Science.gov

Sample records for acyclic graph dag

  1. Analyzing microarray data with transitive directed acyclic graphs.

    PubMed

    Phan, Vinhthuy; Olusegun George, E; Tran, Quynh T; Goodwin, Shirlean; Bodreddigari, Sridevi; Sutter, Thomas R

    2009-02-01

    Post hoc assignment of patterns determined by all pairwise comparisons in microarray experiments with multiple treatments has been proven to be useful in assessing treatment effects. We propose the usage of transitive directed acyclic graphs (tDAG) as the representation of these patterns and show that such representation can be useful in clustering treatment effects, annotating existing clustering methods, and analyzing sample sizes. Advantages of this approach include: (1) unique and descriptive meaning of each cluster in terms of how genes respond to all pairs of treatments; (2) insensitivity of the observed patterns to the number of genes analyzed; and (3) a combinatorial perspective to address the sample size problem by observing the rate of contractible tDAG as the number of replicates increases. The advantages and overall utility of the method in elaborating drug structure activity relationships are exemplified in a controlled study with real and simulated data. PMID:19226664

  2. Estimation of sparse directed acyclic graphs for multivariate counts data.

    PubMed

    Han, Sung Won; Zhong, Hua

    2016-09-01

    The next-generation sequencing data, called high-throughput sequencing data, are recorded as count data, which are generally far from normal distribution. Under the assumption that the count data follow the Poisson log-normal distribution, this article provides an L1-penalized likelihood framework and an efficient search algorithm to estimate the structure of sparse directed acyclic graphs (DAGs) for multivariate counts data. In searching for the solution, we use iterative optimization procedures to estimate the adjacency matrix and the variance matrix of the latent variables. The simulation result shows that our proposed method outperforms the approach which assumes multivariate normal distributions, and the log-transformation approach. It also shows that the proposed method outperforms the rank-based PC method under sparse network or hub network structures. As a real data example, we demonstrate the efficiency of the proposed method in estimating the gene regulatory networks of the ovarian cancer study. PMID:26849781

  3. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification

    PubMed Central

    Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong

    2016-01-01

    Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs). PMID:26985826

  4. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification.

    PubMed

    Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong

    2016-01-01

    Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs).

  5. Analytic Bounds on Causal Risk Differences in Directed Acyclic Graphs Involving Three Observed Binary Variables

    PubMed Central

    Kaufman, Sol; Kaufman, Jay S.; MacLehose, Richard F.

    2009-01-01

    We apply a linear programming approach which uses the causal risk difference (RDC) as the objective function and provides minimum and maximum values that RDC can achieve under any set of linear constraints on the potential response type distribution. We consider two scenarios involving binary exposure X, covariate Z and outcome Y. In the first, Z is not affected by X, and is a potential confounder of the causal effect of X on Y. In the second, Z is affected by X and intermediate in the causal pathway between X and Y. For each scenario we consider various linear constraints corresponding to the presence or absence of arcs in the associated directed acyclic graph (DAG), monotonicity assumptions, and presence or absence of additive-scale interactions. We also estimate Z-stratum-specific bounds when Z is a potential effect measure modifier and bounds for both controlled and natural direct effects when Z is affected by X. In the absence of any additional constraints deriving from background knowledge, the well-known bounds on RDc are duplicated: −Pr(Y≠X) ≤ RDC ≤ Pr(Y=X). These bounds have unit width, but can be narrowed by background knowledge-based assumptions. We provide and compare bounds and bound widths for various combinations of assumptions in the two scenarios and apply these bounds to real data from two studies. PMID:20161106

  6. Directed acyclic graph-based technology mapping of genetic circuit models.

    PubMed

    Roehner, Nicholas; Myers, Chris J

    2014-08-15

    As engineering foundations such as standards and abstraction begin to mature within synthetic biology, it is vital that genetic design automation (GDA) tools be developed to enable synthetic biologists to automatically select standardized DNA components from a library to meet the behavioral specification for a genetic circuit. To this end, we have developed a genetic technology mapping algorithm that builds on the directed acyclic graph (DAG) based mapping techniques originally used to select parts for digital electronic circuit designs and implemented it in our GDA tool, iBioSim. It is among the first genetic technology mapping algorithms to adapt techniques from electronic circuit design, in particular the use of a cost function to guide the search for an optimal solution, and perhaps that which makes the greatest use of standards for describing genetic function and structure to represent design specifications and component libraries. This paper demonstrates the use of our algorithm to map the specifications for three different genetic circuits against four randomly generated libraries of increasing size to evaluate its performance against both exhaustive search and greedy variants for finding optimal and near-optimal solutions.

  7. Wavelet Entropy and Directed Acyclic Graph Support Vector Machine for Detection of Patients with Unilateral Hearing Loss in MRI Scanning

    PubMed Central

    Wang, Shuihua; Yang, Ming; Du, Sidan; Yang, Jiquan; Liu, Bin; Gorriz, Juan M.; Ramírez, Javier; Yuan, Ti-Fei; Zhang, Yudong

    2016-01-01

    Highlights We develop computer-aided diagnosis system for unilateral hearing loss detection in structural magnetic resonance imaging.Wavelet entropy is introduced to extract image global features from brain images. Directed acyclic graph is employed to endow support vector machine an ability to handle multi-class problems.The developed computer-aided diagnosis system achieves an overall accuracy of 95.1% for this three-class problem of differentiating left-sided and right-sided hearing loss from healthy controls. Aim: Sensorineural hearing loss (SNHL) is correlated to many neurodegenerative disease. Now more and more computer vision based methods are using to detect it in an automatic way. Materials: We have in total 49 subjects, scanned by 3.0T MRI (Siemens Medical Solutions, Erlangen, Germany). The subjects contain 14 patients with right-sided hearing loss (RHL), 15 patients with left-sided hearing loss (LHL), and 20 healthy controls (HC). Method: We treat this as a three-class classification problem: RHL, LHL, and HC. Wavelet entropy (WE) was selected from the magnetic resonance images of each subjects, and then submitted to a directed acyclic graph support vector machine (DAG-SVM). Results: The 10 repetition results of 10-fold cross validation shows 3-level decomposition will yield an overall accuracy of 95.10% for this three-class classification problem, higher than feedforward neural network, decision tree, and naive Bayesian classifier. Conclusions: This computer-aided diagnosis system is promising. We hope this study can attract more computer vision method for detecting hearing loss. PMID:27807415

  8. Assessing causal relationships in genomics: From Bradford-Hill criteria to complex gene-environment interactions and directed acyclic graphs

    PubMed Central

    2011-01-01

    Observational studies of human health and disease (basic, clinical and epidemiological) are vulnerable to methodological problems -such as selection bias and confounding- that make causal inferences problematic. Gene-disease associations are no exception, as they are commonly investigated using observational designs. A rich body of knowledge exists in medicine and epidemiology on the assessment of causal relationships involving personal and environmental causes of disease; it includes seminal causal criteria developed by Austin Bradford Hill and more recently applied directed acyclic graphs (DAGs). However, such knowledge has seldom been applied to assess causal relationships in clinical genetics and genomics, even in studies aimed at making inferences relevant for human health. Conversely, incorporating genetic causal knowledge into clinical and epidemiological causal reasoning is still a largely unexplored area. As the contribution of genetics to the understanding of disease aetiology becomes more important, causal assessment of genetic and genomic evidence becomes fundamental. The method we develop in this paper provides a simple and rigorous first step towards this goal. The present paper is an example of integrative research, i.e., research that integrates knowledge, data, methods, techniques, and reasoning from multiple disciplines, approaches and levels of analysis to generate knowledge that no discipline alone may achieve. PMID:21658235

  9. Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs

    PubMed Central

    SHOJAIE, ALI; MICHAILIDIS, GEORGE

    2010-01-01

    Summary Directed acyclic graphs are commonly used to represent causal relationships among random variables in graphical models. Applications of these models arise in the study of physical and biological systems where directed edges between nodes represent the influence of components of the system on each other. Estimation of directed graphs from observational data is computationally NP-hard. In addition, directed graphs with the same structure may be indistinguishable based on observations alone. When the nodes exhibit a natural ordering, the problem of estimating directed graphs reduces to the problem of estimating the structure of the network. In this paper, we propose an efficient penalized likelihood method for estimation of the adjacency matrix of directed acyclic graphs, when variables inherit a natural ordering. We study variable selection consistency of lasso and adaptive lasso penalties in high-dimensional sparse settings, and propose an error-based choice for selecting the tuning parameter. We show that although the lasso is only variable selection consistent under stringent conditions, the adaptive lasso can consistently estimate the true graph under the usual regularity assumptions. PMID:22434937

  10. VPipe: Virtual Pipelining for Scheduling of DAG Stream Query Plans

    NASA Astrophysics Data System (ADS)

    Wang, Song; Gupta, Chetan; Mehta, Abhay

    There are data streams all around us that can be harnessed for tremendous business and personal advantage. For an enterprise-level stream processing system such as CHAOS [1] (Continuous, Heterogeneous Analytic Over Streams), handling of complex query plans with resource constraints is challenging. While several scheduling strategies exist for stream processing, efficient scheduling of complex DAG query plans is still largely unsolved. In this paper, we propose a novel execution scheme for scheduling complex directed acyclic graph (DAG) query plans with meta-data enriched stream tuples. Our solution, called Virtual Pipelined Chain (or VPipe Chain for short), effectively extends the "Chain" pipelining scheduling approach to complex DAG query plans.

  11. Cell Tracking Accuracy Measurement Based on Comparison of Acyclic Oriented Graphs

    PubMed Central

    Sorokin, Dmitry V.; Matula, Petr; Ortiz-de-Solórzano, Carlos; Kozubek, Michal

    2015-01-01

    Tracking motile cells in time-lapse series is challenging and is required in many biomedical applications. Cell tracks can be mathematically represented as acyclic oriented graphs. Their vertices describe the spatio-temporal locations of individual cells, whereas the edges represent temporal relationships between them. Such a representation maintains the knowledge of all important cellular events within a captured field of view, such as migration, division, death, and transit through the field of view. The increasing number of cell tracking algorithms calls for comparison of their performance. However, the lack of a standardized cell tracking accuracy measure makes the comparison impracticable. This paper defines and evaluates an accuracy measure for objective and systematic benchmarking of cell tracking algorithms. The measure assumes the existence of a ground-truth reference, and assesses how difficult it is to transform a computed graph into the reference one. The difficulty is measured as a weighted sum of the lowest number of graph operations, such as split, delete, and add a vertex and delete, add, and alter the semantics of an edge, needed to make the graphs identical. The measure behavior is extensively analyzed based on the tracking results provided by the participants of the first Cell Tracking Challenge hosted by the 2013 IEEE International Symposium on Biomedical Imaging. We demonstrate the robustness and stability of the measure against small changes in the choice of weights for diverse cell tracking algorithms and fluorescence microscopy datasets. As the measure penalizes all possible errors in the tracking results and is easy to compute, it may especially help developers and analysts to tune their algorithms according to their needs. PMID:26683608

  12. Can we believe the DAGs? A comment on the relationship between causal DAGs and mechanisms

    PubMed Central

    Aalen, OO; Røysland, K; Gran, JM; Kouyos, R

    2014-01-01

    Directed acyclic graphs (DAGs) play a large role in the modern approach to causal inference. DAGs describe the relationship between measurements taken at various discrete times including the effect of interventions. The causal mechanisms, on the other hand, would naturally be assumed to be a continuous process operating over time in a cause–effect fashion. How does such immediate causation, that is causation occurring over very short time intervals, relate to DAGs constructed from discrete observations? We introduce a time-continuous model and simulate discrete observations in order to judge the relationship between the DAG and the immediate causal model. We find that there is no clear relationship; indeed the Bayesian network described by the DAG may not relate to the causal model. Typically, discrete observations of a process will obscure the conditional dependencies that are represented in the underlying mechanistic model of the process. It is therefore doubtful whether DAGs are always suited to describe causal relationships unless time is explicitly considered in the model. We relate the issues to mechanistic modeling by using the concept of local (in)dependence. An example using data from the Swiss HIV Cohort Study is presented. PMID:24463886

  13. A DAG Scheduling Scheme on Heterogeneous Computing Systems Using Tuple-Based Chemical Reaction Optimization

    PubMed Central

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977

  14. A DAG scheduling scheme on heterogeneous computing systems using tuple-based chemical reaction optimization.

    PubMed

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.

  15. Defining order and timing of mutations during cancer progression: the TO-DAG probabilistic graphical model

    PubMed Central

    Lecca, Paola; Casiraghi, Nicola; Demichelis, Francesca

    2015-01-01

    Somatic mutations arise and accumulate both during tumor genesis and progression. However, the order in which mutations occur is an open question and the inference of the temporal ordering at the gene level could potentially impact on patient treatment. Thus, exploiting recent observations suggesting that the occurrence of mutations is a non-memoryless process, we developed a computational approach to infer timed oncogenetic directed acyclic graphs (TO-DAGs) from human tumor mutation data. Such graphs represent the path and the waiting times of alterations during tumor evolution. The probability of occurrence of each alteration in a path is the probability that the alteration occurs when all alterations prior to it have occurred. The waiting time between an alteration and the subsequent is modeled as a stochastic function of the conditional probability of the event given the occurrence of the previous one. TO-DAG performances have been evaluated both on synthetic data and on somatic non-silent mutations from prostate cancer and melanoma patients and then compared with those of current well-established approaches. TO-DAG shows high performance scores on synthetic data and recognizes mutations in gatekeeper tumor suppressor genes as trigger for several downstream mutational events in the human tumor data. PMID:26528329

  16. Dynamic Uncertain Causality Graph for Knowledge Representation and Probabilistic Reasoning: Directed Cyclic Graph and Joint Probability Distribution.

    PubMed

    Zhang, Qin

    2015-07-01

    Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology.

  17. Dynamic Uncertain Causality Graph for Knowledge Representation and Probabilistic Reasoning: Directed Cyclic Graph and Joint Probability Distribution.

    PubMed

    Zhang, Qin

    2015-07-01

    Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology. PMID:25781960

  18. Wasatch: An architecture-proof multiphysics development environment using a Domain Specific Language and graph theory

    DOE PAGES

    Saad, Tony; Sutherland, James C.

    2016-05-04

    To address the coding and software challenges of modern hybrid architectures, we propose an approach to multiphysics code development for high-performance computing. This approach is based on using a Domain Specific Language (DSL) in tandem with a directed acyclic graph (DAG) representation of the problem to be solved that allows runtime algorithm generation. When coupled with a large-scale parallel framework, the result is a portable development framework capable of executing on hybrid platforms and handling the challenges of multiphysics applications. In addition, we share our experience developing a code in such an environment – an effort that spans an interdisciplinarymore » team of engineers and computer scientists.« less

  19. Wasatch: An architecture-proof multiphysics development environment using a Domain Specific Language and graph theory

    DOE PAGES

    Saad, Tony; Sutherland, James C.

    2016-05-04

    To address the coding and software challenges of modern hybrid architectures, we propose an approach to multiphysics code development for high-performance computing. This approach is based on using a Domain Specific Language (DSL) in tandem with a directed acyclic graph (DAG) representation of the problem to be solved that allows runtime algorithm generation. When coupled with a large-scale parallel framework, the result is a portable development framework capable of executing on hybrid platforms and handling the challenges of multiphysics applications. In conclusion, we share our experience developing a code in such an environment – an effort that spans an interdisciplinarymore » team of engineers and computer scientists.« less

  20. Cardioleader use in acyclic types of sports

    NASA Technical Reports Server (NTRS)

    Bondin, V. I.

    1980-01-01

    The use of the cardioleader method in regulating training loads and tests for athletes in acyclic sports was investigated. It was found that the use of this method increases the effectiveness of the training process.

  1. [Time-dependent confounding in the estimation of treatment effects in randomised trials with multimodal therapies--an illustration of the problem of time-dependent confounding by causal graphs].

    PubMed

    Zietemann, V D; Schuster, T; Duell, T H G

    2015-01-01

    Biased effect estimates induced by unconsidered confounding variables are a known problem in observational studies. Selection bias, resulting from non-random sampling of study participants, is widely recognised as a problem in case-control and cross-sectional studies. In contrast, possible bias in randomised controlled trials (RCTs) is mostly ignored. This paper illustrates, by applying directed acyclic graphs (DAGs), possible bias in the effect estimates of first-line therapy, caused by subsequent changes in therapy (time-dependent confounding). Possible selection bias, induced by not only random loss to follow-up, will be explained as well using DAGs. Underlying assumptions of standard methods usually used to analyse RCTs (like intention-to-treat, per-protocol) are shown and it is explained why effect estimates may be biased in RCTs, if only these conventional methods are used. Adequate statistical methods (causal inference models as marginal structural models and structural nested models) exist. Higher documentary efforts, however, are necessary, because any changes in medication, loss to follow-up as well as reasons for such changes need to be documented in detail as required by these advanced statistical methods. Nevertheless, causal inference models should become standard along side the currently applied standard methods, especially in studies with high non-compliance due to changes in therapy and substantial loss to follow-up. Possible bias cannot be excluded if similar results are obtained from both methods. However, study results should be interpreted with caution if they differ between both approaches.

  2. 3000 Horsepower super conductive field acyclic motor

    SciTech Connect

    Marshall, R.

    1983-05-01

    A 3000 hp acyclic motor was assembled and tested utilizing superconducting field coils. The magnet assembly is designed as a quadrupole magnet, utilizing a multifilamentary niobium titanium superconductor. Each magnet coil is 18 inches in diameter and 10 inches long, and operates at rated current of 200 amperes, providing 5.8 tesla in the bore of the coils in the motor configuration. The average winding current density is 10,600 A/cm/sup 2/. The acyclic motor is of a drum-type design with liquid metal current collectors, and is designed to model full-scale machinery for ship propulsion applications. Laboratory test data verified the electrical and electromagnetic design to be within three percent of the calculated values.

  3. DAG Telescope: A New Potential for MOS Observations

    NASA Astrophysics Data System (ADS)

    Alis, S.; Yesilyaprak, C.; Yerli, S. K.

    2016-10-01

    East Anatolian Observatory (aka. DAG) is a national project supported by the Turkish Government for building a 4 m class telescope which will be working in the optical and near-IR domain. As the tender process has been completed and kick-off to the telescope and the mirror production has been initiated, the project team is looking for possible collaborations for the focal plane instrumentation. This contribution is intended to describe the DAG project and to show its opportunities for a state-of-the-art MOS instrument.

  4. Polar reactions of acyclic conjugated bisallenes

    PubMed Central

    Stamm, Reiner

    2013-01-01

    Summary The chemical behaviour of various alkyl-substituted, acyclic conjugated bisallenes in reactions involving polar intermediates and/or transition states has been investigated on a broad scale for the first time. The reactions studied include lithiation, reaction of the thus formed organolithium salts with various electrophiles (among others, allyl bromide, DMF and acetone), oxidation to cyclopentenones and epoxides, hydrohalogenation (HCl, HBr addition), halogenation (Br2 and I2 addition), and [2 + 2] cycloaddition with chlorosulfonyl isocyanate. The resulting adducts were fully characterized by spectroscopic and analytical methods; they constitute interesting substrates for further organic transformations. PMID:23400309

  5. Internet topology: connectivity of IP graphs

    NASA Astrophysics Data System (ADS)

    Broido, Andre; claffy, kc

    2001-07-01

    In this paper we introduce a framework for analyzing local properties of Internet connectivity. We compare BGP and probed topology data, finding that currently probed topology data yields much denser coverage of AS-level connectivity. We describe data acquisition and construction of several IP- level graphs derived from a collection of 220 M skitter traceroutes. We find that a graph consisting of IP nodes and links contains 90.5% of its 629 K nodes in the acyclic subgraph. In particular, 55% of the IP nodes are in trees. Full bidirectional connectivity is observed for a giant component containing 8.3% of IP nodes.

  6. Process optimization of enzyme catalyzed production of dietary diacylglycerol (DAG) using TLIM as biocatalyst.

    PubMed

    Dhara, Rupali; Singhal, Rekha S

    2014-01-01

    Diacylglycerol (DAG)-rich sunflower oil was prepared and the optimal conditions for synthesis of DAG-rich oil by glycerolysis using biocatalyst TLIM was determined. A maximum production of 59.8% DAG was obtained after 5 h of constant reaction under vacuum (756 mm of Hg). The optimum temperature for glycerolysis was found to be 50°C, while stoichiometric molar ratio of sunflower oil:glycerol was 2:1 for this reaction. A minimum acid value of 0.48 mg of KOH.g(-1) of oil was observed under these conditions. The fatty acid composition of DAG-rich oil was found to be similar to the original TAG-rich sunflower oil used in the work. The lipase catalysed glycerolysis using 1,3 specific lipase was used to promote the formation of 1,3 isoform of DAG as this isoform is known to possess anti-obesity effect. DAG content was determined by HPTLC and GCMS. The DAG-rich oil contained 59.75% DAG of which 63.34% was found as 1,3-DAG and 36.65% was 1,2-DAG/2,3-DAG.

  7. Graph Library

    2007-06-12

    GraphLib is a support library used by other tools to create, manipulate, store, and export graphs. It provides a simple interface to specifS’ arbitrary directed and undirected graphs by adding nodes and edges. Each node and edge can be associated with a set of attributes describing size, color, and shape. Once created, graphs can be manipulated using a set of graph analysis algorithms, including merge, prune, and path coloring operations. GraphLib also has the abilitymore » to export graphs into various open formats such as DOT and GML.« less

  8. Targeted Lipidomics of Fontal Cortex and Plasma Diacylglycerols (DAG) in Mild Cognitive Impairment and Alzheimer's Disease: Validation of DAG Accumulation Early in the Pathophysiology of Alzheimer's Disease.

    PubMed

    Wood, Paul L; Medicherla, Srikanth; Sheikh, Naveen; Terry, Bradley; Phillipps, Aaron; Kaye, Jeffrey A; Quinn, Joseph F; Woltjer, Randall L

    2015-01-01

    Previous studies have demonstrated augmented levels of diacylglycerols (DAG) in the frontal cortex and plasma of Alzheimer's disease (AD) patients. We extended these findings from non-targeted lipidomics studies to design a lipidomics platform to interrogate DAGs and monoacylglycerols (MAG) in the frontal cortex and plasma of MCI subjects. Control subjects included both aged normal controls and controls with normal cognition, but AD pathology at autopsy, individuals termed non-demented AD neuropathology. DAGs with saturated, unsaturated, and polyunsaturated fatty acid substituents were found to be elevated in MCI frontal cortex and plasma. Tandem mass spectrometry of the DAGs did not reveal any differences in the distributions of the fatty acid substitutions between MCI and control subjects. While triacylglycerols were not altered in MCI subjects there were increases in MAG levels both in the frontal cortex and plasma. In toto, increased levels of DAGs and MAGs appear to occur early in AD pathophysiology and require both further validation in a larger patient cohort and elucidation of the lipidomics alteration(s) that lead to the accumulation of DAGs in MCI subjects. PMID:26402017

  9. Targeted Lipidomics of Fontal Cortex and Plasma Diacylglycerols (DAG) in Mild Cognitive Impairment and Alzheimer's Disease: Validation of DAG Accumulation Early in the Pathophysiology of Alzheimer's Disease.

    PubMed

    Wood, Paul L; Medicherla, Srikanth; Sheikh, Naveen; Terry, Bradley; Phillipps, Aaron; Kaye, Jeffrey A; Quinn, Joseph F; Woltjer, Randall L

    2015-01-01

    Previous studies have demonstrated augmented levels of diacylglycerols (DAG) in the frontal cortex and plasma of Alzheimer's disease (AD) patients. We extended these findings from non-targeted lipidomics studies to design a lipidomics platform to interrogate DAGs and monoacylglycerols (MAG) in the frontal cortex and plasma of MCI subjects. Control subjects included both aged normal controls and controls with normal cognition, but AD pathology at autopsy, individuals termed non-demented AD neuropathology. DAGs with saturated, unsaturated, and polyunsaturated fatty acid substituents were found to be elevated in MCI frontal cortex and plasma. Tandem mass spectrometry of the DAGs did not reveal any differences in the distributions of the fatty acid substitutions between MCI and control subjects. While triacylglycerols were not altered in MCI subjects there were increases in MAG levels both in the frontal cortex and plasma. In toto, increased levels of DAGs and MAGs appear to occur early in AD pathophysiology and require both further validation in a larger patient cohort and elucidation of the lipidomics alteration(s) that lead to the accumulation of DAGs in MCI subjects.

  10. Campaign graphs

    SciTech Connect

    Simmons, G.J.

    1988-01-01

    We define a class of geometrical constructions in the plane in which each (unextended) line lies on (precisely) k points, and every point is an endpoint of (precisely) one line. We will refer to any construction satisfying these conditions as a campaign graph, or as a k-campaign graph if the value of k isn't clear from the context. A k-campaign graph, G, is said to be critical if no subgraph of G is also a k-campaign graph. 11 figs.

  11. Acyclic Tethers Mimicking Subunits of Polysaccharide Ligands: Selectin Antagonists

    PubMed Central

    2014-01-01

    We report on the design and synthesis of molecules having E- and P-selectins blocking activity both in vitro and in vivo. The GlcNAc component of the selectin ligand sialyl LewisX was replaced by an acyclic tether that links two saccharide units. The minimization of intramolecular dipole–dipole interactions and the gauche effect would be at the origin of the conformational bias imposed by this acyclic tether. The stereoselective synthesis of these molecules, their biochemical and biological evaluations using surface plasmon resonance spectroscopy (SPR), and in vivo assays are described. Because the structure of our analogues differs from the most potent E-selectin antagonists reported, our acyclic analogues offer new opportunities for chemical diversity. PMID:25221666

  12. On the acyclicity of the solution sets of operator equations

    SciTech Connect

    Gel'man, Boris D

    2010-12-07

    A parameter-dependent completely continuous map is considered. The acyclicity of the set of fixed points of this map is proved for some fixed value of the parameter under the assumption that for close values of the parameter the map has a unique fixed point. The results obtained are used to prove the acyclicity of the set of fixed points of a 'nonscattering' map, as well as to study the topological structure of the set of fixed points of an abstract Volterra map. Bibliography: 13 titles.

  13. Graphing Predictions

    ERIC Educational Resources Information Center

    Connery, Keely Flynn

    2007-01-01

    Graphing predictions is especially important in classes where relationships between variables need to be explored and derived. In this article, the author describes how his students sketch the graphs of their predictions before they begin their investigations on two laboratory activities: Distance Versus Time Cart Race Lab and Resistance; and…

  14. DAG, a gene required for chloroplast differentiation and palisade development in Antirrhinum majus.

    PubMed

    Chatterjee, M; Sparvoli, S; Edmunds, C; Garosi, P; Findlay, K; Martin, C

    1996-08-15

    We have identified a mutation at the DAG locus of Antirrhinum majus which blocks the development of chloroplasts to give white leaves with green revertant sectors. The green areas contain normal chloroplasts whereas the white areas have small plastids that resemble proplastids. The cotyledons of dark-grown dag mutant seedlings have plastids which also resemble proplastids. The palisade cells in the white areas of dag mutant leaves also lack their characteristic columnar shape. The DAG locus was cloned by transposon tagging: DAG encodes a novel protein with a predicted Mr of 26k, which is targeted to the plastids. Cleavage of its predicted transit peptide gives a mature protein of Mr 20k. Screening of databases and analysis of Southern blots gave evidence that DAG belongs to a protein family with homology to several proteins of unknown function from plants. Expression of DAG is required for expression of nuclear genes affecting the chloroplasts, such as CAB and RBCS, and also for expression of the plastidial gene RPOB encoding the plastidial RNA polymerase beta subunit, indicating that it functions very early in chloroplast development.

  15. DAG, a gene required for chloroplast differentiation and palisade development in Antirrhinum majus.

    PubMed Central

    Chatterjee, M; Sparvoli, S; Edmunds, C; Garosi, P; Findlay, K; Martin, C

    1996-01-01

    We have identified a mutation at the DAG locus of Antirrhinum majus which blocks the development of chloroplasts to give white leaves with green revertant sectors. The green areas contain normal chloroplasts whereas the white areas have small plastids that resemble proplastids. The cotyledons of dark-grown dag mutant seedlings have plastids which also resemble proplastids. The palisade cells in the white areas of dag mutant leaves also lack their characteristic columnar shape. The DAG locus was cloned by transposon tagging: DAG encodes a novel protein with a predicted Mr of 26k, which is targeted to the plastids. Cleavage of its predicted transit peptide gives a mature protein of Mr 20k. Screening of databases and analysis of Southern blots gave evidence that DAG belongs to a protein family with homology to several proteins of unknown function from plants. Expression of DAG is required for expression of nuclear genes affecting the chloroplasts, such as CAB and RBCS, and also for expression of the plastidial gene RPOB encoding the plastidial RNA polymerase beta subunit, indicating that it functions very early in chloroplast development. Images PMID:8861948

  16. Graph Theory

    SciTech Connect

    Sanfilippo, Antonio P.

    2005-12-27

    Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for the representation of grammar formalisms.

  17. DaG 1066: A Newfound Anomalous Ureilite with Chondritic Inclusions

    NASA Astrophysics Data System (ADS)

    Moggi Cecchi, V.; Caporali, S.; Pratesi, G.

    2015-07-01

    General description, textural, and compositional features of the polymict ureilite DaG 1066, recovered in 1999 in Libya, are provided. The meteorite contains various inclusions, among which almost pure forsterite and enstatite-bearing chondrules.

  18. Potent norovirus inhibitors based on the acyclic sulfamide scaffold

    PubMed Central

    Dou, Dengfeng; Tiew, Kok-Chuan; Rao Mandadapu, Sivakoteswara; Reddy Gunnam, Mallikarjuna; Alliston, Kevin R.; Kim, Yunjeong; Chang, Kyeong-Ok; Groutas, William C.

    2013-01-01

    The development of small molecule therapeutics to combat norovirus infection is of considerable interest from a public health perspective because of the highly contagious nature of noroviruses. A series of amino acid-derived acyclic sulfamide-based norovirus inhibitors has been synthesized and evaluated using a cell-based replicon system. Several compounds were found to display potent anti-norovirus activity, low toxicity, and good aqueous solubility. These compounds are suitable for further optimization of pharmacological and ADMET properties. PMID:22356738

  19. Graphing Reality

    NASA Astrophysics Data System (ADS)

    Beeken, Paul

    2014-11-01

    Graphing is an essential skill that forms the foundation of any physical science.1 Understanding the relationships between measurements ultimately determines which modeling equations are successful in predicting observations.2 Over the years, science and math teachers have approached teaching this skill with a variety of techniques. For secondary school instruction, the job of graphing skills falls heavily on physics teachers. By virtue of the nature of the topics we cover, it is our mission to develop this skill to the fine art that it is.

  20. Graphing Reality

    ERIC Educational Resources Information Center

    Beeken, Paul

    2014-01-01

    Graphing is an essential skill that forms the foundation of any physical science. Understanding the relationships between measurements ultimately determines which modeling equations are successful in predicting observations. Over the years, science and math teachers have approached teaching this skill with a variety of techniques. For secondary…

  1. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding

    PubMed Central

    Canault, Matthias; Ghalloussi, Dorsaf; Grosdidier, Charlotte; Guinier, Marie; Perret, Claire; Chelghoum, Nadjim; Germain, Marine; Raslova, Hana; Peiretti, Franck; Morange, Pierre E.; Saut, Noemie; Pillois, Xavier; Nurden, Alan T.; Cambien, François; Pierres, Anne; van den Berg, Timo K.; Kuijpers, Taco W.; Tregouet, David-Alexandre

    2014-01-01

    The nature of an inherited platelet disorder was investigated in three siblings affected by severe bleeding. Using whole-exome sequencing, we identified the culprit mutation (cG742T) in the RAS guanyl-releasing protein-2 (RASGRP2) gene coding for calcium- and DAG-regulated guanine exchange factor-1 (CalDAG-GEFI). Platelets from individuals carrying the mutation present a reduced ability to activate Rap1 and to perform proper αIIbβ3 integrin inside-out signaling. Expression of CalDAG-GEFI mutant in HEK293T cells abolished Rap1 activation upon stimulation. Nevertheless, the PKC- and ADP-dependent pathways allow residual platelet activation in the absence of functional CalDAG-GEFI. The mutation impairs the platelet’s ability to form thrombi under flow and spread normally as a consequence of reduced Rac1 GTP-binding. Functional deficiencies were confined to platelets and megakaryocytes with no leukocyte alteration. This contrasts with the phenotype seen in type III leukocyte adhesion deficiency caused by the absence of kindlin-3. Heterozygous did not suffer from bleeding and have normal platelet aggregation; however, their platelets mimicked homozygous ones by failing to undergo normal adhesion under flow and spreading. Rescue experiments on cultured patient megakaryocytes corrected the functional deficiency after transfection with wild-type RASGRP2. Remarkably, the presence of a single normal allele is sufficient to prevent bleeding, making CalDAG-GEFI a novel and potentially safe therapeutic target to prevent thrombosis. PMID:24958846

  2. DAG-TM Concept Element 11 CNS Performance Assessment: ADS-B Performance in the TRACON

    NASA Technical Reports Server (NTRS)

    Raghavan, Rajesh S.

    2004-01-01

    Distributed Air/Ground (DAG) Traffic Management (TM) is an integrated operational concept in which flight deck crews, air traffic service providers and aeronautical operational control personnel use distributed decision-making to enable user preferences and increase system capacity, while meeting air traffic management (ATM) safety requirements. It is a possible operational mode under the Free Flight concept outlined by the RTCA Task Force 3. The goal of DAG-TM is to enhance user flexibility/efficiency and increase system capacity, without adversely affecting system safety or restricting user accessibility to the National Airspace System (NAS). DAG-TM will be accomplished with a human-centered operational paradigm enabled by procedural and technological innovations. These innovations include automation aids, information sharing and Communication, Navigation, and Surveillance (CNS) / ATM technologies. The DAG-TM concept is intended to eliminate static restrictions to the maximum extent possible. In this paradigm, users may plan and operate according to their preferences - as the rule rather than the exception - with deviations occurring only as necessary. The DAG-TM concept elements aim to mitigate the extent and impact of dynamic NAS constraints, while maximizing the flexibility of airspace operations

  3. Efficient enumeration of monocyclic chemical graphs with given path frequencies

    PubMed Central

    2014-01-01

    Background The enumeration of chemical graphs (molecular graphs) satisfying given constraints is one of the fundamental problems in chemoinformatics and bioinformatics because it leads to a variety of useful applications including structure determination and development of novel chemical compounds. Results We consider the problem of enumerating chemical graphs with monocyclic structure (a graph structure that contains exactly one cycle) from a given set of feature vectors, where a feature vector represents the frequency of the prescribed paths in a chemical compound to be constructed and the set is specified by a pair of upper and lower feature vectors. To enumerate all tree-like (acyclic) chemical graphs from a given set of feature vectors, Shimizu et al. and Suzuki et al. proposed efficient branch-and-bound algorithms based on a fast tree enumeration algorithm. In this study, we devise a novel method for extending these algorithms to enumeration of chemical graphs with monocyclic structure by designing a fast algorithm for testing uniqueness. The results of computational experiments reveal that the computational efficiency of the new algorithm is as good as those for enumeration of tree-like chemical compounds. Conclusions We succeed in expanding the class of chemical graphs that are able to be enumerated efficiently. PMID:24955135

  4. Understanding Graphs & Charts.

    ERIC Educational Resources Information Center

    Cleary, John J.; Gravely, Mary Liles

    Developed by educators from the Emily Griffith Opportunity School, this teacher's guide was developed for a 4-hour workshop to teach employees how to read the charts and graphs they need in the workplace. The unit covers four types of graphs: pictographs, bar graphs, line graphs, and circle graphs. The guide is divided into four sections: reading…

  5. Tyrosinase kinetics in epidermal melanocytes: analysis of DAG-PKC-dependent signaling pathway

    NASA Astrophysics Data System (ADS)

    Stolnitz, Mikhail M.; Peshkova, Anna Y.

    2001-05-01

    Tyrosinase is the key enzyme of melanogenesis with unusual enzyme kinetics. Protein kinase C plays an important role in regulating of tyrosinase activity. In the paper the mathematical model of PKC-DAG-dependent signal transduction pathway for UV-radiation is presented.

  6. Quantification of TAG and DAG in lesquerella (Physaria fendleri) oil by HPLC and MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Castor oil has many industrial uses because of its high content (90%) of the hydroxy fatty acid, ricinoleic acid (OH1218:19). Lesquerella oil containing lesquerolic acid (Ls, OH1420:111, 56.5%) is potentially useful in industry. Ten diacylglycerols (DAG) and 74 triacylglycerols (TAG) in the seed oil...

  7. Path matching and graph matching in biological networks.

    PubMed

    Yang, Qingwu; Sze, Sing-Hoi

    2007-01-01

    We develop algorithms for the following path matching and graph matching problems: (i) given a query path p and a graph G, find a path p' that is most similar to p in G; (ii) given a query graph G (0) and a graph G, find a graph G (0)' that is most similar to G (0) in G. In these problems, p and G (0) represent a given substructure of interest to a biologist, and G represents a large network in which the biologist desires to find a related substructure. These algorithms allow the study of common substructures in biological networks in order to understand how these networks evolve both within and between organisms. We reduce the path matching problem to finding a longest weighted path in a directed acyclic graph and show that the problem of finding top k suboptimal paths can be solved in polynomial time. This is in contrast with most previous approaches that used exponential time algorithms to find simple paths which are practical only when the paths are short. We reduce the graph matching problem to finding highest scoring subgraphs in a graph and give an exact algorithm to solve the problem when the query graph G (0) is of moderate size. This eliminates the need for less accurate heuristic or randomized algorithms. We show that our algorithms are able to extract biologically meaningful pathways from protein interaction networks in the DIP database and metabolic networks in the KEGG database. Software programs implementing these techniques (PathMatch and GraphMatch) are available at http://faculty.cs.tamu.edu/shsze/pathmatch and http://faculty.cs.tamu.edu/shsze/graphmatch.

  8. Ezekiel graphs

    SciTech Connect

    Simmons, G.J.

    1991-01-01

    In spite of the old adage that No finite sequence of symbols is random,'' there are many instances in which it is desirable to quantify how random'' a finite sequence is. Pseudorandom number generators and cryptographic key generators typically expand a short, randomly chosen, seed sequence into a much longer sequence which should appear random to anyone ignorant of the seed. Unique initiating signals chosen to minimize the likelihood of an accidental initiation of an important action should be random'' to lessen the chance of their natural occurrence, etc. Consequently, numerous tests for the randomness of finite sequences have been proposed. John Milnor argued that if a binary sequence is random then the fraction of 1's, r{sub 1}, should be very nearly 1/2 in it and in all of what he called its derivatives. Since every sequence has a unique derivative this defines a natural family of digraphs, G{sub n}, on 2{sup n} vertices in which vertices are labeled with n-bit binary sequences and an edge is directed from the vertex labeled with the sequence A to the vertex labeled with the sequence B if B is the derivative of A. Each component of G{sub n} is eventually cyclic. This paper is concerned with a special case in which the sequences in a cycle are all cyclic shifts of a single sequence -- hence the name of Ezekiel graphs. Surprising, there are Ezekiel graphs for which r{sub 1} is as close to 1/2 as is numerically possible, i.e., that satisfy Milnor's test for randomness as closely as it can be satisfied, even though the sequence of sequences are about as far from random as is conceivable. In this paper the existence and properties of Ezekiel sequences are investigated from an algebraic standpoint.

  9. Forming Stereogenic Centers in Acyclic Systems from Alkynes.

    PubMed

    Vabre, Roxane; Island, Biana; Diehl, Claudia J; Schreiner, Peter R; Marek, Ilan

    2015-08-17

    The combined carbometalation/zinc homologation followed by reactions with α-heterosubstituted aldehydes and imines proceed through a chair-like transition structure with the substituent of the incoming aldehyde residue preferentially occupying a pseudo-axial position to avoid the two gauche interactions. The heteroatom in the axial position produces a chelated intermediate (and not a Cornforth-Evans transition structure for α-chloro aldehydes and imines) leading to a face differentiation in the allylation reaction. This method provides access to functionalized products in which three new carbon-carbon bonds and two to three stereogenic centers, including a quaternary one, were created in acyclic systems in a single-pot operation from simple alkynes. PMID:26130570

  10. Forming Stereogenic Centers in Acyclic Systems from Alkynes.

    PubMed

    Vabre, Roxane; Island, Biana; Diehl, Claudia J; Schreiner, Peter R; Marek, Ilan

    2015-08-17

    The combined carbometalation/zinc homologation followed by reactions with α-heterosubstituted aldehydes and imines proceed through a chair-like transition structure with the substituent of the incoming aldehyde residue preferentially occupying a pseudo-axial position to avoid the two gauche interactions. The heteroatom in the axial position produces a chelated intermediate (and not a Cornforth-Evans transition structure for α-chloro aldehydes and imines) leading to a face differentiation in the allylation reaction. This method provides access to functionalized products in which three new carbon-carbon bonds and two to three stereogenic centers, including a quaternary one, were created in acyclic systems in a single-pot operation from simple alkynes.

  11. High incidence of 'Dag-like' sperm defect in the domestic cat.

    PubMed

    Villaverde, Ana Izabel S Balbin; Fioratti, Eduardo G; Ramos, Renata S; Neves, Renato C F; Cardoso, Guilherme S; Landim-Alvarenga, Fernanda C; Lopes, Maria Denise

    2013-04-01

    The occurrence of a high incidence of sperm tail defects in a male domestic cat resembling the known 'Dag-like' defect is reported. Sperm analyses were performed in ejaculated samples collected by an artificial vagina and in testicular and epididymal sperm cells after castration. The following alterations were observed using transmission electron microscope: heavily coiled sperm tails containing several axonemal units enclosed in the same common cell membrane; aberrations in the axonemal main structure; and swollen and unevenly distributed mitochondria in the midpiece. Abnormal modifications in the mitochondrial sheath were also found in sperm cells retrieved from testes and epididymides. Considering these findings, we can conclude that this is the Dag-like defect, described previously in other domestic species and a testicular origin may be involved.

  12. Graphing Polar Curves

    ERIC Educational Resources Information Center

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  13. Graphing for Any Grade.

    ERIC Educational Resources Information Center

    Nibbelink, William

    1982-01-01

    An instructional sequence for teaching graphing that has been extensively field tested in kindergarten through grade six is detailed. The material begins with point graphs, employs a movable y-axis to begin with minimal clutter, and has graphs constructed before reading graphs is required. (MP)

  14. Targeted Lipidomics of Fontal Cortex and Plasma Diacylglycerols (DAG) in Mild Cognitive Impairment (MCI) and Alzheimer’s Disease: Validation of DAG Accumulation Early in the Pathophysiology of Alzheimer’s Disease

    PubMed Central

    Wood, Paul L.; Medicherla, Srikanth; Sheikh, Naveen; Terry, Bradley; Phillipps, Aaron; Kaye, Jeffrey A.; Quinn, Joseph F.; Woltjer, Randall L.

    2016-01-01

    Previous studies have demonstrated augmented levels of diacylglycerols (DAG) in the frontal cortex and plasma of Alzheimer’s disease (AD) patients. We extended these findings from non-targeted liopidomics studies to design a lipidomics platform to interrogate DAGs and monoacylglycerols (MAG) in the frontal cortex and plasma of MCI subjects. Control subjects included both aged normal controls and controls with normal cognition, but AD pathology at autopsy, individuals termed non-demented AD neuropathology (NDAN). DAGs with saturated, unsaturated, and polyunsaturated fatty acid substituents were found to be elevated in MCI frontal cortex and plasma. Tandem mass spectrometry of the DAGs did not reveal any differences in the distributions of the fatty acid substitutions between MCI and control subjects. While triacylglycerols were not altered in MCI subjects there were increases in monoacylglycerol levels both in the frontal cortex and plasma. In toto, increased levels of DAGs and MAGs appear to occur early in AD pathophysiology and require both further validation in a larger patient cohort and elucidation of the lipidomics alteration(s) that lead to the accumulation of DAGs in MCI subjects. PMID:26402017

  15. Exact Algorithms for Coloring Graphs While Avoiding Monochromatic Cycles

    NASA Astrophysics Data System (ADS)

    Talla Nobibon, Fabrice; Hurkens, Cor; Leus, Roel; Spieksma, Frits C. R.

    We consider the problem of deciding whether a given directed graph can be vertex partitioned into two acyclic subgraphs. Applications of this problem include testing rationality of collective consumption behavior, a subject in micro-economics. We identify classes of directed graphs for which the problem is easy and prove that the existence of a constant factor approximation algorithm is unlikely for an optimization version which maximizes the number of vertices that can be colored using two colors while avoiding monochromatic cycles. We present three exact algorithms, namely an integer-programming algorithm based on cycle identification, a backtracking algorithm, and a branch-and-check algorithm. We compare these three algorithms both on real-life instances and on randomly generated graphs. We find that for the latter set of graphs, every algorithm solves instances of considerable size within few seconds; however, the CPU time of the integer-programming algorithm increases with the number of vertices in the graph while that of the two other procedures does not. For every algorithm, we also study empirically the transition from a high to a low probability of YES answer as function of a parameter of the problem. For real-life instances, the integer-programming algorithm fails to solve the largest instance after one hour while the other two algorithms solve it in about ten minutes.

  16. Formation of P-Rich Olivine in DaG 978 Carbonaceous Chondrite Through Fluid-Assisted Metamorphism

    NASA Astrophysics Data System (ADS)

    Zhang, A. C.; Li, Y.; Chen, J. N.; Gu, L. X.; Wang, R. C.

    2016-08-01

    We describe an occurrence of P-rich olivine in the DaG 978 carbonaceous chondrite. Different from other natural P-rich olivine, the P-rich olivine should have formed through fluid-assisted metamorphism.

  17. Structural Interactions within Lithium Salt Solvates. Acyclic Carbonates and Esters

    SciTech Connect

    Afroz, Taliman; Seo, D. M.; Han, Sang D.; Boyle, Paul D.; Henderson, Wesley A.

    2015-03-06

    Solvate crystal structures serve as useful models for the molecular-level interactions within the diverse solvates present in liquid electrolytes. Although acyclic carbonate solvents are widely used for Li-ion battery electrolytes, only three solvate crystal structures with lithium salts are known for these and related solvents. The present work, therefore, reports six lithium salt solvate structures with dimethyl and diethyl carbonate: (DMC)2:LiPF6, (DMC)1:LiCF3SO3, (DMC)1/4:LiBF4, (DEC)2:LiClO4, (DEC)1:LiClO4 and (DEC)1:LiCF3SO3 and four with the structurally related methyl and ethyl acetate: (MA)2:LiClO4, (MA)1:LiBF4, (EA)1:LiClO4 and (EA)1:LiBF4.

  18. Nemrud Dag

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio; González-García, A. César

    The World Heritage Site of the hierothesion of Antiochos I, King of Commagene, at Mount Nemrud (Turkey) certainly constitutes one of the most fascinating historical enigmas in human culture. The monument includes the famous lion "horoscope" which has often been used in various attempts to interpret and date the ruins with controversial results. According to recent analyses, Antiochos' monument reflects the situation of the skies at exclusive moments of the year 49 BC, when the monument would have been started. This alternative explanation considers the lion slab together with the orientation of the eastern and western terraces of the hierothesion and the inscriptions on the monument.

