, but frequently lethal. However, with prompt diagnosis, patients can undergo life-saving open or endovascular repair. Unfortunately, because these injuries are relatively rare, subtle forms of these injuries may be missed, and normal variants may mimic TAI leading to misdiagnosis. Conclusions We will discuss computed tomography findings of typical injury patterns of traumatic aortic injuries as well as treatment options, diagnostic pitfalls and injury mimics. These are highlighted with clinical case examples. PMID:25009793

  1. Paclitaxel improves outcome from traumatic brain injury

    PubMed Central

    Cross, Donna J.; Garwin, Gregory G.; Cline, Marcella M.; Richards, Todd L.; Yarnykh, Vasily; Mourad, Pierre D.; Ho, Rodney J.Y.; Minoshima, Satoshi

    2016-01-01

    Pharmacologic interventions for traumatic brain injury (TBI) hold promise to improve outcome. The purpose of this study was to determine if the microtubule stabilizing therapeutic paclitaxel used for more than 20 years in chemotherapy would improve outcome after TBI. We assessed neurological outcome in mice that received direct application of paclitaxel to brain injury from controlled cortical impact (CCI). Magnetic resonance imaging was used to assess injury-related morphological changes. Catwalk Gait analysis showed significant improvement in the paclitaxel group on a variety of parameters compared to the saline group. MRI analysis revealed that paclitaxel treatment resulted in significantly reduced edema volume at site-of-injury (11.92 ± 3.0 and 8.86 ± 2.2 mm3 for saline vs. paclitaxel respectively, as determined by T2-weighted analysis; p ≤ 0.05), and significantly increased myelin tissue preservation (9.45 ± 0.4 vs. 8.95 ± 0.3, p ≤ 0.05). Our findings indicate that paclitaxel treatment resulted in improvement of neurological outcome and MR imaging biomarkers of injury. These results could have a significant impact on therapeutic developments to treat traumatic brain injury. PMID:26086366

  2. Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury.

    PubMed

    Shultz, Sandy R; Wright, David K; Zheng, Ping; Stuchbery, Ryan; Liu, Shi-Jie; Sashindranath, Maithili; Medcalf, Robert L; Johnston, Leigh A; Hovens, Christopher M; Jones, Nigel C; O'Brien, Terence J

    2015-05-01

    Traumatic brain injury is a common and serious neurodegenerative condition that lacks a pharmaceutical intervention to improve long-term outcome. Hyperphosphorylated tau is implicated in some of the consequences of traumatic brain injury and is a potential pharmacological target. Protein phosphatase 2A is a heterotrimeric protein that regulates key signalling pathways, and protein phosphatase 2A heterotrimers consisting of the PR55 B-subunit represent the major tau phosphatase in the brain. Here we investigated whether traumatic brain injury in rats and humans would induce changes in protein phosphatase 2A and phosphorylated tau, and whether treatment with sodium selenate-a potent PR55 activator-would reduce phosphorylated tau and improve traumatic brain injury outcomes in rats. Ninety young adult male Long-Evans rats were administered either a fluid percussion injury or sham-injury. A proportion of rats were killed at 2, 24, and 72 h post-injury to assess acute changes in protein phosphatase 2A and tau. Other rats were given either sodium selenate or saline-vehicle treatment that was continuously administered via subcutaneous osmotic pump for 12 weeks. Serial magnetic resonance imaging was acquired prior to, and at 1, 4, and 12 weeks post-injury to assess evolving structural brain damage and axonal injury. Behavioural impairments were assessed at 12 weeks post-injury. The results showed that traumatic brain injury in rats acutely reduced PR55 expression and protein phosphatase 2A activity, and increased the expression of phosphorylated tau and the ratio of phosphorylated tau to total tau. Similar findings were seen in post-mortem brain samples from acute human traumatic brain injury patients, although many did not reach statistical significance. Continuous sodium selenate treatment for 12 weeks after sham or fluid percussion injury in rats increased protein phosphatase 2A activity and PR55 expression, and reduced the ratio of phosphorylated tau to total tau

  3. Traumatic injuries caused by hazing practices.

    PubMed

    Finkel, Michelle A

    2002-05-01

    Hazing is defined as committing acts against an individual or forcing an individual into committing an act that creates a risk for harm in order for the individual to be initiated into or affiliated with an organization. Hazing is an enduring activity with roots that date back to the ancient and medieval eras. It has become increasingly prevalent in fraternities and sororities, high school and college athletic organizations, the military, professional sports teams, and street gangs. Scant information is available in the medical literature regarding hazing. This article reviews the history of hazing, provides statistics regarding its prevalence, presents information on specific hazing practices and consequent traumatic injuries, and assesses alcohol's influence on hazing. It also offers recommendations on how to recognize victims of hazing in the Emergency Department and proposes guidelines for their treatment. Current legislation and information on the prevention of traumatic injuries from hazing are discussed.

  4. Effects of acute restraint-induced stress on glucocorticoid receptors and brain-derived neurotrophic factor after mild traumatic brain injury.

    PubMed

    Griesbach, G S; Vincelli, J; Tio, D L; Hovda, D A

    2012-05-17

    We have previously reported that experimental mild traumatic brain injury results in increased sensitivity to stressful events during the first post-injury weeks, as determined by analyzing the hypothalamic-pituitary-adrenal (HPA) axis regulation following restraint-induced stress. This is the same time period when rehabilitative exercise has proven to be ineffective after a mild fluid-percussion injury (FPI). Here we evaluated effects of stress on neuroplasticity. Adult male rats underwent either an FPI or sham injury. Additional rats were only exposed to anesthesia. Rats were exposed to 30 min of restraint stress, followed by tail vein blood collection at post-injury days (PID) 1, 7, and 14. The response to dexamethasone (DEX) was also evaluated. Hippocampal tissue was collected 120 min after stress onset. Brain-derived neurotrophic factor (BDNF) along with glucocorticoid (GR) and mineralocorticoid (MR) receptors was determined by Western blot analysis. Results indicated injury-dependent changes in glucocorticoid and mineralocorticoid receptors that were influenced by the presence of dexamethasone. Control and FPI rats responded differentially to DEX in that GR increases after receiving the lower dose of DEX were longer lasting in the FPI group. A suppression of MR was found at PID 1 in vehicle-treated FPI and Sham groups. Decreases in the precursor form of BDNF were observed in different FPI groups at PIDs 7 and 14. These findings suggest that the increased sensitivity to stressful events during the first post-injury weeks, after a mild FPI, has an impact on hippocampal neuroplasticity.

  5. Military traumatic brain injury: a review.

    PubMed

    Chapman, Julie C; Diaz-Arrastia, Ramon

    2014-06-01

    Military mild traumatic brain injury (mTBI) differs from civilian injury in important ways. Although mTBI sustained in both military and civilian settings are likely to be underreported, the combat theater presents additional obstacles to reporting and accessing care. The impact of blast forces on the nervous system may differ from nonblast mechanisms, mTBI although studies comparing the neurologic and cognitive sequelae in mTBI survivors have not provided such evidence. However, emotional distress appears to figure prominently in symptoms following military mTBI. This review evaluates the extant literature with an eye towards future research directions.

  6. Traumatic Brain Injury as a Cause of Behavior Disorders.

    ERIC Educational Resources Information Center

    Nordlund, Marcia R.

    There is increasing evidence that many children and adolescents who display behavior disorders have sustained a traumatic brain injury. Traumatic brain injury can take the following forms: closed head trauma in which the brain usually suffers diffuse damage; open head injury which usually results in specific focal damage; or internal trauma (e.g.,…

  7. Traumatic Brain Injury and Sleep Disorders

    PubMed Central

    Viola-Saltzman, Mari; Watson, Nathaniel F.

    2012-01-01

    SYNOPSIS Sleep disturbance is common following traumatic brain injury (TBI), affecting 30–70% of individuals, many occurring after mild injuries. Insomnia, fatigue and sleepiness are the most frequent post-TBI sleep complaints with narcolepsy (with or without cataplexy), sleep apnea (obstructive and/or central), periodic limb movement disorder, and parasomnias occurring less commonly. In addition, depression, anxiety and pain are common TBI co-morbidities with substantial influence on sleep quality. Two types of TBI negatively impact sleep: contact injuries causing focal brain damage and acceleration/deceleration injuries causing more generalized brain damage. Diagnosis of sleep disorders after TBI may involve polysomnography, multiple sleep latency testing and/or actigraphy. Treatment is disorder specific and may include the use of medications, continuous positive airway pressure (or similar device) and/or behavioral modifications. Unfortunately, treatment of sleep disorders associated with TBI often does not improve sleepiness or neuropsychological function. PMID:23099139

  8. Traumatic brain injury and forensic neuropsychology.

    PubMed

    Bigler, Erin D; Brooks, Michael

    2009-01-01

    As part of a special issue of The Journal of Head Trauma Rehabilitation, forensic neuropsychology is reviewed as it applies to traumatic brain injury (TBI) and other types of acquired brain injury in which clinical neuropsychologists and rehabilitation psychologists may be asked to render professional opinions about the neurobehavioral effects and outcome of a brain injury. The article introduces and overviews the topic focusing on the process of forensic neuropsychological consultation and practice as it applies to patients with TBI or other types of acquired brain injury. The emphasis is on the application of scientist-practitioner standards as they apply to legal questions about the status of a TBI patient and how best that may be achieved. This article introduces each topic area covered in this special edition.

  9. Intractable Pruritus After Traumatic Spinal Cord Injury

    PubMed Central

    Crane, Deborah A; Jaffee, Kenneth M; Kundu, Anjana

    2009-01-01

    Background: This report describes a young woman with incomplete traumatic cervical spinal cord injury and intractable pruritus involving her dorsal forearm. Method: Case report. Findings: Anatomic distribution of the pruritus corresponded to the dermatomal distribution of her level of spinal cord injury and vertebral fusion. Symptoms were attributed to the spinal cord injury and possible cervical root injury. Pruritus was refractory to all treatments, including topical lidocaine, gabapentin, transcutaneous electrical nerve stimulation, intravenous Bier block, stellate ganglion block, and acupuncture. Conclusions: Further understanding of neuropathic pruritus is needed. Diagnostic workup of intractable pruritus should include advanced imaging to detect ongoing nerve root compression. If diagnostic studies suggest radiculopathy, epidural steroid injection should be considered. Because the autonomic nervous system may be involved in complex chronic pain or pruritic syndromes, sympatholysis via such techniques as stellate ganglion block might be effective. PMID:19777867

  10. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    PubMed Central

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  11. Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats.

    PubMed

    Sullivan, P G; Rabchevsky, A G; Hicks, R R; Gibson, T R; Fletcher-Turner, A; Scheff, S W

    2000-01-01

    Acute neuropathology following experimental traumatic brain injury results in the rapid necrosis of cortical tissue at the site of injury. This primary injury is exacerbated in the ensuing hours and days via the progression of secondary injury mechanism(s) leading to significant neurological dysfunction. Recent evidence from our laboratory demonstrates that the immunosuppressant cyclosporin A significantly ameliorates cortical damage following traumatic brain injury. The present study extends the previous findings utilizing a unilateral controlled cortical impact model of traumatic brain injury in order to establish a dose-response curve and optimal dosing regimen of cyclosporin A. Following injury to adult rats, cyclosporin A was administrated at various dosages and the therapy was initiated at different times post-injury. In addition to examining the effect of cyclosporin A on the acute disruption of the blood-brain barrier following controlled cortical impact, we also assessed the efficacy of cyclosporin A to reduce tissue damage utilizing the fluid percussion model of traumatic brain injury. The findings demonstrate that the neuroprotection afforded by cyclosporin A is dose-dependent and that a therapeutic window exists up to 24h post-injury. Furthermore, the optimal cyclosporin dosage and regimen markedly reduces disruption of the blood-brain barrier acutely following a cortical contusion injury, and similarly affords significant neuroprotection following fluid percussion injury. These findings clearly suggest that the mechanisms responsible for tissue necrosis following traumatic brain injury are amenable to pharmacological intervention.

  12. Tranexamic Acid Mechanisms and Pharmacokinetics in Traumatic Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0373 TITLE: Tranexamic Acid Mechanisms and Pharmacokinetics in Traumatic Injury PRINCIPAL INVESTIGATOR: Philip C...Tranexamic Acid Mechanisms and Pharmacokinetics In Traumatic Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0373 5c. PROGRAM ELEMENT NUMBER...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 8 Title: Tranexamic Acid Mechanisms and Pharmacokinetics In Traumatic Injury (TAMPITI Trial

  13. Inflammation and white matter degeneration persist for years after a single traumatic brain injury.

    PubMed

    Johnson, Victoria E; Stewart, Janice E; Begbie, Finn D; Trojanowski, John Q; Smith, Douglas H; Stewart, William

    2013-01-01

    A single traumatic brain injury is associated with an increased risk of dementia and, in a proportion of patients surviving a year or more from injury, the development of hallmark Alzheimer's disease-like pathologies. However, the pathological processes linking traumatic brain injury and neurodegenerative disease remain poorly understood. Growing evidence supports a role for neuroinflammation in the development of Alzheimer's disease. In contrast, little is known about the neuroinflammatory response to brain injury and, in particular, its temporal dynamics and any potential role in neurodegeneration. Cases of traumatic brain injury with survivals ranging from 10 h to 47 years post injury (n = 52) and age-matched, uninjured control subjects (n = 44) were selected from the Glasgow Traumatic Brain Injury archive. From these, sections of the corpus callosum and adjacent parasaggital cortex were examined for microglial density and morphology, and for indices of white matter pathology and integrity. With survival of ≥3 months from injury, cases with traumatic brain injury frequently displayed extensive, densely packed, reactive microglia (CR3/43- and/or CD68-immunoreactive), a pathology not seen in control subjects or acutely injured cases. Of particular note, these reactive microglia were present in 28% of cases with survival of >1 year and up to 18 years post-trauma. In cases displaying this inflammatory pathology, evidence of ongoing white matter degradation could also be observed. Moreover, there was a 25% reduction in the corpus callosum thickness with survival >1 year post-injury. These data present striking evidence of persistent inflammation and ongoing white matter degeneration for many years after just a single traumatic brain injury in humans. Future studies to determine whether inflammation occurs in response to or, conversely, promotes white matter degeneration will be important. These findings may provide parallels for studying neurodegenerative disease

  14. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    PubMed Central

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  15. The prehospital management of traumatic brain injury.

    PubMed

    Goldberg, Scott A; Rojanasarntikul, Dhanadol; Jagoda, Andrew

    2015-01-01

    Traumatic brain injury (TBI) is an important cause of death and disability, particularly in younger populations. The prehospital evaluation and management of TBI is a vital link between insult and definitive care and can have dramatic implications for subsequent morbidity. Following a TBI the brain is at high risk for further ischemic injury, with prehospital interventions targeted at reducing this secondary injury while optimizing cerebral physiology. In the following chapter we discuss the prehospital assessment and management of the brain-injured patient. The initial evaluation and physical examination are discussed with a focus on interpretation of specific physical examination findings and interpretation of vital signs. We evaluate patient management strategies including indications for advanced airway management, oxygenation, ventilation, and fluid resuscitation, as well as prehospital strategies for the management of suspected or impending cerebral herniation including hyperventilation and brain-directed hyperosmolar therapy. Transport decisions including the role of triage models and trauma centers are discussed. Finally, future directions in the prehospital management of traumatic brain injury are explored.

  16. 78 FR 37834 - Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request SUMMARY: Under the... Collection: Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data...

  17. 78 FR 12334 - Proposed Collection; Comment Request: Federal Interagency Traumatic Brain Injury Research (FITBIR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request SUMMARY: In compliance with.... Proposed Collection: Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System...

  18. Acute Inhalation Injury

    PubMed Central

    Gorguner, Metin; Akgun, Metin

    2010-01-01

    Inhaled substances may cause injury in pulmonary epithelium at various levels of respiratory tract, leading from simple symptoms to severe disease. Acute inhalation injury (AII) is not uncommon condition. There are certain high risk groups but AII may occur at various places including home or workplace. Environmental exposure is also possible. In addition to individual susceptibility, the characteristics of inhaled substances such as water solubility, size of substances and chemical properties may affect disease severity as well as its location. Although AII cases may recover in a few days but AII may cause long-term complications, even death. We aimed to discuss the effects of short-term exposures (minutes to hours) to toxic substances on the lungs. PMID:25610115

  19. Inflammation and Neuroprotection in Traumatic Brain Injury

    PubMed Central

    Corps, Kara N.; Roth, Theodore L.; McGavern, Dorian B.

    2016-01-01

    IMPORTANCE Traumatic brain injury (TBI) is a significant public health concern that affects individuals in all demographics. With increasing interest in the medical and public communities, understanding the inflammatory mechanisms that drive the pathologic and consequent cognitive outcomes can inform future research and clinical decisions for patients with TBI. OBJECTIVES To review known inflammatory mechanisms in TBI and to highlight clinical trials and neuroprotective therapeutic manipulations of pathologic and inflammatory mechanisms of TBI. EVIDENCE REVIEW We searched articles in PubMed published between 1960 and August 1, 2014, using the following keywords: traumatic brain injury, sterile injury, inflammation, astrocytes, microglia, monocytes, macrophages, neutrophils, T cells, reactive oxygen species, alarmins, danger-associated molecular patterns, purinergic receptors, neuroprotection, and clinical trials. Previous clinical trials or therapeutic studies that involved manipulation of the discussed mechanisms were considered for inclusion. The final list of selected studies was assembled based on novelty and direct relevance to the primary focus of this review. FINDINGS Traumatic brain injury is a diverse group of sterile injuries induced by primary and secondary mechanisms that give rise to cell death, inflammation, and neurologic dysfunction in patients of all demographics. Pathogenesis is driven by complex, interacting mechanisms that include reactive oxygen species, ion channel and gap junction signaling, purinergic receptor signaling, excitotoxic neurotransmitter signaling, perturbations in calcium homeostasis, and damage-associated molecular pattern molecules, among others. Central nervous system resident and peripherally derived inflammatory cells respond to TBI and can provide neuroprotection or participate in maladaptive secondary injury reactions. The exact contribution of inflammatory cells to a TBI lesion is dictated by their anatomical positioning

  20. Traumatic brain injury in modern war

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  1. Traumatic Penile Injury: From Circumcision Injury to Penile Amputation

    PubMed Central

    Park, Jae Young; Song, Yun Seob

    2014-01-01

    The treatment of external genitalia trauma is diverse according to the nature of trauma and injured anatomic site. The classification of trauma is important to establish a strategy of treatment; however, to date there has been less effort to make a classification for trauma of external genitalia. The classification of external trauma in male could be established by the nature of injury mechanism or anatomic site: accidental versus self-mutilation injury and penis versus penis plus scrotum or perineum. Accidental injury covers large portion of external genitalia trauma because of high prevalence and severity of this disease. The aim of this study is to summarize the mechanism and treatment of the traumatic injury of penis. This study is the first review describing the issue. PMID:25250318

  2. Acute hand injuries in athletes.

    PubMed

    Rosenbaum, Yoseph A; Awan, Hisham M

    2017-03-22

    Hand and wrist injuries in athletes are common, representing between 3 and 25% of all sports injuries. As many as a quarter of all sports injuries involve the hand or wrist. We review the recent literature regarding acute hand injuries in athletes based on the structures involved - bone, muscle/tendon, ligament, and neurovascular - including diagnosis and pathophysiology of these injuries, focusing on athlete-specific facets of treatment, and when available, opinions on return to play.

  3. Sports-related traumatic brain injury.

    PubMed

    Phillips, Shawn; Woessner, Derek

    2015-06-01

    Concussions have garnered more attention in the medical literature, media, and social media. As such, in the nomenclature according to the Centers for Disease Control and Prevention, the term concussion has been supplanted by the term mild traumatic brain injury. Current numbers indicate that 1.7 million TBIs are documented annually, with estimates around 3 million annually (173,285 sports- and recreation-related TBIs among children and adolescents). The Sideline Concussion Assessment Tool 3 and the NFL Sideline Concussion Assessment Tool are commonly used sideline tools.

  4. Acute Kidney Injury

    PubMed Central

    Zuk, Anna; Bonventre, Joseph V.

    2016-01-01

    Acute kidney injury (AKI) is a global public health concern associated with high morbidity, mortality, and healthcare costs. Other than dialysis, no therapeutic interventions reliably improve survival, limit injury, or speed recovery. Despite recognized shortcomings of in vivo animal models, the underlying pathophysiology of AKI and its consequence, chronic kidney disease (CKD), is rich with biological targets. We review recent findings relating to the renal vasculature and cellular stress responses, primarily the intersection of the unfolded protein response, mitochondrial dysfunction, autophagy, and the innate immune response. Maladaptive repair mechanisms that persist following the acute phase promote inflammation and fibrosis in the chronic phase. Here macrophages, growth-arrested tubular epithelial cells, the endothelium, and surrounding pericytes are key players in the progression to chronic disease. Better understanding of these complex interacting pathophysiological mechanisms, their relative importance in humans, and the utility of biomarkers will lead to therapeutic strategies to prevent and treat AKI or impede progression to CKD or end-stage renal disease (ESRD). PMID:26768243

  5. Gray matter abnormalities in pediatric mild traumatic brain injury.

    PubMed

    Mayer, Andrew R; Hanlon, Faith M; Ling, Josef M

    2015-05-15

    Pediatric mild traumatic brain injury (pmTBI) is the most prevalent neurological insult in children and is associated with both acute and chronic neuropsychiatric sequelae. However, little is known about underlying pathophysiology changes in gray matter diffusion and atrophy from a prospective stand-point. Fifteen semi-acute pmTBI patients and 15 well-matched healthy controls were evaluated with a clinical and neuroimaging battery, with a subset of participants returning for a second visit. Clinical measures included tests of attention, processing speed, executive function, working memory, memory, and self-reported post-concussive symptoms. Measures of diffusion (fractional anisotropy [FA]) and atrophy were also obtained for cortical and subcortical gray matter structures to characterize effects of injury as a function of time. Patients exhibited decreased scores in the domains of attention and processing speed relative to controls during the semi-acute injury stage, in conjunction with increased anisotropic diffusion in the left superior temporal gyrus and right thalamus. Evidence of increased diffusion in these regions was also present at four months post-injury, with performance on cognitive tests partially normalizing. In contrast, signs of cortical atrophy in bilateral frontal areas and other left-hemisphere cortical areas only emerged at four months post-injury for patients. Current results suggest potentially differential time-courses of recovery for neurobehavioral markers, anisotropic diffusion and atrophy following pmTBI. Importantly, these data suggest that relying on patient self-report or standard clinical assessments may underestimate the time for true injury recovery.

  6. Life After Traumatic Injury: How the Body Responds

    MedlinePlus

    ... Traumatic Injury: How the Body Responds Inside Life Science View All Articles | Inside Life Science Home Page Life After Traumatic Injury: How the ... Threatening Bacterial Infection Remains Mysterious This Inside Life Science article also appears on LiveScience . Learn about related ...

  7. Traumatic Brain Injury: An Educator's Manual. [Revised Edition.

    ERIC Educational Resources Information Center

    Fiegenbaum, Ed, Ed.; And Others

    This manual for the Portland (Oregon) Public Schools presents basic information on providing educational services to children with traumatic brain injury (TBI). Individual sections cover the following topics: the brain, central nervous system and behavior; physical, psychological and emotional implication; traumatic brain injury in children versus…

  8. Pediatric Traumatic Brain Injury: Characteristic Features, Diagnosis, and Management

    PubMed Central

    ARAKI, Takashi; YOKOTA, Hiroyuki; MORITA, Akio

    2017-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children. Pediatric TBI is associated with several distinctive characteristics that differ from adults and are attributable to age-related anatomical and physiological differences, pattern of injuries based on the physical ability of the child, and difficulty in neurological evaluation in children. Evidence suggests that children exhibit a specific pathological response to TBI with distinct accompanying neurological symptoms, and considerable efforts have been made to elucidate their pathophysiology. In addition, recent technical advances in diagnostic imaging of pediatric TBI has facilitated accurate diagnosis, appropriate treatment, prevention of complications, and helped predict long-term outcomes. Here a review of recent studies relevant to important issues in pediatric TBI is presented, and recent specific topics are also discussed. This review provides important updates on the pathophysiology, diagnosis, and age-appropriate acute management of pediatric TBI. PMID:28111406

  9. Acute or Delayed Treatment with Anatabine Improves Spatial Memory and Reduces Pathological Sequelae at Late Time-Points after Repetitive Mild Traumatic Brain Injury.

    PubMed

    Ferguson, Scott; Mouzon, Benoit; Paris, Daniel; Aponte, Destinee; Abdullah, Laila; Stewart, William; Mullan, Michael; Crawford, Fiona

    2017-01-20

    Traumatic brain injury (TBI) has chronic and long-term consequences for which there are currently no approved pharmacological treatments. We have previously characterized the chronic neurobehavioral and pathological sequelae of a mouse model of repetitive mild TBI (r-mTBI) through to 2 years post-TBI. Despite the mild nature of the initial insult, secondary injury processes are initiated that involve neuroinflammatory and neurodegenerative pathways persisting and progressing for weeks and months post-injury and providing a potential window of opportunity for therapeutic intervention. In this study we examined the efficacy of a novel anti-inflammatory compound, anatabine, in modifying outcome after TBI. Our model of r-mTBI involves a series of five mild impacts (midline impact at 5 m/sec, 1 mm strike depth, 200 msec dwell time) with an interval of 48 h. Anatabine treatment was administered starting 30 min after injury and was delivered continuously through drinking water. At 6 months after TBI, anatabine treatment improved spatial memory in injured mice. Nine months after TBI, a cohort of mice was euthanized for pathological analysis that revealed reductions in astroglial (glial fibrillary acid protein, GFAP) and microglial (ionized calcium-binding adapter molecule 1, IBA1) responses in treated, injured animals. Treatments for the remaining mice were then crossed-over to assess the effects of late treatment administration and the effects of treatment termination. Nine months following crossover the remaining mice showed no effect of injury on their spatial memory, and whereas pathological analysis showed improvements in mice that had received delayed treatment, corpus callosum IBA1 increased in post-crossover placebo r-mTBI mice. These data demonstrate efficacy of both early and late initiation of treatment with anatabine in improving long term behavioral and pathology outcomes after mild TBI. Future studies will characterize the treatment window, the time

  10. The ebb and flow of traumatic brain injury research.

    PubMed

    Grafman, Jordan; Salazar, Andres M

    2015-01-01

    The purpose of this chapter is to summarize some key topics discussed in this volume and describe trends suggesting the direction of future traumatic brain injury (TBI) research. Interest in, and funding for, TBI has ebbed and flowed with the public awareness of injury risk from combat, sports, or everyday life. Advances in acute resuscitation, emergency response systems, and early management have had a major impact on survival after TBI, while recent research has emphasized underlying genetic substrates and the molecular mechanisms of brain injury, repair, and neuroplasticity. This in turn impacts not only on primary and secondary neuroprotection strategies for minimizing injury, but also on the other critical remaining challenge, that of identification and validation of optimal strategies for physical and cognitive TBI rehabilitation. New information also highlights long-term degenerative conditions associated with earlier TBI and mediated by a signature cascade of abnormal molecular processes. Thus, TBI has emerged as a recognized significant public health risk with both immediate and lifelong repercussions. The linkage of a TBI to late-life neurodegenerative diseases, the observation of persistent pathologic processes including neuroinflammation and accumulation of tau protein, as well as individual differences in the genetic predisposition for brain repair and plasticity should lead to meaningful translational research with a significant impact on the efficacy and cost-efficiency of acute and chronic treatment for TBI survivors.

  11. The gut reaction to traumatic brain injury

    PubMed Central

    Katzenberger, Rebeccah J; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a complex disorder that affects millions of people worldwide. The complexity of TBI partly stems from the fact that injuries to the brain instigate non-neurological injuries to other organs such as the intestine. Additionally, genetic variation is thought to play a large role in determining the nature and severity of non-neurological injuries. We recently reported that TBI in flies, as in humans, increases permeability of the intestinal epithelial barrier resulting in hyperglycemia and a higher risk of death. Furthermore, we demonstrated that genetic variation in flies is also pertinent to the complexity of non-neurological injuries following TBI. The goals of this review are to place our findings in the context of what is known about TBI-induced intestinal permeability from studies of TBI patients and rodent TBI models and to draw attention to how studies of the fly TBI model can provide unique insights that may facilitate diagnosis and treatment of TBI. PMID:26291482

  12. An Independent, Prospective, Head to Head Study of the Reliability and Validity of Neurocognitive Test Batteries for the Assessment of Mild Traumatic Brain Injury

    DTIC Science & Technology

    2013-03-01

    to Head Study of the Reliability and Validity of Neurocognitive Test Batteries for the Assessment of Mild Traumatic Brain Injury PRINCIPAL...CONTRACT NUMBER Validity of Neurocognitive Test Batteries for the Assessment of Mild Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-12-1...tools (NCAT’s) for the acute neurocognitive assessment, tracking cognitive recovery, and informing clinical management after mild traumatic brain injury

  13. Training to Optimize Learning after Traumatic Brain Injury

    PubMed Central

    Skidmore, Elizabeth R.

    2015-01-01

    One of the major foci of rehabilitation after traumatic brain injury is the design and implementation of interventions to train individuals to learn new knowledge and skills or new ways to access and execute previously acquired knowledge and skills. To optimize these interventions, rehabilitation professionals require a clear understanding of how traumatic brain injury impacts learning, and how specific approaches may enhance learning after traumatic brain injury. This brief conceptual review provides an overview of learning, the impact of traumatic brain injury on explicit and implicit learning, and the current state of the science examining selected training approaches designed to advance learning after traumatic brain injury. Potential directions for future scientific inquiry are discussed throughout the review. PMID:26217546

  14. Diagnosing pseudobulbar affect in traumatic brain injury

    PubMed Central

    Engelman, William; Hammond, Flora M; Malec, James F

    2014-01-01

    Pseudobulbar affect (PBA) is defined by episodes of involuntary crying and/or laughing as a result of brain injury or other neurological disease. Epidemiology studies show that 5.3%–48.2% of people with traumatic brain injury (TBI) may have symptoms consistent with (or suggestive of) PBA. Yet it is a difficult and often overlooked condition in individuals with TBI, and is easily confused with depression or other mood disorders. As a result, it may be undertreated and persist for longer than it should. This review presents the signs and symptoms of PBA in patients with existing TBI and outlines how to distinguish PBA from other similar conditions. It also compares and contrasts the different diagnostic criteria found in the literature and briefly mentions appropriate treatments. This review follows a composite case with respect to the clinical course and treatment for PBA and presents typical challenges posed to a provider when diagnosing PBA. PMID:25336956

  15. Assessing connectivity related injury burden in diffuse traumatic brain injury.

    PubMed

    Solmaz, Berkan; Tunç, Birkan; Parker, Drew; Whyte, John; Hart, Tessa; Rabinowitz, Amanda; Rohrbach, Morgan; Kim, Junghoon; Verma, Ragini

    2017-03-15

    Many of the clinical and behavioral manifestations of traumatic brain injury (TBI) are thought to arise from disruption to the structural network of the brain due to diffuse axonal injury (DAI). However, a principled way of summarizing diffuse connectivity alterations to quantify injury burden is lacking. In this study, we developed a connectome injury score, Disruption Index of the Structural Connectome (DISC), which summarizes the cumulative effects of TBI-induced connectivity abnormalities across the entire brain. Forty patients with moderate-to-severe TBI examined at 3 months postinjury and 35 uninjured healthy controls underwent magnetic resonance imaging with diffusion tensor imaging, and completed behavioral assessment including global clinical outcome measures and neuropsychological tests. TBI patients were selected to maximize the likelihood of DAI in the absence of large focal brain lesions. We found that hub-like regions, with high betweenness centrality, were most likely to be impaired as a result of diffuse TBI. Clustering of participants revealed a subgroup of TBI patients with similar connectivity abnormality profiles who exhibited relatively poor cognitive performance. Among TBI patients, DISC was significantly correlated with post-traumatic amnesia, verbal learning, executive function, and processing speed. Our experiments jointly demonstrated that assessing structural connectivity alterations may be useful in development of patient-oriented diagnostic and prognostic tools. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  16. Priming the Inflammatory Pump of the CNS after Traumatic Brain Injury

    PubMed Central

    Witcher, Kristina G.; Eiferman, Daniel S.; Godbout, Jonathan P.

    2015-01-01

    Traumatic brain injury (TBI) can lead to secondary neuropsychiatric problems that develop and persist years after injury. Mounting evidence indicates that neuroinflammatory processes progress after the initial head injury and worsen with time. Microglia contribute to this inflammation by maintaining a primed profile long after the acute effects of the injury have dissipated. This may set the stage for glial dysfunction and hyperactivity to challenges including subsequent head injury, stress, or induction of a peripheral immune response. The purpose of this review is to discuss the evidence that microglia become primed following TBI and how this corresponds with vulnerability to a “second hit” and subsequent neuropsychiatric and neurodegenerative complications. PMID:26442695

  17. Bridge Between Neuroimmunity and Traumatic Brain Injury

    PubMed Central

    Kelso, Matthew L.; Gendelman, Howard E.

    2014-01-01

    The pathophysiology of degenerative, infectious, inflammatory and traumatic diseases of the central nervous system includes a significant immune component. As to the latter, damage to the cerebral vasculature and neural cell bodies, caused by traumatic brain injury (TBI) activates innate immunity with concomitant infiltration of immunocytes into the damaged nervous system. This leads to pro-inflammatory cytokine and prostaglandin production and lost synaptic integrity and more generalized neurotoxicity. Engagement of adaptive immune responses follows including the production of antibodies and lymphocyte proliferation. These affect the tempo of disease along with tissue repair and as such provide a number of potential targets for pharmacological treatments for TBI. However, despite a large body of research, no such treatment intervention is currently available. In this review we will discuss the immune response initiated following brain injuries, drawing on knowledge gained from a broad array of experimental and clinical studies. Our discussion seeks to address potential therapeutic targets and propose ways in which the immune system can be controlled to promote neuroprotection. PMID:24025052

  18. Neuroimaging in Pediatric Traumatic Brain Injury: Current and Future Predictors of Functional Outcome

    ERIC Educational Resources Information Center

    Suskauer, Stacy J.; Huisman, Thierry A. G. M.

    2009-01-01

    Although neuroimaging has long played a role in the acute management of pediatric traumatic brain injury (TBI), until recently, its use as a tool for understanding and predicting long-term brain-behavior relationships after TBI has been limited by the relatively poor sensitivity of routine clinical imaging for detecting diffuse axonal injury…

  19. Emerging Therapies in Traumatic Brain Injury

    PubMed Central

    Kochanek, Patrick M.; Jackson, Travis C.; Ferguson, Nikki Miller; Carlson, Shaun W.; Simon, Dennis W.; Brockman, Erik C.; Ji, Jing; Bayir, Hülya; Poloyac, Samuel M.; Wagner, Amy K.; Kline, Anthony E.; Empey, Philip E.; Clark, Robert S.B.; Jackson, Edwin K.; Dixon, C. Edward

    2015-01-01

    Despite decades of basic and clinical research, treatments to improve outcomes after traumatic brain injury (TBI) are limited. However, based on the recent recognition of the prevalence of mild TBI, and its potential link to neurodegenerative disease, many new and exciting secondary injury mechanisms have been identified and several new therapies are being evaluated targeting both classic and novel paradigms. This includes a robust increase in both preclinical and clinical investigations. Using a mechanism-based approach the authors define the targets and emerging therapies for TBI. They address putative new therapies for TBI across both the spectrum of injury severity and the continuum of care, from the field to rehabilitation. They discuss TBI therapy using 11 categories, namely, (1) excitotoxicity and neuronal death, (2) brain edema, (3) mitochondria and oxidative stress, (4) axonal injury, (5) inflammation, (6) ischemia and cerebral blood flow dysregulation, (7) cognitive enhancement, (8) augmentation of endogenous neuroprotection, (9) cellular therapies, (10) combination therapy, and (11) TBI resuscitation. The current golden age of TBI research represents a special opportunity for the development of breakthroughs in the field. PMID:25714870

  20. Use of a multi-level mixed methods approach to study the effectiveness of a primary care progressive return to activity protocol after acute mild traumatic brain injury/concussion in the military.

