Science.gov

Sample records for acyl chain lengths

  1. Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates

    SciTech Connect

    Xia, Yan; Li, Ming; Charubin, Kamil; Liu, Ying; Heberle, Frederick A.; Katsaras, John; Jing, Benxin; Zhu, Yingxi; Nieh, Mu-Ping

    2015-11-05

    In this paper, we report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C14, DMPC) in discoidal “bicelles” (0.156 h–1) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.1 × 10–3 h–1). For both bicellar and ULV morphologies, increasing the acyl chain length by two carbons [going from di-C14 DMPC to di-C16, dipalmitoylphosphatidylcholine (DPPC)] causes lipid transfer rates to decrease by more than 2 orders of magnitude. Results from small angle neutron scattering (SANS), differential scanning calorimetry (DSC), and fluorescence correlation spectroscopy (FCS) are in good agreement. Finally, the present studies highlight the importance of lipid dynamic processes taking place in different morphology biomimetic membranes.

  2. Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates

    DOE PAGES

    Xia, Yan; Li, Ming; Charubin, Kamil; Liu, Ying; Heberle, Frederick A.; Katsaras, John; Jing, Benxin; Zhu, Yingxi; Nieh, Mu-Ping

    2015-11-05

    In this paper, we report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C14, DMPC) in discoidal “bicelles” (0.156 h–1) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.1 × 10–3 h–1). For both bicellar and ULV morphologies, increasing the acyl chain length by two carbons [going from di-C14 DMPC to di-C16, dipalmitoylphosphatidylcholine (DPPC)] causes lipid transfer rates to decrease by more than 2 orders of magnitude. Results from small angle neutron scattering (SANS), differential scanning calorimetry (DSC), and fluorescence correlationmore » spectroscopy (FCS) are in good agreement. Finally, the present studies highlight the importance of lipid dynamic processes taking place in different morphology biomimetic membranes.« less

  3. Acyl chain length and charge effect on Tamoxifen-lipid model membrane interactions

    NASA Astrophysics Data System (ADS)

    Bilge, Duygu; Kazanci, Nadide; Severcan, Feride

    2013-05-01

    Tamoxifen (TAM), which is an antiestrogenic agent, is widely used during chemotherapy of breast, pancreas, brain and liver cancers. In this study, TAM and model membrane interactions in the form of multilamellar vesicles (MLVs) were studied for lipids containing different acyl chain length and different charge status as a function of different TAM (1, 6, 9 and 15 mol%) concentrations. Zwitterionic lipids namely dipalmitoyl phosphatidylcholine (DPPC), and dimyristoylphosphatidylcholine (DMPC) lipids were used to see the acyl chain length effect and anionic dipalmitoyl phosphtidylglycerol (DPPG) lipid was used to see the charge effect. For this purpose Fourier transform-infrared (FTIR) spectroscopic and differential scanning calorimetric (DSC) techniques have been conducted. For zwitterionic lipid, concentration dependent different action of TAM was observed both in the gel and liquid crystalline phases by significantly increasing the lipid order and decreasing the dynamics for 1 mol% TAM, while decreasing the lipid order and increasing the dynamics of the lipids for higher concentrations (6, 9 and 15 mol%). However, different than neutral lipids, the dynamics and disorder of DPPG liposome increased for all TAM concentrations. The interactions between TAM and head group of multilamellar liposomes was monitored by analyzing the Cdbnd O stretching and PO2- antisymmetric double bond stretching bands. Increasing Tamoxifen concentrations led to a dehydration around these functional groups in the polar part of the lipids. DSC studies showed that for all types of lipids, TAM eliminates the pre-transition, shifts the main phase transition to lower temperatures and broadened the phase transition curve. The results indicate that not the acyl chain length but the charge status of the polar head group induces different effects on lipid membranes order and dynamics.

  4. Density fluctuations in saturated phospholipid bilayers increase as the acyl-chain length decreases.

    PubMed Central

    Ipsen, J H; Jørgensen, K; Mouritsen, O G

    1990-01-01

    A systematic computer simulation study is conducted for a model of the main phase transition of fully hydrated saturated diacyl phosphatidylcholine bilayers (DMPC, DPPC, and DSPC). With particular focus on the fluctuation effects on the thermal properties in the transition region, the study yields data for the specific heat, the lateral compressibility, and the lipid-domain size distribution. Via a simple model assumption the transmembrane passive ion permeability is derived from the lipid-domain interfacial measure. A comparative analysis of the various data shows, in agreement with a number of experiments, that the lateral density fluctuations and hence the response functions increase as the acyl-chain length is decreased. Images FIGURE 2 PMID:2291936

  5. Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids.