  19. Modeling impact-induced reactivity changes using DAG-MCNP5.

    SciTech Connect

    Smith, Brandon M.; Wilson, Paul Philip Hood

    2010-11-01

    There is a long literature studying the criticality of space reactors immersed in water/sand after a launch accident; however most of these studies evaluate nominal or uniformly compacted system configurations. There is less research on the reactivity consequences of impact, which can cause large structural deformation of reactor components that can result in changes in the reactivity of the system. Predicting these changes is an important component of launch safety analysis. This paper describes new features added to the DAG-MCNP5 neutronics code that allow the criticality analysis of deformed geometries. A CAD-based solid model of the reactor geometry is used to generate an initial mesh for a structural mechanics impact calculation using the PRONTO3D/PRESTO continuum mechanics codes. Boundary conditions and material specifications for the reactivity analysis are attached to the solid model that is then associated with the initial mesh representation. This geometry is then updated with the deformed finite element mesh to perturb node coordinates. DAG-MCNP5 was extended to accommodate two consequences of the large structural deformations: dead elements representing fracture, and small overlaps between adjacent volumes. The dead elements are removed during geometry initialization and adjustments are made to conseve mass. More challenging, small overlaps where adjacent mesh elements contact cause the geometric queries to become unreliable. A new point membership test was developed that is tolerant of self-intersecting volumes, and the particle tracking algorithm was adjusted to enable transport through small overlaps. These new features enable DAG-MCNP5 to perform particle transport and criticality eigenvalue calculations on both deformed mesh geometry and CAD geometry with small geometric defects. Detailed impact simulations were performed on an 85-pin space reactor model. Iin the most realistic model that included NaK coolant and water in the impact simulation, the

  20. Graphing Inequalities, Connecting Meaning

    ERIC Educational Resources Information Center

    Switzer, J. Matt

    2014-01-01

    Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an…

  1. Graph-Plotting Routine

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1987-01-01

    Plotter routine for IBM PC (AKPLOT) designed for engineers and scientists who use graphs as integral parts of their documentation. Allows user to generate graph and edit its appearance on cathode-ray tube. Graph may undergo many interactive alterations before finally dumped from screen to be plotted by printer. Written in BASIC.

  2. Graphing Important People

    ERIC Educational Resources Information Center

    Reading Teacher, 2012

    2012-01-01

    The "Toolbox" column features content adapted from ReadWriteThink.org lesson plans and provides practical tools for classroom teachers. This issue's column features a lesson plan adapted from "Graphing Plot and Character in a Novel" by Lisa Storm Fink and "Bio-graph: Graphing Life Events" by Susan Spangler. Students retell biographic events…

  3. Universal Quantum Graphs

    NASA Astrophysics Data System (ADS)

    Pluhař, Z.; Weidenmüller, H. A.

    2014-04-01

    For time-reversal invariant graphs we prove the Bohigas-Giannoni-Schmit conjecture in its most general form: For graphs that are mixing in the classical limit, all spectral correlation functions coincide with those of the Gaussian orthogonal ensemble of random matrices. For open graphs, we derive the analogous identities for all S-matrix correlation functions.

  4. Graphing with "LogoWriter."

    ERIC Educational Resources Information Center

    Yoder, Sharon K.

    This book discusses four kinds of graphs that are taught in mathematics at the middle school level: pictographs, bar graphs, line graphs, and circle graphs. The chapters on each of these types of graphs contain information such as starting, scaling, drawing, labeling, and finishing the graphs using "LogoWriter." The final chapter of the book…

  5. Methods of visualizing graphs

    SciTech Connect

    Wong, Pak C.; Mackey, Patrick S.; Perrine, Kenneth A.; Foote, Harlan P.; Thomas, James J.

    2008-12-23

    Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.

  6. Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Ma, Da; Hettiarachchi, Gaya; Nguyen, Duc; Zhang, Ben; Wittenberg, James B.; Zavalij, Peter Y.; Briken, Volker; Isaacs, Lyle

    2012-06-01

    The solubility characteristics of 40-70% of new drug candidates are so poor that they cannot be formulated on their own, so new methods for increasing drug solubility are highly prized. Here, we describe a new class of general-purpose solubilizing agents—acyclic cucurbituril-type containers—which increase the solubility of ten insoluble drugs by a factor of between 23 and 2,750 by forming container-drug complexes. The containers exhibit low in vitro toxicity in human liver, kidney and monocyte cell lines, and outbred Swiss Webster mice tolerate high doses of the container without sickness or weight loss. Paclitaxel solubilized by the acyclic cucurbituril-type containers kills cervical and ovarian cancer cells more efficiently than paclitaxel alone. The acyclic cucurbituril-type containers preferentially bind cationic and aromatic drugs, but also solubilize neutral drugs such as paclitaxel, and represent an attractive extension of cyclodextrin-based technology for drug solubilization and delivery.

  7. N-methyl-substituted fluorescent DAG-indololactone isomers exhibit dramatic differences in membrane interactions and biological activity

    PubMed Central

    Gal, Noga; Kolusheva, Sofiya; Kedei, Noemi; Telek, Andrea; Naeem, Taiyabah A.; Lewin, Nancy E.; Lim, Langston; Mannan, Poonam; Garfield, Susan H.; Kazzouli, Säid El; Sigano, Dina M.; Marquez, Victor E.; Blumberg, Peter M.

    2013-01-01

    N-methyl substituted diacylglycerol-indololactones (DAG-indololactones) are newly-synthesized effectors of protein kinase C (PKC) isoforms and exhibit substantial selectivity between RasGRP3 and PKC alpha. We present a comprehensive analysis of membrane interactions and biological activities of several DAG-indololactones. Translocation and binding activity assays underline significant variations between the PKC translocation characteristics affected by the ligands as compared to their binding activities. In parallel, the fluorescent properties of the ligands were employed for analysis of their membrane association profiles. Specifically, we find that a slight change in the linkage to the indole ring resulted in significant differences in membrane binding and association of the DAG-indololactones with lipid bilayers. Our analysis shows that seemingly small structural modifications of the hydrophobic regions of these biomimetic PKC effectors contribute to pronounced modulation of membrane interactions of the ligands PMID:23106081

  8. Topologies on directed graphs

    NASA Technical Reports Server (NTRS)

    Lieberman, R. N.

    1972-01-01

    Given a directed graph, a natural topology is defined and relationships between standard topological properties and graph theoretical concepts are studied. In particular, the properties of connectivity and separatedness are investigated. A metric is introduced which is shown to be related to separatedness. The topological notions of continuity and homeomorphism. A class of maps is studied which preserve both graph and topological properties. Applications involving strong maps and contractions are also presented.

  9. Graph Generator Survey

    SciTech Connect

    Lothian, Josh; Powers, Sarah S; Sullivan, Blair D; Baker, Matthew B; Schrock, Jonathan; Poole, Stephen W

    2013-12-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of dierent application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  10. mpiGraph

    2007-05-22

    MpiGraph consists of an MPI application called mpiGraph written in C to measure message bandwidth and an associated crunch_mpiGraph script written in Perl to process the application output into an HTMO report. The mpiGraph application is designed to inspect the health and scalability of a high-performance interconnect while under heavy load. This is useful to detect hardware and software problems in a system, such as slow nodes, links, switches, or contention in switch routing. Itmore » is also useful to characterize how interconnect performance changes with different settings or how one interconnect type compares to another.« less

  11. Study of the recent geodynamic processes in the Kopet-Dag region

    NASA Astrophysics Data System (ADS)

    Izyumov, S. F.; Kuzmin, Yu. O.

    2014-11-01

    The time series of the uniquely long geodetic observations of recent geodynamic processes in the Kopet-Dag region are analyzed. The regional observations of contemporary vertical movements cover a 75-year period; the zonal and local systems of leveling measurements, which provide an increased degree of spatiotemporal detail (the distance between the benchmarks is less than 1 km and the measurements are repeated with a frequency of once per month to two times per annum), have been functioning for 50 years. It is shown that during the last 40-50 years, the regional stress field in the forefront of the Main Kopet-Dag thrust and collision zone of the Turanian and Iranian plates is quasi static. The annual average trend rate of strains estimated from a set of the time series of uniquely long geodetic observations is (3-5) × 10-8 yr-1, which is only one to two amplitudes of tidal deformations of the solid Earth. The local deformations in the fault zone reach the rates that are by 1.5-2 orders of magnitude higher than in the block part of the region. It is found that the segments of the Earth's surface within the axial part of the depression experience persistent uplifting, which indicates that they do not follow the scheme of inherited evolution characteristic of the fault-block structures of the region. It is demonstrated that these anomalous uplifts can be caused by the variations in the weak seismicity in the zone of the North Ashgabat Fault.

  12. Towards dipyrrins: oxidation and metalation of acyclic and macrocyclic Schiff-base dipyrromethanes.

    PubMed

    Pankhurst, James R; Cadenbach, Thomas; Betz, Daniel; Finn, Colin; Love, Jason B

    2015-02-01

    Oxidation of acyclic Schiff-base dipyrromethanes cleanly results in dipyrrins, whereas the macrocyclic 'Pacman' analogues either decompose or form new dinuclear copper(ii) complexes that are inert to ligand oxidation; the unhindered hydrogen substituent at the meso-carbon allows new structural motifs to form.

  13. Synthesis and reactivity of metal complexes with acyclic (amino)(ylide)carbene ligands.

    PubMed

    González-Fernández, Elisa; Rust, Jörg; Alcarazo, Manuel

    2013-10-18

    No cycle required: The straightforward synthesis of acyclic (amino)(ylide)carbene gold complexes was achieved by reaction of isocyanide gold complexes with phosphorus and arsenic ylides as well as electron-rich olefins. Their ability to form bimetallic species and to act as ligand-transfer reagents has also been established. PMID:24038894

  14. Synthesis and reactivity of metal complexes with acyclic (amino)(ylide)carbene ligands.

    PubMed

    González-Fernández, Elisa; Rust, Jörg; Alcarazo, Manuel

    2013-10-18

    No cycle required: The straightforward synthesis of acyclic (amino)(ylide)carbene gold complexes was achieved by reaction of isocyanide gold complexes with phosphorus and arsenic ylides as well as electron-rich olefins. Their ability to form bimetallic species and to act as ligand-transfer reagents has also been established.

  15. Reproductive hormonal patterns in pregnant, pseudopregnant and acyclic captive African wild dogs (Lycaon pictus).

    PubMed

    Van der Weyde, L K; Martin, G B; Blackberry, M A; Gruen, V; Harland, A; Paris, M C J

    2015-05-01

    African wild dogs are one of the most endangered canid species, with free-living populations declining as a consequence of habitat loss, disease and human conflict. Captive breeding is considered an important conservation strategy, but is hampered by a poor overall understanding of the reproductive biology of the species. To improve our basic knowledge, we studied hormone patterns in 15 female wild dogs using non-invasive faecal collections. By comparing longitudinal hormone profiles with behavioural and anatomical changes, females could be allocated among three reproductive classes: pregnant (n=1), pseudopregnant (n=9) and acyclic (n=4). We also monitored a single female in which contraception was induced with a deslorelin implant. Comparison of pseudopregnant and acyclic females showed that, in both classes, faecal oestradiol concentrations increased from anoestrus to pro-oestrus then declined into the oestrous and dioestrous phases. Progestagen concentrations rose steadily from anoestrus to the dioestrous phase in both pseudopregnant and acyclic females and, pseudopregnant females had significantly higher concentrations of progestagens than acyclic females in all phases of the oestrous cycle. Most females classed as pseudopregnant were found in female-only groups, suggesting that wild dogs are spontaneous ovulators. Furthermore, only one adult female did not ovulate, so suppression of reproduction in subordinates is likely to be behavioural rather than physiological.

  16. Reproductive hormonal patterns in pregnant, pseudopregnant and acyclic captive African wild dogs (Lycaon pictus).

    PubMed

    Van der Weyde, L K; Martin, G B; Blackberry, M A; Gruen, V; Harland, A; Paris, M C J

    2015-05-01

    African wild dogs are one of the most endangered canid species, with free-living populations declining as a consequence of habitat loss, disease and human conflict. Captive breeding is considered an important conservation strategy, but is hampered by a poor overall understanding of the reproductive biology of the species. To improve our basic knowledge, we studied hormone patterns in 15 female wild dogs using non-invasive faecal collections. By comparing longitudinal hormone profiles with behavioural and anatomical changes, females could be allocated among three reproductive classes: pregnant (n=1), pseudopregnant (n=9) and acyclic (n=4). We also monitored a single female in which contraception was induced with a deslorelin implant. Comparison of pseudopregnant and acyclic females showed that, in both classes, faecal oestradiol concentrations increased from anoestrus to pro-oestrus then declined into the oestrous and dioestrous phases. Progestagen concentrations rose steadily from anoestrus to the dioestrous phase in both pseudopregnant and acyclic females and, pseudopregnant females had significantly higher concentrations of progestagens than acyclic females in all phases of the oestrous cycle. Most females classed as pseudopregnant were found in female-only groups, suggesting that wild dogs are spontaneous ovulators. Furthermore, only one adult female did not ovulate, so suppression of reproduction in subordinates is likely to be behavioural rather than physiological. PMID:25818522

  17. Graphs, matrices, and the GraphBLAS: Seven good reasons

    DOE PAGES

    Kepner, Jeremy; Bader, David; Buluç, Aydın; Gilbert, John; Mattson, Timothy; Meyerhenke, Henning

    2015-01-01

    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less

  18. Graphs, matrices, and the GraphBLAS: Seven good reasons

    SciTech Connect

    Kepner, Jeremy; Bader, David; Buluç, Aydın; Gilbert, John; Mattson, Timothy; Meyerhenke, Henning

    2015-01-01

    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.

  19. Changes in biochemical composition of follicular fluid during reproductive acyclicity in water buffalo (Bubalus bubalis).

    PubMed

    Khan, F A; Das, G K; Pande, Megha; Mir, R A; Shankar, Uma

    2011-08-01

    This study describes the changes in biochemical composition of follicular fluid during reproductive acyclicity in buffalo. A total of 73 pairs of ovaries collected from 26 reproductively acyclic and 47 reproductively cyclic buffaloes were used in the investigation. Ovarian follicles were classified into small (5.0-6.9 mm), medium (7.0-9.9 mm) and large (≥10.0 mm) sized categories depending upon their diameter. Follicular fluid was aspirated, processed and assayed for glucose, cholesterol, total protein, acid phosphatase and alkaline phosphatase. Glucose concentration was lesser in reproductively acyclic compared to cyclic buffaloes (19.3 ± 2.59 mg/dl compared to 32.6 ± 2.60 mg/dl; P<0.05), mainly due to difference in concentration between small sized follicles (12.4 ± 2.59 mg/dl compared to 28.0 ± 3.32 mg/dl; P<0.05). Cholesterol concentration was also lesser in reproductively acyclic compared to cyclic buffaloes (32.2 ± 2.14 mg/dl compared to 35.5 ± 2.16 mg/dl; P<0.05) and this was related to the lesser concentration found in large follicles (13.8 ± 3.45 mg/dl compared to 37.2 ± 4.10mg/dl; P<0.001). Total protein and acid phosphatase levels were not affected by either the reproductive cyclicity status or the follicular size (4.9 ± 1.07 g/dl to 6.0 ± 0.28 g/dl and 1.2 ± 0.17 U/dl to 2.5 ± 1.22 U/dl, respectively). An increased alkaline phosphatase activity was, however, observed in reproductively acyclic compared to cyclic buffaloes (27.5 ± 3.08 U/dl compared to 14.0 ± 1.09 U/dl; P<0.0001). In conclusion, results of the present study indicate an alteration in the biochemical composition of follicular fluid during reproductive acyclicity in buffalo. The findings provide further support to the notion that poor nutrition is an important factor triggering reproductive acyclicity in buffalo.

  20. 77 FR 38391 - Mercedes-Benz USA, LLC, and Daimler AG (DAG), Receipt of Petition for Decision of Inconsequential...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... National Highway Traffic Safety Administration Mercedes-Benz USA, LLC, and Daimler AG (DAG), Receipt of... Administration, DOT. ACTION: Receipt of petition. SUMMARY: Mercedes-Benz USA, LLC \\1\\ (MBUSA) and its parent... and 2012 Mercedes-Benz S-Class (221 platform) passenger cars do not fully comply with paragraph...

  1. DagSolid: a new Geant4 solid class for fast simulation in polygon-mesh geometry.

    PubMed

    Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi; Yeom, Yeon Soo; Kim, SungHoon; Wilson, Paul P H; Apostolakis, John

    2013-07-01

    Even though a computer-aided design (CAD)-based geometry can be directly implemented in Geant4 as polygon-mesh using the G4TessellatedSolid class, the computation speed becomes very slow, especially when the geometry is composed of a large number of facets. To address this problem, in the present study, a new Geant4 solid class, named DagSolid, was developed based on the direct accelerated geometry for the Monte Carlo (DAGMC) library which provides the ray-tracing acceleration algorithm functions. To develop the DagSolid class, the new solid class was derived from the G4VSolid class, and its ray-tracing functions were linked to the corresponding functions of the DAGMC library. The results of this study show that the use of the DagSolid class drastically improves the computation speed. The improvement was more significant when there were more facets, meaning that the DagSolid class can be used more effectively for complicated geometries with many facets than for simple geometries. The maximum difference of computation speed was 1562 and 680 times for Geantino and ChargedGeantino, respectively. For real particles (gammas, electrons, neutrons, and protons), the difference of computation speed was less significant, but still was within the range of 53-685 times depending on the type of beam particles simulated. PMID:23771063

  2. A new efficient algorithm generating all minimal S-T cut-sets in a graph-modeled network

    NASA Astrophysics Data System (ADS)

    Malinowski, Jacek

    2016-06-01

    A new algorithm finding all minimal s-t cut-sets in a graph-modeled network with failing links and nodes is presented. It is based on the analysis of the tree of acyclic s-t paths connecting a given pair of nodes in the considered structure. The construction of such a tree is required by many existing algorithms for s-t cut-sets generation in order to eliminate "stub" edges or subgraphs through which no acyclic path passes. The algorithm operates on the acyclic paths tree alone, i.e. no other analysis of the network's topology is necessary. It can be applied to both directed and undirected graphs, as well as partly directed ones. It is worth noting that the cut-sets can be composed of both links and failures, while many known algorithms do not take nodes into account, which is quite restricting from the practical point of view. The developed cut-sets generation technique makes the algorithm significantly faster than most of the previous methods, as proved by the experiments.

  3. Evidence that hyperprolactinaemia is associated with ovarian acyclicity in female zoo African elephants.

    PubMed

    Dow, T L; Brown, J L

    2012-01-01

    African elephants of reproductive age in zoos are experiencing high rates of ovarian cycle problems (>40%) and low reproductive success. Previously, our laboratory found that 1/3 of acyclic females exhibit hyperprolactinaemia, a likely cause of ovarian dysfunction. This follow-up study re-examined hyperprolactinaemia in African elephants and found the problem has increased significantly to 71% of acyclic females. Circulating serum progestagens and prolactin were analysed in 31 normal cycling, 13 irregular cycling and 31 acyclic elephants for 12 months. In acyclic females, overall mean prolactin concentrations differed from cycling females (P < 0.05), with concentrations being either higher (n = 22; 54.90 ± 13.31 ngmL(-1)) or lower (n = 9; 6.47 ± 1.73 ngmL(-1)) than normal. No temporal patterns of prolactin secretion were evident in elephants that lacked progestagen cycles. In cycling females, prolactin was secreted in a cyclical manner, with higher concentrations observed during nonluteal (34.38 ± 1.77 and 32.75 ± 2.61 ngmL(-1)) than luteal (10.51 ± 0.30 and 9.67 ± 0.42 ngmL(-1)) phases for normal and irregular females, respectively. Of most concern was that over two-thirds of acyclic females now are hyperprolactinemic, a dramatic increase over that observed 7 years earlier. Furthermore, females of reproductive age constituted 45% of elephants with hyperprolactinaemia. Until the cause of this problem is identified and a treatment is developed, reproductive rates will remain suboptimal and the population nonsustaining.

  4. Real World Graph Connectivity

    ERIC Educational Resources Information Center

    Lind, Joy; Narayan, Darren

    2009-01-01

    We present the topic of graph connectivity along with a famous theorem of Menger in the real-world setting of the national computer network infrastructure of "National LambdaRail". We include a set of exercises where students reinforce their understanding of graph connectivity by analysing the "National LambdaRail" network. Finally, we give…

  5. Walking Out Graphs

    ERIC Educational Resources Information Center

    Shen, Ji

    2009-01-01

    In the Walking Out Graphs Lesson described here, students experience several types of representations used to describe motion, including words, sentences, equations, graphs, data tables, and actions. The most important theme of this lesson is that students have to understand the consistency among these representations and form the habit of…

  6. Reflections on "The Graph"

    ERIC Educational Resources Information Center

    Petrosino, Anthony

    2012-01-01

    This article responds to arguments by Skidmore and Thompson (this issue of "Educational Researcher") that a graph published more than 10 years ago was erroneously reproduced and "gratuitously damaged" perceptions of the quality of education research. After describing the purpose of the original graph, the author counters assertions that the graph…

  7. Exploring Graphs: WYSIWYG.

    ERIC Educational Resources Information Center

    Johnson, Millie

    1997-01-01

    Graphs from media sources and questions developed from them can be used in the middle school mathematics classroom. Graphs depict storage temperature on a milk carton; air pressure measurements on a package of shock absorbers; sleep-wake patterns of an infant; a dog's breathing patterns; and the angle, velocity, and radius of a leaning bicyclist…

  8. Making "Photo" Graphs

    ERIC Educational Resources Information Center

    Doto, Julianne; Golbeck, Susan

    2007-01-01

    Collecting data and analyzing the results of experiments is difficult for children. The authors found a surprising way to help their third graders make graphs and draw conclusions from their data: digital photographs. The pictures bridged the gap between an abstract graph and the plants it represented. With the support of the photos, students…

  9. ACTIVITIES: Graphs and Games

    ERIC Educational Resources Information Center

    Hirsch, Christian R.

    1975-01-01

    Using a set of worksheets, students will discover and apply Euler's formula regarding connected planar graphs and play and analyze the game of Sprouts. One sheet leads to the discovery of Euler's formula; another concerns traversability of a graph; another gives an example and a game involving these ideas. (Author/KM)

  10. Using Specialized Graph Paper.

    ERIC Educational Resources Information Center

    James, C.

    1988-01-01

    Discusses the use of logarithm and reciprocal graphs in the college physics classroom. Provides examples, such as electrical conductivity, reliability function in the Weibull model, and the Clausius-Clapeyron equation for latent heat of vaporation. Shows graphs with weighting of points. (YP)

  11. Equitable random graphs

    NASA Astrophysics Data System (ADS)

    Newman, M. E. J.; Martin, Travis

    2014-11-01

    Random graph models have played a dominant role in the theoretical study of networked systems. The Poisson random graph of Erdős and Rényi, in particular, as well as the so-called configuration model, have served as the starting point for numerous calculations. In this paper we describe another large class of random graph models, which we call equitable random graphs and which are flexible enough to represent networks with diverse degree distributions and many nontrivial types of structure, including community structure, bipartite structure, degree correlations, stratification, and others, yet are exactly solvable for a wide range of properties in the limit of large graph size, including percolation properties, complete spectral density, and the behavior of homogeneous dynamical systems, such as coupled oscillators or epidemic models.

  12. Novel mutations in RASGRP2, which encodes CalDAG-GEFI, abrogate Rap1 activation, causing platelet dysfunction

    PubMed Central

    Lozano, María Luisa; Cook, Aaron; Bastida, José María; Paul, David S.; Iruin, Gemma; Cid, Ana Rosa; Adan-Pedroso, Rosa; Ramón González-Porras, José; Hernández-Rivas, Jesús María; Fletcher, Sarah J.; Johnson, Ben; Morgan, Neil; Ferrer-Marin, Francisca; Vicente, Vicente; Sondek, John; Watson, Steve P.; Bergmeier, Wolfgang

    2016-01-01

    In addition to mutations in ITG2B or ITGB3 genes that cause defective αIIbβ3 expression and/or function in Glanzmann’s thrombasthenia patients, platelet dysfunction can be a result of genetic variability in proteins that mediate inside-out activation of αIIbβ3. The RASGRP2 gene is strongly expressed in platelets and neutrophils, where its encoded protein CalDAG-GEFI facilitates the activation of Rap1 and subsequent activation of integrins. We used next-generation sequencing (NGS) and whole-exome sequencing (WES) to identify 2 novel function-disrupting mutations in RASGRP2 that account for bleeding diathesis and platelet dysfunction in 2 unrelated families. By using a panel of 71 genes, we identified a homozygous change (c.1142C>T) in exon 10 of RASGRP2 in a 9-year-old child of Chinese origin (family 1). This variant led to a p.Ser381Phe substitution in the CDC25 catalytic domain of CalDAG-GEFI. In 2 Spanish siblings from family 2, WES identified a nonsense homozygous variation (c.337C>T) (p.Arg113X) in exon 5 of RASGRP2. CalDAG-GEFI expression was markedly reduced in platelets from all patients, and by using a novel in vitro assay, we found that the nucleotide exchange activity was dramatically reduced in CalDAG-GEFI p.Ser381Phe. Platelets from homozygous patients exhibited agonist-specific defects in αIIbβ3 integrin activation and aggregation. In contrast, α- and δ-granule secretion, platelet spreading, and clot retraction were not markedly affected. Integrin activation in the patients’ neutrophils was also impaired. These patients are the first cases of a CalDAG-GEFI deficiency due to homozygous RASGRP2 mutations that are linked to defects in both leukocyte and platelet integrin activation. PMID:27235135

  13. Novel mutations in RASGRP2, which encodes CalDAG-GEFI, abrogate Rap1 activation, causing platelet dysfunction.

    PubMed

    Lozano, María Luisa; Cook, Aaron; Bastida, José María; Paul, David S; Iruin, Gemma; Cid, Ana Rosa; Adan-Pedroso, Rosa; Ramón González-Porras, José; Hernández-Rivas, Jesús María; Fletcher, Sarah J; Johnson, Ben; Morgan, Neil; Ferrer-Marin, Francisca; Vicente, Vicente; Sondek, John; Watson, Steve P; Bergmeier, Wolfgang; Rivera, José

    2016-09-01

    In addition to mutations in ITG2B or ITGB3 genes that cause defective αIIbβ3 expression and/or function in Glanzmann's thrombasthenia patients, platelet dysfunction can be a result of genetic variability in proteins that mediate inside-out activation of αIIbβ3 The RASGRP2 gene is strongly expressed in platelets and neutrophils, where its encoded protein CalDAG-GEFI facilitates the activation of Rap1 and subsequent activation of integrins. We used next-generation sequencing (NGS) and whole-exome sequencing (WES) to identify 2 novel function-disrupting mutations in RASGRP2 that account for bleeding diathesis and platelet dysfunction in 2 unrelated families. By using a panel of 71 genes, we identified a homozygous change (c.1142C>T) in exon 10 of RASGRP2 in a 9-year-old child of Chinese origin (family 1). This variant led to a p.Ser381Phe substitution in the CDC25 catalytic domain of CalDAG-GEFI. In 2 Spanish siblings from family 2, WES identified a nonsense homozygous variation (c.337C>T) (p.Arg113X) in exon 5 of RASGRP2 CalDAG-GEFI expression was markedly reduced in platelets from all patients, and by using a novel in vitro assay, we found that the nucleotide exchange activity was dramatically reduced in CalDAG-GEFI p.Ser381Phe. Platelets from homozygous patients exhibited agonist-specific defects in αIIbβ3 integrin activation and aggregation. In contrast, α- and δ-granule secretion, platelet spreading, and clot retraction were not markedly affected. Integrin activation in the patients' neutrophils was also impaired. These patients are the first cases of a CalDAG-GEFI deficiency due to homozygous RASGRP2 mutations that are linked to defects in both leukocyte and platelet integrin activation.

  14. Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search

    PubMed Central

    Alocci, Davide; Mariethoz, Julien; Horlacher, Oliver; Bolleman, Jerven T.; Campbell, Matthew P.; Lisacek, Frederique

    2015-01-01

    Resource description framework (RDF) and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP). In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org) and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues. PMID:26656740

  15. Reaction spreading on graphs

    NASA Astrophysics Data System (ADS)

    Burioni, Raffaella; Chibbaro, Sergio; Vergni, Davide; Vulpiani, Angelo

    2012-11-01

    We study reaction-diffusion processes on graphs through an extension of the standard reaction-diffusion equation starting from first principles. We focus on reaction spreading, i.e., on the time evolution of the reaction product M(t). At variance with pure diffusive processes, characterized by the spectral dimension ds, the important quantity for reaction spreading is found to be the connectivity dimension dl. Numerical data, in agreement with analytical estimates based on the features of n independent random walkers on the graph, show that M(t)˜tdl. In the case of Erdös-Renyi random graphs, the reaction product is characterized by an exponential growth M(t)˜eαt with α proportional to ln, where is the average degree of the graph.

  16. A study on vague graphs.

    PubMed

    Rashmanlou, Hossein; Samanta, Sovan; Pal, Madhumangal; Borzooei, R A

    2016-01-01

    The main purpose of this paper is to introduce the notion of vague h-morphism on vague graphs and regular vague graphs. The action of vague h-morphism on vague strong regular graphs are studied. Some elegant results on weak and co weak isomorphism are derived. Also, [Formula: see text]-complement of highly irregular vague graphs are defined. PMID:27536517

  17. A Semantic Graph Query Language

    SciTech Connect

    Kaplan, I L

    2006-10-16

    Semantic graphs can be used to organize large amounts of information from a number of sources into one unified structure. A semantic query language provides a foundation for extracting information from the semantic graph. The graph query language described here provides a simple, powerful method for querying semantic graphs.

  18. Alterations in follicular fluid estradiol, progesterone and insulin concentrations during ovarian acyclicity in water buffalo (Bubalus bubalis).

    PubMed

    Khan, F A; Das, G K; Pande, Megha; Sarkar, M; Mahapatra, R K; Shankar, Uma

    2012-01-01

    Ovarian acyclicity is one of the most important causes of infertility in water buffalo. Recent studies have indicated alterations in the composition of follicular fluid during the condition. The aim of this study was to determine the changes in follicular fluid concentrations of estradiol, progesterone and insulin during ovarian acyclicity in water buffalo. Ovaries were collected from 50 acyclic and 95 cyclic (control) buffaloes and follicular fluid was aspirated from small (5.0-6.9 mm), medium (7.0-9.9 mm) and large (≥10.0 mm) sized follicles. Estradiol concentration was lower (P<0.0001) in acyclic (1.4 ± 0.09 ng/ml) than in cyclic (3.3 ± 0.18 ng/ml) buffaloes. Regardless of the ovarian cyclic status, there was an increase (P<0.01) in estradiol concentration with the increase in follicle size; the mean concentrations were 2.4 ± 0.16 ng/ml, 2.8 ± 0.29 ng/ml and 3.5 ± 0.41 ng/ml in small, medium and large follicles, respectively. A higher (P<0.001) progesterone concentration was recorded in acyclic (24.3 ± 2.61 ng/ml) compared to the cyclic (7.6 ± 0.79 ng/ml) group. Furthermore, acyclic buffaloes had a lower (P<0.05) concentration of insulin in the follicular fluid than that of cyclic buffaloes (15.2 ± 1.55 μIU/ml versus 25.9 ± 2.78 μIU/ml, respectively). In conclusion, acyclic buffaloes have lower concentrations of estradiol and insulin concurrent with higher concentrations of progesterone in the follicular fluid. These hormonal changes in the follicular microenvironment are possibly a manifestation of the disturbances in the normal follicular development leading to anovulation and anestrus in acyclic buffaloes.

  19. Cascade Cyclizations of Acyclic and Macrocyclic Alkynones: Studies toward the Synthesis of Phomactin A

    PubMed Central

    Ciesielski, Jennifer; Gandon, Vincent; Frontier, Alison J.

    2013-01-01

    A study of the reactivity and diastereoselectivity of the Lewis acid-promoted cascade cyclizations of both acyclic and macrocyclic alkynones is described. In these reactions, a β-iodoallenolate intermediate is generated via conjugate addition of iodide to an alkynone, followed by an intramolecular aldol reaction with a tethered aldehyde to afford a cyclohexenyl alcohol. The Lewis acid magnesium iodide (MgI2) was found to promote irreversible ring closure, while cyclizations using BF3·OEt2 as promoter occurred reversibly. For both acyclic and macrocyclic ynones, high diastereoselectivity was observed in the intramolecular aldol reaction. The MgI2 protocol for cyclization was applied to the synthesis of advanced intermediates relevant to the synthesis of phomactin natural products, during which a novel transannular cation-olefin cyclization was observed. DFT calculations were conducted to analyze the mechanism of this unusual MgI2-promoted process. PMID:23724905

  20. N-Branched acyclic nucleoside phosphonates as monomers for the synthesis of modified oligonucleotides.

    PubMed

    Hocková, Dana; Rosenbergová, Šárka; Ménová, Petra; Páv, Ondřej; Pohl, Radek; Novák, Pavel; Rosenberg, Ivan

    2015-04-21

    Protected N-branched nucleoside phosphonates containing adenine and thymine bases were prepared as the monomers for the introduction of aza-acyclic nucleotide units into modified oligonucleotides. The phosphotriester and phosphoramidite methods were used for the incorporation of modified and natural units, respectively. The solid phase synthesis of a series of nonamers containing one central modified unit was successfully performed in both 3'→5' and 5'→3' directions. Hybridization properties of the prepared oligoribonucleotides and oligodeoxyribonucleotides were evaluated. The measurement of thermal characteristics of the complexes of modified nonamers with the complementary strand revealed a considerable destabilizing effect of the introduced units. We also examined the substrate/inhibitory properties of aza-acyclic nucleoside phosphono-diphosphate derivatives (analogues of nucleoside triphosphates) but neither inhibition of human and bacterial DNA polymerases nor polymerase-mediated incorporation of these triphosphate analogues into short DNA was observed. PMID:25766752

  1. Acyclic cucurbit[n]uril molecular containers selectively solubilize single-walled carbon nanotubes in water.

    PubMed

    Shen, Cai; Ma, Da; Meany, Brendan; Isaacs, Lyle; Wang, YuHuang

    2012-05-01

    Making single-walled carbon nanotubes (SWNTs) soluble in water is a challenging first step to use their remarkable electronic and optical properties in a variety of applications. We report that acyclic cucurbit[n]uril molecular containers 1 and 2 selectively solubilize small-diameter and low chiral angle SWNTs. The selectivity is tunable by increasing the concentration of the molecular containers or by adjusting the ionic strength of the solution. Even at a concentration 1000 times lower than typically required for surfactants, the molecular containers render SWNTs soluble in water. Molecular mechanics simulations suggest that these C-shaped acyclic molecules complex the SWNTs such that a large portion of nanotube sidewalls are exposed to the external environment. These "naked" nanotubes fluoresce upon patching the exposed surface with sodium dodecylbenzene sulfonate.

  2. Acyclic monoterpenes in tree essential oils as a shrinking agent for waste-expanded polystyrene.

    PubMed

    Shimotori, Yasutaka; Hattori, Kazuyuki; Aoyama, Masakazu; Miyakoshi, Tetsuo

    2011-01-01

    We examined the dissolution of polystyrene (PS) into acyclic monoterpenes present in tree essential oils, to develop an environmentally friendly shrinking agent for waste-expanded polystyrene (EPS). The dissolving powers of geranyl acetate, geranylacetone, and geranyl formate [221.8-241.2 g PS (100 g solvent)(-1)] compared favorably with that of (R)-limonene [181.7 g PS (100 g solvent)(-1)]. Their favorable dissolving powers for PS can be explained by their flexible linear structures, which may be more accessible to the inside of bulk PS compared with cyclic monoterpenes. These acyclic monoterpenes and PS were recovered almost quantitatively by simple steam distillation of the PS solution. PMID:21644162

  3. Commuting projections on graphs

    SciTech Connect

    Vassilevski, Panayot S.; Zikatanov, Ludmil T.

    2013-02-19

    For a given (connected) graph, we consider vector spaces of (discrete) functions defined on its vertices and its edges. These two spaces are related by a discrete gradient operator, Grad and its adjoint, ₋Div, referred to as (negative) discrete divergence. We also consider a coarse graph obtained by aggregation of vertices of the original one. Then a coarse vertex space is identified with the subspace of piecewise constant functions over the aggregates. We consider the ℓ2-projection QH onto the space of these piecewise constants. In the present paper, our main result is the construction of a projection π H from the original edge-space onto a properly constructed coarse edge-space associated with the edges of the coarse graph. The projections π H and QH commute with the discrete divergence operator, i.e., we have div π H = QH div. The respective pair of coarse edge-space and coarse vertexspace offer the potential to construct two-level, and by recursion, multilevel methods for the mixed formulation of the graph Laplacian which utilizes the discrete divergence operator. The performance of one two-level method with overlapping Schwarz smoothing and correction based on the constructed coarse spaces for solving such mixed graph Laplacian systems is illustrated on a number of graph examples.

  4. Clique graphs and overlapping communities

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2010-12-01

    It is shown how to construct a clique graph in which properties of cliques of a fixed order in a given graph are represented by vertices in a weighted graph. Various definitions and motivations for these weights are given. The detection of communities or clusters is used to illustrate how a clique graph may be exploited. In particular a benchmark network is shown where clique graphs find the overlapping communities accurately while vertex partition methods fail.

  5. a Graph Based Model for the Detection of Tidal Channels Using Marked Point Processes

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Rottensteiner, F.; Soergel, U.; Heipke, C.

    2015-08-01

    In this paper we propose a new method for the automatic extraction of tidal channels in digital terrain models (DTM) using a sampling approach based on marked point processes. In our model, the tidal channel system is represented by an undirected, acyclic graph. The graph is iteratively generated and fitted to the data using stochastic optimization based on a Reversible Jump Markov Chain Monte Carlo (RJMCMC) sampler and simulated annealing. The nodes of the graph represent junction points of the channel system and the edges straight line segments with a certain width in between. In each sampling step, the current configuration of nodes and edges is modified. The changes are accepted or rejected depending on the probability density function for the configuration which evaluates the conformity of the current status with a pre-defined model for tidal channels. In this model we favour high DTM gradient magnitudes at the edge borders and penalize a graph configuration consisting of non-connected components, overlapping segments and edges with atypical intersection angles. We present the method of our graph based model and show results for lidar data, which serve of a proof of concept of our approach.

  6. Optimized Graph Search Using Multi-Level Graph Clustering

    NASA Astrophysics Data System (ADS)

    Kala, Rahul; Shukla, Anupam; Tiwari, Ritu

    Graphs find a variety of use in numerous domains especially because of their capability to model common problems. The social networking graphs that are used for social networking analysis, a feature given by various social networking sites are an example of this. Graphs can also be visualized in the search engines to carry search operations and provide results. Various searching algorithms have been developed for searching in graphs. In this paper we propose that the entire network graph be clustered. The larger graphs are clustered to make smaller graphs. These smaller graphs can again be clustered to further reduce the size of graph. The search is performed on the smallest graph to identify the general path, which may be further build up to actual nodes by working on the individual clusters involved. Since many searches are carried out on the same graph, clustering may be done once and the data may be used for multiple searches over the time. If the graph changes considerably, only then we may re-cluster the graph.

  7. Defining the role of DAG, mitochondrial function, and lipid deposition in palmitate-induced proinflammatory signaling and its counter-modulation by palmitoleate.

    PubMed

    Macrae, Katherine; Stretton, Clare; Lipina, Christopher; Blachnio-Zabielska, Agnieszka; Baranowski, Marcin; Gorski, Jan; Marley, Anna; Hundal, Harinder S

    2013-09-01

    Chronic exposure of skeletal muscle to saturated fatty acids, such as palmitate (C16:0), enhances proinflammatory IKK-NFκB signaling by a mechanism involving the MAP kinase (Raf-MEK-ERK) pathway. Raf activation can be induced by its dissociation from the Raf-kinase inhibitor protein (RKIP) by diacylglycerol (DAG)-sensitive protein kinase C (PKC). However, whether these molecules mediate the proinflammatory action of palmitate, an important precursor for DAG synthesis, is currently unknown. Here, involvement of DAG-sensitive PKCs, RKIP, and the structurally related monounsaturated fatty acid palmitoleate (C16:1) on proinflammatory signaling are investigated. Palmitate, but not palmitoleate, induced phosphorylation/activation of the MEK-ERK-IKK axis and proinflammatory cytokine (IL-6, CINC-1) expression. Palmitate increased intramyocellular DAG and invoked PKC-dependent RKIP(Ser153) phosphorylation, resulting in RKIP-Raf1 dissociation and MEK-ERK signaling. These responses were mimicked by PMA, a DAG mimetic and PKC activator. However, while pharmacological inhibition of PKC suppressed PMA-induced activation of MEK-ERK-IKK signaling, activation by palmitate was upheld, suggesting that DAG-sensitive PKC and RKIP were dispensable for palmitate's proinflammatory action. Strikingly, the proinflammatory effect of palmitate was potently repressed by palmitoleate. This repression was not due to reduced palmitate uptake but linked to increased neutral lipid storage and enhanced cellular oxidative capacity brought about by palmitoleate's ability to restrain palmitate-induced mitochondrial dysfunction.

  8. Subdominant pseudoultrametric on graphs

    SciTech Connect

    Dovgoshei, A A; Petrov, E A

    2013-08-31

    Let (G,w) be a weighted graph. We find necessary and sufficient conditions under which the weight w:E(G)→R{sup +} can be extended to a pseudoultrametric on V(G), and establish a criterion for the uniqueness of such an extension. We demonstrate that (G,w) is a complete k-partite graph, for k≥2, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with w. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric. Bibliography: 14 titles.

  9. Algebraic distance on graphs.

    SciTech Connect

    Chen, J.; Safro, I.

    2011-01-01

    Measuring the connection strength between a pair of vertices in a graph is one of the most important concerns in many graph applications. Simple measures such as edge weights may not be sufficient for capturing the effects associated with short paths of lengths greater than one. In this paper, we consider an iterative process that smooths an associated value for nearby vertices, and we present a measure of the local connection strength (called the algebraic distance; see [D. Ron, I. Safro, and A. Brandt, Multiscale Model. Simul., 9 (2011), pp. 407-423]) based on this process. The proposed measure is attractive in that the process is simple, linear, and easily parallelized. An analysis of the convergence property of the process reveals that the local neighborhoods play an important role in determining the connectivity between vertices. We demonstrate the practical effectiveness of the proposed measure through several combinatorial optimization problems on graphs and hypergraphs.

  10. Graphing Calculator Mini Course

    NASA Technical Reports Server (NTRS)

    Karnawat, Sunil R.

    1996-01-01

    The "Graphing Calculator Mini Course" project provided a mathematically-intensive technologically-based summer enrichment workshop for teachers of American Indian students on the Turtle Mountain Indian Reservation. Eleven such teachers participated in the six-day workshop in summer of 1996 and three Sunday workshops in the academic year. The project aimed to improve science and mathematics education on the reservation by showing teachers effective ways to use high-end graphing calculators as teaching and learning tools in science and mathematics courses at all levels. In particular, the workshop concentrated on applying TI-82's user-friendly features to understand the various mathematical and scientific concepts.

  11. Robustness of random graphs based on graph spectra

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Barahona, Mauricio; Tan, Yue-jin; Deng, Hong-zhong

    2012-12-01

    It has been recently proposed that the robustness of complex networks can be efficiently characterized through the natural connectivity, a spectral property of the graph which corresponds to the average Estrada index. The natural connectivity corresponds to an average eigenvalue calculated from the graph spectrum and can also be interpreted as the Helmholtz free energy of the network. In this article, we explore the use of this index to characterize the robustness of Erdős-Rényi (ER) random graphs, random regular graphs, and regular ring lattices. We show both analytically and numerically that the natural connectivity of ER random graphs increases linearly with the average degree. It is also shown that ER random graphs are more robust than the corresponding random regular graphs with the same number of vertices and edges. However, the relative robustness of ER random graphs and regular ring lattices depends on the average degree and graph size: there is a critical graph size above which regular ring lattices are more robust than random graphs. We use our analytical results to derive this critical graph size as a function of the average degree.

  12. Graph ensemble boosting for imbalanced noisy graph stream classification.

    PubMed

    Pan, Shirui; Wu, Jia; Zhu, Xingquan; Zhang, Chengqi

    2015-05-01

    Many applications involve stream data with structural dependency, graph representations, and continuously increasing volumes. For these applications, it is very common that their class distributions are imbalanced with minority (or positive) samples being only a small portion of the population, which imposes significant challenges for learning models to accurately identify minority samples. This problem is further complicated with the presence of noise, because they are similar to minority samples and any treatment for the class imbalance may falsely focus on the noise and result in deterioration of accuracy. In this paper, we propose a classification model to tackle imbalanced graph streams with noise. Our method, graph ensemble boosting, employs an ensemble-based framework to partition graph stream into chunks each containing a number of noisy graphs with imbalanced class distributions. For each individual chunk, we propose a boosting algorithm to combine discriminative subgraph pattern selection and model learning as a unified framework for graph classification. To tackle concept drifting in graph streams, an instance level weighting mechanism is used to dynamically adjust the instance weight, through which the boosting framework can emphasize on difficult graph samples. The classifiers built from different graph chunks form an ensemble for graph stream classification. Experiments on real-life imbalanced graph streams demonstrate clear benefits of our boosting design for handling imbalanced noisy graph stream.

  13. Follicular characteristics and intrafollicular concentrations of nitric oxide and ascorbic acid during ovarian acyclicity in water buffalo (Bubalus bubalis).

    PubMed

    Khan, Firdous Ahmad; Das, Goutam Kumar

    2012-01-01

    The objective of this study was to examine the follicular characteristics and intrafollicular concentrations of nitric oxide and ascorbic acid during ovarian acyclicity in buffaloes. Ovaries were collected from 56 acyclic and 95 cyclic buffaloes at slaughter, surface follicle number was counted and follicles were classified into small (5.0-6.9 mm), medium (7.0-9.9 mm), and large (≥ 10.0 mm) size categories based on their diameter. Follicular fluid was aspirated and assayed for nitric oxide, ascorbic acid, estradiol, and progesterone. Acyclic buffaloes had a higher (P<0.05) number of medium-sized follicles and a lower (P<0.001) number of large follicles than the cyclic ones. In acyclic animals, the number of large follicles was lower (P<0.01) than in medium size category which in turn was lower (P<0.001) than the number of small follicles. In contrast, the number of medium and large follicles was not different (P>0.05) in the cyclic control. However, the number of small-sized follicles was higher (P<0.001) compared to the other two categories. The incidence of large-sized follicles was lower (P<0.05) in acyclic buffalo population compared to the cyclic control. Evaluation of estrogenic status demonstrated that all the follicles of acyclic buffaloes are estrogen-inactive (E (2)/P (4) ratio<1). Small- and medium-sized follicles of acyclic buffaloes had higher concentrations of nitric oxide (P<0.05 and P<0.001, respectively) and lower concentrations of ascorbic acid (P<0.05 and P<0.01, respectively) than the corresponding size estrogen-active follicles of their cyclic counterparts. In conclusion, this study indicates that follicular development continues during acyclicity in buffaloes. Although follicles in some acyclic buffaloes attain a size corresponding to morphological dominance, they are unable to achieve functional dominance, perhaps due to an altered balance of intrafollicular nitric oxide and ascorbic acid and, as a result, these follicles instead of

  14. Graph for locked rotor current

    NASA Technical Reports Server (NTRS)

    Peck, R. R.