    PubMed

    Gregory, Emma; West, Therese A; Cole, Wesley R; Bailie, Jason M; McCulloch, Karen L; Ettenhofer, Mark L; Cecchini, Amy; Qashu, Felicia M

    2017-01-01

    The large number of U.S. service members diagnosed with concussion/mild traumatic brain injury each year underscores the necessity for clear and effective clinical guidance for managing concussion. Relevant research continues to emerge supporting a gradual return to pre-injury activity levels without aggravating symptoms; however, available guidance does not provide detailed standards for this return to activity process. To fill this gap, the Defense and Veterans Brain Injury Center released a recommendation for primary care providers detailing a step-wise return to unrestricted activity during the acute phase of concussion. This guidance was developed in collaboration with an interdisciplinary group of clinical, military, and academic subject matter experts using an evidence-based approach. Systematic evaluation of the guidance is critical to ensure positive patient outcomes, to discover barriers to implementation by providers, and to identify ways to improve the recommendation. Here we describe a multi-level, mixed-methods approach to evaluate the recommendation incorporating outcomes from both patients and providers. Procedures were developed to implement the study within complex but ecologically-valid settings at multiple military treatment facilities and operational medical units. Special consideration was given to anticipated challenges such as the frequent movement of military personnel, selection of appropriate design and measures, study implementation at multiple sites, and involvement of multiple service branches (Army, Navy, and Marine Corps). We conclude by emphasizing the need to consider contemporary approaches for evaluating the effectiveness of clinical guidance.

  1. Hyperoxic Acute Lung Injury

    PubMed Central

    Kallet, Richard H; Matthay, Michael A

    2013-01-01

    Prolonged breathing of very high FIO2 (FIO2 ≥ 0.9) uniformly causes severe hyperoxic acute lung injury (HALI) and, without a reduction of FIO2, is usually fatal. The severity of HALI is directly proportional to PO2 (particularly above 450 mm Hg, or an FIO2 of 0.6) and exposure duration. Hyperoxia produces extraordinary amounts of reactive O2 species that overwhelms natural antioxidant defenses and destroys cellular structures through several pathways. Genetic predisposition has been shown to play an important role in HALI among animals, and some genetics-based epidemiologic research suggests that this may be true for humans as well. Clinically, the risk of HALI likely occurs when FIO2exceeds 0.7, and may become problematic when FIO2 exceeds 0.8 for an extended period of time. Both high-stretch mechanical ventilation and hyperoxia potentiate lung injury and may promote pulmonary infection. During the 1960s, confusion regarding the incidence and relevance of HALI largely reflected such issues as the primitive control of FIO2, the absence of PEEP, and the fact that at the time both ALI and ventilator-induced lung injury were unknown. The advent of PEEP and precise control over FIO2, as well as lung-protective ventilation, and other adjunctive therapies for severe hypoxemia, has greatly reduced the risk of HALI for the vast majority of patients requiring mechanical ventilation in the 21st century. However, a subset of patients with very severe ARDS requiring hyperoxic therapy is at substantial risk for developing HALI, therefore justifying the use of such adjunctive therapies. PMID:23271823

  2. Hypoaminoacidemia Characterizes Chronic Traumatic Brain Injury.

    PubMed

    Durham, William J; Foreman, Jack P; Randolph, Kathleen M; Danesi, Christopher P; Spratt, Heidi; Masel, Brian D; Summons, Jennifer R; Singh, Charan K; Morrison, Melissa; Robles, Claudia; Wolfram, Cindy; Kreber, Lisa A; Urban, Randall J; Sheffield-Moore, Melinda; Masel, Brent E

    2017-01-15

    Individuals with a history of traumatic brain injury (TBI) are at increased risk for a number of disorders, including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. However, mediators of the long-term morbidity are uncertain. We conducted a multi-site, prospective trial in chronic TBI patients (∼18 years post-TBI) living in long-term 24-h care environments and local controls without a history of head injury. Inability to give informed consent was exclusionary for participation. A total of 41 individuals (17 moderate-severe TBI, 24 controls) were studied before and after consumption of a standardized breakfast to determine if concentrations of amino acids, cytokines, C-reactive protein, and insulin are potential mediators of long-term TBI morbidity. Analyte concentrations were measured in serum drawn before (fasting) and 1 h after meal consumption. Mean ages were 44 ± 15 and 49 ± 11 years for controls and chronic TBI patients, respectively. Chronic TBI patients had significantly lower circulating concentrations of numerous individual amino acids, as well as essential amino acids (p = 0.03) and large neutral amino acids (p = 0.003) considered as groups, and displayed fundamentally altered cytokine-amino acid relationships. Many years after injury, TBI patients exhibit abnormal metabolic responses and altered relationships between circulating amino acids, cytokines, and hormones. This pattern is consistent with TBI, inducing a chronic disease state in patients. Understanding the mechanisms causing the chronic disease state could lead to new treatments for its prevention.

  3. Autophagy in Acute Kidney Injury

    PubMed Central

    Livingston, Man J.; Dong, Zheng

    2014-01-01

    Acute kidney injury is a major kidney disease associated with poor clinical outcomes. The pathogenesis of acute kidney injury is multifactorial and is characterized by tubular cell injury and death. Recent studies have demonstrated autophagy induction in proximal tubular cells during acute kidney injury. The regulatory mechanisms of tubular cell autophagy are poorly understood; however, some recent findings have set up a foundation for further investigation. Although autophagy may promote cell death under certain experimental conditions, pharmacological and autophagy-related gene knockout studies have established a renoprotective role for autophagy in acute kidney injury. The mechanisms by which autophagy protects cells from injury and how, possibly, its pro-survival role switches to pro-death under certain conditions are discussed. Further research is expected to help us understand the regulatory network of tubular cell autophagy, define its precise roles in specific context of acute kidney injury, and identify autophagy-targeting strategies for the prevention and treatment of acute kidney injury. PMID:24485026

  4. Increased sleep need and daytime sleepiness 6 months after traumatic brain injury: a prospective controlled clinical trial.

    PubMed

    Imbach, Lukas L; Valko, Philipp O; Li, Tongzhou; Maric, Angelina; Symeonidou, Evangelia-Regkina; Stover, John F; Bassetti, Claudio L; Mica, Ladislav; Werth, Esther; Baumann, Christian R

    2015-03-01

    Post-traumatic sleep-wake disturbances are common after acute traumatic brain injury. Increased sleep need per 24 h and excessive daytime sleepiness are among the most prevalent post-traumatic sleep disorders and impair quality of life of trauma patients. Nevertheless, the relation between traumatic brain injury and sleep outcome, but also the link between post-traumatic sleep problems and clinical measures in the acute phase after traumatic brain injury has so far not been addressed in a controlled and prospective approach. We therefore performed a prospective controlled clinical study to examine (i) sleep-wake outcome after traumatic brain injury; and (ii) to screen for clinical and laboratory predictors of poor sleep-wake outcome after acute traumatic brain injury. Forty-two of 60 included patients with first-ever traumatic brain injury were available for follow-up examinations. Six months after trauma, the average sleep need per 24 h as assessed by actigraphy was markedly increased in patients as compared to controls (8.3 ± 1.1 h versus 7.1 ± 0.8 h, P < 0.0001). Objective daytime sleepiness was found in 57% of trauma patients and 19% of healthy subjects, and the average sleep latency in patients was reduced to 8.7 ± 4.6 min (12.1 ± 4.7 min in controls, P = 0.0009). Patients, but not controls, markedly underestimated both excessive sleep need and excessive daytime sleepiness when assessed only by subjective means, emphasizing the unreliability of self-assessment of increased sleep propensity in traumatic brain injury patients. At polysomnography, slow wave sleep after traumatic brain injury was more consolidated. The most important risk factor for developing increased sleep need after traumatic brain injury was the presence of an intracranial haemorrhage. In conclusion, we provide controlled and objective evidence for a direct relation between sleep-wake disturbances and traumatic brain injury, and for clinically significant underestimation of post-traumatic

  5. Decompressive craniectomy following traumatic brain injury: developing the evidence base

    PubMed Central

    Kolias, Angelos G.; Adams, Hadie; Timofeev, Ivan; Czosnyka, Marek; Corteen, Elizabeth A.; Pickard, John D.; Turner, Carole; Gregson, Barbara A.; Kirkpatrick, Peter J.; Murray, Gordon D.; Menon, David K.; Hutchinson, Peter J.

    2016-01-01

    Abstract In the context of traumatic brain injury (TBI), decompressive craniectomy (DC) is used as part of tiered therapeutic protocols for patients with intracranial hypertension (secondary or protocol-driven DC). In addition, the bone flap can be left out when evacuating a mass lesion, usually an acute subdural haematoma (ASDH), in the acute phase (primary DC). Even though, the principle of “opening the skull” in order to control brain oedema and raised intracranial pressure has been practised since the beginning of the 20th century, the last 20 years have been marked by efforts to develop the evidence base with the conduct of randomised trials. This article discusses the merits and challenges of this approach and provides an overview of randomised trials of DC following TBI. An update on the RESCUEicp study, a randomised trial of DC versus advanced medical management (including barbiturates) for severe and refractory post-traumatic intracranial hypertension is provided. In addition, the rationale for the RESCUE-ASDH study, the first randomised trial of primary DC versus craniotomy for adult head-injured patients with an ASDH, is presented. PMID:26972805

  6. Decompressive craniectomy following traumatic brain injury: developing the evidence base.

    PubMed

    Kolias, Angelos G; Adams, Hadie; Timofeev, Ivan; Czosnyka, Marek; Corteen, Elizabeth A; Pickard, John D; Turner, Carole; Gregson, Barbara A; Kirkpatrick, Peter J; Murray, Gordon D; Menon, David K; Hutchinson, Peter J

    2016-01-01

    In the context of traumatic brain injury (TBI), decompressive craniectomy (DC) is used as part of tiered therapeutic protocols for patients with intracranial hypertension (secondary or protocol-driven DC). In addition, the bone flap can be left out when evacuating a mass lesion, usually an acute subdural haematoma (ASDH), in the acute phase (primary DC). Even though, the principle of "opening the skull" in order to control brain oedema and raised intracranial pressure has been practised since the beginning of the 20th century, the last 20 years have been marked by efforts to develop the evidence base with the conduct of randomised trials. This article discusses the merits and challenges of this approach and provides an overview of randomised trials of DC following TBI. An update on the RESCUEicp study, a randomised trial of DC versus advanced medical management (including barbiturates) for severe and refractory post-traumatic intracranial hypertension is provided. In addition, the rationale for the RESCUE-ASDH study, the first randomised trial of primary DC versus craniotomy for adult head-injured patients with an ASDH, is presented.

  7. Diagnostic confirmation of mild traumatic brain injury by diffusion tensor imaging: a case report

    PubMed Central

    2012-01-01

    Introduction Traumatic brain injury is a form of acquired brain injury that results from sudden trauma to the head. Specifically, mild traumatic brain injury is a clinical diagnosis that can have significant effects on an individual's life, yet is difficult to identify through traditional imaging techniques. Case presentation This is the case of a 68-year-old previously healthy African American woman who was involved in a motor vehicle accident that resulted in significant head trauma. After the accident, she experienced symptoms indicative of mild traumatic brain injury and sought a neurological consultation when her symptoms did not subside. She was initially evaluated with a neurological examination, psychological evaluation, acute concussion evaluation and a third-party memory test using software from CNS Vital Signs for neurocognitive function. A diagnosis of post-concussion syndrome was suggested. Diffusion tensor imaging revealed decreased fractional anisotropy in the region immediately adjacent to both lateral ventricles, which was used to confirm the diagnosis. Fractional anisotropy is a scalar value between zero and one that describes the degree of anisotropy of a diffusion process. These results are indicative of post-traumatic gliosis and are undetectable by magnetic resonance imaging. Our patient was treated with cognitive therapy. Conclusion Minor traumatic brain injury is a common injury with variable clinical presentation. The system of diagnosis used in this case found a significant relationship between the clinical assessment and imaging results. This would not have been possible using traditional imaging techniques and highlights the benefits of using diffusion tensor imaging in the sub-acute assessment of minor traumatic brain injury. PMID:22339800

  8. Anti-oxidative aspect of inhaled anesthetic gases against acute brain injury

    PubMed Central

    Yang, Tuo; Sun, Yang; Zhang, Feng

    2016-01-01

    Acute brain injury is a critical and emergent condition in clinical settings, which needs to be addressed urgently. Commonly acute brain injuries include traumatic brain injury, ischemic and hemorrhagic strokes. Oxidative stress is a key contributor to the subsequent injuries and impedes the reparative process after acute brain injury; therefore, facilitating an anti-oxidative approach is important in the care of those diseases. Readiness to deliver and permeability to blood brain barrier are essential for the use of this purpose. Inhaled anesthetic gases are a group of such agents. In this article, we discuss the anti-oxidative roles of anesthetic gases against acute brain injury. PMID:28217295

  9. Pediatric Rodent Models of Traumatic Brain Injury.

    PubMed

    Semple, Bridgette D; Carlson, Jaclyn; Noble-Haeusslein, Linda J

    2016-01-01

    Due to a high incidence of traumatic brain injury (TBI) in children and adolescents, age-specific studies are necessary to fully understand the long-term consequences of injuries to the immature brain. Preclinical and translational research can help elucidate the vulnerabilities of the developing brain to insult, and provide model systems to formulate and evaluate potential treatments aimed at minimizing the adverse effects of TBI. Several experimental TBI models have therefore been scaled down from adult rodents for use in juvenile animals. The following chapter discusses these adapted models for pediatric TBI, and the importance of age equivalence across species during model development and interpretation. Many neurodevelopmental processes are ongoing throughout childhood and adolescence, such that neuropathological mechanisms secondary to a brain insult, including oxidative stress, metabolic dysfunction and inflammation, may be influenced by the age at the time of insult. The long-term evaluation of clinically relevant functional outcomes is imperative to better understand the persistence and evolution of behavioral deficits over time after injury to the developing brain. Strategies to modify or protect against the chronic consequences of pediatric TBI, by supporting the trajectory of normal brain development, have the potential to improve quality of life for brain-injured children.

  10. Low level laser therapy for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wu, Qiuhe; Huang, Ying-Ying; Dhital, Saphala; Sharma, Sulbha K.; Chen, Aaron C.-H.; Whalen, Michael J.; Hamblin, Michael R.

    2010-02-01

    Low level laser (or light) therapy (LLLT) has been clinically applied for many indications in medicine that require the following processes: protection from cell and tissue death, stimulation of healing and repair of injuries, and reduction of pain, swelling and inflammation. One area that is attracting growing interest is the use of transcranial LLLT to treat stroke and traumatic brain injury (TBI). The fact that near-infrared light can penetrate into the brain would allow non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. LLLT may have beneficial effects in the acute treatment of brain damage injury by increasing respiration in the mitochondria, causing activation of transcription factors, reducing key inflammatory mediators, and inhibiting apoptosis. We tested LLLT in a mouse model of TBI produced by a controlled weight drop onto the skull. Mice received a single treatment with 660-nm, 810-nm or 980-nm laser (36 J/cm2) four hours post-injury and were followed up by neurological performance testing for 4 weeks. Mice with moderate to severe TBI treated with 660- nm and 810-nm laser had a significant improvement in neurological score over the course of the follow-up and histological examination of the brains at sacrifice revealed less lesion area compared to untreated controls. Further studies are underway.

  11. NONINVASIVE BRAIN STIMULATION IN TRAUMATIC BRAIN INJURY

    PubMed Central

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Bernabeu, Montserrat; Tormos, Jose M.; Pascual-Leone, Alvaro

    2012-01-01

    Brain stimulation techniques have evolved in the last few decades with more novel methods capable of painless, noninvasive brain stimulation. While the number of clinical trials employing noninvasive brain stimulation continues to increase in a variety of medication-resistant neurological and psychiatric diseases, studies evaluating their diagnostic and therapeutic potential in traumatic brain injury (TBI) are largely lacking. This review introduces different techniques of noninvasive brain stimulation, which may find potential use in TBI. We cover transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), low-level laser therapy (LLLT) and transcranial doppler sonography (TCD) techniques. We provide a brief overview of studies to date, discuss possible mechanisms of action, and raise a number of considerations when thinking about translating these methods to clinical use. PMID:21691215

  12. Animal models of traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in both civilian life and the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs, which were identified to be effective in animal TBI models, have all failed in phase II or phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies. PMID:23329160

  13. The Role of Markers of Inflammation in Traumatic Brain Injury

    PubMed Central

    Woodcock, Thomas; Morganti-Kossmann, Maria Cristina

    2013-01-01

    Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia, and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (Interleukin-1, Tumor Necrosis Factor, Interleukin-6), the anti-inflammatory cytokines (IL-4, Interleukin-10, and TGF-beta), and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following Traumatic brain injury (TBI), the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring, and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair. Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality, or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This

  14. Biomarkers in acute lung injury.

    PubMed

    Mokra, Daniela; Kosutova, Petra

    2015-04-01

    Acute respiratory distress syndrome (ARDS) and its milder form acute lung injury (ALI) may result from various diseases and situations including sepsis, pneumonia, trauma, acute pancreatitis, aspiration of gastric contents, near-drowning etc. ALI/ARDS is characterized by diffuse alveolar injury, lung edema formation, neutrophil-derived inflammation, and surfactant dysfunction. Clinically, ALI/ARDS is manifested by decreased lung compliance, severe hypoxemia, and bilateral pulmonary infiltrates. Severity and further characteristics of ALI/ARDS may be detected by biomarkers in the plasma and bronchoalveolar lavage fluid (or tracheal aspirate) of patients. Changed concentrations of individual markers may suggest injury or activation of the specific types of lung cells-epithelial or endothelial cells, neutrophils, macrophages, etc.), and thereby help in diagnostics and in evaluation of the patient's clinical status and the treatment efficacy. This chapter reviews various biomarkers of acute lung injury and evaluates their usefulness in diagnostics and prognostication of ALI/ARDS.

  15. Pediatric Traumatic Brain Injury. Special Topic Report #3.

    ERIC Educational Resources Information Center

    Waaland, Pamela K.; Cockrell, Janice L.

    This brief report summarizes what is known about pediatric traumatic brain injury, including the following: risk factors (e.g., males especially those ages 5 to 25, youth with preexisting problems including previous head injury victims, and children receiving inadequate supervision); life after injury; physical and neurological consequences (e.g.,…

  16. Traumatic Brain Injury: A Guidebook for Idaho Educators.

    ERIC Educational Resources Information Center

    Carter, Susanne

    This guide is an introduction to head injury and to educational resources in the field. An introductory section describes traumatic brain injury (TBI) as a federally recognized disability category and provides its federal and Idaho definitions. The following section introduces the unique characteristics of students with brain injuries. A section…

  17. Effects of crystalloid-colloid solutions on traumatic brain injury.

    PubMed

    Elliott, Melanie B; Jallo, Jack J; Gaughan, John P; Tuma, Ronald F

    2007-01-01

    The purpose of this study was to compare the effects of crystalloid and crystalloid-colloid solutions administered at different times after isolated traumatic brain injury. Male Sprague-Dawley rats were randomized to receive one of three intravenous treatments (4 mL/kg body weight) at 10 min or 6 h after moderate traumatic brain injury. Treatments included hypertonic saline, hypertonic albumin, and normal albumin. Moderate injuries were produced using the controlled cortical impact injury model set at 2.0 mm, 4.0 m/sec, and 130 msec. Tissue damage and cerebral edema were measured to evaluate the effect of treatments for traumatic brain injury. Blood brain barrier permeability was assessed at different time points after injury to identify a mechanism for treatment effectiveness. Injury volume was the smallest for animals treated with hypertonic albumin at 6 h after injury compared to all other treatments and administration times. Ipsilateral brain water content was significantly attenuated with immediate normal saline-albumin treatment. The presence of colloid in the infusion solutions was associated with an improvement in tissue damage and edema following isolated head injury while hypertonic saline alone, when given immediately after injury, worsened tissue damage and edema. When hypertonic saline was administered at 6 h after injury, tissue damage and edema were not worsened. In conclusion, the presence of colloid in solutions used to treat traumatic brain injury and the timing of treatment have a significant impact on tissue damage and edema.

  18. Investigation of Chronic Pain Following Traumatic Brain Injury

    DTIC Science & Technology

    2013-01-01

    patients with chronic migraine, fibromyalgia , post-traumatic pain post mTBI, asymptomatic individuals post mTBI, and normal controls. Resting state...disorders. The specific study groups to be compared for this work include patients with chronic migraine, fibromyalgia , post-traumatic pain post...following mild traumatic brain injury (mTBI), those with fibromyalgia , chronic migraine without aura, asymptomatic individuals after mTBI, and in

  19. Acknowledging the Risk for Traumatic Brain Injury in Women Veterans.

    PubMed

    Amoroso, Timothy; Iverson, Katherine M

    2017-04-01

    Since the Iraq and Afghanistan wars began, an unprecedented number of women have been engaging in combat operations. Likewise, the number of women using Department of Veterans Affairs (VA) services has doubled since 2001. Military service, and deployment to combat in particular, poses certain risks for traumatic brain injury (TBI)-for all service members. However, women may have additional military and nondeployment risk factors such as intimate partner violence (IPV). We briefly review the definition and classification issues related to TBI, as well as common acute and chronic health symptoms after TBI. Specific sex differences in prognosis after TBI, in particular the neurobehavioral symptoms, are also reviewed. We then focus on the emerging literature regarding TBI in women veterans including the etiologies, outcomes, and unique challenges this population faces. The article concludes with suggestions for enhanced screening by VA and non-VA providers alike, as well as directions for future research and clinical inquiry.

  20. Neonatal Acute Kidney Injury.

    PubMed

    Selewski, David T; Charlton, Jennifer R; Jetton, Jennifer G; Guillet, Ronnie; Mhanna, Maroun J; Askenazi, David J; Kent, Alison L

    2015-08-01

    In recent years, there have been significant advancements in our understanding of acute kidney injury (AKI) and its impact on outcomes across medicine. Research based on single-center cohorts suggests that neonatal AKI is very common and associated with poor outcomes. In this state-of-the-art review on neonatal AKI, we highlight the unique aspects of neonatal renal physiology, definition, risk factors, epidemiology, outcomes, evaluation, and management of AKI in neonates. The changes in renal function with gestational and chronologic age are described. We put forth and describe the neonatal modified Kidney Diseases: Improving Global Outcomes AKI criteria and provide the rationale for its use as the standardized definition of neonatal AKI. We discuss risk factors for neonatal AKI and suggest which patient populations may warrant closer surveillance, including neonates <1500 g, infants who experience perinatal asphyxia, near term/ term infants with low Apgar scores, those treated with extracorporeal membrane oxygenation, and those requiring cardiac surgery. We provide recommendations for the evaluation and treatment of these patients, including medications and renal replacement therapies. We discuss the need for long-term follow-up of neonates with AKI to identify those children who will go on to develop chronic kidney disease. This review highlights the deficits in our understanding of neonatal AKI that require further investigation. In an effort to begin to address these needs, the Neonatal Kidney Collaborative was formed in 2014 with the goal of better understanding neonatal AKI, beginning to answer critical questions, and improving outcomes in these vulnerable populations.

  1. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain

    PubMed Central

    Semple, Bridgette D; Trivedi, Alpa; Gimlin, Kayleen; Noble-Haeusslein, Linda J

    2014-01-01

    While neutrophil elastase (NE), released by activated neutrophils, is a key mediator of secondary pathogenesis in adult models of brain ischemia and spinal cord injury, no studies to date have examined this protease in the context of the injured immature brain, where there is notable vulnerability resulting from inadequate antioxidant reserves and prolonged exposure to infiltrating neutrophils. We thus reasoned that NE may be a key determinant of secondary pathogenesis, and as such, adversely influence long-term neurological recovery. To address this hypothesis, wild-type (WT) and NE knockout (KO) mice were subjected to a controlled cortical impact at post-natal day 21, approximating a toddler-aged child. To determine if NE is required for neutrophil infiltration into the injured brain, and whether this protease contributes to vasogenic edema, we quantified neutrophil numbers and measured water content in the brains of each of these genotypes. While leukocyte trafficking was indistinguishable between genotypes, vasogenic edema was markedly attenuated in the NE KO. To determine if early pathogenesis is dependent on NE, indices of cell death (TUNEL and activated caspase-3) were quantified across genotypes. NE KO mice showed a reduction in these markers of cell death in the injured hippocampus, which corresponded to greater preservation of neuronal integrity as well as reduced expression of heme oxygenase-1, a marker of oxidative stress. WT mice, treated with a competitive inhibitor of NE at 2, 6 and 12 h post-injury, likewise showed a reduction in cell death and oxidative stress compared to vehicle-treated controls. We next examined the long-term behavioral and structural consequences of NE deficiency. NE KO mice showed an improvement in long-term spatial memory retention and amelioration of injury-induced hyperactivity. However, volumetric and stereological analyses found comparable tissue loss in the injured cortex and hippocampus independent of genotype. Further

  2. 38 CFR 9.20 - Traumatic injury protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specified benefit amount to a member insured by Servicemembers' Group Life Insurance who sustains a... accidental ingestion of a contaminated substance causing damage to a living being occurring— (i) On or after...) A traumatic injury is physical damage to a living body that is caused by a traumatic event...

  3. Assessment of Cerebral Hemodynamics in Traumatic Brain Injury

    DTIC Science & Technology

    2006-11-01

    haemorrhage, and 6 with subarach- noid hemorrhage from ruptured aneurysm . There were 4 cases of cerebral contusions and a single case of traumatic...B. Goldstein, 2003: Significance of Intracranial Pressure Pulse Morphology in Pediatric Traumatic Brain Injury. IEEE, 2491-2494. Anile, C., H. D

  4. Dental management of traumatic injuries to the primary dentition.

    PubMed

    Dummett, C O

    2000-11-01

    There is considerable information on traumatic injury management of permanent teeth. However, there are no conclusive guidelines for treating traumatized primary teeth. This article will summarize a number of issues relative to primary dentition trauma and provide a system for treatment.

  5. Traumatic brain injury in U.S. Veterans with traumatic spinal cord injury.

    PubMed

    Creasey, Graham H; Lateva, Zoia C; Schüssler-Fiorenza Rose, Sophia Miryam; Rose, Jon

    2015-01-01

    Patients with both a spinal cord injury (SCI) and traumatic brain injury (TBI) are often very difficult to manage and can strain the resources of clinical units specialized in treating either diagnosis. However, a wide range of estimates exists on the extent of this problem. The aim of this study was to describe the scope of the problem in a well-defined population attending a comprehensive SCI unit. Electronic medical records of all patients with SCI being followed by the SCI unit in a U.S. Veterans' hospital were searched to identify those with concurrent TBI. The data were analyzed for age, sex, cause of injury, level and completeness of SCI, cognitive impairment, relationship with Active Duty military, and date of injury. Of 409 Veterans with a traumatic SCI, 99 (24.2%) were identified as having had a concurrent TBI. The occurrence did not appear to be closely related to military conflict. Reports of TBI were much more common in the last 20 yr than in previous decades. Documentation of TBI in patients with SCI was inconsistent. Improved screening and documentation could identify all patients with this dual diagnosis and facilitate appropriate management.

  6. Imaging modalities in mild traumatic brain injury and sports concussion.

    PubMed

    Gonzalez, Peter G; Walker, Matthew T

    2011-10-01

    Mild traumatic brain injury is a significant public health issue that has been gaining considerable attention over the past few years. After injury, a large percentage of patients experience postconcussive symptoms that affect work and school performance and that carry significant medicolegal implications. Conventional imaging modalities (computed tomography and magnetic resonance imaging) are insensitive to microstructural changes and underestimate the degree of diffuse axonal injury and metabolic changes. Newer imaging techniques have attempted to better diagnose and characterize diffuse axonal injury and the metabolic and functional aspects of traumatic brain injury. The following review article summarizes the currently available imaging studies and describes the novel and more investigational techniques available for mild traumatic brain injury. A suggested algorithm is offered.

  7. [Effects of alcohol consumption on traumatic brain injury].

    PubMed

    Katada, Ryuichi

    2011-10-01

    It has been well known that alcohol consumption affects traumatic brain injury. The mechanism of detrimental effect of ethanol on traumatic brain injury has not been clarified. This review focused on the relationship among traumatic brain injury, ethanol and aquaporin-4. We have reported that ethanol increased brain edema after brain contusion and decreased survival rates in rats. It was suggested that increasing brain edema by ethanol after brain contusion may be caused by oxidative stress. Brain edema consists of cytotoxic brain edema, vasogenic brain edema, interstitial brain edema and osmotic edema. Ethanol mainly increases cytotoxic brain edema. Both alcohol consumption and brain contusion cause oxidative stress. Antioxidant treatment decreases cytotoxic brain edema. Aquaporin-4, an water channel, was increased by ethanol 24 hr after traumatic brain injury in rat. The aquaporin-4 inhibitor decreased brain edema after brain contusion and increased survival rates under ethanol consumption. Aquaporin-4 may have strict relation between ethanol and brain edema increasing after brain contusion.

  8. How Do Health Care Providers Diagnose Traumatic Brain Injury (TBI)?

    MedlinePlus

    ... Information Clinical Trials Resources and Publications How do health care providers diagnose traumatic brain injury (TBI)? Skip sharing ... links Share this: Page Content To diagnose TBI, health care providers may use one or more tests that ...

  9. Classroom Strategies for Teaching Veterans with Post-Traumatic Stress Disorder and Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Sinski, Jennifer Blevins

    2012-01-01

    Postsecondary institutions currently face the largest influx of veteran students since World War II. As the number of veteran students who may experience learning problems caused by Post-Traumatic Stress Disorder and/or Traumatic Brain Injury continues to rise, the need for instructional strategies that address their needs increases. Educators may…

  10. Iatrogenic traumatic brain injury during tooth extraction.

    PubMed

    Troxel, Mark

    2015-01-01

    An 8 yr old spayed female Yorkshire terrier was referred for evaluation of progressive neurological signs after a routine dental prophylaxis with tooth extractions. The patient was circling to the left and blind in the right eye with right hemiparesis. Neurolocalization was to the left forebrain. MRI revealed a linear tract extending from the caudal oropharynx, through the left retrobulbar space and frontal lobe, into the left parietal lobe. A small skull fracture was identified in the frontal bone through which the linear tract passed. Those findings were consistent with iatrogenic trauma from slippage of a dental elevator during extraction of tooth 210. The dog was treated empirically with clindamycin. The patient regained most of its normal neurological function within the first 4 mo after the initial injury. Although still not normal, the dog has a good quality of life. Traumatic brain injury is a rarely reported complication of extraction. Care must be taken while performing dental cleaning and tooth extraction, especially of the maxillary premolar and molar teeth to avoid iatrogenic damage to surrounding structures.

  11. Quality management in traumatic brain injury (TBI) lessons from the prospective study in 6.800 patients after acute TBI in respect of neurorehabilitation.

    PubMed

    von Wild, K R H; Wenzlaff, P

    2005-01-01

    Preliminary results on epidemiology, acute hospital care, and neurorehabilitation of TBI are presented of the first ever prospective controlled German study to analyse the use of regional structures and quality management as provided by the German social healthcare system. The sum of inhabitants in Hannover and Münster area was 2,114 million. Within an area of 100 kilometres diameter each. 6.783 acute TBI (58% male) were admitted for acute treatment from March 2000 to 2001. Definition of acute TBI was according to the ICD 10 S-02, S-04, S-06, S-07, S-09 in combination with dizziness or vomiting; retrograde or anterograde amnesia, impaired consciousness, skull fracture, and/or focal neurological impairment. The incidence was 321/100.000 population. Cause of TBI was traffic accident in 26%, during leisure time 35%, at home 30% and at work 15%. Initial GCS (emergency room) was only assessed in 3.731 TBI (=55%). Out of those 3.395 = 90,9% were mild, 145 = 3,9% were moderate, and 191 = 5,2% severe TBI. 28% of 6.783 patients were <1 to 15 years, 18% > 65 years of age. The number admitted to hospital treatment is 5.221 = 77%, of whom 72 patients (=1,4%) died caused by TBI. One year follow-up in 4.307 TBI patients (=63.5%) revealed that only 258 patients (=3,8%) received neurorehabilitation (73% male), but 68% within one month of injury. Five percent of these patients were <16 years of age, 25% > 65 years. Early rehabilitation "B" was performed in 100 patients (=39%), 19% within one week following TBI. The management of frequent complications in 148 patients (=57%) and the high number of one or more different consultations (n = 196) confirmed the author's concept for early neurosurgical rehabilitation in TBI when rehabilitation centres were compared regarding GCS and GOS: Early GOS 1 = 4%; GOS 2 = 2,7%, GOS 3 = 37,3%, GOS 4 = 26,7%, GOS 5 = 29,3%, final GOS scores were 1 = 1,2%, 2 = 1,7%, 3 = 21,8%, 4 = 36,2%, and 5 = 39,1% of all patients at the end of rehabilitation

  12. Acute Traumatic Tear of Latissimus Dorsi Muscle in an Elite Track Athlete

    PubMed Central

    Çelebi, Mehmet Mesut; Ergen, Emin; Üstüner, Evren

    2013-01-01

    Soft tissue injuries constitute 30-50% of all sports related injuries; however, injury to the latissimus dorsi muscle is quite rare with only a few cases reported in the literature. Herein, we describe an acute traumatic tear of the latissimus dorsi muscle in an elite track athlete, which has not been reported in the track and field sports before. The injury was caused by forceful resisted arm adduction that took place at hurdling and starting from the block. A pseudotumor appearance in the axillary region was misdiagnosed as a mass. The diagnosis was made by ultrasound alone and the patient was managed conservatively. PMID:24765503

  13. Acute traumatic tear of latissimus dorsi muscle in an elite track athlete.

    PubMed

    Celebi, Mehmet Mesut; Ergen, Emin; Ustüner, Evren

    2013-08-02

    Soft tissue injuries constitute 30-50% of all sports related injuries; however, injury to the latissimus dorsi muscle is quite rare with only a few cases reported in the literature. Herein, we describe an acute traumatic tear of the latissimus dorsi muscle in an elite track athlete, which has not been reported in the track and field sports before. The injury was caused by forceful resisted arm adduction that took place at hurdling and starting from the block. A pseudotumor appearance in the axillary region was misdiagnosed as a mass. The diagnosis was made by ultrasound alone and the patient was managed conservatively.

  14. Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care.

    PubMed

    Elder, Gregory A; Cristian, Adrian

    2009-04-01

    Mild traumatic brain injury has been called the signature injury of the wars in Iraq and Afghanistan. In both theaters of operation, traumatic brain injury has been a significant cause of mortality and morbidity, with blast-related injury the most common cause. Improvised explosive devices have been the major cause of blast injuries. It is estimated that 10% to 20% of veterans returning from these operations have suffered a traumatic brain injury, and there is concern that blast-related injury may produce adverse long-term health affects and affect the resilience and in-theater performance of troops. Blast-related injury occurs through several mechanisms related to the nature of the blast overpressure wave itself as well as secondary and tertiary injuries. Animal studies clearly show that blast overpressure waves are transmitted to the brain and can cause changes that neuropathologically are most similar to diffuse axonal injury. One striking feature of the mild traumatic brain injury cases being seen in veterans of the wars in Iraq and Afghanistan is the high association of mild traumatic brain injury with posttraumatic stress disorder. The overlap in symptoms between the disorders has made distinguishing them clinically challenging. The high rates of mild traumatic brain injury and posttraumatic stress disorder in the current operations are of significant concern for the long-term health of US veterans with associated economic implications.

  15. Behavioral Outcomes Differ between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury

    PubMed Central

    Stemper, Brian D.; Shah, Alok S.; Budde, Matthew D.; Olsen, Christopher M.; Glavaski-Joksimovic, Aleksandra; Kurpad, Shekar N.; McCrea, Michael; Pintar, Frank A.