    PubMed

    Hofbauer, Harald F; Schopf, Florian H; Schleifer, Hannes; Knittelfelder, Oskar L; Pieber, Bartholomäus; Rechberger, Gerald N; Wolinski, Heimo; Gaspar, Maria L; Kappe, C Oliver; Stadlmann, Johannes; Mechtler, Karl; Zenz, Alexandra; Lohner, Karl; Tehlivets, Oksana; Henry, Susan A; Kohlwein, Sepp D

    2014-06-23

    Membrane phospholipids typically contain fatty acids (FAs) of 16 and 18 carbon atoms. This particular chain length is evolutionarily highly conserved and presumably provides maximum stability and dynamic properties to biological membranes in response to nutritional or environmental cues. Here, we show that the relative proportion of C16 versus C18 FAs is regulated by the activity of acetyl-CoA carboxylase (Acc1), the first and rate-limiting enzyme of FA de novo synthesis. Acc1 activity is attenuated by AMPK/Snf1-dependent phosphorylation, which is required to maintain an appropriate acyl-chain length distribution. Moreover, we find that the transcriptional repressor Opi1 preferentially binds to C16 over C18 phosphatidic acid (PA) species: thus, C16-chain containing PA sequesters Opi1 more effectively to the ER, enabling AMPK/Snf1 control of PA acyl-chain length to determine the degree of derepression of Opi1 target genes. These findings reveal an unexpected regulatory link between the major energy-sensing kinase, membrane lipid composition, and transcription.

  6. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast.

    PubMed

    Chen, Po-Wei; Fonseca, Luis L; Hannun, Yusuf A; Voit, Eberhard O

    2015-08-01

    The article demonstrates that computational modeling has the capacity to convert metabolic snapshots, taken sequentially over time, into a description of cellular, dynamic strategies. The specific application is a detailed analysis of a set of actions with which Saccharomyces cerevisiae responds to heat stress. Using time dependent metabolic concentration data, we use a combination of mathematical modeling, reverse engineering, and optimization to infer dynamic changes in enzyme activities within the sphingolipid pathway. The details of the sphingolipid responses to heat stress are important, because they guide some of the longer-term alterations in gene expression, with which the cells adapt to the increased temperature. The analysis indicates that all enzyme activities in the system are affected and that the shapes of the time trends in activities depend on the fatty-acyl CoA chain lengths of the different ceramide species in the system.

  7. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast.

    PubMed

    Chen, Po-Wei; Fonseca, Luis L; Hannun, Yusuf A; Voit, Eberhard O

    2015-08-01

    The article demonstrates that computational modeling has the capacity to convert metabolic snapshots, taken sequentially over time, into a description of cellular, dynamic strategies. The specific application is a detailed analysis of a set of actions with which Saccharomyces cerevisiae responds to heat stress. Using time dependent metabolic concentration data, we use a combination of mathematical modeling, reverse engineering, and optimization to infer dynamic changes in enzyme activities within the sphingolipid pathway. The details of the sphingolipid responses to heat stress are important, because they guide some of the longer-term alterations in gene expression, with which the cells adapt to the increased temperature. The analysis indicates that all enzyme activities in the system are affected and that the shapes of the time trends in activities depend on the fatty-acyl CoA chain lengths of the different ceramide species in the system. PMID:26241868

  8. Effect of Acylglycerol Composition and Fatty Acyl Chain Length on Lipid Digestion in pH-Stat Digestion Model and Simulated In Vitro Digestion Model.