    1972-01-01

    Graph determines effect of stalled motor on a distribution system and eliminates hand calculation of amperage in emergencies. Graph is useful to any manufacturer, contractor, or maintenance department involved in electrical technology.

  15. GraphLib

    2013-02-19

    This library is used in several LLNL projects, including STAT (the Stack Trace Analysis Tool for scalable debugging) and some modules in P^nMPI (a tool MPI tool infrastructure). It can also be used standalone for creating and manipulationg graphs, but its API is primarily tuned to support these other projects

  16. Line Graph Learning

    ERIC Educational Resources Information Center

    Pitts Bannister, Vanessa R.; Jamar, Idorenyin; Mutegi, Jomo W.

    2007-01-01

    In this article, the learning progress of one fifth-grade student is examined with regard to the development of her graph interpretation skills as she participated in the Junior Science Institute (JSI), a two-week, science intensive summer camp in which participants engaged in microbiology research and application. By showcasing the student's…

  17. Straight Line Graphs

    ERIC Educational Resources Information Center

    Krueger, Tom

    2010-01-01

    In this article, the author shares one effective lesson idea on straight line graphs that he applied in his lower ability Y9 class. The author wanted something interesting for his class to do, something that was fun and engaging with direct feedback, and something that worked because someone else had tried it before. In a word, the author admits…

  18. Introduction to Graphing.

    ERIC Educational Resources Information Center

    Sokol, William

    In this autoinstructional packet, the student is given an experimental situation which introduces him to the process of graphing. The lesson is presented for secondary school students in chemistry. Algebra I and a Del Mod System program (indicated as SE 018 020) are suggested prerequisites for the use of this program. Behavioral objectives are…

  19. Cookies and Graphs

    ERIC Educational Resources Information Center

    Cooper, Carol

    1975-01-01

    Teachers of an integrated elementary classroom used cookie-sharing time as a learning experience for students. Responsible for dividing varying amounts of cookies daily, the students learned to translate their experiences to graphs of differing sophistication and analyses. Further interpretation and application were done by individual students…

  20. Physics on Graphs

    NASA Astrophysics Data System (ADS)

    Schrader, Robert

    This is an extended version of the talk given at the Nato Advanced Research Workshop: New Challenges in Complex System Physics, May 20-24, 2013 in Samarkand (Uzbekistan). We report on results on three topics in joint work with V. Kostrykin (Mainz, Germany) and J. Potthoff (Mannheim, Germany): Propagation of waves on graphs,

  1. Graph-theoretical exorcism

    SciTech Connect

    Simmons, G.J.

    1985-01-01

    Given a graph G and an ordering phi of the vertices, V(G), we define a parsimonious proper coloring (PPC) of V(G) under phi to be a proper coloring of V(G) in the order phi, where a new color is introduced only when a vertex cannot be properly colored in its order with any of the colors already used.

  2. Coloring geographical threshold graphs

    SciTech Connect

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  3. New Conic Graph Paper

    ERIC Educational Resources Information Center

    Rose, Kenneth

    1974-01-01

    Two new types of graph paper are described; focus-focus conic paper and focus-directrix paper. Both types make it easier to draw families of conics. Suggestions for further work are given as is a method for establishing a connection with other ways of looking at the conic sections. (LS)

  4. Temporal Representation in Semantic Graphs

    SciTech Connect

    Levandoski, J J; Abdulla, G M

    2007-08-07

    A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

  5. Quantum walks on quotient graphs

    SciTech Connect

    Krovi, Hari; Brun, Todd A.

    2007-06-15

    A discrete-time quantum walk on a graph {gamma} is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup.

  6. A Clustering Graph Generator

    SciTech Connect

    Winlaw, Manda; De Sterck, Hans; Sanders, Geoffrey

    2015-10-26

    In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.

  7. Mining and Indexing Graph Databases

    ERIC Educational Resources Information Center

    Yuan, Dayu

    2013-01-01

    Graphs are widely used to model structures and relationships of objects in various scientific and commercial fields. Chemical molecules, proteins, malware system-call dependencies and three-dimensional mechanical parts are all modeled as graphs. In this dissertation, we propose to mine and index those graph data to enable fast and scalable search.…

  8. Recursive Feature Extraction in Graphs

    SciTech Connect

    2014-08-14

    ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.

  9. Editing graphs for maximum effect

    SciTech Connect

    Murphy, P.W.; Rhiner, R.W.

    1991-01-08

    The paper contains over eighty rules for editing graphs, arranged under nine major headings in a logical sequence for editing all the graphs in a manuscript. It is excerpted from a monograph used at the Lawrence Livermore National Laboratory to train beginning technical editors in editing graphs; a corresponding Hypercard stack is also used in this training. 6 refs., 4 figs.

  10. A Note on Hamiltonian Graphs

    ERIC Educational Resources Information Center

    Skurnick, Ronald; Davi, Charles; Skurnick, Mia

    2005-01-01

    Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…

  11. Topic Model for Graph Mining.

    PubMed

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng

    2015-12-01

    Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.

  12. Enantiomeric differentiation of acyclic terpenes by 13C NMR spectroscopy using a chiral lanthanide shift reagent.

    PubMed

    Blanc, Marie-Cécile; Bradesi, Pascale; Casanova, Joseph

    2005-02-01

    The 13C NMR behaviour of ten acyclic terpene alcohols was examined in the presence of a chiral lanthanide shift reagent (CLSR). For each alcohol, we measured the lanthanide-induced shift (LIS) on the signals of the carbons and the splitting of some signals, which allowed the enantiomeric differentiation. As expected, the LIS decreased with the number of bonds between the binding function and the considered carbon. The enantiomeric splitting is observed for several signals in the spectrum of each compound. The influence of the hindrance of the binding function (primary, secondary or tertiary alcohol) and that of the stereochemistry of the double bonds is discussed.

  13. What is a complex graph?

    NASA Astrophysics Data System (ADS)

    Kim, Jongkwang; Wilhelm, Thomas

    2008-04-01

    Many papers published in recent years show that real-world graphs G(n,m) ( n nodes, m edges) are more or less “complex” in the sense that different topological features deviate from random graphs. Here we narrow the definition of graph complexity and argue that a complex graph contains many different subgraphs. We present different measures that quantify this complexity, for instance C1e, the relative number of non-isomorphic one-edge-deleted subgraphs (i.e. DECK size). However, because these different subgraph measures are computationally demanding, we also study simpler complexity measures focussing on slightly different aspects of graph complexity. We consider heuristically defined “product measures”, the products of two quantities which are zero in the extreme cases of a path and clique, and “entropy measures” quantifying the diversity of different topological features. The previously defined network/graph complexity measures Medium Articulation and Offdiagonal complexity ( OdC) belong to these two classes. We study OdC measures in some detail and compare it with our new measures. For all measures, the most complex graph G has a medium number of edges, between the edge numbers of the minimum and the maximum connected graph n-1graph complexity measures are characterized with the help of different example graphs. For all measures the corresponding time complexity is given. Finally, we discuss the complexity of 33 real-world graphs of different biological, social and economic systems with the six computationally most simple measures (including OdC). The complexities of the real graphs are compared with average complexities of two different random graph versions: complete random graphs (just fixed n,m) and rewired graphs with fixed node degrees.

  14. Spectral fluctuations of quantum graphs

    NASA Astrophysics Data System (ADS)

    Pluhař, Z.; Weidenmüller, H. A.

    2014-10-01

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.

  15. Spectral fluctuations of quantum graphs

    SciTech Connect

    Pluhař, Z.; Weidenmüller, H. A.

    2014-10-15

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.

  16. Graph characterization via Ihara coefficients.

    PubMed

    Ren, Peng; Wilson, Richard C; Hancock, Edwin R

    2011-02-01

    The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.

  17. A new strategy to construct acyclic nucleosides via Ag(I)-catalyzed addition of pronucleophiles to 9-allenyl-9H-purines.

    PubMed

    Wei, Tao; Xie, Ming-Sheng; Qu, Gui-Rong; Niu, Hong-Ying; Guo, Hai-Ming

    2014-02-01

    A new strategy to construct acyclic nucleosides with diverse side chains was developed. With Ag(I) salts as catalysts, the hydrocarboxylation, hydroamination, and hydrocarbonation reactions proceeded well, affording acyclic nucleosides in good yields (41 examples, 60-98% yields). Meanwhile, these reactions exhibited high chemoselectivities and E-selectivities. PMID:24437554

  18. Martian Pyroxenes in the Shergottite Meteorites; Zagami, SAU005, DAG476 and EETA79001

    NASA Astrophysics Data System (ADS)

    Stephen, N.; Benedix, G. K.; Bland, P.; Hamilton, V. E.

    2010-12-01

    The geology and surface mineralogy of Mars is characterised using remote sensing techniques such as thermal emission spectroscopy (TES) from instruments on a number of spacecraft currently orbiting Mars or gathered from roving missions on the Martian surface. However, the study of Martian meteorites is also important in efforts to further understand the geological history of Mars or to interpret mission data as they are believed to be the only available samples that give us direct clues as to Martian igneous processes [1]. We have recently demonstrated that the spectra of Martian-specific minerals can be determined using micro-spectroscopy [2] and that these spectra can be reliably obtained from thin sections of Martian meteorites [3]. Accurate modal mineralogy of these meteorites is also important [4]. In this study we are using a variety of techniques to build upon previous studies of these particular samples in order to fully characterise the nature of the 2 common pyroxenes found in Martian Shergottites; pigeonite and augite [5], [6]. Previous studies have shown that the Shergottite meteorites are dominated by pyroxene (pigeonite and augite in varying quantities) [4], [5], commonly but not always olivine, plagioclase or maskelynite/glass and also hydrous minerals, which separate the Martian meteorites from other achondrites [7]. Our microprobe study of meteorites Zagami, EETA79001, SAU005 and DAG476 in thin-section at the Natural History Museum, London shows a chemical variability within both the pigeonite and augite composition across individual grains in all thin sections; variation within either Mg or Ca concentration varies from core to rim within the grains. This variation can also be seen in modal mineralogy maps using SEM-derived element maps and the Photoshop® technique previously described [4], and in new micro-spectroscopy data, particularly within the Zagami meteorite. New mineral spectra have been gathered from the Shergottite thin-sections by

  19. Investigation of diastereoselective acyclic α-alkoxydithioacetal substitutions involving thiacarbenium intermediates.

    PubMed

    Prévost, Michel; Dostie, Starr; Waltz, Marie-Ève; Guindon, Yvan

    2014-11-01

    Reported herein is an experimental and theoretical study that elucidates why silylated nucleobase additions to acyclic α-alkoxythiacarbenium intermediates proceed with high 1,2-syn stereocontrol (anti-Felkin-Anh), which is opposite to what would be expected with corresponding activated aldehydes. The acyclic thioaminals formed undergo intramolecular cyclizations to provide nucleoside analogues with anticancer and antiviral properties. The factors influencing the selectivity of the substitution reaction have been examined thoroughly. Halothioether species initially form, ionize in the presence (low dielectric media) or absence (higher dielectric media) of the nucleophile, and react through SN2-like transition structures (TS A and D), where the α-alkoxy group is gauche to the thioether moiety. An important, and perhaps counterintuitive, observation in this work was that calculations done in the gas phase or low dielectric media (toluene) are essential to locate the product- and rate-determining transition structures (C-N bond formation) that allow the most reasonable prediction of selectivity and isotope effects for more polar solvents (THF, MeCN). The ΔΔG(⧧) (G(TSA-TSD)) obtained in silico are consistent with the preferential formation of 1,2-syn product and with the trends of stereocontrol displayed by 2,3-anti and 2,3-syn α,β-bis-alkoxydithioacetals.

  20. An Unusual Exponential Graph

    ERIC Educational Resources Information Center

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  1. Production of DagA, a β-agarase, by streptomyces lividans in glucose medium or mixed-sugar medium simulating microalgae hydrolysate.

    PubMed

    Park, Juyi; Hong, Soon-Kwang; Chang, Yong Keun

    2014-12-28

    DagA, a β-agarase, was produced by cultivating a recombinant Streptomyces lividans in a glucose medium or a mixed-sugar medium simulating microalgae hydrolysate. The optimum composition of the glucose medium was identified as 25 g/l glucose, 10 g/l yeast extract, and 5 g/l MgCl2·6H2O. With this, a DagA activity of 7.26 U/ml could be obtained. When a mixedsugar medium containing 25 g/l of sugars was used, a DagA activity of 4.81 U/ml was obtained with very low substrate utilization efficiency owing to the catabolic repression of glucose against the other sugars. When glucose and galactose were removed from the medium, an unexpectedly high DagA activity of about 8.7 U/ml was obtained, even though a smaller amount of sugars was used. It is recommended for better substrate utilization and process economics that glucose and galactose be eliminated from the medium, by being consumed by some other useful applications, before the production of DagA.

  2. Evaluation of Graph Pattern Matching Workloads in Graph Analysis Systems

    SciTech Connect

    Hong, Seokyong; Sukumar, Sreenivas Rangan; Vatsavai, Raju

    2016-01-01

    Graph analysis has emerged as a powerful method for data scientists to represent, integrate, query, and explore heterogeneous data sources. As a result, graph data management and mining became a popular area of research, and led to the development of plethora of systems in recent years. Unfortunately, the number of emerging graph analysis systems and the wide range of applications, coupled with a lack of apples-to-apples comparisons, make it difficult to understand the trade-offs between different systems and the graph operations for which they are designed. A fair comparison of these systems is a challenging task for the following reasons: multiple data models, non-standardized serialization formats, various query interfaces to users, and diverse environments they operate in. To address these key challenges, in this paper we present a new benchmark suite by extending the Lehigh University Benchmark (LUBM) to cover the most common capabilities of various graph analysis systems. We provide the design process of the benchmark, which generalizes the workflow for data scientists to conduct the desired graph analysis on different graph analysis systems. Equipped with this extended benchmark suite, we present performance comparison for nine subgraph pattern retrieval operations over six graph analysis systems, namely NetworkX, Neo4j, Jena, Titan, GraphX, and uRiKA. Through the proposed benchmark suite, this study reveals both quantitative and qualitative findings in (1) implications in loading data into each system; (2) challenges in describing graph patterns for each query interface; and (3) different sensitivity of each system to query selectivity. We envision that this study will pave the road for: (i) data scientists to select the suitable graph analysis systems, and (ii) data management system designers to advance graph analysis systems.

  3. Graph Coarsening for Path Finding in Cybersecurity Graphs

    SciTech Connect

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh

    2013-01-01

    n the pass-the-hash attack, hackers repeatedly steal password hashes and move through a computer network with the goal of reaching a computer with high level administrative privileges. In this paper we apply graph coarsening in network graphs for the purpose of detecting hackers using this attack or assessing the risk level of the network's current state. We repeatedly take graph minors, which preserve the existence of paths in the graph, and take powers of the adjacency matrix to count the paths. This allows us to detect the existence of paths as well as find paths that have high risk of being used by adversaries.

  4. Resistance of human immunodeficiency virus type 1 to acyclic 6-phenylselenenyl- and 6-phenylthiopyrimidines.

    PubMed Central

    Nguyen, M H; Schinazi, R F; Shi, C; Goudgaon, N M; McKenna, P M; Mellors, J W

    1994-01-01

    Acyclic 6-phenylselenenyl- and 6-phenylthiopyrimidine derivatives are potent and specific inhibitors of human immunodeficiency virus type 1 (HIV-1). The development of in vitro resistance to two derivatives, 5-ethyl-1-(ethoxymethyl)-(6-phenylthio)-uracil (E-EPU), was evaluated by serial passage of HIV-1 in increasing concentrations of inhibitor. HIV-1 variants exhibiting > 500-fold resistance to E-EPSeU and E-EPU were isolated after sequential passage in 1, 5, and 10 microM inhibitor. The resistant variants exhibited coresistance to related acyclic 6-substituted pyrimidines and the HIV-1-specific inhibitors (+)-(5S)-4,5,6,7-tetrahydro-5- pyrimidines and the HIV-1-specific inhibitors (+)-(5S)-4,5,6,7-tetrahydro-5- methyl-6-(3-methyl-2-butenyl)imidazo[4,5,1-jk]benzodiazepin-2(1H)- thione (TIBO R82150) and nevirapine, but remained susceptible to 3'-azido-3'-deoxythymidine, 2',3'-dideoxycytidine, 2',3'-dideoxyinosine, and phosphonoformic acid. DNA sequence analysis of reverse transcriptase (RT) derived from E-EPSeU-resistant virus identified a Tyr (TAT)-to-Cys (TGT) mutation at either codon 188 (Cys-188; 9 of 15 clones) or codon 181 (Cys-181; 5 of 15 clones). The same amino acid changes were found in RT from E-EPU-resistant virus, but the Cys-181 mutation was more common (9 of 10 clones) than the Cys-188 mutation (1 of 10 clones). Site-specific mutagenesis and production of mutant recombinant viruses demonstrated that both the Cys-181 and Cys-188 mutations cause resistance to E-EPSeU and E-EPU. Of the two mutations, the Cys-188 substitution produced greater E-EPSeU and E-EPU resistance. The predominance of the Cys-188 mutation in E-EPSeU-resistant variants has not been noted for other classes of HIV-1 specific RT inhibitors. HIV-1 resistance is likely to limit the therapeutic efficacy of acyclic 6-substituted pyrimidines if they are used as monotherapy. PMID:7840579

  5. Enantiopure 1,4-diols and 1,4-aminoalcohols via stereoselective acyclic sulfoxide-sulfenate rearrangement.

    PubMed

    Fernández de la Pradilla, Roberto; Colomer, Ignacio; Ureña, Mercedes; Viso, Alma

    2011-05-01

    Treatment of acyclic α-hydroxy and α-tosylamino sulfinyl dienes with amines affords enantiopure 1,4-diol or 1,4-hydroxysulfonamide derivatives in good yields and diastereoselectivities. This one-pot procedure entails a conjugate addition that triggers a diastereoselective sulfoxide-sulfenate [2,3]-sigmatropic rearrangement.

  6. Contact Graph Routing

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic

  7. Enantiopurity analysis of new types of acyclic nucleoside phosphonates by capillary electrophoresis with cyclodextrins as chiral selectors.

    PubMed

    Solínová, Veronika; Kaiser, Martin Maxmilián; Lukáč, Miloš; Janeba, Zlatko; Kašička, Václav

    2014-02-01

    CE methods have been developed for the chiral analysis of new types of six acyclic nucleoside phosphonates, nucleotide analogs bearing [(3-hydroxypropan-2-yl)-1H-1,2,3-triazol-4-yl]phosphonic acid, 2-[(diisopropoxyphosphonyl)methoxy]propanoic acid, or 2-(phosphonomethoxy)propanoic acid moieties attached to adenine, guanine, 2,6-diaminopurine, uracil, and 5-bromouracil nucleobases, using neutral and cationic cyclodextrins as chiral selectors. With the exception of the 5-bromouracil-derived acyclic nucleoside phosphonate with a 2-(phosphonomethoxy)propanoic acid side chain, the R and S enantiomers of the other five acyclic nucleoside phosphonates were successfully separated with sufficient resolutions, 1.51-2.94, within a reasonable time, 13-28 min, by CE in alkaline BGEs (50 mM sodium tetraborate adjusted with NaOH to pH 9.60, 9.85, and 10.30, respectively) containing 20 mg/mL β-cyclodextrin as the chiral selector. A baseline separation of the R and S enantiomers of the 5-bromouracil-derived acyclic nucleoside phosphonate with 2-(phosphonomethoxy)propanoic acid side chain was achieved within a short time of 7 min by CE in an acidic BGE (20:40 mM Tris/phosphate, pH 2.20) using 60 mg/mL quaternary ammonium β-cyclodextrin chiral selector. The developed methods were applied for the assessment of the enantiomeric purity of the above acyclic nucleoside phosphonates. The preparations of all these compounds were found to be synthesized in pure enantiomeric forms. Using UV absorption detection at 206 nm, their concentration detection limits were in the low micromolar range.

  8. Synthesis and broad spectrum antiviral evaluation of bis(POM) prodrugs of novel acyclic nucleosides.

    PubMed

    Hamada, Manabu; Roy, Vincent; McBrayer, Tamara R; Whitaker, Tony; Urbina-Blanco, Cesar; Nolan, Steven P; Balzarini, Jan; Snoeck, Robert; Andrei, Graciela; Schinazi, Raymond F; Agrofoglio, Luigi A

    2013-09-01

    A series of seventeen hitherto unknown ANP analogs bearing the (E)-but-2-enyl aliphatic side chain and modified heterocyclic base such as cytosine and 5-fluorocytosine, 2-pyrazinecarboxamide, 1,2,4-triazole-3-carboxamide or 4-substituted-1,2,3-triazoles were prepared in a straight approach through an olefin acyclic cross metathesis as key synthetic step. All novel compounds were evaluated for their antiviral activities against a large number of DNA and RNA viruses including herpes simplex virus type 1 and 2, varicella zoster virus, feline herpes virus, human cytomegalovirus, hepatitis C virus (HCV), HIV-1 and HIV-2. Among these molecules, only compound 31 showed activity against human cytomegalovirus in HEL cell cultures with at EC50 of ∼10 μM. Compounds 8a, 13, 14, and 24 demonstrated pronounced anti-HCV activity without significant cytotoxicity at 100 μM.

  9. Versatile synthesis of oxime-containing acyclic nucleoside phosphonates--synthetic solutions and antiviral activity.

    PubMed

    Solyev, Pavel N; Jasko, Maxim V; Kleymenova, Alla A; Kukhanova, Marina K; Kochetkov, Sergey N

    2015-11-28

    New oxime-containing acyclic nucleoside phosphonates 9-{2-[(phosphonomethyl)oximino]ethyl}adenine (1), -guanine (2) and 9-{2-[(phosphonomethyl)oximino]propyl}adenine (3) with wide spectrum activity against different types of viruses were synthesized. The key intermediate, diethyl aminooxymethylphosphonate, was obtained by the Mitsunobu reaction. Modified conditions for the by-product separation (without chromatography and distillation) allowed us to obtain 85% yield of the aminooxy intermediate. The impact of DBU and Cs2CO3 on the N(9)/N(7) product ratio for adenine and guanine alkylation was studied. A convenient procedure for aminooxy group detection was found. The synthesized phosphonates were tested and they appeared to display moderate activity against different types of viruses (HIV, herpes viruses in cell cultures, and hepatitis C virus in the replicon system) without toxicity up to 1000 μM. PMID:26383895

  10. Molecular Motion of the Junction Points in Model Networks Prepared by Acyclic Triene Metathesis.

    PubMed

    da Silva, Lucas Caire; Bowers, Clifford R; Graf, Robert; Wagener, Kenneth B

    2016-03-01

    The junction dynamics in a selectively deuterated model polymer network containing junctions on every 21st chain carbon is studied by solid state (2) H echo NMR. Polymer networks are prepared via acyclic triene metathesis of deuteron-labeled symmetric trienes with deuteron probes precisely placed at the alpha carbon relative to the junction point. The effect of decreasing the cross-link density on the junction dynamics is studied by introduction of polybutadiene chains in-between junctions. The networks are characterized by swelling, gel content, and solid state (1) H MAS NMR. Line shape analysis of the (2) H quadrupolar echo spectra reveals that the degree of motion anisotropy and the distribution of motion correlation times depend on the cross-link density and structural heterogeneity of the polymer networks. A detailed model of the junction dynamics at different temperatures is proposed and explained in terms of the intermolecular cooperativity in densely-packed systems. PMID:26787457

  11. Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts

    NASA Astrophysics Data System (ADS)

    Langton, Matthew J.; Robinson, Sean W.; Marques, Igor; Félix, Vítor; Beer, Paul D.

    2014-12-01

    Halogen bonding (XB), the attractive interaction between an electron-deficient halogen atom and a Lewis base, has undergone a dramatic development as an intermolecular force analogous to hydrogen bonding (HB). However, its utilization in the solution phase remains underdeveloped. Furthermore, the design of receptors capable of strong and selective recognition of anions in water remains a significant challenge. Here we demonstrate the superiority of halogen bonding over hydrogen bonding for strong anion binding in water, to the extent that halide recognition by a simple acyclic mono-charged receptor is achievable. Quantification of iodide binding by rotaxane hosts reveals the strong binding by the XB-rotaxane is driven exclusively by favourable enthalpic contributions arising from the halogen-bonding interactions, whereas weaker association with the HB-rotaxanes is entropically driven. These observations demonstrate the unique nature of halogen bonding in water as a strong alternative interaction to the ubiquitous hydrogen bonding in molecular recognition and assembly.

  12. Synthesis of Phenylene Vinylene Macrocycles through Acyclic Diene Metathesis Macrocyclization and Their Aggregation Behavior.

    PubMed

    Zhang, Chenxi; Yu, Chao; Long, Hai; Denman, Ryan J; Jin, Yinghua; Zhang, Wei

    2015-11-16

    A series of phenylene vinylene macrocycles (PVMs) bearing substituents with various sizes and electronic properties have been synthesized through a one-step acyclic diene metathesis macrocyclization approach and their aggregation behaviors have been investigated. In great contrast to the aggregation of the analogous phenylene ethynylene macrocycles, which aggregate only when substituted with electron-withdrawing groups, these PVMs undergo exceptionally strong aggregation, regardless of the electron-donating or -withdrawing characters of the substituents. The unusual aggregation behavior of the PVMs is further investigated with thermodynamic and computer modeling studies, which show a good agreement with the recently proposed direct through-space interaction model, rather than the polar/π model. The high aggregation tendency of PVMs suggests the great potential of this novel class of shape-persistent macrocycles in a variety of applications, such as ion channels, host-guest recognition, and catalysis. PMID:26420443

  13. The Acyclic Retinoid Peretinoin Inhibits Hepatitis C Virus Replication and Infectious Virus Release in Vitro

    NASA Astrophysics Data System (ADS)

    Shimakami, Tetsuro; Honda, Masao; Shirasaki, Takayoshi; Takabatake, Riuta; Liu, Fanwei; Murai, Kazuhisa; Shiomoto, Takayuki; Funaki, Masaya; Yamane, Daisuke; Murakami, Seishi; Lemon, Stanley M.; Kaneko, Shuichi

    2014-04-01

    Clinical studies suggest that the oral acyclic retinoid Peretinoin may reduce the recurrence of hepatocellular carcinoma (HCC) following surgical ablation of primary tumours. Since hepatitis C virus (HCV) infection is a major cause of HCC, we assessed whether Peretinoin and other retinoids have any effect on HCV infection. For this purpose, we measured the effects of several retinoids on the replication of genotype 1a, 1b, and 2a HCV in vitro. Peretinoin inhibited RNA replication for all genotypes and showed the strongest antiviral effect among the retinoids tested. Furthermore, it reduced infectious virus release by 80-90% without affecting virus assembly. These effects could be due to reduced signalling from lipid droplets, triglyceride abundance, and the expression of mature sterol regulatory element-binding protein 1c and fatty acid synthase. These negative effects of Peretinoin on HCV infection may be beneficial in addition to its potential for HCC chemoprevention in HCV-infected patients.

  14. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    SciTech Connect

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.; Clinch, Keith; Crump, Douglas R.; Rosario Jr., Irving; Merino, Emilio F.; Almo, Steve C.; Tyler, Peter C.; Schramm, Vern L.

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  15. Bioefficacy of acyclic monoterpenes and their saturated derivatives against the West Nile vector Culex pipiens.

    PubMed

    Michaelakis, Antonios; Vidali, Veroniki P; Papachristos, Dimitrios P; Pitsinos, Emmanuel N; Koliopoulos, George; Couladouros, Elias A; Polissiou, Moschos G; Kimbaris, Athanasios C

    2014-02-01

    Twenty acyclic monoterpenes with different functional groups (acetoxy, hydroxyl, carbonyl and carboxyl) bearing a variable number of carbon double bonds were assayed as repellent and larvicidal agents against the West Nile vector Culex pipiens. Seven of them were derivatives that were synthesized through either hydrogenation or oxidation procedures. All repellent compounds were tested at the dose of 1mgcm(-2) and only neral and geranial were also tested at a 4-fold lower dose (0.25mgcm(-2)). Repellency results revealed that geranial, neral, nerol, citronellol, geranyl acetate and three more derivatives dihydrolinalool (3), dihydrocitronellol (5) and dihydrocitronellyl acetate (6) resulted in no landings. Based on the LC50 values the derivative dihydrocitronellyl acetate (6) was the most active of all, resulting in an LC50 value of 17.9mgL(-1). Linalyl acetate, citronellyl acetate, neryl acetate, geranyl acetate, dihydrocitronellol (5), dihydrocitronellal (7), citronellol, dihydrolinalyl acetate (2), citronellic acid and tetrahydrolinalyl acetate (1) were also toxic with LC50 values ranging from 23 to 45mgL(-1). Factors modulating toxicity have been identified, thus providing information on structural requirements for the selected acyclic monoterpenes. The acetoxy group enhanced toxicity, without being significantly affected by the unsaturation degree. Within esters, reduction of the vinyl group appears to decrease potency. Presence of a hydroxyl or carbonyl group resulted in increased activity but only in correlation to saturation degree. Branched alcohols proved ineffective compared to the corresponding linear isomers. Finally, as it concerns acids, data do not allow generalizations or correlations to be made. PMID:23938144

  16. Influence of Two Acyclic Homoterpenes (Tetranorterpenes) on the Foraging Behavior of Anthonomus grandis Boh.

    PubMed

    Magalhães, D M; Borges, M; Laumann, R A; Woodcock, C M; Pickett, J A; Birkett, M A; Blassioli-Moraes, Maria Carolina

    2016-04-01

    Previous studies have shown that the boll weevil, Anthonomus grandis, is attracted to constitutive and conspecific herbivore-induced cotton volatiles, preferring the blend emitted by cotton at the reproductive over the vegetative stage. Moreover, this preference was paralleled by the release of the acyclic homoterpenes (tetranorterpenes) (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) in Delta Opal cotton being higher at the vegetative than at the reproductive stage. Here, we evaluated whether this difference in release of acyclic homoterpenes also occurred in other cotton varieties, and if boll weevils could recognize these compounds as indicators of a specific cotton phenological stage. Results showed that cotton genotypes CNPA TB-90, BRS-293 and Delta Opal all produced higher levels of DMNT and TMTT at the vegetative stage than at the reproductive stage and that these homoterpenes allowed for principal component analysis separation of volatiles produced by the two phenological stages. Electroantennograms confirmed boll weevil antennal responses to DMNT and TMTT. Behavioral assays, using Y-tube olfactometers, showed that adding synthetic homoterpenes to reproductive cotton volatiles (mimicking cotton at the vegetative stage in terms of homoterpene levels) resulted in reduced attraction to boll weevils compared to that to unmodified reproductive cotton. Weevils showed no preference when given a choice between plants at the vegetative stage and the vegetative stage-mimicked plant. Altogether, the results show that DMNT and TMTT are used by boll weevils to distinguish between cotton phenological stages. PMID:27105878

  17. Bioefficacy of acyclic monoterpenes and their saturated derivatives against the West Nile vector Culex pipiens.

    PubMed

    Michaelakis, Antonios; Vidali, Veroniki P; Papachristos, Dimitrios P; Pitsinos, Emmanuel N; Koliopoulos, George; Couladouros, Elias A; Polissiou, Moschos G; Kimbaris, Athanasios C

    2014-02-01

    Twenty acyclic monoterpenes with different functional groups (acetoxy, hydroxyl, carbonyl and carboxyl) bearing a variable number of carbon double bonds were assayed as repellent and larvicidal agents against the West Nile vector Culex pipiens. Seven of them were derivatives that were synthesized through either hydrogenation or oxidation procedures. All repellent compounds were tested at the dose of 1mgcm(-2) and only neral and geranial were also tested at a 4-fold lower dose (0.25mgcm(-2)). Repellency results revealed that geranial, neral, nerol, citronellol, geranyl acetate and three more derivatives dihydrolinalool (3), dihydrocitronellol (5) and dihydrocitronellyl acetate (6) resulted in no landings. Based on the LC50 values the derivative dihydrocitronellyl acetate (6) was the most active of all, resulting in an LC50 value of 17.9mgL(-1). Linalyl acetate, citronellyl acetate, neryl acetate, geranyl acetate, dihydrocitronellol (5), dihydrocitronellal (7), citronellol, dihydrolinalyl acetate (2), citronellic acid and tetrahydrolinalyl acetate (1) were also toxic with LC50 values ranging from 23 to 45mgL(-1). Factors modulating toxicity have been identified, thus providing information on structural requirements for the selected acyclic monoterpenes. The acetoxy group enhanced toxicity, without being significantly affected by the unsaturation degree. Within esters, reduction of the vinyl group appears to decrease potency. Presence of a hydroxyl or carbonyl group resulted in increased activity but only in correlation to saturation degree. Branched alcohols proved ineffective compared to the corresponding linear isomers. Finally, as it concerns acids, data do not allow generalizations or correlations to be made.

  18. Detecting alternative graph clusterings.

    PubMed

    Mandala, Supreet; Kumara, Soundar; Yao, Tao

    2012-07-01

    The problem of graph clustering or community detection has enjoyed a lot of attention in complex networks literature. A quality function, modularity, quantifies the strength of clustering and on maximization yields sensible partitions. However, in most real world networks, there are an exponentially large number of near-optimal partitions with some being very different from each other. Therefore, picking an optimal clustering among the alternatives does not provide complete information about network topology. To tackle this problem, we propose a graph perturbation scheme which can be used to identify an ensemble of near-optimal and diverse clusterings. We establish analytical properties of modularity function under the perturbation which ensures diversity. Our approach is algorithm independent and therefore can leverage any of the existing modularity maximizing algorithms. We numerically show that our methodology can systematically identify very different partitions on several existing data sets. The knowledge of diverse partitions sheds more light into the topological organization and helps gain a more complete understanding of the underlying complex network.

  19. Quantum Graph Analysis

    SciTech Connect

    Maunz, Peter Lukas Wilhelm; Sterk, Jonathan David; Lobser, Daniel; Parekh, Ojas D.; Ryan-Anderson, Ciaran

    2016-01-01

    In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.

  20. Graph Visualization for RDF Graphs with SPARQL-EndPoints

    SciTech Connect

    Sukumar, Sreenivas R; Bond, Nathaniel

    2014-07-11

    RDF graphs are hard to visualize as triples. This software module is a web interface that connects to a SPARQL endpoint and retrieves graph data that the user can explore interactively and seamlessly. The software written in python and JavaScript has been tested to work on screens as little as the smart phones to large screens such as EVEREST.

  1. Synthesis, biological, and biophysical studies of DAG-indololactones designed as selective activators of RasGRP.

    PubMed

    Garcia, Lia C; Donadío, Lucia Gandolfi; Mann, Ella; Kolusheva, Sofiya; Kedei, Noemi; Lewin, Nancy E; Hill, Colin S; Kelsey, Jessica S; Yang, Jing; Esch, Timothy E; Santos, Marina; Peach, Megan L; Kelley, James A; Blumberg, Peter M; Jelinek, Raz; Marquez, Victor E; Comin, Maria J

    2014-06-15

    The development of selective agents capable of discriminating between protein kinase C (PKC) isoforms and other diacylglycerol (DAG)-responsive C1 domain-containing proteins represents an important challenge. Recent studies have highlighted the role that Ras guanine nucleotide-releasing protein (RasGRP) isoforms play both in immune responses as well as in the development of prostate cancer and melanoma, suggesting that the discovery of selective ligands could have potential therapeutic value. Thus far, the N-methyl-substituted indololactone 1 is the agonist with the highest reported potency and selectivity for RasGRP relative to PKC. Here we present the synthesis, binding studies, cellular assays and biophysical analysis of interactions with model membranes of a family of regioisomers of 1 (compounds 2-5) that differ in the position of the linkage between the indole ring and the lactone moiety. These structural variations were studied to explore the interaction of the active complex (C1 domain-ligand) with cellular membranes, which is believed to be an important factor for selectivity in the activation of DAG-responsive C1 domain containing signaling proteins. All compounds were potent and selective activators of RasGRP when compared to PKCα with selectivities ranging from 6 to 65 fold. However, the parent compound 1 was appreciably more selective than any of the other isomers. In intact cells, modest differences in the patterns of translocation of the C1 domain targets were observed. Biophysical studies using giant vesicles as model membranes did show substantial differences in terms of molecular interactions impacting lipid organization, dynamics and membrane insertion. However, these differences did not yield correspondingly large changes in patterns of biological response, at least for the parameters examined.

  2. Quantization of gauge fields, graph polynomials and graph homology

    SciTech Connect

    Kreimer, Dirk; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  3. Recursive neural networks for processing graphs with labelled edges: theory and applications.

    PubMed

    Bianchini, M; Maggini, M; Sarti, L; Scarselli, F

    2005-10-01

    In this paper, we introduce a new recursive neural network model able to process directed acyclic graphs with labelled edges. The model uses a state transition function which considers the edge labels and is independent both from the number and the order of the children of each node. The computational capabilities of the new recursive architecture are assessed. Moreover, in order to test the proposed architecture on a practical challenging application, the problem of object detection in images is also addressed. In fact, the localization of target objects is a preliminary step in any recognition system. The proposed technique is general and can be applied in different detection systems, since it does not exploit any a priori knowledge on the particular problem. Some experiments on face detection, carried out on scenes acquired by an indoor camera, are reported, showing very promising results. PMID:16181770

  4. Graphs and Zero-Divisors

    ERIC Educational Resources Information Center

    Axtell, M.; Stickles, J.

    2010-01-01

    The last ten years have seen an explosion of research in the zero-divisor graphs of commutative rings--by professional mathematicians "and" undergraduates. The objective is to find algebraic information within the geometry of these graphs. This topic is approachable by anyone with one or two semesters of abstract algebra. This article gives the…

  5. A PVS Graph Theory Library

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Sjogren, Jon A.

    1998-01-01

    This paper documents the NASA Langley PVS graph theory library. The library provides fundamental definitions for graphs, subgraphs, walks, paths, subgraphs generated by walks, trees, cycles, degree, separating sets, and four notions of connectedness. Theorems provided include Ramsey's and Menger's and the equivalence of all four notions of connectedness.

  6. Graphs as Statements of Belief.

    ERIC Educational Resources Information Center

    Lake, David

    2002-01-01

    Identifies points where beliefs are important when making decisions about how graphs are drawn. Describes a simple case of the reaction between 'bicarb soda' and orange or lemon juice and discusses how drawing a graph becomes a statement of belief. (KHR)

  7. The Story of a Seminar in Applied Communication. The Dag Hammarskjold Seminar on "Communication--An Essential Component in Development Work" (Uppsala, Sweden, August 27-September 9, 1972).

    ERIC Educational Resources Information Center

    Fuglesang, Andreas, Ed.

    The objective of the two week long 1972 Dag Hammarskjold Seminar was to break away from traditional and theoretical concepts of information work in order to gain a practical insight into communication, especially as it applies to social and economic development. Fifty participants and lecturers from developed and developing countries in Europe and…

  8. A Collection of Features for Semantic Graphs

    SciTech Connect

    Eliassi-Rad, T; Fodor, I K; Gallagher, B

    2007-05-02

    Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains briefly features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time.

  9. Graph Partitioning and Sequencing Software

    1995-09-19

    Graph partitioning is a fundemental problem in many scientific contexts. CHACO2.0 is a software package designed to partition and sequence graphs. CHACO2.0 allows for recursive application of several methods for finding small edge separators in weighted graphs. These methods include inertial, spectral, Kernighan Lin and multilevel methods in addition to several simpler strategies. Each of these approaches can be used to partition the graph into two, four, or eight pieces at each level of recursion.more » In addition, the Kernighan Lin method can be used to improve partitions generated by any of the other algorithms. CHACO2.0 can also be used to address various graph sequencing problems, with applications to scientific computing, database design, gene sequencing and other problems.« less

  10. Semi-Markov Graph Dynamics

    PubMed Central

    Raberto, Marco; Rapallo, Fabio; Scalas, Enrico

    2011-01-01

    In this paper, we outline a model of graph (or network) dynamics based on two ingredients. The first ingredient is a Markov chain on the space of possible graphs. The second ingredient is a semi-Markov counting process of renewal type. The model consists in subordinating the Markov chain to the semi-Markov counting process. In simple words, this means that the chain transitions occur at random time instants called epochs. The model is quite rich and its possible connections with algebraic geometry are briefly discussed. Moreover, for the sake of simplicity, we focus on the space of undirected graphs with a fixed number of nodes. However, in an example, we present an interbank market model where it is meaningful to use directed graphs or even weighted graphs. PMID:21887245

  11. Path similarity skeleton graph matching.

    PubMed

    Bai, Xiang; Latecki, Longin Jan

    2008-07-01

    This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.

  12. Semantic graphs and associative memories.

    PubMed

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  13. Semantic graphs and associative memories

    NASA Astrophysics Data System (ADS)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  14. Multigraph: Reusable Interactive Data Graphs

    NASA Astrophysics Data System (ADS)

    Phillips, M. B.

    2010-12-01

    There are surprisingly few good software tools available for presenting time series data on the internet. The most common practice is to use a desktop program such as Excel or Matlab to save a graph as an image which can be included in a web page like any other image. This disconnects the graph from the data in a way that makes updating a graph with new data a cumbersome manual process, and it limits the user to one particular view of the data. The Multigraph project defines an XML format for describing interactive data graphs, and software tools for creating and rendering those graphs in web pages and other internet connected applications. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions; the user can pan and zoom by clicking and dragging, in a familiar "Google Maps" kind of way. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf" through large data sets, downloading only those the parts of the data that are needed for display. The Multigraph XML format, or "MUGL" for short, provides a concise description of the visual properties of a graph, such as axes, plot styles, data sources, labels, etc, as well as interactivity properties such as how and whether the user can pan or zoom along each axis. Multigraph reads a file in this format, draws the described graph, and allows the user to interact with it. Multigraph software currently includes a Flash application for embedding graphs in web pages, a Flex component for embedding graphs in larger Flex/Flash applications, and a plugin for creating graphs in the WordPress content management system. Plans for the future include a Java version for desktop viewing and editing, a command line version for batch and server side rendering, and possibly Android and iPhone versions. Multigraph is currently in use on several web

  15. Uptake of Hydrocarbons in Aqueous Solution by Encapsulation in Acyclic Cucurbit[n]uril-Type Molecular Containers.

    PubMed

    Lu, Xiaoyong; Isaacs, Lyle

    2016-07-01

    The ability of two water-soluble acyclic cucurbit[n]uril (CB[n]) type containers, whose hydrophobic cavity is defined by a glycoluril tetramer backbone and terminal aromatic (benzene, naphthalene) sidewalls, to act as solubilizing agents for hydrocarbons in water is described. (1) H NMR spectroscopy studies and phase-solubility diagrams establish that the naphthalene-walled container performs as well as, or better than, CB[7] and CB[8] in promoting the uptake of poorly soluble hydrocarbons into aqueous solution through formation of host-hydrocarbon complexes. The naphthalene-walled acyclic CB[n] container is able to extract large hydrocarbons from crude oil into aqueous solution. PMID:27169688

  16. Investigating temporary acyclicity in a captive group of Asian elephants (Elephas maximus): Relationship between management, adrenal activity and social factors.

    PubMed

    Edwards, Katie L; Trotter, Jessica; Jones, Martin; Brown, Janine L; Steinmetz, Hanspeter W; Walker, Susan L

    2016-01-01

    Routine faecal steroid monitoring has been used to aid the management of five captive Asian elephant (Elephas maximus) females at Chester Zoo, UK, since 2007. Progestagen analysis initially revealed synchronised oestrous cycles among all females. However, a 14- to 20-week period of temporary acyclicity subsequently occurred in three females, following several management changes (increased training, foot-care and intermittent matriarch removal for health reasons) and the initiation of pregnancy in another female. The aim of this study was to retrospectively investigate whether these management changes were related to increased adrenal activity and disruption of ovarian activity, or whether social factors may have been involved in the temporary cessation of cyclicity. Faecal samples collected every other day were analysed to investigate whether glucocorticoid metabolites were related to reproductive status (pregnant, cycling, acyclic) or management (training, foot-care, matriarch presence). Routine training and foot-care were not associated with adrenal activity; however, intensive foot-care to treat an abscess in one female was associated with increased glucocorticoid concentration. Matriarch presence influenced adrenal activity in three females, being lower when the matriarch was separated from the group at night compared to being always present. However, in the females that exhibited temporary acyclicity, there was no consistent relationship between glucocorticoids and cyclicity state. Although the results of this study do not fully explain this occurrence, the highly synchronised nature of oestrous cycles within this group, and the concurrent acyclicity in three females, raises the question of whether social factors could have been involved in the temporary disruption of ovarian activity.

  17. Investigating temporary acyclicity in a captive group of Asian elephants (Elephas maximus): Relationship between management, adrenal activity and social factors.

    PubMed

    Edwards, Katie L; Trotter, Jessica; Jones, Martin; Brown, Janine L; Steinmetz, Hanspeter W; Walker, Susan L

    2016-01-01

    Routine faecal steroid monitoring has been used to aid the management of five captive Asian elephant (Elephas maximus) females at Chester Zoo, UK, since 2007. Progestagen analysis initially revealed synchronised oestrous cycles among all females. However, a 14- to 20-week period of temporary acyclicity subsequently occurred in three females, following several management changes (increased training, foot-care and intermittent matriarch removal for health reasons) and the initiation of pregnancy in another female. The aim of this study was to retrospectively investigate whether these management changes were related to increased adrenal activity and disruption of ovarian activity, or whether social factors may have been involved in the temporary cessation of cyclicity. Faecal samples collected every other day were analysed to investigate whether glucocorticoid metabolites were related to reproductive status (pregnant, cycling, acyclic) or management (training, foot-care, matriarch presence). Routine training and foot-care were not associated with adrenal activity; however, intensive foot-care to treat an abscess in one female was associated with increased glucocorticoid concentration. Matriarch presence influenced adrenal activity in three females, being lower when the matriarch was separated from the group at night compared to being always present. However, in the females that exhibited temporary acyclicity, there was no consistent relationship between glucocorticoids and cyclicity state. Although the results of this study do not fully explain this occurrence, the highly synchronised nature of oestrous cycles within this group, and the concurrent acyclicity in three females, raises the question of whether social factors could have been involved in the temporary disruption of ovarian activity. PMID:26393308

  18. Dual Catalysis Using Boronic Acid and Chiral Amine: Acyclic Quaternary Carbons via Enantioselective Alkylation of Branched Aldehydes with Allylic Alcohols.

    PubMed

    Mo, Xiaobin; Hall, Dennis G

    2016-08-31

    A ferrocenium boronic acid salt activates allylic alcohols to generate transient carbocations that react with in situ-generated chiral enamines from branched aldehydes. The optimized conditions afford the desired acyclic products embedding a methyl-aryl quaternary carbon center with up to 90% yield and 97:3 enantiomeric ratio, with only water as the byproduct. This noble-metal-free method complements alternative methods that are incompatible with carbon-halogen bonds and other sensitive functional groups. PMID:27518200

  19. Transition state analogue inhibitors of human methylthioadenosine phosphorylase and bacterial methylthioadenosine/S-adenosylhomocysteine nucleosidase incorporating acyclic ribooxacarbenium ion mimics

    PubMed Central

    Clinch, Keith; Evans, Gary B.; Fröhlich, Richard F. G.; Gulab, Shivali A.; Gutierrez, Jemy A.; Mason, Jennifer M.; Schramm, Vern L.; Tyler, Peter C.; Woolhouse, Anthony D.