    2016-01-01

    Mild traumatic brain injury (mTBI) can result from a number of mechanisms, including blunt impact, head rotational acceleration, exposure to blast, and penetration of projectiles. Mechanism is likely to influence the type, severity, and chronicity of outcomes. The objective of this study was to determine differences in the severity and time course of behavioral outcomes following blast and rotational mTBI. The Medical College of Wisconsin (MCW) Rotational Injury model and a shock tube model of primary blast injury were used to induce mTBI in rats and behavioral assessments were conducted within the first week, as well as 30 and 60 days following injury. Acute recovery time demonstrated similar increases over protocol-matched shams, indicating acute injury severity equivalence between the two mechanisms. Post-injury behavior in the elevated plus maze demonstrated differing trends, with rotationally injured rats acutely demonstrating greater activity, whereas blast-injured rats had decreased activity that developed at chronic time points. Similarly, blast-injured rats demonstrated trends associated with cognitive deficits that were not apparent following rotational injuries. These findings demonstrate that rotational and blast injury result in behavioral changes with different qualitative and temporal manifestations. Whereas rotational injury was characterized by a rapidly emerging phenotype consistent with behavioral disinhibition, blast injury was associated with emotional and cognitive differences that were not evident acutely, but developed later, with an anxiety-like phenotype still present in injured animals at our most chronic measurements. PMID:27014184

  16. Behavioral Outcomes Differ between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury.

    PubMed

    Stemper, Brian D; Shah, Alok S; Budde, Matthew D; Olsen, Christopher M; Glavaski-Joksimovic, Aleksandra; Kurpad, Shekar N; McCrea, Michael; Pintar, Frank A

    2016-01-01

    Mild traumatic brain injury (mTBI) can result from a number of mechanisms, including blunt impact, head rotational acceleration, exposure to blast, and penetration of projectiles. Mechanism is likely to influence the type, severity, and chronicity of outcomes. The objective of this study was to determine differences in the severity and time course of behavioral outcomes following blast and rotational mTBI. The Medical College of Wisconsin (MCW) Rotational Injury model and a shock tube model of primary blast injury were used to induce mTBI in rats and behavioral assessments were conducted within the first week, as well as 30 and 60 days following injury. Acute recovery time demonstrated similar increases over protocol-matched shams, indicating acute injury severity equivalence between the two mechanisms. Post-injury behavior in the elevated plus maze demonstrated differing trends, with rotationally injured rats acutely demonstrating greater activity, whereas blast-injured rats had decreased activity that developed at chronic time points. Similarly, blast-injured rats demonstrated trends associated with cognitive deficits that were not apparent following rotational injuries. These findings demonstrate that rotational and blast injury result in behavioral changes with different qualitative and temporal manifestations. Whereas rotational injury was characterized by a rapidly emerging phenotype consistent with behavioral disinhibition, blast injury was associated with emotional and cognitive differences that were not evident acutely, but developed later, with an anxiety-like phenotype still present in injured animals at our most chronic measurements.

  17. Traumatic brain injury and obesity induce persistent central insulin resistance.

    PubMed

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI.

  18. Screening for Traumatic Brain Injury: Findings and Public Health Implications

    PubMed Central

    Dams-O’Connor, Kristen; Cantor, Joshua B.; Brown, Margaret; Dijkers, Marcel P.; Spielman, Lisa A.; Gordon, Wayne A.

    2016-01-01

    Objective To provide an overview of a series of projects that used a structured self-report screening tool in diverse settings and samples to screen for lifetime history of traumatic brain injury (TBI). Setting Diverse community settings. Participants Homeless persons (n = 111), individuals with HIV seeking vocational rehabilitation (n = 173), youth in the juvenile justice system (n = 271), public schoolchildren (n = 174), substance users (n = 845), intercollegiate athletes (n = 90), and other community-based samples (n = 396). Design Cross-sectional. Main Measure Brain Injury Screening Questionnaire. Results Screening using the Brain Injury Screening Questionnaire finds that 27% to 54% of those in high-risk populations report a history of TBI with chronic symptoms. Associations between TBI and social, academic, or other problems are evident in several studies. In non–high-risk community samples, 9% to 12% of individuals report TBI with chronic symptoms. Conclusion Systematic TBI screening can be implemented efficiently and inexpensively in a variety of settings. Lifetime TBI history data gathered using a structured self-report instrument can augment existing estimates of the prevalence of TBI, both as an acute event and as a chronic condition. Identification of individuals with TBI can facilitate primary prevention efforts, such as reducing risk for reinjury in high-risk groups, and provide access to appropriate interventions that can reduce the personal and societal costs of TBI (tertiary prevention). PMID:25370440

  19. Combination Therapies for Traumatic Brain Injury: Retrospective Considerations

    PubMed Central

    Anderson, Gail; Atif, Fahim; Badaut, Jerome; Clark, Robert; Empey, Philip; Guseva, Maria; Hoane, Michael; Huh, Jimmy; Pauly, Jim; Raghupathi, Ramesh; Scheff, Stephen; Stein, Donald; Tang, Huiling; Hicks, Mona

    2016-01-01

    Abstract Patients enrolled in clinical trials for traumatic brain injury (TBI) may present with heterogeneous features over a range of injury severity, such as diffuse axonal injury, ischemia, edema, hemorrhage, oxidative damage, mitochondrial and metabolic dysfunction, excitotoxicity, inflammation, and other pathophysiological processes. To determine whether combination therapies might be more effective than monotherapy at attenuating moderate TBI or promoting recovery, the National Institutes of Health funded six preclinical studies in adult and immature male rats to evaluate promising acute treatments alone and in combination. Each of the studies had a solid rationale for its approach based on previous research, but only one reported significant improvements in long-term outcomes across a battery of behavioral tests. Four studies had equivocal results because of a lack of sensitivity of the outcome assessments. One study demonstrated worse results with the combination in comparison with monotherapies. While specific research findings are reported elsewhere, this article provides an overview of the study designs, insights, and recommendations for future research aimed at therapy development for TBI. PMID:25970337

  20. Decoding hippocampal signaling deficits after traumatic brain injury.

    PubMed

    Atkins, Coleen M

    2011-12-01

    There are more than 3.17 million people coping with long-term disabilities due to traumatic brain injury (TBI) in the United States. The majority of TBI research is focused on developing acute neuroprotective treatments to prevent or minimize these long-term disabilities. Therefore, chronic TBI survivors represent a large, underserved population that could significantly benefit from a therapy that capitalizes on the endogenous recovery mechanisms occurring during the weeks to months following brain trauma. Previous studies have found that the hippocampus is highly vulnerable to brain injury, in both experimental models of TBI and during human TBI. Although often not directly mechanically injured by the head injury, in the weeks to months following TBI, the hippocampus undergoes atrophy and exhibits deficits in long-term potentiation (LTP), a persistent increase in synaptic strength that is considered to be a model of learning and memory. Decoding the chronic hippocampal LTP and cell signaling deficits after brain trauma will provide new insights into the molecular mechanisms of hippocampal-dependent learning impairments caused by TBI and facilitate the development of effective therapeutic strategies to improve hippocampal-dependent learning for chronic survivors of TBI.

  1. [Hypopituitarism following traumatic brain injury: diagnostic and therapeutic issues].

    PubMed

    Lecoq, A-L; Chanson, P

    2015-10-01

    Traumatic Brain Injury (TBI) is a well-known public health problem worldwide and is a leading cause of death and disability, particularly in young adults. Besides neurological and psychiatric issues, pituitary dysfunction can also occur after TBI, in the acute or chronic phase. The exact prevalence of post-traumatic hypopituitarism is difficult to assess due to the wide heterogeneity of published studies and bias in interpretation of hormonal test results in this specific population. Predictive factors for hypopituitarism have been proposed and are helpful for the screening. The pathophysiology of pituitary dysfunction after TBI is not well understood but the vascular hypothesis is privileged. Activation of pituitary stem/progenitor cells is probably involved in the recovery of pituitary functions. Those cells also play a role in the induction of pituitary tumors, highlighting their crucial place in pituitary conditions. This review updates the current data related to anterior pituitary dysfunction after TBI and discusses the bias and difficulties encountered in its diagnosis.

  2. Hypothalamic-Pituitary Autoimmunity and Traumatic Brain Injury

    PubMed Central

    Guaraldi, Federica; Grottoli, Silvia; Arvat, Emanuela; Ghigo, Ezio

    2015-01-01

    Background: Traumatic brain injury (TBI) is a leading cause of secondary hypopituitarism in children and adults, and is responsible for impaired quality of life, disabilities and compromised development. Alterations of pituitary function can occur at any time after the traumatic event, presenting in various ways and evolving during time, so they require appropriate screening for early detection and treatment. Although the exact pathophysiology is unknown, several mechanisms have been hypothesized, including hypothalamic-pituitary autoimmunity (HP-A). The aim of this study was to systematically review literature on the association between HP-A and TBI-induced hypopituitarism. Major pitfalls related to the HP-A investigation were also discussed. Methods: The PubMed database was searched with a string developed for this purpose, without temporal or language limits, for original articles assessing the association of HP-A and TBI-induced hypopituitarism. Results: Three articles from the same group met the inclusion criteria. Anti-pituitary and anti-hypothalamic antibodies were detected using indirect immunofluorescence in a significant number of patients with acute and chronic TBI. Elevated antibody titer was associated with an increased risk of persistent hypopituitarism, especially somatotroph and gonadotroph deficiency, while no correlations were found with clinical parameters. Conclusion: HPA seems to contribute to TBI-induced pituitary damage, although major methodological issues need to be overcome and larger studies are warranted to confirm these preliminary data. PMID:26239463

  3. Older Age Results in Differential Gene Expression after Mild Traumatic Brain Injury and Is Linked to Imaging Differences at Acute Follow-up

    PubMed Central

    Cho, Young-Eun; Latour, Lawrence L.; Kim, Hyungsuk; Turtzo, L. Christine; Olivera, Anlys; Livingston, Whitney S.; Wang, Dan; Martin, Christiana; Lai, Chen; Cashion, Ann; Gill, Jessica

    2016-01-01

    Older age consistently relates to a lesser ability to fully recover from a traumatic brain injury (TBI); however, there is limited data to explicate the nature of age-related risks. This study was undertaken to determine the relationship of age on gene-activity following a TBI, and how this biomarker relates to changes in neuroimaging findings. A young group (between the ages of 19 and 35 years), and an old group (between the ages of 60 and 89 years) were compared on global gene-activity within 48 h following a TBI, and then at follow-up within 1-week. At each time-point, gene expression profiles, and imaging findings from both magnetic resonance imaging (MRI) and computed tomography were obtained and compared. The young group was found to have greater gene expression of inflammatory regulatory genes at 48 h and 1-week in genes such as basic leucine zipper transcription factor 2 (BACH2), leucine-rich repeat neuronal 3 (LRRN3), and lymphoid enhancer-binding factor 1 (LEF1) compared to the old group. In the old group, there was increased activity in genes within S100 family, including calcium binding protein P (S100P) and S100 calcium binding protein A8 (S100A8), which previous studies have linked to poor recovery from TBI. The old group also had reduced activity of the noggin (NOG) gene, which is a member of the transforming growth factor-β superfamily and is linked to neurorecovery and neuroregeneration compared to the young group. We link these gene expression findings that were validated to neuroimaging, reporting that in the old group with a MRI finding of TBI-related damage, there was a lesser likelihood to then have a negative MRI finding at follow-up compared to the young group. Together, these data indicate that age impacts gene activity following a TBI, and suggest that this differential activity related to immune regulation and neurorecovery contributes to a lesser likelihood of neuronal recovery in older patients as indicated through neuroimaging. PMID

  4. Military-related traumatic brain injury and neurodegeneration.

    PubMed

    McKee, Ann C; Robinson, Meghan E

    2014-06-01

    Mild traumatic brain injury (mTBI) includes concussion, subconcussion, and most exposures to explosive blast from improvised explosive devices. mTBI is the most common traumatic brain injury affecting military personnel; however, it is the most difficult to diagnose and the least well understood. It is also recognized that some mTBIs have persistent, and sometimes progressive, long-term debilitating effects. Increasing evidence suggests that a single traumatic brain injury can produce long-term gray and white matter atrophy, precipitate or accelerate age-related neurodegeneration, and increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease. In addition, repetitive mTBIs can provoke the development of a tauopathy, chronic traumatic encephalopathy. We found early changes of chronic traumatic encephalopathy in four young veterans of the Iraq and Afghanistan conflict who were exposed to explosive blast and in another young veteran who was repetitively concussed. Four of the five veterans with early-stage chronic traumatic encephalopathy were also diagnosed with posttraumatic stress disorder. Advanced chronic traumatic encephalopathy has been found in veterans who experienced repetitive neurotrauma while in service and in others who were accomplished athletes. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus; septal abnormalities; and abnormal deposits of hyperphosphorylated tau as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy has clinical and

  5. Military-related traumatic brain injury and neurodegeneration

    PubMed Central

    McKee, Ann C.; Robinson, Meghan E.

    2014-01-01

    Mild traumatic brain injury (mTBI) includes concussion, subconcussion, and most exposures to explosive blast from improvised explosive devices. mTBI is the most common traumatic brain injury affecting military personnel; however, it is the most difficult to diagnose and the least well understood. It is also recognized that some mTBIs have persistent, and sometimes progressive, long-term debilitating effects. Increasing evidence suggests that a single traumatic brain injury can produce long-term gray and white matter atrophy, precipitate or accelerate age-related neurodegeneration, and increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease. In addition, repetitive mTBIs can provoke the development of a tauopathy, chronic traumatic encephalopathy. We found early changes of chronic traumatic encephalopathy in four young veterans of the Iraq and Afghanistan conflict who were exposed to explosive blast and in another young veteran who was repetitively concussed. Four of the five veterans with early-stage chronic traumatic encephalopathy were also diagnosed with posttraumatic stress disorder. Advanced chronic traumatic encephalopathy has been found in veterans who experienced repetitive neurotrauma while in service and in others who were accomplished athletes. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus; septal abnormalities; and abnormal deposits of hyperphosphorylated tau as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy has clinical and

  6. Traumatic brain injury research priorities: the Conemaugh International Brain Injury Symposium.

    PubMed

    Zitnay, George A; Zitnay, Kevin M; Povlishock, John T; Hall, Edward D; Marion, Donald W; Trudel, Tina; Zafonte, Ross D; Zasler, Nathan; Nidiffer, F Don; DaVanzo, John; Barth, Jeffrey T

    2008-10-01

    In 2005, an international symposium was convened with over 100 neuroscientists from 13 countries and major research centers to review current research in traumatic brain injury (TBI) and develop a consensus document on research issues and priorities. Four levels of TBI research were the focus of the discussion: basic science, acute care, post-acute neurorehabilitation, and improving quality of life (QOL). Each working group or committee was charged with reviewing current research, discussion and prioritizing future research directions, identifying critical issues that impede research in brain injury, and establishing a research agenda that will drive research over the next five years, leading to significantly improved outcomes and QOL for individuals suffering brain injuries. This symposium was organized at the request of the Congressional Brain Injury Task Force, to follow up on the National Institutes of Health Consensus Conference on TBI as mandated by the TBI ACT of 1996. The goal was to review what progress had been made since the National Institutes of Health (NIH) Consensus Conference, and also to follow up on the 1990's Decade of the Brain Project. The major purpose of the symposium was to provide recommendations to the U.S. Congress on a priority basis for research, treatment, and training in TBI over the next five years.

  7. Traumatic Life Events Prior to Alcohol-Related Admission of Injured Acute Care Inpatients: A Brief Report

    PubMed Central

    Peterson, Roselyn; Russo, Joan; Darnell, Doyanne; Wang, Jin; Ingraham, Leah; Zatzick, Douglas

    2016-01-01

    Objective Approximately 30 million Americans present to acute care medical settings annually after incurring traumatic injuries. Posttraumatic stress disorder and depressive symptoms are endemic among injury survivors. Our paper is a replication and extension of a previous report documenting a pattern of multiple traumatic life events across patients admitted to Level I trauma centers for an alcohol-related injury. Method This study is a secondary analysis of a nationwide 20-site randomized trial of an alcohol brief intervention with 660 traumatically injured inpatients. Pre-injury trauma history was assessed using the National Comorbidity Survey trauma history screen at the 6 month time point. Results Most common traumatic events experienced by our population of alcohol positive trauma survivors were having had someone close unexpectedly die, followed by having seen someone badly beaten or injured. Of particular note, there is high reported prevalence of rape/sexual assault, and childhood abuse and neglect among physically injured trauma survivors. Additional trauma histories are increasingly common among alcohol-positive patients admitted for a traumatic injury. Conclusions Due to the high rate of experienced multiple traumatic events among acutely injured inpatients, the trauma history screen could be productively integrated into screening and brief intervention procedures developed for acute care settings. PMID:26745689

  8. Acute injuries in Taekwondo.

    PubMed

    Schlüter-Brust, K; Leistenschneider, P; Dargel, J; Springorum, H P; Eysel, P; Michael, J W-P

    2011-08-01

    Although Taekwondo is becoming an increasingly popular sport, there is a lack of reliable epidemiologic data on Taekwondo injuries. To perform an epidemiologic study on the variety of types of injury in professional and amateur Taekwondo athletes and to find a relation between Taekwondo style, skill level, weight-class and warm-up routine and the occurrence of injuries, we analysed the injury data using a 7-page questionnaire from a total of 356 Taekwondo athletes who were randomly selected. Overall, we registered a total of 2,164 injuries in 356 athletes. Most traumas were contusions and sprains in the lower extremities. Professional Taekwondo athletes have an increased risk of injury in comparison to recreational athletes. Taekwondo style, weight class and tournament frequency have an influence on the athlete's injury profile. Warm-up routines were found to have a positive effect on injury rates. Overall, Taekwondo may be considered a rather benign activity, if injuries during Taekwondo tournaments can be avoided. If not, Taekwondo can result in serious musculoskeletal problems.

  9. Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development.

    PubMed

    Lucke-Wold, Brandon Peter; Turner, Ryan Coddington; Logsdon, Aric Flint; Bailes, Julian Edwin; Huber, Jason Delwyn; Rosen, Charles Lee

    2014-07-01

    Significant attention has recently been drawn to the potential link between head trauma and the development of neurodegenerative disease, namely chronic traumatic encephalopathy (CTE). The acute neurotrauma associated with sports-related concussions in athletes and blast-induced traumatic brain injury in soldiers elevates the risk for future development of chronic neurodegenerative diseases such as CTE. CTE is a progressive disease distinguished by characteristic tau neurofibrillary tangles (NFTs) and, occasionally, transactive response DNA binding protein 43 (TDP43) oligomers, both of which have a predilection for perivascular and subcortical areas near reactive astrocytes and microglia. The disease is currently only diagnosed postmortem by neuropathological identification of NFTs. A recent workshop sponsored by National Institute of Neurological Disorders and Stroke emphasized the need for premortem diagnosis, to better understand disease pathophysiology and to develop targeted treatments. In order to accomplish this objective, it is necessary to discover the mechanistic link between acute neurotrauma and the development of chronic neurodegenerative and neuropsychiatric disorders such as CTE. In this review, we briefly summarize what is currently known about CTE development and pathophysiology, and subsequently discuss injury-induced pathways that warrant further investigation. Understanding the mechanistic link between acute brain injury and chronic neurodegeneration will facilitate the development of appropriate diagnostic and therapeutic options for CTE and other related disorders.

  10. Experimental traumatic brain injury alters ethanol consumption and sensitivity.

    PubMed

    Lowing, Jennifer L; Susick, Laura L; Caruso, James P; Provenzano, Anthony M; Raghupathi, Ramesh; Conti, Alana C

    2014-10-15

    Altered alcohol consumption patterns after traumatic brain injury (TBI) can lead to significant impairments in TBI recovery. Few preclinical models have been used to examine alcohol use across distinct phases of the post-injury period, leaving mechanistic questions unanswered. To address this, the aim of this study was to describe the histological and behavioral outcomes of a noncontusive closed-head TBI in the mouse, after which sensitivity to and consumption of alcohol were quantified, in addition to dopaminergic signaling markers. We hypothesized that TBI would alter alcohol consumption patterns and related signal transduction pathways that were congruent to clinical observations. After midline impact to the skull, latency to right after injury, motor deficits, traumatic axonal injury, and reactive astrogliosis were evaluated in C57BL/6J mice. Amyloid precursor protein (APP) accumulation was observed in white matter tracts at 6, 24, and 72 h post-TBI. Increased intensity of glial fibrillary acidic protein (GFAP) immunoreactivity was observed by 24 h, primarily under the impact site and in the nucleus accumbens, a striatal subregion, as early as 72 h, persisting to 7 days, after TBI. At 14 days post-TBI, when mice were tested for ethanol sensitivity after acute high-dose ethanol (4 g/kg, intraperitoneally), brain-injured mice exhibited increased sedation time compared with uninjured mice, which was accompanied by deficits in striatal dopamine- and cAMP-regulated neuronal phosphoprotein, 32 kDa (DARPP-32) phosphorylation. At 17 days post-TBI, ethanol intake was assessed using the Drinking-in-the-Dark paradigm. Intake across 7 days of consumption was significantly reduced in TBI mice compared with sham controls, paralleling the reduction in alcohol consumption observed clinically in the initial post-injury period. These data demonstrate that TBI increases sensitivity to ethanol-induced sedation and affects downstream signaling mediators of striatal

  11. Narrative language in traumatic brain injury.

    PubMed

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-08-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS<8) in the phase of neurological stability and 14 neurologically intact participants were recruited for the experiment. Their cognitive, linguistic and narrative skills were thoroughly assessed. The group of non-aphasic individuals with TBI had normal lexical and grammatical skills. However, they produced narratives with increased errors of cohesion and coherence due to the frequent interruption of ongoing utterances, derailments and extraneous utterances that made their discourse vague and ambiguous. They produced a normal amount of thematic units (i.e. concepts) in their narratives. However, this information was not correctly organized at micro- and macrolinguistic levels of processing. A Principal Component Analysis showed that a single factor accounted for the production of global coherence errors, and the reduction of both propositional density at the utterance level and proportion of words that conveyed information. It is hypothesized that the linguistic deficits observed in the participants with TBI may reflect a deficit at the interface between cognitive and linguistic processing rather than a specific linguistic disturbance.

  12. Advanced Neuroimaging in Traumatic Brain Injury

    PubMed Central

    Edlow, Brian L.; Wu, Ona

    2013-01-01

    Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization and interpretation. PMID:23361483

  13. Biomarkers in Silent Traumatic Brain Injury.

    PubMed

    Antonopoulos, Constantine N; Kadoglou, Nikolaos P E

    2016-01-01

    Traumatic brain injury (TBI) has been recognized among the leading causes of mortality and morbidity in young adults. Traditionally, the diagnosis of TBI has been based on neuroimaging. However, a significant portion of insulted patients appear to be apparently asymptomatic. As a result, more elaborate indices of silent TBI are required in order to immediately detect focal and diffuse asymptomatic TBI. Such valid indices will potentially increase the efficacy of therapeutic strategies in TBI patients. In this review of the literature, we present novel circulating biomolecules, as potential biomarkers of silent TBI, like neurofilaments, Cleaved-Tau (C-Tau), Microtubule-Associated Protein 2 (MAP2), Neuron-Specific Enolase, S100B and ferritin. In addition to this, assessment of white matter abnormalities and white matter integrity by diffusion tensor imaging (DTI) have emerged as promising sensitive neuroimaging methods of silent TBI. An integrated research is needed to fully understand the interplay between all the aforementioned indices and DTI. The potential diagnostic, therapeutic and prognostic values of the all aforementioned indices will be analyzed in the proposed review.

  14. Mild Traumatic Brain Injury and Diffuse Axonal Injury in Swine

    PubMed Central

    Browne, Kevin D.; Chen, Xiao-Han; Meaney, David F.

    2011-01-01

    Abstract Until recently, mild traumatic brain injury (mTBI) or “concussion” was generally ignored as a major health issue. However, emerging evidence suggests that this injury is by no means mild, considering it induces persisting neurocognitive dysfunction in many individuals. Although little is known about the pathophysiological aspects of mTBI, there is growing opinion that diffuse axonal injury (DAI) may play a key role. To explore this possibility, we adapted a model of head rotational acceleration in swine to produce mTBI by scaling the mechanical loading conditions based on available biomechanical data on concussion thresholds in humans. Using these input parameters, head rotational acceleration was induced in either the axial plane (transverse to the brainstem; n=3), causing a 10- to 35-min loss of consciousness, or coronal plane (circumferential to the brainstem; n=2), which did not produce a sustained loss of consciousness. Seven days following injury, immunohistochemical analyses of the brains revealed that both planes of head rotation induced extensive axonal pathology throughout the white matter, characterized as swollen axonal bulbs or varicosities that were immunoreactive for accumulating neurofilament protein. However, the distribution of the axonal pathology was different between planes of head rotation. In particular, more swollen axonal profiles were observed in the brainstems of animals injured in the axial plane, suggesting an anatomic substrate for prolonged loss of consciousness in mTBI. Overall, these data support DAI as an important pathological feature of mTBI, and demonstrate that surprisingly overt axonal pathology may be present, even in cases without a sustained loss of consciousness. PMID:21740133

  15. Simultaneous cesarean delivery and craniotomy in a term pregnant patient with traumatic brain injury.

    PubMed

    Tawfik, Mohamed Mohamed; Badran, Basma Abed; Eisa, Ahmed Amin; Barakat, Rafik Ibrahim

    2015-01-01

    The management of pregnant patients with traumatic brain injury is challenging. A multidisciplinary team approach is mandatory, and management should be individualized according to the type and extent of injury, maternal status, gestational age, and fetal status. We report a 27-year-old term primigravida presenting after head injury with Glasgow coma scale score 11 and anisocoria. Depressed temporal bone fracture and acute epidural hematoma were diagnosed, necessitating an urgent neurosurgery. Her fetus was viable with no signs of distress and no detected placental abnormalities. Cesarean delivery was performed followed by craniotomy in the same setting under general anesthesia with good outcome of the patient and her baby.

  16. Traumatic injury of the bladder and urethra

    MedlinePlus

    ... urethra; Bruised bladder; Urethral injury; Bladder injury; Pelvic fracture; Urethral disruption ... bladder wall. Less than 1 in 10 pelvic fractures lead to bladder injury. Other causes of bladder ...

  17. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    ERIC Educational Resources Information Center

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  18. Traumatic bilateral ECCA injury in a roller coaster enthusiast.

    PubMed

    Stahlfeld, Kurt R; Roozrokh, Hootan C

    2002-07-01

    Vascular and trauma surgeons have seen a marked increase in the incidence of traumatic injury of the ECCA. Making the diagnosis is straightforward, but requires a high index of suspicion. This patient's injury is from hyperextension/flexion trauma that occurred from repetitive rides on roller coasters.

  19. Memory Strategies to Use With Students Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Pershelli, Andi

    2007-01-01

    Following a traumatic brain injury, including a mild concussion, most students will have some degree of memory impairment. It can take 1-3 years for a child's memory to improve to its maximum capability following injury. Children cannot wait that long before returning to school. Teachers need to know how to diversify their instruction in order to…

  20. Pharmacological Treatment of Glutamate Excitotoxicity Following Traumatic Brain Injury

    DTIC Science & Technology

    2009-01-14

    Finally, cell 13 death following injury can result from “slow excitotoxicity” ( Albin 92), in which cells are rendered vulnerable to physiologic...Janigro D. Traumatic brain injury and its effects on synaptic plasticity. Brain Inj. 2003 Aug;17(8):653-63. Albin RL, Greenamyre JT

  1. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  2. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  3. Predicting outcome in traumatic brain injury: Sharing experience of pilot traumatic brain injury registry

    PubMed Central

    Pal, Ranabir; Munivenkatappa, Ashok; Agrawal, Amit; Menon, Geetha R.; Galwankar, Sagar; Mohan, P. Rama; Kumar, S. Satish; Subrahmanyam, B. V.

    2016-01-01

    Background: A reliable prediction of outcome for the victims of traumatic brain injury (TBI) on admission is possible from concurrent data analysis from any systematic real-time registry. Objective: To determine the clinical relevance of the findings from our TBI registry to develop prognostic futuristic models with readily available traditional and novel predictors. Materials and Methods: Prospectively collected data using predesigned pro forma were analyzed from the first phase of a trauma registry from a South Indian Trauma Centre, compatible with computerized management system at electronic data entry and web data entry interface on demographics, clinical, management, and discharge status. Statistical Analysis: On univariate analysis, the variables with P < 0.15 were chosen for binary logistic model. On regression model, variables were selected with test of coefficient 0.001 and with Nagelkerke R2 with alpha error of 5%. Results: From 337 cases, predominantly males from rural areas in their productive age, road traffic injuries accounted for two-thirds cases, one-fourths occurred during postmonsoon while two-wheeler was the most common prerequisite. Fifty percent of patients had moderate to severe brain injury; the most common finding was unconsciousness followed by vomiting, ear bleed, seizures, and traumatic amnesia. Fifteen percent required intracranial surgery. Patients with severe Glasgow coma scale score were 4.5 times likely to have the fatal outcome (P = 0.003). Other important clinical variables accountable for fatal outcomes were oral bleeds and cervical spine injury while imperative socio-demographic risk correlates were age and seasons. Conclusion: TBI registry helped us finding predictors of clinical relevance for the outcomes in victims of TBI in search of prognostic futuristic models in TBI victims. PMID:27722114

  4. Exercise to enhance neurocognitive function after traumatic brain injury.

    PubMed

    Fogelman, David; Zafonte, Ross

    2012-11-01

    Vigorous exercise has long been associated with improved health in many domains. Results of clinical observation have suggested that neurocognitive performance also is improved by vigorous exercise. Data derived from animal model-based research have been emerging that show molecular and neuroanatomic mechanisms that may explain how exercise improves cognition, particularly after traumatic brain injury. This article will summarize the current state of the basic science and clinical literature regarding exercise as an intervention, both independently and in conjunction with other modalities, for brain injury rehabilitation. A key principle is the factor of timing of the initiation of exercise after mild traumatic brain injury, balancing potentially favorable and detrimental effects on recovery.

  5. Extracellular N-Acetylaspartate in Human Traumatic Brain Injury.

    PubMed

    Shannon, Richard J; van der Heide, Susan; Carter, Eleanor L; Jalloh, Ibrahim; Menon, David K; Hutchinson, Peter J; Carpenter, Keri L H

    2016-02-15

    N-acetylaspartate (NAA) is an amino acid derivative primarily located in the neurons of the adult brain. The function of NAA is incompletely understood. Decrease in brain tissue NAA is presently considered symptomatic and a potential biomarker of acute and chronic neuropathological conditions. The aim of this study was to use microdialysis to investigate the behavior of extracellular NAA (eNAA) levels after traumatic brain injury (TBI). Sampling for this study was performed using cerebral microdialysis catheters (M Dialysis 71) perfused at 0.3 μL/min. Extracellular NAA was measured in microdialysates by high-performance liquid chromatography in 30 patients with severe TBI and for comparison, in radiographically "normal" areas of brain in six non-TBI neurosurgical patients. We established a detailed temporal eNAA profile in eight of the severe TBI patients. Microdialysate concentrations of glucose, lactate, pyruvate, glutamate, and glycerol were measured on an ISCUS clinical microdialysis analyzer. Here, we show that the temporal profile of microdialysate eNAA was characterized by highest levels in the earliest time-points post-injury, followed by a steady decline; beyond 70 h post-injury, average levels were 40% lower than those measured in non-TBI patients. There was a significant inverse correlation between concentrations of eNAA and pyruvate; eNAA showed significant positive correlations with glycerol and the lactate/pyruvate (L/P) ratio measured in microdialysates. The results of this on-going study suggest that changes in eNAA after TBI relate to the release of intracellular components, possibly due to neuronal death or injury, as well as to adverse brain energy metabolism.

  6. Sleep disruption and the sequelae associated with traumatic brain injury

    PubMed Central

    Lucke-Wold, Brandon P.; Smith, Kelly E.; Nguyen, Linda; Turner, Ryan C.; Logsdon, Aric F.; Jackson, Garrett J.; Huber, Jason D.; Rosen, Charles L.; Miller, Diane B.

    2016-01-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. PMID:25956251

  7. Sleep disruption and the sequelae associated with traumatic brain injury.

    PubMed

    Lucke-Wold, Brandon P; Smith, Kelly E; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Jackson, Garrett J; Huber, Jason D; Rosen, Charles L; Miller, Diane B

    2015-08-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy.

  8. Acute kidney injury after pediatric cardiac surgery

    PubMed Central

    Singh, Sarvesh Pal

    2016-01-01

    Acute kidney injury is a common complication after pediatric cardiac surgery. The definition, staging, risk factors, biomarkers and management of acute kidney injury in children is detailed in the following review article. PMID:27052074

  9. Traumatic Asphyxia with Diaphragmatic Injury: 
A Case Report

    PubMed Central

    Lateef, Hussein

    2015-01-01

    Traumatic asphyxia, or Perthe’s syndrome, is a rare clinical syndrome characterized by cervicofacial cyanosis, petechiae, subconjunctival hemorrhage, neurological symptoms, and thoracic injury. It affects both adults and children after blunt chest traumas. The diagnosis of this condition is based mainly on the specific clinical signs, which should immediately bring to mind the severity of the trauma, the various probable types of pulmonary injuries, and the need for screening and careful assessment of other organs that might also be injured. In this report, we describe the case of a 39-year-old male who developed traumatic asphyxia after severe blunt chest trauma during his work at a construction site. The patient had multiple injuries to the chest, abdomen, head and neck, which were treated conservatively. An associated diaphragmatic injury was successfully treated by video-assisted thoracic surgery. This patient is one of five patients who were admitted to Saqr Hospital in the United Arab Emirates, diagnosed with traumatic asphyxia, and treated by mechanical ventilator, supportive measures, and fiberoptic bronchoscopy, for both diagnostic and therapeutic indications, in our unit in the period between July 2006 and June 2013. As traumatic asphyxia is a systemic injury, careful assessment of the patient and looking for other injuries is mandatory. Treatment usually involves supportive measures to the affected organs, but surgical intervention may sometimes prove to be an important part of the treatment. Bronchoscopy should be performed for diagnostic and therapeutic reasons because of the associated pulmonary and possible tracheobronchial injuries. PMID:25960842

  10. Cell-based therapy for traumatic brain injury.

    PubMed

    Gennai, S; Monsel, A; Hao, Q; Liu, J; Gudapati, V; Barbier, E L; Lee, J W

    2015-08-01

    Traumatic brain injury is a major economic burden to hospitals in terms of emergency department visits, hospitalizations, and utilization of intensive care units. Current guidelines for the management of severe traumatic brain injuries are primarily supportive, with an emphasis on surveillance (i.e. intracranial pressure) and preventive measures to reduce morbidity and mortality. There are no direct effective therapies available. Over the last fifteen years, pre-clinical studies in regenerative medicine utilizing cell-based therapy have generated enthusiasm as a possible treatment option for traumatic brain injury. In these studies, stem cells and progenitor cells were shown to migrate into the injured brain and proliferate, exerting protective effects through possible cell replacement, gene and protein transfer, and release of anti-inflammatory and growth factors. In this work, we reviewed the pathophysiological mechanisms of traumatic brain injury, the biological rationale for using stem cells and progenitor cells, and the results of clinical trials using cell-based therapy for traumatic brain injury. Although the benefits of cell-based therapy have been clearly demonstrated in pre-clinical studies, some questions remain regarding the biological mechanisms of repair and safety, dose, route and timing of cell delivery, which ultimately will determine its optimal clinical use.

  11. Outcome Trends after US Military Concussive Traumatic Brain Injury.

    PubMed

    Mac Donald, Christine L; Johnson, Ann M; Wierzechowski, Linda; Kassner, Elizabeth; Stewart, Theresa; Nelson, Elliot C; Werner, Nicole J; Adam, Octavian R; Rivet, Dennis J; Flaherty, Stephen F; Oh, John S; Zonies, David; Fang, Raymond; Brody, David L

    2016-06-27

    Care for US military personnel with combat-related concussive traumatic brain injury (TBI) has substantially changed in recent years, yet trends in clinical outcomes remain largely unknown. Our prospective longitudinal studies of US military personnel with concussive TBI from 2008-2013 at Landstuhl Regional Medical Center in Germany and twp sites in Afghanistan provided an opportunity to assess for changes in outcomes over time and analyze correlates of overall disability. We enrolled 321 active-duty US military personnel who sustained concussive TBI in theater and 254 military controls. We prospectively assessed clinical outcomes 6-12 months later in 199 with concussive TBI and 148 controls. Global disability, neurobehavioral impairment, depression severity, and post-traumatic stress disorder (PTSD) severity were worse in concussive TBI groups in comparison with controls in all cohorts. Global disability primarily reflected a combination of work-related and nonwork-related disability. There was a modest but statistically significant trend toward less PTSD in later cohorts. Specifically, there was a decrease of 5.9 points of 136 possible on the Clinician Administered PTSD Scale (-4.3%) per year (95% confidence interval, 2.8-9.0 points, p = 0.0037 linear regression, p = 0.03 including covariates in generalized linear model). No other significant trends in outcomes were found. Global disability was more common in those with TBI, those evacuated from theater, and those with more severe depression and PTSD. Disability was not significantly related to neuropsychological performance, age, education, self-reported sleep deprivation, injury mechanism, or date of enrollment. Thus, across multiple cohorts of US military personnel with combat-related concussion, 6-12 month outcomes have improved only modestly and are often poor. Future focus on early depression and PTSD after concussive TBI appears warranted. Adverse outcomes are incompletely explained, however, and

  12. Predicting Institutionalization after Traumatic Brain Injury Inpatient Rehabilitation

    PubMed Central

    Seel, Ronald T.; Goldstein, Richard; Brown, Allen W.; Watanabe, Thomas K.; Zasler, Nathan D.; Roth, Elliot J.; Zafonte, Ross D.; Glenn, Mel B.