    PubMed

    Qi, Jin F; Jia, Cai H; Shin, Jung A; Woo, Jeong M; Wang, Xiang Y; Park, Jong T; Hong, Soon T; Lee, K-T

    2016-02-01

    In this study, a pH-stat digestion model and a simulated in vitro digestion model were employed to evaluate the digestion degree of lipids depending on different acylglycerols and acyl chain length (that is, diacylglycerol [DAG] compared with soybean oil representing long-chain triacylglycerol compared with medium-chain triacylglycerol [MCT]). In the pH-stat digestion model, differences were observed among the digestion degrees of 3 oils using digestion rate (k), digestion half-time (t1/2 ), and digestion extent (Φmax). The results showed the digestion rate order was MCT > soybean oil > DAG. Accordingly, the order of digestion half-times was MCT < soybean oil < DAG. In simulated in vitro digestion model, digestion rates (k') and digestion half-times (t'1/2 ) were also obtained and the results showed a digestion rate order of MCT (k' = 0.068 min(-1) ) > soybean oil (k' = 0.037 min(-1) ) > DAG (k' = 0.024 min(-1) ). Consequently, the order of digestion half-times was MCT (t'1/2 = 10.20 min) < soybean oil (t'1/2 = 18.74 min) < DAG (t'1/2 = 29.08 min). The parameters obtained using the 2 models showed MCT was digested faster than soybean oil, and that soybean oil was digested faster than DAG.

  9. Lipid Acyl Chain Remodeling in Yeast

    PubMed Central

    Renne, Mike F.; Bao, Xue; De Smet, Cedric H.; de Kroon, Anton I. P. M.

    2015-01-01

    Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed. PMID:26819558

  10. Contribution of the Distal Pocket Residue to the Acyl-Chain-Length Specificity of (R)-Specific Enoyl-Coenzyme A Hydratases from Pseudomonas spp.

    PubMed Central

    Sato, Shun; Hiroe, Ayaka; Ishizuka, Koya; Kanazawa, Hiromi; Shiro, Yoshitsugu

    2015-01-01

    (R)-Specific enoyl-coenzyme A (enoyl-CoA) hydratases (PhaJs) are capable of supplying monomers from fatty acid β-oxidation to polyhydroxyalkanoate (PHA) biosynthesis. PhaJ1Pp from Pseudomonas putida showed broader substrate specificity than did PhaJ1Pa from Pseudomonas aeruginosa, despite sharing 67% amino acid sequence identity. In this study, the substrate specificity characteristics of two Pseudomonas PhaJ1 enzymes were investigated by site-directed mutagenesis, chimeragenesis, X-ray crystallographic analysis, and homology modeling. In PhaJ1Pp, the replacement of valine with isoleucine at position 72 resulted in an increased preference for enoyl-coenzyme A (CoA) elements with shorter chain lengths. Conversely, at the same position in PhaJ1Pa, the replacement of isoleucine with valine resulted in an increased preference for enoyl-CoAs with longer chain lengths. These changes suggest a narrowing and broadening in the substrate specificity range of the PhaJ1Pp and PhaJ1Pa mutants, respectively. However, the substrate specificity remains broader in PhaJ1Pp than in PhaJ1Pa. Additionally, three chimeric PhaJ1 enzymes, composed from PhaJ1Pp and PhaJ1Pa, all showed significant hydratase activity, and their substrate preferences were within the range exhibited by the parental PhaJ1 enzymes. The crystal structure of PhaJ1Pa was determined at a resolution of 1.7 Å, and subsequent homology modeling of PhaJ1Pp revealed that in the acyl-chain binding pocket, the amino acid at position 72 was the only difference between the two structures. These results indicate that the chain-length specificity of PhaJ1 is determined mainly by the bulkiness of the amino acid residue at position 72, but that other factors, such as structural fluctuations, also affect specificity. PMID:26386053

  11. Miscibility of phospholipids with identical headgroups and acyl chain lengths differing by two methylene units: effects of headgroup structure and headgroup charge.