    2012-01-01

    Several acyclic hydroxy-methylthio-amines with 3 to 5 carbon atoms were prepared and coupled via a methylene link to 9-deazaadenine. The products were tested for inhibition against human MTAP and E. coli and N. meningitidis MTANs and gave Ki values as low as 0.23 nM. These results were compared to those obtained with 1st and 2nd generation inhibitors (1S)-1-(9-deazaadenin-9-yl)-1,4-dideoxy-1,4-imino-5-methylthio-d-ribitol (MT-Immucillin-A, 3) and (3R,4S)-1-[9-deazaadenin-9-yl)methyl]3-hydroxy-4-methylthiomethylpyrrolidine (MT-DADMe-Immucillin-A, 4). The best inhibitors were found to exhibit binding affinities of approximately 2- to 4-fold those of 3 but were significantly weaker than 4. Cleavage of the 2,3 carbon–carbon bond in MT-Immucillin-A (3) gave an acyclic product (79) with a 21,500 fold loss of activity against E. coli MTAN. In another case, N-methylation of a side chain secondary amine resulted in a 250-fold loss of activity against the same enzyme [(±)-65 vs (±)-68]. The inhibition results were also contrasted with those acyclic derivatives previously prepared as inhibitors for a related enzyme, purine nucleoside phosphorylase (PNP), where some inhibitors in the latter case were found to be more potent than their cyclic counterparts. PMID:22854195

  20. n-Nucleotide circular codes in graph theory.

    PubMed

    Fimmel, Elena; Michel, Christian J; Strüngmann, Lutz

    2016-03-13

    The circular code theory proposes that genes are constituted of two trinucleotide codes: the classical genetic code with 61 trinucleotides for coding the 20 amino acids (except the three stop codons {TAA,TAG,TGA}) and a circular code based on 20 trinucleotides for retrieving, maintaining and synchronizing the reading frame. It relies on two main results: the identification of a maximal C(3) self-complementary trinucleotide circular code X in genes of bacteria, eukaryotes, plasmids and viruses (Michel 2015 J. Theor. Biol. 380, 156-177. (doi:10.1016/j.jtbi.2015.04.009); Arquès & Michel 1996 J. Theor. Biol. 182, 45-58. (doi:10.1006/jtbi.1996.0142)) and the finding of X circular code motifs in tRNAs and rRNAs, in particular in the ribosome decoding centre (Michel 2012 Comput. Biol. Chem. 37, 24-37. (doi:10.1016/j.compbiolchem.2011.10.002); El Soufi & Michel 2014 Comput. Biol. Chem. 52, 9-17. (doi:10.1016/j.compbiolchem.2014.08.001)). The univerally conserved nucleotides A1492 and A1493 and the conserved nucleotide G530 are included in X circular code motifs. Recently, dinucleotide circular codes were also investigated (Michel & Pirillo 2013 ISRN Biomath. 2013, 538631. (doi:10.1155/2013/538631); Fimmel et al. 2015 J. Theor. Biol. 386, 159-165. (doi:10.1016/j.jtbi.2015.08.034)). As the genetic motifs of different lengths are ubiquitous in genes and genomes, we introduce a new approach based on graph theory to study in full generality n-nucleotide circular codes X, i.e. of length 2 (dinucleotide), 3 (trinucleotide), 4 (tetranucleotide), etc. Indeed, we prove that an n-nucleotide code X is circular if and only if the corresponding graph [Formula: see text] is acyclic. Moreover, the maximal length of a path in [Formula: see text] corresponds to the window of nucleotides in a sequence for detecting the correct reading frame. Finally, the graph theory of tournaments is applied to the study of dinucleotide circular codes. It has full equivalence between the combinatorics

  1. n-Nucleotide circular codes in graph theory.

    PubMed

    Fimmel, Elena; Michel, Christian J; Strüngmann, Lutz

    2016-03-13

    The circular code theory proposes that genes are constituted of two trinucleotide codes: the classical genetic code with 61 trinucleotides for coding the 20 amino acids (except the three stop codons {TAA,TAG,TGA}) and a circular code based on 20 trinucleotides for retrieving, maintaining and synchronizing the reading frame. It relies on two main results: the identification of a maximal C(3) self-complementary trinucleotide circular code X in genes of bacteria, eukaryotes, plasmids and viruses (Michel 2015 J. Theor. Biol. 380, 156-177. (doi:10.1016/j.jtbi.2015.04.009); Arquès & Michel 1996 J. Theor. Biol. 182, 45-58. (doi:10.1006/jtbi.1996.0142)) and the finding of X circular code motifs in tRNAs and rRNAs, in particular in the ribosome decoding centre (Michel 2012 Comput. Biol. Chem. 37, 24-37. (doi:10.1016/j.compbiolchem.2011.10.002); El Soufi & Michel 2014 Comput. Biol. Chem. 52, 9-17. (doi:10.1016/j.compbiolchem.2014.08.001)). The univerally conserved nucleotides A1492 and A1493 and the conserved nucleotide G530 are included in X circular code motifs. Recently, dinucleotide circular codes were also investigated (Michel & Pirillo 2013 ISRN Biomath. 2013, 538631. (doi:10.1155/2013/538631); Fimmel et al. 2015 J. Theor. Biol. 386, 159-165. (doi:10.1016/j.jtbi.2015.08.034)). As the genetic motifs of different lengths are ubiquitous in genes and genomes, we introduce a new approach based on graph theory to study in full generality n-nucleotide circular codes X, i.e. of length 2 (dinucleotide), 3 (trinucleotide), 4 (tetranucleotide), etc. Indeed, we prove that an n-nucleotide code X is circular if and only if the corresponding graph [Formula: see text] is acyclic. Moreover, the maximal length of a path in [Formula: see text] corresponds to the window of nucleotides in a sequence for detecting the correct reading frame. Finally, the graph theory of tournaments is applied to the study of dinucleotide circular codes. It has full equivalence between the combinatorics

  2. Graph anomalies in cyber communications

    SciTech Connect

    Vander Wiel, Scott A; Storlie, Curtis B; Sandine, Gary; Hagberg, Aric A; Fisk, Michael

    2011-01-11

    Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.

  3. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  4. Yamabe type equations on graphs

    NASA Astrophysics Data System (ADS)

    Grigor'yan, Alexander; Lin, Yong; Yang, Yunyan

    2016-11-01

    Let G = (V , E) be a locally finite graph, Ω ⊂ V be a bounded domain, Δ be the usual graph Laplacian, and λ1 (Ω) be the first eigenvalue of -Δ with respect to Dirichlet boundary condition. Using the mountain pass theorem due to Ambrosetti-Rabinowitz, we prove that if α <λ1 (Ω), then for any p > 2, there exists a positive solution to

  5. Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability

    PubMed Central

    Jicsinszky, László; Sohajda, Tamás; Puskás, István; Fenyvesi, Éva

    2014-01-01

    Summary We compared the complex forming ability of α-, β- and γ-cyclodextrins (α-CD, β-CD and γ-CD) with their open ring analogs. In addition to the native cyclodextrins also modified cyclodextrins and the corresponding maltooligomers, functionalized with neutral 2-hydroxypropyl moieties, were synthesized. A new synthetic route was worked out via bromination, benzylation, deacetylation and debenzylation to obtain the 2-hydroxypropyl maltooligomer counterparts. The complexation properties of non-modified and modified cyclic and acyclic dextrins were studied and compared by photon correlation spectroscopy (PCS) and capillary electrophoresis (CE) using model guest compounds. In some cases cyclodextrins and their open-ring analogs (acyclodextrins) show similar complexation abilities, while with other guests considerably different behavior was observed depending on the molecular dimensions and chemical characteristics of the guests. This was explained by the enhanced flexibility of the non-closed rings. Even the signs of enantiorecognition were observed for the chloropheniramine/hydroxypropyl maltohexaose system. Further studies are planned to help the deeper understanding of the interactions. PMID:25550750

  6. Executive Summary of Ares V: Lunar Capabilities Concept Review Through Phase A-Cycle 3

    NASA Technical Reports Server (NTRS)

    Holladay, J. B.; Baggett, K. E.; Feldman, S. M.

    2011-01-01

    This Technical Memorandum (TM) was generated as an overall Ares V summary from the Lunar Capabilities Concept Review (LCCR) through Phase A-Cycle 3 (PA-C3) with the intent that it may be coupled with separately published appendices for a more detailed, integrated narrative. The Ares V has evolved from the initial point of departure (POD) 51.00.48 LCCR configuration to the current candidate POD, PA-C3D, and the family of vehicles concept that contains vehicles PA-C3A through H. The logical progression from concept to POD vehicles is summarized in this TM and captures the trade space and performance of each. The family-of-vehicles concept was assessed during PA-C3 and offered flexibility in the path forward with the ability to add options deemed appropriate. A description of each trade space is given in addition to a summary of each Ares V element. The Ares V contributions to a Mars campaign are also highlighted with the goal of introducing Ares V capabilities within the trade space. The assessment of the Ares V vehicle as it pertains to Mars missions remained locked to the architecture presented in Mars Design Reference Authorization 5.0 using the PA-C3D vehicle configuration to assess Mars transfer vehicle options, in-space EDS capabilities, docking adaptor and propellant transfer assessments, and lunar and Mars synergistic potential.

  7. New in vitro method for evaluating antiviral activity of acyclic nucleoside phosphonates against plant viruses.

    PubMed

    Spak, J; Holý, A; Pavingerová, D; Votruba, I; Spaková, V; Petrzik, K

    2010-12-01

    A new method was developed for testing antiviral compounds against plant viruses based on rapidly growing brassicas in vitro on liquid medium. This method enables exchange of media containing tested chemicals in various concentrations and simultaneous evaluation of their phytotoxicity and antiviral activity. While using ribavirin as a standard for comparison, phytotoxicity and ability of the acyclic nucleotide analogues (R)-PMPA, PMEA, PMEDAP, and (S)-HPMPC to eliminate ssRNA Turnip yellow mosaic virus (TYMV) were evaluated by this method. Double antibody sandwich ELISA and real-time PCR were used for relative quantification of viral protein and nucleic acid in plants. Ribavirin had the most powerful antiviral effect against TYMV. On the other hand, (R)-PMPA and PMEA had no antiviral effect and almost no phytotoxicity compared to the control. (S)-HPMPC and PMEDAP showed moderate antiviral effect, accompanied by higher phytotoxicity. The tested compounds can be screened within 6-9 weeks in contrast to the 6 months for traditionally used explants on solid medium. The method enables large-scale screening of potential antivirals for in vitro elimination of viruses from vegetatively propagated crops and ornamentals.

  8. In vitro susceptibility of fungi to acyclic inhibitors of 2,3-oxidosqualene cyclases.

    PubMed

    Airaudi, D; Ceruti, M; Bianco, C; Filipello Marchisio, V

    1996-01-01

    In the present study we determine the antifungal properties of two acyclic inhibitors of 2,3-oxidosqualene cyclases: 22,23-epoxy-2-aza-2,3-dihydrosqualene (EAS) and azasqualene alcohol (ASA). Fungistatic and fungicidal activity towards dermatophytes and other fungi involved in cutaneous and systemic infections was tested (48 isolates from 10 species). The tests were carried out by inoculating 10 microliters of mycelial homogenate in 1 ml of Sabouraud glucose liquid medium containing serial dilutions of 100 to 0.25 micrograms ml-1 of the substance. For each isolate, the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of both compounds were determined. EAS was more active (MIC range 1.5-25 micrograms ml-1) than ASA (MIC range 3-50 micrograms ml-1). At the highest concentration tested, EAS also showed fungicidal action towards some isolates of Trichophyton mentagrophytes, T. terrestre, Epidermophyton floccosum, Microsporum canis and Scopulariopsis brumptii. The most sensitive species was T. mentagrophytes, the most resistant T. rubrum. PMID:8786759

  9. Solution-Phase Parallel Synthesis of Acyclic Nucleoside Libraries of Purine, Pyrimidine, and Triazole Acetamides

    PubMed Central

    2015-01-01

    Molecular diversity plays a pivotal role in modern drug discovery against phenotypic or enzyme-based targets using high throughput screening technology. Under the auspices of the Pilot Scale Library Program of the NIH Roadmap Initiative, we produced and report herein a diverse library of 181 purine, pyrimidine, and 1,2,4-triazole-N-acetamide analogues which were prepared in a parallel high throughput solution-phase reaction format. A set of assorted amines were reacted with several nucleic acid N-acetic acids utilizing HATU as the coupling reagent to produce diverse acyclic nucleoside N-acetamide analogues. These reactions were performed using 24 well reaction blocks and an automatic reagent-dispensing platform under inert atmosphere. The targeted compounds were purified on an automated purification system using solid sample loading prepacked cartridges and prepacked silica gel columns. All compounds were characterized by NMR and HRMS, and were analyzed for purity by HPLC before submission to the Molecular Libraries Small Molecule Repository (MLSMR) at NIH. Initial screening through the Molecular Libraries Probe Production Centers Network (MLPCN) program, indicates that several analogues showed diverse and interesting biological activities. PMID:24933643

  10. Flotation properties of some oxygen-containing compounds of the acyclic series

    SciTech Connect

    Shreider, E.M.; Para, S.F.; Galanov, M.E.; Trachik, T.L.; Lagutina, L.V.

    1981-01-01

    In the monatomic alcohols series, maximum flotation activity is reached at 6 to 8 carbon atoms in the radical. It was decided to investigate the reagent properties of some other substances containing hydroxyl radicals which have not previously been considered. Oxygen-containing compounds in the acyclic series were examined, including alcohols: I - ethanol, ethylene-glycol, glycerol, pentaerythrytol, D-mannitol; II - dulcitol, D-sorbitol, D-mannitol, xylitol; glycols - monoethyleneglycol, diethyleneglycol, triethyleneglycol, polyethyleneglycol; and ethanolamines - ethanolamine, triethanolamine. The flotation properties of the reagents were determined in a Mekhanobr laboratory flotation machine with a chamber volume of 1.5 liter and an impeller speed of 1800 rpm. The materials tested were the <1 mm size fractions from run-of-plant charge and slurry from the radial thickeners. The samples were first dried and averaged. The pulp density was 200 g/l. The reagent conditions were kept constant throughout (50% of the total added at the start of a test, 25% after 2 min and 25% after 4 min from the start). The reagent additions were 1.0 to 1.4 kg/ton. All of these compounds had a very weak flotation activity.

  11. Source diagnostic and weathering indicators of tar balls utilizing acyclic, polycyclic and S-heterocyclic components.

    PubMed

    Hegazi, A H; Andersson, J T; Abu-Elgheit, M A; El-Gayar, M Sh

    2004-05-01

    This study represents a forensic chemical analysis to define the liability for the coastal bitumens polluting the beaches of the Mediterranean city of Alexandria. Six tar balls collected from several locations along the coast of the city were analyzed for their acyclic and polycyclic hydrocarbons as well as sulfur heterocycles using GC/FID, GC/AED and gas chromatography/mass spectrometry techniques. The analysis of one Egyptian crude oil is also included as a possible source oil. The tar ball samples were at early stages of weathering. Based on the GC traces and biomarker signatures, the tar balls could be genetically different. One sample collected from the Eastern Harbor region appears to be a Bunker C type fuel produced from Egyptian crudes. The refining process has removed the low molecular weight components. On the other hand, the wide n-alkane distribution together with the absence of an unresolved complex mixture suggests that crude oils probably from tank washings, ballast discharges or accident spills from tankers could have contributed significantly to the other tar ball samples. The distribution of source specific hopane and sterane markers revealed that the tar samples probably originate from different oil fields.

  12. Amino acids of the Murchison meteorite. I - Six carbon acyclic primary alpha-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Gandy, W. E.; Pizzarello, S.

    1981-01-01

    Six of the seven chain isomers of six-carbon acyclic primary alpha-amino alkanoic acids (leucine isomers) have been either identified or confirmed in hot-water extracts of the Murchison meteorite using combined gas chromatography-mass spectrometry (GC-MS) and ion exchange chromatography. 2-Amino-2-ethylbutyric acid, 2-amino-2,3-dimethylbutyric acid, pseudoleucine, and 2-methylnorvaline were positively identified by GC-MS. These amino acids have not been previously reported to occur in natural materials and may be uniquely meteoritic in origin. The presence of leucine and isoleucine (including the diastereoisomer, alloisoleucine) was confirmed. Peaks corresponding to norleucine were seen by ion-exchange and gas chromatography but characteristic mass spectra were not obtained. The alpha-branched chain isomers in this series are quantitatively the most significant. These results are compared with literature data on amino acid synthesis by electrical discharge and Fischer-Tropsch-type catalysis. Neither model system produces an amino acid suite that is completely comparable to that found in the Murchison meteorite.

  13. Ester prodrugs of acyclic nucleoside thiophosphonates compared to phosphonates: synthesis, antiviral activity and decomposition study.

    PubMed

    Roux, Loïc; Priet, Stéphane; Payrot, Nadine; Weck, Clément; Fournier, Maëlenn; Zoulim, Fabien; Balzarini, Jan; Canard, Bruno; Alvarez, Karine

    2013-05-01

    9-[2-(Thiophosphonomethoxy)ethyl]adenine [S-PMEA, 8] and (R)-9-[2-(Thiophosphonomethoxy)propyl]adenine [S-PMPA, 9] are acyclic nucleoside thiophosphonates we described recently that display the same antiviral spectrum (DNA viruses) as approved and potent phosphonates PMEA and (R)-PMPA. Here, we describe the synthesis, antiviral activities in infected cell cultures and decomposition study of bis(pivaloyloxymethoxy)-S-PMEA [Bis-POM-S-PMEA, 13] and bis(isopropyloxymethylcarbonyl)-S-PMPA [Bis-POC-S-PMPA, 14] as orally bioavailable prodrugs of the S-PMEA 8 and S-PMPA 9, in comparison to the equivalent "non-thio" derivatives [Bis-POM-PMEA, 11] and [Bis-POC-PMPA, 12]. Compounds 11, 12, 13 and 14 were evaluated for their in vitro antiviral activity against HIV-1-, HIV-2-, HBV- and a broad panel of DNA viruses, and found to exhibit moderate to potent antiviral activity. In order to determine the decomposition pathway of the prodrugs 11, 12, 13 and 14 into parent compounds PMEA, PMPA, 8 and 9, kinetic data and decomposition pathways in several media are presented. As expected, bis-POM-S-PMEA 13 and bis-POC-S-PMPA 14 behaved as prodrugs of S-PMEA 8 and S-PMPA 9. However, thiophosphonates 8 and 9 were released very smoothly in cell extracts, in contrast to the release of PMEA and PMPA from "non-thio" prodrugs 11 and 12. PMID:23603046

  14. Hippolides A-H, acyclic manoalide derivatives from the marine sponge Hippospongia lachne.

    PubMed

    Piao, Shu-Juan; Zhang, Hong-Jun; Lu, Hai-Yan; Yang, Fan; Jiao, Wei-Hua; Yi, Yang-Hua; Chen, Wan-Sheng; Lin, Hou-Wen

    2011-05-27

    Eight new acyclic manoalide-related sesterterpenes, hippolides A-H (1-8), together with two known manoalide derivatives, (6E)-neomanoalide (9) and (6Z)-neomanoalide (10), were isolated from the South China Sea sponge Hippospongia lachne. The absolute configurations of 1-8 were established by the modified Mosher's method and CD data. Compound 1 exhibited cytotoxicity against A549, HeLa, and HCT-116 cell lines with IC50 values of 5.22×10(-2), 4.80×10(-2), and 9.78 μM, respectively. Compound 1 also showed moderate PTP1B inhibitory activitiy with an IC50 value of 23.81 μM, and compound 2 showed moderate cytotoxicity against the HCT-116 cell line and PTP1B inhibitory activity with IC50 values of 35.13 and 39.67 μM, respectively. In addition, compounds 1 and 5 showed weak anti-inflammatory activity, with IC50 values of 61.97 and 40.35 μM for PKCγ and PKCα, respectively.

  15. Graph signatures for visual analytics.

    PubMed

    Wong, Pak Chung; Foote, Harlan; Chin, George; Mackey, Patrick; Perrine, Ken

    2006-01-01

    We present a visual analytics technique to explore graphs using the concept of a data signature. A data signature, in our context, is a multidimensional vector that captures the local topology information surrounding each graph node. Signature vectors extracted from a graph are projected onto a low-dimensional scatterplot through the use of scaling. The resultant scatterplot, which reflects the similarities of the vectors, allows analysts to examine the graph structures and their corresponding real-life interpretations through repeated use of brushing and linking between the two visualizations. The interpretation of the graph structures is based on the outcomes of multiple participatory analysis sessions with intelligence analysts conducted by the authors at the Pacific Northwest National Laboratory. The paper first uses three public domain data sets with either well-known or obvious features to explain the rationale of our design and illustrate its results. More advanced examples are then used in a customized usability study to evaluate the effectiveness and efficiency of our approach. The study results reveal not only the limitations and weaknesses of the traditional approach based solely on graph visualization, but also the advantages and strengths of our signature-guided approach presented in the paper.

  16. Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in Drosophila

    PubMed Central

    Laurinyecz, Barbara; Péter, Mária; Vedelek, Viktor; Kovács, Attila L.; Juhász, Gábor; Maróy, Péter; Vígh, László; Balogh, Gábor; Sinka, Rita

    2016-01-01

    Drosophila spermatogenesis is an ideal system to study the effects of changes in lipid composition, because spermatid elongation and individualization requires extensive membrane biosynthesis and remodelling. The bulk of transcriptional activity is completed with the entry of cysts into meiotic division, which makes post-meiotic stages of spermatogenesis very sensitive to even a small reduction in gene products. In this study, we describe the effect of changes in lipid composition during spermatogenesis using a hypomorphic male sterile allele of the Drosophila CDP-DAG synthase (CdsA) gene. We find that the CdsA mutant shows defects in spermatid individualization and enlargement of mitochondria and the axonemal sheath of the spermatids. Furthermore, we could genetically rescue the male sterile phenotype by overexpressing Phosphatidylinositol synthase (dPIS) in a CdsA mutant background. The results of lipidomic and genetic analyses of the CdsA mutant highlight the importance of correct lipid composition during sperm development and show that phosphatidic acid levels are crucial in late stages of spermatogenesis. PMID:26791243

  17. Khovanov homology of graph-links

    SciTech Connect

    Nikonov, Igor M

    2012-08-31

    Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.

  18. Private Graphs - Access Rights on Graphs for Seamless Navigation

    NASA Astrophysics Data System (ADS)

    Dorner, W.; Hau, F.; Pagany, R.

    2016-06-01

    After the success of GNSS (Global Navigational Satellite Systems) and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS - Real Time Locating Services (e.g. WIFI) and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites), but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  19. Subvoxel accurate graph search using non-Euclidean graph space.

    PubMed

    Abràmoff, Michael D; Wu, Xiaodong; Lee, Kyungmoo; Tang, Li

    2014-01-01

    Graph search is attractive for the quantitative analysis of volumetric medical images, and especially for layered tissues, because it allows globally optimal solutions in low-order polynomial time. However, because nodes of graphs typically encode evenly distributed voxels of the volume with arcs connecting orthogonally sampled voxels in Euclidean space, segmentation cannot achieve greater precision than a single unit, i.e. the distance between two adjoining nodes, and partial volume effects are ignored. We generalize the graph to non-Euclidean space by allowing non-equidistant spacing between nodes, so that subvoxel accurate segmentation is achievable. Because the number of nodes and edges in the graph remains the same, running time and memory use are similar, while all the advantages of graph search, including global optimality and computational efficiency, are retained. A deformation field calculated from the volume data adaptively changes regional node density so that node density varies with the inverse of the expected cost. We validated our approach using optical coherence tomography (OCT) images of the retina and 3-D MR of the arterial wall, and achieved statistically significant increased accuracy. Our approach allows improved accuracy in volume data acquired with the same hardware, and also, preserved accuracy with lower resolution, more cost-effective, image acquisition equipment. The method is not limited to any specific imaging modality and readily extensible to higher dimensions.

  20. Sharing Teaching Ideas: Graphing Families of Curves Using Transformations of Reference Graphs

    ERIC Educational Resources Information Center

    Kukla, David

    2007-01-01

    This article provides for a fast extremely accurate approach to graphing functions that is based on learning function reference graphs and then applying algebraic transformations to these reference graphs.

  1. Box graphs and resolutions I

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.; Schäfer-Nameki, Sakura

    2016-04-01

    Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial) toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of SU (5) by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.

  2. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    PubMed

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases.

  3. Potent inhibition of hemangioma formation in rats by the acyclic nucleoside phosphonate analogue cidofovir.

    PubMed

    Liekens, S; Andrei, G; Vandeputte, M; De Clercq, E; Neyts, J

    1998-06-15

    The acyclic nucleoside phosphonate analogue cidofovir elicited a marked protection against hemangioma growth in newborn rats that had been infected i.p. with a high titer of murine polyomavirus. Untreated, infected rats developed cutaneous, i.m., and cerebral hemangiomas associated with severe hemorrhage and anemia leading to death within 3 weeks postinfection (p.i.). s.c. treatment with cidofovir at 25 mg/kg, once a week, resulted in a complete suppression of hemangioma development and associated mortality when treatment was initiated at 3 days p.i. (100% survival compared with 0% for the untreated animals). Cidofovir still afforded 40% survival and a significant delay in tumor-associated mortality when treatment was started at a time at which cerebral hemangiomas were already macroscopically visible (i.e., 9 days p.i.). Infectious virus or viral DNA was undetectable in the brain at different times p.i. as assessed by means of (a) a DNA-DNA hybridization assay and (b) titration of the brain for infectious virus content, indicating that there was no viral replication in murine polyomavirus-infected rats. Moreover, a semiquantitative PCR for viral protein 1 DNA revealed that the amount of viral protein 1 DNA declined with time after infection to become virtually undetectable at 18 days p.i. Therefore, an antitumor or antiangiogenic effect, rather than inhibition of viral replication, may be the reason for the inhibitory activity of cidofovir in this model. Cidofovir may thus be further explored for the treatment of vascular tumors and, in particular, life-threatening juvenile hemangiomas.

  4. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    PubMed

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. PMID:25280628

  5. Mineralogical and Geochemical Analysis of Howardite DaG 779: understanding geological evolution of asteroid (4) Vesta

    NASA Astrophysics Data System (ADS)

    Marcel Müller, Christian; Mengel, Kurt; Singh Thangjam, Guneshwar; Weckwerth, Gerd

    2016-04-01

    The HED meteorites, a clan of stony achondrites, are believed to originate from asteroid (4) Vesta (e.g. Mittlefehldt et al. (2015)). Recent evolution models (e.g. Toplis et al. (2013)) and observations from Dawn spacecraft data (e.g., Prettyman et al. (2013)) indicate that diogenites form the lower crust and uppermost mantle of (4) Vesta. Deep seated material excavated by large impacts such as the Rheasilvia- and Veneneiaforming event should be present in howardites. We analysed a slice of howardite DaG 779 which had been recovered from the Libyan Desert in 1999 and was briefly described by Grossmann (2000). The data presented here include electron microprobe, bulk-rock XRD and XRF as well as trace element analysis by ICP-MS and INA. The petrographic results confirm earlier observations that DaG 779 is polymict and mainly contains diogenite and eucrite clasts. Mass balance calculations using bulk-rock and microprobe major element data reveal a modal mineralogy of 77% orthopyroxene, 8% plagioclase, 7% clinopyroxene and 2% spinels, the rest being olivine, SiO2-phases, sulphides, and native Fe(Ni). When compared with the element compilation recently reported by Mittlefehldt (2015) the 39 trace element analysed here (including REE and PGE) confirm that this howardite is clearly dominated by diogenite. Beside the modal petrographic information, a number of more detailed observations obtained from microprobe investigations reveal fresh and recrystallized glasses, troilite-orthopyroxene symplectites from a mixed silicate-sulphide melt giving rise to graphic intergrowths as well as vermicular and reticular FeS in highly disrupted clasts. While the origin of the FeS in these clasts is not clear yet, its particular shape and distribution indicates that this mineral has been (partially) molten and recrystallized from a sulphide melt. The silicate minerals around these FeS occurrences are recrystallized but there is no indication for a partial silicate melt. Further

  6. Sequential visibility-graph motifs

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  7. Algebraic connectivity and graph robustness.

    SciTech Connect

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  8. The fragment assembly string graph.

    PubMed

    Myers, Eugene W

    2005-09-01

    We present a concept and formalism, the string graph, which represents all that is inferable about a DNA sequence from a collection of shotgun sequencing reads collected from it. We give time and space efficient algorithms for constructing a string graph given the collection of overlaps between the reads and, in particular, present a novel linear expected time algorithm for transitive reduction in this context. The result demonstrates that the decomposition of reads into kmers employed in the de Bruijn graph approach described earlier is not essential, and exposes its close connection to the unitig approach we developed at Celera. This paper is a preliminary piece giving the basic algorithm and results that demonstrate the efficiency and scalability of the method. These ideas are being used to build a next-generation whole genome assembler called BOA (Berkeley Open Assembler) that will easily scale to mammalian genomes.

  9. Graph Analytics for Signature Discovery

    SciTech Connect

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei

    2013-06-01

    Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.

  10. Graph modeling systems and methods

    DOEpatents

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  11. Quantum snake walk on graphs

    SciTech Connect

    Rosmanis, Ansis

    2011-02-15

    I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.

  12. Synchronizability of random rectangular graphs

    SciTech Connect

    Estrada, Ernesto Chen, Guanrong

    2015-08-15

    Random rectangular graphs (RRGs) represent a generalization of the random geometric graphs in which the nodes are embedded into hyperrectangles instead of on hypercubes. The synchronizability of RRG model is studied. Both upper and lower bounds of the eigenratio of the network Laplacian matrix are determined analytically. It is proven that as the rectangular network is more elongated, the network becomes harder to synchronize. The synchronization processing behavior of a RRG network of chaotic Lorenz system nodes is numerically investigated, showing complete consistence with the theoretical results.

  13. Midlet Navigation Graphs in JML

    NASA Astrophysics Data System (ADS)

    Mostowski, Wojciech; Poll, Erik

    In the context of the EU project Mobius on Proof Carrying Code for Java programs (midlets) on mobile devices, we present a way to express midlet navigation graphs in JML. Such navigation graphs express certain security policies for a midlet. The resulting JML specifications can be automatically checked with the static checker ESC/Java2. Our work was guided by a realistically sized case study developed as demonstrator in the project. We discuss practical difficulties with creating efficient and meaningful JML specifications for automatic verification with a lightweight verification tool such as ESC/Java2, and the potential use of these specifications for PCC.

  14. Acyclic CB[n]-Type Molecular Containers: Effect of Solubilizing Group on their Function as Solubilizing Excipients

    PubMed Central

    Zhang, Ben; Zavalij, Peter Y.; Isaacs, Lyle

    2014-01-01

    We report the synthesis and x-ray crystal structures of three acyclic CB[n]-type molecular containers (2a, 2h, 2f) that differ in the charge on their solubilizing groups (SO3−, OH, NH3+). The x-ray crystal structures of compounds 2h and 2f reveal a self-folding of the ArOCH2CH2X wall into the cavity driven by π–π interactions, H-bonds and ion-dipole interactions. The need to reverse this self-folding phenomenon upon guest binding decreases the affinity of 2h and 2f toward cationic guests in water relative to 2a as revealed by direct 1H NMR and UV/Vis titrations as well as UV/Vis competition experiments. We determined the pKa of 6-aminocoumarin 7 (pKa = 3.6) on its own and in the presence anionic, neutral, and cationic hosts (2a: pKa = 4.9; 2h: pKa = 4.1; 2f, pKa = 3.4) which reflect in part the relevance of direct ion-ion interactions between the arms of the host and the guest toward the recognition properties of acyclic CB[n]-type containers. Finally, we showed that the weaker binding affinities measured for neutral and positively charged hosts 2h and 2f compared to anionic 2a results in a decreased ability to act as solubilizing agents for either cationic (tamoxifen), neutral (17α–ethynylestradiol), or anionic (indomethacin) drugs in water. The results establish that acyclic CB[n] compounds that bear anionic solubilizing groups are most suitable for development as general purpose solubilizing excipients for insoluble pharmaceutical agents. PMID:24595500

  15. Boosting for multi-graph classification.

    PubMed

    Wu, Jia; Pan, Shirui; Zhu, Xingquan; Cai, Zhihua

    2015-03-01

    In this paper, we formulate a novel graph-based learning problem, multi-graph classification (MGC), which aims to learn a classifier from a set of labeled bags each containing a number of graphs inside the bag. A bag is labeled positive, if at least one graph in the bag is positive, and negative otherwise. Such a multi-graph representation can be used for many real-world applications, such as webpage classification, where a webpage can be regarded as a bag with texts and images inside the webpage being represented as graphs. This problem is a generalization of multi-instance learning (MIL) but with vital differences, mainly because instances in MIL share a common feature space whereas no feature is available to represent graphs in a multi-graph bag. To solve the problem, we propose a boosting based multi-graph classification framework (bMGC). Given a set of labeled multi-graph bags, bMGC employs dynamic weight adjustment at both bag- and graph-levels to select one subgraph in each iteration as a weak classifier. In each iteration, bag and graph weights are adjusted such that an incorrectly classified bag will receive a higher weight because its predicted bag label conflicts to the genuine label, whereas an incorrectly classified graph will receive a lower weight value if the graph is in a positive bag (or a higher weight if the graph is in a negative bag). Accordingly, bMGC is able to differentiate graphs in positive and negative bags to derive effective classifiers to form a boosting model for MGC. Experiments and comparisons on real-world multi-graph learning tasks demonstrate the algorithm performance.

  16. Synthesis and structures of acyclic monoanionic tetradentate aza beta-diketiminate complexes of magnesium, zinc, and cadmium.

    PubMed

    Fritsch, Joseph M; Thoreson, Kristen A; McNeill, Kristopher

    2006-10-28

    An acyclic monoanionic tetradentate nitrogen ligand was prepared through the condensation of 2-(4-tolyl)-malondialdehyde and 8-aminoquinoline to give (BDI(QQ))H where (BDI(QQ))H = (8-quinolyl)-NCHC(4-tolyl)CHNH-(8-quinolyl). Metal complexes, (BDI(QQ))MX, were prepared where MX = MgBr 2, ZnCl 3, and CdOAc 4. The spectroscopic and crystallographic properties of compounds 2, 3, and 4 were explored. Structures of complexes 2, 3, 4, and the tridentate ligand, (BDI(Q))OH, 5, are reported. PMID:17033706

  17. The atu and liu clusters are involved in the catabolic pathways for acyclic monoterpenes and leucine in Pseudomonas aeruginosa.

    PubMed

    Aguilar, J A; Zavala, A N; Díaz-Pérez, C; Cervantes, C; Díaz-Pérez, A L; Campos-García, J

    2006-03-01

    Evidence suggests that the Pseudomonas aeruginosa PAO1 gnyRDBHAL cluster, which is involved in acyclic isoprenoid degradation (A. L. Díaz-Pérez, N. A. Zavala-Hernández, C. Cervantes, and J. Campos-García, Appl. Environ. Microbiol. 70:5102-5110, 2004), corresponds to the liuRABCDE cluster (B. Hoschle, V. Gnau, and D. Jendrossek, Microbiology 151:3649-3656, 2005). A liu (leucine and isovalerate utilization) homolog cluster was found in the PAO1 genome and is related to the catabolism of acyclic monoterpenes of the citronellol family (AMTC); it was named the atu cluster (acyclic terpene utilization), consisting of the atuCDEF genes and lacking the hydroxymethyl-glutaryl-coenzyme A (CoA) lyase (HMG-CoA lyase) homolog. Mutagenesis of the atu and liu clusters showed that both are involved in AMTC and leucine catabolism by encoding the enzymes related to the geranyl-CoA and the 3-methylcrotonyl-CoA pathways, respectively. Intermediary metabolites of the acyclic monoterpene pathway, citronellic and geranic acids, were accumulated, and leucine degradation rates were affected in both atuF and liuD mutants. The alpha subunit of geranyl-CoA carboxylase and the alpha subunit of 3-methylcrotonyl-CoA carboxylase (alpha-MCCase), encoded by the atuF and liuD genes, respectively, were both induced by citronellol, whereas only the alpha-MCCase subunit was induced by leucine. Both citronellol and leucine also induced a LacZ transcriptional fusion at the liuB gene. The liuE gene encodes a probable hydroxy-acyl-CoA lyase (probably HMG-CoA lyase), an enzyme with bifunctional activity that is essential for both AMTC and leucine degradation. P. aeruginosa PAO1 products encoded by the liuABCD cluster showed a higher sequence similarity (77.2 to 79.5%) with the probable products of liu clusters from several Pseudomonas species than with the atuCDEF cluster from PAO1 (41.5%). Phylogenetic studies suggest that the atu cluster from P. aeruginosa could be the result of horizontal transfer

  18. Graphs for Early Elementary Social Studies.

    ERIC Educational Resources Information Center

    Freeland, Kent; Brewer, Samrie

    1989-01-01

    Describes a lesson plan that instructs third graders to use graphs. Explains learning objectives, motivating students, conducting a class activity that includes graph construction, and concluding and evaluating the lesson. Lists materials needed. (GG)

  19. Standard Distributions: One Graph Fits All

    ERIC Educational Resources Information Center

    Wagner, Clifford H.

    2007-01-01

    Standard distributions are ubiquitous but not unique. With suitable scaling, the graph of a standard distribution serves as the graph for every distribution in the family. The standard exponential can easily be taught in elementary statistics courses.

  20. Understanding Conic Sections Using Alternate Graph Paper

    ERIC Educational Resources Information Center

    Brown, Elizabeth M.; Jones, Elizabeth

    2006-01-01

    This article describes two alternative coordinate systems and their use in graphing conic sections. This alternative graph paper helps students explore the idea of eccentricity using the definitions of the conic sections.

  1. Graphing and Social Studies: An Interdisciplinary Activity.

    ERIC Educational Resources Information Center

    Brehm, Julia L.

    1996-01-01

    Describes a graphing activity that promotes mathematical connections with social studies lessons. Students should be familiar with graphing on the Cartesian coordinate system to play this variation of the game Battleship on maps of various regions of the world. (AIM)

  2. Comparison Graph of Sea Ice Minimum - 2010

    NASA Video Gallery

    This animated graph tracks the retreat of sea ice, measured in millions of square kilometers, averaged from the start of the satellite record in 1979 through 2000 (white). Next, the graph follows t...

  3. Mathematical Minute: Rotating a Function Graph

    ERIC Educational Resources Information Center

    Bravo, Daniel; Fera, Joseph

    2013-01-01

    Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.

  4. Dr.L: Distributed Recursive (Graph) Layout

    2007-11-19

    Dr. L provides two-dimensional visualizations of very large abstract graph structures. it can be used for data mining applications including biology, scientific literature, and social network analysis. Dr. L is a graph layout program that uses a multilevel force-directed algorithm. A graph is input and drawn using a force-directed algorithm based on simulated annealing. The resulting layout is clustered using a single link algorithm. This clustering is used to produce a coarsened graph (fewer nodes)more » which is then re-drawn. this process is repeated until a sufficiently small graph is produced. The smallest graph is drawn and then used as a basis for drawing the original graph by refining the series of coarsened graphs that were produced. The layout engine can be run in serial or in parallel.« less

  5. Microcomputer Unit: Graphing Straight Lines.

    ERIC Educational Resources Information Center

    Hastings, Ellen H.; Yates, Daniel S.

    1983-01-01

    The material is designed to help pupils investigate how the value for slope in the equation of a line affects the inclination for the graph of an equation. A program written in BASIC designed to run on an Apple microcomputer is included. Worksheet masters for duplication are provided. (MP)

  6. Situating Graphs as Workplace Knowledge

    ERIC Educational Resources Information Center

    Noss, Richard; Bakker, Arthur; Hoyles, Celia; Kent, Phillip

    2007-01-01

    We investigate the use and knowledge of graphs in the context of a large industrial factory. We are particularly interested in the question of "transparency", a question that has been extensively considered in the general literature on tool use and, more recently, by Michael Roth and his colleagues in the context of scientific work. Roth uses the…

  7. Fibonacci Identities, Matrices, and Graphs

    ERIC Educational Resources Information Center

    Huang, Danrun

    2005-01-01

    General strategies used to help discover, prove, and generalize identities for Fibonacci numbers are described along with some properties about the determinants of square matrices. A matrix proof for identity (2) that has received immense attention from many branches of mathematics, like linear algebra, dynamical systems, graph theory and others…

  8. Box graphs and singular fibers

    NASA Astrophysics Data System (ADS)

    Hayashi, Hirotaka; Lawrie, Craig; Morrison, David R.; Schafer-Nameki, Sakura

    2014-05-01

    We determine the higher codimension fibers of elliptically fibered Calabi-Yau fourfolds with section by studying the three-dimensional = 2 supersymmetric gauge theory with matter which describes the low energy effective theory of M-theory compactified on the associated Weierstrass model, a singular model of the fourfold. Each phase of the Coulomb branch of this theory corresponds to a particular resolution of the Weierstrass model, and we show that these have a concise description in terms of decorated box graphs based on the representation graph of the matter multiplets, or alternatively by a class of convex paths on said graph. Transitions between phases have a simple interpretation as "flopping" of the path, and in the geometry correspond to actual flop transitions. This description of the phases enables us to enumerate and determine the entire network between them, with various matter representations for all reductive Lie groups. Furthermore, we observe that each network of phases carries the structure of a (quasi-)minuscule representation of a specific Lie algebra. Interpreted from a geometric point of view, this analysis determines the generators of the cone of effective curves as well as the network of flop transitions between crepant resolutions of singular elliptic Calabi-Yau fourfolds. From the box graphs we determine all fiber types in codimensions two and three, and we find new, non-Kodaira, fiber types for E 6, E7 and E 8.

  9. Affect and Graphing Calculator Use

    ERIC Educational Resources Information Center

    McCulloch, Allison W.

    2011-01-01

    This article reports on a qualitative study of six high school calculus students designed to build an understanding about the affect associated with graphing calculator use in independent situations. DeBellis and Goldin's (2006) framework for affect as a representational system was used as a lens through which to understand the ways in which…

  10. Ancestral Genres of Mathematical Graphs

    ERIC Educational Resources Information Center

    Gerofsky, Susan

    2011-01-01

    Drawing from sources in gesture studies, cognitive science, the anthropology of religion and art/architecture history, this article explores cultural, bodily and cosmological resonances carried (unintentionally) by mathematical graphs on Cartesian coordinates. Concepts of asymmetric bodily spaces, grids, orthogonality, mapping and sacred spaces…

  11. Humidity Graphs for All Seasons.

    ERIC Educational Resources Information Center

    Esmael, F.

    1982-01-01

    In a previous article in this journal (Vol. 17, p358, 1979), a wet-bulb depression table was recommended for two simple experiments to determine relative humidity. However, the use of a graph is suggested because it gives the relative humidity directly from the wet and dry bulb readings. (JN)

  12. Graphs and Enhancing Maple Multiplication.

    ERIC Educational Resources Information Center

    Cecil, David R.; Wang, Rongdong

    2002-01-01

    Description of a technique in Maple programming language that automatically prints all paths of any desired length along with the name of each vertex, proceeding in order from the beginning vertex to the ending vertex for a given graph. (Author/MM)

  13. Control by quantum dynamics on graphs

    SciTech Connect

    Godsil, Chris; Severini, Simone

    2010-05-15

    We address the study of controllability of a closed quantum system whose dynamical Lie algebra is generated by adjacency matrices of graphs. We characterize a large family of graphs that renders a system controllable. The key property is a graph-theoretic feature consisting of a particularly disordered cycle structure. Disregarding efficiency of control functions, but choosing subfamilies of sparse graphs, the results translate into continuous-time quantum walks for universal computation.

  14. The Effect of Acyclic Retinoid on the Metabolomic Profiles of Hepatocytes and Hepatocellular Carcinoma Cells

    PubMed Central

    Qin, Xian-Yang; Wei, Feifei; Tanokura, Masaru; Ishibashi, Naoto; Shimizu, Masahito; Moriwaki, Hisataka; Kojima, Soichi

    2013-01-01

    Background/Purpose Acyclic retinoid (ACR) is a promising chemopreventive agent for hepatocellular carcinoma (HCC) that selectively inhibits the growth of HCC cells (JHH7) but not normal hepatic cells (Hc). To better understand the molecular basis of the selective anti-cancer effect of ACR, we performed nuclear magnetic resonance (NMR)-based and capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS)-based metabolome analyses in JHH7 and Hc cells after treatment with ACR. Methodology/Principal Findings NMR-based metabolomics revealed a distinct metabolomic profile of JHH7 cells at 18 h after ACR treatment but not at 4 h after ACR treatment. CE-TOFMS analysis identified 88 principal metabolites in JHH7 and Hc cells after 24 h of treatment with ethanol (EtOH) or ACR. The abundance of 71 of these metabolites was significantly different between EtOH-treated control JHH7 and Hc cells, and 49 of these metabolites were significantly down-regulated in the ACR-treated JHH7 cells compared to the EtOH-treated JHH7 cells. Of particular interest, the increase in adenosine-5′-triphosphate (ATP), the main cellular energy source, that was observed in the EtOH-treated control JHH7 cells was almost completely suppressed in the ACR-treated JHH7 cells; treatment with ACR restored ATP to the basal levels observed in both EtOH-control and ACR-treated Hc cells (0.72-fold compared to the EtOH control-treated JHH7 cells). Moreover, real-time PCR analyses revealed that ACR significantly increased the expression of pyruvate dehydrogenase kinases 4 (PDK4), a key regulator of ATP production, in JHH7 cells but not in Hc cells (3.06-fold and 1.20-fold compared to the EtOH control, respectively). Conclusions/Significance The results of the present study suggest that ACR may suppress the enhanced energy metabolism of JHH7 cells but not Hc cells; this occurs at least in part via the cancer-selective enhancement of PDK4 expression. The cancer-selective metabolic pathways identified in

  15. Chemical Applications of Graph Theory: Part II. Isomer Enumeration.

    ERIC Educational Resources Information Center

    Hansen, Peter J.; Jurs, Peter C.