    2015-01-01

    Abstract Risk factors contributing to institutionalization after inpatient rehabilitation for people with traumatic brain injury (TBI) have not been well studied and need to be better understood to guide clinicians during rehabilitation. We aimed to develop a prognostic model that could be used at admission to inpatient rehabilitation facilities to predict discharge disposition. The model could be used to provide the interdisciplinary team with information regarding aspects of patients' functioning and/or their living situation that need particular attention during inpatient rehabilitation if institutionalization is to be avoided. The study population included 7219 patients with moderate-severe TBI in the Traumatic Brain Injury Model Systems (TBIMS) National Database enrolled from 2002–2012 who had not been institutionalized prior to injury. Based on institutionalization predictors in other populations, we hypothesized that among people who had lived at a private residence prior to injury, greater dependence in locomotion, bed-chair-wheelchair transfers, bladder and bowel continence, feeding, and comprehension at admission to inpatient rehabilitation programs would predict institutionalization at discharge. Logistic regression was used, with adjustment for demographic factors, proxy measures for TBI severity, and acute-care length-of-stay. C-statistic and predictiveness curves validated a five-variable model. Higher levels of independence in bladder management (adjusted odds ratio [OR], 0.88; 95% CI 0.83, 0.93), bed-chair-wheelchair transfers (OR, 0.81 [95% CI, 0.83–0.93]), and comprehension (OR, 0.78 [95% CI, 0.68, 0.89]) at admission were associated with lower risks of institutionalization on discharge. For every 10-year increment in age was associated with a 1.38 times higher risk for institutionalization (95% CI, 1.29, 1.48) and living alone was associated with a 2.34 times higher risk (95% CI, 1.86, 2.94). The c-statistic was 0.780. We conclude that this

  13. Development of an Animal Model of Thoracolumbar Burst Fracture Induced Acute Spinal Cord Injury

    DTIC Science & Technology

    2015-05-01

    AWARD NUMBER: W81XWH-14-2-0013 TITLE: DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE - INDUCED ACUTE SPINAL CORD INJURY...2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE -INDUCED ACUTE SPINAL CORD INJURY 5b...leads to permanent disability following traumatic spine injury. A dramatic increase in blast related spinal burst fracture has been observed in

  14. Targeting the Epidemic: Interventions and Follow-up Are Necessary in the Pediatric Traumatic Brain Injury Clinic.

    PubMed

    Choe, M C; Valino, H; Fischer, J; Zeiger, M; Breault, J; McArthur, D L; Leung, M; Madikians, A; Yudovin, S; Lerner, J T; Giza, C C

    2016-01-01

    Traumatic brain injury is a major public health problem in the pediatric population. Previously, management was acute emergency department/primary care evaluation with follow-up by primary care. However, persistent symptoms after traumatic brain injury are common, and many do not have access to a specialized traumatic brain injury clinic to manage chronic issues. The goal of this study was to determine the factors related to outcomes, and identify the interventions provided in this subspecialty clinic. Data were extracted from medical records of 151 retrospective and 403 prospective patients. Relationships between sequelae, injury characteristics, and clinical interventions were analyzed. Most patients returning to clinic were not fully recovered from their injury. Headaches were more common after milder injuries, and seizures were more common after severe. The majority of patients received clinical intervention. The presence of persistent sequelae for traumatic brain injury patients can be evaluated and managed by a specialty concussion/traumatic brain injury clinic ensuring that medical needs are met.

  15. Inductive and Deductive Approaches to Acute Cell Injury

    PubMed Central

    DeGracia, Donald J.; Tri Anggraini, Fika; Taha, Doaa Taha Metwally; Huang, Zhi-Feng

    2014-01-01

    Many clinically relevant forms of acute injury, such as stroke, traumatic brain injury, and myocardial infarction, have resisted treatments to prevent cell death following injury. The clinical failures can be linked to the currently used inductive models based on biological specifics of the injury system. Here we contrast the application of inductive and deductive models of acute cell injury. Using brain ischemia as a case study, we discuss limitations in inductive inferences, including the inability to unambiguously assign cell death causality and the lack of a systematic quantitative framework. These limitations follow from an overemphasis on qualitative molecular pathways specific to the injured system. Our recently developed nonlinear dynamical theory of cell injury provides a generic, systematic approach to cell injury in which attractor states and system parameters are used to quantitatively characterize acute injury systems. The theoretical, empirical, and therapeutic implications of shifting to a deductive framework are discussed. We illustrate how a deductive mathematical framework offers tangible advantages over qualitative inductive models for the development of therapeutics of acutely injured biological systems. PMID:27437490

  16. Persuasive Discourse Impairments in Traumatic Brain Injury

    PubMed Central

    Ghayoumi, Zahra; Yadegari, Fariba; Mahmoodi-Bakhtiari, Behrooz; Fakharian, Esmaeil; Rahgozar, Mehdi; Rasouli, Maryam

    2015-01-01

    Background: Considering the cognitive and linguistic complexity of discourse production, it is expected that individuals with traumatic brain injury (TBI) should face difficulties in this task. Therefore, clinical examination of discourse has become a useful tool for studying and assessment of communication skills of people suffering from TBI. Among different genres of discourse, persuasive discourse is considered as a more cognitively demanding task. However, little is known about persuasive discourse in individuals suffering from TBI. Objectives: The purpose of this study was to evaluate the performance of adults with TBI on a task of spoken persuasive discourse to determine the impaired linguistic measures. Patients and Methods: Thirteen TBI nonaphasic Persian speaking individuals, ranged between 19 to 40 years (Mean = 25.64 years; SD = 6.10) and 59 healthy adults matched by age, were asked to perform the persuasive discourse task. The task included asking the participants to express their opinion on a topic, and after the analysis of the produced discourse, the two groups were compared on the basis of their language productivity, sentential complexity, maze ratio and cohesion ratio. Results: The TBI group produced discourses with less productivity, sentential complexity, cohesion ratio and more maze ratio compared the control group. Conclusions: As it is important to consider acquired communication disorders particularly discourse impairment of brain injured patients along with their other clinical impairments and regarding the fact that persuasive discourse is crucial in academic and social situations, the persuasive discourse task presented in this study could be a useful tool for speech therapists, intending to evaluate communication disorders in patients with TBI. PMID:25798418

  17. Standardizing Data Collection in Traumatic Brain Injury

    PubMed Central

    Harrison-Felix, Cynthia L.; Menon, David; Adelson, P. David; Balkin, Tom; Bullock, Ross; Engel, Doortje C.; Gordon, Wayne; Langlois-Orman, Jean; Lew, Henry L.; Robertson, Claudia; Temkin, Nancy; Valadka, Alex; Verfaellie, Mieke; Wainwright, Mark; Wright, David W.; Schwab, Karen

    2011-01-01

    Abstract Collaboration among investigators, centers, countries, and disciplines is essential to advancing the care for traumatic brain injury (TBI). It is thus important that we “speak the same language.” Great variability, however, exists in data collection and coding of variables in TBI studies, confounding comparisons between and analysis across different studies. Randomized controlled trials can never address the many uncertainties concerning treatment approaches in TBI. Pooling data from different clinical studies and high-quality observational studies combined with comparative effectiveness research may provide excellent alternatives in a cost-efficient way. Standardization of data collection and coding is essential to this end. Common data elements (CDEs) are presented for demographics and clinical variables applicable across the broad spectrum of TBI. Most recommendations represent a consensus derived from clinical practice. Some recommendations concern novel approaches, for example assessment of the intensity of therapy in severely injured patients. Up to three levels of detail for coding data elements were developed: basic, intermediate, and advanced, with the greatest level of detail attained in the advanced version. More detailed codings can be collapsed into the basic version. Templates were produced to summarize coding formats, explanation of choices, and recommendations for procedures. Endorsement of the recommendations has been obtained from many authoritative organizations. The development of CDEs for TBI should be viewed as a continuing process; as more experience is gained, refinement and amendments will be required. This proposed process of standardization will facilitate comparative effectiveness research and encourage high-quality meta-analysis of individual patient data. PMID:21162610

  18. Cognitive Impairment Following Traumatic Brain Injury.

    PubMed

    Arciniegas, David B.; Held, Kerri; Wagner, Peter

    2002-01-01

    Cognitive impairments due to traumatic brain injury (TBI) are substantial sources of morbidity for affected individuals, their family members, and society. Disturbances of attention, memory, and executive functioning are the most common neurocognitive consequences of TBI at all levels of severity. Disturbances of attention and memory are particularly problematic, as disruption of these relatively basic cognitive functions may cause or exacerbate additional disturbances in executive function, communication, and other relatively more complex cognitive functions. Because of the high rate of other physical, neurologic, and psychiatric syndromes following TBI, a thorough neuropsychiatric assessment of the patient is a prerequisite to the prescription of any treatment for impaired cognition. Psychostimulants and other dopaminergically active agents (eg, methylphenidate, dextroamphetamine, amantadine, levodopa/carbidopa, bromocriptine) may modestly improve arousal and speed of information processing, reduce distractibility, and improve some aspects of executive function. Cautious dosing (start-low and go-slow), frequent standardized assessment of effects and side effects, and monitoring for drug-drug interactions are recommended. Cognitive rehabilitation is useful for the treatment of memory impairments following TBI. Cognitive rehabilitation may also be useful for the treatment of impaired attention, interpersonal communication skills, and executive function following TBI. This form of treatment is most useful for patients with mild to moderate cognitive impairments, and may be particularly useful for those who are still relatively functionally independent and motivated to engage in and rehearse these strategies. Psychotherapy (eg, supportive, individual, cognitive-behavioral, group, and family) is an important component of treatment. For patients with medication- and rehabilitation-refractory cognitive impairments, psychotherapy may be needed to assist both patients and

  19. Oligomeric Neuronal Protein Aggregates as Biomarkers for Traumatic Brain Injury (TBI) and Alzheimer Disease (AD)

    DTIC Science & Technology

    2013-10-01

    as Biomarkers for Traumatic Brain Injury (TBI) and Alzheimer Disease (AD) PRINCIPAL INVESTIGATOR: Michael Sierks CONTRACTING...Oligomeric Neuronal Protein Aggregates as Biomarkers for Traumatic Brain Injury (TBI) and Alzheimer Disease (AD) 5b. GRANT NUMBER 12109023 5c

  20. Paediatric Post-Traumatic Bladder Neck Distraction Injury: Case Series

    PubMed Central

    Sawant, Ajit S.; Kumar, Vikash; Pawar, Prakash; Tamhankar, Ashwin S.

    2017-01-01

    The bladder neck distraction is a rare posterior urethral injury in paediatric age group. It mostly occurs secondary to road traffic accidents. We report three cases of paediatric bladder neck distraction injury. Three paediatric patients aged between 4 to 7 years (mean 5 year), who presented with post traumatic bladder neck distraction injury but no other major injury, they were treated with early urethro-vesical anastomosis. Postoperatively all patients were continent and with good urine flow rates. In paediatric bladder neck distraction injury, immediate urethro-vesical anastomosis gives good results. PMID:28384935

  1. Cognitive recovery and development after traumatic brain injury in childhood: a person-oriented, longitudinal study.

    PubMed

    Jonsson, Catherine Aaro; Catroppa, Cathy; Godfrey, Celia; Smedler, Ann-Charlotte; Anderson, Vicki

    2013-01-15

    Influence of childhood traumatic brain injury (TBI) on cognitive recovery and subsequent development is poorly understood. In this longitudinal study we used cluster analysis to explore acute stage individual profiles of injury age and cognition in 118 children with traumatic brain injury. Repeated measures of cognitive function were conducted at 30 months, indicating recovery, and 10 years post-injury, indicating development. Nine clusters were identified. Recovery was evident in three clusters, two of them with low functioning profiles. Developmental gains occurred for three clusters and an acute profile of higher freedom from distractibility (FFD) and lower processing speed (PS) was related to positive differences. One cluster, average low functioning and especially low verbal comprehension, demonstrated a slower development than peers. This suggests that developmental change after TBI in childhood takes place on a continuum, with both chance of long-term catching up, and risk of poor development. An acute profile of higher FFD and lower PS seemed to reflect injury consequences and were followed by developmental gains. These results challenge previous findings, and warrant further investigation.

  2. Intravenous Fluid Therapy in Traumatic Brain Injury and Decompressive Craniectomy

    PubMed Central

    Alvis-Miranda, Hernando Raphael; Castellar-Leones, Sandra Milena; Moscote-Salazar, Luis Rafael

    2014-01-01

    The patient with head trauma is a challenge for the emergency physician and for the neurosurgeon. Currently traumatic brain injury constitutes a public health problem. Knowledge of the various supportive therapeutic strategies in the pre-hospital and pre-operative stages is essential for optimal care. The immediate rapid infusion of large volumes of crystalloids to restore blood volume and blood pressure is now the standard treatment of patients with combined traumatic brain injury (TBI) and hemorrhagic shock (HS). The fluid in patients with brain trauma and especially in patients with brain injur y is a critical issue. In this context we present a review of the literature about the history, physiology of current fluid preparations, and a discussion regarding the use of fluid therapy in traumatic brain injury and decompressive craniectomy. PMID:27162857

  3. Surgical resolution of obstructive dyspareunia after traumatic pelvic injury.

    PubMed

    Lee, Yoon Kyung; Kim, Su Mi; Jeung, In Cheul; Park, Eun Kyung; Kim, Weon Yoo; Lee, Yong Seok

    2015-01-01

    As more of the patients with traumatic pelvic injuries survive, they desire an optimal quality of life, including normal sexual function, even after the most severe injuries. We present the case of a 31-year-old woman who had dyspareunia due to impaired vaginal penetration after severe pelvic injury. After excision of a disunited fragment of pelvic bone and an adhesion band at the vaginal wall, dyspareunia was considerably resolved and the patient resumed sexual function. In cases of severe pelvic injury, physicians used to be satisfied with the patient's survival alone, and tended to regard sexual dysfunction as a trivial outcome. However, restoration of sexual function is an important part of management of these patients. In selected cases, obstructive dyspareunia resulting from traumatic pelvic injury can be managed by planned surgical intervention.

  4. Traumatic Brain Injury (TBI) in Kids

    MedlinePlus

    ... head injury) or by an object penetrating the skull (called a penetrating injury). Some TBIs result in ... to) several types of injury to the brain: Skull fracture occurs when the skull cracks. Pieces of ...

  5. [Surgery of traumatic tracheal and tracheobronchial injuries].

    PubMed

    Palade, E; Passlick, B

    2011-02-01

    Tracheal injuries are altogether rare events and can be divided into three broad categories: tracheobronchial injuries caused by external violence, iatrogenic ruptures of the trachea and inhalation trauma. Successful management of tracheobronchial injuries requires a fast and straightforward diagnostic evaluation. In all severely injured patients with cervicothoracic involvement an injury of the tracheobronchial system should be actively excluded. Although it is commonly agreed that posttraumatic injuries require surgical intervention the management of iatrogenic injuries is presently shifting towards a more conservative treatment.

  6. Pathophysiological links between traumatic brain injury and post-traumatic headaches

    PubMed Central

    Ruff, Robert L.; Blake, Kayla

    2016-01-01

    This article reviews possible ways that traumatic brain injury (TBI) can induce migraine-type post-traumatic headaches (PTHs) in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD), are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD. PMID:27635228

  7. Charting a course for erythropoietin in traumatic brain injury

    PubMed Central

    Maiese, Kenneth

    2016-01-01

    Traumatic brain injury (TBI) is a severe public health problem that impacts more than four million individuals in the United States alone and is increasing in incidence on a global scale. Importantly, TBI can result in acute as well as chronic impairments for the nervous system leaving individuals with chronic disability and in instances of severe trauma, death becomes the ultimate outcome. In light of the significant negative health consequences of TBI, multiple therapeutic strategies are under investigation, but those focusing upon the cytokine and growth factor erythropoietin (EPO) have generated a great degree of enthusiasm. EPO can control cell death pathways tied to apoptosis and autophagy as well oversees processes that affect cellular longevity and aging. In vitro studies and experimental animal models of TBI have shown that EPO can restore axonal integrity, promote cellular proliferation, reduce brain edema, and preserve cellular energy homeostasis and mitochondrial function. Clinical studies for neurodegenerative disorders that involve loss of cognition or developmental brain injury support a positive role for EPO to prevent or reduce injury in the nervous system. However, recent clinical trials with EPO and TBI have not produced such clear conclusions. Further clinical studies are warranted to address the potential efficacy of EPO during TBI, the concerns with the onset, extent, and duration of EPO therapeutic strategies, and to focus upon the specific downstream pathways controlled by EPO such as protein kinase B (Akt), mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), sirtuins, wingless pathways, and forkhead transcription factors for improved precision against the detrimental effects of TBI. PMID:27081573

  8. Outpatient follow-up after traumatic injury: Challenges and opportunities

    PubMed Central

    Hansen, Luke; Shaheen, Aisha; Crandall, Marie

    2014-01-01

    Background: It has been shown that rates of ambulatory follow-up after traumatic injury are not optimal, but the association with insurance status has not been studied. Aims: To describe trauma patient characteristics associated with completed follow-up after hospitalization and to compare relative rates of healthcare utilization across payor types. Setting and Design: Single institution retrospective cohort study. Materials and Methods: We compared patient demographics and healthcare utilization behavior after discharge among trauma patients between April 1, 2005 and April 1, 2010. Our primary outcome of interest was outpatient provider contact within 2 months of discharge. Statistical Analysis: Multivariate logistic regression was used to determine the association between characteristics including insurance status and subsequent ambulatory and acute care. Results: We reviewed the records of 2906 sequential trauma patients. Patients with Medicaid and those without insurance were significantly less likely to complete scheduled outpatient follow-up within 2 months, compared to those with private insurance (Medicaid, OR 0.67, 95% CI 0.51-0.88; uninsured, OR 0.29, 95% CI 0.23-0.36). Uninsured and Medicaid patients were twice as likely as privately insured patients to visit the Emergency Department (ED) for any reason after discharge (uninsured patients (Medicaid, OR 2.6, 95% CI 1.50-4.53; uninsured, OR 2.10, 94% CI 1.31-3.36). Conclusion: We found marked differences between patients in scheduled outpatient follow-up and ED utilization after injury associated with insurance status; however, Medicaid seemed to obviate some of this disparity. Medicaid expansion may improve outpatient follow-up and affect patient outcome disparities after injury. PMID:25400385

  9. 78 FR 9929 - Current Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... HUMAN SERVICES Health Resources and Services Administration Current Traumatic Brain Injury State...-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State Implementation Partnership... by the Traumatic Brain Injury Act of 1996 (Pub. L. 104-166) and was most recently reauthorized by...

  10. Subacute combined degeneration mimicking traumatic spinal cord injury.

    PubMed

    Paul, Ian; Reichard, R Ross

    2009-03-01

    Subacute combined degeneration (SCD) of the spinal cord is the most common neurologic manifestation of vitamin B12 (cobalamin) deficiency and is usually secondary to autoimmune gastritis, but may also be seen in malnutrition syndromes such as chronic alcoholism, strict vegetarianism, gastrectomy, and also in nitrous oxide abuse. Although traumatic spinal cord injury is routinely encountered in the medical examiner's office, medical causes of spinal cord abnormalities such as SCD should be considered in the appropriate clinical setting. We report a case of alcohol-associated SCD mimicking traumatic spinal cord injury.

  11. What is the Relationship of Traumatic Brain Injury to Dementia?

    PubMed

    Mendez, Mario F

    2017-03-02

    There is a long history linking traumatic brain injury (TBI) with the development of dementia. Despite significant reservations, such as recall bias or concluding causality for TBI, a summary of recent research points to several conclusions on the TBI-dementia relationship. 1) Increasing severity of a single moderate-to-severe TBI increases the risk of subsequent Alzheimer's disease (AD), the most common type of dementia. 2) Repetitive, often subconcussive, mild TBIs increases the risk for chronic traumatic encephalopathy (CTE), a degenerative neuropathology. 3) TBI may be a risk factor for other neurodegenerative disorders that can be associated with dementia. 4) TBI appears to lower the age of onset of TBI-related neurocognitive syndromes, potentially adding "TBI cognitive-behavioral features". The literature further indicates several specific risk factors for TBI-associated dementia: 5) any blast or blunt physical force to the head as long as there is violent head displacement; 6) decreased cognitive and/or neuronal reserve and the related variable of older age at TBI; and 7) the presence of apolipoprotein E ɛ4 alleles, a genetic risk factor for AD. Finally, there are neuropathological features relating TBI with neurocognitive syndromes: 8) acute TBI results in amyloid pathology and other neurodegenerative proteinopathies; 9) CTE shares features with neurodegenerative dementias; and 10) TBI results in white matter tract and neural network disruptions. Although further research is needed, these ten findings suggest that dose-dependent effects of violent head displacement in vulnerable brains predispose to dementia; among several potential mechanisms is the propagation of abnormal proteins along damaged white matter networks.

  12. Intensive Care Treatment in Traumatic Brain Injury

    PubMed Central

    Dilmen, Özlem Korkmaz; Akçıl, Eren Fatma; Tunalı, Yusuf

    2015-01-01

    Head injury remains a serious public problem, especially in the young population. The understanding of the mechanism of secondary injury and the development of appropriate monitoring and critical care treatment strategies reduced the mortality of head injury. The pathophysiology, monitoring and treatment principles of head injury are summarised in this article. PMID:27366456

  13. Translational Research for Blast-Induced Traumatic Brain Injury: Injury Mechanism to Development of Medical Instruments

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Arafune, T.; Washio, T.; Iwasaki, M.; Endo, T.; Ogawa, Y.; Kumabe, T.; Takayama, K.; Tominaga, T.

    1. Investigation of shock wave-induced phenomenon: blast-induced traumatic brain injury Blast wave (BW) is generated by explosion and is comprised of lead shock wave (SE) followed by subsequent supersonic flow.

  14. Infrared pupillometry, the Neurological Pupil index and unilateral pupillary dilation after traumatic brain injury: implications for treatment paradigms.

    PubMed

    Chen, Jefferson William; Vakil-Gilani, Kiana; Williamson, Kay Lyn; Cecil, Sandy

    2014-01-01

    Pupillary dysfunction, a concerning finding in the neurologic examination of the patient with an acute traumatic brain injury often dictates the subsequent treatment paradigm. Patients were monitored closely with an infrared pupillometer, with NPi technology, for acute changes in pupillary function. NPi technology applies a scalar value to pupillary function. A retrospective chart review was performed of traumatic brain injury patients with acute unilateral pupillary dilation, admitted to Legacy Emanuel Medical Center's NeuroTrauma Unit, Portland, OR, and followed as outpatients, between January 2012 and December 2013. Clinical exam findings of pupillary size, NPi scores, and brain Magnetic Resonance Imaging and Computed Tomography images were analyzed. Five traumatic brain injury patients were identified with unilateral pupillary dysfunction with long-term follow-up after the initial injury. Each patient was monitored closely in the trauma bay for neurological deterioration with a pupillometer and the clinical exam. Two patients underwent subsequent intracranial pressure monitoring based on a deteriorating clinical scenario, including consistent abnormal unilateral NPi scores. One patient with consistent abnormal NPi scores and an improved clinical exam did not undergo invasive interventions. Two patients showed early improvement in NPi scores correlating with the normalization of their pupillary reactivity. Anisocoria improved in all patients despite concurrent abnormal NPi scores. Magnetic Resonance Imaging and Computed Tomography imaging studies, with a focus on the third nerve, revealed focal abnormalities consistent with the clinical findings. A unilateral blown pupil and abnormal NPi score in a traumatic brain injury patient are not necessarily indicative of intracranial pressure issues, and must be correlated with the entire clinical scenario, to determine the etiology of the third nerve injury and direct potential therapeutic interventions. Early NPi score

  15. Trends in nonoperative management of traumatic injuries – A synopsis

    PubMed Central

    Stawicki, Stanislaw P. A.

    2017-01-01

    Nonoperative management of both blunt and penetrating injuries can be challenging. During the past three decades, there has been a major shift from operative to increasingly nonoperative management of traumatic injuries. Greater reliance on nonoperative, or “conservative” management of abdominal solid organ injuries is facilitated by the various sophisticated and highly accurate noninvasive imaging modalities at the trauma surgeon’s disposal. This review discusses selected topics in nonoperative management of both blunt and penetrating trauma. Potential complications and pitfalls of nonoperative management are discussed. Adjunctive interventional therapies used in treatment of nonoperative management-related complications are also discussed. Republished with permission from: Stawicki SPA. Trends in nonoperative management of traumatic injuries – A synopsis. OPUS 12 Scientist 2007;1(1):19-35. PMID:28382258

  16. Gabapentin in the management of dysautonomia following severe traumatic brain injury: a case series

    PubMed Central

    Baguley, Ian J; Heriseanu, Roxana E; Gurka, Joseph A; Nordenbo, Annette; Cameron, Ian D

    2007-01-01

    The pharmacological management of dysautonomia, otherwise known as autonomic storms, following acute neurological insults, is problematic and remains poorly researched. This paper presents six subjects with dysautonomia following extremely severe traumatic brain injury where gabapentin controlled paroxysmal autonomic changes and posturing in the early post‐acute phase following limited success with conventional medication regimens. In two subjects, other medications were reduced or ceased without a recurrence of symptoms. It is proposed that medications that can block or minimise abnormal afferent stimuli may represent a better option for dysautonomia management than drugs which increase inhibition of efferent pathways. Potential mechanisms for these effects are discussed. PMID:17435191

  17. Therapeutic Hypothermia in Stroke and Traumatic Brain Injury

    PubMed Central

    Faridar, Alireza; Bershad, Eric M.; Emiru, Tenbit; Iaizzo, Paul A.; Suarez, Jose I.; Divani, Afshin A.

    2011-01-01

    Therapeutic hypothermia (TH) is considered to improve survival with favorable neurological outcome in the case of global cerebral ischemia after cardiac arrest and perinatal asphyxia. The efficacy of hypothermia in acute ischemic stroke (AIS) and traumatic brain injury (TBI), however, is not well studied. Induction of TH typically requires a multimodal approach, including the use of both pharmacological agents and physical techniques. To date, clinical outcomes for patients with either AIS or TBI who received TH have yielded conflicting results; thus, no adequate therapeutic consensus has been reached. Nevertheless, it seems that by determining optimal TH parameters and also appropriate applications, cooling therapy still has the potential to become a valuable neuroprotective intervention. Among the various methods for hypothermia induction, intravascular cooling (IVC) may have the most promise in the awake patient in terms of clinical outcomes. Currently, the IVC method has the capability of more rapid target temperature attainment and more precise control of temperature. However, this technique requires expertise in endovascular surgery that can preclude its application in the field and/or in most emergency settings. It is very likely that combining neuroprotective strategies will yield better outcomes than utilizing a single approach. PMID:22207862

  18. Post-traumatic Raynaud's phenomenon following volar plate injury.

    PubMed

    Chodakiewitz, Yosef G; Daniels, Alan H; Kamal, Robin N; Weiss, Arnold-Peter C

    2014-04-01

    Post-traumatic Raynaud's phenomenon following non-penetrating or non-repetitive injury is rare. We report a case of Raynaud's phenomenon occurring in a single digit 3 months following volar plate avulsion injury. Daily episodes of painless pallor of the digit occurred for 1 month upon any exposure to cold, resolving with warm water therapy. Symptoms resolved after the initiation of hand therapy, splinting, and range-of- motion exercises.

  19. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology.

    PubMed

    Ghajari, Mazdak; Hellyer, Peter J; Sharp, David J

    2017-02-01

    Traumatic brain injury can lead to the neurodegenerative disease chronic traumatic encephalopathy. This condition has a clear neuropathological definition but the relationship between the initial head impact and the pattern of progressive brain pathology is poorly understood. We test the hypothesis that mechanical strain and strain rate are greatest in sulci, where neuropathology is prominently seen in chronic traumatic encephalopathy, and whether human neuroimaging observations converge with computational predictions. Three distinct types of injury were simulated. Chronic traumatic encephalopathy can occur after sporting injuries, so we studied a helmet-to-helmet impact in an American football game. In addition, we investigated an occipital head impact due to a fall from ground level and a helmeted head impact in a road traffic accident involving a motorcycle and a car. A high fidelity 3D computational model of brain injury biomechanics was developed and the contours of strain and strain rate at the grey matter-white matter boundary were mapped. Diffusion tensor imaging abnormalities in a cohort of 97 traumatic brain injury patients were also mapped at the grey matter-white matter boundary. Fifty-one healthy subjects served as controls. The computational models predicted large strain most prominent at the depths of sulci. The volume fraction of sulcal regions exceeding brain injury thresholds were significantly larger than that of gyral regions. Strain and strain rates were highest for the road traffic accident and sporting injury. Strain was greater in the sulci for all injury types, but strain rate was greater only in the road traffic and sporting injuries. Diffusion tensor imaging showed converging imaging abnormalities within sulcal regions with a significant decrease in fractional anisotropy in the patient group compared to controls within the sulci. Our results show that brain tissue deformation induced by head impact loading is greatest in sulcal locations

  20. Traumatic Optic Neuropathy Accompanying Orbital Grease Gun Injury

    PubMed Central

    Park, Ji Hyun; Jang, Jae Woo; Kim, Sung Joo

    2010-01-01

    We report a case of traumatic optic neuropathy accompanying a grease gun injury to the orbit. A 48-year-old man with a grease gun injury visited our clinic with decreased visual acuity, proptosis and limited extraocular movement (EOM). Orbital CT revealed a crescent mass of fat in the medial intraconal space. The grease was exuded from a lacerated conjunctival wound. The visual evoked potential (VEP) test demonstrated a decreased response in the left eye. Proptosis and EOM were improved after surgical removal of the grease. Systemic high-dose corticosteroid therapy was administered for suspected traumatic optic neuropathy, after which VEP nearly recovered, while visual acuity was slightly improved. A second surgery for traumatic cataract did not further improve visual acuity. PMID:20379466

  1. Management of acute traumatic stress in nuclear and radiological emergencies.

    PubMed

    Vazquez, Marina; Jordan, Osvaldo; Kuper, Enrique; Hernandez, Daniel; Galmarini, Martin; Ferraro, Augusto

    2010-06-01

    In order to effectively respond to and minimize the psychological impact following disasters, such as radio-nuclear ones, it is essential to understand the mechanisms involved in such conditions and how to prevent and treat the psychological impacts, including those related to acute traumatic stress and its consequences across life span. Radio-nuclear emergencies may cause psychological traumatic stress, with its potentially significant consequences in mental health, with both short and long-term effects, which extend beyond the individuals directly affected. Ionizing radiation cannot be perceived by human senses and most people are unaware of the magnitude of its effects, which could result in feelings of helplessness and vulnerability. Those situations with a high degree of uncertainty, regarding potential future health effects, are more psychologically traumatic than others. The present century has witnessed a steady increase in the number of publications concerning the mental health impact of traumatic events, showing the need of increasing the study of traumatic stress and its impact on mental health. A prompt, planned and effective response to manage disaster-induced acute traumatic stress may prevent the evolutionary reactions of traumatic stress into disorders or even chronic stress diseases that can appear after a nuclear or radiological emergency.

  2. The effect of previous traumatic injury on homicide risk.

    PubMed

    Griffin, Russell L; Davis, Gregory G; Levitan, Emily B; MacLennan, Paul A; Redden, David T; McGwin, Gerald

    2014-07-01

    Research has reported that a strong risk factor for traumatic injury is having a previous injury (i.e., recidivism). To date, the only study examining the relationship between recidivism and homicide reported strong associations, but was limited by possible selection bias. The current matched case-control study utilized coroner's data from 2004 to 2008. Subjects were linked to trauma registry data to determine whether the person had a previous traumatic injury. Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) for the association between homicide and recidivism. Homicide risk was increased for those having a previous traumatic injury (OR 1.81, 95% CI 1.09-2.99) or a previous intentional injury (OR 2.53, 95% CI 1.24-5.17). These results suggest an association between homicide and injury recidivism, and that trauma centers may be an effective setting for screening individuals for secondary prevention efforts of homicide through violence prevention programs.

  3. Traumatic Brain Injury: Hope Through Research

    MedlinePlus

    ... The NIH has also funded research to develop sensors to determine the type of acceleration and rotation ... can lead to brain injuries. Researchers hope these sensors can help determine the effect of head injuries ...

  4. Evaluation of a Health Education Programme about Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Garcia, Jane Mertz; Sellers, Debra M.; Hilgendorf, Amy E.; Burnett, Debra L.

    2014-01-01

    Objective: Our aim was to evaluate a health education programme (TBIoptions: Promoting Knowledge) designed to increase public awareness and understanding about traumatic brain injury (TBI) through in-person (classroom) and computer-based (electronic) learning environments. Design: We used a pre-post survey design with randomization of participants…

  5. Performance Monitoring in Children following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Ornstein, Tisha J.; Levin, Harvey S.; Chen, Shirley; Hanten, Gerri; Ewing-Cobbs, Linda; Dennis, Maureen; Barnes, Marcia; Max, Jeffrey E.; Logan, Gordon D.; Schachar, Russell

    2009-01-01

    Background: Executive control deficits are common sequelae of childhood traumatic brain injury (TBI). The goal of the current study was to assess a specific executive control function, performance monitoring, in children following TBI. Methods: Thirty-one children with mild-moderate TBI, 18 with severe TBI, and 37 control children without TBI, of…

  6. Assisting Students with a Traumatic Brain Injury in School Interventions

    ERIC Educational Resources Information Center

    Aldrich, Erin M.; Obrzut, John E.

    2012-01-01

    Traumatic brain injury (TBI) in children and adolescents can significantly affect their lives and educational needs. Deficits are often exhibited in areas such as attention, concentration, memory, executive function, emotional regulation, and behavioral functioning, but specific outcomes are not particular to any one child or adolescent with a…

  7. Communicative Impairment in Traumatic Brain Injury: A Complete Pragmatic Assessment

    ERIC Educational Resources Information Center

    Angeleri, R.; Bosco, F. M.; Zettin, M.; Sacco, K.; Colle, L.; Bara, B. G.

    2008-01-01

    The aim of the present study was to examine the communicative abilities of traumatic brain injury patients (TBI). We wish to provide a complete assessment of their communicative ability/disability using a new experimental protocol, the "Assessment Battery of Communication," ("ABaCo") comprising five scales--linguistic, extralinguistic,…

  8. Intervention Strategies for Serving Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Arroyos-Jurado, Elsa; Savage, Todd A.

    2008-01-01

    As school-age children are at the highest risk for sustaining a traumatic brain injury (TBI), educational professionals working in school settings will encounter students dealing with the after-effects of a TBI. These effects can influence students' ability to navigate the behavioral, social, and academic demands of the classroom. This article…

  9. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308.16 Section 1308.16 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD...

  10. School-Based Traumatic Brain Injury and Concussion Management Program

    ERIC Educational Resources Information Center

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  11. Decompressive Craniectomy and Traumatic Brain Injury: A Review

    PubMed Central

    Alvis-Miranda, Hernando; Castellar-Leones, Sandra Milena; Moscote-Salazar, Luis Rafael

    2013-01-01

    Intracranial hypertension is the largest cause of death in young patients with severe traumatic brain injury. Decompressive craniectomy is part of the second level measures for the management of increased intracranial pressure refractory to medical management as moderate hypothermia and barbiturate coma. The literature lack of concepts is their indications. We present a review on the state of the art. PMID:27162826

  12. Traumatic Brain Injury: What the Teacher Needs To Know.

    ERIC Educational Resources Information Center

    Pieper, Betty

    Intended for use by the classroom teacher, this guide presents teaching suggestions as well as suggested resources for teaching children with traumatic brain injuries (TBI). Emphasis is placed on working with the injured family and the importance of planning for transition and re-entry into the classroom through a continuum of settings. Teachers…

  13. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  14. Classroom Interventions for Students with Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Bowen, Julie M.

    2005-01-01

    Students who have sustained a traumatic brain injury (TBI) return to the school setting with a range of cognitive, psychosocial, and physical deficits that can significantly affect their academic functioning. Successful educational reintegration for students with TBI requires careful assessment of each child's unique needs and abilities and the…

  15. Traumatic Brain Injury and Its Effect on Students

    ERIC Educational Resources Information Center

    Rosenthal, Stacy B.