    PubMed

    Garidel, P; Blume, A

    1998-04-22

    We have investigated the influence of the chemical structure and charge of the hydrophillic headgroup on the miscibility of saturated phospholipids with acyl chain lengths differing by two methylene units, namely DMPA/DPPA, DMPC/DPPC, DMPE/DPPE and DMPG/DPPG (0.1 M NaCl). All four mixtures were analysed by DSC at pH 7. To study the influence of a change in headgroup charge, we additionally investigated DMPA/DPPA mixtures at pH 4 and 12, and DMPG/DPPG mixtures at pH 2. The experimental DSC thermograms were fitted using methods described before [Johann et al., Biophys. J. 71 (1996), 3215-3228] to obtain the temperatures of onset and end of melting and first approximations for the non-ideality parameters as a function of composition. The resulting phase diagrams were then fitted using a four non-ideality parameter model for non-ideal, non-symmetric mixing in both phases. The phase diagram of the system DMPG/DPPG has a lens-like shape, the non-ideality parameters rhog and rhol for the gel and the liquid-crystalline phase, respectively, are zero, indicating ideal mixing in both phases. For the other mixtures, differences in miscibility are observed depending on the structure of the headgroup. At pH 7, rhog > rhol, i.e., the miscibility in the liquid-crystalline phase is more ideal than in the gel state. All rhog values are positive and the sequence for rhog observed is PA>PE>PC>PG. Partial protonation of PA at pH 4 or complete deprotonation at pH 12 leads to negative non-ideality parameters for both phases, indicating a preference for mixed pair formation. Protonation of PG in DMPG/DPPG mixtures at pH 2 leads to positive non-ideality parameters for both phases, indicating a tendency for demixing. The results show, that the miscibility of phospholipids with identical headgroups but chain lengths differing by two methylene groups is dependent on headgroup structure and on headgroup charge.

  12. Minor modifications to the phosphate groups and the C3' acyl chain length of lipid A in two Bordetella pertussis strains, BP338 and 18-323, independently affect Toll-like receptor 4 protein activation.

    PubMed

    Shah, Nita R; Albitar-Nehme, Sami; Kim, Emma; Marr, Nico; Novikov, Alexey; Caroff, Martine; Fernandez, Rachel C

    2013-04-26

    Lipopolysaccharides (LPS) of Bordetella pertussis are important modulators of the immune system. Interaction of the lipid A region of LPS with the Toll-like receptor 4 (TLR4) complex causes dimerization of TLR4 and activation of downstream nuclear factor κB (NFκB), which can lead to inflammation. We have previously shown that two strains of B. pertussis, BP338 (a Tohama I-derivative) and 18-323, display two differences in lipid A structure. 1) BP338 can modify the 1- and 4'-phosphates by the addition of glucosamine (GlcN), whereas 18-323 cannot, and 2) the C3' acyl chain in BP338 is 14 carbons long, but only 10 or 12 carbons long in 18-323. In addition, BP338 lipid A can activate TLR4 to a greater extent than 18-323 lipid A. Here we set out to determine the genetic reasons for the differences in these lipid A structures and the contribution of each structural difference to the ability of lipid A to activate TLR4. We show that three genes of the lipid A GlcN modification (Lgm) locus, lgmA, lgmB, and lgmC (previously locus tags BP0399-BP0397), are required for GlcN modification and a single amino acid difference in LpxA is responsible for the difference in C3' acyl chain length. Furthermore, by introducing lipid A-modifying genes into 18-323 to generate isogenic strains with varying penta-acyl lipid A structures, we determined that both modifications increase TLR4 activation, although the GlcN modification plays a dominant role. These results shed light on how TLR4 may interact with penta-acyl lipid A species.

  13. Mammalian long-chain acyl-CoA synthetases.

    PubMed

    Soupene, Eric; Kuypers, Frans A

    2008-05-01

    Acyl-CoA synthetase enzymes are essential for de novo lipid synthesis, fatty acid catabolism, and remodeling of membranes. Activation of fatty acids requires a two-step reaction catalyzed by these enzymes. In the first step, an acyl-AMP intermediate is formed from ATP. AMP is then exchanged with CoA to produce the activated acyl-CoA. The release of AMP in this reaction defines the superfamily of AMP-forming enzymes. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different acyl-CoA synthetases (ACS). On this basis, five sub-families of ACS have been characterized. The purpose of this review is to report on the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12 to 20 carbon atoms. Five genes and several isoforms generated by alternative splicing have been identified and limited information is available on their localization. The structure of these membrane proteins has not been solved for the mammalian ACSLs but homology to a bacterial form, whose structure has been determined, points at specific structural features that are important for these enzymes across species. The bacterial form acts as a dimer and has a conserved short motif, called the fatty acid Gate domain, that seems to determine substrate specificity. We will discuss the characterization and identification of the different spliced isoforms, draw attention to the inconsistencies and errors in their annotations, and their cellular localizations. These membrane proteins act on membrane-bound substrates probably as homo- and as heterodimer complexes but have often been expressed as single recombinant isoforms, apparently purified as monomers and tested in Triton X-100 micelles. We will argue that such studies have failed to provide an accurate assessment of the activity and of the distinct function of these enzymes in mammalian cells.