    1988-01-01

    Discusses the use of graph theory to aid in the depiction of organic molecular structures. Gives a historical perspective of graph theory and explains graph theory terminology with organic examples. Lists applications of graph theory to current research projects. (ML)

  16. Airborne Conflict Management within Confined Airspace in a Piloted Simulation of DAG-TM Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan; Johnson, Edward; Wing, David J.; Barhydt, Richard

    2003-01-01

    A human-in-the-loop experiment was performed at the NASA Langley Research Center to study the feasibility of Distributed Air/Ground Traffic Management (DAG-TM) autonomous aircraft operations in highly constrained airspace. The airspace was constrained by a pair of special use airspace (SUA) regions on either side of the pilot s planned route. The available airspace was further varied by changing the separation standard for lateral separation between 3 nm and 5 nm. The pilot had to maneuver through the corridor between the SUA s, avoid other traffic and meet flow management constraints. Traffic flow management (TFM) constraints were imposed as a required time of arrival and crossing altitude at an en route fix. This is a follow-up study to work presented at the 4th USA/Europe Air Traffic Management R&D Seminar in December 2001. Nearly all of the pilots were able to meet their TFM constraints while maintaining adequate separation from other traffic. In only 3 out of 59 runs were the pilots unable to meet their required time of arrival. Two loss of separation cases are studied and it is found that the pilots need conflict prevention information presented in a clearer manner. No degradation of performance or safety was seen between the wide and narrow corridors. Although this was not a thorough study of the consequences of reducing the en route lateral separation, nothing was found that would refute the feasibility of reducing the separation requirement from 5 nm to 3 nm. The creation of additional, second-generation conflicts is also investigated. Two resolution methods were offered to the pilots: strategic and tactical. The strategic method is a closed-loop alteration to the Flight Management System (FMS) active route that considers other traffic as well as TFM constraints. The tactical resolutions are short-term resolutions that leave avoiding other traffic conflicts and meeting the TFM constraints to the pilot. Those that made use of the strategic tools avoided

  17. My Bar Graph Tells a Story

    ERIC Educational Resources Information Center

    McMillen, Sue; McMillen, Beth

    2010-01-01

    Connecting stories to qualitative coordinate graphs has been suggested as an effective instructional strategy. Even students who are able to "create" bar graphs may struggle to correctly "interpret" them. Giving children opportunities to work with qualitative graphs can help them develop the skills to interpret, describe, and compare information…

  18. So Many Graphs, So Little Time

    ERIC Educational Resources Information Center

    Wall, Jennifer J.; Benson, Christine C.

    2009-01-01

    Interpreting graphs found in various content areas is an important skill for students, especially in light of high-stakes testing. In addition, reading and understanding graphs is an important part of numeracy, or numeric literacy, a skill necessary for informed citizenry. This article explores the different categories of graphs, provides…

  19. Collaborative Robotic Instruction: A Graph Teaching Experience

    ERIC Educational Resources Information Center

    Mitnik, Ruben; Recabarren, Matias; Nussbaum, Miguel; Soto, Alvaro

    2009-01-01

    Graphing is a key skill in the study of Physics. Drawing and interpreting graphs play a key role in the understanding of science, while the lack of these has proved to be a handicap and a limiting factor in the learning of scientific concepts. It has been observed that despite the amount of previous graph-working experience, students of all ages…

  20. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units...

  1. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units...

  2. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units...

  3. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units...

  4. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units...

  5. Stabilization of a two-coordinate, acyclic diaminosilylene (ADASi): completion of the series of isolable diaminotetrylenes, :E(NR(2))(2) (E = group 14 element).

    PubMed

    Hadlington, Terrance J; Abdalla, Joseph A B; Tirfoin, Rémi; Aldridge, Simon; Jones, Cameron

    2016-01-28

    An extremely bulky boryl-amide ligand, [N(SiMe3){B(DAB)}](-) (TBoN; DAB = (DipNCH)2, Dip = C6H3Pr(i)2-2,6), has been utilised in the preparation of the first isolable, two-coordinate acyclic diaminosilylene (ADASi), viz. :Si(TBoN)2. This is shown to have a frontier orbital energy separation, and presumed level of reactivity, intermediate between those of the two classes of previously reported isolable two-coordinate, acyclic silylenes. PMID:26666776

  6. GRASr2 evaluation of aliphatic acyclic and alicyclic terpenoid tertiary alcohols and structurally related substances used as flavoring ingredients.

    PubMed

    Marnett, Lawrence J; Cohen, Samuel M; Fukushima, Shoji; Gooderham, Nigel J; Hecht, Stephen S; Rietjens, Ivonne M C M; Smith, Robert L; Adams, Timothy B; Bastaki, Maria; Harman, Christie L; McGowen, Margaret M; Taylor, Sean V

    2014-04-01

    This publication is the 1st in a series of publications by the Expert Panel of the Flavor and Extract Manufacturers Assoc. summarizing the Panel's 3rd re-evaluation of Generally Recognized as Safe (GRAS) status referred to as the GRASr2 program. In 2011, the Panel initiated a comprehensive program to re-evaluate the safety of more than 2700 flavor ingredients that have previously met the criteria for GRAS status under conditions of intended use as flavor ingredients. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics, and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of aliphatic acyclic and alicyclic terpenoid tertiary alcohols and structurally related substances as flavoring ingredients are evaluated. The group of aliphatic acyclic and alicyclic terpenoid tertiary alcohols and structurally related substances was reaffirmed as GRAS (GRASr2) based, in part, on their rapid absorption, metabolic detoxication, and excretion in humans and other animals; their low level of flavor use; the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic studies and the lack of significant genotoxic and mutagenic potential.

  7. Fast graph operations in quantum computation

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.

    2016-03-01

    The connection between certain entangled states and graphs has been heavily studied in the context of measurement-based quantum computation as a tool for understanding entanglement. Here we show that this correspondence can be harnessed in the reverse direction to yield a graph data structure, which allows for more efficient manipulation and comparison of graphs than any possible classical structure. We introduce efficient algorithms for many transformation and comparison operations on graphs represented as graph states, and prove that no classical data structure can have similar performance for the full set of operations studied.

  8. Constrained Graph Optimization: Interdiction and Preservation Problems

    SciTech Connect

    Schild, Aaron V

    2012-07-30

    The maximum flow, shortest path, and maximum matching problems are a set of basic graph problems that are critical in theoretical computer science and applications. Constrained graph optimization, a variation of these basic graph problems involving modification of the underlying graph, is equally important but sometimes significantly harder. In particular, one can explore these optimization problems with additional cost constraints. In the preservation case, the optimizer has a budget to preserve vertices or edges of a graph, preventing them from being deleted. The optimizer wants to find the best set of preserved edges/vertices in which the cost constraints are satisfied and the basic graph problems are optimized. For example, in shortest path preservation, the optimizer wants to find a set of edges/vertices within which the shortest path between two predetermined points is smallest. In interdiction problems, one deletes vertices or edges from the graph with a particular cost in order to impede the basic graph problems as much as possible (for example, delete edges/vertices to maximize the shortest path between two predetermined vertices). Applications of preservation problems include optimal road maintenance, power grid maintenance, and job scheduling, while interdiction problems are related to drug trafficking prevention, network stability assessment, and counterterrorism. Computational hardness results are presented, along with heuristic methods for approximating solutions to the matching interdiction problem. Also, efficient algorithms are presented for special cases of graphs, including on planar graphs. The graphs in many of the listed applications are planar, so these algorithms have important practical implications.

  9. Generalized graph states based on Hadamard matrices

    SciTech Connect

    Cui, Shawn X.; Yu, Nengkun; Zeng, Bei

    2015-07-15

    Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study the entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.

  10. Hierarchical structure of the logical Internet graph

    NASA Astrophysics Data System (ADS)

    Ge, Zihui; Figueiredo, Daniel R.; Jaiswal, Sharad; Gao, Lixin

    2001-07-01

    The study of the Internet topology has recently received much attention from the research community. In particular, the observation that the network graph has interesting properties, such as power laws, that might be explored in a myriad of ways. Most of the work in characterizing the Internet graph is based on the physical network graph, i.e., the connectivity graph. In this paper we investigate how logical relationships between nodes of the AS graph can be used to gain insight to its structure. We characterize the logical graph using various metrics and identify the presence of power laws in the number of customers that a provider has. Using these logical relationships we define a structural model of the AS graph. The model highlights the hierarchical nature of logical relationships and the preferential connection to larger providers. We also investigate the consistency of this model over time and observe interesting properties of the hierarchical structure.

  11. Molecular graph convolutions: moving beyond fingerprints.

    PubMed

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-08-01

    Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement. PMID:27558503

  12. The Feynman Identity for Planar Graphs

    NASA Astrophysics Data System (ADS)

    da Costa, G. A. T. F.

    2016-08-01

    The Feynman identity (FI) of a planar graph relates the Euler polynomial of the graph to an infinite product over the equivalence classes of closed nonperiodic signed cycles in the graph. The main objectives of this paper are to compute the number of equivalence classes of nonperiodic cycles of given length and sign in a planar graph and to interpret the data encoded by the FI in the context of free Lie superalgebras. This solves in the case of planar graphs a problem first raised by Sherman and sets the FI as the denominator identity of a free Lie superalgebra generated from a graph. Other results are obtained. For instance, in connection with zeta functions of graphs.

  13. Fast Approximate Quadratic Programming for Graph Matching

    PubMed Central

    Vogelstein, Joshua T.; Conroy, John M.; Lyzinski, Vince; Podrazik, Louis J.; Kratzer, Steven G.; Harley, Eric T.; Fishkind, Donniell E.; Vogelstein, R. Jacob; Priebe, Carey E.

    2015-01-01

    Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance. PMID:25886624

  14. Molecular graph convolutions: moving beyond fingerprints.

    PubMed

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-08-01

    Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

  15. On a programming language for graph algorithms

    NASA Technical Reports Server (NTRS)

    Rheinboldt, W. C.; Basili, V. R.; Mesztenyi, C. K.

    1971-01-01

    An algorithmic language, GRAAL, is presented for describing and implementing graph algorithms of the type primarily arising in applications. The language is based on a set algebraic model of graph theory which defines the graph structure in terms of morphisms between certain set algebraic structures over the node set and arc set. GRAAL is modular in the sense that the user specifies which of these mappings are available with any graph. This allows flexibility in the selection of the storage representation for different graph structures. In line with its set theoretic foundation, the language introduces sets as a basic data type and provides for the efficient execution of all set and graph operators. At present, GRAAL is defined as an extension of ALGOL 60 (revised) and its formal description is given as a supplement to the syntactic and semantic definition of ALGOL. Several typical graph algorithms are written in GRAAL to illustrate various features of the language and to show its applicability.

  16. Molecular graph convolutions: moving beyond fingerprints

    NASA Astrophysics Data System (ADS)

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-08-01

    Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular "graph convolutions", a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph---atoms, bonds, distances, etc.---which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

  17. Subgraph-Based Filterbanks for Graph Signals

    NASA Astrophysics Data System (ADS)

    Tremblay, Nicolas; Borgnat, Pierre

    2016-08-01

    We design a critically-sampled compact-support biorthogonal transform for graph signals, via graph filterbanks. Instead of partitioning the nodes in two sets so as to remove one every two nodes in the filterbank downsampling operations, the design is based on a partition of the graph in connected subgraphs. Coarsening is achieved by defining one "supernode" for each subgraph and the edges for this coarsened graph derives from the connectivity between the subgraphs. Unlike the "one every two nodes" downsampling on bipartite graphs, this coarsening operation does not have an exact formulation in the graph Fourier domain. Instead, we rely on the local Fourier bases of each subgraph to define filtering operations. We apply successfully this method to decompose graph signals, and show promising performance on compression and denoising.

  18. Line graphs as social networks

    NASA Astrophysics Data System (ADS)

    Krawczyk, M. J.; Muchnik, L.; Mańka-Krasoń, A.; Kułakowski, K.

    2011-07-01

    It was demonstrated recently that the line graphs are clustered and assortative. These topological features are known to characterize some social networks [M.E.J. Newman, Y. Park, Why social networks are different from other types of networks, Phys. Rev. E 68 (2003) 036122]; it was argued that this similarity reveals their cliquey character. In the model proposed here, a social network is the line graph of an initial network of families, communities, interest groups, school classes and small companies. These groups play the role of nodes, and individuals are represented by links between these nodes. The picture is supported by the data on the LiveJournal network of about 8×10 6 people.

  19. Graph distance for complex networks

    NASA Astrophysics Data System (ADS)

    Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki

    2016-10-01

    Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.

  20. Graph distance for complex networks

    PubMed Central

    Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki

    2016-01-01

    Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions. PMID:27725690

  1. Relativity on Rotated Graph Paper

    NASA Astrophysics Data System (ADS)

    Salgado, Roberto

    2011-11-01

    We present visual calculations in special relativity using spacetime diagrams drawn on graph paper that has been rotated by 45 degrees. The rotated lines represent lightlike directions in Minkowski spacetime, and the boxes in the grid (called light-clock diamonds) represent ticks of an inertial observer's lightclock. We show that many quantitative results can be read off a spacetime diagram by counting boxes, using a minimal amount of algebra.

  2. Topological structure of dictionary graphs

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk; Krzemiński, Mark

    2009-09-01

    We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers—that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 103 and 104. A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.

  3. Helping Students Make Sense of Graphs: An Experimental Trial of SmartGraphs Software

    NASA Astrophysics Data System (ADS)

    Zucker, Andrew; Kay, Rachel; Staudt, Carolyn

    2014-06-01

    Graphs are commonly used in science, mathematics, and social sciences to convey important concepts; yet students at all ages demonstrate difficulties interpreting graphs. This paper reports on an experimental study of free, Web-based software called SmartGraphs that is specifically designed to help students overcome their misconceptions regarding graphs. SmartGraphs allows students to interact with graphs and provides hints and scaffolding to help students, if they need help. SmartGraphs activities can be authored to be useful in teaching and learning a variety of topics that use graphs (such as slope, velocity, half-life, and global warming). A 2-year experimental study in physical science classrooms was conducted with dozens of teachers and thousands of students. In the first year, teachers were randomly assigned to experimental or control conditions. Data show that students of teachers who use SmartGraphs as a supplement to normal instruction make greater gains understanding graphs than control students studying the same content using the same textbooks, but without SmartGraphs. Additionally, teachers believe that the SmartGraphs activities help students meet learning goals in the physical science course, and a great majority reported they would use the activities with students again. In the second year of the study, several specific variations of SmartGraphs were researched to help determine what makes SmartGraphs effective.

  4. Computational Genomics Using Graph Theory

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar

    2005-03-01

    With exciting new discoveries concerning RNA's regulatory cellular roles in gene expression, structural and functional problems associated with DNA's venerable cousin have come to the forefront. RNA folding, for example, is analogous to the well-known protein folding problem, and seeks to link RNA's primary sequence with secondary and tertiary structures. As a single-stranded polynucleotide, RNA's secondary structures are defined by a network of hydrogen bonds, which lead to a variety of stems, loops, junctions, bulges, and other motifs. Supersecondary pseudoknot structures can also occur and, together, lead to RNA's complex tertiary interactions stabilized by salt and solvent ions in the natural cellular milieu. Besides folding, challenges in RNA research include identifying locations and functions of RNA genes, discovering RNA's structural repertoire (folding motifs), designing novel RNAs, and developing new antiviral and antibiotic compounds composed of, or targeting, RNAs. In this talk, I will describe some of these new biological findings concerning RNA and present an approach using graph theory (network theory) to represent RNA secondary structures. Because the RNA motif space using graphs is vastly smaller than RNA's sequence space, many problems related to analyzing and discovering new RNAs can be simplified and studied systematically. Some preliminary applications to designing novel RNAs will also be described.Related ReadingH. H. Gan, S. Pasquali, and T. Schlick, ``A Survey of Existing RNAs using Graph Theory with Implications to RNA Analysis and Design,'' Nuc. Acids Res. 31: 2926--2943 (2003). J. Zorn, H. H. Gan, N. Shiffeldrim, and T. Schlick, ``Structural Motifs in Ribosomal RNAs: Implications for RNA Design and Genomics,'' Biopolymers 73: 340--347 (2004). H. H. Gan, D. Fera, J. Zorn, M. Tang, N. Shiffeldrim, U. Laserson, N. Kim, and T. Schlick,``RAG: RNA-As-Graphs Database -- Concepts, Analysis, and Features,'' Bioinformatics 20: 1285--1291 (2004). U

  5. Recurrence of hyperprolactinemia and continuation of ovarian acyclicity in captive African elephants (Loxodonta africana) treated with cabergoline.

    PubMed

    Morfeld, Kari A; Ball, Ray L; Brown, Janine L

    2014-09-01

    Hyperprolactinemia is associated with reproductive acyclicity in zoo African elephants (Loxodonta africana) and may contribute to the non-self-sustainability of the captive population in North America. It is a common cause of infertility in women and other mammals and can be treated with the dopamine agonist cabergoline. The objectives of this study were to assess prolactin responses to cabergoline treatment in hyperprolactinemic, acyclic African elephants and to determine the subsequent impact on ovarian cyclic activity. Five elephants, diagnosed as hyperprolactinemic (>11 ng/ml prolactin) and acyclic (maintenance of baseline progestagens for at least 1 yr), were treated with 1-2 mg cabergoline orally twice weekly for 16-82 wk. Cabergoline reduced (P < 0.05) serum prolactin concentrations during the treatment period compared to pretreatment levels in four of five elephants (11.5 +/- 3.2 vs. 9.1 +/- 3.4 ng/ml; 20.3 +/- 16.7 vs. 7.9 +/- 9.8 ng/ml; 26.4 +/- 15.0 vs. 6.8 +/- 1.5 ng/ml; 42.2 +/- 22.6 vs. 18.6 +/- 8.9 ng/ml). However, none of the females resumed ovarian cyclicity based on serum progestagen analyses up to 1 yr posttreatment. In addition, within 1 to 6 wk after cessation of oral cabergoline, serum prolactin concentrations returned to concentrations that were as high as or higher than before treatment (P < 0.05). One elephant that exhibited the highest pretreatment prolactin concentration (75.2 +/- 10.5 ng/ml) did not respond to cabergoline and maintained elevated levels throughout the study. Thus, oral cabergoline administration reduced prolactin concentrations in elephants with hyperprolactinemia, but there was no resumption of ovarian cyclicity, and a significant prolactin rebound effect was observed. It is possible that higher doses or longer treatment intervals may be required for cabergoline treatment to result in permanent suppression of prolactin secretion and to mitigate associated ovarian cycle problems.

  6. The Pseudomonas aeruginosa liuE gene encodes the 3-hydroxy-3-methylglutaryl coenzyme A lyase, involved in leucine and acyclic terpene catabolism.

    PubMed

    Chávez-Avilés, Mauricio; Díaz-Pérez, Alma Laura; Reyes-de la Cruz, Homero; Campos-García, Jesús

    2009-07-01

    The enzymes involved in the catabolism of leucine are encoded by the liu gene cluster in Pseudomonas aeruginosa PAO1. A mutant in the liuE gene (ORF PA2011) of P. aeruginosa was unable to utilize both leucine/isovalerate and acyclic terpenes as the carbon source. The liuE mutant grown in culture medium with citronellol accumulated metabolites of the acyclic terpene pathway, suggesting an involvement of liuE in both leucine/isovalerate and acyclic terpene catabolic pathways. The LiuE protein was expressed as a His-tagged recombinant polypeptide purified by affinity chromatography in Escherichia coli. LiuE showed a mass of 33 kDa under denaturing and 79 kDa under nondenaturing conditions. Protein sequence alignment and fingerprint sequencing suggested that liuE encodes 3-hydroxy-3-methylglutaryl-coenzyme A lyase (HMG-CoA lyase), which catalyzes the cleavage of HMG-CoA to acetyl-CoA and acetoacetate. LiuE showed HMG-CoA lyase optimal activity at a pH of 7.0 and 37 degrees C, an apparent K(m) of 100 microM for HMG-CoA and a V(max) of 21 micromol min(-1) mg(-1). These results demonstrate that the liuE gene of P. aeruginosa encodes for the HMG-CoA lyase, an essential enzyme for growth in both leucine and acyclic terpenes.

  7. Computing Information Value from RDF Graph Properties

    SciTech Connect

    al-Saffar, Sinan; Heileman, Gregory

    2010-11-08

    Information value has been implicitly utilized and mostly non-subjectively computed in information retrieval (IR) systems. We explicitly define and compute the value of an information piece as a function of two parameters, the first is the potential semantic impact the target information can subjectively have on its recipient's world-knowledge, and the second parameter is trust in the information source. We model these two parameters as properties of RDF graphs. Two graphs are constructed, a target graph representing the semantics of the target body of information and a context graph representing the context of the consumer of that information. We compute information value subjectively as a function of both potential change to the context graph (impact) and the overlap between the two graphs (trust). Graph change is computed as a graph edit distance measuring the dissimilarity between the context graph before and after the learning of the target graph. A particular application of this subjective information valuation is in the construction of a personalized ranking component in Web search engines. Based on our method, we construct a Web re-ranking system that personalizes the information experience for the information-consumer.

  8. Components in time-varying graphs

    NASA Astrophysics Data System (ADS)

    Nicosia, Vincenzo; Tang, John; Musolesi, Mirco; Russo, Giovanni; Mascolo, Cecilia; Latora, Vito

    2012-06-01

    Real complex systems are inherently time-varying. Thanks to new communication systems and novel technologies, today it is possible to produce and analyze social and biological networks with detailed information on the time of occurrence and duration of each link. However, standard graph metrics introduced so far in complex network theory are mainly suited for static graphs, i.e., graphs in which the links do not change over time, or graphs built from time-varying systems by aggregating all the links as if they were concurrent in time. In this paper, we extend the notion of connectedness, and the definitions of node and graph components, to the case of time-varying graphs, which are represented as time-ordered sequences of graphs defined over a fixed set of nodes. We show that the problem of finding strongly connected components in a time-varying graph can be mapped into the problem of discovering the maximal-cliques in an opportunely constructed static graph, which we name the affine graph. It is, therefore, an NP-complete problem. As a practical example, we have performed a temporal component analysis of time-varying graphs constructed from three data sets of human interactions. The results show that taking time into account in the definition of graph components allows to capture important features of real systems. In particular, we observe a large variability in the size of node temporal in- and out-components. This is due to intrinsic fluctuations in the activity patterns of individuals, which cannot be detected by static graph analysis.

  9. Components in time-varying graphs.

    PubMed

    Nicosia, Vincenzo; Tang, John; Musolesi, Mirco; Russo, Giovanni; Mascolo, Cecilia; Latora, Vito

    2012-06-01

    Real complex systems are inherently time-varying. Thanks to new communication systems and novel technologies, today it is possible to produce and analyze social and biological networks with detailed information on the time of occurrence and duration of each link. However, standard graph metrics introduced so far in complex network theory are mainly suited for static graphs, i.e., graphs in which the links do not change over time, or graphs built from time-varying systems by aggregating all the links as if they were concurrent in time. In this paper, we extend the notion of connectedness, and the definitions of node and graph components, to the case of time-varying graphs, which are represented as time-ordered sequences of graphs defined over a fixed set of nodes. We show that the problem of finding strongly connected components in a time-varying graph can be mapped into the problem of discovering the maximal-cliques in an opportunely constructed static graph, which we name the affine graph. It is, therefore, an NP-complete problem. As a practical example, we have performed a temporal component analysis of time-varying graphs constructed from three data sets of human interactions. The results show that taking time into account in the definition of graph components allows to capture important features of real systems. In particular, we observe a large variability in the size of node temporal in- and out-components. This is due to intrinsic fluctuations in the activity patterns of individuals, which cannot be detected by static graph analysis. PMID:22757508

  10. JavaGenes: Evolving Graphs with Crossover

    NASA Technical Reports Server (NTRS)

    Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd

    2000-01-01

    Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.

  11. On the spectral distribution of distance-k graph of free product graphs

    NASA Astrophysics Data System (ADS)

    Arizmendi, Octavio; Gaxiola, Tulio

    2016-08-01

    We calculate the distribution with respect to the vacuum state of the distance-k graph of a d-regular tree. From this result we show that the distance-k graph of a d-regular graphs converges to the distribution of the distance-k graph of a regular tree. Finally, we prove that, properly normalized, the asymptotic distributions of distance-k graphs of the d-fold free product graph, as d tends to infinity, is given by the distribution of Pk(s), where s is a semicirlce random variable and Pk is the kth Chebychev polynomial.

  12. Synthesis, spectroscopic characterization and crystal structure of novel NNNN-donor μ-bis(bidentate) tetraaza acyclic Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad Hossein; Shojaee, Elahe; Nichol, Gary S.

    2012-12-01

    Novel NNNN-donor μ-bis(bidentate) tetraaza acyclic Schiff base ligands with different substituents (CF3, N(CH3)2 or OH groups) were synthesized by the condensation reaction of triethylenetetramine with 4-substituted benzaldehydes. Triethylenetetramine tris(4-trifluoromethylbenzylidene) (TTFMB), triethylenetetramine tris(4-dimethylaminobenzylidene) (TTDMB) and triethylenetetramine tris(2,4-dihydroxybenzylidene) (TTDHB) were formed as N4 donor ligands. The formation of a five-membered imidazolidine ring from the ethylenediamine backbone as a spacer-cumbridging unit gives rise to a new type of imidazolidine ligand. The structure of the TTFMB and TTDMB were determined by single crystal X-ray crystallography. The synthesized ligands have been characterized on the basis of the results of cyclic voltammetry (CV) and spectroscopic studies viz. FT-IR spectroscopy (FT-IR), mass spectroscopy (MS) and UV-Vis spectroscopy (UV-Vis).

  13. Synthesis, spectroscopic characterization and crystal structure of novel NNNN-donor μ-bis(bidentate) tetraaza acyclic Schiff base ligands.

    PubMed

    Habibi, Mohammad Hossein; Shojaee, Elahe; Nichol, Gary S

    2012-12-01

    Novel NNNN-donor μ-bis(bidentate) tetraaza acyclic Schiff base ligands with different substituents (CF(3), N(CH(3))(2) or OH groups) were synthesized by the condensation reaction of triethylenetetramine with 4-substituted benzaldehydes. Triethylenetetramine tris(4-trifluoromethylbenzylidene) (TTFMB), triethylenetetramine tris(4-dimethylaminobenzylidene) (TTDMB) and triethylenetetramine tris(2,4-dihydroxybenzylidene) (TTDHB) were formed as N(4) donor ligands. The formation of a five-membered imidazolidine ring from the ethylenediamine backbone as a spacer-cumbridging unit gives rise to a new type of imidazolidine ligand. The structure of the TTFMB and TTDMB were determined by single crystal X-ray crystallography. The synthesized ligands have been characterized on the basis of the results of cyclic voltammetry (CV) and spectroscopic studies viz. FT-IR spectroscopy (FT-IR), mass spectroscopy (MS) and UV-Vis spectroscopy (UV-Vis).

  14. Heterologous expression, purification, and enzymatic characterization of the acyclic carotenoid 1,2-hydratase from Rubrivivax gelatinosus.

    PubMed

    Steiger, Sabine; Mazet, Andreas; Sandmann, Gerhard

    2003-06-01

    The carotenoid 1,2-hydratase CrtC from Rubrivivax gelatinosus has been expressed in Escherichia coli in an active form and purified by affinity chromatography. The enzyme catalyzes the conversion of various acyclic carotenes including 1-hydroxy derivatives. This broad substrate specificity reflects the participation of CrtC in 1'-HO-spheroidene and in spirilloxanthin biosynthesis. Enzyme kinetic studies including the determination of substrate specificity constants indicate that among the alternative biosynthetic routes to 1'-HO-spheroidene the one via spheroidene is the dominating pathway. In contrast to CrtC from Rvi. gelatinosus, the equivalent enzyme from Rhodobacter capsulatus, a closely related bacterium which lacks the biosynthetic branch to spirilloxanthin and accumulates spheroidene instead of substantial amounts of 1'-HO-spheroidene, is extremely poor in converting 1-HO-carotenoids. The individual catalytic properties of both carotenoid 1,2-hydratases reflect the in situ carotenogenic pathways in both purple photosynthetic bacteria.

  15. Area law for random graph states

    NASA Astrophysics Data System (ADS)

    Collins, Benoît; Nechita, Ion; Życzkowski, Karol

    2013-08-01

    Random pure states of multi-partite quantum systems, associated with arbitrary graphs, are investigated. Each vertex of the graph represents a generic interaction between subsystems, described by a random unitary matrix distributed according to the Haar measure, while each edge of the graph represents a bipartite, maximally entangled state. For any splitting of the graph into two parts we consider the corresponding partition of the quantum system and compute the average entropy of entanglement. First, in the special case where the partition does not cross any vertex of the graph, we show that the area law is satisfied exactly. In the general case, we show that the entropy of entanglement obeys an area law on average, this time with a correction term that depends on the topologies of the graph and of the partition. The results obtained are applied to the problem of distribution of quantum entanglement in a quantum network with prescribed topology.

  16. Replica methods for loopy sparse random graphs

    NASA Astrophysics Data System (ADS)

    Coolen, ACC

    2016-03-01

    I report on the development of a novel statistical mechanical formalism for the analysis of random graphs with many short loops, and processes on such graphs. The graphs are defined via maximum entropy ensembles, in which both the degrees (via hard constraints) and the adjacency matrix spectrum (via a soft constraint) are prescribed. The sum over graphs can be done analytically, using a replica formalism with complex replica dimensions. All known results for tree-like graphs are recovered in a suitable limit. For loopy graphs, the emerging theory has an appealing and intuitive structure, suggests how message passing algorithms should be adapted, and what is the structure of theories describing spin systems on loopy architectures. However, the formalism is still largely untested, and may require further adjustment and refinement. This paper is dedicated to the memory of our colleague and friend Jun-Ichi Inoue, with whom the author has had the great pleasure and privilege of collaborating.

  17. Graph Frequency Analysis of Brain Signals

    NASA Astrophysics Data System (ADS)

    Huang, Weiyu; Goldsberry, Leah; Wymbs, Nicholas F.; Grafton, Scott T.; Bassett, Danielle S.; Ribeiro, Alejandro

    2016-10-01

    This paper presents methods to analyze functional brain networks and signals from graph spectral perspectives. The notion of frequency and filters traditionally defined for signals supported on regular domains such as discrete time and image grids has been recently generalized to irregular graph domains, and defines brain graph frequencies associated with different levels of spatial smoothness across the brain regions. Brain network frequency also enables the decomposition of brain signals into pieces corresponding to smooth or rapid variations. We relate graph frequency with principal component analysis when the networks of interest denote functional connectivity. The methods are utilized to analyze brain networks and signals as subjects master a simple motor skill. We observe that brain signals corresponding to different graph frequencies exhibit different levels of adaptability throughout learning. Further, we notice a strong association between graph spectral properties of brain networks and the level of exposure to tasks performed, and recognize the most contributing and important frequency signatures at different task familiarity.

  18. Fast generation of sparse random kernel graphs

    SciTech Connect

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in time at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.

  19. Fast generation of sparse random kernel graphs

    DOE PAGES

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less

  20. Image clustering using fuzzy graph theory

    NASA Astrophysics Data System (ADS)

    Jafarkhani, Hamid; Tarokh, Vahid

    1999-12-01

    We propose an image clustering algorithm which uses fuzzy graph theory. First, we define a fuzzy graph and the concept of connectivity for a fuzzy graph. Then, based on our definition of connectivity we propose an algorithm which finds connected subgraphs of the original fuzzy graph. Each connected subgraph can be considered as a cluster. As an application of our algorithm, we consider a database of images. We calculate a similarity measure between any paris of images in the database and generate the corresponding fuzzy graph. The, we find the subgraphs of the resulting fuzzy graph using our algorithm. Each subgraph corresponds to a cluster. We apply our image clustering algorithm to the key frames of news programs to find the anchorperson clusters. Simulation results show that our algorithm is successful to find most of anchorperson frames from the database.

  1. Spectral correlations of individual quantum graphs.

    PubMed

    Gnutzmann, Sven; Altland, Alexander

    2005-11-01

    We investigate the spectral properties of chaotic quantum graphs. We demonstrate that the energy-average over the spectrum of individual graphs can be traded for the functional average over a supersymmetric nonlinear -model action. This proves that spectral correlations of individual quantum graphs behave according to the predictions of Wigner-Dyson random matrix theory. We explore the stability of the universal random matrix behavior with regard to perturbations, and discuss the crossover between different types of symmetries.

  2. Spectral correlations of individual quantum graphs

    SciTech Connect

    Gnutzmann, Sven; Altland, Alexander

    2005-11-01

    We investigate the spectral properties of chaotic quantum graphs. We demonstrate that the energy-average over the spectrum of individual graphs can be traded for the functional average over a supersymmetric nonlinear {sigma}-model action. This proves that spectral correlations of individual quantum graphs behave according to the predictions of Wigner-Dyson random matrix theory. We explore the stability of the universal random matrix behavior with regard to perturbations, and discuss the crossover between different types of symmetries.

  3. Separability of Generalized Graph Product States

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Fan, Jiao

    2013-09-01

    We construct two classes of generalized graph product states and study the entanglement of these states. It is first presented that the density matrices of complex edge-weighted digraphs associated with the generalized graph product in mn systems are positive partial transformation and separable states. Then we prove that the density matrices of the vertex-weighted digraphs associated with another generalized graph product are entangled states.

  4. Breddin's graph for tectonic regimes

    NASA Astrophysics Data System (ADS)

    Célérier, Bernard; Séranne, Michel

    2001-05-01

    A simple graphical method is proposed to infer the tectonic regime from a fault and slip data set. An abacus is overlaid on a plot of the rake versus strike of the data. This yields the horizontal principal stress directions and a constraint on the stress tensor aspect ratio, in a manner similar to Breddin's graph for two-dimensional strain analysis. The main requirement is that one of the principal stress directions is close to the vertical. This method is illustrated on monophase synthetic and natural data, but is also expected to help sort out multiphase data sets.

  5. Naming on a Directed Graph

    NASA Astrophysics Data System (ADS)

    Gosti, Giorgio; Batchelder, William H.

    We address how the structure of a social communication system affects language coordination. The naming game is an abstraction of lexical acquisition dynamics, in which N agents try to find an agreement on the names to give to objects. Most results on naming games are specific to certain communication network topologies. We present two important results that are general to any graph topology: the first proves that under certain topologies the system always converges to a name-object agreement; the second proves that if these conditions are not met the system may end up in a state in which sub-networks with different competing object-name associations coexist.

  6. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment-distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  7. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  8. Givental Graphs and Inversion Symmetry

    NASA Astrophysics Data System (ADS)

    Dunin-Barkowski, Petr; Shadrin, Sergey; Spitz, Loek

    2013-05-01

    Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to a Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.

  9. Graph algorithms in the titan toolkit.

    SciTech Connect

    McLendon, William Clarence, III; Wylie, Brian Neil

    2009-10-01

    Graph algorithms are a key component in a wide variety of intelligence analysis activities. The Graph-Based Informatics for Non-Proliferation and Counter-Terrorism project addresses the critical need of making these graph algorithms accessible to Sandia analysts in a manner that is both intuitive and effective. Specifically we describe the design and implementation of an open source toolkit for doing graph analysis, informatics, and visualization that provides Sandia with novel analysis capability for non-proliferation and counter-terrorism.

  10. Evolutionary Games of Multiplayer Cooperation on Graphs.

    PubMed

    Peña, Jorge; Wu, Bin; Arranz, Jordi; Traulsen, Arne

    2016-08-01

    There has been much interest in studying evolutionary games in structured populations, often modeled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and larger, we estimate this condition using a combination of pair approximation and diffusion approximation. For a large class of cooperation games, our approximations suggest that graph-structured populations are stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate our analytical approximations for random regular graphs and cycles, but show systematic differences for graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations. Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial structure can be captured by pair approximation in the case of random graphs, but that it need to be handled with care for graphs with high clustering. PMID:27513946

  11. Simple scale interpolator facilitates reading of graphs

    NASA Technical Reports Server (NTRS)

    Fetterman, D. E., Jr.

    1965-01-01

    Simple transparent overlay with interpolation scale facilitates accurate, rapid reading of graph coordinate points. This device can be used for enlarging drawings and locating points on perspective drawings.

  12. Evolutionary Games of Multiplayer Cooperation on Graphs.

    PubMed

    Peña, Jorge; Wu, Bin; Arranz, Jordi; Traulsen, Arne

    2016-08-01

    There has been much interest in studying evolutionary games in structured populations, often modeled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and larger, we estimate this condition using a combination of pair approximation and diffusion approximation. For a large class of cooperation games, our approximations suggest that graph-structured populations are stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate our analytical approximations for random regular graphs and cycles, but show systematic differences for graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations. Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial structure can be captured by pair approximation in the case of random graphs, but that it need to be handled with care for graphs with high clustering.

  13. Generation of graph-state streams

    SciTech Connect

    Ballester, Daniel; Cho, Jaeyoon; Kim, M. S.

    2011-01-15

    We propose a protocol to generate a stream of mobile qubits in a graph state through a single stationary parent qubit and discuss two types of its physical implementation, namely, the generation of photonic graph states through an atomlike qubit and the generation of flying atoms through a cavity-mode photonic qubit. The generated graph states fall into an important class that can hugely reduce the resource requirement of fault-tolerant linear optics quantum computation, which was previously known to be far from realistic. In regard to the flying atoms, we also propose a heralded generation scheme, which allows for high-fidelity graph states even under the photon loss.

  14. Evolutionary Games of Multiplayer Cooperation on Graphs

    PubMed Central

    Arranz, Jordi; Traulsen, Arne

    2016-01-01

    There has been much interest in studying evolutionary games in structured populations, often modeled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and larger, we estimate this condition using a combination of pair approximation and diffusion approximation. For a large class of cooperation games, our approximations suggest that graph-structured populations are stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate our analytical approximations for random regular graphs and cycles, but show systematic differences for graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations. Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial structure can be captured by pair approximation in the case of random graphs, but that it need to be handled with care for graphs with high clustering. PMID:27513946

  15. Nonpreemptive run-time scheduling issues on a multitasked, multiprogrammed multiprocessor with dependencies, bidimensional tasks, folding and dynamic graphs

    SciTech Connect

    Miller, Allan Ray

    1987-05-01

    Increases in high speed hardware have mandated studies in software techniques to exploit the parallel capabilities. This thesis examines the effects a run-time scheduler has on a multiprocessor. The model consists of directed, acyclic graphs, generated from serial FORTRAN benchmark programs by the parallel compiler Parafrase. A multitasked, multiprogrammed environment is created. Dependencies are generated by the compiler. Tasks are bidimensional, i.e., they may specify both time and processor requests. Processor requests may be folded into execution time by the scheduler. The graphs may arrive at arbitrary time intervals. The general case is NP-hard, thus, a variety of heuristics are examined by a simulator. Multiprogramming demonstrates a greater need for a run-time scheduler than does monoprogramming for a variety of reasons, e.g., greater stress on the processors, a larger number of independent control paths, more variety in the task parameters, etc. The dynamic critical path series of algorithms perform well. Dynamic critical volume did not add much. Unfortunately, dynamic critical path maximizes turnaround time as well as throughput. Two schedulers are presented which balance throughput and turnaround time. The first requires classification of jobs by type; the second requires selection of a ratio value which is dependent upon system parameters. 45 refs., 19 figs., 20 tabs.

  16. Aspects of Performance on Line Graph Description Tasks: Influenced by Graph Familiarity and Different Task Features

    ERIC Educational Resources Information Center

    Xi, Xiaoming

    2010-01-01

    Motivated by cognitive theories of graph comprehension, this study systematically manipulated characteristics of a line graph description task in a speaking test in ways to mitigate the influence of graph familiarity, a potential source of construct-irrelevant variance. It extends Xi (2005), which found that the differences in holistic scores on…

  17. GPD: a graph pattern diffusion kernel for accurate graph classification with applications in cheminformatics.

    PubMed

    Smalter, Aaron; Huan, Jun Luke; Jia, Yi; Lushington, Gerald

    2010-01-01

    Graph data mining is an active research area. Graphs are general modeling tools to organize information from heterogeneous sources and have been applied in many scientific, engineering, and business fields. With the fast accumulation of graph data, building highly accurate predictive models for graph data emerges as a new challenge that has not been fully explored in the data mining community. In this paper, we demonstrate a novel technique called graph pattern diffusion (GPD) kernel. Our idea is to leverage existing frequent pattern discovery methods and to explore the application of kernel classifier (e.g., support vector machine) in building highly accurate graph classification. In our method, we first identify all frequent patterns from a graph database. We then map subgraphs to graphs in the graph database and use a process we call "pattern diffusion" to label nodes in the graphs. Finally, we designed a graph alignment algorithm to compute the inner product of two graphs. We have tested our algorithm using a number of chemical structure data. The experimental results demonstrate that our method is significantly better than competing methods such as those kernel functions based on paths, cycles, and subgraphs.

  18. Helping Students Make Sense of Graphs: An Experimental Trial of SmartGraphs Software

    ERIC Educational Resources Information Center

    Zucker, Andrew; Kay, Rachel; Staudt, Carolyn

    2014-01-01

    Graphs are commonly used in science, mathematics, and social sciences to convey important concepts; yet students at all ages demonstrate difficulties interpreting graphs. This paper reports on an experimental study of free, Web-based software called SmartGraphs that is specifically designed to help students overcome their misconceptions regarding…

  19. Feature Tracking Using Reeb Graphs

    SciTech Connect

    Weber, Gunther H.; Bremer, Peer-Timo; Day, Marcus S.; Bell, John B.; Pascucci, Valerio

    2010-08-02

    Tracking features and exploring their temporal dynamics can aid scientists in identifying interesting time intervals in a simulation and serve as basis for performing quantitative analyses of temporal phenomena. In this paper, we develop a novel approach for tracking subsets of isosurfaces, such as burning regions in simulated flames, which are defined as areas of high fuel consumption on a temperature isosurface. Tracking such regions as they merge and split over time can provide important insights into the impact of turbulence on the combustion process. However, the convoluted nature of the temperature isosurface and its rapid movement make this analysis particularly challenging. Our approach tracks burning regions by extracting a temperature isovolume from the four-dimensional space-time temperature field. It then obtains isosurfaces for the original simulation time steps and labels individual connected 'burning' regions based on the local fuel consumption value. Based on this information, a boundary surface between burning and non-burning regions is constructed. The Reeb graph of this boundary surface is the tracking graph for burning regions.

  20. Clique percolation in random graphs

    NASA Astrophysics Data System (ADS)

    Li, Ming; Deng, Youjin; Wang, Bing-Hong

    2015-10-01

    As a generation of the classical percolation, clique percolation focuses on the connection of cliques in a graph, where the connection of two k cliques means that they share at least l graphs, which gives not only the exact solutions of the critical point, but also the corresponding order parameter. Based on this, we prove theoretically that the fraction ψ of cliques in the giant clique cluster always makes a continuous phase transition as the classical percolation. However, the fraction ϕ of vertices in the giant clique cluster for l >1 makes a step-function-like discontinuous phase transition in the thermodynamic limit and a continuous phase transition for l =1 . More interesting, our analysis shows that at the critical point, the order parameter ϕc for l >1 is neither 0 nor 1, but a constant depending on k and l . All these theoretical findings are in agreement with the simulation results, which give theoretical support and clarification for previous simulation studies of clique percolation.

  1. Enabling Graph Appliance for Genome Assembly

    SciTech Connect

    Singh, Rina; Graves, Jeffrey A; Lee, Sangkeun; Sukumar, Sreenivas R; Shankar, Mallikarjun

    2015-01-01

    In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to store and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.

  2. Teaching Discrete Mathematics with Graphing Calculators.

    ERIC Educational Resources Information Center

    Masat, Francis E.

    Graphing calculator use is often thought of in terms of pre-calculus or continuous topics in mathematics. This paper contains examples and activities that demonstrate useful, interesting, and easy ways to use a graphing calculator with discrete topics. Examples are given for each of the following topics: functions, mathematical induction and…

  3. Student Reasoning about Graphs in Different Contexts

    ERIC Educational Resources Information Center

    Ivanjek, Lana; Susac, Ana; Planinic, Maja; Andrasevic, Aneta; Milin-Sipus, Zeljka

    2016-01-01

    This study investigates university students' graph interpretation strategies and difficulties in mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel (isomorphic) mathematics, physics, and other context questions about graphs, which were developed by us, were administered to 385 first-year students at the…

  4. Universal spectral statistics in quantum graphs.

    PubMed

    Gnutzmann, Sven; Altland, Alexander

    2004-11-01

    We prove that the spectrum of an individual chaotic quantum graph shows universal spectral correlations, as predicted by random-matrix theory. The stability of these correlations with regard to nonuniversal corrections is analyzed in terms of the linear operator governing the classical dynamics on the graph.

  5. Graphs and Statistics: A Resource Handbook.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of General Education Curriculum Development.

    Graphical representation of statistical data is the focus of this resource handbook. Only graphs which present numerical information are discussed. Activities involving the making, interpreting, and use of various types of graphs and tables are included. Sections are also included which discuss statistical terms, normal distribution and…

  6. Using a Microcomputer for Graphing Practice.

    ERIC Educational Resources Information Center

    Beichner, Robert J.

    1986-01-01

    Describes a laboratory exercise that introduces physics students to graphing. Presents the program format and sample output of a computer simulation of an experiment which tests the effects of sound intensity on the crawling speed of a snail. Provides students with practice in making exponential or logarithmic graphs. (ML)

  7. Graphing Calculators: The Newest Revolution in Mathematics.

    ERIC Educational Resources Information Center

    Clutter, Martha

    1999-01-01

    Asserts that there are numerous advantages to using graphing calculators, including the teaching of higher-level thinking skills and allowing students to draw conclusions about what they are learning. However, mathematics educators face such challenges as teaching students when it is appropriate to use graphing calculators, course-content…

  8. Multi-A Graph Patrolling and Partitioning

    NASA Astrophysics Data System (ADS)

    Elor, Y.; Bruckstein, A. M.

    2012-12-01

    We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.

  9. Cognitive Aids for Guiding Graph Comprehension

    ERIC Educational Resources Information Center

    Mautone, Patricia D.; Mayer, Richard E.

    2007-01-01

    This study sought to improve students' comprehension of scientific graphs by adapting scaffolding techniques used to aid text comprehension. In 3 experiments involving 121 female and 88 male college students, some students were shown cognitive aids prior to viewing 4 geography graphs whereas others were not; all students were then asked to write a…

  10. Pattern Perception and the Comprehension of Graphs.

    ERIC Educational Resources Information Center

    Pinker, Steven

    Three experiments tested the hypothesis that graphs convey information effectively because they can display global trends as geometric patterns that visual systems encode easily. A novel type of graph was invented in which angles/lengths of line segments joined end-to-end represented variables of rainfall and temperature of a set of months. It was…

  11. Developing Data Graph Comprehension. Third Edition

    ERIC Educational Resources Information Center

    Curcio, Frances

    2010-01-01

    Since the dawn of civilization, pictorial representations and symbols have been used to communicate simple statistics. Efficient and effective, they are still used today in the form of pictures and graphs to record and present data. Who can tie their shoes? How many calories are in your favorite food? Make data and graphs relevant and interesting…

  12. A Ring Construction Using Finite Directed Graphs

    ERIC Educational Resources Information Center

    Bardzell, Michael

    2012-01-01

    In this paper we discuss an interesting class of noncommutative rings which can be constructed using finite directed graphs. This construction also creates a vector space. These structures provide undergraduate students connections between ring theory and graph theory and, among other things, allow them to see a ring unity element that looks quite…

  13. TI-83 Graphing Calculator Keystroke Guide.

    ERIC Educational Resources Information Center

    Panik, Cathy

    This document presents keystrokes for the Texas Instrument (TI-83) graphing calculator. After presenting some basic TI-83 keystrokes, activities for student practice are listed. This is followed by keystrokes for TI-83 advanced functions such as evaluating function values, finding the zero of a function, finding the intersection of two graphs,…

  14. Supplantation of Mental Operations on Graphs

    ERIC Educational Resources Information Center

    Vogel, Markus; Girwidz, Raimund; Engel, Joachim

    2007-01-01

    Research findings show the difficulties younger students have in working with graphs. Higher mental operations are necessary for a skilled interpretation of abstract representations. We suggest connecting a concrete representation of the modeled problem with the related graph. The idea is to illustrate essential mental operations externally. This…

  15. Multi-Resolution Dynamic Meshes with Arbitrary Deformations

    SciTech Connect

    Shamir, A.; Pascucci, V.; Bajaj, C.