    2012-01-01

    Over one million people suffer a traumatic brain injury every year, many of whom are students between the ages of 5 and 18. Using a qualitative case study approach, I wanted to discover the specific factors that both impede and help the school re-entry process for students in grades kindergarten through twelve so that these students can return to…

  16. Traumatic Brain Injury and Special Education: An Information Resource Guide.

    ERIC Educational Resources Information Center

    Stevens, Alice M.

    This resource guide of annotated references on traumatic brain injury (TBI) was created to help educators locate information from such disciplines as neurology, neuropsychology, rehabilitation, and pediatric medicine. Twenty-four resources published from 1990 to 1994 are listed, with annotations. The resources include research reports/reviews,…

  17. [Clinical study of two cases of traumatic cerebellar injury].

    PubMed

    Yokota, H; Nakazawa, S; Kobayashi, S; Taniguchi, Y; Yukihide, T

    1990-01-01

    Two cases of traumatic cerebellar injury complicated with a traumatic medial longitudinal fasciculus (MLF) syndrome or cerebellar mutism were reported, and the cause of these mechanisms was discussed: Case 1: A 9-year-old boy who struck his head in the occipital region during an automobile accident was operated on for a delayed traumatic intracerebellar hematoma. The operation improved the level of his consciousness but MLF syndrome was noticed. The mechanism of traumatic MLF syndrome was discussed in relation to vascular injury and to neurovascular friction. The outcome of the syndrome including our case, which recovered spontaneously, seemed to support the theory of neurovascular injury. Case 2: A 6-year-old boy who struck his head in the temporooccipital region during an automobile accident was admitted to our hospital without conciousness. On admission, contusion of the temporal lobe and left cerebellar hemisphere was demonstrated by a computerized tomography (CT) and magnetic resonance imaging (MRI). A mute state (cerebellar mutism) was recognized after his recovery of consciousness. The cause of the cerebellar mutism was thought to be an injury of the cerebellar vermis or left cerebellar hemisphere. The findings of CT scan and MRI in our case suggested that the cause of the cerebellar mutism was the contusion of these areas.

  18. Predictors of Neuropsychological Test Performance After Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Donders, Jacobus; Nesbit-Greene, Kelly

    2004-01-01

    The influence of neurological and demographic variables on neuropsychological test performance was examined in 100 9- to 16-year-old children with traumatic brain injury (TBI). Regression analyses were conducted to determine the relative contributions of coma, neuroimaging findings, ethnicity, socioeconomic status, and gender to variance in…

  19. Early Childhood Traumatic Brain Injuries: Effects on Development and Interventions.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara

    1998-01-01

    Describes the variety of possible effects of traumatic brain injuries (TBI) on early childhood development in the cognitive, language, social-emotional, motor, and adaptive domains. Suggests interventions which can assist young survivors and their families. Suggests that more long-term, intensive studies be conducted on the short- and long-term…

  20. Traumatic Brain Injury in Early Childhood: Developmental Effects and Interventions.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara; Lowenthal, Barbara

    1998-01-01

    Describes the unique effects of traumatic brain injury (TBI) on development in early childhood and offers suggestions for interventions in the cognitive, language, social-emotional, motor, and adaptive domains. Urges more intensive, long-term studies on the immediate and long-term effects of TBI. (Author/DB)

  1. Bilateral hemicraniectomy in non-penetrating traumatic brain injury.

    PubMed

    Walcott, Brian P; Nahed, Brian V; Sheth, Sameer A; Yanamadala, Vijay; Caracci, James R; Asaad, Wael F

    2012-07-01

    Traumatic brain injury is a heterogeneous entity that encompasses both surgical and non-surgical conditions. Surgery may be indicated with traumatic lesions such as hemorrhage, fractures, or malignant cerebral edema. However, the neurological exam may be clouded by the effects of medications administered in the field, systemic injuries, and inaccuracies in hyperacute prognostication. Typically, neurological injury is considered irreversible if diffuse loss of grey/white matter differentiation or if brainstem hemorrhage (Duret hemorrhage) exists. We aim to characterize a cohort of patients undergoing bilateral hemicraniectomy for severe traumatic brain injury. A retrospective consecutive cohort of adult patients undergoing craniectomy for trauma was established between the dates of January 2008 and November 2011. The primary outcome of the study was in-hospital mortality. Secondary outcomes were ICU length of stay, surgical complications, and Glasgow Outcome Score at most recent follow-up. During the study period, 210 patients undergoing craniectomy for traumatic mass-occupying lesion (epidural hematoma, subdural hematoma, or parenchymal contusion) were analyzed. Of those, 9 met study criteria. In-hospital mortality was 67% (6 of 9 patients). The average ICU length of stay was 12 days. The GOS score was 3 in surviving patients. Bilateral hemicraniectomy is a heroic intervention for patients with severe TBI, but can be a life-saving procedure.

  2. Hemispheric Visual Attentional Imbalance in Patients with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Pavlovskaya, Marina; Groswasser, Zeev; Keren, Ofer; Mordvinov, Eugene; Hochstein, Shaul

    2007-01-01

    We find a spatially asymmetric allocation of attention in patients with traumatic brain injury (TBI) despite the lack of obvious asymmetry in neurological indicators. Identification performance was measured for simple spatial patterns presented briefly to a locus 5 degrees into the left or right hemifield, after precuing attention to the same…

  3. Endovascular Treatment of Acute and Chronic Thoracic Aortic Injury

    SciTech Connect

    Raupach, Jan Ferko, Alexander; Lojik, Miroslav; Krajina, Antonin; Harrer, Jan; Dominik, Jan

    2007-11-15

    Our aim is to present midterm results after endovascular repair of acute and chronic blunt aortic injury. Between December 1999 and December 2005, 13 patients were endovascularly treated for blunt aortic injury. Ten patients, 8 men and 2 women, mean age 38.7 years, were treated for acute traumatic injury in the isthmus region of thoracic aorta. Stent-graftings were performed between the fifth hour and the sixth day after injury. Three patients (all males; mean age, 66 years; range, 59-71 years) were treated due to the presence of symptoms of chronic posttraumatic pseudoaneurysm of the thoracic aorta (mean time after injury, 29.4 years, range, 28-32). Fifteen stent-grafts were implanted in 13 patients. In the group with acute aortic injury one patient died due to failure of endovascular technique. Lower leg paraparesis appeared in one patient; the other eight patients were regularly followed up (1-72 months; mean, 35.6 months), without complications. In the group with posttraumatic pseudoaneurysms all three patients are alive. One patient suffered postoperatively from upper arm claudication, which was treated by carotidosubclavian bypass. We conclude that the endoluminal technique can be used successfully in the acute repair of aortic trauma and its consequences. Midterm results are satisfactory, with a low incidence of neurologic complications.

  4. Posttraumatic Inflammation as a Key to Neuroregeneration after Traumatic Spinal Cord Injury

    PubMed Central

    Moghaddam, Arash; Child, Christopher; Bruckner, Thomas; Gerner, Hans Jürgen; Daniel, Volker; Biglari, Bahram

    2015-01-01

    Pro- and anti-inflammatory cytokines might have a large impact on the secondary phase and on the neurological outcome of patients with acute spinal cord injury (SCI). We measured the serum levels of different cytokines (Interferon-γ, Tumor Necrosis Factor-α, Interleukin-1β, IL-6, IL-8, IL-10, and Vascular Endothelial Growth Factor) over a 12-week period in 40 acute traumatic SCI patients: at admission on average one hour after initial trauma; at four, nine, 12, and 24 h; Three, and seven days after admission; and two, four, eight, and twelve weeks after admission. This was done using a Luminex Performance Human High Sensitivity Cytokine Panel. SCI was classified using the American Spinal Injury Association (ASIA) Impairment Scale (AIS) at time of admission and after 12 weeks. TNFα, IL-1β, IL-6, IL-8, and IL-10 concentrations were significantly higher in patients without neurological remission and in patients with an initial AIS A (p < 0.05). This study shows significant differences in cytokine concentrations shown in traumatic SCI patients with different neurological impairments and within a 12-week period. IL-8 and IL-10 are potential peripheral markers for neurological remission and rehabilitation after traumatic SCI. Furthermore our cytokine expression pattern of the acute, subacute, and intermediate phase of SCI establishes a possible basis for future studies to develop standardized monitoring, prognostic, and tracking techniques. PMID:25860946

  5. Sepsis and Acute Kidney Injury.

    PubMed

    Bilgili, Beliz; Haliloğlu, Murat; Cinel, İsmail

    2014-12-01

    Acute kindney injury (AKI) is a clinical syndrome which is generally defined as an abrupt decline in glomerular filtration rate, causing accumulation of nitrogenous products and rapid development of fluid, electrolyte and acid base disorders. In intensive care unit sepsis and septic shock are leading causes of AKI. Sepsis-induced AKI literally acts as a biologic indicator of clinical deterioration. AKI triggers variety of immune, inflammatory, metabolic and humoral patways; ultimately leading distant organ dysfunction and increases morbidity and mortality. Serial mesurements of creatinine and urine volume do not make it possible to diagnose AKI at early stages. Serum creatinine influenced by age, weight, hydration status and become apparent only when the kidneys have lost 50% of their function. For that reason we need new markers, and many biomarkers in the diagnosis of early AKI activity is assessed. Historically "Risk-Injury-Failure-Loss-Endstage" (RIFLE), "Acute Kidney Injury Netwok" (AKIN) and "The Kidney Disease/ Improving Global Outcomes" (KDIGO) classification systems are used for diagnosing easily in clinical practice and research and grading disease. Classifications including diagnostic criteria are formed for the identification of AKI. Neutrophil gelatinase associated lipocalin (NGAL), cystatin-C (Cys-C), kidney injury molecule-1 (KIM-1) and also "cell cycle arrest" molecules has been concerned for clinical use. In this review the pathophysiology of AKI, with the relationship of sepsis and the importance of early diagnosis of AKI is evaluated.

  6. Sepsis and Acute Kidney Injury

    PubMed Central

    Bilgili, Beliz; Haliloğlu, Murat; Cinel, İsmail

    2014-01-01

    Acute kindney injury (AKI) is a clinical syndrome which is generally defined as an abrupt decline in glomerular filtration rate, causing accumulation of nitrogenous products and rapid development of fluid, electrolyte and acid base disorders. In intensive care unit sepsis and septic shock are leading causes of AKI. Sepsis-induced AKI literally acts as a biologic indicator of clinical deterioration. AKI triggers variety of immune, inflammatory, metabolic and humoral patways; ultimately leading distant organ dysfunction and increases morbidity and mortality. Serial mesurements of creatinine and urine volume do not make it possible to diagnose AKI at early stages. Serum creatinine influenced by age, weight, hydration status and become apparent only when the kidneys have lost 50% of their function. For that reason we need new markers, and many biomarkers in the diagnosis of early AKI activity is assessed. Historically “Risk-Injury-Failure-Loss-Endstage” (RIFLE), “Acute Kidney Injury Netwok” (AKIN) and “The Kidney Disease/ Improving Global Outcomes” (KDIGO) classification systems are used for diagnosing easily in clinical practice and research and grading disease. Classifications including diagnostic criteria are formed for the identification of AKI. Neutrophil gelatinase associated lipocalin (NGAL), cystatin-C (Cys-C), kidney injury molecule-1 (KIM-1) and also “cell cycle arrest” molecules has been concerned for clinical use. In this review the pathophysiology of AKI, with the relationship of sepsis and the importance of early diagnosis of AKI is evaluated. PMID:27366441

  7. Mild Hyperthermia Worsens the Neuropathological Damage Associated with Mild Traumatic Brain Injury in Rats

    PubMed Central

    Sakurai, Atsushi; Atkins, Coleen M.; Alonso, Ofelia F.; Bramlett, Helen M.

    2012-01-01

    Abstract The effects of slight variations in brain temperature on the pathophysiological consequences of acute brain injury have been extensively described in models of moderate and severe traumatic brain injury (TBI). In contrast, limited information is available regarding the potential consequences of temperature elevations on outcome following mild TBI (mTBI) or concussions. One potential confounding variable with mTBI is the presence of elevated body temperature that occurs in the civilian or military populations due to hot environments combined with exercise or other forms of physical exertion. We therefore determined the histopathological effects of pre- and post-traumatic hyperthermia (39°C) on mTBI. Adult male Sprague-Dawley rats were divided into 3 groups: pre/post-traumatic hyperthermia, post-traumatic hyperthermia alone for 2 h, and normothermia (37°C). The pre/post-hyperthermia group was treated with hyperthermia starting 15 min before mild parasagittal fluid-percussion brain injury (1.4–1.6 atm), with the temperature elevation extending for 2 h after trauma. At 72 h after mTBI, the rats were perfusion-fixed for quantitative histopathological evaluation. Contusion areas and volumes were significantly larger in the pre/post-hyperthermia treatment group compared to the post-hyperthermia and normothermic groups. In addition, pre/post-traumatic hyperthermia caused the most severe loss of NeuN-positive cells in the dentate hilus compared to normothermia. These neuropathological results demonstrate that relatively mild elevations in temperature associated with peri-traumatic events may affect the long-term functional consequences of mTBI. Because individuals exhibiting mildly elevated core temperatures may be predisposed to aggravated brain damage after mTBI or concussion, precautions should be introduced to target this important physiological variable. PMID:22026555

  8. Quality of care indicators for the rehabilitation of children with traumatic brain injury

    PubMed Central

    Rivara, Frederick P.; Ennis, Stephanie K.; Mangione-Smith, Rita; MacKenzie, Ellen J.; Jaffe, Kenneth M.

    2012-01-01

    Objective To develop measurement tools for assessing compliance with identifiable processes of inpatient care for children with traumatic brain injury that are reliable, valid, and amenable to implementation. Design Literature review and expert panel using the RAND/UCLA Appropriateness Method and a Delphi technique. Setting Not applicable Participants Children with traumatic brain injury (TBI) Interventions Not applicable Main outcome measures Quality of care indicators Results A total of 119 indicators were developed across the domains of general management; family-centered care; cognitive-communication, speech, language and swallowing impairments; gross and fine motor skill impairments; neuropsychological, social and behavioral impairments; school re-entry; community integration. There was a high degree of agreement on these indicators as valid and feasible quality measures for children with TBI. Conclusion These indicators are an important step toward building a better base of evidence about the effectiveness and efficiency of the components of acute inpatient rehabilitation for pediatric patients with TBI. PMID:22280892

  9. Update on the 2012 guidelines for the management of pediatric traumatic brain injury - information for the anesthesiologist.

    PubMed

    Hardcastle, Nina; Benzon, Hubert A; Vavilala, Monica S

    2014-07-01

    Traumatic brain injury (TBI) is a significant contributor to death and disability in children. Considering the prevalence of pediatric TBI, it is important for the clinician to be aware of evidence-based recommendations for the care of these patients. The first edition of the Guidelines for the Acute Medical Management of Severe Traumatic Brain Injury in Infants, Children, and Adolescents was published in 2003. The Guidelines were updated in 2012, with significant changes in the recommendations for hyperosmolar therapy, temperature control, hyperventilation, corticosteroids, glucose therapy, and seizure prophylaxis. Many of these interventions have implications in the perioperative period, and it is the responsibility of the anesthesiologist to be familiar with these guidelines.

  10. Prooxidant-antioxidant balance in patients with traumatic brain injury.

    PubMed

    Ehsaei, Mohamadreza; Khajavi, Mehdi; Arjmand, Mohammad Hassan; Abuee, Mohammad Ali; Ghayour-Mobarhan, Majid; Hamidi Alamdari, Daryoush

    2015-03-01

    Brain trauma is an important cause of mortality and disability among young people worldwide. One of the mechanisms of post-traumatic secondary brain damage is related to free radical release and oxidative stress (OS). OS is the consequence of an imbalance between pro-oxidants and antioxidants in favor of pro-oxidants. This imbalance may lead to macromolecule damage including lipid peroxidation, protein crosslinking, DNA damage and changes in growth and function of cells in brain. Free radical release and subsequent lipid peroxidation are early events following neural tissues injury and are associated with hypo-perfusion, edema, and disruption of axonal guidance. In this study, we determined the prooxidant-antioxidant balance (PAB) in patients with brain injury, and its correlation with number of demographic and clinical parameters. Sera from 98 patients with traumatic brain and 100 healthy subjects were collected. The serum PAB was measured. Age, sex, GCS (Glasgow coma scale), mechanism of injury, brain lesions found on CT scan and lesions in other parts of the body, caused by trauma, were determined. A significantly higher PAB value was observed in the patient group (138.97 ± 15.9 HK unit) compared to the controls (60.82 ± 12.6 HK) (P = 0.001). In the patient group, there was no significant correlation of PAB with GCS, brain lesion characteristic, mechanism of injury, other accompanying traumatic injury, age and gender. When patients were classified into three groups according to GCS: group 1 (GCS>13, n = 28, PAB serum value = 138.51 ± 62.66 HK), group 2 (GCS between 8 and 12, n = 29, PAB serum value = 162.7 ± 50.6 HK) and group 3 (GCS <8, n = 41, PAB serum value = 155.56 ± 58.21 HK); there was no significant difference between groups. The serum PAB values were higher in patients with traumatic brain injury, although this was not associated with the extent of injury.

  11. Traumatic Brain Injury Detection Using Electrophysiological Methods

    PubMed Central

    Rapp, Paul E.; Keyser, David O.; Albano, Alfonso; Hernandez, Rene; Gibson, Douglas B.; Zambon, Robert A.; Hairston, W. David; Hughes, John D.; Krystal, Andrew; Nichols, Andrew S.

    2015-01-01

    Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in q

  12. Aging, neurodegenerative disease, and traumatic brain injury: the role of neuroimaging.

    PubMed

    Esopenko, Carrie; Levine, Brian

    2015-02-15

    Traumatic brain injury (TBI) is a highly prevalent condition with significant effects on cognition and behavior. While the acute and sub-acute effects of TBI recover over time, relatively little is known about the long-term effects of TBI in relation to neurodegenerative disease. This issue has recently garnered a great deal of attention due to publicity surrounding chronic traumatic encephalopathy (CTE) in professional athletes, although CTE is but one of several neurodegenerative disorders associated with a history of TBI. Here, we review the literative on neurodegenerative disorders linked to remote TBI. We also review the evidence for neuroimaging changes associated with unhealthy brain aging in the context of remote TBI. We conclude that neuroimaging biomarkers have significant potential to increase understanding of the mechanisms of unhealthy brain aging and neurodegeneration following TBI, with potential for identifying those at risk for unhealthy brain aging prior to the clinical manifestation of neurodegenerative disease.

  13. Use of advanced neuroimaging techniques in the evaluation of pediatric traumatic brain injury.

    PubMed

    Ashwal, Stephen; Holshouser, Barbara A; Tong, Karen A

    2006-01-01

    Advanced neuroimaging techniques are now used to expand our knowledge of traumatic brain injury, and increasingly, they are being applied to children. This review will examine four of these methods as they apply to children who present acutely after injury. (1) Susceptibility weighted imaging is a 3-dimensional high-resolution magnetic resonance imaging technique that is more sensitive than conventional imaging in detecting hemorrhagic lesions that are often associated with diffuse axonal injury. (2) Magnetic resonance spectroscopy acquires metabolite information reflecting neuronal integrity and function from multiple brain regions and provides sensitive, noninvasive assessment of neurochemical alterations that offers early prognostic information regarding the outcome. (3) Diffusion weighted imaging is based on differences in diffusion of water molecules within the brain and has been shown to be very sensitive in the early detection of ischemic injury. It is now being used to study the direct effects of traumatic injury as well as those due to secondary ischemia. (4) Diffusion tensor imaging is a form of diffusion weighted imaging and allows better evaluation of white matter fiber tracts by taking advantage of the intrinsic directionality (anisotropy) of water diffusion in human brain. It has been shown to be useful in identifying white matter abnormalities after diffuse axonal injury when conventional imaging appears normal. An important aspect of these advanced methods is that they demonstrate that 'normal-appearing' brain in many instances is not normal, i.e. there is evidence of significant undetected injury that may underlie a child's clinical status. Availability and integration of these advanced imaging methods will lead to better treatment and change the standard of care for use of neuroimaging to evaluate children with traumatic brain injury.

  14. The King's Outcome Scale for Childhood Head Injury and Injury Severity and Outcome Measures in Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Calvert, Sophie; Miller, Helen E.; Curran, Andrew; Hameed, Biju; McCarter, Renee; Edwards, Richard J.; Hunt, Linda; Sharples, Peta Mary

    2008-01-01

    The aim of this study was to relate discharge King's Outcome Scale for Childhood Head Injury (KOSCHI) category to injury severity and detailed outcome measures obtained in the first year post-traumatic brain injury (TBI). We used a prospective cohort study. Eighty-one children with TBI were studied: 29 had severe, 15 moderate, and 37 mild TBI. The…

  15. Nicotinamide reduces acute cortical neuronal death and edema in the traumatically injured brain.

    PubMed

    Hoane, Michael R; Gilbert, David R; Holland, Michael A; Pierce, Jeremy L

    2006-11-06

    Previous studies have shown that administration of nicotinamide (Vitamin B(3)) in animal models of traumatic brain injury (TBI) and ischemia significantly reduced the size of infarction or injury and improved functional recovery. The present study evaluated the ability of nicotinamide to provide acute neuroprotection and edema reduction following TBI. Groups of rats were assigned to nicotinamide (500mg/kg) or saline (1.0ml/kg) treatment conditions and received contusion injuries or sham surgeries. Drug treatment was administered 15min following injury. Brains were harvested 24h later and either processed for histology or water content. Frozen sections were stained with the degenerating neuron stain (Fluoro-Jade B) (FJ) and cell counts were performed at the site of injury. Additional brains were processed for water content (a measure of injury-induced edema). Results of this study showed that administration of nicotinamide following TBI significantly reduced the number of FJ(+) neurons in the injured cortex compared to saline-treated animals. Examination of the water content of the brains also revealed that administration of nicotinamide significantly attenuated the amount of water compared to saline-treated animals in the injured cortex. These results indicate that nicotinamide administration significantly reduced neuronal death and attenuated cerebral edema following injury. The current findings suggest that nicotinamide significantly modulates acute pathophysiological processes following injury and that this may account for its beneficial effects on recovery of function following injury.

  16. Pathophysiology of Acute Kidney Injury

    PubMed Central

    Basile, David P.; Anderson, Melissa D.; Sutton, Timothy A.

    2014-01-01

    Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia or nephrotoxicity. An underlying feature is a rapid decline in GFR usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or CKD patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future. PMID:23798302

  17. Acute Scrotum Following Traumatic Spermatic Cord Hematoma: A Case Report and Review

    PubMed Central

    Pepe, Pietro; Bonaccorsi, Astrid; Candiano, Giuseppe; Pietropaolo, Francesco; Panella, Paolo; Pennisi, Michele

    2015-01-01

    Acute scrotum constitutes the most common urological emergency secondary to spermatic cord torsion, testicular trauma, orchiepididymitis and hernias. We report a very rare case of unique traumatic spermatic cord hematoma following scrotum injury occurred during a football match. Clinical exam showed an increased volume of the left spermatic cord; the color Doppler ultrasound (CDU) demonstrated left testicular ischemia secondary to a large spermatic cord hematoma that needs surgical exploration. Spermatic cord hematoma rarely induces acute scrotum, however it could be treated conservatively surgery is mandatory when pain is persistent or testicular ischemia is confirmed by CDU. PMID:26793493

  18. Changes of early post-traumatic osteoarthritis in an ovine model of simulated ACL reconstruction are associated with transient acute post-injury synovial inflammation and tissue catabolism.

    PubMed

    Heard, B J; Solbak, N M; Achari, Y; Chung, M; Hart, D A; Shrive, N G; Frank, C B

    2013-12-01

    The study described here tested the hypothesis that early intra-articular inflammation is associated with the development of post-traumatic osteoarthritis (PTOA) in a sheep model. We extended previously published work in which we investigated joint gross morphology and synovial mRNA expression of inflammatory and catabolic molecules 2 weeks after anatomic Anterior cruciate ligament (ACL) autograft reconstructive surgery (ACL-R). The same variables have been analyzed at 20 weeks post surgery together with new experimental variables at both time points. Animals were sacrificed at 20 weeks post ACL-R surgery and their joints graded for signs of PTOA. Synovial samples were harvested for histological grading plus mRNA and protein analysis for a panel of inflammatory and catabolic molecules. The mRNA expression levels for this panel plus connective tissue matrix turnover molecules were also investigated in cartilage samples. Results of gross morphological assessments at 20 weeks post surgery showed some changes consistent with early OA, but indicated little progression of damage from the 2 week time point. While significant alterations in mRNA levels for synovial inflammatory and catabolic molecules were detected at 2 weeks, values had normalized by 20 weeks. Similarly, all mRNA expression levels for inflammatory and catabolic molecules in articular cartilage had returned to normal levels by 20 weeks post ACL-R surgery. We conclude that synovial inflammatory processes are initiated very early after ACL-R surgery and may instigate events that lead to the gross cartilage and joint abnormalities observed as early as 2 weeks. However, the absence of sustained inflammation and joint instability may prevent OA progression.

  19. Traumatic injury among drywall installers, 1992 to 1995.

    PubMed

    Chiou, S S; Pan, C S; Keane, P

    2000-11-01

    This study examined the traumatic-injury characteristics associated with one of the high-risk occupations in the construction industry--drywall installers--through an analysis of the traumatic-injury data obtained from the Bureau of Labor Statistics. An additional objective was to demonstrate a feasible and economic approach to identify risk factors associated with a specific occupation by using an existing database. An analysis of nonfatal traumatic injuries with days away from work among wage-and-salary drywall installers was performed for 1992 through 1995 using the Occupational Injury and Illness Survey conducted by the Bureau of Labor Statistics. Results from this study indicate that drywall installers are at a high risk of overexertion and falls to a lower level. More than 40% of the injured drywall installers suffered sprains, strains, and/or tears. The most frequently injured body part was the trunk. More than one-third of the trunk injuries occurred while handling solid building materials, mainly drywall. In addition, the database analysis used in this study is valid in identifying overall risk factors for specific occupations.

  20. Role of Thalamus in Recovery of Traumatic Brain Injury

    PubMed Central

    Munivenkatappa, Ashok; Agrawal, Amit

    2016-01-01

    Degree of recovery after traumatic brain injury is highly variable that lasts for many weeks to months. The evidence of brain structures involved in recovery mechanisms is limited. This review highlights evidence of the brain structure particularly thalamus in neuroplasticity mechanism. Thalamus with its complex global networking has potential role in refining the cortical and other brain structures. Thalamic nuclei activation both naturally or by neurorehabilitation in injured brain can enhance and facilitate the improvement of posttraumatic symptoms. This review provides evidence from literature that thalamus plays a key role in recovery mechanism after injury. The study also emphasize that thalamus should be specifically targeted in neurorehabilitation following brain injury. PMID:28163509

  1. Cumulative effects of repetitive mild traumatic brain injury.

    PubMed

    Bailes, Julian E; Dashnaw, Matthew L; Petraglia, Anthony L; Turner, Ryan C

    2014-01-01

    The majority of traumatic brain injuries (TBI) in the USA are mild in severity. Sports, particularly American football, and military experience are especially associated with repetitive, mild TBI (mTBI). The consequences of repetitive brain injury have garnered increasing scientific and public attention following reports of altered mood and behavior, as well as progressive neurological dysfunction many years after injury. This report provides an up-to-date review of the clinical, pathological, and pathophysiological changes associated with repetitive mTBI, and their potential for cumulative effects in certain individuals.

  2. Pulsed arterial spin labeling effectively and dynamically observes changes in cerebral blood flow after mild traumatic brain injury.

    PubMed

    Peng, Shu-Ping; Li, Yi-Ning; Liu, Jun; Wang, Zhi-Yuan; Zhang, Zi-Shu; Zhou, Shun-Ke; Tao, Fang-Xu; Zhang, Zhi-Xue

    2016-02-01

    Cerebral blood flow is strongly associated with brain function, and is the main symptom and diagnostic basis for a variety of encephalopathies. However, changes in cerebral blood flow after mild traumatic brain injury remain poorly understood. This study sought to observe changes in cerebral blood flow in different regions after mild traumatic brain injury using pulsed arterial spin labeling. Our results demonstrate maximal cerebral blood flow in gray matter and minimal in the white matter of patients with mild traumatic brain injury. At the acute and subacute stages, cerebral blood flow was reduced in the occipital lobe, parietal lobe, central region, subcutaneous region, and frontal lobe. Cerebral blood flow was restored at the chronic stage. At the acute, subacute, and chronic stages, changes in cerebral blood flow were not apparent in the insula. Cerebral blood flow in the temporal lobe and limbic lobe diminished at the acute and subacute stages, but was restored at the chronic stage. These findings suggest that pulsed arterial spin labeling can precisely measure cerebral blood flow in various brain regions, and may play a reference role in evaluating a patient's condition and judging prognosis after traumatic brain injury.

  3. Military Traumatic Brain Injury and Blast

    DTIC Science & Technology

    2010-01-01

    cations compared to other mechanisms of injury such as acceleration -deceleration impact has become an im- portant question in the care of our service...injury. The above concepts lead to a frame of reference debate in relation to blast induced concussion or mTBI sug- gesting that lethal injury would...results in a 3D complex flow field that is altered by ambient conditions and envi- ronmental boundaries. This may result in multiple wave reflections and

  4. Simvastatin combined with antioxidant attenuates the cerebral vascular endothelial inflammatory response in a rat traumatic brain injury.

    PubMed

    Wang, Kuo-Wei; Wang, Hao-Kuang; Chen, Han-Jung; Liliang, Po-Chou; Liang, Cheng-Loong; Tsai, Yu-Duan; Cho, Chung-Lung; Lu, Kang

    2014-01-01

    Traumatic brain injury (TBI) leads to important and deleterious neuroinflammation, as evidenced by indicators such as edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, cerebral vascular endothelial cells play a crucial role in the pathogenesis of inflammation. In our previous study, we proved that simvastatin could attenuate cerebral vascular endothelial inflammatory response in a rat traumatic brain injury. This purpose of this study was to determine whether simvastatin combined with an antioxidant could produce the same effect or greater and to examine affected surrogate biomarkers for the neuroinflammation after traumatic brain injury in rat. In our study, cortical contusions were induced, and the effect of acute and continuous treatment of simvastatin and vitamin C on behavior and inflammation in adult rats following experimental TBI was evaluated. The results demonstrated that simvastatin combined with an antioxidant could provide neuroprotection and it may be attributed to a dampening of cerebral vascular endothelial inflammatory response.

  5. [Acute and overuse injuries in elite paracycling - an epidemiological study].

    PubMed

    Kromer, P; Röcker, K; Sommer, A; Baur, H; Konstantinidis, L; Gollhofer, A; Südkamp, N P; Hirschmüller, A

    2011-09-01

    Although paracycling is a growing discipline in high level competitive sports as well as in posttraumatic rehabilitation, epidemiological data of resulting injuries is still missing. Therefore, 19 athletes of the German national paracycling team were asked about their injuries during the 2008 season using a standardized questionnaire. Overall, 18 (94.7 %) of 19 athletes reported overuse injuries; most commonly localized at the back (83.3 %), neck/shoulder (77.8 %), knee (50 %), groin/buttock (50 %) and hands/wrists (38.9 %). Altogether, 18 accidents were registered, corresponding to an injury rate of 0,95 acute injuries per athlete per year (0,07 / 1000 km). The most common acute injuries were abrasions (69.2 %) and contusions (61.5 %), whereas fractures were stated only twice (11.8 %). The anatomical distribution of overuse injuries in disabled cyclists confirms the results of studies in able-bodied cycling, although the incidences in low-back pain and neck/shoulder pain is clearly higher in disabled cycling, as well as the rate of traumatic injuries.

  6. Neurotherapy of Traumatic Brain Injury/Post-Traumatic Stress Symptoms in Vietnam Veterans.

    PubMed

    Nelson, David V; Esty, Mary Lee

    2015-10-01

    Previous report suggested the beneficial effects of an adaptation of the Flexyx Neurotherapy System (FNS) for the amelioration of mixed traumatic brain injury/post-traumatic stress symptoms in veterans of the Afghanistan and Iraq wars. As a novel variant of electroencephalograph biofeedback, FNS falls within the bioenergy domain of complementary and alternative medicine. Rather than learning voluntary control over the production/inhibition of brain wave patterns, FNS involves offsetting stimulation of brain wave activity by means of an external energy source, specifically, the conduction of electromagnetic energy stimulation via the connecting electroencephalograph cables. Essentially, these procedures subliminally induce strategic distortion of ongoing brain wave activity to presumably facilitate resetting of more adaptive patterns of activity. Reported herein are two cases of Vietnam veterans with mixed traumatic brain injury/post-traumatic stress symptoms, each treated with FNS for 25 sessions. Comparisons of pre- and post-treatment questionnaire assessments revealed notable decreases for all symptoms, suggesting improvements across the broad domains of cognition, pain, sleep, fatigue, and mood/emotion, including post-traumatic stress symptoms, as well as for overall activity levels. Findings suggest FNS treatment may be of potential benefit for the partial amelioration of symptoms, even in some individuals for whom symptoms have been present for decades.

  7. Geomapping of Traumatic Spinal Cord Injury in Canada and Factors Related to Triage Pattern.

    PubMed

    Cheng, Christiana L; Noonan, Vanessa K; Shurgold, Jayson; Chen, Jason; Rivers, Carly S; Hamedani, Hamid Khaleghi; Humphreys, Suzanne; Bailey, Christopher; Attabib, Najmedden; Mac-Thiong, Jean-Marc; Goytan, Michael; Paquet, Jérôme; Fox, Richard; Ahn, Henry; Kwon, Brian K; Fourney, Daryl R

    2017-03-22

    Current research indicates that more than half of patients with traumatic spinal cord injury (tSCI) experience delays in transfer and receive surgery more than 24 hours post-injury. The objectives of this study were to determine the geographic distribution of tSCI in Canada relative to specialized treatment facilities, to assess clinical and logistical factors at play for indirect admissions to those facilities, and to explore differences in current time to admission and simulated scenarios in an attempt to assess the potential impact of changes to triage protocols. This study included data from 876 patients with tSCI enrolled in the prospectively collected acute Rick Hansen Spinal Cord Injury Registry (RHSCIR) between January 1, 2010 and December 31, 2013 who had data on the location of their injury. Patients transported directly to a RHSCIR acute facility were more likely to reach the facility within 1 h of injury while those transported indirectly were more likely to arrive 7 h later. Considering the injuries occurring within 40 km of a RHSCIR acute facility (n=323), 249 patients (77%) were directly and 74 (23%) were indirectly admitted. In the multivariate regression analysis, only older age and longer road distance remained significantly associated with being indirectly admitted to a RHSCIR facility. Compared to the current status, the median time to admission decreased by 20% (3.5 h) in the 100% direct admission scenario; and increased by 102% (8.9 h) in the 100% indirect admission scenario.

  8. Epidemiology of mild traumatic brain injury and neurodegenerative disease.

    PubMed

    Gardner, Raquel C; Yaffe, Kristine

    2015-05-01

    Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. The role of MTBI in risk of PD or ALS is less well established. Repetitive MTBI and repetitive sub-concussive head trauma have been linked to increased risk for a variety of neurodegenerative diseases including chronic traumatic encephalopathy (CTE). CTE is a unique neurodegenerative tauopathy first described in boxers but more recently described in a variety of contact sport athletes, military veterans, and civilians exposed to repetitive MTBI. Studies of repetitive MTBI and CTE have been limited by referral bias, lack of consensus clinical criteria for CTE, challenges of quantifying MTBI exposure, and potential for confounding. The prevalence of CTE is unknown and the amount of MTBI or sub-concussive trauma exposure necessary to produce CTE is unclear. This review will summarize the current literature regarding the epidemiology of MTBI, post-TBI dementia and Parkinson's disease, and CTE while highlighting methodological challenges and critical future directions of research in this field. This article is part of a Special Issue entitled SI:Traumatic Brain Injury.