  14. Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH.

    PubMed Central

    Garidel, P; Johann, C; Blume, A

    1997-01-01

    The miscibilities of phosphatidic acids (PAs) and phosphatidylcholines (PCs) with different chain lengths (n = 14, 16) at pH 4, pH 7, and pH 12 were examined by differential scanning calorimetry. Simulation of heat capacity curves was performed using a new approach that incorporates changes of cooperativity of the transition in addition to nonideal mixing in the gel and the liquid-crystalline phase as a function of composition. From the simulations of the heat capacity curves, first estimates for the nonideality parameters for nonideal mixing as a function of composition were obtained, and phase diagrams were constructed using temperatures for onset and end of melting, which were corrected for the broadening effect caused by a decrease in cooperativity. In all cases the composition dependence of the nonideality parameters indicated nonsymmetrical mixing behavior. The phase diagrams were therefore further refined by simulations of the coexistence curves using a four-parameter approximation to account for nonideal and nonsymmetrical mixing in the gel and the liquid-crystalline phase. The mixing behavior was studied at three different pH values to investigate how changes in headgroup charge of the PA influences the miscibility. The experiments showed that at pH 7, where the PA component is negatively charged, the nonideality parameters are in most cases negative, indicating that electrostatic effects favor a mixing of the two components. Partial protonation of the PA component at pH 4 leads to strong changes in miscibility; the nonideality parameters for the liquid-crystalline phase are now in most cases positive, indicating clustering of like molecules. The phase diagram for 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid:1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine mixtures at pH 4 indicates that a fluid-fluid immiscibility is likely. The results show that a decrease in ionization of PAs can induce large changes in mixing behavior. This occurs because of a

  15. Polyketide chain length control by chain length factor.

    PubMed

    Tang, Yi; Tsai, Shiou-Chuan; Khosla, Chaitan

    2003-10-22

    Bacterial aromatic polyketides are pharmacologically important natural products. A critical parameter that dictates product structure is the carbon chain length of the polyketide backbone. Systematic manipulation of polyketide chain length represents a major unmet challenge in natural product biosynthesis. Polyketide chain elongation is catalyzed by a heterodimeric ketosynthase. In contrast to homodimeric ketosynthases found in fatty acid synthases, the active site cysteine is absent from the one subunit of this heterodimer. The precise role of this catalytically silent subunit has been debated over the past decade. We demonstrate here that this subunit is the primary determinant of polyketide chain length, thereby validating its designation as chain length factor. Using structure-based mutagenesis, we identified key residues in the chain length factor that could be manipulated to convert an octaketide synthase into a decaketide synthase and vice versa. These results should lead to novel strategies for the engineered biosynthesis of hitherto unidentified polyketide scaffolds.

  16. Naphthalene Derivatives Induce Acyl Chain Interdigitation in Dipalmitoylphosphatidylcholine Bilayers.

    PubMed

    Kamal, Md Arif; Raghunathan, V A

    2016-01-14

    The interdigitated phase of the lipid bilayer results when acyl chains from opposing monolayers fully interpenetrate such that the terminal methyl groups of the respective lipid chains are located at the interfacial region on the opposite sides of the bilayer. Usually, chain interdigitation is not encountered in a symmetric chain phosphatidylcholine (PC) membrane but can be induced under certain special conditions. In this article, we elucidate the contribution of small amphiphatic molecules in altering the physical properties of a symmetric chain PC bilayer membrane, which results in acyl chain interdigitation. Using small-angle X-ray scattering (SAXS), we have carried out a systematic investigation of the physical interactions of three naphthalene derivatives containing hydroxyl groups: β-naphthol, 2,3-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene, with dipalmitoylphosphatidylcholine (DPPC) bilayers. On the basis of the diffraction patterns, we have determined the temperature-composition phase diagrams of these binary mixtures. The present study not only enables us to gain insight into the role played by small molecules in altering the packing arrangement of the acyl chains of the constituting PC lipids of the bilayer but also brings to light some important features that have not yet been reported hitherto. One such feature is the stabilization of the enigmatic asymmetric ripple phase over a wide temperature and concentration range. The results presented here strongly point toward a clear correlation between chain interdigitation and the stability of the ripple phase.