    2000-07-10

    Multi-resolution techniques and models have been shown to be effective for the display and transmission of large static geometric object. Dynamic environments with internally deforming models and scientific simulations using dynamic meshes pose greater challenges in terms of time and space, and need the development of similar solutions. In this paper we introduce the T-DAG, an adaptive multi-resolution representation for dynamic meshes with arbitrary deformations including attribute, position, connectivity and topology changes. T-DAG stands for Time-dependent Directed Acyclic Graph which defines the structure supporting this representation. We also provide an incremental algorithm (in time) for constructing the T-DAG representation of a given input mesh. This enables the traversal and use of the multi-resolution dynamic model for partial playback while still constructing new time-steps.

  16. Graph Mining Meets the Semantic Web

    SciTech Connect

    Lee, Sangkeun; Sukumar, Sreenivas R; Lim, Seung-Hwan

    2015-01-01

    The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluate the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.

  17. Vortices and superfields on a graph

    SciTech Connect

    Kan, Nahomi; Kobayashi, Koichiro; Shiraishi, Kiyoshi

    2009-08-15

    We extend the dimensional deconstruction by utilizing the knowledge of graph theory. In the dimensional deconstruction, one uses the moose diagram to exhibit the structure of the 'theory space'. We generalize the moose diagram to a general graph with oriented edges. In the present paper, we consider only the U(1) gauge symmetry. We also introduce supersymmetry into our model by use of superfields. We suppose that vector superfields reside at the vertices and chiral superfields at the edges of a given graph. Then we can consider multivector, multi-Higgs models. In our model, [U(1)]{sup p} (where p is the number of vertices) is broken to a single U(1). Therefore, for specific graphs, we get vortexlike classical solutions in our model. We show some examples of the graphs admitting the vortex solutions of simple structure as the Bogomolnyi solution.

  18. Vortices and superfields on a graph

    NASA Astrophysics Data System (ADS)

    Kan, Nahomi; Kobayashi, Koichiro; Shiraishi, Kiyoshi

    2009-08-01

    We extend the dimensional deconstruction by utilizing the knowledge of graph theory. In the dimensional deconstruction, one uses the moose diagram to exhibit the structure of the “theory space.” We generalize the moose diagram to a general graph with oriented edges. In the present paper, we consider only the U(1) gauge symmetry. We also introduce supersymmetry into our model by use of superfields. We suppose that vector superfields reside at the vertices and chiral superfields at the edges of a given graph. Then we can consider multivector, multi-Higgs models. In our model, [U(1)]p (where p is the number of vertices) is broken to a single U(1). Therefore, for specific graphs, we get vortexlike classical solutions in our model. We show some examples of the graphs admitting the vortex solutions of simple structure as the Bogomolnyi solution.

  19. On linear area embedding of planar graphs

    NASA Astrophysics Data System (ADS)

    Dolev, D.; Trickey, H.

    1981-09-01

    Planar embedding with minimal area of graphs on an integer grid is one of the major issues in VLSI. Valiant (V) gave an algorithm to construct a planar embedding for trees in linear area; he also proved that there are planar graphs that require quadratic area. An algorithm to embed outerplanar graphs in linear area is given. This algorithm is extended to work for every planar graph that has the following property: for every vertex there exists a path of length less than K to the exterior face, where K is a constant. Finally, finding a minimal embedding area is shown to be NP-complete for forests, and hence more general types of graphs.

  20. Structure and strategy in encoding simplified graphs

    NASA Technical Reports Server (NTRS)

    Schiano, Diane J.; Tversky, Barbara

    1992-01-01

    Tversky and Schiano (1989) found a systematic bias toward the 45-deg line in memory for the slopes of identical lines when embedded in graphs, but not in maps, suggesting the use of a cognitive reference frame specifically for encoding meaningful graphs. The present experiments explore this issue further using the linear configurations alone as stimuli. Experiments 1 and 2 demonstrate that perception and immediate memory for the slope of a test line within orthogonal 'axes' are predictable from purely structural considerations. In Experiments 3 and 4, subjects were instructed to use a diagonal-reference strategy in viewing the stimuli, which were described as 'graphs' only in Experiment 3. Results for both studies showed the diagonal bias previously found only for graphs. This pattern provides converging evidence for the diagonal as a cognitive reference frame in encoding linear graphs, and demonstrates that even in highly simplified displays, strategic factors can produce encoding biases not predictable solely from stimulus structure alone.

  1. Hierarchical, 4-connected Small-World Graph

    NASA Astrophysics Data System (ADS)

    Goncalves, Bruno; Boettcher, Stefan

    2008-03-01

    A new sequences of graphs are introduced that mimic small-world properties. The graphs are recursively constructed but retain a fixed, regular degree. They consist of a one-dimensional lattice backbone overlayed by a hierarchical sequence of long-distance links in a pattern reminiscent of the tower-of-hanoi sequence. These 4-regular graphs are non-planar, have a diameter growing as 2^√2N^2 (or as [2N]^α with α˜√2N^2/22N^2), and a nontrivial phase transition Tc>0, for the Ising ferromagnet. These results suggest that these graphs are similar to small-world graphs with mean-field-like properties.

  2. Quantum graphs and random-matrix theory

    NASA Astrophysics Data System (ADS)

    Pluhař, Z.; Weidenmüller, H. A.

    2015-07-01

    For simple connected graphs with incommensurate bond lengths and with unitary symmetry we prove the Bohigas-Giannoni-Schmit (BGS) conjecture in its most general form. Using supersymmetry and taking the limit of infinite graph size, we show that the generating function for every (P,Q) correlation function for both closed and open graphs coincides with the corresponding expression of random-matrix theory. We show that the classical Perron-Frobenius operator is bistochastic and possesses a single eigenvalue +1. In the quantum case that implies the existence of a zero (or massless) mode of the effective action. That mode causes universal fluctuation properties. Avoiding the saddle-point approximation we show that for graphs that are classically mixing (i.e. for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap) and that do not carry a special class of bound states, the zero mode dominates in the limit of infinite graph size.

  3. GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems

    SciTech Connect

    Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen; Schwan, Karsten

    2015-09-30

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host and the device.

  4. GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems

    SciTech Connect

    Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil; Schwan, Karsten

    2015-11-15

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host and device.

  5. Balanced Paths in Colored Graphs

    NASA Astrophysics Data System (ADS)

    Bianco, Alessandro; Faella, Marco; Mogavero, Fabio; Murano, Aniello

    We consider finite graphs whose edges are labeled with elements, called colors, taken from a fixed finite alphabet. We study the problem of determining whether there is an infinite path where either (i) all colors occur with the same asymptotic frequency, or (ii) there is a constant which bounds the difference between the occurrences of any two colors for all prefixes of the path. These two notions can be viewed as refinements of the classical notion of fair path, whose simplest form checks whether all colors occur infinitely often. Our notions provide stronger criteria, particularly suitable for scheduling applications based on a coarse-grained model of the jobs involved. We show that both problems are solvable in polynomial time, by reducing them to the feasibility of a linear program.

  6. Relativity on rotated graph paper

    NASA Astrophysics Data System (ADS)

    Salgado, Roberto B.

    2016-05-01

    We demonstrate a method for constructing spacetime diagrams for special relativity on graph paper that has been rotated by 45°. The diagonal grid lines represent light-flash worldlines in Minkowski spacetime, and the boxes in the grid (called "clock diamonds") represent units of measurement corresponding to the ticks of an inertial observer's light clock. We show that many quantitative results can be read off a spacetime diagram simply by counting boxes, with very little algebra. In particular, we show that the squared interval between two events is equal to the signed area of the parallelogram on the grid (called the "causal diamond") with opposite vertices corresponding to those events. We use the Doppler effect—without explicit use of the Doppler formula—to motivate the method.

  7. Gas chromatographic-mass spectrometric characterization of all acyclic C5-C7 alkenes from fluid catalytic cracked gasoline using polydimethylsiloxane and squalane stationary phases.

    PubMed

    Soják, Ladislav; Addová, Gabriela; Kubinec, Róbert; Kraus, Angelika; Hu, Gengyuan

    2002-02-15

    Published retention indices of acyclic alkenes C5-C7 on squalane and polydimethylsiloxane as stationary phases were investigated, and reliable retention indices of alkenes from various sources were converted to separation systems used in a laboratory. Retention indices measured on available authentic commercial alkenes and on alkenic fraction of gasoline, published retention indices as well as means of GC-MS were used for verification of calculated retention indices. Retention of some gas chromatographic unseparated isomer pairs was obtained by mass spectrometric deconvolution using a specific single-ion monitoring. On the basis of these retention data, C5-C7 alkenes were identified and analyzed in the gasoline from fluid catalytic cracking. In the gasoline all 59 acyclic C5-C7 isomeric alkenes were determined at significantly different concentration levels.

  8. The role of minerals in the thermal alteration of organic matter. IV - Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments

    NASA Technical Reports Server (NTRS)

    Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, Isaac R.

    1987-01-01

    The effect of common sedimentary minerals (illite, Na-montmorillonite, or calcite) under different water concentrations on the generation and release of n-alkanes, acyclic isoprenoids, and select alkenes from oil-prone kerogens was investigated. Matrices containing Green River Formation kerogen or Monterey Formation kerogen, alone or in the presence of minerals, were heated at 200 or 300 C for periods of up to 1000 hours, and the pyrolysis products were analyzed. The influence of the first two clay minerals was found to be critically dependent on the water content. Under the dry pyrolysis conditions, both minerals significantly reduced alkene formation; the C12+ n-alkanes and acyclic isoprenoids were mostly destroyed by montmorillonite, but underwent only minor alteration with illite. Under hydrous conditions (mineral/water of 2/1), the effects of both minerals were substantially reduced. Calcite had no significant effect on the thermal evolution of the hydrocarbons.

  9. Phenylalanine Ammonia-Lyase-Catalyzed Deamination of an Acyclic Amino Acid: Enzyme Mechanistic Studies Aided by a Novel Microreactor Filled with Magnetic Nanoparticles.

    PubMed

    Weiser, Diána; Bencze, László Csaba; Bánóczi, Gergely; Ender, Ferenc; Kiss, Róbert; Kókai, Eszter; Szilágyi, András; Vértessy, Beáta G; Farkas, Ödön; Paizs, Csaba; Poppe, László

    2015-11-01

    Phenylalanine ammonia-lyase (PAL), found in many organisms, catalyzes the deamination of l-phenylalanine (Phe) to (E)-cinnamate by the aid of its MIO prosthetic group. By using PAL immobilized on magnetic nanoparticles and fixed in a microfluidic reactor with an in-line UV detector, we demonstrated that PAL can catalyze ammonia elimination from the acyclic propargylglycine (PG) to yield (E)-pent-2-ene-4-ynoate. This highlights new opportunities to extend MIO enzymes towards acyclic substrates. As PG is acyclic, its deamination cannot involve a Friedel-Crafts-type attack at an aromatic ring. The reversibility of the PAL reaction, demonstrated by the ammonia addition to (E)-pent-2-ene-4-ynoate yielding enantiopure l-PG, contradicts the proposed highly exothermic single-step mechanism. Computations with the QM/MM models of the N-MIO intermediates from L-PG and L-Phe in PAL show similar arrangements within the active site, thus supporting a mechanism via the N-MIO intermediate.

  10. Massive graph visualization : LDRD final report.

    SciTech Connect

    Wylie, Brian Neil; Moreland, Kenneth D.

    2007-10-01

    Graphs are a vital way of organizing data with complex correlations. A good visualization of a graph can fundamentally change human understanding of the data. Consequently, there is a rich body of work on graph visualization. Although there are many techniques that are effective on small to medium sized graphs (tens of thousands of nodes), there is a void in the research for visualizing massive graphs containing millions of nodes. Sandia is one of the few entities in the world that has the means and motivation to handle data on such a massive scale. For example, homeland security generates graphs from prolific media sources such as television, telephone, and the Internet. The purpose of this project is to provide the groundwork for visualizing such massive graphs. The research provides for two major feature gaps: a parallel, interactive visualization framework and scalable algorithms to make the framework usable to a practical application. Both the frameworks and algorithms are designed to run on distributed parallel computers, which are already available at Sandia. Some features are integrated into the ThreatView{trademark} application and future work will integrate further parallel algorithms.

  11. Object Discovery: Soft Attributed Graph Mining.

    PubMed

    Zhang, Quanshi; Song, Xuan; Shao, Xiaowei; Zhao, Huijing; Shibasaki, Ryosuke

    2016-03-01

    We categorize this research in terms of its contribution to both graph theory and computer vision. From the theoretical perspective, this study can be considered as the first attempt to formulate the idea of mining maximal frequent subgraphs in the challenging domain of messy visual data, and as a conceptual extension to the unsupervised learning of graph matching. We define a soft attributed pattern (SAP) to represent the common subgraph pattern among a set of attributed relational graphs (ARGs), considering both their structure and attributes. Regarding the differences between ARGs with fuzzy attributes and conventional labeled graphs, we propose a new mining strategy that directly extracts the SAP with the maximal graph size without applying node enumeration. Given an initial graph template and a number of ARGs, we develop an unsupervised method to modify the graph template into the maximal-size SAP. From a practical perspective, this research develops a general platform for learning the category model (i.e., the SAP) from cluttered visual data (i.e., the ARGs) without labeling "what is where," thereby opening the possibility for a series of applications in the era of big visual data. Experiments demonstrate the superior performance of the proposed method on RGB/RGB-D images and videos.

  12. Graph isomorphism and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Gaitan, Frank; Clark, Lane

    2014-03-01

    In the Graph Isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and maps G --> G'. If yes (no), then G and G' are said to be isomorphic (non-isomorphic). The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. We present a quantum algorithm that solves arbitrary instances of GI, and which provides a novel approach to determining all automorphisms of a graph. The algorithm converts a GI instance to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. Numerical simulation of the algorithm's quantum dynamics shows that it correctly distinguishes non-isomorphic graphs; recognizes isomorphic graphs; and finds the automorphism group of a graph. We also discuss the algorithm's experimental implementation and show how it can be leveraged to solve arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.

  13. Object Discovery: Soft Attributed Graph Mining.

    PubMed

    Zhang, Quanshi; Song, Xuan; Shao, Xiaowei; Zhao, Huijing; Shibasaki, Ryosuke

    2016-03-01

    We categorize this research in terms of its contribution to both graph theory and computer vision. From the theoretical perspective, this study can be considered as the first attempt to formulate the idea of mining maximal frequent subgraphs in the challenging domain of messy visual data, and as a conceptual extension to the unsupervised learning of graph matching. We define a soft attributed pattern (SAP) to represent the common subgraph pattern among a set of attributed relational graphs (ARGs), considering both their structure and attributes. Regarding the differences between ARGs with fuzzy attributes and conventional labeled graphs, we propose a new mining strategy that directly extracts the SAP with the maximal graph size without applying node enumeration. Given an initial graph template and a number of ARGs, we develop an unsupervised method to modify the graph template into the maximal-size SAP. From a practical perspective, this research develops a general platform for learning the category model (i.e., the SAP) from cluttered visual data (i.e., the ARGs) without labeling "what is where," thereby opening the possibility for a series of applications in the era of big visual data. Experiments demonstrate the superior performance of the proposed method on RGB/RGB-D images and videos. PMID:27046496

  14. Sketch Matching on Topology Product Graph.

    PubMed

    Liang, Shuang; Luo, Jun; Liu, Wenyin; Wei, Yichen

    2015-08-01

    Sketch matching is the fundamental problem in sketch based interfaces. After years of study, it remains challenging when there exists large irregularity and variations in the hand drawn sketch shapes. While most existing works exploit topology relations and graph representations for this problem, they are usually limited by the coarse topology exploration and heuristic (thus suboptimal) similarity metrics between graphs. We present a new sketch matching method with two novel contributions. We introduce a comprehensive definition of topology relations, which results in a rich and informative graph representation of sketches. For graph matching, we propose topology product graph that retains the full correspondence for matching two graphs. Based on it, we derive an intuitive sketch similarity metric whose exact solution is easy to compute. In addition, the graph representation and new metric naturally support partial matching, an important practical problem that received less attention in the literature. Extensive experimental results on a real challenging dataset and the superior performance of our method show that it outperforms the state-of-the-art.

  15. Partitioning sparse matrices with eigenvectors of graphs

    NASA Technical Reports Server (NTRS)

    Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu

    1990-01-01

    The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.

  16. Lamplighter groups, de Brujin graphs, spider-web graphs and their spectra

    NASA Astrophysics Data System (ADS)

    Grigorchuk, R.; Leemann, P.-H.; Nagnibeda, T.

    2016-05-01

    We study the infinite family of spider-web graphs \\{{{ S }}k,N,M\\}, k≥slant 2, N≥slant 0 and M≥slant 1, initiated in the 50s in the context of network theory. It was later shown in physical literature that these graphs have remarkable percolation and spectral properties. We provide a mathematical explanation of these properties by putting the spider-web graphs in the context of group theory and algebraic graph theory. Namely, we realize them as tensor products of the well-known de Bruijn graphs \\{{{ B }}k,N\\} with cyclic graphs \\{{C}M\\} and show that these graphs are described by the action of the lamplighter group {{ L }}k={Z}/k{Z}\\wr {Z} on the infinite binary tree. Our main result is the identification of the infinite limit of \\{{{ S }}k,N,M\\}, as N,M\\to ∞ , with the Cayley graph of the lamplighter group {{ L }}k which, in turn, is one of the famous Diestel–Leader graphs {{DL}}k,k. As an application we compute the spectra of all spider-web graphs and show their convergence to the discrete spectral distribution associated with the Laplacian on the lamplighter group.

  17. Lamplighter groups, de Brujin graphs, spider-web graphs and their spectra

    NASA Astrophysics Data System (ADS)

    Grigorchuk, R.; Leemann, P.-H.; Nagnibeda, T.

    2016-05-01

    We study the infinite family of spider-web graphs \\{{{ S }}k,N,M\\}, k≥slant 2, N≥slant 0 and M≥slant 1, initiated in the 50s in the context of network theory. It was later shown in physical literature that these graphs have remarkable percolation and spectral properties. We provide a mathematical explanation of these properties by putting the spider-web graphs in the context of group theory and algebraic graph theory. Namely, we realize them as tensor products of the well-known de Bruijn graphs \\{{{ B }}k,N\\} with cyclic graphs \\{{C}M\\} and show that these graphs are described by the action of the lamplighter group {{ L }}k={Z}/k{Z}\\wr {Z} on the infinite binary tree. Our main result is the identification of the infinite limit of \\{{{ S }}k,N,M\\}, as N,M\\to ∞ , with the Cayley graph of the lamplighter group {{ L }}k which, in turn, is one of the famous Diestel-Leader graphs {{DL}}k,k. As an application we compute the spectra of all spider-web graphs and show their convergence to the discrete spectral distribution associated with the Laplacian on the lamplighter group.

  18. BioGraphE: high-performance bionetwork analysis using the Biological Graph Environment

    PubMed Central

    Chin, George; Chavarria, Daniel G; Nakamura, Grant C; Sofia, Heidi J

    2008-01-01

    Background Graphs and networks are common analysis representations for biological systems. Many traditional graph algorithms such as k-clique, k-coloring, and subgraph matching have great potential as analysis techniques for newly available data in biology. Yet, as the amount of genomic and bionetwork information rapidly grows, scientists need advanced new computational strategies and tools for dealing with the complexities of the bionetwork analysis and the volume of the data. Results We introduce a computational framework for graph analysis called the Biological Graph Environment (BioGraphE), which provides a general, scalable integration platform for connecting graph problems in biology to optimized computational solvers and high-performance systems. This framework enables biology researchers and computational scientists to identify and deploy network analysis applications and to easily connect them to efficient and powerful computational software and hardware that are specifically designed and tuned to solve complex graph problems. In our particular application of BioGraphE to support network analysis in genome biology, we investigate the use of a Boolean satisfiability solver known as Survey Propagation as a core computational solver executing on standard high-performance parallel systems, as well as multi-threaded architectures. Conclusion In our application of BioGraphE to conduct bionetwork analysis of homology networks, we found that BioGraphE and a custom, parallel implementation of the Survey Propagation SAT solver were capable of solving very large bionetwork problems at high rates of execution on different high-performance computing platforms. PMID:18541059

  19. Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis

    SciTech Connect

    Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong; Lim, Seung-Hwan

    2016-01-01

    The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existing graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.

  20. Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis

    DOE PAGES

    Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong; Lim, Seung-Hwan

    2016-01-01

    The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less

  1. Computing the isoperimetric number of a graph

    SciTech Connect

    Golovach, P.A.

    1995-01-01

    Let G be a finite graph. Denote by {partial_derivative}X, where X {contained_in} VG, the set of edges of the graph G with one end in X and the other end in the set VG{backslash}X. The ratio i(G) = min {vert_bar}{vert_bar}X{vert_bar}/{vert_bar}X{vert_bar}, where the minimum is over all nonempty subsets X of the set VG such that {vert_bar}X{vert_bar} {le} {vert_bar} VG {vert_bar}/2, is called the isoperimetric number of the graph G. It is easy to see that the isoperimetric number may be used as a {open_quotes}measure of connectivity{close_quotes} of the graph. The problem of determining the isoperimetric number is clearly linked with graph partition problems, which often arise in various applications. The isoperimetric number is also important for studying Riemann surfaces. These and other applications of the isoperimetric number justify the analysis of graphs of this kind. The properties of the isoperimetric number are presented in more detail elsewhere. It is shown elsewhere that the computation of the isoperimetric number is an NP-hard problem for graphs with multiple edges. We will show that the decision problem {open_quotes}given the graph G and two integers s and t decide if i(G) {le} s/t{close_quotes} is NP-complete even for simple graphs with vertex degrees not exceeding 3. Note that the isoperimetric number of a tree can be computed by a known polynomial-time algorithm.

  2. Intelligent Graph Layout Using Many Users' Input.

    PubMed

    Yuan, Xiaoru; Che, Limei; Hu, Yifan; Zhang, Xin

    2012-12-01

    In this paper, we propose a new strategy for graph drawing utilizing layouts of many sub-graphs supplied by a large group of people in a crowd sourcing manner. We developed an algorithm based on Laplacian constrained distance embedding to merge subgraphs submitted by different users, while attempting to maintain the topological information of the individual input layouts. To facilitate collection of layouts from many people, a light-weight interactive system has been designed to enable convenient dynamic viewing, modification and traversing between layouts. Compared with other existing graph layout algorithms, our approach can achieve more aesthetic and meaningful layouts with high user preference.

  3. Line graphs for a multiplex network.

    PubMed

    Criado, Regino; Flores, Julio; García Del Amo, Alejandro; Romance, Miguel; Barrena, Eva; Mesa, Juan A

    2016-06-01

    It is well known that line graphs offer a good summary of the graphs properties, which make them easier to analyze and highlight the desired properties. We extend the concept of line graph to multiplex networks in order to analyze multi-plexed and multi-layered networked systems. As these structures are very rich, different approaches to this notion are required to capture a variety of situations. Some relationships between these approaches are established. Finally, by means of some simulations, the potential utility of this concept is illustrated.

  4. Searching for nodes in random graphs.

    PubMed

    Lancaster, David

    2011-11-01

    We consider the problem of searching for a node on a labeled random graph according to a greedy algorithm that selects a route to the desired node using metric information on the graph. Motivated by peer-to-peer networks two types of random graph are proposed with properties particularly amenable to this kind of algorithm. We derive equations for the probability that the search is successful and also study the number of hops required, finding both numerical and analytic evidence of a transition as the number of links is varied.

  5. Line graphs for a multiplex network.

    PubMed

    Criado, Regino; Flores, Julio; García Del Amo, Alejandro; Romance, Miguel; Barrena, Eva; Mesa, Juan A

    2016-06-01

    It is well known that line graphs offer a good summary of the graphs properties, which make them easier to analyze and highlight the desired properties. We extend the concept of line graph to multiplex networks in order to analyze multi-plexed and multi-layered networked systems. As these structures are very rich, different approaches to this notion are required to capture a variety of situations. Some relationships between these approaches are established. Finally, by means of some simulations, the potential utility of this concept is illustrated. PMID:27368798

  6. Graph states for quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Markham, Damian; Sanders, Barry C.

    2008-10-01

    We consider three broad classes of quantum secret sharing with and without eavesdropping and show how a graph state formalism unifies otherwise disparate quantum secret sharing models. In addition to the elegant unification provided by graph states, our approach provides a generalization of threshold classical secret sharing via insecure quantum channels beyond the current requirement of 100% collaboration by players to just a simple majority in the case of five players. Another innovation here is the introduction of embedded protocols within a larger graph state that serves as a one-way quantum-information processing system.

  7. The MultiThreaded Graph Library (MTGL)

    SciTech Connect

    Berry, Jonathan; Leung, Vitus; McLendon, III, William; & Madduri, Kamesh

    2008-07-17

    The MultiThreaded Graph Library (MTGL) is a set of header files that implement graph algorithm in such a way that they can run on massively multithreaded architectures. It is based upon the Boost Graph Library, but doesn’t use Boost since the latter doesn’t run well on these architectures.

  8. A heterogeneous graph-based recommendation simulator

    SciTech Connect

    Yeonchan, Ahn; Sungchan, Park; Lee, Matt Sangkeun; Sang-goo, Lee

    2013-01-01

    Heterogeneous graph-based recommendation frameworks have flexibility in that they can incorporate various recommendation algorithms and various kinds of information to produce better results. In this demonstration, we present a heterogeneous graph-based recommendation simulator which enables participants to experience the flexibility of a heterogeneous graph-based recommendation method. With our system, participants can simulate various recommendation semantics by expressing the semantics via meaningful paths like User Movie User Movie. The simulator then returns the recommendation results on the fly based on the user-customized semantics using a fast Monte Carlo algorithm.

  9. Loops in Reeb Graphs of 2-Manifolds

    SciTech Connect

    Cole-McLaughlin, K; Edelsbrunner, H; Harer, J; Natarajan, V; Pascucci, V

    2004-12-16

    Given a Morse function f over a 2-manifold with or without boundary, the Reeb graph is obtained by contracting the connected components of the level sets to points. We prove tight upper and lower bounds on the number of loops in the Reeb graph that depend on the genus, the number of boundary components, and whether or not the 2-manifold is orientable. We also give an algorithm that constructs the Reeb graph in time O(n log n), where n is the number of edges in the triangulation used to represent the 2-manifold and the Morse function.

  10. Loops in Reeb Graphs of 2-Manifolds

    SciTech Connect

    Cole-McLaughlin, K; Edelsbrunner, H; Harer, J; Natarajan, V; Pascucci, V

    2003-02-11

    Given a Morse function f over a 2-manifold with or without boundary, the Reeb graph is obtained by contracting the connected components of the level sets to points. We prove tight upper and lower bounds on the number of loops in the Reeb graph that depend on the genus, the number of boundary components, and whether or not the 2-manifold is orientable. We also give an algorithm that constructs the Reeb graph in time O(n log n), where n is the number of edges in the triangulation used to represent the 2-manifold and the Morse function.

  11. The fluxional amine gold(III) complex as an excellent catalyst and precursor of biologically active acyclic carbenes.

    PubMed

    Montanel-Pérez, Sara; Herrera, Raquel P; Laguna, Antonio; Villacampa, M Dolores; Gimeno, M Concepción

    2015-05-21

    A new amine gold(III) complex [Au(C6F5)2(DPA)]ClO4 with the di-(2-picolyl)amine (DPA) ligand has been synthesised. In the solid state the complex has a chiral amine nitrogen because the ligand coordinates to the gold centre through one nitrogen atom from a pyridine and through the NH moiety, whereas in solution it shows a fluxional behaviour with a rapid exchange between the pyridine sites. This complex can be used as an excellent synton to prepare new gold(III) carbene complexes by the reaction with isocyanide CNR. The resulting gold(III) derivatives have unprecedented bidentate C^N acyclic carbene ligands. All the complexes have been spectroscopically and structurally characterized. Taking advantage of the fluxional behaviour of the amine complex, its catalytic properties have been tested in several reactions with the formation of C-C and C-N bonds. The complex showed excellent activity with total conversion, without the presence of a co-catalyst, and with a catalyst loading as low as 0.1%. These complexes also present biological properties, and cytotoxicity studies have been performed in vitro against three tumour human cell lines, Jurkat (T-cell leukaemia), MiaPaca2 (pancreatic carcinoma) and A549 (lung carcinoma). Some of them showed excellent cytotoxic activity compared with the reference cisplatin.

  12. Acyclic monoterpene primary alcohol:NADP+ oxidoreductase of Rauwolfia serpentina cells: the key enzyme in biosynthesis of monoterpene alcohols.

    PubMed

    Ikeda, H; Esaki, N; Nakai, S; Hashimoto, K; Uesato, S; Soda, K; Fujita, T

    1991-02-01

    Acyclic monoterpene primary alcohol:NADP+ oxidoreductase, a key enzyme in the biosynthesis of monoterpene alcohols in plants, is unstable and has been only poorly characterized. However we have established conditions which stabilize the enzyme from Rauwolfia serpentina cells, and then purified it to homogeneity. It is a monomer with a molecular weight of about 44,000 and contains zinc ions. Various branched-chain allylic primary alcohols such as nerol, geraniol, and 10-hydroxygeraniol were substrates, but ethanol was inert. The enzyme exclusively requires NADP+ or NADPH as the cofactor. Steady-state kinetic studies showed that the nerol dehydrogenation proceeds by an ordered Bi-Bi mechanism. NADP+ binds the enzyme first and then NADPH is the second product released from it. Gas chromatography-mass spectrometric analysis of the reaction products showed that 10-hydroxygeraniol undergoes a reversible dehydrogenation to produce 10-oxogeraniol or 10-hydroxygeranial, which are oxidized further to give 10-oxogeranial, the direct precursor of iridodial. The enzyme has been found to exclusively transfer the pro-R hydrogen of NADPH to neral. The N-terminal sequence of the first 21 amino acids revealed no significant homology with those of various other proteins including the NAD(P)(+)-dependent alcohol dehydrogenases registered in a protein data bank. PMID:1864846

  13. Hydroxamate based inhibitors of adenylyl cyclase. Part 1: the effect of acyclic linkers on P-site binding.

    PubMed

    Levy, Daniel; Marlowe, Charles; Kane-Maguire, Kim; Bao, Ming; Cherbavaz, Diana; Tomlinson, James; Sedlock, David; Scarborough, Robert

    2002-11-01

    The adenylyl cyclases (ACs) are a family of enzymes that are key elements of signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the purine binding site (P-site) followed by metal mediated cyclization with loss of pyrophosphate. Crystallographic analysis of ACs with known inhibitors reveals the presence of two metals in the active site. Presently, nine isoforms of adenylyl cyclase are known and unique isoform combinations are expressed in a tissue specific manner. The development of isoform specific inhibitors of adenylyl cyclase may prove to be a useful strategy toward the design of novel therapeutic agents. In order to develop novel AC inhibitors, we have chosen a design approach utilizing molecules with the adenine ring system joined to a metal-coordinating hydroxamic acid via flexible acyclic linkers. The designed inhibitors were assayed against type V AC with the size and heteroatom content of the linkers varied to probe the interaction of the nucleotide and metal binding sites within the enzyme. PMID:12372507

  14. H4octapa-Trastuzumab: Versatile Acyclic Chelate System for 111In and 177Lu Imaging and Therapy

    PubMed Central

    Price, Eric W.; Zeglis, Brian M.; Cawthray, Jacqueline F.; Ramogida, Caterina F.; Ramos, Nicholas

    2013-01-01

    A bifunctional derivative of the versatile acyclic chelator H4octapa, p-SCNBn- H4octapa, has been synthesized for the first time. The chelator was conjugated to the HER2/neu-targeting antibody trastuzumab and labeled in high radiochemical purity and specific activity with the radioisotopes 111In and 177Lu. The in vivo behavior of the resulting radioimmunoconjugates was investigated in mice bearing ovarian cancer xenografts and compared to analogous radioimmunoconjugates employing the ubiquitous chelator DOTA. The H4octapa-trastuzumab conjugates displayed faster radiolabeling kinetics with more reproducible yields under milder conditions (15 min, RT, ~94–95%) than those based on DOTA-trastuzumab (60 min, 37 °C ~50–88%). Further, antibody integrity was better preserved in the 111In- and 177Lu-octapatrastuzumab constructs, with immunoreactive fractions of 0.99 for each compared to 0.93–0.95 for 111In- and 177Lu-DOTA-trastuzumab. These results translated to improved in vivo biodistribution profiles and SPECT imaging results for 111In- and 177Lu-octapa-trastuzumab compared to 111In- and 177Lu-DOTA-trastuzumab, with increased tumor uptake and higher tumor-to-tissue activity ratios. PMID:23901833

  15. Activities of acyclic nucleoside phosphonates against Orf virus in human and ovine cell monolayers and organotypic ovine raft cultures.

    PubMed

    Dal Pozzo, F; Andrei, G; Holy, A; Van Den Oord, J; Scagliarini, A; De Clercq, E; Snoeck, R

    2005-12-01

    Orf virus, a member of the Parapoxvirus genus, causes a contagious pustular dermatitis in sheep, goats, and humans. Previous studies have demonstrated the activity of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC; cidofovir; Vistide) against orf virus in cell culture and humans. We have evaluated a broad range of acyclic nucleoside phosphonates (ANPs) against several orf virus strains in primary lamb keratinocytes (PLKs) and human embryonic lung (HEL) monolayers. HPMPC, (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6- diaminopurine (HPMPDAP), and (R)-9-[3-hydroxy-2-(phosphonomethoxy)propoxy]-2,4-diaminopyrimidine (HPMPO-DAPy) were three of the most active compounds that were subsequently tested in a virus yield assay with PLK and HEL cells by virus titration and DNA quantification. HPMPC, HPMPDAP, and HPMPO-DAPy were evaluated for their activities against orf virus replication in organotypic epithelial raft cultures from differentiated PLK cells. At the highest concentrations (50 and 20 microg/ml), full protection was provided by the three drugs, while at 5 microg/ml, only HPMPDAP and HPMPC offered partial protection. The activities of the three compounds in the raft culture system were confirmed by quantification of infectious virus and viral DNA. These findings provide a rationale for the use of HPMPC and other ANPs in the treatment of orf (contagious ecthyma) in humans and animals.

  16. Intramolecular OH⋅⋅⋅Fluorine Hydrogen Bonding in Saturated, Acyclic Fluorohydrins: The γ-Fluoropropanol Motif

    PubMed Central

    Linclau, Bruno; Peron, Florent; Bogdan, Elena; Wells, Neil; Wang, Zhong; Compain, Guillaume; Fontenelle, Clement Q; Galland, Nicolas; LeQuestel, Jean-Yves; Graton, Jérôme

    2015-01-01

    Fluorination is commonly exercised in compound property optimization. However, the influence of fluorination on hydrogen-bond (HB) properties of adjacent functional groups, as well as the HB-accepting capacity of fluorine itself, is still not completely understood. Although the formation of OH⋅⋅⋅F intramolecular HBs (IMHBs) has been established for conformationally restricted fluorohydrins, such interaction in flexible compounds remained questionable. Herein is demonstrated for the first time—and in contrast to earlier reports—the occurrence of OH⋅⋅⋅F IMHBs in acyclic saturated γ-fluorohydrins, even for the parent 3-fluoropropan-1-ol. The relative stereochemistry is shown to have a crucial influence on the corresponding h1JOH⋅⋅⋅F values, as illustrated by syn- and anti-4-fluoropentan-2-ol (6.6 and 1.9Hz). The magnitude of OH⋅⋅⋅F IMHBs and their strong dependence on the overall molecular conformational profile, fluorination motif, and alkyl substitution level, is rationalized by quantum chemical calculations. For a given alkyl chain, the “rule of shielding” applies to OH⋅⋅⋅F IMHB energies. Surprisingly, the predicted OH⋅⋅⋅F IMHB energies are only moderately weaker than these of the corresponding OH⋅⋅⋅OMe. These results provide new insights of the impact of fluorination of aliphatic alcohols, with attractive perspectives for rational drug design. PMID:26494542

  17. Acyclic forms of aldohexoses and ketohexoses in aqueous and DMSO solutions: conformational features studied using molecular dynamics simulations.

    PubMed

    Plazinski, Wojciech; Plazinska, Anita; Drach, Mateusz

    2016-04-14

    The molecular properties of aldohexoses and ketohexoses are usually studied in the context of their cyclic, furanose or pyranose structures which is due to the abundance of related tautomeric forms in aqueous solution. We studied the conformational features of a complete series of D-aldohexoses (D-allose, D-altrose, D-glucose, D-mannose, D-gulose, d-idose, D-galactose and D-talose) and D-ketohexoses (D-psicose, D-fructose, D-sorbose and D-tagatose) as well as of L-psicose by using microsecond-timescale molecular dynamics in explicit water and DMSO with the use of enhanced sampling methods. In each of the studied cases the preferred conformation corresponded to an extended chain structure; the less populated conformers included the quasi-cyclic structures, close to furanose rings and common for both aldo- and ketohexoses. The orientational preferences of the aldehyde or ketone groups are correlated with the relative populations of anomers characteristic of cyclic aldo- and ketohexoses, respectively, thus indicating that basic features of anomeric equilibria are preserved even if hexose molecules are not in their cyclic forms. No analogous relationship is observed in the case of other structural characteristics, such as the preferences of acyclic molecules to form either the furanose-or pyranose-like structures or maintaining the chair-like geometry of pseudo-pyranose rings.

  18. Enzymatic synthesis of acyclic nucleoside thiophosphonate diphosphates: effect of the α-phosphorus configuration on HIV-1 RT activity.

    PubMed

    Priet, Stéphane; Roux, Loic; Saez-Ayala, Magali; Ferron, François; Canard, Bruno; Alvarez, Karine

    2015-05-01

    The acyclic nucleosides thiophosphonates (9-[2-(thiophosphonomethoxy)ethyl]adenine (S-PMEA) and (R)-9-[2-(thiophosphonomethoxy)propyl]adenine (S-PMPA), exhibit antiviral activity against HIV-1, -2 and HBV. Their diphosphate forms S-PMEApp and S-PMPApp, synthesized as stereoisomeric mixture, are potent inhibitors of wild-type (WT) HIV-1 RT. Understanding HIV-1 RT stereoselectivity, however, awaits resolution of the diphosphate forms into defined stereoisomers. To this aim, thiophosphonate monophosphates S-PMEAp and S-PMPAp were synthesized and used in a stereocontrolled enzyme-catalyzed phosphoryl transfer reaction involving either nucleoside diphosphate kinase (NDPK) or creatine kinase (CK) to obtain thiophosphonate diphosphates as separated isomers. We then quantified substrate preference of recombinant WT HIV-1 RT toward pure stereoisomers using in vitro steady-state kinetic analyses. The crystal structure of a complex between Dictyostelium NDPK and S-PMPApp at 2.32Å allowed to determine the absolute configuration at the α-phosphorus atom in relation to the stereo-preference of studied enzymes. The RP isomer of S-PMPApp and S-PMEApp are the preferred substrate over SP for both NDPK and HIV-1 RT. PMID:25766862

  19. From an Isolable Acyclic Phosphinosilylene Adduct to Donor-Stabilized Si=E Compounds (E=O, S, Se).

    PubMed

    Hansen, Kerstin; Szilvási, Tibor; Blom, Burgert; Irran, Elisabeth; Driess, Matthias

    2015-12-21

    Reaction of the arylchlorosilylene-NHC adduct ArSi(NHC)Cl [Ar=2,6-Trip2C6H3; NHC=(MeC)2(NMe)2C:] 1 with one molar equiv of lithium diphenylphosphanide affords the first stable NHC-stabilized acyclic phosphinosilylene adduct 2 (ArSi(NHC)PPh2), which could be structurally characterized. Compound 2, when reacted with one molar equiv selenium and sulfur, affords the silanechalcogenones 4 a and 4 b (ArSi(NHC)(=E)PPh2, 4 a: E=Se, 4 b: E=S), respectively. Conversion of 2 with an excess of Se and S, through additional insertion of one chalcogen atom into the Si=P bond, leads to 3 a and 3 b (ArSi(NHC)(=E)-E-P(=E)Ph2, 3 a: E=Se, 3 b: E=S), respectively. Additionally, the exposure of 2 to N2O or CO2 yielded the isolable NHC-stabilized silanone 4 c, Ar(NHC)(Ph2P)Si=O. PMID:26592863

  20. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A. A.; Linert, Wolfgang

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H2L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H2L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO2(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H2L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N2S2 donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis 1H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild

  1. Graphing the order of the sexes: constructing, recalling, interpreting, and putting the self in gender difference graphs.

    PubMed

    Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant

    2010-03-01

    Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.

  2. Experiments on parallel graph coloring and applications

    SciTech Connect

    Lewandowski, G.; Condon, A.

    1994-12-31

    The graph coloring problem is an NP-Complete problem with a wide array of applications, such as course scheduling, exam scheduling, register allocation, and parallelizing solutions for sparse systems of linear equations. Much theoretical effort has been put into designing heuristics that perform well on randomly generated graphs. The best sequential heuristics require large amounts of time and tuning of various parameters in the heuristics. We have used parallelism to combine exhaustive search with successful heuristic strategies to create a new heuristic, Hybrid, which does well on a wide variety of graphs, without any tuning of parameters. We have also gathered real application data and tested several heuristics on this data. Our study of real data points out some flaws in studying only random graphs and also suggests interesting new problems for study.

  3. Graph500 in OpenSHMEM

    SciTech Connect

    D'Azevedo, Ed F; Imam, Neena

    2015-01-01

    This document describes the effort to implement the Graph 500 benchmark using OpenSHMEM based on the MPI-2 one-side version. The Graph 500 benchmark performs a breadth-first search in parallel on a large randomly generated undirected graph and can be implemented using basic MPI-1 and MPI-2 one-sided communication. Graph 500 requires atomic bit-wise operations on unsigned long integers but neither atomic bit-wise operations nor OpenSHMEM for unsigned long are available in OpenSHEM. Such needed bit-wise atomic operations and support for unsigned long are implemented using atomic condition swap (CSWAP) on signed long integers. Preliminary results on comparing the OpenSHMEM and MPI-2 one-sided implementations on a Silicon Graphics Incorporated (SGI) cluster and the Cray XK7 are presented.

  4. An Investigation of the Coauthor Graph.

    ERIC Educational Resources Information Center

    Logan, Elisabeth L.; Shaw, W. M., Jr.

    1987-01-01

    The role of the coauthor relationship in the structure of informal communications networks within disciplines is explored, and the validity of coauthor graphs used to map these relationships is tested for both small and large databases. (CLB)

  5. The signed permutation group on Feynman graphs

    NASA Astrophysics Data System (ADS)

    Purkart, Julian

    2016-08-01

    The Feynman rules assign to every graph an integral which can be written as a function of a scaling parameter L. Assuming L for the process under consideration is very small, so that contributions to the renormalization group are small, we can expand the integral and only consider the lowest orders in the scaling. The aim of this article is to determine specific combinations of graphs in a scalar quantum field theory that lead to a remarkable simplification of the first non-trivial term in the perturbation series. It will be seen that the result is independent of the renormalization scheme and the scattering angles. To achieve that goal we will utilize the parametric representation of scalar Feynman integrals as well as the Hopf algebraic structure of the Feynman graphs under consideration. Moreover, we will present a formula which reduces the effort of determining the first-order term in the perturbation series for the specific combination of graphs to a minimum.

  6. Bipartite graph partitioning and data clustering

    SciTech Connect

    Zha, Hongyuan; He, Xiaofeng; Ding, Chris; Gu, Ming; Simon, Horst D.

    2001-05-07

    Many data types arising from data mining applications can be modeled as bipartite graphs, examples include terms and documents in a text corpus, customers and purchasing items in market basket analysis and reviewers and movies in a movie recommender system. In this paper, the authors propose a new data clustering method based on partitioning the underlying biopartite graph. The partition is constructed by minimizing a normalized sum of edge weights between unmatched pairs of vertices of the bipartite graph. They show that an approximate solution to the minimization problem can be obtained by computing a partial singular value decomposition (SVD) of the associated edge weight matrix of the bipartite graph. They point out the connection of their clustering algorithm to correspondence analysis used in multivariate analysis. They also briefly discuss the issue of assigning data objects to multiple clusters. In the experimental results, they apply their clustering algorithm to the problem of document clustering to illustrate its effectiveness and efficiency.

  7. Fault-tolerant dynamic task graph scheduling

    SciTech Connect

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  8. Teaching Waves with a Graphing Calculator.

    ERIC Educational Resources Information Center

    Raggett, Matthew

    2000-01-01

    Stresses the value of graphing and computer algebra systems calculators when teaching about waves. Discusses how to input data into these calculators. Highlights the Texas Instruments' (TI) Web site at http://www.ti.com. (YDS)

  9. Continuous Time Group Discovery in Dynamic Graphs

    SciTech Connect

    Miller, K; Eliassi-Rad, T

    2010-11-04

    With the rise in availability and importance of graphs and networks, it has become increasingly important to have good models to describe their behavior. While much work has focused on modeling static graphs, we focus on group discovery in dynamic graphs. We adapt a dynamic extension of Latent Dirichlet Allocation to this task and demonstrate good performance on two datasets. Modeling relational data has become increasingly important in recent years. Much work has focused on static graphs - that is fixed graphs at a single point in time. Here we focus on the problem of modeling dynamic (i.e. time-evolving) graphs. We propose a scalable Bayesian approach for community discovery in dynamic graphs. Our approach is based on extensions of Latent Dirichlet Allocation (LDA). LDA is a latent variable model for topic modeling in text corpora. It was extended to deal with topic changes in discrete time and later in continuous time. These models were referred to as the discrete Dynamic Topic Model (dDTM) and the continuous Dynamic Topic Model (cDTM), respectively. When adapting these models to graphs, we take our inspiration from LDA-G and SSN-LDA, applications of LDA to static graphs that have been shown to effectively factor out community structure to explain link patterns in graphs. In this paper, we demonstrate how to adapt and apply the cDTM to the task of finding communities in dynamic networks. We use link prediction to measure the quality of the discovered community structure and apply it to two different relational datasets - DBLP author-keyword and CAIDA autonomous systems relationships. We also discuss a parallel implementation of this approach using Hadoop. In Section 2, we review LDA and LDA-G. In Section 3, we review the cDTM and introduce cDTMG, its adaptation to modeling dynamic graphs. We discuss inference for the cDTM-G and details of our parallel implementation in Section 4 and present its performance on two datasets in Section 5 before concluding in

  10. Pre-Service Elementary Teachers' Understandings of Graphs

    ERIC Educational Resources Information Center

    Alacaci, Cengiz; Lewis, Scott; O'Brien, George E.; Jiang, Zhonghong

    2011-01-01

    Choosing graphs to display quantitative information is a component of "graph sense". An important aspect of pre-service elementary teachers' content knowledge; ability to choose appropriate graphs in applied contexts is investigated in this study. They were given three scenarios followed by four graphs representing the same quantitative data. They…

  11. Accelerating semantic graph databases on commodity clusters

    SciTech Connect

    Morari, Alessandro; Castellana, Vito G.; Haglin, David J.; Feo, John T.; Weaver, Jesse R.; Tumeo, Antonino; Villa, Oreste

    2013-10-06

    We are developing a full software system for accelerating semantic graph databases on commodity cluster that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to C++ compiler, a library of parallel graph methods and a custom multithreaded runtime layer, which provides a Partitioned Global Address Space (PGAS) programming model with fork/join parallelism and automatic load balancing over a commodity clusters. We present preliminary results for the compiler and for the runtime.