  9. Pituitary dysfunction following traumatic brain injury: clinical perspectives

    PubMed Central

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-01-01

    Traumatic brain injury (TBI) is a well recognized public health problem worldwide. TBI has previously been considered as a rare cause of hypopituitarism, but an increased prevalence of neuroendocrine dysfunction in patients with TBI has been reported during the last 15 years in most of the retrospective and prospective studies. Based on data in the current literature, approximately 15%–20% of TBI patients develop chronic hypopituitarism, which clearly suggests that TBI-induced hypopituitarism is frequent in contrast with previous assumptions. This review summarizes the current data on TBI-induced hypopituitarism and briefly discusses some clinical perspectives on post-traumatic anterior pituitary hormone deficiency. PMID:26251600

  10. White matter and reading deficits after pediatric traumatic brain injury: A diffusion tensor imaging study

    PubMed Central

    Johnson, Chad Parker; Juranek, Jenifer; Swank, Paul R.; Kramer, Larry; Cox, Charles S.; Ewing-Cobbs, Linda

    2015-01-01

    Pediatric traumatic brain injury often results in significant long-term deficits in mastery of reading ability. This study aimed to identify white matter pathways that, when damaged, predicted reading deficits in children. Based on the dual-route model of word reading, we predicted that integrity of the inferior fronto-occipital fasciculus would be related to performance in sight word identification while integrity of the superior longitudinal fasciculus would be related to performance in phonemic decoding. Reading fluency and comprehension were hypothesized to relate to the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and cingulum bundle. The connectivity of white matter pathways was used to predict reading deficits in children aged 6 to 16 years with traumatic brain injury (n = 29) and those with orthopedic injury (n = 27) using tract-based spatial statistics. Results showed that children with traumatic brain injury and reduced microstructural integrity of the superior longitudinal fasciculus demonstrated reduced word-reading ability on sight word and phonemic decoding tasks. Additionally, children with traumatic brain injury and microstructural changes involving the cingulum bundle demonstrated reduced reading fluency. Results support the association of a dorsal pathway via the superior longitudinal fasciculus with both sight word reading and phonemic decoding. No association was identified between the inferior fronto-occipital fasciculus and sight word reading or phonemic decoding. Reading fluency was associated with the integrity of the cingulum bundle. These findings support dissociable pathways predicting word reading and fluency using Diffusion Tensor Imaging and provide additional information for developing models of acquired reading deficits by specifying areas of brain damage which may predict reading deficits following recovery from the acute phase of TBI. PMID:26740920

  11. White matter and reading deficits after pediatric traumatic brain injury: A diffusion tensor imaging study.

    PubMed

    Johnson, Chad Parker; Juranek, Jenifer; Swank, Paul R; Kramer, Larry; Cox, Charles S; Ewing-Cobbs, Linda

    2015-01-01

    Pediatric traumatic brain injury often results in significant long-term deficits in mastery of reading ability. This study aimed to identify white matter pathways that, when damaged, predicted reading deficits in children. Based on the dual-route model of word reading, we predicted that integrity of the inferior fronto-occipital fasciculus would be related to performance in sight word identification while integrity of the superior longitudinal fasciculus would be related to performance in phonemic decoding. Reading fluency and comprehension were hypothesized to relate to the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and cingulum bundle. The connectivity of white matter pathways was used to predict reading deficits in children aged 6 to 16 years with traumatic brain injury (n = 29) and those with orthopedic injury (n = 27) using tract-based spatial statistics. Results showed that children with traumatic brain injury and reduced microstructural integrity of the superior longitudinal fasciculus demonstrated reduced word-reading ability on sight word and phonemic decoding tasks. Additionally, children with traumatic brain injury and microstructural changes involving the cingulum bundle demonstrated reduced reading fluency. Results support the association of a dorsal pathway via the superior longitudinal fasciculus with both sight word reading and phonemic decoding. No association was identified between the inferior fronto-occipital fasciculus and sight word reading or phonemic decoding. Reading fluency was associated with the integrity of the cingulum bundle. These findings support dissociable pathways predicting word reading and fluency using Diffusion Tensor Imaging and provide additional information for developing models of acquired reading deficits by specifying areas of brain damage which may predict reading deficits following recovery from the acute phase of TBI.

  12. A simple rat model of mild traumatic brain injury: a device to reproduce anatomical and neurological changes of mild traumatic brain injury

    PubMed Central

    Kim, Ho Jeong

    2017-01-01

    Mild traumatic brain injury typically involves temporary impairment of neurological function. Previous studies used water pressure or rotational injury for designing the device to make a rat a mild traumatic brain injury model. The objective of this study was to make a simple model of causing mild traumatic brain injury in rats. The device consisted of a free-fall impactor that was targeted onto the rat skull. The weight (175 g) was freely dropped 30 cm to rat’s skull bregma. We installed a safety device made of acrylic panel. To confirm a mild traumatic brain injury in 36 Sprague-Dawley rats, we performed magnetic resonance imaging (MRI) of the brain within 24 h after injury. We evaluated behavior and chemical changes in rats before and after mild traumatic brain injury. The brain MRI did not show high or low signal intensity in 34 rats. The mobility on grid floor was decreased after mild traumatic brain injury. The absolute number of foot-fault and foot-fault ratio were decreased after mild traumatic brain injury. However, the difference of the ratio was a less than absolute number of foot-fault. These results show that the device is capable of reproducing mild traumatic brain injury in rats. Our device can reduce the potential to cause brain hemorrhage and reflect the mechanism of real mild traumatic brain injury compared with existing methods and behaviors. This model can be useful in exploring physiology and management of mild traumatic brain injury. PMID:28070456

  13. Airway complications in traumatic lower cervical spinal cord injury: A retrospective study

    PubMed Central

    Niedeggen, Andreas; Estel, Barbara; Seidl, Rainer O.

    2015-01-01

    Objective To investigate risk factors for pneumonia in patients with traumatic lower cervical spinal cord injury. Design Observational study, retrospective study. Setting Spinal cord unit in a maximum care hospital. Methods Thirty-seven patients with acute isolated traumatic spinal cord injury at levels C4–C8 and complete motor function injury (AIS A, B) treated from 2004 to 2010 met the criteria for inclusion in our retrospective analysis. The following parameters were considered: ventilation-specific parameters, re-intubation, creation of a tracheostomy, pneumonia, antibiotic treatment, and length of intensive care unit (ICU) stay and total hospitalization. Results Among the patients, 81% had primary invasive ventilation. In 78% of cases a tracheostomy was created; 3% of these cases were discharged with invasive ventilation and 28% with a tracheostomy without ventilation. Pneumonia according to Centers for Disease Control criteria occurred in 51% of cases within 21 ± 32 days of injury, and in 3% at a later date. The number of pre-existing conditions was significantly associated with pneumonia. Length of ICU stay was 25 ± 34 days, and average total hospital duration was 230 ± 144 days. Significant factors affecting the duration of ventilation were the number of pre-existing conditions and tetraplegia-specific complications. Conclusions Our results confirm that patients with traumatic lower cervical spinal cord injuries defined by lesion level and AIS constitute a homogeneous group. This group is characterized by a high rate of pneumonia during the first 4 weeks after injury. The number of pre-existing general conditions and spinal injury-specific comorbidities are the only risk factors identified for the development of pneumonia and/or duration of ventilation. PMID:25117865

  14. Traumatic brain injury, axonal injury and shaking in New Zealand sea lion pups.

    PubMed

    Roe, W D; Mayhew, I G; Jolly, R D; Marshall, J; Chilvers, B L

    2014-04-01

    Trauma is a common cause of death in neonatal New Zealand sea lion pups, and subadult male sea lions have been observed picking up and violently shaking some pups. In humans, axonal injury is a common result of traumatic brain injury, and can be due to direct trauma to axons or to ischaemic damage secondary to trauma. 'Shaken baby syndrome', which has been described in human infants, is characterised by retinal and intracranial subdural haemorrhages, and has been associated with axonal injury to the brain, spinal cord and optic nerve. This study identifies mechanisms of traumatic brain injury in New Zealand sea lion pups, including impact injuries and shaking-type injuries, and identifies gross lesions of head trauma in 22/36 sea lion pups found dead at a breeding site in the Auckland Islands. Despite the high frequency of such gross lesions, only three of the pups had died of traumatic brain injury. Observational studies confirmed that shaking of pups occurred, but none were shown to die as a direct result of these shaking events. Axonal injury was evaluated in all 36 pup brains using β-amyloid precursor protein immunohistochemistry. Immunoreactive axons were present in the brains of all pups examined including seven with vascular axonal injury and two with diffuse axonal injury, but the severity and pattern of injury was not reliably associated with death due to traumatic brain injury. No dead pups had the typical combination of gross lesions and immunohistochemical findings that would conform to descriptions of 'shaken baby syndrome'. Axonal injury was present in the optic nerves of most pups, irrespective of cause of death, but was associated with ischaemia rather than trauma.

  15. Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine.

    PubMed

    Wofford, Kathryn L; Harris, James P; Browne, Kevin D; Brown, Daniel P; Grovola, Michael R; Mietus, Constance J; Wolf, John A; Duda, John E; Putt, Mary E; Spiller, Kara L; Cullen, D Kacy

    2017-04-01

    Despite increasing appreciation of the critical role that neuroinflammatory pathways play in brain injury and neurodegeneration, little is known about acute microglial reactivity following diffuse traumatic brain injury (TBI) - the most common clinical presentation that includes all concussions. Therefore, we investigated acute microglial reactivity using a porcine model of closed-head rotational velocity/acceleration-induced TBI that closely mimics the biomechanical etiology of inertial TBI in humans. We observed rapid microglial reactivity within 15min of both mild and severe TBI. Strikingly, microglial activation was restrained to regions proximal to individual injured neurons - as denoted by trauma-induced plasma membrane disruption - which served as epicenters of acute reactivity. Single-cell quantitative analysis showed that in areas free of traumatically permeabilized neurons, microglial density and morphology were similar between sham or following mild or severe TBI. However, microglia density increased and morphology shifted to become more reactive in proximity to injured neurons. Microglial reactivity around injured neurons was exacerbated following repetitive TBI, suggesting further amplification of acute neuroinflammatory responses. These results indicate that neuronal trauma rapidly activates microglia in a highly localized manner, and suggest that activated microglia may rapidly influence neuronal stability and/or pathophysiology after diffuse TBI.

  16. Major traumatic and septic genital injuries.

    PubMed

    McAninch, J W; Kahn, R I; Jeffrey, R B; Laing, F C; Krieger, M J

    1984-04-01

    Major injuries to the testicles, penis, and genital skin from trauma and infection were seen in 62 patients over a 6-year period (1977 to 1983). Urethral injuries were excluded. In the past blunt testicle injuries were infrequently diagnosed and surgically ignored because of large surrounding hematomas. With the use of real-time ultrasound, 17 of 18 cases of testicle rupture were correctly diagnosed preoperatively. Surgical repair resulted in testicle salvage in 16 patients. Penetrating testicle injuries resulted in a high orchiectomy rate secondary to the infrequently described but recognized entity of self-emasculation in transsexuals. Penile rupture from blunt injuries (8) was successfully repaired and complete function was recovered. Penetrating penile injuries (4) were extensive and involved the urethra in two cases; full function returned after reconstruction. Major skin loss of the penis and/or scrotum (19) occurred from necrotizing fasciitis, burns, avulsion and penetrating injuries. Early debridement, bowel and urinary diversion followed by penile skin grafting, thigh pouches to protect testicles, and scrotal reconstruction resulted in acceptable cosmetic and functional results in all cases of major skin loss.

  17. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury.

    PubMed

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-09-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue.

  18. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  19. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    PubMed

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  20. Traumatic brain injury: improving functional recovery.

    PubMed Central

    Morgan, A. S.

    1989-01-01

    Most physical injuries in this country are the result of motorized vehicle accidents. Head trauma accounts for one fourth of all trauma deaths, and the cost to treat patients with head trauma is $83 billion. The author discusses injury patterns, methods of resuscitating patients with head injuries, surgical management and monitoring, and the clinical course and prospects for rehabilitation. An interdisciplinary approach to the management of such patients is encouraged, and the medical and surgical interventions undertaken at one institution are reviewed. PMID:2695652

  1. Acute and post-traumatic stress disorder after spontaneous abortion.

    PubMed

    Bowles, S V; James, L C; Solursh, D S; Yancey, M K; Epperly, T D; Folen, R A; Masone, M

    2000-03-15

    When a spontaneous abortion is followed by complicated bereavement, the primary care physician may not consider the diagnosis of acute stress disorder or post-traumatic stress disorder. The major difference between these two conditions is that, in acute stress disorder, symptoms such as dissociation, reliving the trauma, avoiding stimuli associated with the trauma and increased arousal are present for at least two days but not longer than four weeks. When the symptoms persist beyond four weeks, the patient may have post-traumatic stress disorder. The symptoms of distress response after spontaneous abortion include psychologic, physical, cognitive and behavioral effects; however, patients with distress response after spontaneous abortion often do not meet the criteria for acute or post-traumatic stress disorder. After spontaneous abortion, as many as 10 percent of women may have acute stress disorder and up to 1 percent may have post-traumatic stress disorder. Critical incident stress debriefing, which may be administered by trained family physicians or mental health practitioners, may help patients who are having a stress disorder after a spontaneous abortion.

  2. Clinical and Mechanistic Drivers of Acute Traumatic Coagulopathy

    PubMed Central

    Cohen, Mitchell Jay; Kutcher, Matt; Redick, Britt; Nelson, Mary; Call, Mariah; Knudson, M Margaret; Schreiber, Martin A; Bulger, Eileen M; Muskat, Peter; Alarcon, Louis H; Myers, John G; Rahbar, Mohammad H; Brasel, Karen J; Phelan, Herb A; del Junco, Deborah J; Fox, Erin E; Wade, Charles E; Holcomb, John B; Cotton, Bryan A; Matijevic, Nena

    2013-01-01

    Background Acute Traumatic Coagulopathy (ATC) occurs after severe injury and shock and is associated with increased bleeding, morbidity and mortality. The effects of ATC and hemostatic resuscitation on outcome are not well-explored. The PRospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study provided a unique opportunity to characterize coagulation and the effects of resuscitation on ATC after severe trauma. Methods Blood samples were collected upon arrival on a subset of PROMMTT patients. Plasma clotting factor levels were prospectively assayed for coagulation factors. These data were analyzed with comprehensive PROMMTT clinical data. Results There were 1198 patients with laboratory results of whom 41.6% were coagulopathic. Using International Normalized Ratio (INR)≥1.3, 41.6% (448) of patients were coagulopathic while 20.5% (214) were coagulopathic using partial thromboplastin time (PTT)≥35. Coagulopathy was primarily associated with a combination of an ISS>15 and a BD<−6 (P<.05). Regression modeling for INR-based coagulopathy shows that pre-hospital crystalloid (odds ratio (OR)=1.05), Injury Severity Score (ISS, OR=1.03), Glasgow Coma Scale (OR=0.93), heart rate (OR=1.08), systolic blood pressure (OR=0.96), base deficit (BD, OR=0.92) and temperature (OR=0.84) were significant predictors of coagulopathy (all P<.03). A subset of 165 patients had blood samples collected and coagulation factor analysis performed. Elevated ISS and BD were associated with elevation of aPC and depletion of factors (all P<.05). Reductions in factors I, II, V, VIII and an increase in aPC drive ATC (all p<.04). Similar results were found for PTT-defined coagulopathy. Conclusions ATC is associated with depletion of factors I, II, V, VII, VIII, IX and X and is driven by the activation of the protein C system. These data provide additional mechanistic understanding of the drivers of coagulation abnormalities after injury. Further understanding of the drivers of

  3. Traumatic Brain Injury (TBI) Data and Statistics

    MedlinePlus

    ... data.cdc.gov . Emergency Department Visits, Hospitalizations, and Deaths Rates of TBI-related Emergency Department Visits, Hospitalizations, ... related Hospitalizations by Age Group and Injury Mechanism Deaths Rates of TBI-related Deaths by Sex Rates ...

  4. Long-term psychiatric disorders after traumatic brain injury.

    PubMed

    Fleminger, S

    2008-01-01

    In the long term after traumatic brain injury, the most disabling problems are generally related to neuropsychiatric sequelae, including personality change and cognitive impairment, rather than neurophysical sequelae. Cognitive impairment after severe injury is likely to include impaired speed of information processing, poor memory and executive problems. Personality change may include poor motivation, and a tendency to be self-centred and less aware of the needs of others. Patients may be described as lazy and thoughtless. Some become disinhibited and rude. Agitation and aggression can be very difficult to manage. Anxiety and depression symptoms are quite frequent and play a role in the development of persistent post-concussion syndrome after milder injury. Depression may be associated with a deterioration in disability over time after injury. Psychosis is not unusual though it has been difficult to confirm that traumatic brain injury is a cause of schizophrenia. Head injury may, many years later, increase the risk of Alzheimer's disease. Good rehabilitation probably minimizes the risk of psychiatric sequelae, but specific psychological and pharmacological treatments may be needed.

  5. Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury.

    PubMed

    Campbell, Matthew; Hanrahan, Finnian; Gobbo, Oliviero L; Kelly, Michael E; Kiang, Anna-Sophia; Humphries, Marian M; Nguyen, Anh T H; Ozaki, Ema; Keaney, James; Blau, Christoph W; Kerskens, Christian M; Cahalan, Stephen D; Callanan, John J; Wallace, Eugene; Grant, Gerald A; Doherty, Colin P; Humphries, Peter

    2012-05-22

    Traumatic brain injury is the leading cause of death in children and young adults globally. Malignant cerebral oedema has a major role in the pathophysiology that evolves after severe traumatic brain injury. Added to this is the significant morbidity and mortality from cerebral oedema associated with acute stroke, hypoxic ischemic coma, neurological cancers and brain infection. Therapeutic strategies to prevent cerebral oedema are limited and, if brain swelling persists, the risks of permanent brain damage or mortality are greatly exacerbated. Here we show that a temporary and size-selective modulation of the blood-brain barrier allows enhanced movement of water from the brain to the blood and significantly impacts on brain swelling. We also show cognitive improvement in mice with focal cerebral oedema following administration in these animals of short interfering RNA directed against claudin-5. These observations may have profound consequences for early intervention in cases of traumatic brain injury, or indeed any neurological condition where cerebral oedema is the hallmark pathology.

  6. Metacognitive monitoring in moderate and severe traumatic brain injury.

    PubMed

    Chiou, Kathy S; Carlson, Richard A; Arnett, Peter A; Cosentino, Stephanie A; Hillary, Frank G

    2011-07-01

    The ability to engage in self-reflective processes is a capacity that may be disrupted after neurological compromise; research to date has demonstrated that patients with traumatic brain injury (TBI) show reduced awareness of their deficits and functional ability compared to caretaker or clinician reports. Assessment of awareness of deficit, however, has been limited by the use of subjective measures (without comparison to actual performance) that are susceptible to report bias. This study used concurrent measurements from cognitive testing and confidence judgments about performance to investigate in-the-moment metacognitive experiences after moderate and severe traumatic brain injury. Deficits in metacognitive accuracy were found in adults with TBI for some but not all indices, suggesting that metacognition may not be a unitary construct. Findings also revealed that not all indices of executive functioning reliably predict metacognitive ability.

  7. A rapid lateral fluid percussion injury rodent model of traumatic brain injury and post-traumatic epilepsy.

    PubMed

    Hameed, Mustafa Q; Goodrich, Grant S; Dhamne, Sameer C; Amandusson, Asa; Hsieh, Tsung-Hsun; Mou, Danlei; Wang, Yingpeng; Rotenberg, Alexander

    2014-05-07

    Traumatic brain injury is a leading cause of acquired epilepsy. Initially described in 1989, lateral fluid percussion injury (LFPI) has since become the most extensively used and well-characterized rodent traumatic brain injury and post-traumatic epilepsy model. Universal findings, particularly seizures that reliably develop after an initial latent period, are evident across studies from multiple laboratories. However, the LFPI procedure is a two-stage process, requiring initial surgical attachment of a skull fluid cannula and then reanesthesia for delivery of the epidural fluid pressure wave. We now describe a modification of the original technique, termed 'rapid lateral fluid percussion injury' (rLFPI), which allows for a one-stage procedure and thus shorter operating time and reduced anesthesia exposure. Anesthetized male Long-Evans rats were subjected to rLFPI through a length of plastic tubing fitted with a pipette tip cannula with a 4-mm aperture. The cannula opening was positioned over a craniectomy of slightly smaller diameter and exposed dura such that the edges of the cannula fit tightly when pressed to the skull with a micromanipulator. Fluid percussion was then delivered immediately thereafter, in the same surgery session. rLFPI resulted in nonlethal focal cortical injury in all animals. We previously demonstrated that the rLFPI procedure resulted in post-traumatic seizures and regional gliosis, but had not examined other histopathologic elements. Now, we show apoptotic cell death confined to the perilesional cortex and chronic pathologic changes such as ipsilesional ventriculomegaly that are seen in the classic model. We conclude that the rLFPI method is a viable alternative to classic LFPI, and--being a one-stage procedure--has the advantage of shorter experiment turnaround and reduced exposure to anesthetics.

  8. Hyperbaric oxygen therapy as a potential treatment for post-traumatic stress disorder associated with traumatic brain injury

    PubMed Central

    Eve, David J; Steele, Martin R; Sanberg, Paul R; Borlongan, Cesar V

    2016-01-01

    Traumatic brain injury (TBI) describes the presence of physical damage to the brain as a consequence of an insult and frequently possesses psychological and neurological symptoms depending on the severity of the injury. The recent increased military presence of US troops in Iraq and Afghanistan has coincided with greater use of improvised exploding devices, resulting in many returning soldiers suffering from some degree of TBI. A biphasic response is observed which is first directly injury-related, and second due to hypoxia, increased oxidative stress, and inflammation. A proportion of the returning soldiers also suffer from post-traumatic stress disorder (PTSD), and in some cases, this may be a consequence of TBI. Effective treatments are still being identified, and a possible therapeutic candidate is hyperbaric oxygen therapy (HBOT). Some clinical trials have been performed which suggest benefits with regard to survival and disease severity of TBI and/or PTSD, while several other studies do not see any improvement compared to a possibly poorly controlled sham. HBOT has been shown to reduce apoptosis, upregulate growth factors, promote antioxidant levels, and inhibit inflammatory cytokines in animal models, and hence, it is likely that HBOT could be advantageous in treating at least the secondary phase of TBI and PTSD. There is some evidence of a putative prophylactic or preconditioning benefit of HBOT exposure in animal models of brain injury, and the optimal time frame for treatment is yet to be determined. HBOT has potential side effects such as acute cerebral toxicity and more reactive oxygen species with long-term use, and therefore, optimizing exposure duration to maximize the reward and decrease the detrimental effects of HBOT is necessary. This review provides a summary of the current understanding of HBOT as well as suggests future directions including prophylactic use and chronic treatment. PMID:27799776

  9. Hyperbaric oxygen therapy as a potential treatment for post-traumatic stress disorder associated with traumatic brain injury.

    PubMed

    Eve, David J; Steele, Martin R; Sanberg, Paul R; Borlongan, Cesar V

    2016-01-01

    Traumatic brain injury (TBI) describes the presence of physical damage to the brain as a consequence of an insult and frequently possesses psychological and neurological symptoms depending on the severity of the injury. The recent increased military presence of US troops in Iraq and Afghanistan has coincided with greater use of improvised exploding devices, resulting in many returning soldiers suffering from some degree of TBI. A biphasic response is observed which is first directly injury-related, and second due to hypoxia, increased oxidative stress, and inflammation. A proportion of the returning soldiers also suffer from post-traumatic stress disorder (PTSD), and in some cases, this may be a consequence of TBI. Effective treatments are still being identified, and a possible therapeutic candidate is hyperbaric oxygen therapy (HBOT). Some clinical trials have been performed which suggest benefits with regard to survival and disease severity of TBI and/or PTSD, while several other studies do not see any improvement compared to a possibly poorly controlled sham. HBOT has been shown to reduce apoptosis, upregulate growth factors, promote antioxidant levels, and inhibit inflammatory cytokines in animal models, and hence, it is likely that HBOT could be advantageous in treating at least the secondary phase of TBI and PTSD. There is some evidence of a putative prophylactic or preconditioning benefit of HBOT exposure in animal models of brain injury, and the optimal time frame for treatment is yet to be determined. HBOT has potential side effects such as acute cerebral toxicity and more reactive oxygen species with long-term use, and therefore, optimizing exposure duration to maximize the reward and decrease the detrimental effects of HBOT is necessary. This review provides a summary of the current understanding of HBOT as well as suggests future directions including prophylactic use and chronic treatment.

  10. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    DTIC Science & Technology

    2014-09-01

    TBI, November 18, 2011, Detroit, Prof. Haacke Wayne State University, TBI Workshop, Mild TBI, November 18, 2011, Detroit, Prof. Kou. Henry Ford...Del Campo -Perez V, Alvarez-Garcıa E, Vara-Perez C, Andrade-Olivie MA. 2011. Model predicting survival/exitus after traumatic brain injury: biomarker...visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 2006;24: 41–51. 4. Kohler R, Vargas MI, Masterson K

  11. Concussion and Mild Traumatic Brain Injury: An Annotated Bibliography

    DTIC Science & Technology

    2013-08-01

    Archives of Clinical Neuropsychology , 11(2), 139-145. Since no empirical evidence existed at the time for treatment concerning PSC...severity levels. Moser, R.S., and Schatz, P. 2002. Enduring effects of concussion in youth athletes. Archives of Clinical Neuropsychology , 17, 91...Melnyk, A., and Nagy, J. 2002. Patient complaints within 1 month of mild traumatic brain injury: A controlled study. Archives of Clinical Neuropsychology ,

  12. Traumatic Brain Injury (TBI) Studies at Grady Memorial Hospital

    DTIC Science & Technology

    2010-09-01

    refine goal directed therapy for traumatic brain injury. 2. Evaluate the Novel Screening tool and identifying cognitive impairment for mild...neuropsychological performance/cognitive impairment in real time, such as in the military field. Our study will compare these two novel methods of...portable and may prove to be useful in assessing cognitive impairment in real time, in the military field. Although, diagnosing mTBI is one of the biggest

  13. Baseline Establishment Using Virtual Environment Traumatic Brain Injury Screen (VETS)

    DTIC Science & Technology

    2015-06-01

    accompany any repeated cognitive exam. Providers should be mindful of other factors affecting the MACE cognitive score such as sleep deprivation ...G. DeMunck June 2015 Thesis Advisor: Lee Sciarini Second Reader: Joseph Sullivan This thesis was performed at the MOVES Institute...ENVIRONMENT TRAUMATIC BRAIN INJURY SCREEN (VETS) 5. FUNDING NUMBERS 6. AUTHOR(S) Casey G. DeMunck 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  14. Controversies in the Management of Traumatic Brain Injury.

    PubMed

    Jinadasa, Sayuri; Boone, M Dustin

    2016-09-01

    Traumatic brain injury (TBI) is a physical insult (a bump, jolt, or blow) to the brain that results in temporary or permanent impairment of normal brain function. TBI describes a heterogeneous group of disorders. The resulting secondary injury, namely brain swelling and its sequelae, is the reason why patients with these vastly different initial insults are homogenously treated. Much of the evidence for the management of TBI is poor or conflicting, and thus definitive guidelines are largely unavailable for clinicians at this time. A substantial portion of this article focuses on discussing the controversies in the management of TBI.

  15. 77 FR 13578 - Disability and Rehabilitation Research Project; Traumatic Brain Injury Model Systems Centers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Disability and Rehabilitation Research Project; Traumatic Brain Injury Model Systems Centers AGENCY: Office... Brain Injury Model Systems Centers. CFDA Number: 84.133A-5. SUMMARY: The Assistant Secretary for Special... Projects (DRRPs) to serve as Traumatic Brain Injury Model Systems (TBIMS) Centers. The Assistant...

  16. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  17. Affective state and community integration after traumatic brain injury.

    PubMed

    Juengst, Shannon B; Arenth, Patricia M; Raina, Ketki D; McCue, Michael; Skidmore, Elizabeth R

    2014-12-01

    Previous studies investigating the relationship between affective state and community integration have focused primarily on the influence of depression and anxiety. In addition, they have focused on frequency of participation in various activities, failing to address an individual's subjective satisfaction with participation. The purpose of this study was to examine how affective state contributes to frequency of participation and satisfaction with participation after traumatic brain injury among participants with and without a current major depressive episode. Sixty-four community-dwelling participants with a history of complicated mild-to-severe traumatic brain injury participated in this cross-sectional cohort study. High positive affect contributed significantly to frequency of participation (β = 0.401, P = 0.001), and both high positive affect and low negative affect significantly contributed to better satisfaction with participation (F2,61 = 13.63, P < 0.001). Further investigation to assess the direction of these relationships may better inform effective targets for intervention. These findings highlight the importance of assessing affective state after traumatic brain injury and incorporating a subjective measure of participation when considering community integration outcomes.

  18. The Impact of Mild Traumatic Brain Injury on Cognitive Functioning Following Co-occurring Spinal Cord Injury

    PubMed Central

    Macciocchi, Stephen N.; Seel, Ronald T.; Thompson, Nicole

    2013-01-01

    Meta-analytic studies have shown that mild traumatic brain injury (MTBI) has relatively negligible effects on cognitive functioning at 90 or more days post-injury. Few studies have prospectively examined the effects of MTBI in acute physical trauma populations. This prospective, cohort study compared the cognitive performance of persons who sustained a spinal cord injury (SCI) and a co-occurring MTBI (N = 53) to persons who sustained an SCI alone (N = 64) between 26 and 76 days (mean = 46) post-injury. The presence of MTBI was determined based on acute medical record review using a standardized algorithm. Primary outcome measures were seven neuropsychological tests that evaluated visual, verbal, and working memory, perceptual reasoning, and processing speed that controlled for potential upper extremity impairment. Persons who sustained SCI with or without MTBI had lower than expected performance across all neuropsychological tests, on average about 1 SD below the mean. Analysis of covariance indicated that persons with MTBI did not evidence greater impairment on any neuropsychological test. The aggregated effect size (Cohen's d) was −0.16. The strongest predictors of neuropsychological test scores were education, race, history of learning problems, and days from injury to rehabilitation admission. MTBI did not predict performance on any neuropsychological test. These findings are consistent with other controlled studies that indicate a single MTBI has negligible long-term impacts on cognition. PMID:24055885

  19. Endogenous Neural Stem/Progenitor Cells Stabilize the Cortical Microenvironment after Traumatic Brain Injury

    PubMed Central

    Dixon, Kirsty J.; Theus, Michelle H.; Nelersa, Claudiu M.; Mier, Jose; Travieso, Lissette G.; Yu, Tzong-Shiue; Kernie, Steven G.

    2015-01-01

    Abstract Although a myriad of pathological responses contribute to traumatic brain injury (TBI), cerebral dysfunction has been closely linked to cell death mechanisms. A number of therapeutic strategies have been studied in an attempt to minimize or ameliorate tissue damage; however, few studies have evaluated the inherent protective capacity of the brain. Endogenous neural stem/progenitor cells (NSPCs) reside in distinct brain regions and have been shown to respond to tissue damage by migrating to regions of injury. Until now, it remained unknown whether these cells have the capacity to promote endogenous repair. We ablated NSPCs in the subventricular zone to examine their contribution to the injury microenvironment after controlled cortical impact (CCI) injury. Studies were performed in transgenic mice expressing the herpes simplex virus thymidine kinase gene under the control of the nestinδ promoter exposed to CCI injury. Two weeks after CCI injury, mice deficient in NSPCs had reduced neuronal survival in the perilesional cortex and fewer Iba-1-positive and glial fibrillary acidic protein-positive glial cells but increased glial hypertrophy at the injury site. These findings suggest that the presence of NSPCs play a supportive role in the cortex to promote neuronal survival and glial cell expansion after TBI injury, which corresponds with improvements in motor function. We conclude that enhancing this endogenous response may have acute protective roles after TBI. PMID:25290253

  20. The impact of previous traumatic brain injury on health and functioning: a TRACK-TBI study.

    PubMed

    Dams-O'Connor, Kristen; Spielman, Lisa; Singh, Ayushi; Gordon, Wayne A; Lingsma, Hester F; Maas, Andrew I R; Manley, Geoffrey T; Mukherjee, Pratik; Okonkwo, David O; Puccio, Ava M; Schnyer, David M; Valadka, Alex B; Yue, John K; Yuh, Esther L

    2013-12-15

    The idea that multiple traumatic brain injury (TBI) can have a cumulative detrimental effect on functioning is widely accepted. Most research supporting this idea comes from athlete samples, and it is not known whether remote history of previous TBI affects functioning after subsequent TBI in community-based samples. This study investigates whether a previous history of TBI with loss of consciousness (LOC) is associated with worse health and functioning in a sample of individuals who require emergency department care for current TBI. Twenty-three percent of the 586 individuals with current TBI in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury study reported having sustained a previous TBI with LOC. Individuals with previous TBI were more likely to be unemployed (χ(2)=17.86; p=0.000), report a variety of chronic medical and psychiatric conditions (4.75≤χ(2)≥24.16; p<0.05), and report substance use (16.35≤χ(2)≥27.57; p<0.01) before the acute injury, compared to those with no previous TBI history. Those with a previous TBI had less-severe acute injuries, but experienced worse outcomes at 6-month follow-up. Results of a series of regression analyses controlling for demographics and acute injury severity indicated that individuals with previous TBI reported more mood symptoms, more postconcussive symptoms, lower life satisfaction, and had slower processing speed and poorer verbal learning, compared to those with no previous TBI history. These findings suggest that history of TBI with LOC may have important implications for health and psychological functioning after TBI in community-based samples.

  1. The Cost of Treating Post Traumatic Stress Disorder and Mild Traumatic Brain Injuries

    DTIC Science & Technology

    2010-03-01

    and may increase the risk for Alzheimer‟ s disease and Parkinson ‟ s disease as the person ages (Traumatic Brain Injury: Hope Through Research, 2002...severity of the TBI, which assesses a patient‟ s eye opening, motor , and verbal response. Two other measures for TBI severity are the length of loss of...the constant support and advice from Major Shay Capehart was fundamental in moving this research along. Lt Col Eric Unger‟ s guidance and wisdom was

  2. Magnetic Resonance Imaging in Experimental Traumatic Brain Injury.

    PubMed

    Shen, Qiang; Watts, Lora Tally; Li, Wei; Duong, Timothy Q

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. Common causes of TBI include falls, violence, injuries from wars, and vehicular and sporting accidents. The initial direct mechanical damage in TBI is followed by progressive secondary injuries such as brain swelling, perturbed cerebral blood flow (CBF), abnormal cerebrovascular reactivity (CR), metabolic dysfunction, blood-brain-barrier disruption, inflammation, oxidative stress, and excitotoxicity, among others. Magnetic resonance imaging (MRI) offers the means to noninvasively probe many of these secondary injuries. MRI has been used to image anatomical, physiological, and functional changes associated with TBI in a longitudinal manner. This chapter describes controlled cortical impact (CCI) TBI surgical procedures, a few common MRI protocols used in TBI imaging, and, finally, image analysis pertaining to experimental TBI imaging in rats.

  3. Endovascular repair of traumatic thoracic aortic injuries: a critical appraisal.

    PubMed

    Lin, Peter H; Huynh, Tam T; Kougias, Panagiotis; Wall, Mathew J; Coselli, Joseph S; Mattox, Kenneth L

    2008-08-01

    Blunt trauma to the thoracic aorta is life-threatening, with instant fatality in at least 75% of victims. If left untreated, nearly half of those who survive the initial injury will die within the first 24 hours. Surgical repair has been the standard treatment of blunt aortic injury, but immediate operative intervention is frequently difficult due to concomitant injuries. Although endovascular treatment of traumatic aortic disruption is less invasive than conventional repair via thoracotomy, this strategy remains controversial in young patients due to anatomical considerations and device limitations. This article reviews the likely advantages of endovascular interventions for blunt thoracic aortic injuries. Potential limitations and clinical outcomes of this minimally invasive technique are also discussed.

  4. Epilepsia partialis continua triggered by traumatic hand injury: a peripheral tuning of brain excitability?

    PubMed

    Paglioli, Eliseu; Martins, William Alves; Cruz, Walter De la; Andrade, Victor; Silva, Vinicius Duval da; Nunes, Rafael Menezes; Palmini, André

    2016-03-01

    Epilepsia partialis continua is often refractory to antiepileptic medication and its causal relation to peripheral sensory stimuli has only rarely been suggested. We report a man who received surgery for temporal lobe epilepsy 10 years ago, who presented "de novo" epilepsia partialis continua following mild traumatic injury of the left hand. Continuous myoclonus of the left upper limb started the day after injury and persisted unabated for several weeks. Non-invasive evaluation was inconclusive. Acute electrocorticography during surgery under local anaesthesia revealed continuous, rhythmic spiking over the right sensorimotor cortex. Tailored excision of the posterior bank of the motor and adjacent sensory cortex immediately stopped the continuous myoclonus. Histopathology showed abnormal radial lamination and was compatible with focal cortical dysplasia type IA. Epilepsia partialis continua did not recur for seven years. Afferent stimuli from peripheral injury can disinhibit hyperexcitable sensorimotor cortex leading to epilepsia partialis continua. [Published with video sequences online].

  5. Recovery of Visual Search following Moderate to Severe Traumatic Brain Injury

    PubMed Central

    Schmitter-Edgecombe, Maureen; Robertson, Kayela

    2015-01-01

    Introduction Deficits in attentional abilities can significantly impact rehabilitation and recovery from traumatic brain injury (TBI). This study investigated the nature and recovery of pre-attentive (parallel) and attentive (serial) visual search abilities after TBI. Methods Participants were 40 individuals with moderate to severe TBI who were tested following emergence from post-traumatic amnesia and approximately 8-months post-injury, as well as 40 age and education matched controls. Pre-attentive (automatic) and attentive (controlled) visual search situations were created by manipulating the saliency of the target item amongst distractor items in visual displays. The relationship between pre-attentive and attentive visual search rates and follow-up community integration were also explored. Results The results revealed intact parallel (automatic) processing skills in the TBI group both post-acutely and at follow-up. In contrast, when attentional demands on visual search were increased by reducing the saliency of the target, the TBI group demonstrated poorer performances compared to the control group both post-acutely and 8-months post-injury. Neither pre-attentive nor attentive visual search slope values correlated with follow-up community integration. Conclusions These results suggest that utilizing intact pre-attentive visual search skills during rehabilitation may help to reduce high mental workload situations, thereby improving the rehabilitation process. For example, making commonly used objects more salient in the environment should increase reliance or more automatic visual search processes and reduce visual search time for individuals with TBI. PMID:25671675

  6. [Therapeutic algorithm for traumatic cartilage injuries].

    PubMed

    Miltner, Oliver; Hagemann, Lars; Ristan, Steven; Siebert, Christian H

    2009-02-01

    Reports regarding sport injuries frequently pertain to the knee. Although ligament and meniscus damage are the most common, cartilage injuries are of great interest. Even with the great variety of treatment modalities available, the healing of these cartilage injuries remains problematic. Due to the complex structure of hyaline cartilage joint surface, repair has proven to be very difficult. The conservative treatment options range from orthotic devices and physical therapy to systemic and intraarticular medication. In case of failure, a wide variety of surgical interventions exist. Among these surgical treatment forms, one must differentiate between the repair and the reconstruction of hyaline joint surfaces. In the latter group only the osteochondral autologous transplantation procedures allow for the reconstruction of a cartilaginous lesion with hyaline cartilage as part of a single procedure. This paper will provide an overview of most common therapeutic approaches to cartilage injuries available today. Even with the ongoing discussions with regard to cartilage healing, the basics such as the ligamentous stability of the affected joint, the mechanical axis of the extremity and good neuromuscular control must always be part of the algorithm.

  7. Academic Placement after Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Donders, Jacques

    The acadmic placement of 87 children (ages 6 to 16 years) who had sustained brain injuries was determined within 1 year after initial psychological assessment. Forty-five children had returned full time to regular academic programs, 21 children received special education support for less than half of their classes, and 21 children were enrolled in…

  8. Acromegaly resolution after traumatic brain injury: a case report

    PubMed Central

    2014-01-01

    Introduction Anterior hypopituitarism is a common complication of head trauma, with a prevalence of 30% to 70% among long-term survivors. This is a much higher frequency than previously thought and suggests that most cases of post-traumatic hypopituitarism remain undiagnosed and untreated. Symptoms of hypopituitarism are very unspecific and very similar to those in traumatic brain injury patients in general, which makes hypopituitarism difficult to diagnose. The factors that predict the likelihood of developing hypopituitarism following traumatic brain injury remain poorly understood. The incidence of a specific hormone deficiency is variable, with growth hormone deficiency reported in 18% to 23% of cases. Case presentation A 23-year-old Hispanic man with a 2-year history of hypertension and diabetes presented with severe closed-head trauma producing diffuse axonal injury, subarachnoid hemorrhage and a brain concussion. A computed tomography scan showed a pituitary macroadenoma. The patient has clinical features of acromegaly and gigantism without other pituitary hyperfunctional manifestations or mass effect syndrome. A short-term post-traumatic laboratory test showed high levels of insulin like growth factor 1 and growth hormone, which are compatible with a growth hormone–producing pituitary tumor. At the third month post-trauma, the patient’s levels of insulin like growth factor 1 had decreased to low normal levels, with basal low levels of growth hormone. A glucose tolerance test completely suppressed the growth hormone, which confirmed resolution of acromegaly. An insulin tolerance test showed lack of stimulation of growth hormone and cortisol, demonstrating hypopituitarism of both axes. Conclusion Even though hypopituitarism is a frequent complication of traumatic brain injury, there are no reports in the literature, to the best of my knowledge, of patients with hyperfunctional pituitary adenomas, such as growth hormone–producing adenoma, that resolved

  9. Pathogenesis and outcomes of traumatic injuries of the esophagus.

    PubMed

    Makhani, M; Midani, D; Goldberg, A; Friedenberg, F K

    2014-01-01

    Traumatic injury of the esophagus is extremely uncommon. The aims of this study were to use the Pennsylvania Trauma Outcome Study (PTOS) database to identify clinical factors predictive of esophageal trauma, and to report the morbidity and mortality of this injury. A cross-sectional review of patients presenting to 20 Level I trauma centers in Pennsylvania from 2004 to 2010 was performed. We compared clinical and demographic variables between patients with and without esophageal trauma both prior to and after arrival in the emergency room (ER). Primary mechanism of injury and clinical outcomes were analyzed. There were 231 694 patients and 327 (0.14%) had esophageal trauma. Patients with esophageal trauma were considerably younger than those without this injury. The risk of esophageal trauma was markedly increased in males (odds ratio [OR] = 2.62 [CI 1.98-3.47]). The risk was also increased in African Americans (OR = 4.61 [CI 3.65-5.82]). Most cases were from penetrating gunshot and stab wounds. Only 34 (10.4%) of esophageal trauma patients underwent an upper endoscopy; diagnosis was usually made by CT, surgery, or autopsy. Esophageal trauma patients were more likely to require surgery (35.8% vs. 12.5%; P < 0.001). Patients with esophageal trauma had a substantially higher mortality than those without the injury (20.5% vs. 1.4%; P < 0.005). In logistic regression modeling, traumatic injury of the esophagus (OR = 3.43 [2.50-4.71]) and male gender (OR = 1.52 [1.46-1.59]) were independently associated with mortality. For those patients with esophageal trauma, there was an association between trauma severity and mortality (OR = 1.10 [1.07-1.12]) but not for undergoing surgery within the first 24 hours of hospitalization (OR = 0.84; 0.39-1.83). Our study on traumatic injury of the esophagus is in concordance with previous studies demonstrating that this injury is rare but carries considerable morbidity (∼46%) and mortality (∼20%). The injury has a higher morbidity

  10. Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury

    DTIC Science & Technology

    2009-09-30

    ABSTRACT Traumatic brain injuries ( TBI ) are a common occurrence from roadside blasts of improvised explosive devices (IEDs). In the proposed cross...years, we will enroll the planned 120 subjects across the two study sites. 15. SUBJECT TERMS Blast-related traumatic brain injury ( TBI ), fMRI, DTI...TITLE: Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury PRINCIPAL INVESTIGATOR: Stephen M. Rao, Ph.D

  11. Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances

    DTIC Science & Technology

    2012-12-01

    Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances Ping-Hong Yeh1*, Terrence R. Oakes2,3...00-2012 4. TITLE AND SUBTITLE Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances 5a...Gerard Riedy1,2,3,4 1Traumatic Brain Injury Image Analysis Lab, Henry Jackson Foundation for the Advancement of Military Medicine, Rockville, USA

  12. Robust whole-brain segmentation: application to traumatic brain injury.

    PubMed

    Ledig, Christian; Heckemann, Rolf A; Hammers, Alexander; Lopez, Juan Carlos; Newcombe, Virginia F J; Makropoulos, Antonios; Lötjönen, Jyrki; Menon, David K; Rueckert, Daniel

    2015-04-01

    We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to

  13. Rock Climbing Injuries: Acute and Chronic Repetitive Trauma.

    PubMed

    Chang, Connie Y; Torriani, Martin; Huang, Ambrose J

    2016-01-01

    Rock climbing has increased in popularity as a sport, and specific injuries related to its practice are becoming more common. Chronic repetitive injuries are more common than acute injuries, although acute injuries tend to be more severe. We review both acute and chronic upper and lower extremity injuries. Understanding the injury pattern in rock climbers is important for accurate diagnosis.

  14. The role of free radicals in traumatic brain injury.

    PubMed

    O'Connell, Karen M; Littleton-Kearney, Marguerite T

    2013-07-01

    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  15. Identity, grief and self-awareness after traumatic brain injury.

    PubMed

    Carroll, Emma; Coetzer, Rudi

    2011-06-01

    The objective of this study was to investigate perceived identity change in adults with traumatic brain injury (TBI) and explore associations between identity change, grief, depression, self-esteem and self-awareness. The participants were 29 adults with TBI who were being followed up by a community brain injury rehabilitation service. Participants were longer post-injury than those more commonly studied. Time since injury ranged from 2.25 to 40 years (mean = 11.17 years, SD = 11.4 years). Participants completed a battery of questionnaires. Significant others and clinicians completed a parallel version of one of these measures. Questionnaires included the Head Injury Semantic Differential Scale (HISDS-III), Brain Injury Grief Inventory (BIGI), Hospital Anxiety and Depression Scale - Depression, Rosenberg Self-Esteem Scale (RSES) and the Awareness Questionnaire (Self/Significant other/Clinician versions). The main findings were that participants reported significant changes in self-concept with current self being viewed negatively in comparison to pre-injury self. Perceived identity change was positively associated with depression and grief and negatively associated with self-esteem and awareness. Awareness was negatively associated with self-esteem and positively associated with depression. These findings were consistent with previous research, revealing changes in identity following TBI. Further research is needed to increase our understanding of the psychological factors involved in emotional adjustment after TBI and to inform brain injury rehabilitation interventions, including psychotherapy approaches.

  16. The effects of nicotinamide on apoptosis and blood-brain barrier breakdown following traumatic brain injury.

    PubMed

    Hoane, Michael R; Kaplan, Shelby A; Ellis, Amy L

    2006-12-13

    Nicotinamide has been shown to protect against many of the pathophysiological factors associated with both ischemic and traumatic brain injuries. The present study evaluated the neuroprotective effect of nicotinamide on the breakdown of the blood-brain barrier (BBB) and apoptosis expression following traumatic brain injury (TBI). Animals were prepared with a unilateral cortical contusion injury (CCI). Fifteen minutes following injury the animals received either nicotinamide (500 mg/kg, ip) or 0.9% saline. The animals were perfused at 5, 24, and 72 h post-injury. BBB integrity was assessed by endogenous rat IgG immunoreactivity. Recent studies have shown that IgG immunoreactivity is a reliable measure of BBB integrity. The results indicated that IgG immunoreactivity was greatest at 5 h and declined at 24 h after injury. Nicotinamide significantly reduced IgG expression at every time point following injury. Apoptosis was examined using the TUNEL method. The results indicated that TUNEL immunoreactivity peaked at 24 h. TUNEL(+) cells were classified morphologically as nonapoptotic (Type I) or apoptotic (Type II) to verify that the neuroprotective effects of nicotinamide occur by inhibiting apoptosis or necrosis. Administration of nicotinamide significantly reduced the expression of all TUNEL(+) cells in the tissue surrounding the lesion cavity. Specifically there was a significant reduction in the number of Type I, Type II, and Total TUNEL(+) cells in the nicotinamide-treated animals. In addition, nicotinamide reduced lesion cavity expansion 72 h following CCI. These findings suggest that nicotinamide reduces BBB breach and neuronal cell loss acutely following injury and that these reductions may account for the beneficial behavioral effects seen in previous studies.

  17. Modeling of Community Integration Trajectories in the First Five Years after Traumatic Brain Injury.

    PubMed

    Andelic, Nada; Arango-Lasprilla, Juan Carlos; Perrin, Paul B; Sigurdardottir, Solrun; Lu, Juan; Landa, Laiene Olabarrieta; Forslund, Marit V; Roe, Cecilie

    2016-01-01

    The aims of this study were to assess the trajectories of community integration in individuals with traumatic brain injury (TBI) through one, two, and five years post-injury and to examine whether those trajectories could be predicted by demographic and injury characteristics. A longitudinal cohort study was conducted with 105 individuals with moderate-to-severe TBI admitted to a trauma referral center in 2005-2007. Demographics and injury-related factors were extracted from medical records. At the one-, two- and five-year follow-ups, community integration was measured by the Community Integration Questionnaire (CIQ). A hierarchical linear model (HLM) examined whether longitudinal trajectories of community integration could be predicted by: time, sex, age, relationship status, education, employment status, occupation, acute Glasgow Coma Scale score, cause of injury, days in post-traumatic amnesia (PTA), computed tomography Marshall Score, and Injury Severity Score. CIQ scores improved across the three time-points (p<0.001). Additionally, higher trajectories of community integration were predicted by being single at the time of injury (p<.001), higher level of education (p=0.006), employment (p<0.001), and a shorter length of PTA (p<0.001). In a follow-up HLM with interaction terms, time*PTA was statistically significant (p<0.001), suggesting that participants with longer PTA increased in community integration more rapidly than those with shorter PTA. The longitudinal course of community integration described in this study may help rehabilitation professionals to plan more extensive follow-ups and targeted rehabilitation programs in the early stage of recovery for patients with specific demographic and injury characteristics.

  18. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI

    PubMed Central

    Magnoni, Sandra; Mac Donald, Christine L.; Esparza, Thomas J.; Conte, Valeria; Sorrell, James; Macrì, Mario; Bertani, Giulio; Biffi, Riccardo; Costa, Antonella; Sammons, Brian; Snyder, Abraham Z.; Shimony, Joshua S.; Triulzi, Fabio; Stocchetti, Nino

    2015-01-01

    Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13–29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-β proteins, were measured every 1–2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2–9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1–3 years later in seven patients. An additional four patients were scanned only at 1–3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13–36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman’s r = −0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional

  19. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI.

    PubMed

    Magnoni, Sandra; Mac Donald, Christine L; Esparza, Thomas J; Conte, Valeria; Sorrell, James; Macrì, Mario; Bertani, Giulio; Biffi, Riccardo; Costa, Antonella; Sammons, Brian; Snyder, Abraham Z; Shimony, Joshua S; Triulzi, Fabio; Stocchetti, Nino; Brody, David L

    2015-08-01

    Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-β proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman's r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter

  20. Forebrain neurogenesis after focal Ischemic and traumatic brain injury.

    PubMed

    Kernie, Steven G; Parent, Jack M

    2010-02-01

    Neural stem cells persist in the adult mammalian forebrain and are a potential source of neurons for repair after brain injury. The two main areas of persistent neurogenesis, the subventricular zone (SVZ)-olfactory bulb pathway and hippocampal dentate gyrus, are stimulated by brain insults such as stroke or trauma. Here we focus on the effects of focal cerebral ischemia on SVZ neural progenitor cells in experimental stroke, and the influence of mechanical injury on adult hippocampal neurogenesis in models of traumatic brain injury (TBI). Stroke potently stimulates forebrain SVZ cell proliferation and neurogenesis. SVZ neuroblasts are induced to migrate to the injured striatum, and to a lesser extent to the peri-infarct cortex. Controversy exists as to the types of neurons that are generated in the injured striatum, and whether adult-born neurons contribute to functional restoration remains uncertain. Advances in understanding the regulation of SVZ neurogenesis in general, and stroke-induced neurogenesis in particular, may lead to improved integration and survival of adult-born neurons at sites of injury. Dentate gyrus cell proliferation and neurogenesis similarly increase after experimental TBI. However, pre-existing neuroblasts in the dentate gyrus are vulnerable to traumatic insults, which appear to stimulate neural stem cells in the SGZ to proliferate and replace them, leading to increased numbers of new granule cells. Interventions that stimulate hippocampal neurogenesis appear to improve cognitive recovery after experimental TBI. Transgenic methods to conditionally label or ablate neural stem cells are beginning to further address critical questions regarding underlying mechanisms and functional significance of neurogenesis after stroke or TBI. Future therapies should be aimed at directing appropriate neuronal replacement after ischemic or traumatic injury while suppressing aberrant integration that may contribute to co-morbidities such as epilepsy or

  1. Autophagy in Acute Brain Injury: Feast, Famine, or Folly?

    PubMed Central

    Smith, Craig M.; Chen, Yaming; Sullivan, Mara L.; Kochanek, Patrick M.; Clark, Robert S. B.

    2010-01-01

    In the central nervous system, increased autophagy has now been reported after traumatic brain and spinal cord injury, cerebral ischemia, intracerebral hemorrhage, and seizures. This increase in autophagy could be physiologic, converting damaged or dysfunctional proteins, lipids and/or organelles to their amino acid and fatty acid components for recycling. On the other hand, this increase in autophagy could be supraphysiologic, perhaps consuming and eliminating functional proteins, lipids and/or organelles as well. Whether an increase in autophagy is beneficial (feast) or detrimental (famine) in brain likely depends on both the burden of intracellular substrate targeted for autophagy and the capacity of the cell’s autophagic machinery. Of course, increased autophagy observed after brain injury could also simply be an epiphenomenon (folly). These divergent possibilities have clear ramifications for designing therapeutic strategies targeting autophagy after acute brain injury, and are the subject of this review. PMID:20883784

  2. The neuroprotective effects of progesterone on traumatic brain injury: current status and future prospects

    PubMed Central

    Wei, Jing; Xiao, Guo-min

    2013-01-01

    Traumatic brain injury is the leading cause of morbidity and mortality in young adults. The secondary injury in traumatic brain injury consists of a complex cascade of processes that simultaneously react to the primary injury to the brain. This cascade has been the target of numerous therapeutic agents investigated over the last 30 years, but no neuroprotective treatment option is currently available that improve neurological outcome after traumatic brain injury. Progesterone has long been considered merely a female reproductive hormone. Numerous studies, however, show that progesterone has substantial pleiotropic properties as a neuroprotective agent in both animal models and humans. Here, we review the increasing evidence that progesterone can act as a neuroprotective agent to treat traumatic brain injury and the mechanisms underlying these effects. Additionally, we discuss the current progress of clinical studies on the application of progesterone in the treatment of traumatic brain injuries. PMID:24241345

  3. Severe Traumatic Brain Injury In Children: An Evidence-Based Review Of Emergency Department Management.

    PubMed

    Morrissey, Kirsten; Fairbrother, Hilary

    2016-10-01

    More than 1.7 million traumatic brain injuries occur in adults and children each year in the United States, with approximately 30% occurring in children aged < 14 years. Traumatic brain injury is a significant cause of morbidity and mortality in pediatric trauma patients. Early identification and management of severe traumatic brain injury is crucial in decreasing the risk of secondary brain injury and optimizing outcome. The main focus for early management of severe traumatic brain injury is to mitigate and prevent secondary injury, specifically by avoiding hypotension and hypoxia, which have been associated with poorer outcomes. This issue discusses methods to maintain adequate oxygenation, maximize management of intracranial hypertension, and optimize blood pressure in the emergency department to improve neurologic outcomes following pediatric severe traumatic brain injury.

  4. Blunt traumatic injury in the Arab Middle Eastern populations

    PubMed Central

    Asim, Mohammad; El-Menyar, Ayman; Al-Thani, Hassan; Abdelrahman, Husham; Zarour, Ahmad; Latifi, Rifat

    2014-01-01

    Background: Trauma represents a global public health concern with an estimated 5 million deaths annually. Moreover, the incidence of blunt traumatic injuries (BTI) particularly road traffic accidents (RTAs) and workplace-related injuries are rising throughout the world-wide. Objectives: We aimed to review the epidemiology and prevention of BTI, in the Arab Middle East. Materials and Methods: A traditional narrative literature review was carried out using PubMed, MEDLINE and EMBASE search engines. We used the keywords “traumatic injuries”, “blunt” “epidemiology”, “Arab Middle East” between December 1972 and March 2013. Results: The most common mechanisms of BTI in our region are RTAs, falls from height, struck by heavy objects and pedestrian motor vehicle trauma crashes. The rate of RTA and occupational injuries are markedly increased in the region due to rapid industrial development, extreme climatic conditions and unfamiliar working environment. However, lack of reliable information on these unintentional injuries is mainly responsible for the underestimation of this trauma burden. This knowledge deficit shields the extent of the problem from policy makers, leading to continued fatalities. These preventable injuries in turn add to the overall financial burden on the society through loss of productivity and greater need of medical and welfare services. Conclusion: In the Arab Middle East, population-based studies on the incidence, mechanism of injury, prevention and outcome of BTI are not well-documented. Therefore, region-specific BTI studies would strengthen surveillance to better understand the burden of these injuries in the region. PMID:24812453

  5. Functional Definition and Characterisation of Acute Traumatic Coagulopathy

    PubMed Central

    Davenport, Ross; Manson, Joanna; De’Ath, Henry; Platton, Sean; Coates, Amy; Allard, Shubha; Hart, Daniel; Pearse, Rupert; Pasi, K. John; MacCallum, Peter; Stanworth, Simon; Brohi, Karim

    2011-01-01

    Objective To identify an appropriate diagnostic tool for the early diagnosis of Acute Traumatic Coagulopathy (ATC) and validate this modality through prediction of transfusion requirements in trauma hemorrhage. Design Prospective observational cohort study Setting Level 1 trauma centre Patients Adult trauma patients who met the local criteria for full trauma team activation. Exclusion criteria included emergency department (ED) arrival >2 hours after injury, >2000ml of intravenous fluid before ED arrival or transfer from another hospital. Interventions None Measurements Blood was collected on arrival in ED and analysed with laboratory prothrombin time (PT), point of care (PoC) PT and rotational thromboelastometry (ROTEM). Prothrombin ratio (PTr) was calculated and ATC defined as laboratory PTr>1.2. Transfusion requirements were recorded for the first 12 hours following admission. Main Results 300 patients were included in the study. Laboratory PT results were available at median 78 (62-103) minutes. PoC PTr had reduced agreement with laboratory PTr in patients with ATC, with 29% false negative results. In ATC the ROTEM Clot Amplitude at 5 minutes (CA5) was diminished by 42% and this persisted throughout clot maturation. ROTEM clotting time was not significantly prolonged. A CA5 threshold ≤35mm had a detection rate of 77% for ATC with a false positive rate of 13%. Patients with CA5 ≤35mm were more likely to receive red cell (46% vs 17%, p<0.001) and plasma (37% vs 11%, p<0.001) transfusions. The CA5 could identify patients who would require massive transfusion (detection rate of 71%, vs 43% for PTr >1.2, p<0.001). Conclusions In trauma hemorrhage PTr is not rapidly available from the laboratory and PoC devices can be inaccurate. ATC is functionally characterised by a reduction in clot strength. With a threshold of CA5 ≤35mm ROTEM can identify ATC at 5 minutes and predict the need for massive transfusion. PMID:21765358

  6. Social competence at 2 years following child traumatic brain injury.

    PubMed

    Anderson, Vicki; Beauchamp, Miriam Helen; Yeates, Keith Owen; Crossley, Louise; Ryan, Nicholas Peter; Hearps, Stephen J C; Catroppa, Cathy

    2017-02-08

    Children with traumatic brain injury (TBI) are at risk of social impairment, but research is yet to document the trajectory of these skills post-injury and factors that may predict social problems. The study addressed these gaps in knowledge, reporting on findings from a prospective, longitudinal follow-up study which investigated social outcomes post injury and explored factors contributing to these outcomes at 2 years post-injury. The sample included 113 children, 74 with TBI and 39 typically developing (TD) controls. TBI participants were recruited on presentation to hospital. Parents rated pre-injury function at that time and all children underwent magnetic resonance imaging (MRI) scan. Participants were followed up at 2 years post-injury. Outcomes were social adjustment, social participation, social relationships, and social cognition. Predictors of social outcomes examined included brain lesion characteristics, child cognition (6 months post-TBI) and behavior and environmental factors (pre-injury and 2 years). Reduced social adjustment (p=.011) and social participation (p<.001) were evident in children with TBI compared to TD controls. Poor social adjustment was predicted by externalizing behaviour problems and younger age at injury. Reduced social participation was linked to internalizing behavior problems. Greater lesion volume, lower socioeconomic status and family burden contributed to poorer social relationships, while age at injury predicted social cognition. Within the TBI group, 23% of children exhibited social impairment: younger age at injury, greater pre-injury and current behavior problems and family dysfunction, poorer IQ, processing speed, and empathy were linked to impairment. Further follow-up is required to track social recovery and the influences of cognition, brain, and environment over time.

  7. A review of glutamate's role in traumatic brain injury mechanisms

    NASA Astrophysics Data System (ADS)

    Good, Cameron H.

    2013-05-01

    Glutamate is the primary excitatory neurotransmitter used by the central nervous system (CNS) for synaptic communication, and its extracellular concentration is tightly regulated by glutamate transporters located on nearby astrocytes. Both animal models and human clinical studies have demonstrated elevated glutamate levels immediately following a traumatic brain event, with the duration and severity of the rise corresponding to prognosis. This rise in extracellular glutamate likely results from a combination of excessive neurotransmitter release from damaged neurons and down regulation of uptake mechanisms in local astrocytes. The immediate results of a traumatic event can lead to necrotic tissue in severely injured regions, while prolonged increases in excitatory transmission can cause secondary excitotoxic injury through activation of delayed apoptotic pathways. Initial TBI animal studies utilized a variety of broad glutamate receptor antagonists to successfully combat secondary injury mechanisms, but unfortunately this same strategy has proven inconclusive in subsequent human trials due to deleterious side effects and heterogeneity of injuries. More recent treatment strategies have utilized specific glutamate receptor subunit antagonists in an effort to minimize side effects and have shown promising results. Future challenges will be detecting the concentration and kinetics of the glutamate rise following injury, determining which patient populations could benefit from antagonist treatment based on their extracellular glutamate concentrations and when drugs should be administered to maximize efficacy.

  8. Current status of fluid biomarkers in mild traumatic brain injury

    PubMed Central

    Kulbe, Jacqueline R.; Geddes, James W.

    2015-01-01

    Mild traumatic brain injury (mTBI) affects millions of people annually and is difficult to diagnose. Mild injury is insensitive to conventional imaging techniques and diagnoses are often made using subjective criteria such as self-reported symptoms. Many people who sustain a mTBI develop persistent post-concussive symptoms. Athletes and military personnel are at great risk for repeat injury which can result in second impact syndrome or chronic traumatic encephalopathy. An objective and quantifiable measure, such as a serum biomarker, is needed to aid in mTBI diagnosis, prognosis, return to play/duty assessments, and would further elucidate mTBI pathophysiology. The majority of TBI biomarker research focuses on severe TBI with few studies specific to mild injury. Most studies use a hypothesis-driven approach, screening biofluids for markers known to be associated with TBI pathophysiology. This approach has yielded limited success in identifying markers that can be used clinically, additional candidate biomarkers are needed. Innovative and unbiased methods such as proteomics, microRNA arrays, urinary screens, autoantibody identification and phage display would complement more traditional approaches to aid in the discovery of novel mTBI biomarkers. PMID:25981889

  9. Sleep deprivation does not affect neuronal susceptibility to mild traumatic brain injury in the rat

    PubMed Central

    Caron, Aimee M; Stephenson, Richard

    2015-01-01

    Mild and moderate traumatic brain injuries (TBIs) (and concussion) occur frequently as a result of falls, automobile accidents, and sporting activities, and are a major cause of acute and chronic disability. Fatigue and excessive sleepiness are associated with increased risk of accidents, but it is unknown whether prior sleep debt also affects the pathophysiological outcome of concussive injury. Using the “dark neuron” (DN) as a marker of reversible neuronal damage, we tested the hypothesis that acute (48 hours) total sleep deprivation (TSD) and chronic sleep restriction (CSR; 10 days, 6-hour sleep/day) affect DN formation following mild TBI in the rat. TSD and CSR were administered using a walking wheel apparatus. Mild TBI was administered under anesthesia using a weight-drop impact model, and the acute neuronal response was observed without recovery. DNs were detected using standard bright-field microscopy with toluidine blue stain following appropriate tissue fixation. DN density was low under home cage and sleep deprivation control conditions (respective median DN densities, 0.14% and 0.22% of neurons), and this was unaffected by TSD alone (0.1%). Mild TBI caused significantly higher DN densities (0.76%), and this was unchanged by preexisting acute or chronic sleep debt (TSD, 0.23%; CSR, 0.7%). Thus, although sleep debt may be predicted to increase the incidence of concussive injury, the present data suggest that sleep debt does not exacerbate the resulting neuronal damage. PMID:26124685

  10. Gastric blunt traumatic injuries: A computed tomography grading classification

    PubMed Central

    Solazzo, Antonio; Lassandro, Giulia; Lassandro, Francesco

    2017-01-01

    AIM To produce a radiological grading of gastric traumatic injuries. METHODS In our study, we retrospectively analyzed 32 cases of blunt gastric traumatic injuries and compared computed tomography (CT) data with patients’ surgical or medical development. In all cases, a basal phase was acquired, and an intravenous contrast material was administered via an antecubital venous catheter with acquisition in the venous phase (70-90 s). In addition, a further set of delayed scans was performed 4-5 min after the first scanning session, without supplementary intravenous contrast material, to identify or better define areas of active bleeding. All CT examinations were retrospectively reviewed by two radiologists, with more than 5 years of experience in emergency radiology, to detect signs of gastric injuries and/or associated abdominal lesions according to literature data. Specific CT findings for gastric rupture include luminal content extravasation and discontinuity of the gastric wall, while CT findings suggestive of injury consisted of free peritoneal fluid, extraluminal air, pneumatosis, and thickening and hematoma of gastric wall. RESULTS We found 32 gastric traumatic injuries. In 22 patients (68.8%), the diagnosis was based on the surgical findings; in the other 10 patients (31.2%), the diagnosis was based on the clinical and CT radiological data. We observed discontinuity of the gastric wall and luminal content extravasation in 1 patient (3.1%); in 10 patients (31.2%), there was extra-luminal air in the peritoneum. In 28 patients (87.5%), there was peritoneal fluid, which was blood in 14 patients (hematoma in 11 patients and contrast material extravasation from active bleeding in 3 patients). In 15 patients (46.9%), there was gastric wall thickening. In 3 patients, it was possible to identify a prevalent involvement of the external layer of the gastric wall, whereas, in 2 patients, the inner side of the gastric wall presented with major involvement. In 3 patients

  11. Effects of hyperbaric oxygen on the Nrf2 signaling pathway in secondary injury following traumatic brain injury.

    PubMed

    Meng, X E; Zhang, Y; Li, N; Fan, D F; Yang, C; Li, H; Guo, D Z; Pan, S Y

    2016-01-29

    We investigated the effects of hyperbaric oxygen treatment on the Nrf2 signaling pathway in secondary injury following traumatic brain injury, using a rat model. An improved Feeney freefall method was used to establish the rat traumatic brain injury model. Sixty rats were randomly divided into three groups: a sham surgery group, a traumatic brain injury group, and a group receiving hyperbaric oxygen treatment after traumatic brain injury. Neurological function scores were assessed at 12 and 24 h after injury. The expression levels of Nrf2, heme oxygenase 1 (HO-1), and quinine oxidoreductase 1 (NQO-1) in the cortex surrounding the brain lesion were detected by western blotting 24 h after the injury. Additionally, the TUNEL method was used to detect apoptosis of nerve cells 24 h after traumatic injury and Nissl staining was used to detect the number of whole neurons. Hyperbaric oxygen treatment significantly increased the expression of nuclear Nrf2 protein (P < 0.05), HO-1, and NQO-1 in the brain tissues surrounding the lesion after a traumatic brain injury (P < 0.05) and also significantly reduced the number of apoptotic and injured nerve cells. The neurological function scores also improved with hyperbaric oxygen treatment (P < 0.05). Therefore, hyperbaric oxygen has a neuroprotective role in traumatic brain injury, which is mediated by up-regulation of the Nrf2 signaling pathway.

  12. Emotion labeling and socio-emotional outcomes 18 months after early childhood traumatic brain injury.

    PubMed

    Tlustos, Sarah J; Chiu, C-Y Peter; Walz, Nicolay Chertkoff; Taylor, H Gerry; Yeates, Keith Owen; Wade, Shari L

    2011-11-01

    A growing body of literature has documented evidence for emotion labeling (EL) deficits after traumatic brain injury (TBI); however, long-term effects of TBI on EL abilities, particularly among young children, are unclear. We investigated EL abilities and socio-emotional outcomes in 32 children with moderate-severe TBI, 23 with complicated-mild TBI, and 82 children with orthopedic injuries (OI), shortly after injury and at 18 months post-injury. All children were between 3:0 and 6:11 years of age at the time of injury. Repeated measures analyses indicated that all groups showed improved EL performance between acute and 18-month assessments, but that the moderate-severe TBI group improved at a slower rate than the OI group, so that the two groups showed significantly different performance at 18 months. Emotion labeling ability did not significantly contribute to the prediction of socio-emotional outcomes after controlling for pre-injury functioning. These results provide preliminary evidence of emerging EL deficits after early childhood TBI that are related to injury severity but that do not predict social and behavioral outcomes.

  13. The far-reaching scope of neuroinflammation after traumatic brain injury.

    PubMed

    Simon, Dennis W; McGeachy, Mandy J; Bayır, Hülya; Clark, Robert S B; Loane, David J; Kochanek, Patrick M

    2017-03-01

    The 'silent epidemic' of traumatic brain injury (TBI) has been placed in the spotlight as a result of clinical investigations and popular press coverage of athletes and veterans with single or repetitive head injuries. Neuroinflammation can cause acute secondary injury after TBI, and has been linked to chronic neurodegenerative diseases; however, anti-inflammatory agents have failed to improve TBI outcomes in clinical trials. In this Review, we therefore propose a new framework of targeted immunomodulation after TBI for future exploration. Our framework incorporates factors such as the time from injury, mechanism of injury, and secondary insults in considering potential treatment options. Structuring our discussion around the dynamics of the immune response to TBI - from initial triggers to chronic neuroinflammation - we consider the ability of soluble and cellular inflammatory mediators to promote repair and regeneration versus secondary injury and neurodegeneration. We summarize both animal model and human studies, with clinical data explicitly defined throughout this Review. Recent advances in neuroimmunology and TBI-responsive neuroinflammation are incorporated, including concepts of inflammasomes, mechanisms of microglial polarization, and glymphatic clearance. Moreover, we highlight findings that could offer novel therapeutic targets for translational and clinical research, assimilate evidence from other brain injury models, and identify outstanding questions in the field.

  14. Inflammation in Joint Injury and Post-Traumatic Osteoarthritis

    PubMed Central

    Lieberthal, Jason; Sambamurthy, Nisha; Scanzello, Carla R.

    2015-01-01

    Inflammation is a variable feature of osteoarthritis (OA), associated with joint symptoms and progression of disease. Signs of inflammation can be observed in joint fluids and tissues from patients with joint injuries at risk for development of post-traumatic osteoarthritis (PTOA). Furthermore, inflammatory mechanisms are hypothesized to contribute to the risk of OA development and progression after injury. Animal models of PTOA have been instrumental in understanding factors and mechanisms involved in chronic progressive cartilage degradation observed after a predisposing injury. Specific aspects of inflammation observed in humans, including cytokine and chemokine production, synovial reaction, cellular infiltration and inflammatory pathway activation, are also observed in models of PTOA. Many of these models are now being utilized to understand the impact of post-injury inflammatory response on PTOA development and progression, including risk of progressive cartilage degeneration and development of chronic symptoms post-injury. As evidenced from these models, a vigorous inflammatory response occurs very early after joint injury but is then sustained at a lower level at the later phases. This early inflammatory response contributes to the development of PTOA features including cartilage erosion and is potentially modifiable, but specific mediators may also play a role in tissue repair. Although the optimal approach and timing of anti-inflammatory interventions after joint injury are yet to be determined, this body of work should provide hope for the future of disease modification tin PTOA. PMID:26521728

  15. Traumatic injuries: office treatment of strain.

    PubMed

    Ryan, A J

    1977-03-01

    Strain, defined as trauma to a musculotendinous unit, is characterized by pain, muscle spasm, swelling, and loss of range of motion. Conservative treatment consists of rest and elevation of the affected muscle, application of ice and compression, active and passive stretching, and resisted motion exercises. If rupture of muscle and fascia is extensive, surgery may be required. Chronic strain may result from repeated injuries. It is usually treated with rest and administration of an anti-inflammatory agent, such as oxyphenbutazone or a corticosteroid preparation. In the event that this regimen does not provide relief from pain and disability, surgery may be necessary.