  12. On the Kirchhoff Index of Graphs

    NASA Astrophysics Data System (ADS)

    Das, Kinkar C.

    2013-09-01

    Let G be a connected graph of order n with Laplacian eigenvalues μ1 ≥ μ2 ≥ ... ≥ μn-1 > mn = 0. The Kirchhoff index of G is defined as [xxx] In this paper. we give lower and upper bounds on Kf of graphs in terms on n, number of edges, maximum degree, and number of spanning trees. Moreover, we present lower and upper bounds on the Nordhaus-Gaddum-type result for the Kirchhoff index.

  13. A software tool for dataflow graph scheduling

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1994-01-01

    A graph-theoretic design process and software tool is presented for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described using a dataflow graph and are intended to be executed repetitively on multiple processors. The dataflow paradigm is very useful in exposing the parallelism inherent in algorithms. It provides a graphical and mathematical model which describes a partial ordering of algorithm tasks based on data precedence.

  14. Program for Generating Graphs and Charts

    NASA Technical Reports Server (NTRS)

    Ackerson, C. T.

    1986-01-01

    Office Automation Pilot (OAP) Graphics Database system offers IBM personal computer user assistance in producing wide variety of graphs and charts and convenient data-base system, called chart base, for creating and maintaining data associated with graphs and charts. Thirteen different graphics packages available. Access graphics capabilities obtained in similar manner. User chooses creation, revision, or chartbase-maintenance options from initial menu; Enters or modifies data displayed on graphic chart. OAP graphics data-base system written in Microsoft PASCAL.

  15. A Fermi golden rule for quantum graphs

    NASA Astrophysics Data System (ADS)

    Lee, Minjae; Zworski, Maciej

    2016-09-01

    We present a Fermi golden rule giving rates of decay of states obtained by perturbing embedded eigenvalues of a quantum graph. To illustrate the procedure in a notationally simpler setting, we first describe a Fermi golden rule for boundary value problems on surfaces with constant curvature cusps. We also provide a resonance existence result which is uniform on compact sets of energies and metric graphs. The results are illustrated by numerical experiments.

  16. Graph representation of protein free energy landscape

    SciTech Connect

    Li, Minghai; Duan, Mojie; Fan, Jue; Huo, Shuanghong; Han, Li

    2013-11-14

    The thermodynamics and kinetics of protein folding and protein conformational changes are governed by the underlying free energy landscape. However, the multidimensional nature of the free energy landscape makes it difficult to describe. We propose to use a weighted-graph approach to depict the free energy landscape with the nodes on the graph representing the conformational states and the edge weights reflecting the free energy barriers between the states. Our graph is constructed from a molecular dynamics trajectory and does not involve projecting the multi-dimensional free energy landscape onto a low-dimensional space defined by a few order parameters. The calculation of free energy barriers was based on transition-path theory using the MSMBuilder2 package. We compare our graph with the widely used transition disconnectivity graph (TRDG) which is constructed from the same trajectory and show that our approach gives more accurate description of the free energy landscape than the TRDG approach even though the latter can be organized into a simple tree representation. The weighted-graph is a general approach and can be used on any complex system.

  17. Graph representation of protein free energy landscape.

    PubMed

    Li, Minghai; Duan, Mojie; Fan, Jue; Han, Li; Huo, Shuanghong

    2013-11-14

    The thermodynamics and kinetics of protein folding and protein conformational changes are governed by the underlying free energy landscape. However, the multidimensional nature of the free energy landscape makes it difficult to describe. We propose to use a weighted-graph approach to depict the free energy landscape with the nodes on the graph representing the conformational states and the edge weights reflecting the free energy barriers between the states. Our graph is constructed from a molecular dynamics trajectory and does not involve projecting the multi-dimensional free energy landscape onto a low-dimensional space defined by a few order parameters. The calculation of free energy barriers was based on transition-path theory using the MSMBuilder2 package. We compare our graph with the widely used transition disconnectivity graph (TRDG) which is constructed from the same trajectory and show that our approach gives more accurate description of the free energy landscape than the TRDG approach even though the latter can be organized into a simple tree representation. The weighted-graph is a general approach and can be used on any complex system.

  18. Student reasoning about graphs in different contexts

    NASA Astrophysics Data System (ADS)

    Ivanjek, Lana; Susac, Ana; Planinic, Maja; Andrasevic, Aneta; Milin-Sipus, Zeljka

    2016-06-01

    This study investigates university students' graph interpretation strategies and difficulties in mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel (isomorphic) mathematics, physics, and other context questions about graphs, which were developed by us, were administered to 385 first-year students at the Faculty of Science, University of Zagreb. Students were asked to provide explanations and/or mathematical procedures with their answers. Students' main strategies and difficulties identified through the analysis of those explanations and procedures are described. Student strategies of graph interpretation were found to be largely context dependent and domain specific. A small fraction of students have used the same strategy in all three domains (mathematics, physics, and other contexts) on most sets of parallel questions. Some students have shown indications of transfer of knowledge in the sense that they used techniques and strategies developed in physics for solving (or attempting to solve) other context problems. In physics, the preferred strategy was the use of formulas, which sometimes seemed to block the use of other, more productive strategies which students displayed in other domains. Students' answers indicated the presence of slope-height confusion and interval-point confusion in all three domains. Students generally better interpreted graph slope than the area under a graph, although the concept of slope still seemed to be quite vague for many. The interpretation of the concept of area under a graph needs more attention in both physics and mathematics teaching.

  19. On Ramsey (P3, P6)-minimal graphs

    NASA Astrophysics Data System (ADS)

    Rahmadani, Desi; Baskoro, Edy Tri; Assiyatun, Hilda

    2016-02-01

    Finding all Ramsey (G, H)-minimal graphs for a certain pair of graphs G and H is an interesting and difficult problem. Even though, it is just for small graphs G and H. In this paper, we determine some Ramsey (P3, P6)-minimal graphs of small order. We also characterize all such Ramsey minimal graphs of order 6 by using their degree sequences. We prove that Ramsey (P3, P6)-minimal graphs have diameter at least two. We construct an infinite class of trees [6] which provides Ramsey (P3, P6)-minimal graphs.

  20. Bipartite separability and nonlocal quantum operations on graphs

    NASA Astrophysics Data System (ADS)

    Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.

    2016-07-01

    In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.

  1. Acyclic Cucurbit[n]uril-Type Molecular Containers: Influence of Linker Length on Their Function as Solubilizing Agents.

    PubMed

    Sigwalt, David; Moncelet, Damien; Falcinelli, Shane; Mandadapu, Vijaybabu; Zavalij, Peter Y; Day, Anthony; Briken, Volker; Isaacs, Lyle

    2016-05-01

    Two acyclic cucurbit[n]uril (CB[n])-type molecular containers that differ in the length of the (CH2 )n linker (M2C2: n=2, M2C4: n=4) between their aromatic sidewalls and sulfonate solubilizing groups were prepared and studied. The inherent solubilities of M2C2 (68 mm) and M2C4 (196 mm) are higher than the analogue with a (CH2 )3 linker (M2, 14 mm) studied previously. (1) H NMR dilution experiments show that M2C2 and M2C4 do not self-associate in water, which enables their use as solubilizing excipients. We used phase solubility diagrams (PSDs) to compare the solubilizing capacities of M2, M2C2, M2C4, hydroxypropyl-β-cyclodextrin (HP-β-CD), and sulfobutylether-β-cyclodextrin (SBE-β-CD) toward 15 insoluble drugs. We found that M2C2 and M2C4-as gauged by the slope of their PSDs-are less potent solubilizing agents than M2. However, the higher inherent solubility of M2C2 allows higher concentrations of drug to be formulated using M2C2 than with M2 in several cases. The solubilizing ability of M2C2 and SBE-β-CD were similar in many cases, with Krel values averaging 23 and 12, respectively, relative to HP-β-CD. In vitro cytotoxicity and in vivo maximum tolerated dose studies document the biocompatibility of M2C2. PMID:26990780

  2. Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with β-cyclodextrin by affinity capillary electrophoresis.

    PubMed

    Šolínová, Veronika; Mikysková, Hana; Kaiser, Martin Maxmilián; Janeba, Zlatko; Holý, Antonín; Kašička, Václav

    2016-01-01

    Affinity capillary electrophoresis (ACE) has been applied to estimation of apparent binding constant of complexes of (R,S)-enantiomers of selected acyclic nucleoside phosphonates (ANPs) with chiral selector β-cyclodextrin (βCD) in aqueous alkaline medium. The noncovalent interactions of five pairs of (R,S)-enantiomers of ANPs-based antiviral drugs and their derivatives with βCD were investigated in the background electrolyte (BGE) composed of 35 or 50 mM sodium tetraborate, pH 10.0, and containing variable concentration (0-25 mM) of βCD. The apparent binding constants of the complexes of (R,S)-enantiomers of ANPs with βCD were estimated from the dependence of effective electrophoretic mobilities of (R,S)-enantiomers of ANPs (measured simultaneously by ACE at constant reference temperature 25°C inside the capillary) on the concentration of βCD in the BGE using different nonlinear and linear calculation methodologies. Nonlinear regression analysis provided more precise and accurate values of the binding constants and a higher correlation coefficient as compared to the regression analysis of the three linearized plots of the effective mobility dependence on βCD concentration in the BGE. The complexes of (R,S)-enantiomers of ANPs with βCD have been found to be relatively weak - their apparent binding constants determined by the nonlinear regression analysis were in the range 13.3-46.4 L/mol whereas the values from the linearized plots spanned the interval 12.3-55.2 L/mol. PMID:26426398

  3. New acyclic bis phenylpropanoid and neolignans, from Myristica fragrans Houtt., exhibiting PARP-1 and NF-κB inhibitory effects.

    PubMed

    Muñoz Acuña, Ulyana; Carcache, Peter J Blanco; Matthew, Susan; Carcache de Blanco, Esperanza J

    2016-07-01

    The bioassay-guided fractionation of the aril of Myristica fragrans (mace spice) yielded five phenolic compounds, one new acyclic bis phenylpropanoid (1) and four previously known phenolic compounds: compounds (1) (S) 1-(3,4,5-trimethoxyphenyl)-2-(3-methoxy-5-(prop-1-yl) phenyl)-propan-1-ol, (2) benzenemethanol; α-[1-[2,6-dimethoxy-4-(2-propen-1-yl)phenoxy]ethyl]-3,4-dimethoxy-1-acetate, (3) odoratisol A, phenol, 4-[(2S,3S)-2,3-dihydro-7-methoxy-3-methyl-5-(1E)-1-propenyl-2-benzofuranyl]-2,6-dimethoxy, (4) 1,3-benzodioxate-5-methanol,α-[1-[2,6-dimethoxy-4-(2-propenyl)phenoxy]ethyl]-acetate, (5) licarin C; benzofuran,2,3-dihydro-7-methoxy-3-methyl-5-(1E)-1-yl-2-(3,4,5-trimethoxyphenyl). An NMR tube Mosher ester reaction was used in an approach to characterize and determine the assignment of the absolute configuration of the new isolated chiral alcohol (1). The PARP-1 inhibitory activity was evaluated for compound (1) (IC50=3.04μM), compound (2) (IC50=0.001μM), compound (4) (IC50=22.07μM) and compound (5) (IC50=3.11μM). Furthermore, the isolated secondary metabolites were tested for NF-κB and K-Ras inhibitory activities. When tested in the p65 assay, compounds (2) and (4) displayed potent NF-κB inhibition (IC50=1.5 nM and 3.4nM, respectively).

  4. Acyclic Identification of Aptamers for Human alpha-Thrombin Using Over-Represented Libraries and Deep Sequencing

    PubMed Central

    Kupakuwana, Gillian V.; Crill, James E.; McPike, Mark P.; Borer, Philip N.

    2011-01-01

    Background Aptamers are oligonucleotides that bind proteins and other targets with high affinity and selectivity. Twenty years ago elements of natural selection were adapted to in vitro selection in order to distinguish aptamers among randomized sequence libraries. The primary bottleneck in traditional aptamer discovery is multiple cycles of in vitro evolution. Methodology/Principal Findings We show that over-representation of sequences in aptamer libraries and deep sequencing enables acyclic identification of aptamers. We demonstrated this by isolating a known family of aptamers for human α-thrombin. Aptamers were found within a library containing an average of 56,000 copies of each possible randomized 15mer segment. The high affinity sequences were counted many times above the background in 2–6 million reads. Clustering analysis of sequences with more than 10 counts distinguished two sequence motifs with candidates at high abundance. Motif I contained the previously observed consensus 15mer, Thb1 (46,000 counts), and related variants with mostly G/T substitutions; secondary analysis showed that affinity for thrombin correlated with abundance (Kd = 12 nM for Thb1). The signal-to-noise ratio for this experiment was roughly 10,000∶1 for Thb1. Motif II was unrelated to Thb1 with the leading candidate (29,000 counts) being a novel aptamer against hexose sugars in the storage and elution buffers for Concanavilin A (Kd = 0.5 µM for α-methyl-mannoside); ConA was used to immobilize α-thrombin. Conclusions/Significance Over-representation together with deep sequencing can dramatically shorten the discovery process, distinguish aptamers having a wide range of affinity for the target, allow an exhaustive search of the sequence space within a simplified library, reduce the quantity of the target required, eliminate cycling artifacts, and should allow multiplexing of sequencing experiments and targets. PMID:21625587

  5. Synergistic growth inhibition of human hepatocellular carcinoma cells by acyclic retinoid and GW4064, a farnesoid X receptor ligand.

    PubMed

    Ohno, Tomohiko; Shirakami, Yohei; Shimizu, Masahito; Kubota, Masaya; Sakai, Hiroyasu; Yasuda, Yoichi; Kochi, Takahiro; Tsurumi, Hisashi; Moriwaki, Hisataka

    2012-10-28

    Abnormalities in the expression and function of retinoid X receptor (RXR), a master regulator of the nuclear receptor superfamily, are associated with the development of hepatocellular carcinoma (HCC). Dysfunction of farnesoid X receptor (FXR), one of the nuclear receptors that forms a heterodimer with RXR, also plays a role in liver carcinogenesis. In the present study, we examined the effects of acyclic retinoid (ACR), a synthetic retinoid targeting RXRα, plus GW4064, a ligand for FXR, on the growth of human HCC cells. We found that ACR and GW4064 preferentially inhibited the growth of HLE, HLF, and Huh7 human HCC cells in comparison with Hc normal hepatocytes. The combination of 1μM ACR plus 1μM GW4064 synergistically inhibited the growth of HLE cells by inducing apoptosis. The combined treatment with these agents acted cooperatively to induce cell cycle arrest in the G(0)/G(1) phase and inhibit the phosphorylation of RXRα, which is regarded as a critical factor for liver carcinogenesis, through inhibition of ERK and Stat3 phosphorylation. This combination also increased the expression levels of p21(CIP1) and SHP mRNA, while decreasing the levels of c-myc and cyclin D1 mRNA in HLE cells. In addition, a reporter assay indicated that the FXRE promoter activity was significantly increased by treatment with ACR plus GW4064. Our results suggest that ACR and GW4064 cooperatively inhibit RXRα phosphorylation, modulate the expression of FXR-regulated genes, thus resulting in the induction of apoptosis and the inhibition of growth in HCC cells. This combination might therefore be effective for the chemoprevention and chemotherapy of HCC.

  6. New acyclic bis phenylpropanoid and neolignans, from Myristica fragrans Houtt., exhibiting PARP-1 and NF-κB inhibitory effects.

    PubMed

    Muñoz Acuña, Ulyana; Carcache, Peter J Blanco; Matthew, Susan; Carcache de Blanco, Esperanza J

    2016-07-01

    The bioassay-guided fractionation of the aril of Myristica fragrans (mace spice) yielded five phenolic compounds, one new acyclic bis phenylpropanoid (1) and four previously known phenolic compounds: compounds (1) (S) 1-(3,4,5-trimethoxyphenyl)-2-(3-methoxy-5-(prop-1-yl) phenyl)-propan-1-ol, (2) benzenemethanol; α-[1-[2,6-dimethoxy-4-(2-propen-1-yl)phenoxy]ethyl]-3,4-dimethoxy-1-acetate, (3) odoratisol A, phenol, 4-[(2S,3S)-2,3-dihydro-7-methoxy-3-methyl-5-(1E)-1-propenyl-2-benzofuranyl]-2,6-dimethoxy, (4) 1,3-benzodioxate-5-methanol,α-[1-[2,6-dimethoxy-4-(2-propenyl)phenoxy]ethyl]-acetate, (5) licarin C; benzofuran,2,3-dihydro-7-methoxy-3-methyl-5-(1E)-1-yl-2-(3,4,5-trimethoxyphenyl). An NMR tube Mosher ester reaction was used in an approach to characterize and determine the assignment of the absolute configuration of the new isolated chiral alcohol (1). The PARP-1 inhibitory activity was evaluated for compound (1) (IC50=3.04μM), compound (2) (IC50=0.001μM), compound (4) (IC50=22.07μM) and compound (5) (IC50=3.11μM). Furthermore, the isolated secondary metabolites were tested for NF-κB and K-Ras inhibitory activities. When tested in the p65 assay, compounds (2) and (4) displayed potent NF-κB inhibition (IC50=1.5 nM and 3.4nM, respectively). PMID:26920294

  7. Preserving Differential Privacy in Degree-Correlation based Graph Generation

    PubMed Central

    Wang, Yue; Wu, Xintao

    2014-01-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987

  8. Preserving Differential Privacy in Degree-Correlation based Graph Generation.

    PubMed

    Wang, Yue; Wu, Xintao

    2013-08-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model.

  9. A graph theoretic approach to scene matching

    NASA Technical Reports Server (NTRS)

    Ranganath, Heggere S.; Chipman, Laure J.

    1991-01-01

    The ability to match two scenes is a fundamental requirement in a variety of computer vision tasks. A graph theoretic approach to inexact scene matching is presented which is useful in dealing with problems due to imperfect image segmentation. A scene is described by a set of graphs, with nodes representing objects and arcs representing relationships between objects. Each node has a set of values representing the relations between pairs of objects, such as angle, adjacency, or distance. With this method of scene representation, the task in scene matching is to match two sets of graphs. Because of segmentation errors, variations in camera angle, illumination, and other conditions, an exact match between the sets of observed and stored graphs is usually not possible. In the developed approach, the problem is represented as an association graph, in which each node represents a possible mapping of an observed region to a stored object, and each arc represents the compatibility of two mappings. Nodes and arcs have weights indicating the merit or a region-object mapping and the degree of compatibility between two mappings. A match between the two graphs corresponds to a clique, or fully connected subgraph, in the association graph. The task is to find the clique that represents the best match. Fuzzy relaxation is used to update the node weights using the contextual information contained in the arcs and neighboring nodes. This simplifies the evaluation of cliques. A method of handling oversegmentation and undersegmentation problems is also presented. The approach is tested with a set of realistic images which exhibit many types of sementation errors.

  10. Unraveling Protein Networks with Power Graph Analysis

    PubMed Central

    Royer, Loïc; Reimann, Matthias; Andreopoulos, Bill; Schroeder, Michael

    2008-01-01

    Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks. We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average) of the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution, indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein interactions, regulatory networks, or homology networks. PMID:18617988

  11. Labeled Graph Kernel for Behavior Analysis.

    PubMed

    Zhao, Ruiqi; Martinez, Aleix M

    2016-08-01

    Automatic behavior analysis from video is a major topic in many areas of research, including computer vision, multimedia, robotics, biology, cognitive science, social psychology, psychiatry, and linguistics. Two major problems are of interest when analyzing behavior. First, we wish to automatically categorize observed behaviors into a discrete set of classes (i.e., classification). For example, to determine word production from video sequences in sign language. Second, we wish to understand the relevance of each behavioral feature in achieving this classification (i.e., decoding). For instance, to know which behavior variables are used to discriminate between the words apple and onion in American Sign Language (ASL). The present paper proposes to model behavior using a labeled graph, where the nodes define behavioral features and the edges are labels specifying their order (e.g., before, overlaps, start). In this approach, classification reduces to a simple labeled graph matching. Unfortunately, the complexity of labeled graph matching grows exponentially with the number of categories we wish to represent. Here, we derive a graph kernel to quickly and accurately compute this graph similarity. This approach is very general and can be plugged into any kernel-based classifier. Specifically, we derive a Labeled Graph Support Vector Machine (LGSVM) and a Labeled Graph Logistic Regressor (LGLR) that can be readily employed to discriminate between many actions (e.g., sign language concepts). The derived approach can be readily used for decoding too, yielding invaluable information for the understanding of a problem (e.g., to know how to teach a sign language). The derived algorithms allow us to achieve higher accuracy results than those of state-of-the-art algorithms in a fraction of the time. We show experimental results on a variety of problems and datasets, including multimodal data.

  12. Supporting Fourth Graders' Ability to Interpret Graphs through Real-Time Graphing Technology: A Preliminary Study

    ERIC Educational Resources Information Center

    Deniz, Hasan; Dulger, Mehmet F.

    2012-01-01

    This study examined to what extent inquiry-based instruction supported with real-time graphing technology improves fourth grader's ability to interpret graphs as representations of physical science concepts such as motion and temperature. This study also examined whether there is any difference between inquiry-based instruction supported with…

  13. Reflections on High School Students' Graphing Skills and Their Conceptual Understanding of Drawing Chemistry Graphs

    ERIC Educational Resources Information Center

    Gültepe, Nejla

    2016-01-01

    Graphing subjects in chemistry has been used to provide alternatives to verbal and algorithmic descriptions of a subject by handing students another way of improving their manipulation of concepts. Teachers should therefore know the level of students' graphing skills. Studies have identified that students have difficulty making connections with…

  14. Interpreting a Graph and Constructing Its Derivative Graph: Stability and Change in Students' Conceptions

    ERIC Educational Resources Information Center

    Ubuz, Behiye

    2007-01-01

    This present study investigated engineering students' conceptions and misconceptions related to derivative, particularly interpreting the graph of a function and constructing its derivative graph. Participants were 147 first year engineering students from four universities enrolled in first year undergraduate calculus courses with or without the…

  15. Linear Time Vertex Partitioning on Massive Graphs

    PubMed Central

    Mell, Peter; Harang, Richard; Gueye, Assane

    2016-01-01

    The problem of optimally removing a set of vertices from a graph to minimize the size of the largest resultant component is known to be NP-complete. Prior work has provided near optimal heuristics with a high time complexity that function on up to hundreds of nodes and less optimal but faster techniques that function on up to thousands of nodes. In this work, we analyze how to perform vertex partitioning on massive graphs of tens of millions of nodes. We use a previously known and very simple heuristic technique: iteratively removing the node of largest degree and all of its edges. This approach has an apparent quadratic complexity since, upon removal of a node and adjoining set of edges, the node degree calculations must be updated prior to choosing the next node. However, we describe a linear time complexity solution using an array whose indices map to node degree and whose values are hash tables indicating the presence or absence of a node at that degree value. This approach also has a linear growth with respect to memory usage which is surprising since we lowered the time complexity from quadratic to linear. We empirically demonstrate linear scalability and linear memory usage on random graphs of up to 15000 nodes. We then demonstrate tractability on massive graphs through execution on a graph with 34 million nodes representing Internet wide router connectivity. PMID:27336059

  16. DT-MRI segmentation using graph cuts

    NASA Astrophysics Data System (ADS)

    Weldeselassie, Yonas T.; Hamarneh, Ghassan

    2007-03-01

    An important problem in medical image analysis is the segmentation of anatomical regions of interest. Once regions of interest are segmented, one can extract shape, appearance, and structural features that can be analyzed for disease diagnosis or treatment evaluation. Diffusion tensor magnetic resonance imaging (DT-MRI) is a relatively new medical imaging modality that captures unique water diffusion properties and fiber orientation information of the imaged tissues. In this paper, we extend the interactive multidimensional graph cuts segmentation technique to operate on DT-MRI data by utilizing latest advances in tensor calculus and diffusion tensor dissimilarity metrics. The user interactively selects certain tensors as object ("obj") or background ("bkg") to provide hard constraints for the segmentation. Additional soft constraints incorporate information about both regional tissue diffusion as well as boundaries between tissues of different diffusion properties. Graph cuts are used to find globally optimal segmentation of the underlying 3D DT-MR image among all segmentations satisfying the constraints. We develop a graph structure from the underlying DT-MR image with the tensor voxels corresponding to the graph vertices and with graph edge weights computed using either Log-Euclidean or the J-divergence tensor dissimilarity metric. The topology of our segmentation is unrestricted and both obj and bkg segments may consist of several isolated parts. We test our method on synthetic DT data and apply it to real 2D and 3D MRI, providing segmentations of the corpus callosum in the brain and the ventricles of the heart.

  17. Towards Scalable Graph Computation on Mobile Devices

    PubMed Central

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2015-01-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564

  18. Deformed graph laplacian for semisupervised learning.

    PubMed

    Gong, Chen; Liu, Tongliang; Tao, Dacheng; Fu, Keren; Tu, Enmei; Yang, Jie

    2015-10-01

    Graph Laplacian has been widely exploited in traditional graph-based semisupervised learning (SSL) algorithms to regulate the labels of examples that vary smoothly on the graph. Although it achieves a promising performance in both transductive and inductive learning, it is not effective for handling ambiguous examples (shown in Fig. 1). This paper introduces deformed graph Laplacian (DGL) and presents label prediction via DGL (LPDGL) for SSL. The local smoothness term used in LPDGL, which regularizes examples and their neighbors locally, is able to improve classification accuracy by properly dealing with ambiguous examples. Theoretical studies reveal that LPDGL obtains the globally optimal decision function, and the free parameters are easy to tune. The generalization bound is derived based on the robustness analysis. Experiments on a variety of real-world data sets demonstrate that LPDGL achieves top-level performance on both transductive and inductive settings by comparing it with popular SSL algorithms, such as harmonic functions, AnchorGraph regularization, linear neighborhood propagation, Laplacian regularized least square, and Laplacian support vector machine.

  19. Visualizing intelligence information using correlation graphs

    NASA Astrophysics Data System (ADS)

    Verma, Vivek; Gagvani, Nikhil

    2005-03-01

    This paper presents a new information model to help intelligence analysts in organizing, querying, and visualizing the information present in large volumes of unstructured data sources such as text reports, multi-media, and human discourse. Our primary goal is to create a system that would combine the human pattern recognition abilities of intelligence analysis with the storage and processing capabilities of computers. Our system models the collective mental map of intelligence analysts in the form of the Correlation Graph, a modified graph data structure with objects and events as nodes and subjective probabilistic correlations between them as edges. Objects are entities such as people, places, and things. Events are actions that involve the objects. A taxonomy is also associated with the model to enable intelligence domain specific querying of the data. Graph drawing techniques are used to visualize the information represented by the correlation graph. Through real world examples, we demonstrate that the resulting information model can be used for efficient representation, presentation, and querying to discover novel patterns in the intelligence data via graph visualization techniques.

  20. Exploiting graph properties of game trees

    SciTech Connect

    Plaat, A.; Pijls, W.; Bruin, A. de; Schaeffer, J.

    1996-12-31

    The state space of most adversary games is a directed graph. However, due to the success of simple recursive algorithms based on alpha-beta, theoreticians and practitioners have concentrated on the traversal of trees, giving the field the name {open_quotes}game-tree search,{close_quotes} This paper shows that the focus on trees has obscured some important properties of the underlying graphs. One of the hallmarks of the field of game-tree search has been the notion of the minimal tree, the smallest tree that has to be searched by any algorithm to find the minimax value. In fact, for most games it is a directed graph. As demonstrated in chess and checkers, we show that the minimal graph is significantly smaller than previously thought, proving that there is more room for improvement of current algorithms. We exploit the graph properties of the search space to reduce the size of trees built in practice by at least 25%. For over a decade, fixed-depth alpha-beta searching has been considered a closed subject, with research moving on to more application-dependent techniques. This work opens up new avenues of research for further application-independent improvements.

  1. Selective electrochemical discrimination between dopamine and phenethylamine-derived psychotropic drugs using electrodes modified with an acyclic receptor containing two terminal 3-alkoxy-5-nitroindazole rings.

    PubMed

    Doménech, Antonio; Navarro, Pilar; Arán, Vicente J; Muro, Beatriz; Montoya, Noemí; García-España, Enrique

    2010-06-01

    Electrochemical discrimination between dopamine and psychotropic drugs which have in common a skeletal structure of phenethylamine, can be obtained using acyclic receptors L(1) and L(2), containing two terminal 3-alkoxy-5-nitroindazole rings. Upon attachment to graphite electrodes, L(1) and L(2) exhibit a well-defined, essentially reversible solid state electrochemistry in contact with aqueous media, based on electrolyte-assisted reduction processes involving successive cation and anion insertion/binding. As a result, a distinctive, essentially Nernstian electrochemical response is obtained for phenethylammonium ions of methamphetamine (METH), p-methoxyamphetamine (PMA), amphetamine (AMPH), mescaline (MES), homoveratrylamine (HOM), phenethylamine (PEA) and dopamine (DA) in aqueous media.

  2. Synthesis and application of a dual chiral [2.2]paracyclophane-based N-heterocyclic carbene in enantioselective β-boration of acyclic enones.

    PubMed

    Wang, Lei; Chen, Zhen; Ma, Manyuan; Duan, Wenzeng; Song, Chun; Ma, Yudao

    2015-11-21

    An enantioselective conjugate addition of boron to α,β-unsaturated ketones catalysed by either a N-heterocyclic carbene or a copper-carbene complex generated in situ from a new chiral bicyclic triazolium based on [2.2]paracyclophane is presented. The dual chiral carbene-copper catalyst has significant advantages over its carbene counterpart as an organocatalyst in asymmetric β-boration of acyclic enones, giving a variety of chiral β-boryl ketones in good yields and enantioselectivities. This is a successful example of employing the same N-heterocyclic carbene in one catalytic reaction as both an organocatalyst and a ligand for transition metal catalysis. PMID:26347490

  3. A graph algebra for scalable visual analytics.

    PubMed

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data. PMID:24806630

  4. Directed transport in quantum star graphs

    NASA Astrophysics Data System (ADS)

    Yusupov, Jambul; Dolgushev, Maxim; Blumen, Alexander; Mülken, Oliver

    2016-04-01

    We study the quantum dynamics of Gaussian wave packets on star graphs whose arms feature each a periodic potential and an external time-dependent field. Assuming that the potentials and the field can be manipulated separately for each arm of the star, we show that it is possible to manipulate the direction of the motion of a Gaussian wave packet through the bifurcation point by a suitable choice of the parameters of the external fields. In doing so, one can achieve a transmission of the wave packet into the desired arm with nearly 70 % while also keeping the shape of the wave packet approximately intact. Since a star graph is the simplest element of many other complex graphs, the obtained results can be considered as the first step to wave packet manipulations on complex networks.

  5. Dynamic graph system for a semantic database

    SciTech Connect

    Mizell, David

    2015-01-27

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  6. Interactive Web Graphs with Fewer Restrictions

    NASA Technical Reports Server (NTRS)

    Fiedler, James

    2012-01-01

    There is growing popularity for interactive, statistical web graphs and programs to generate them. However, it seems that these programs tend to be somewhat restricted in which web browsers and statistical software are supported. For example, the software might use SVG (e.g., Protovis, gridSVG) or HTML canvas, both of which exclude most versions of Internet Explorer, or the software might be made specifically for R (gridSVG, CRanvas), thus excluding users of other stats software. There are more general tools (d3, Rapha lJS) which are compatible with most browsers, but using one of these to make statistical graphs requires more coding than is probably desired, and requires learning a new tool. This talk will present a method for making interactive web graphs, which, by design, attempts to support as many browsers and as many statistical programs as possible, while also aiming to be relatively easy to use and relatively easy to extend.

  7. Scale-invariant geometric random graphs.

    PubMed

    Xie, Zheng; Rogers, Tim

    2016-03-01

    We introduce and analyze a class of growing geometric random graphs that are invariant under rescaling of space and time. Directed connections between nodes are drawn according to influence zones that depend on node position in space and time, mimicking the heterogeneity and increased specialization found in growing networks. Through calculations and numerical simulations we explore the consequences of scale invariance for geometric random graphs generated this way. Our analysis reveals a dichotomy between scale-free and Poisson distributions of in- and out-degree, the existence of a random number of hub nodes, high clustering, and unusual percolation behavior. These properties are similar to those of empirically observed web graphs. PMID:27078369

  8. A graph algebra for scalable visual analytics.

    PubMed

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.

  9. Dynamic graph system for a semantic database

    DOEpatents

    Mizell, David

    2016-04-12

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  10. The uniqueness of DMAX-matrix graph invariants.

    PubMed

    Dehmer, Matthias; Shi, Yongtang

    2014-01-01

    In this paper, we examine the uniqueness (discrimination power) of a newly proposed graph invariant based on the matrix DMAX defined by Randić et al. In order to do so, we use exhaustively generated graphs instead of special graph classes such as trees only. Using these graph classes allow us to generalize the findings towards complex networks as they usually do not possess any structural constraints. We obtain that the uniqueness of this newly proposed graph invariant is approximately as low as the uniqueness of the Balaban J index on exhaustively generated (general) graphs. PMID:24392099

  11. Graph isomorphism and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Gaitan, Frank; Clark, Lane

    2014-02-01

    In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.

  12. The role of PIP2 and the IP3/DAG pathway in intracellular calcium release and cell survival during nanosecond electric pulse exposures

    NASA Astrophysics Data System (ADS)

    Steelman, Zachary A.; Tolstykh, Gleb P.; Estlack, Larry E.; Roth, Caleb C.; Ibey, Bennett L.

    2015-03-01

    Phosphatidylinositol4,5-biphosphate (PIP2) is a membrane phospholipid of particular importance in cell-signaling pathways. Hydrolysis of PIP2 releases inositol-1,4,5-triphosphate (IP3) from the membrane, activating IP3 receptors on the smooth endoplasmic reticulum (ER) and facilitating a release of intracellular calcium stores and activation of protein kinase C (PKC). Recent studies suggest that nanosecond pulsed electric fields (nsPEF) cause depletion of PIP2 in the cellular membrane, activating the IP3 signaling pathway. However, the exact mechanism(s) causing this observed depletion of PIP2 are unknown. Complicating the matter, nsPEF create nanopores in the plasma membrane, allowing calcium to enter the cell and thus causing an increase in intracellular calcium. While elevated intracellular calcium can cause activation of phospholipase C (PLC) (a known catalyst of PIP2 hydrolysis), PIP2 depletion has been shown to occur in the absence of both extracellular and intracellular calcium. These observations have led to the hypothesis that the high electric field itself may be playing a direct role in the hydrolysis of PIP2 from the plasma membrane. To support this hypothesis, we used edelfosine to block PLC and prevent activation of the IP3/DAG pathway in Chinese Hamster Ovarian (CHO) cells prior to applying nsPEF. Fluorescence microscopy was used to monitor intracellular calcium bursts during nsPEF, while MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) survivability assays were utilized to determine whether edelfosine improved cell survival during nsPEF exposure. This work is critical to refine the role of PIP2 in the cellular response to nsPEF, and also to determine the fundamental biological effects of high electric field exposures.

  13. InSAR analysis of the 2000 - 2002 earthquake sequence along the Sultan Dag front in the Isparta Angle (southern Turkey)

    NASA Astrophysics Data System (ADS)

    Manjunath, D. V.; Gomez, F. G.; Brooks, B. A.

    2009-12-01

    The Sultan Dag range of southern Turkey is a fault-block mountain range that has developed within or at the edge of the Isparta Angle - a region of the Anatolian plate situated near a tear in the subducting slab of the African plate. The mountain range is bounded on the northeast by the Sultandagi-Aksehir fault and the Aksehir-Afyon graben. A sequence of moderate earthquakes that occurred between 2000 and 2002 provides insight into the incremental growth of the mountain front through individual seismic events. The earthquake sequence consists of three moderate size events: a Mw 5.1 and a Mw 6.0 earthquake (December 15, 2000) and a Mw 6.5 earthquake (February 3, 2002). Surface deformations corresponding with the individual earthquakes were imaged using Interferometric Synthetic Aperture Radar (InSAR). The resulting displacement maps were used with elastic dislocation models to estimate faulting parameters associated with each earthquake (fault orientation and slip). These fault models were subsequently used to estimate static coulomb stress changes resulting from the earthquakes. The findings suggest that the two events of December 15, 2000, were not directly related to one another in terms of stress triggering. However, both events from 2000 appear to influence the extent of the 2002 earthquake. The larger event increased the stress on the segment ruptured in 2002, whereas the stress shadow from smaller event, which occurred on an antithetic fault, appears to have unloaded the stress at the termination of the 2002 rupture. Furthermore, the uplift and subsidence patterns associated with the earthquakes closely mimic overall geologic structure and general topography. Hence, these results permit exploring the extrapolation of coseismic displacements to understand the long-term growth of the mountain front.

  14. Key-Node-Separated Graph Clustering and Layouts for Human Relationship Graph Visualization.

    PubMed

    Itoh, Takayuki; Klein, Karsten

    2015-01-01

    Many graph-drawing methods apply node-clustering techniques based on the density of edges to find tightly connected subgraphs and then hierarchically visualize the clustered graphs. However, users may want to focus on important nodes and their connections to groups of other nodes for some applications. For this purpose, it is effective to separately visualize the key nodes detected based on adjacency and attributes of the nodes. This article presents a graph visualization technique for attribute-embedded graphs that applies a graph-clustering algorithm that accounts for the combination of connections and attributes. The graph clustering step divides the nodes according to the commonality of connected nodes and similarity of feature value vectors. It then calculates the distances between arbitrary pairs of clusters according to the number of connecting edges and the similarity of feature value vectors and finally places the clusters based on the distances. Consequently, the technique separates important nodes that have connections to multiple large clusters and improves the visibility of such nodes' connections. To test this technique, this article presents examples with human relationship graph datasets, including a coauthorship and Twitter communication network dataset.

  15. From cognitive maps to cognitive graphs.

    PubMed

    Chrastil, Elizabeth R; Warren, William H

    2014-01-01

    We investigate the structure of spatial knowledge that spontaneously develops during free exploration of a novel environment. We present evidence that this structure is similar to a labeled graph: a network of topological connections between places, labeled with local metric information. In contrast to route knowledge, we find that the most frequent routes and detours to target locations had not been traveled during learning. Contrary to purely topological knowledge, participants typically traveled the shortest metric distance to a target, rather than topologically equivalent but longer paths. The results are consistent with the proposal that people learn a labeled graph of their environment.

  16. PolyGraph: a Polymer Visualization system

    NASA Astrophysics Data System (ADS)

    Cutkosky, Ashok; Tarazi, Najeeb; Lieberman Aiden, Erez

    2012-02-01

    Rapid advances in computational hardware and parallelization have made complex simulations of large polymers increasingly ubiquitous. However, visualizing such simulations remains a challenge. Here we present PolyGraph, a Blender-powered visualization system for complex polymer simulations. As a specific example, we study molecular dynamics simulations of condensing polymers. We illustrate our initial simulation results, suggesting that formation of local beads is an initial step in the condensation process. (This finding is consistent with earlier conjectures about polymer condensation.) PolyGraph makes it possible to create precise and visually appealing clips of polymer simulations. *contributed equally

  17. From Cognitive Maps to Cognitive Graphs

    PubMed Central

    Chrastil, Elizabeth R.; Warren, William H.

    2014-01-01

    We investigate the structure of spatial knowledge that spontaneously develops during free exploration of a novel environment. We present evidence that this structure is similar to a labeled graph: a network of topological connections between places, labeled with local metric information. In contrast to route knowledge, we find that the most frequent routes and detours to target locations had not been traveled during learning. Contrary to purely topological knowledge, participants typically traveled the shortest metric distance to a target, rather than topologically equivalent but longer paths. The results are consistent with the proposal that people learn a labeled graph of their environment. PMID:25389769

  18. Percolation threshold on planar Euclidean Gabriel graphs

    NASA Astrophysics Data System (ADS)

    Norrenbrock, Christoph

    2016-04-01

    In the present article, numerical simulations have been performed to find the bond and site percolation thresholds on two-dimensional Gabriel graphs (GG) for Poisson point processes. GGs belong to the family of "proximity graphs" and are discussed, e.g., in context of the construction of backbones for wireless ad-hoc networks. Finite-size scaling analyses have been performed to find the critical points and critical exponents ν, β and γ. The critical exponents obtained this way verify that the associated universality class is that of standard 2D percolation.

  19. Quasiperiodic graphs at the onset of chaos.

    PubMed

    Luque, B; Cordero-Gracia, M; Gómez, M; Robledo, A

    2013-12-01

    We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers.

  20. Graphing techniques for materials laboratory using Excel

    NASA Technical Reports Server (NTRS)

    Kundu, Nikhil K.

    1994-01-01

    Engineering technology curricula stress hands on training and laboratory practices in most of the technical courses. Laboratory reports should include analytical as well as graphical evaluation of experimental data. Experience shows that many students neither have the mathematical background nor the expertise for graphing. This paper briefly describes the procedure and data obtained from a number of experiments such as spring rate, stress concentration, endurance limit, and column buckling for a variety of materials. Then with a brief introduction to Microsoft Excel the author explains the techniques used for linear regression and logarithmic graphing.

  1. Isomorphisms between Petri nets and dataflow graphs

    NASA Technical Reports Server (NTRS)

    Kavi, Krishna M.; Buckles, Billy P.; Bhat, U. Narayan

    1987-01-01

    Dataflow graphs are a generalized model of computation. Uninterpreted dataflow graphs with nondeterminism resolved via probabilities are shown to be isomorphic to a class of Petri nets known as free choice nets. Petri net analysis methods are readily available in the literature and this result makes those methods accessible to dataflow research. Nevertheless, combinatorial explosion can render Petri net analysis inoperative. Using a previously known technique for decomposing free choice nets into smaller components, it is demonstrated that, in principle, it is possible to determine aspects of the overall behavior from the particular behavior of components.

  2. Lattices of processes in graphs with inputs

    SciTech Connect

    Shakhbazyan, K.V.

    1995-09-01

    This article is a continuation of others work, presenting a detailed analysis of finite lattices of processes in graphs with input nodes. Lattices of processes in such graphs are studied by representing the lattices in the form of an algebra of pairs. We define the algebra of pairs somewhat generalizing the definition. Let K and D be bounded distributive lattices. A sublattice {delta} {contained_in} K x D is called an algebra of pairs if for all K {element_of} K we have (K, 1{sub D}) {element_of} {delta} and for all d {element_of} D we have (O{sub K}).

  3. A Similarity Search Using Molecular Topological Graphs

    PubMed Central

    Fukunishi, Yoshifumi; Nakamura, Haruki

    2009-01-01

    A molecular similarity measure has been developed using molecular topological graphs and atomic partial charges. Two kinds of topological graphs were used. One is the ordinary adjacency matrix and the other is a matrix which represents the minimum path length between two atoms of the molecule. The ordinary adjacency matrix is suitable to compare the local structures of molecules such as functional groups, and the other matrix is suitable to compare the global structures of molecules. The combination of these two matrices gave a similarity measure. This method was applied to in silico drug screening, and the results showed that it was effective as a similarity measure. PMID:20037730

  4. Single-qubit gates by graph scattering

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.; Blumer, Benjamin A.; Feder, David L.

    2012-02-01

    Continuous-time quantum walkers with tightly peaked momenta can simulate quantum computations by scattering off finite graphs. We enumerate all single-qubit gates that can be enacted by scattering off a single graph on up to n=9 vertices at certain momentum values, and provide numerical evidence that the number of such gates grows exponentially with n. The single-qubit rotations are about axes distributed roughly uniformly on the Bloch sphere, and rotations by both rational and irrational multiples of π are found.

  5. Genome alignment with graph data structures: a comparison

    PubMed Central

    2014-01-01

    Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884

  6. Ovarian acyclicity in zoo African elephants (Loxodonta africana) is associated with high body condition scores and elevated serum insulin and leptin.

    PubMed

    Morfeld, Kari A; Brown, Janine L

    2016-04-01

    The purpose of the present study was to determine whether excessive body fat and altered metabolic hormone concentrations in the circulation were associated with ovarian acyclicity in the world's largest land mammal, the African elephant. We compared body condition, glucose, insulin and leptin concentrations and the glucose-to-insulin ratio (G:I) between cycling (n=23; normal 14-16 week cycles based on serum progestagens for at least 2 years) and non-cycling (n=23; consistent baseline progestagen concentrations for at least 2 years) females. A validated body condition score (BCS) index (five-point scale; 1=thinnest, 5=fattest) was used to assess the degree of fatness of the study elephants. The mean BCS of non-cycling elephants was higher than that of their cycling counterparts. There were differences in concentrations of serum metabolic biomarkers, with non-cycling elephants in the BCS 5 category having higher leptin and insulin concentrations and a lower G:I ratio than cycling BCS 5 females. Using 'non-cycling' as the outcome variable in regression models, high BCS was a strong predictor of a non-cycling status. This study provides the first evidence that ovarian acyclicity in zoo African elephants is associated with body condition indicative of obesity, as well as elevated, perturbed biomarkers of metabolic status.

  7. Acyclic Cucurbit[n]uril-type Molecular Containers: Influence of Aromatic Walls on their Function as Solubilizing Excipients for Insoluble Drugs

    PubMed Central

    2015-01-01

    We studied the influence of the aromatic sidewalls on the ability of acyclic CB[n]-type molecular containers (1a–1e) to act as solubilizing agents for 19 insoluble drugs including the developmental anticancer agent PBS-1086. All five containers exhibit good water solubility and weak self-association (Ks ≤ 624 M–1). We constructed phase solubility diagrams to extract Krel and Ka values for the container·drug complexes. The acyclic CB[n]-type containers generally display significantly higher Ka values than HP-β-CD toward drugs. Containers 1a–1e bind the steroidal ring system and aromatic moieties of insoluble drugs. Compound 1b displays highest affinity toward most of the drugs studied. Containers 1a and 1b are broadly applicable and can be used to formulate a wider variety of insoluble drugs than was previously possible with cyclodextrin technology. For drugs that are solubilized by both HP-β-CD and 1a–1e, lower concentrations of 1a–1e are required to achieve identical [drug]. PMID:25369565

  8. Conformational analysis of an acyclic tetrapeptide: ab-initio structure determination from X-ray powder diffraction, Hirshfeld surface analysis and electronic structure.