  16. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes

    PubMed Central

    Dietrich, W. Dalton

    2015-01-01

    Abstract Traumatic brain injury (TBI) is a significant clinical problem with few therapeutic interventions successfully translated to the clinic. Increased importance on the progressive, long-term consequences of TBI have been emphasized, both in the experimental and clinical literature. Thus, there is a need for a better understanding of the chronic consequences of TBI, with the ultimate goal of developing novel therapeutic interventions to treat the devastating consequences of brain injury. In models of mild, moderate, and severe TBI, histopathological and behavioral studies have emphasized the progressive nature of the initial traumatic insult and the involvement of multiple pathophysiological mechanisms, including sustained injury cascades leading to prolonged motor and cognitive deficits. Recently, the increased incidence in age-dependent neurodegenerative diseases in this patient population has also been emphasized. Pathomechanisms felt to be active in the acute and long-term consequences of TBI include excitotoxicity, apoptosis, inflammatory events, seizures, demyelination, white matter pathology, as well as decreased neurogenesis. The current article will review many of these pathophysiological mechanisms that may be important targets for limiting the chronic consequences of TBI. PMID:25158206

  17. Predictors of Personality Change Due to Traumatic Brain Injury in Children and Adolescents in the First Six Months after Injury.

    ERIC Educational Resources Information Center

    Max, Jeffrey E.; Levin, Harvey S.; Landis, Julie; Schachar, Russell; Saunders, Ann; Ewing-Cobbs, Linda; Chapman, Sandra B.; Dennis, Maureen

    2005-01-01

    Objective: To assess the phenomenology and predictive factors of personality change due to traumatic brain injury. Method: Children (N = 177), aged 5 to 14 years with traumatic brain injury from consecutive admissions to five trauma centers, were followed prospectively at baseline and 6 months with semistructured psychiatric interviews. Injury…

  18. Moderate-to-Severe Traumatic Brain Injury in Children: Complications and Rehabilitation Strategies

    PubMed Central

    Popernack, Myra L.; Gray, Nicola; Reuter-Rice, Karin

    2015-01-01

    Traumatic brain injury (TBI) is the leading cause of death in children in the United States. Each year 37,200 children sustain a severe TBI, with up to 1.3 million life-years potentially adversely affected. Severe pediatric TBI is associated with significant mortality and morbidity. Of the children who survive their injury, more than 50% experience unfavorable outcomes 6 months after the injury. Although TBI-associated death rates decreased between 1997–2007, disabilities for TBI survivors continue to have both a direct and indirect impact on the economic and human integrity of our society. The degree of disability varies with the severity and mechanism of the injury, but a realm of physical and emotional deficits may be evident for years after the injury occurs. This article describes the pathophysiology of moderate to severe TBI, its associated complications, and opportunities to improve patient outcomes through use of acute management and rehabilitation strategies. To address the many challenges for TBI survivors and their families, including significant financial and emotional burdens, a collaborative effort is necessary to help affected children transition seamlessly from acute care through long-term rehabilitation. PMID:25449002

  19. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    PubMed Central

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-01-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries. PMID:27351915

  20. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    NASA Astrophysics Data System (ADS)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  1. Biomechanical Risk Estimates for Mild Traumatic Brain Injury

    PubMed Central

    Funk, J. R.; Duma, S. M.; Manoogian, S. J.; Rowson, S.

    2007-01-01

    The objective of this study was to characterize the risk of mild traumatic brain injury (MTBI) in living humans based on a large set of head impact data taken from American football players at the collegiate level. Real-time head accelerations were recorded from helmet-mounted accelerometers designed to stay in contact with the player’s head. Over 27,000 head impacts were recorded, including four impacts resulting in MTBI. Parametric risk curves were developed by normalizing MTBI incidence data by head impact exposure data. An important finding of this research is that living humans, at least in the setting of collegiate football, sustain much more significant head impacts without apparent injury than previously thought. The following preliminary nominal injury assessment reference values associated with a 10% risk of MTBI are proposed: a peak linear head acceleration of 165 g, a HIC of 400, and a peak angular head acceleration of 9000 rad/s2. PMID:18184501

  2. Chapter 2 traumatic brain injury research in military populations.

    PubMed

    Kasper, Christine E

    2015-01-01

    Traumatic brain injury (TBI) in all of its forms--blast, concussive, and penetrating--has been an unfortunate sequela of warfare since ancient times. The continued evolution of military munitions and armor on the battlefield, as well as the insurgent use of improvised explosive devices, has led to blast-related TBI whose long-term effects on behavior and cognition are not yet known. Advances in medical care have greatly increased survival from these types of injuries. Therefore, an understanding of the potential health effects of TBI is essential. This review focuses on specific aspects of military-related TBI. There exists a large body of literature reporting the environmental conditions, forces, and staging of injury. Many of these studies are focused on the neuropathology of TBI, due to blast overpressure waves, and the emergence of large numbers of mild blast-related TBI cases.

  3. Caring for patients with traumatic injuries of the thoracic aorta.

    PubMed

    Collins, Angela Smith; Dinsmore, David

    2007-01-01

    Trauma is a major cause of mortality and morbidity in the United States, with blunt traumatic injuries of the thoracic aorta continuing to occur despite the increased use of seatbelts and airbags. Emerging from crash analysis are effective interventions and provides increased awareness of the occult nature of these types of injuries. This article describes those interventions that healthcare providers must embed throughout the continuum of care for patients experiencing thoracic aortic injuries. Outcomes will be dependent upon the healthcare provider's knowledge of the physics of the event and the urgency of the diagnosis, as well as the ability to assess and manage all the variables involved. Current procedural issues are delineated and case studies are used to illustrate the processes of care needed by these patients.

  4. Past, Present, and Future of Traumatic Brain Injury Research.

    PubMed

    Hawryluk, Gregory W J; Bullock, M Ross

    2016-10-01

    Traumatic brain injury (TBI) is the greatest cause of death and severe disability in young adults; its incidence is increasing in the elderly and in the developing world. Outcome from severe TBI has improved dramatically as a result of advancements in trauma systems and supportive critical care, however we remain without a therapeutic which acts directly to attenuate brain injury. Recognition of secondary injury and its molecular mediators has raised hopes for such targeted treatments. Unfortunately, over 30 late-phase clinical trials investigating promising agents have failed to translate a therapeutic for clinical use. Numerous explanations for this failure have been postulated and are reviewed here. With this historical context we review ongoing research and anticipated future trends which are armed with lessons from past trials, new scientific advances, as well as improved research infrastructure and funding. There is great hope that these new efforts will finally lead to an effective therapeutic for TBI as well as better clinical management strategies.

  5. Psychiatric sequelae after traumatic injury: the Pittsburgh Regatta accident.

    PubMed

    Martini, D R; Ryan, C; Nakayama, D; Ramenofsky, M

    1990-01-01

    Accidental injury in a child is sudden, often violent, and emotionally stressful, particularly when it is accompanied by hospitalization and rehabilitation. The following case report examines the presence of post-traumatic stress disorder and other psychiatric illnesses in five children involved in a boating accident during the 1988 Pittsburgh Regatta and considered severity of injury as well as complicating psychosocial stressors in the development of the disorders. The presence of symptoms was not related to the nature or extent of the injury but was instead the by-product of additional factors, including level of family stress, coping styles of the patient and family, positive psychiatric history in the child and/or family, and experience in effectively dealing with stressful episodes in the past.

  6. Biomarkers of focal and diffuse traumatic brain injury.

    PubMed

    Vos, Pieter E

    2011-08-18

    Traumatic brain injury (TBI) is a pathologically heterogeneous disease affecting people of all ages. The highest incidence of TBI occurs in young people and the average age is 30 to 40 years. Injury grading may range from mild with a low frequency (1 per 100) of life-threatening intracranial hematoma that needs immediate neurosurgical operation and very low mortality (1 per 1,000) to severe with a high likelihood of life-threatening intracranial hematoma (up to 1 per 3), a 40% case fatality rate and a high disability rate (2 per 3) in survivors. Estimation of the prognosis in severe TBI is currently based on demographic and clinical predictors, including age, Glasgow Coma Scale, pupillary reactions, extracranial injury (hypotension and hypoxia) and computed tomography indices (brain swelling, focal mass lesions, subarachnoid hemorrhage). Biomarkers reflecting damage to neurons and astrocytes may add important complementary information to clinical predictors of outcome and provide insight into the pathophysiology of TBI.

  7. The military's approach to traumatic brain injury and post-traumatic stress disorder

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Grimes, Jamie; Ecklund, James M.

    2014-06-01

    Traumatic brain injury (TBI) and Post Traumatic Stress Disorder (PTSD) are common conditions. In Iraq and Afghanistan, explosive blast related TBI became prominent among US service members but the vast majority of TBI was still due to typical causes such as falls and sporting events. PTS has long been a focus of the US military mental health providers. Combat Stress Teams have been integral to forward deployed units since the beginning of the Global War on Terror. Military medical management of disease and injury follows standard of care clinical practice guidelines (CPG) established by civilian counterparts. However, when civilian CPGs do not exist or are not applicable to the military environment, new practice standards are created. Such is the case for mild TBI. In 2009, the VA-DoD CPG for management of mild TBI/concussion was published and a system-wide clinical care program for mild TBI/concussion was introduced. This was the first large scale effort on an entire medical care system to address all severities of TBI in a comprehensive organized way. In 2010, the VA-DoD CPG for management of PTSD was published. Nevertheless, both TBI and PTS are still incompletely understood. Investment in terms of money and effort has been committed by the DoD to their study. The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury are prominent examples of this effort. These are just beginnings, a work in progress ready to leverage advances made scientifically and always striving to provide the very best care to its military beneficiaries.

  8. Sleep-wake disturbances after traumatic brain injury.

    PubMed

    Ouellet, Marie-Christine; Beaulieu-Bonneau, Simon; Morin, Charles M

    2015-07-01

    Sleep-wake disturbances are extremely common after a traumatic brain injury (TBI). The most common disturbances are insomnia (difficulties falling or staying asleep), increased sleep need, and excessive daytime sleepiness that can be due to the TBI or other sleep disorders associated with TBI, such as sleep-related breathing disorder or post-traumatic hypersomnia. Sleep-wake disturbances can have a major effect on functional outcomes and on the recovery process after TBI. These negative effects can exacerbate other common sequelae of TBI-such as fatigue, pain, cognitive impairments, and psychological disorders (eg, depression and anxiety). Sleep-wake disturbances associated with TBI warrant treatment. Although evidence specific to patients with TBI is still scarce, cognitive-behavioural therapy and medication could prove helpful to alleviate sleep-wake disturbances in patients with a TBI.

  9. Delayed onset massive oedema and deterioration in traumatic brain injury.

    PubMed

    Kohta, Masaaki; Minami, Hiroaki; Tanaka, Kazuhiro; Kuwamura, Keiichi; Kondoh, Takeshi; Kohmura, Eiji

    2007-02-01

    A 52-year-old man fell from standing and a computed tomography (CT) scan revealed traumatic intracerebral haematoma and subarachnoid haemorrhage in the temporal cortex. He was treated without surgery and discharged. On day 30 after the accident, he had no neurological deficit. On day 37 he complained of headache and urinary incontinence, and on day 39 he was hospitalized due to progressive neurological deterioration (reduced conciousness, dilated pupils, and left hemiplegia). A CT scan revealed a diffuse low-density in the right cerebral hemisphere with marked midline shift. Emergency decompressive craniectomy and right temporal lobectomy were performed. Angiography after surgery revealed moderate vasospasm in the right middle and anterior cerebral arteries. The patient remained severely disabled. Delayed onset neurological deterioration can be caused by brain oedema and vasospasm after traumatic brain injury, despite an intervening period of improvement.

  10. Impact of Posttraumatic Stress Disorder and Injury Severity on Recovery in Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kenardy, Justin; Le Brocque, Robyne; Hendrikz, Joan; Iselin, Greg; Anderson, Vicki; McKinlay, Lynne

    2012-01-01

    The adverse impact on recovery of posttraumatic stress disorder (PTSD) in mild traumatic brain injury (TBI) has been demonstrated in returned veterans. The study assessed this effect in children's health outcomes following TBI and extended previous work by including a full range of TBI severity, and improved assessment of PTSD within a…

  11. Traumatic Brain Injury in Children and Adolescents: Academic and Intellectual Outcomes Following Injury

    ERIC Educational Resources Information Center

    Arroyos-Jurado, Elsa; Paulsen, Jane S.; Ehly, Stewart; Max, Jeffrey E.

    2006-01-01

    This study was conducted to examine the impact of childhood traumatic brain injury (TBI) on intellectual and academic outcomes postinjury. A comprehensive assessment of cognition, achievement, learning, and memory was administered to 27 children and adolescents 6 to 8 years post-TBI. Findings revealed that parent ratings of premorbid achievement…

  12. Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.

    PubMed

    Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi

    2012-04-01

    Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.

  13. Citicoline for traumatic brain injury: a systematic review & meta-analysis

    PubMed Central

    Meshkini, Ali; Meshkini, Mohammad; Sadeghi-Bazargani, Homayoun

    2017-01-01

    Abstract: Background: Traumatic Brain Injury (TBI) is the leading cause of mortality and morbidity especially in young ages. Despite over 30 years of using Neuroprotective agents for TBI management, there is no absolute recommended agent for the condition yet. Methods: This study is a part of a scoping review thesis on "Neuroprotective agents using for Traumatic Brain Injury: a systematic review & meta-analyses", which had a wide proposal keywords and ran in "Cochrane CENTRAL", "MedLine/PubMed", "SCOPUS", "Thomson Reuters Web of Science", "SID.ir", "Barket Foundation", and "clinicaltrials.gov" databases up to September 06, 2015. This study limits the retrieved search results only to those which used \\citicoline for TBI management. The included Randomized Clinical Trials’ (RCTs) were assessed for their quality of reporting by adapting CONSORT-checklist prior to extracting their data into meta-analysis. Meta-analyses of this review were conducted by Glasgow Outcome Scale (GOS) in acute TBI patients and total neuropsychological assessments in both acute and chronic TBI management, mortalities and adverse-effects. Results: Four RCTs were retrieved and included in this review with 1196 participants (10 were chronic TBI impaired patients); the analysis of 1128 patients for their favorable GOS outcomes in two studies showed no significant difference between the study groups; however, neuropsychological outcomes were significantly better in placebo/control group of 971 patients of three studies. Mortality rates and adverse-effects analysis based on two studies with 1429 patients showed no significant difference between the study groups. However, two other studies have neither mortality nor adverse effects reports due to their protocol. Conclusions: Citicoline use for acute TBI seems to have no field of support anymore, whereas it may have some benefits in improving the neuro-cognitive state in chronic TBI patients. It’s also recommended to keep in mind acute

  14. Neuropsychological and neuroimaging findings in traumatic brain injury and post-traumatic stress disorder

    PubMed Central

    Brenner, Lisa A.

    2011-01-01

    Advances in imaging technology, coupled with military personnel returning home from Iraq and Afghanistan with traumatic brain injury (TBI) and/or post-traumatic stress disorder (PTSD), have increased interest in the neuropsychology and neurobiology of these two conditions. There has been a particular focus on differential diagnosis. This paper provides an overviev of findings regarding the neuropsychological and neurobiological underpinnings of TBI andfor PTSD. A specific focus is on assessment using neuropsychological measures and imaging techniques. Challenges associated with the assessment of individuals with one or both conditions are also discussed. Although use of neuropsychological and neuroimaging test results may assist with diagnosis and treatment planning, further work is needed to identify objective biomarkers for each condition. Such advances would be expected to facilitate differential diagnosis and implementation of best treatment practices. PMID:22034217

  15. Traumatic brain injury and chronic traumatic encephalopathy: a forensic neuropsychiatric perspective.

    PubMed

    Wortzel, Hal S; Brenner, Lisa A; Arciniegas, David B

    2013-01-01

    Recent scientific reports and popular press describing chronic traumatic encephalopathy (CTE) collectively link this condition to a broad array of neuropsychiatric symptoms, including extremely rare and multi-determined behaviors such as murder-suicide. These reports are difficult to reconcile with several decades of research on the science of traumatic brain injury (TBI) and its consequences, especially the natural history and prognosis of mild TBI. This article attempts to reconcile these sources by reviewing the state of the science on CTE, with particular attention to case definitions and neuropathological criteria for this diagnosis. The evidence for links between TBI, CTE, and catastrophic clinical events is explored, and the complexity of attributing rare frequency behavioral events to CTE is highlighted. The clinical and medicolegal implications of the best available evidence are discussed, concluding with a cautionary note against prematurely generalizing current findings on CTE to entire populations of persons with, or at risk for, concussion exposures.

  16. Neuroinflammation in animal models of traumatic brain injury

    PubMed Central

    Chiu, Chong-Chi; Liao, Yi-En; Yang, Ling-Yu; Wang, Jing-Ya; Tweedie, David; Karnati, Hanuma K.; Greig, Nigel H.; Wang, Jia-Yi

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI. PMID:27382003

  17. Response of the cerebral vasculature following traumatic brain injury.

    PubMed

    Salehi, Arjang; Zhang, John H; Obenaus, Andre

    2017-01-01

    The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.

  18. The blood-brain barrier as a target in traumatic brain injury treatment.

    PubMed

    Thal, Serge C; Neuhaus, Winfried

    2014-11-01

    Traumatic brain injury (TBI) is one of the most frequent causes of death in the young population. Several clinical trials have unsuccessfully focused on direct neuroprotective therapies. Recently immunotherapeutic strategies shifted into focus of translational research in acute CNS diseases. Cross-talk between activated microglia and blood-brain barrier (BBB) could initiate opening of the BBB and subsequent recruitment of systemic immune cells and mediators into the brain. Stabilization of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage and acute neurodegeneration. This review provides an overview on the pathophysiology of TBI and brain edema formation including definitions and classification of TBI, current clinical treatment strategies, as well as current understanding on the underlying cellular processes. A summary of in vivo and in vitro models to study different aspects of TBI is presented. Three mechanisms proposed for stabilization of the BBB, myosin light chain kinases, glucocorticoid receptors and peroxisome proliferator-activated receptors are reviewed for their influence on barrier-integrity and outcome after TBI. In conclusion, the BBB is recommended as a promising target for the treatment of traumatic brain injury, and it is suggested that a combination of BBB stabilization and neuroprotectants may improve therapeutic success.

  19. Erythropoietin Neuroprotection with Traumatic Brain Injury

    PubMed Central

    Ponce, Lucido L.; Navarro, Jovany Cruz; Ahmed, Osama; Robertson, Claudia S.

    2012-01-01

    Numerous experimental studies in recent years have suggested that erythropoietin (EPO) is an endogenous mediator of neuroprotection in various central nervous system disorders, including TBI. Many characteristics of EPO neuroprotection that have been defined in TBI experimental models suggest that it is an attractive candidate for a new treatment of TBI. EPO targets multiple mechanisms known to cause secondary injury after TBI, including anti-excitotoxic, antioxidant, anti-edematous, and anti-inflammatory mechanisms. EPO crosses the blood brain barrier. EPO has a known dose response and time window for neuroprotection and neurorestoration that would be practical in the clinical setting. However, EPO also stimulates erythropoiesis, which can result in thromboembolic complications. Derivatives of EPO which do not bind to the classical EPO receptor (carbamylated EPO) or that have such a brief half-life in the circulation that they do not stimulate erythropoiesis (asialo EPO and neuro EPO) have the neuroprotective activities of EPO without these potential thromboembolic adverse effects associated with EPO administration. Likewise, a peptide based on the structure of the Helix B segment of the EPO molecule that does not bind to the EPO receptor (pyruglutamate Helix B surface peptide) has promise as another alternative to EPO that may provide neuroprotection without stimulating erythropoiesis. PMID:22421507

  20. Vasopressor use following traumatic injury: protocol for a systematic review

    PubMed Central

    Hylands, Mathieu; Toma, Augustin; Beaudoin, Nicolas; Frenette, Anne-Julie; D'Aragon, Frederick; Belley-Côté, Emilie; Hylander, Morten; Lauzier, François; Siemieniuk, Reed Alexander; Charbonney, Emmanuel; Kwong, Joey; Laake, Jon Henrik; Guyatt, Gordon; Vandvik, Per Olav; Rochwerg, Bram; Green, Robert; Ball, Ian; Scales, Damon; Murthy, Srinivas; Rizoli, Sandro; Asfar, Pierre; Lamontagne, François

    2017-01-01

    Introduction Worldwide, traumatic casualties are projected to exceed 8 million by year 2020. Haemorrhagic shock and brain injury are the leading causes of death following trauma. While intravenous fluids have traditionally been used to support organ perfusion in the setting of haemorrhage, recent investigations have suggested that restricting fluid therapy by tolerating more severe hypotension may improve survival. However, the safety of permissive hypotension remains uncertain, particularly among patients who have suffered a traumatic brain injury. Vasopressors preferentially vasoconstrict blood vessels that supply non-vital organs and capacitance vessels, thereby mobilising the unstressed blood volume. Used as fluid-sparing adjuncts, these drugs can complement resuscitative measures by correcting hypotension without diluting clotting factors or increasing the risk for tissue oedema. Methods and analysis We will identify randomised control trials comparing early resuscitation with vasopressors versus placebo or standard care in adults following traumatic injury. Data sources will include MEDLINE, EMBASE, CENTRAL, clinical trial registries and conference proceedings. Two reviewers will independently determine trial eligibility. For each included trial, we will conduct duplicate independent data extraction and risk of bias assessment. We will assess the overall quality of the data for each individual outcome using the GRADE approach. Ethics and dissemination We will report this review in accordance with the PRISMA statement. We will disseminate our findings at critical care and trauma conferences and through a publication in a peer-reviewed journal. We will also use this systematic review to create clinical guidelines (http://www.magicapp.org), which will be disseminated in a standalone publication. Trial registration number CRD42016033437. PMID:28246141

  1. Serum Lipid Profile in Subjects with Traumatic Spinal Cord Injury

    PubMed Central

    Laclaustra, Martin; Van Den Berg, Elizabeth Louise Maayken; Hurtado-Roca, Yamilée; Castellote, Juan Manuel

    2015-01-01

    Background and Aims Few large studies have examined the relationship between spinal cord injury (SCI) and lipid profile. We studied serum lipid concentrations in subjects with traumatic SCI in relation to the degree of neurological involvement and time since injury, and compared them with values from a reference sample for the Spanish population (DRECE study). Materials and Methods A retrospective cohort was built from 177 consecutive cases with traumatic SCI admitted to the SCI unit of the Miguel Servet Hospital in Aragon (Spain). Outcome measures (cholesterol, triglycerides, HDL-c and LDL-c levels) were analyzed according to the ASIA Impairment Scale (AIS), neurological level of injury (involvement of all limbs vs. only lower limbs), and time since injury. All analyses were adjusted for age and sex. Results Cases without preserved motor function (AIS A or B) had lower total and HDL cholesterol than the others (-11.4 [-21.5, -1.4] mg/dL total cholesterol and -5.1 [-8.8, -1.4] mg/dL HDL-c), and cases with all-limb involvement had lower total, HDL, and LDL cholesterol than those with only lower-limb involvement (-14.0 [-24.6, -3.4] mg/dL total cholesterol, -4.1 [-8.0, -0.2] mg/dL HDL-c, and -10.0 [-19.7, -0.3] mg/dL LDL-c) (all p<0.05). No association was found between lipid concentrations and time since injury. Concentrations of lipid subfractions and triglycerides in SCI subjects were lower than in sex- and age-stratified values from the reference sample. Conclusion A high degree of neurological involvement in SCI (anatomically higher lesions and AIS A or B) is associated with lower total cholesterol and HDL-c. PMID:25706982

  2. Depression and cognitive complaints following mild traumatic brain injury.

    PubMed

    Silver, Jonathan M; McAllister, Thomas W; Arciniegas, David B

    2009-06-01

    Traumatic brain injury (TBI) is a common occurrence with multiple possible neuropsychiatric sequelae, including problems with cognition, emotion, and behavior. While many individuals experience significant improvement over the first months following mild TBI, a nontrivial minority will develop persistent, functionally impairing post-TBI symptoms. Depression and cognitive impairment are among the most common such symptoms, and they may respond to a combination of rehabilitative and pharmacologic treatments. This article discusses the clinical approach to treating an individual with depression and cognitive complaints following mild TBI. Recommendations regarding the diagnosis, evaluation, and treatment of these problems are offered.

  3. Alteration in synaptic junction proteins following traumatic brain injury.

    PubMed

    Merlo, Lucia; Cimino, Francesco; Angileri, Filippo Flavio; La Torre, Domenico; Conti, Alfredo; Cardali, Salvatore Massimiliano; Saija, Antonella; Germanò, Antonino

    2014-08-15

    Extensive research and scientific efforts have been focused on the elucidation of the pathobiology of cellular and axonal damage following traumatic brain injury (TBI). Conversely, few studies have specifically addressed the issue of synaptic dysfunction. Synaptic junction proteins may be involved in post-TBI alterations, leading to synaptic loss or disrupted plasticity. A Synapse Protein Database on synapse ontology identified 109 domains implicated in synaptic activities and over 5000 proteins, but few of these demonstrated to play a role in the synaptic dysfunction after TBI. These proteins are involved in neuroplasticity and neuromodulation and, most importantly, may be used as novel neuronal markers of TBI for specific intervention.

  4. Supporting the literacy skills of adolescents with traumatic brain injury.

    PubMed

    Krause, Miriam; Byom, Lindsey; Meulenbroek, Peter; Richards, Stephanie; O'Brien, Katy

    2015-02-01

    Traumatic brain injury (TBI) can affect developmental trajectories as well as language, attention, memory, executive functions, and other cognitive skills related to literacy. Literacy demands change through adolescence and into young adulthood, with academic literacy demands increasing and vocational literacy demands being introduced. Speech-language pathology services must evolve with the literacy needs of each client. This article discusses assessment and treatment approaches designed for adolescents with TBI and recommendations for adapting literacy interventions from the learning disabilities literature. Through proper assessment and intervention, speech-language pathologists can have a meaningful impact on the academic and vocational literacy needs of adolescents with TBI.

  5. Pathophysiology of ischaemic acute kidney injury.

    PubMed

    Kanagasundaram, Nigel Suren

    2015-03-01

    Acute kidney injury is common, dangerous and costly, affecting around one in five patients emergency admissions to hospital. Although survival decreases as disease worsens, it is now apparent that even modest degrees of dysfunction are not only associated with higher mortality but are an independent risk factor for death. This review focuses on the pathophysiology of acute kidney injury secondary to ischaemia - its commonest aetiology. The haemodynamic disturbances, endothelial injury, epithelial cell injury and immunological mechanisms underpinning its initiation and extension will be discussed along with the considerable and complex interplay between these factors that lead to an intense, pro-inflammatory state. Mechanisms of tubular recovery will be discussed but also the pathophysiology of abnormal repair with its direct consequences for long-term renal function. Finally, the concept of 'organ cross-talk' will be introduced as a potential explanation for the higher mortality observed with acute kidney injury that might be deemed modest in conventional biochemical terms.

  6. Diagnosis and management of traumatic cervical central spinal cord injury: A review

    PubMed Central

    Epstein, Nancy E.; Hollingsworth, Renee

    2015-01-01

    Background: The classical clinical presentation, neuroradiographic features, and conservative vs. surgical management of traumatic cervical central spinal cord (CSS) injury remain controversial. Methods: CSS injuries, occurring in approximately 9.2% of all cord injuries, are usually attributed to significant hyperextension trauma combined with congenital/acquired cervical stenosis/spondylosis. Patients typically present with greater motor deficits in the upper vs. lower extremities accompanied by patchy sensory loss. T2-weighted magnetic resonance (MR) scans usually show hyperintense T2 intramedullary signals reflecting acute edema along with ligamentous injury, while noncontrast computed tomography (CT) studies typically show no attendant bony pathology (e.g. no fracture, dislocation). Results: CSS constitute only a small percentage of all traumatic spinal cord injuries. Aarabi et al. found CSS patients averaged 58.3 years of age, 83% were male and 52.4% involved accidents/falls in patients with narrowed spinal canals (average 5.6 mm); their average American Spinal Injury Association (ASIA) motor score was 63.8, and most pathology was at the C3-C4 and C4-C5 levels (71%). Surgery was performed within 24 h (9 patients), 24–48 h (10 patients), or after 48 h (23 patients). In the Brodell et al. study of 16,134 patients with CSS, 39.7% had surgery. In the Gu et al. series, those with CSS and stenosis/ossification of the posterior longitudinal ligament (OPLL) exhibited better outcomes following laminoplasty. Conclusions: Recognizing the unique features of CSS is critical, as the clinical, neuroradiological, and management strategies (e.g. conservative vs. surgical management: early vs. late) differ from those utilized for other spinal cord trauma. Increased T2-weighted MR images best document CSS, while CT studies confirm the absence of fracture/dislocation. PMID:26005576

  7. Art Therapy for Individuals with Traumatic Brain Injury: A Comprehensive Neurorehabilitation-Informed Approach to Treatment

    ERIC Educational Resources Information Center

    Kline, Tori

    2016-01-01

    I describe an approach to art therapy treatment for survivors of traumatic brain injury developed at a rehabilitation facility for adults that serves inpatient, outpatient, and long-term residential clients. This approach is based on a review of the literature on traumatic brain injury, comprehensive neurorehabilitation, brain plasticity, and art…

  8. Traumatic Brain Injury: A Look at Alcohol and Other Drug Abuse Prevention.

    ERIC Educational Resources Information Center

    VSA Educational Services, Washington, DC. Resource Center on Substance Abuse Prevention and Disability.

    This leaflet examines alcohol and other drug abuse prevention for individuals with traumatic brain injury. The characteristics and incidence of traumatic brain injury (TBI) are noted. The implications of alcohol and other drug use are discussed, emphasizing that TBI is often related to lifestyles where alcohol and other drug abuse and risk taking…

  9. Diagnostic Challenge of Diffusion Tensor Imaging in a Patient With Hemiplegia After Traumatic Brain Injury

    PubMed Central

    2017-01-01

    A 51-year-old man showed hemiplegia on his right side after a traumatic brain injury (TBI). On initial brain computed tomography (CT) scan, an acute subdural hemorrhage in the right cerebral convexity and severe degrees of midline shifting and subfalcine herniation to the left side were evident. On follow-up brain magnetic resonance imaging (MRI), there were multiple microhemorrhages in the left parietal and occipital subcortical regions. To explain the occurrence of right hemiplegia after brain damage which dominantly on the right side of brain, we used diffusion tensor imaging (DTI) to reconstruct the corticospinal tract (CST), which showed nearly complete injury on the left CST. We also performed motor-evoked potentials, and stimulation of left motor cortex evoked no response on both sides of upper extremity. We report a case of patient with hemiplegia after TBI and elucidation of the case by DTI rather than CT and MRI. PMID:28289648

  10. Diagnostic Challenge of Diffusion Tensor Imaging in a Patient With Hemiplegia After Traumatic Brain Injury.

    PubMed

    Shin, Hye Eun; Suh, Hoon Chang; Kang, Si Hyun; Seo, Kyung Mook; Kim, Don-Kyu; Shin, Hae-Won

    2017-02-01

    A 51-year-old man showed hemiplegia on his right side after a traumatic brain injury (TBI). On initial brain computed tomography (CT) scan, an acute subdural hemorrhage in the right cerebral convexity and severe degrees of midline shifting and subfalcine herniation to the left side were evident. On follow-up brain magnetic resonance imaging (MRI), there were multiple microhemorrhages in the left parietal and occipital subcortical regions. To explain the occurrence of right hemiplegia after brain damage which dominantly on the right side of brain, we used diffusion tensor imaging (DTI) to reconstruct the corticospinal tract (CST), which showed nearly complete injury on the left CST. We also performed motor-evoked potentials, and stimulation of left motor cortex evoked no response on both sides of upper extremity. We report a case of patient with hemiplegia after TBI and elucidation of the case by DTI rather than CT and MRI.

  11. PROGESTERONE AND VITAMIN D HORMONE FOR TREATMENT OF TRAUMATIC BRAIN INJURY IN THE AGED1

    PubMed Central

    Stein, Donald G.; Cekic, Milos M.

    2013-01-01

    There is growing recognition that traumatic brain injury (TBI) is a highly variable and complex systemic disorder that is refractory to therapies that target individual mechanisms. It is even more complex in the elderly, in whom frailty, prior comorbidities, altered metabolism, and a long history of medication use are likely to complicate the secondary effects of brain trauma. Progesterone, one of the few neuroprotective agents that has shown promise for the treatment of acute brain injury, is now in national and international Phase III multi-center trial. New findings show that vitamin D hormone (VDH) and vitamin D deficiency in aging (and across the developmental spectrum) may interact with progesterone and TBI treatment. This paper reviews the use of progesterone and VDH as biologics based therapies and recent studies showing that the combination of progesterone and VDH may promote better functional outcomes than either treatment independently. PMID:21703565

  12. Using Post-Traumatic Amnesia To Predict Outcome after Traumatic Brain Injury.

    PubMed

    Ponsford, Jennie L; Spitz, Gershon; McKenzie, Dean

    2016-06-01

    Duration of post-traumatic amnesia (PTA) has emerged as a strong measure of injury severity after traumatic brain injury (TBI). Despite the growing international adoption of this measure, there remains a lack of consistency in the way in which PTA duration is used to classify severity of injury. This study aimed to establish the classification of PTA that would best predict functional or productivity outcomes. We conducted a cohort study of 1041 persons recruited from inpatient admissions to a TBI rehabilitation center between 1985 and 2013. Participants had a primary diagnosis of TBI, emerged from PTA before discharge from inpatient hospital, and engaged in productive activities before injury. Eight models that classify duration of PTA were evaluated-six that were based on the literature and two that were statistically driven. Models were assessed using area under the receiver operating characteristic curve (AUC) as well as model-based Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) statistics. All categorization models showed longer PTA to be associated with a greater likelihood of being nonproductive at 1 year after TBI. Classification systems with a greater number of categories performed better than two-category systems. The dimensional (continuous) form of PTA resulted in the greatest AUC, and lowest AIC as well as BIC, of the classification systems examined. This finding indicates that the greatest accuracy in prognosis is likely to be achieved using PTA as a continuous variable. This enables the probability of productive outcomes to be estimated with far greater precision than that possible using a classification system. Categorizing PTA to classify severity of injury may be reducing the precision with which clinicians can plan the treatment of patients after TBI.

  13. Assessment of Biomarkers Associated with Joint Injury and Subsequent Post Traumatic Arthritis

    DTIC Science & Technology

    2015-10-01

    Injury and Subsequent Post-Traumatic Arthritis" Start date: 9/30/2012 PIs – Steven A. Olson ( SAO ); Farshid Guilak (FG); and Virginia B Kraus (VBK...of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis" Start date: 9/30/2012 PIs – Steven A. Olson ( SAO ); Farshid Guilak...2012 PIs – Steven A. Olson ( SAO ); Farshid Guilak (FG); and Virginia B Kraus (VBK) 1. INTRODUCTION: Post-traumatic arthritis (PTA) is a clinically

  14. The Effects of Mild Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Combined Mild Traumatic Brain Injury/Post-Traumatic Stress Disorder on Returning Veterans.

    PubMed

    Combs, Hannah L; Berry, David T R; Pape, Theresa; Babcock-Parziale, Judith; Smith, Bridget; Schleenbaker, Randal; Shandera-Ochsner, Anne; Harp, Jordan P; High, Walter M

    2015-07-01

    United States veterans of the Iraqi (Operation Iraqi Freedom [OIF]) and Afghanistan (Operation Enduring Freedom [OEF]) conflicts have frequently returned from deployment after sustaining mild traumatic brain injury (mTBI) and enduring stressful events resulting in post-traumatic stress disorder (PTSD). A large number of returning service members have been diagnosed with both a history of mTBI and current PTSD. Substantial literature exists on the neuropsychological factors associated with mTBI and PTSD occurring separately; far less research has explored the combined effects of PTSD and mTBI. The current study employed neuropsychological and psychological measures in a sample of 251 OIF/OEF veterans to determine whether participants with a history of mTBI and current PTSD (mTBI+PTSD) have poorer cognitive and psychological outcomes than participants with mTBI only (mTBI-o), PTSD only (PTSD-o), or veteran controls (VC), when groups are comparable on intelligence quotient, education, and a