    PubMed

    Das, Uday; Naskar, Jishu; Mukherjee, Alok Kumar

    2015-12-01

    A terminally protected acyclic tetrapeptide has been synthesized, and the crystal structure of its hydrated form, Boc-Tyr-Aib-Tyr-Ile-OMe·2H2O (1), has been determined directly from powder X-ray diffraction data. The backbone conformation of tetrapeptide (1) exhibiting two consecutive β-turns is stabilized by two 4 → 1 intramolecular N-H · · · O hydrogen bonds. In the crystalline state, the tetrapeptide molecules are assembled through water-mediated O-H · · · O hydrogen bonds to form two-dimensional molecular sheets, which are further linked by intermolecular C-H · · · O hydrogen bonds into a three-dimensional supramolecular framework. The molecular electrostatic potential (MEP) surface of (1) has been used to supplement the crystallographic observations. The nature of intermolecular interactions in (1) has been analyzed quantitatively through the Hirshfeld surface and two-dimensional fingerprint plot. The DFT optimized molecular geometry of (1) agrees closely with that obtained from the X-ray structure analysis. The present structure analysis of Boc-Tyr-Aib-Tyr-Ile-OMe·2H2 O (1) represents a case where ab-initio crystal structure of an acyclic tetrapeptide with considerable molecular flexibility has been accomplished from laboratory X-ray powder diffraction data.

  9. Decision graphs: a tool for developing real-time software

    SciTech Connect

    Kozubal, A.J.

    1981-01-01

    The use of decision graphs in the preparation of, in particular, real-time software is briefly described. The usefulness of decision graphs in software design, testing, and maintenance is pointed out. 2 figures. (RWR)

  10. On Ramsey (3K2, K3) - minimal graphs

    NASA Astrophysics Data System (ADS)

    Wijaya, Kristiana; Baskoro, Edy Tri; Assiyatun, Hilda; Suprijanto, Djoko

    2016-02-01

    The Ramsey graph theory has many interesting applications, such as in the fields of communications, information retrieval, and decision making. One of growing topics in Ramsey theory is Ramsey minimal graph. For any given graphs G and H, find graphs F such that any red-blue coloring of all edges of F contains either a red copy of G or a blue copy of H. If this condition is not satisfied by the graph F - e, then we call the graph F as a Ramsey (G, H) - minimal. In this paper, we derive the properties of (3K2, K3) - minimal graphs. We, then, characterize all Ramsey (3K2, K3) - minimal graphs.

  11. Using Dynamic Graphs to Reveal Student Reasoning

    ERIC Educational Resources Information Center

    Lassak, Marshall

    2009-01-01

    Using dynamic graphs, future secondary mathematics teachers were able to represent and communicate their understanding of a brief mathematical investigation in a way that a symbolic proof of the problem could not. Four different student work samples are discussed. (Contains 6 figures.)

  12. A Graphing Investigation of the Ellipse.

    ERIC Educational Resources Information Center

    Davis, Jennifer; Hofstetter, Elaine

    1998-01-01

    Discusses ways to present mathematics concepts dealing with the ellipse to high school students, particularly by using a graphing calculator. Real-world occurrences of ellipses are considered, and a one-page student worksheet on constructing an ellipse is included. (LRW)

  13. Communication Graph Generator for Parallel Programs

    SciTech Connect

    2014-04-08

    Graphator is a collection of relatively simple sequential programs that generate communication graphs/matrices for commonly occurring patterns in parallel programs. Currently, there is support for five communication patterns: two-dimensional 4-point stencil, four-dimensional 8-point stencil, all-to-alls over sub-communicators, random near-neighbor communication, and near-neighbor communication.

  14. Colour Mathematics: With Graphs and Numbers

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2009-01-01

    The different combinations involved in additive and subtractive colour mixing can often be difficult for students to remember. Using transmission graphs for filters of the primary colours and a numerical scheme to write out the relationships are good exercises in analytical thinking that can help students recall the combinations rather than just…

  15. Colour mathematics: with graphs and numbers

    NASA Astrophysics Data System (ADS)

    Lo Presto, Michael C.

    2009-07-01

    The different combinations involved in additive and subtractive colour mixing can often be difficult for students to remember. Using transmission graphs for filters of the primary colours and a numerical scheme to write out the relationships are good exercises in analytical thinking that can help students recall the combinations rather than just attempting to memorize them.

  16. Isoperimetric graph partitioning for image segmentation.

    PubMed

    Grady, Leo; Schwartz, Eric L

    2006-03-01

    Spectral graph partitioning provides a powerful approach to image segmentation. We introduce an alternate idea that finds partitions with a small isoperimetric constant, requiring solution to a linear system rather than an eigenvector problem. This approach produces the high quality segmentations of spectral methods, but with improved speed and stability.

  17. Examining Students' Reluctance to Use Graphs

    ERIC Educational Resources Information Center

    Dyke, Frances Van; White, Alexander

    2004-01-01

    An evaluation designed to test basic graphical-thinking skills to students entering calculus or applied calculus at American University was given to use the assessment to discover the underlying causes for student's inability to use graphs effectively. The study indicates that graphical representation is not emphasized properly in the curriculum…

  18. Marking Student Programs Using Graph Similarity

    ERIC Educational Resources Information Center

    Naude, Kevin A.; Greyling, Jean H.; Vogts, Dieter

    2010-01-01

    We present a novel approach to the automated marking of student programming assignments. Our technique quantifies the structural similarity between unmarked student submissions and marked solutions, and is the basis by which we assign marks. This is accomplished through an efficient novel graph similarity measure ("AssignSim"). Our experiments…

  19. An Ellipse Morphs to a Cosine Graph!

    ERIC Educational Resources Information Center

    King, L .R.

    2013-01-01

    We produce a continuum of curves all of the same length, beginning with an ellipse and ending with a cosine graph. The curves in the continuum are made by cutting and unrolling circular cones whose section is the ellipse; the initial cone is degenerate (it is the plane of the ellipse); the final cone is a circular cylinder. The curves of the…

  20. Evolving Polygons Revisited: Inequalities and Computer Graphing

    ERIC Educational Resources Information Center

    Abramovich, Sergei; Brouwer, Peter

    2009-01-01

    This paper was developed with the goal of enhancing the mathematical preparation of secondary school teachers in the technological paradigm. It shows how two-variable inequalities can be utilized as models for the construction of geometric objects using the software Graphing Calculator 3.5 (produced by Pacific Tech) as a relation grapher. An…

  1. Product disassembly scheduling using graph models

    NASA Astrophysics Data System (ADS)

    Puente Mendez, Santiago; Torres Medina, Fernando; Pomares Baeza, Jorge

    2002-02-01

    Disassembly problem is a current issue for industrial companies. Governments of different countries promote research in this field. This paper presents the following points. First a brief state of the art in disassembly planning. Next it exposes a solution for the disassembly problem of industrial products. It uses a combination between direct and indirect graph representation for the product, all components that have physical entity are considered as vertices of the graph. Edges of the graph represent the relationships between vertices. There are three different types of edges. First corresponds with accessibility and fastener restrictions. Second corresponds with direct relations between components without fasteners. Last one corresponds with contact relationships, which represent an indifferent choice of the vertices. Based on that representation the paper exposed a method to find the best sequence to disassemble a component. Costs of disassembling each component and of changing tool between each pair of vertices and different sequences of the disassembly are taken into consideration. This method consists in a function minimization defined in the graph domain. In the last point of the paper this method is tested with a remote control disassembly. This method gives a solution to the problem, if several solutions, with the same cost, exist then it gives all of them, and any one of these disassemble sequences could be used to achieve to the target component.

  2. Mathematical formula recognition using graph grammar

    NASA Astrophysics Data System (ADS)

    Lavirotte, Stephane; Pottier, Loic

    1998-04-01

    This paper describes current results of Ofr, a system for extracting and understanding mathematical expressions in documents. Such a tool could be really useful to be able to re-use knowledge in scientific books which are not available in electronic form. We currently also study use of this system for direct input of formulas with a graphical tablet for computer algebra system softwares. Existing solutions for mathematical recognition have problems to analyze 2D expressions like vectors and matrices. This is because they often try to use extended classical grammar to analyze formulas, relatively to baseline. But a lot of mathematical notations do not respect rules for such a parsing and that is the reason why they fail to extend text parsing technic. We investigate graph grammar and graph rewriting as a solution to recognize 2D mathematical notations. Graph grammar provide a powerful formalism to describe structural manipulations of multi-dimensional data. The main two problems to solve are ambiguities between rules of grammar and construction of graph.

  3. Horizontal visibility graphs from integer sequences

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas

    2016-09-01

    The horizontal visibility graph (HVG) is a graph-theoretical representation of a time series and builds a bridge between dynamical systems and graph theory. In recent years this representation has been used to describe and theoretically compare different types of dynamics and has been applied to characterize empirical signals, by extracting topological features from the associated HVGs which have shown to be informative on the class of dynamics. Among some other measures, it has been shown that the degree distribution of these graphs is a very informative feature that encapsulates nontrivial information of the series's generative dynamics. In particular, the HVG associated to a bi-infinite real-valued series of independent and identically distributed random variables is a universal exponential law P(k)=(1/3){(2/3)}k-2, independent of the series marginal distribution. Most of the current applications have however only addressed real-valued time series, as no exact results are known for the topological properties of HVGs associated to integer-valued series. In this paper we explore this latter situation and address univariate time series where each variable can only take a finite number n of consecutive integer values. We are able to construct an explicit formula for the parametric degree distribution {P}n(k), which we prove to converge to the continuous case for large n and deviates otherwise. A few applications are then considered.

  4. Using Tables and Graphs for Reporting Data.

    PubMed

    Bavdekar, Sandeep B

    2015-10-01

    For presenting the study results, authors need to choose from one of the three formats: text, tables and graphs. The underlying consideration of any author while making the choice is to ensure that readers find it easy to understand, to assist the author present data in a way that would catch the reader's eye, hold his interest and enhance his understanding. The choice should, therefore, be based on the advantages and limitations of each of these formats. Most of the observations are reported in textual format. Tables are useful when comparisons are to be shown. Graphs attract readers' attention better and the data they depict remains in the reader's memory. The type of graph used is dependent upon the nature of data that is to be shown. Every research paper has a lot to say through the data that has been collected and analyzed. However, this data needs to be presented in a logical, coherent and easy-to-understand manner. The way data is presented can influence the reviewers' and editors' decision. It can also make the difference between a paper being appreciated by the readers or being neglected or even trashed by them. Tables and Graphs are the two important tools that authors use to make the data more presentable and easy to read and understand. PMID:27608693

  5. Simple scale interpolator facilitates reading of graphs

    NASA Technical Reports Server (NTRS)

    Fazio, A.; Henry, B.; Hood, D.

    1966-01-01

    Set of cards with scale divisions and a scale finder permits accurate reading of the coordinates of points on linear or logarithmic graphs plotted on rectangular grids. The set contains 34 different scales for linear plotting and 28 single cycle scales for log plots.

  6. Signals on Graphs: Uncertainty Principle and Sampling

    NASA Astrophysics Data System (ADS)

    Tsitsvero, Mikhail; Barbarossa, Sergio; Di Lorenzo, Paolo

    2016-09-01

    In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this work, first, we provide a class of graph signals that are maximally concentrated on the graph domain and on its dual. Then, building on this framework, we derive an uncertainty principle for graph signals and illustrate the conditions for the recovery of band-limited signals from a subset of samples. We show an interesting link between uncertainty principle and sampling and propose alternative signal recovery algorithms, including a generalization to frame-based reconstruction methods. After showing that the performance of signal recovery algorithms is significantly affected by the location of samples, we suggest and compare a few alternative sampling strategies. Finally, we provide the conditions for perfect recovery of a useful signal corrupted by sparse noise, showing that this problem is also intrinsically related to vertex-frequency localization properties.

  7. Range charts and no-space graphs

    USGS Publications Warehouse

    Edwards, L.E.

    1978-01-01

    No-space graphs present one solution to the familiar problem: given data on the occurrence of fossil taxa in separate, well-sampled sections, determine a range chart; that is, a reasonable working hypothesis of the total range in the area in question of each taxon studied. The solution presented here treats only the relative sequence of biostratigraphic events (first and last occurrences of taxa) and does not attempt to determine an amount of spacing between events. Relative to a hypothesized sequence, observed events in any section may be in-place or out-of-place. Out-of-place events may indicate (1) the event in question reflects a taxon that did not fill its entire range (unfilled-range event), or (2) the event in question indicates a need for the revision of the hypothesized sequence. A graph of relative position only (no-space graph) can be used to facilitate the recognition of in-place and out-of-place events by presenting a visual comparison of the observations from each section with the hypothesized sequence. The geometry of the graph as constructed here is such that in-place events will lie along a line series and out-of-place events will lie above or below it. First-occurrence events below the line series and last-occurrence events above the line series indicate unfilled ranges. First-occurrence events above the line series and last-occurrence events below the line series indicate a need for the revision of the hypothesis. Knowing this, the stratigrapher considers alternative positionings of the line series as alternative range hypotheses and seeks the line series that best fits his geologic and paleontologic judgment. No-space graphs are used to revise an initial hypothesis until a final hypothesis is reached. In this final hypothesis every event is found in-place in at least one section, and all events in all sections may be interpreted to represent in-place events or unfilled-range events. No event may indicate a need for further range revision. The

  8. GraphPrints: Towards a Graph Analytic Method for Network Anomaly Detection

    SciTech Connect

    Harshaw, Chris R; Bridges, Robert A; Iannacone, Michael D; Reed, Joel W; Goodall, John R

    2016-01-01

    This paper introduces a novel graph-analytic approach for detecting anomalies in network flow data called \\textit{GraphPrints}. Building on foundational network-mining techniques, our method represents time slices of traffic as a graph, then counts graphlets\\textemdash small induced subgraphs that describe local topology. By performing outlier detection on the sequence of graphlet counts, anomalous intervals of traffic are identified, and furthermore, individual IPs experiencing abnormal behavior are singled-out. Initial testing of GraphPrints is performed on real network data with an implanted anomaly. Evaluation shows false positive rates bounded by 2.84\\% at the time-interval level, and 0.05\\% at the IP-level with 100\\% true positive rates at both.

  9. Multigraph: Interactive Data Graphs on the Web

    NASA Astrophysics Data System (ADS)

    Phillips, M. B.

    2010-12-01

    Many aspects of geophysical science involve time dependent data that is often presented in the form of a graph. Considering that the web has become a primary means of communication, there are surprisingly few good tools and techniques available for presenting time-series data on the web. The most common solution is to use a desktop tool such as Excel or Matlab to create a graph which is saved as an image and then included in a web page like any other image. This technique is straightforward, but it limits the user to one particular view of the data, and disconnects the graph from the data in a way that makes updating a graph with new data an often cumbersome manual process. This situation is somewhat analogous to the state of mapping before the advent of GIS. Maps existed only in printed form, and creating a map was a laborious process. In the last several years, however, the world of mapping has experienced a revolution in the form of web-based and other interactive computer technologies, so that it is now commonplace for anyone to easily browse through gigabytes of geographic data. Multigraph seeks to bring a similar ease of access to time series data. Multigraph is a program for displaying interactive time-series data graphs in web pages that includes a simple way of configuring the appearance of the graph and the data to be included. It allows multiple data sources to be combined into a single graph, and allows the user to explore the data interactively. Multigraph lets users explore and visualize "data space" in the same way that interactive mapping applications such as Google Maps facilitate exploring and visualizing geography. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file and requires no programming. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf

  10. A notion of graph likelihood and an infinite monkey theorem

    NASA Astrophysics Data System (ADS)

    Banerji, Christopher R. S.; Mansour, Toufik; Severini, Simone

    2014-01-01

    We play with a graph-theoretic analogue of the folklore infinite monkey theorem. We define a notion of graph likelihood as the probability that a given graph is constructed by a monkey in a number of time steps equal to the number of vertices. We present an algorithm to compute this graph invariant and closed formulas for some infinite classes. We have to leave the computational complexity of the likelihood as an open problem.

  11. Consensus dynamics on random rectangular graphs

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Sheerin, Matthew

    2016-06-01

    A random rectangular graph (RRG) is a generalization of the random geometric graph (RGG) in which the nodes are embedded into a rectangle with side lengths a and b = 1 / a, instead of on a unit square [ 0 , 1 ] 2. Two nodes are then connected if and only if they are separated at a Euclidean distance smaller than or equal to a certain threshold radius r. When a = 1 the RRG is identical to the RGG. Here we apply the consensus dynamics model to the RRG. Our main result is a lower bound for the time of consensus, i.e., the time at which the network reaches a global consensus state. To prove this result we need first to find an upper bound for the algebraic connectivity of the RRG, i.e., the second smallest eigenvalue of the combinatorial Laplacian of the graph. This bound is based on a tight lower bound found for the graph diameter. Our results prove that as the rectangle in which the nodes are embedded becomes more elongated, the RRG becomes a 'large-world', i.e., the diameter grows to infinity, and a poorly-connected graph, i.e., the algebraic connectivity decays to zero. The main consequence of these findings is the proof that the time of consensus in RRGs grows to infinity as the rectangle becomes more elongated. In closing, consensus dynamics in RRGs strongly depend on the geometric characteristics of the embedding space, and reaching the consensus state becomes more difficult as the rectangle is more elongated.

  12. Concepts and Misconceptions in Comprehension of Hierarchical Graphs

    ERIC Educational Resources Information Center

    Korner, Christof

    2005-01-01

    Hierarchical graphs represent relationships between objects (like computer file systems, family trees etc.). Graph nodes represent the objects and interconnecting lines represent the relationships. In two experiments we investigated what concepts are necessary for understanding hierarchical graphs, what misconceptions evolve when some of the…

  13. Hands-on Science: Getting-to-Know-You Graphing.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1992-01-01

    Elementary teachers can use graphing to introduce students to one another. An eye color graphing activity helps students learn more about each other while experimenting with different ways of organizing and displaying information. For follow up, students can apply their graphing knowledge by collecting and displaying data from their families. (SM)

  14. Can Comparison of Contrastive Examples Facilitate Graph Understanding?

    ERIC Educational Resources Information Center

    Smith, Linsey A.; Gentner, Dedre

    2011-01-01

    The authors explore the role of comparison in improving graph fluency. The ability to use graphs fluently is crucial for STEM achievement, but graphs are challenging to interpret and produce because they often involve integration of multiple variables, continuous change in variables over time, and omission of certain details in order to highlight…

  15. Sharing the Spotlight: Humane Education and Bar Graphs.

    ERIC Educational Resources Information Center

    Dewey, Paul

    1987-01-01

    Promotes the use of humane education as a vehicle for teaching students how to make bar graphs. Provides ideas for bar graph activities for both primary- and intermediate-grade children that focus on different kinds of domestic and wild animals. Suggests expanded types of graphing activities involving survey techniques. (TW)

  16. An Interactive Graphing Tool for Web-Based Courses.

    ERIC Educational Resources Information Center

    Kennedy, David M.; Fritze, Paul

    This paper reports on a project involving the development and formative evaluation of an interactive World Wide Web-based learning tool. The interactive graphing tool (IGT) permits students to sketch a graph on screen using a mouse and responds to a wide range of common graph types. The IGT facilitates an iterative approach to understanding…

  17. Graphing Online Searches with Lotus 1-2-3.

    ERIC Educational Resources Information Center

    Persson, Olle

    1986-01-01

    This article illustrates how Lotus 1-2-3 software can be used to create graphs using downloaded online searches as raw material, notes most commands applied, and outlines three required steps: downloading, importing the downloading file into the worksheet, and making graphs. An example in bibliometrics and sample graphs are included. (EJS)

  18. Deterministic dense coding and faithful teleportation with multipartite graph states

    SciTech Connect

    Huang, C.-Y.; Yu, I-C.; Lin, F.-L.; Hsu, L.-Y.

    2009-05-15

    We propose schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed schemes. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.

  19. Students' Cognitive Reasoning of Graphs: Characteristics and Progression

    ERIC Educational Resources Information Center

    Wang, Zu Hao; Wei, Silin; Ding, Wei; Chen, Xiuyun; Wang, Xiaonan; Hu, Kaiyan

    2012-01-01

    Graphs are widely used to present scientific information. Information presented in graphs can be classified into three kinds: explicit information, tacit information, and conclusive information. Reading information from graphs requires not only science content knowledge and understanding but also general logical reasoning. This study examined the…

  20. Learning Financial Reports From Mixed Symbolic-Spatial Graphs

    ERIC Educational Resources Information Center

    Tanlamai, Uthai; Soongswang, Oranuj

    2011-01-01

    Mixed visuals of numbers and graphs are available in various financial reports that demonstrate the financial status and risks of a firm. GWN (graphs with numbers) and TWG (table of numbers with graphs) were used as two alternative visuals derived from the actual data of two large public companies, one from food manufacturing industry (food) and…

  1. Measuring Graph Comprehension, Critique, and Construction in Science

    ERIC Educational Resources Information Center

    Lai, Kevin; Cabrera, Julio; Vitale, Jonathan M.; Madhok, Jacquie; Tinker, Robert; Linn, Marcia C.

    2016-01-01

    Interpreting and creating graphs plays a critical role in scientific practice. The K-12 Next Generation Science Standards call for students to use graphs for scientific modeling, reasoning, and communication. To measure progress on this dimension, we need valid and reliable measures of graph understanding in science. In this research, we designed…

  2. Expert interpretation of bar and line graphs: the role of graphicacy in reducing the effect of graph format

    PubMed Central

    Peebles, David; Ali, Nadia

    2015-01-01

    The distinction between informational and computational equivalence of representations, first articulated by Larkin and Simon (1987) has been a fundamental principle in the analysis of diagrammatic reasoning which has been supported empirically on numerous occasions. We present an experiment that investigates this principle in relation to the performance of expert graph users of 2 × 2 “interaction” bar and line graphs. The study sought to determine whether expert interpretation is affected by graph format in the same way that novice interpretations are. The findings revealed that, unlike novices—and contrary to the assumptions of several graph comprehension models—experts' performance was the same for both graph formats, with their interpretation of bar graphs being no worse than that for line graphs. We discuss the implications of the study for guidelines for presenting such data and for models of expert graph comprehension. PMID:26579052

  3. Expert interpretation of bar and line graphs: the role of graphicacy in reducing the effect of graph format.

    PubMed

    Peebles, David; Ali, Nadia

    2015-01-01

    The distinction between informational and computational equivalence of representations, first articulated by Larkin and Simon (1987) has been a fundamental principle in the analysis of diagrammatic reasoning which has been supported empirically on numerous occasions. We present an experiment that investigates this principle in relation to the performance of expert graph users of 2 × 2 "interaction" bar and line graphs. The study sought to determine whether expert interpretation is affected by graph format in the same way that novice interpretations are. The findings revealed that, unlike novices-and contrary to the assumptions of several graph comprehension models-experts' performance was the same for both graph formats, with their interpretation of bar graphs being no worse than that for line graphs. We discuss the implications of the study for guidelines for presenting such data and for models of expert graph comprehension.

  4. Advantages of Micro-Based Labs: Electronic Data Acquisition, Computerized Graphing, or Both?

    ERIC Educational Resources Information Center

    Stuessy, Carol L.; Rowland, Paul M.

    1989-01-01

    Discusses a microcomputer-based laboratory (MBL) study (n=75) which uses multiple temperature gathering devices (mercury thermometer, digital thermometer, and computer probe) and graphing methods (hand graphs, delayed computer graphs, and real-time graphs). Reports that MBL real-time graphing provides significant increases in graphing skills. (MVL)

  5. Hyperspectral Data Classification Using Factor Graphs

    NASA Astrophysics Data System (ADS)

    Makarau, A.; Müller, R.; Palubinskas, G.; Reinartz, P.

    2012-07-01

    Accurate classification of hyperspectral data is still a competitive task and new classification methods are developed to achieve desired tasks of hyperspectral data use. The objective of this paper is to develop a new method for hyperspectral data classification ensuring the classification model properties like transferability, generalization, probabilistic interpretation, etc. While factor graphs (undirected graphical models) are unfortunately not widely employed in remote sensing tasks, these models possess important properties such as representation of complex systems to model estimation/decision making tasks. In this paper we present a new method for hyperspectral data classification using factor graphs. Factor graph (a bipartite graph consisting of variables and factor vertices) allows factorization of a more complex function leading to definition of variables (employed to store input data), latent variables (allow to bridge abstract class to data), and factors (defining prior probabilities for spectral features and abstract classes; input data mapping to spectral features mixture and further bridging of the mixture to an abstract class). Latent variables play an important role by defining two-level mapping of the input spectral features to a class. Configuration (learning) on training data of the model allows calculating a parameter set for the model to bridge the input data to a class. The classification algorithm is as follows. Spectral bands are separately pre-processed (unsupervised clustering is used) to be defined on a finite domain (alphabet) leading to a representation of the data on multinomial distribution. The represented hyperspectral data is used as input evidence (evidence vector is selected pixelwise) in a configured factor graph and an inference is run resulting in the posterior probability. Variational inference (Mean field) allows to obtain plausible results with a low calculation time. Calculating the posterior probability for each class

  6. Zeta functions of the Dirac operator on quantum graphs

    NASA Astrophysics Data System (ADS)

    Harrison, J. M.; Weyand, T.; Kirsten, K.

    2016-10-01

    We construct spectral zeta functions for the Dirac operator on metric graphs. We start with the case of a rose graph, a graph with a single vertex where every edge is a loop. The technique is then developed to cover any finite graph with general energy independent matching conditions at the vertices. The regularized spectral determinant of the Dirac operator is also obtained as the derivative of the zeta function at a special value. In each case the zeta function is formulated using a contour integral method, which extends results obtained for Laplace and Schrödinger operators on graphs.

  7. Distance-based topological polynomials and indices of friendship graphs.

    PubMed

    Gao, Wei; Farahani, Mohammad Reza; Imran, Muhammad; Rajesh Kanna, M R

    2016-01-01

    Drugs and chemical compounds are often modeled as graphs in which the each vertex of the graph expresses an atom of molecule and covalent bounds between atoms are represented by the edges between their corresponding vertices. The topological indicators defined over this molecular graph have been shown to be strongly correlated to various chemical properties of the compounds. In this article, by means of graph structure analysis, we determine several distance based topological indices of friendship graph [Formula: see text] which is widely appeared in various classes of new nanomaterials, drugs and chemical compounds. PMID:27652136

  8. On the effective size of a non-Weyl graph

    NASA Astrophysics Data System (ADS)

    Lipovský, Jiřˇí

    2016-09-01

    We show how to find the coefficient of the leading term of the resonance asymptotics using the method of pseudo-orbit expansion for quantum graphs which do not obey Weyl asymptotics. For a non-Weyl graph we develop a method to reduce the number of edges of a corresponding directed graph. Through this method we prove bounds on the above coefficient depending on the structure of the graph, for graphs with the same lengths of internal edges. We explicitly find the positions of the resolvent resonances.

  9. StreamWorks - A system for Dynamic Graph Search

    SciTech Connect

    Choudhury, Sutanay; Holder, Larry; Chin, George; Ray, Abhik; Beus, Sherman J.; Feo, John T.

    2013-06-11

    Acting on time-critical events by processing ever growing social media, news or cyber data streams is a major technical challenge. Many of these data sources can be modeled as multi-relational graphs. Mining and searching for subgraph patterns in a continuous setting requires an efficient approach to incremental graph search. The goal of our work is to enable real-time search capabilities for graph databases. This demonstration will present a dynamic graph query system that leverages the structural and semantic characteristics of the underlying multi-relational graph.

  10. Modular Environment for Graph Research and Analysis with a Persistent

    2009-11-18

    The MEGRAPHS software package provides a front-end to graphs and vectors residing on special-purpose computing resources. It allows these data objects to be instantiated, destroyed, and manipulated. A variety of primitives needed for typical graph analyses are provided. An example program illustrating how MEGRAPHS can be used to implement a PageRank computation is included in the distribution.The MEGRAPHS software package is targeted towards developers of graph algorithms. Programmers using MEGRAPHS would write graph analysis programsmore » in terms of high-level graph and vector operations. These computations are transparently executed on the Cray XMT compute nodes.« less

  11. Low-Rank Matrix Factorization With Adaptive Graph Regularizer.

    PubMed

    Lu, Gui-Fu; Wang, Yong; Zou, Jian

    2016-05-01

    In this paper, we present a novel low-rank matrix factorization algorithm with adaptive graph regularizer (LMFAGR). We extend the recently proposed low-rank matrix with manifold regularization (MMF) method with an adaptive regularizer. Different from MMF, which constructs an affinity graph in advance, LMFAGR can simultaneously seek graph weight matrix and low-dimensional representations of data. That is, graph construction and low-rank matrix factorization are incorporated into a unified framework, which results in an automatically updated graph rather than a predefined one. The experimental results on some data sets demonstrate that the proposed algorithm outperforms the state-of-the-art low-rank matrix factorization methods.

  12. The F-coindex of some graph operations.

    PubMed

    De, Nilanjan; Nayeem, Sk Md Abu; Pal, Anita

    2016-01-01

    The F-index of a graph is defined as the sum of cubes of the vertex degrees of the graph. In this paper, we introduce a new invariant which is named as F-coindex. Here, we study basic mathematical properties and the behavior of the newly introduced F-coindex under several graph operations such as union, join, Cartesian product, composition, tensor product, strong product, corona product, disjunction, symmetric difference of graphs and hence apply our results to find the F-coindex of different chemically interesting molecular graphs and nano-structures.

  13. A Graph Based Interface for Representing Volume Visualization Results

    NASA Technical Reports Server (NTRS)

    Patten, James M.; Ma, Kwan-Liu

    1998-01-01

    This paper discusses a graph based user interface for representing the results of the volume visualization process. As images are rendered, they are connected to other images in a graph based on their rendering parameters. The user can take advantage of the information in this graph to understand how certain rendering parameter changes affect a dataset, making the visualization process more efficient. Because the graph contains more information than is contained in an unstructured history of images, the image graph is also helpful for collaborative visualization and animation.

  14. Modular Environment for Graph Research and Analysis with a Persistent

    SciTech Connect

    JANSSEN, CURTIS; EVENSKY, DAVID

    2009-11-18

    The MEGRAPHS software package provides a front-end to graphs and vectors residing on special-purpose computing resources. It allows these data objects to be instantiated, destroyed, and manipulated. A variety of primitives needed for typical graph analyses are provided. An example program illustrating how MEGRAPHS can be used to implement a PageRank computation is included in the distribution.The MEGRAPHS software package is targeted towards developers of graph algorithms. Programmers using MEGRAPHS would write graph analysis programs in terms of high-level graph and vector operations. These computations are transparently executed on the Cray XMT compute nodes.

  15. Tight Lower Bound for Percolation Threshold on an Infinite Graph

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen E.; Pryadko, Leonid P.

    2014-11-01

    We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds the inverse spectral radius of the graph's adjacency matrix, and it is also generally tighter than the existing bound in terms of the maximum degree. We give a constructive proof for existence of such an eigenvalue in the case of a connected infinite quasitransitive graph, a graph-theoretic analog of a translationally invariant system.

  16. Frequent Subgraph Discovery in Large Attributed Streaming Graphs

    SciTech Connect

    Ray, Abhik; Holder, Larry; Choudhury, Sutanay

    2014-08-13

    The problem of finding frequent subgraphs in large dynamic graphs has so far only consid- ered a dynamic graph as being represented by a series of static snapshots taken at various points in time. This representation of a dynamic graph does not lend itself well to real time processing of real world graphs like social networks or internet traffic which consist of a stream of nodes and edges. In this paper we propose an algorithm that discovers the frequent subgraphs present in a graph represented by a stream of labeled nodes and edges. Our algorithm is efficient and consists of tunable parameters that can be tuned by the user to get interesting patterns from various kinds of graph data. In our model updates to the graph arrive in the form of batches which contain new nodes and edges. Our algorithm con- tinuously reports the frequent subgraphs that are estimated to be found in the entire graph as each batch arrives. We evaluate our system using 5 large dynamic graph datasets: the Hetrec 2011 challenge data, Twitter, DBLP and two synthetic. We evaluate our approach against two popular large graph miners, i.e., SUBDUE and GERM. Our experimental re- sults show that we can find the same frequent subgraphs as a non-incremental approach applied to snapshot graphs, and in less time.

  17. Knowledge Representation Issues in Semantic Graphs for Relationship Detection

    SciTech Connect

    Barthelemy, M; Chow, E; Eliassi-Rad, T

    2005-02-02

    An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' may be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.

  18. Graph processing platforms at scale: practices and experiences

    SciTech Connect

    Lim, Seung-Hwan; Lee, Sangkeun; Brown, Tyler C; Sukumar, Sreenivas R; Ganesh, Gautam

    2015-01-01

    Graph analysis unveils hidden associations of data in many phenomena and artifacts, such as road network, social networks, genomic information, and scientific collaboration. Unfortunately, a wide diversity in the characteristics of graphs and graph operations make it challenging to find a right combination of tools and implementation of algorithms to discover desired knowledge from the target data set. This study presents an extensive empirical study of three representative graph processing platforms: Pegasus, GraphX, and Urika. Each system represents a combination of options in data model, processing paradigm, and infrastructure. We benchmarked each platform using three popular graph operations, degree distribution, connected components, and PageRank over a variety of real-world graphs. Our experiments show that each graph processing platform shows different strength, depending the type of graph operations. While Urika performs the best in non-iterative operations like degree distribution, GraphX outputforms iterative operations like connected components and PageRank. In addition, we discuss challenges to optimize the performance of each platform over large scale real world graphs.

  19. Implementing Graph Pattern Queries on a Relational Database

    SciTech Connect

    Kaplan, I L; Abdulla, G M; Brugger, S T; Kohn, S R

    2007-12-26

    When a graph database is implemented on top of a relational database, queries in the graph query language are translated into relational SQL queries. Graph pattern queries are an important feature of a graph query language. Translating graph pattern queries into single SQL statements results in very poor query performance. By taking into account the pattern query structure and generating multiple SQL statements, pattern query performance can be dramatically improved. The performance problems encountered with the single SQL statements generated for pattern queries reflects a problem in the SQL query planner and optimizer. Addressing this problem would allow relational databases to better support semantic graph databases. Relational database systems that provide good support for graph databases may also be more flexible platforms for data warehouses.

  20. Dimer-monomer model on the Towers of Hanoi graphs

    NASA Astrophysics Data System (ADS)

    Chen, Hanlin; Wu, Renfang; Huang, Guihua; Deng, Hanyuan

    2015-07-01

    The number of dimer-monomers (matchings) of a graph G is an important graph parameter in statistical physics. Following recent research, we study the asymptotic behavior of the number of dimer-monomers m(G) on the Towers of Hanoi graphs and another variation of the Sierpiński graphs which is similar to the Towers of Hanoi graphs, and derive the recursion relations for the numbers of dimer-monomers. Upper and lower bounds for the entropy per site, defined as μG = limv(G)→∞(lnm(G)/v(G)), where v(G) is the number of vertices in a graph G, on these Sierpiński graphs are derived in terms of the numbers at a certain stage. As the difference between these bounds converges quickly to zero as the calculated stage increases, the numerical value of the entropy can be evaluated with more than a hundred significant figures accuracy.

  1. How mutation affects evolutionary games on graphs.

    PubMed

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E; Nowak, Martin A

    2012-04-21

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration.

  2. Random geometric graphs with general connection functions.

    PubMed

    Dettmann, Carl P; Georgiou, Orestis

    2016-03-01

    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H(r) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations. PMID:27078372

  3. Random geometric graphs with general connection functions

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.; Georgiou, Orestis

    2016-03-01

    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

  4. Component Evolution in General Random Intersection Graphs

    NASA Astrophysics Data System (ADS)

    Bradonjić, Milan; Hagberg, Aric; Hengartner, Nicolas W.; Percus, Allon G.

    Random intersection graphs (RIGs) are an important random structure with algorithmic applications in social networks, epidemic networks, blog readership, and wireless sensor networks. RIGs can be interpreted as a model for large randomly formed non-metric data sets. We analyze the component evolution in general RIGs, giving conditions on the existence and uniqueness of the giant component. Our techniques generalize existing methods for analysis of component evolution: we analyze survival and extinction properties of a dependent, inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the branching processes and inherits the fundamental concepts of the study of component evolution in Erdős-Rényi graphs. The major challenge comes from the underlying structure of RIGs, which involves both a set of nodes and a set of attributes, with different probabilities associated with each attribute.

  5. Intergroup networks as random threshold graphs

    NASA Astrophysics Data System (ADS)

    Saha, Sudipta; Ganguly, Niloy; Mukherjee, Animesh; Krueger, Tyll

    2014-04-01

    Similar-minded people tend to form social groups. Due to pluralistic homophily as well as a sort of heterophily, people also participate in a wide variety of groups. Thus, these groups generally overlap with each other; an overlap between two groups can be characterized by the number of common members. These common members can play a crucial role in the transmission of information between the groups. As a step towards understanding the information dissemination, we perceive the system as a pruned intergroup network and show that it maps to a very basic graph theoretic concept known as a threshold graph. We analyze several structural properties of this network such as degree distribution, largest component size, edge density, and local clustering coefficient. We compare the theoretical predictions with the results obtained from several online social networks (LiveJournal, Flickr, YouTube) and find a good match.

  6. Random graphs containing arbitrary distributions of subgraphs

    NASA Astrophysics Data System (ADS)

    Karrer, Brian; Newman, M. E. J.

    2010-12-01

    Traditional random graph models of networks generate networks that are locally treelike, meaning that all local neighborhoods take the form of trees. In this respect such models are highly unrealistic, most real networks having strongly nontreelike neighborhoods that contain short loops, cliques, or other biconnected subgraphs. In this paper we propose and analyze a class of random graph models that incorporates general subgraphs, allowing for nontreelike neighborhoods while still remaining solvable for many fundamental network properties. Among other things we give solutions for the size of the giant component, the position of the phase transition at which the giant component appears, and percolation properties for both site and bond percolation on networks generated by the model.

  7. Random broadcast on random geometric graphs

    SciTech Connect

    Bradonjic, Milan; Elsasser, Robert; Friedrich, Tobias

    2009-01-01

    In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.

  8. Extracting Critical Path Graphs from MPI Applications

    SciTech Connect

    Schulz, M

    2005-07-27

    The critical path is one of the fundamental runtime characteristics of a parallel program. It identifies the longest execution sequence without wait delays. In other words, the critical path is the global execution path that inflicts wait operations on other nodes without itself being stalled. Hence, it dictates the overall runtime and knowing it is important to understand an application's runtime and message behavior and to target optimizations. We have developed a toolset that identifies the critical path of MPI applications, extracts it, and then produces a graphical representation of the corresponding program execution graph to visualize it. To implement this, we intercept all MPI library calls, use the information to build the relevant subset of the execution graph, and then extract the critical path from there. We have applied our technique to several scientific benchmarks and successfully produced critical path diagrams for applications running on up to 128 processors.

  9. On m-polar fuzzy graph structures.

    PubMed

    Akram, Muhammad; Akmal, Rabia; Alshehri, Noura

    2016-01-01

    Sometimes information in a network model is based on multi-agent, multi-attribute, multi-object, multi-polar information or uncertainty rather than a single bit. An m-polar fuzzy model is useful for such network models which gives more and more precision, flexibility, and comparability to the system as compared to the classical, fuzzy and bipolar fuzzy models. In this research article, we introduce the notion of m-polar fuzzy graph structure and present various operations, including Cartesian product, strong product, cross product, lexicographic product, composition, union and join of m-polar fuzzy graph structures. We illustrate these operations by several examples. We also investigate some of their related properties. PMID:27652024

  10. Jargon and Graph Modularity on Twitter

    SciTech Connect

    Dowling, Chase P.; Corley, Courtney D.; Farber, Robert M.; Reynolds, William

    2013-09-01

    The language of conversation is just as dependent upon word choice as it is on who is taking part. Twitter provides an excellent test-bed in which to conduct experiments not only on language usage but on who is using what language with whom. To this end, we combine large scale graph analytical techniques with known socio-linguistic methods. In this article we leverage both expert curated vocabularies and naive mathematical graph analyses to determine if network behavior on Twitter corroborates with the current understanding of language usage. The results reported indicate that, based on networks constructed from user to user communication and communities identified using the Clauset- Newman greedy modularity algorithm we find that more prolific users of these curated vocabularies are concentrated in distinct network communities.

  11. Quantum graph as a quantum spectral filter

    SciTech Connect

    Turek, Ondrej; Cheon, Taksu

    2013-03-15

    We study the transmission of a quantum particle along a straight input-output line to which a graph {Gamma} is attached at a point. In the point of contact we impose a singularity represented by a certain properly chosen scale-invariant coupling with a coupling parameter {alpha}. We show that the probability of transmission along the line as a function of the particle energy tends to the indicator function of the energy spectrum of {Gamma} as {alpha}{yields}{infinity}. This effect can be used for a spectral analysis of the given graph {Gamma}. Its applications include a control of a transmission along the line and spectral filtering. The result is illustrated with an example where {Gamma} is a loop exposed to a magnetic field. Two more quantum devices are designed using other special scale-invariant vertex couplings. They can serve as a band-stop filter and as a spectral separator, respectively.

  12. Software For Generating Graphs And Charts

    NASA Technical Reports Server (NTRS)

    Hammond, Dana P.; Hofler, Alicia S.; Miner, David L.; Theophilos, Pauline M.; Taylor, Nancy L.

    1992-01-01

    Common Graphics Library (CGL) computer program designed to enable users to generate graphs and charts of quality sufficient for publication or optical projection. Quickly and easily generates linear, logarithmic, bar, pie, and composite charts. Features of linear charts include automatic scaling, increasing or decreasing numerical axes, and character axes. Features of pie charts include segment labels, exploded segments, and chart keys. One of general features, horizontal or vertical orientation of figures. Written in ANSI FORTRAN 77.

  13. Graph Matching: Relax at Your Own Risk.

    PubMed

    Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo

    2016-01-01

    Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.

  14. Quantitative Literacy: Working with Log Graphs

    NASA Astrophysics Data System (ADS)

    Shawl, S.

    2013-04-01

    The need for working with and understanding different types of graphs is a common occurrence in everyday life. Examples include anything having to do investments, being an educated juror in a case that involves evidence presented graphically, and understanding many aspect of our current political discourse. Within a science class graphs play a crucial role in presenting and interpreting data. In astronomy, where the range of graphed values is many orders of magnitude, log-axes must be used and understood. Experience shows that students do not understand how to read and interpret log-axes or how they differ from linear. Alters (1996), in a study of college students in an algebra-based physics class, found little understanding of log plotting. The purpose of this poster is to show the method and progression I have developed for use in my “ASTRO 101” class, with the goal being to help students better understand the H-R diagram, mass-luminosity relationship, and digital spectra.

  15. Graph Curvature for Differentiating Cancer Networks

    PubMed Central

    Sandhu, Romeil; Georgiou, Tryphon; Reznik, Ed; Zhu, Liangjia; Kolesov, Ivan; Senbabaoglu, Yasin; Tannenbaum, Allen

    2015-01-01

    Cellular interactions can be modeled as complex dynamical systems represented by weighted graphs. The functionality of such networks, including measures of robustness, reliability, performance, and efficiency, are intrinsically tied to the topology and geometry of the underlying graph. Utilizing recently proposed geometric notions of curvature on weighted graphs, we investigate the features of gene co-expression networks derived from large-scale genomic studies of cancer. We find that the curvature of these networks reliably distinguishes between cancer and normal samples, with cancer networks exhibiting higher curvature than their normal counterparts. We establish a quantitative relationship between our findings and prior investigations of network entropy. Furthermore, we demonstrate how our approach yields additional, non-trivial pair-wise (i.e. gene-gene) interactions which may be disrupted in cancer samples. The mathematical formulation of our approach yields an exact solution to calculating pair-wise changes in curvature which was computationally infeasible using prior methods. As such, our findings lay the foundation for an analytical approach to studying complex biological networks. PMID:26169480

  16. Graph Matching: Relax at Your Own Risk.

    PubMed

    Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo

    2016-01-01

    Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches. PMID:26656578

  17. Index statistical properties of sparse random graphs

    NASA Astrophysics Data System (ADS)

    Metz, F. L.; Stariolo, Daniel A.

    2015-10-01

    Using the replica method, we develop an analytical approach to compute the characteristic function for the probability PN(K ,λ ) that a large N ×N adjacency matrix of sparse random graphs has K eigenvalues below a threshold λ . The method allows to determine, in principle, all moments of PN(K ,λ ) , from which the typical sample-to-sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we show that the index variance scales linearly with N ≫1 for |λ |>0 , with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erdös-Rényi and regular random graphs, both exhibiting a prefactor with a nonmonotonic behavior as a function of λ . These results contrast with rotationally invariant random matrices, where the index variance scales only as lnN , with an universal prefactor that is independent of λ . Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations.

  18. BootGraph: probabilistic fiber tractography using bootstrap algorithms and graph theory.

    PubMed

    Vorburger, Robert S; Reischauer, Carolin; Boesiger, Peter

    2013-02-01

    Bootstrap methods have recently been introduced to diffusion-weighted magnetic resonance imaging to estimate the measurement uncertainty of ensuing diffusion parameters directly from the acquired data without the necessity to assume a noise model. These methods have been previously combined with deterministic streamline tractography algorithms to allow for the assessment of connection probabilities in the human brain. Thereby, the local noise induced disturbance in the diffusion data is accumulated additively due to the incremental progression of streamline tractography algorithms. Graph based approaches have been proposed to overcome this drawback of streamline techniques. For this reason, the bootstrap method is in the present work incorporated into a graph setup to derive a new probabilistic fiber tractography method, called BootGraph. The acquired data set is thereby converted into a weighted, undirected graph by defining a vertex in each voxel and edges between adjacent vertices. By means of the cone of uncertainty, which is derived using the wild bootstrap, a weight is thereafter assigned to each edge. Two path finding algorithms are subsequently applied to derive connection probabilities. While the first algorithm is based on the shortest path approach, the second algorithm takes all existing paths between two vertices into consideration. Tracking results are compared to an established algorithm based on the bootstrap method in combination with streamline fiber tractography and to another graph based algorithm. The BootGraph shows a very good performance in crossing situations with respect to false negatives and permits incorporating additional constraints, such as a curvature threshold. By inheriting the advantages of the bootstrap method and graph theory, the BootGraph method provides a computationally efficient and flexible probabilistic tractography setup to compute connection probability maps and virtual fiber pathways without the drawbacks of

  19. TrajGraph: A Graph-Based Visual Analytics Approach to Studying Urban Network Centralities Using Taxi Trajectory Data.

    PubMed

    Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue

    2016-01-01

    We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.

  20. The One Universal Graph — a free and open graph database

    NASA Astrophysics Data System (ADS)

    Ng, Liang S.; Champion, Corbin

    2016-02-01

    Recent developments in graph database mostly are huge projects involving big organizations, big operations and big capital, as the name Big Data attests. We proposed the concept of One Universal Graph (OUG) which states that all observable and known objects and concepts (physical, conceptual or digitally represented) can be connected with only one single graph; furthermore the OUG can be implemented with a very simple text file format with free software, capable of being executed on Android or smaller devices. As such the One Universal Graph Data Exchange (GOUDEX) modules can potentially be installed on hundreds of millions of Android devices and Intel compatible computers shipped annually. Coupled with its open nature and ability to connect to existing leading search engines and databases currently in operation, GOUDEX has the potential to become the largest and a better interface for users and programmers to interact with the data on the Internet. With a Web User Interface for users to use and program in native Linux environment, Free Crowdware implemented in GOUDEX can help inexperienced users learn programming with better organized documentation for free software, and is able to manage programmer's contribution down to a single line of code or a single variable in software projects. It can become the first practically realizable “Internet brain” on which a global artificial intelligence system can be implemented. Being practically free and open, One Universal Graph can have significant applications in robotics, artificial intelligence as well as social networks.