  17. Measurement of tissue acyl-CoAs using flow-injection tandem mass spectrometry: acyl-CoA profiles in short-chain fatty acid oxidation defects

    PubMed Central

    Palladino, Andrew A.; Chen, Jie; Kallish, Staci; Stanley, Charles A.; Bennett, Michael J.

    2013-01-01

    The primary accumulating metabolites in fatty acid oxidation defects are intramitochondrial acyl-CoAs. Typically, secondary metabolites such as acylcarnitines, acylglycines and dicarboxylic acids are measured to study these disorders. Methods have not been adapted for tissue acyl-CoA measurement in defects with primarily acyl-CoA accumulation. Our objective was to develop a method to measure fatty acyl-CoA species that are present in tissues of mice with fatty acid oxidation defects using flow-injection tandem mass spectrometry. Following the addition of internal standards of [13C2] acetyl-CoA, [13C8] octanoyl-CoA, and [C17] heptadecanoic CoA, acyl-CoA’s are extracted from tissue samples and are injected directly into the mass spectrometer. Data is acquired using a 506.9 neutral loss scan and multiple reaction-monitoring (MRM). This method can identify all long, medium and short-chain acyl-CoA species in wild type mouse liver including predicted 3-hydroxyacyl-CoA species. We validated the method using liver of the short-chain-acyl-CoA dehydrogenase (SCAD) knock-out mice. As expected, there is a significant increase in [C4] butyryl-CoA species in the SCAD −/− mouse liver compared to wild type. We then tested the assay in liver from the short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) deficient mice to determine the profile of acyl-CoA accumulation in this less predictable model. There was more modest accumulation of medium chain species including 3-hydroxyacyl-CoA’s consistent with the known chain-length specificity of the SCHAD enzyme. PMID:23117082

  18. Permeation and metabolism of a series of novel lipophilic ascorbic acid derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids with a branched-acyl chain, in a human living skin equivalent model.

    PubMed

    Tai, Akihiro; Goto, Satomi; Ishiguro, Yutaka; Suzuki, Kazuko; Nitoda, Teruhiko; Yamamoto, Itaru

    2004-02-01

    A series of novel lipophilic vitamin C derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids possessing a branched-acyl chain of varying length from C(8) to C(16) (6-bAcyl-AA-2G), were evaluated as topical prodrugs of ascorbic acid (AA) with transdermal activity in a human living skin equivalent model. The permeability of 6-bAcyl-AA-2G was compared with those of the derivatives having a straight-acyl chain (6-sAcyl-AA-2G). Out of 10 derivatives of 6-sAcyl-AA-2G and 6-bAcyl-AA-2G, 6-sDode-AA-2G and 6-bDode-AA-2G exhibited most excellent permeability in this model. Measurement of the metabolites permeated from the skin model suggested that 6-bDode-AA-2G was mainly hydrolyzed via 6-O-acyl AA to AA by tissue enzymes, while 6-sDode-AA-2G was hydrolyzed via 2-O-alpha-D-glucopyranosyl-L-ascorbic acid to AA. The former metabolic pathway seems to be advantageous for a readily available source of AA, because 6-O-acyl AA, as well as AA, is able to show vitamin C activity.

  19. A thiolate anion buried within the hydrocarbon ruler perturbs PagP lipid acyl chain selection.

    PubMed

    Khan, M Adil; Moktar, Joel; Mott, Patrick J; Bishop, Russell E

    2010-03-23

    The Escherichia coli outer membrane phospholipid:lipid A palmitoyltransferase PagP exhibits remarkable selectivity because its binding pocket for lipid acyl chains excludes those differing in length from palmitate by a solitary methylene unit. This narrow detergent-binding hydrophobic pocket buried within the eight-strand antiparallel beta-barrel is known as the hydrocarbon ruler. Gly88 lines the acyl chain binding pocket floor, and its substitution can raise the floor to correspondingly shorten the selected acyl chain. An aromatic exciton interaction between Tyr26 and Trp66 provides an intrinsic spectroscopic probe located immediately adjacent to Gly88. The Gly88Cys PagP enzyme was engineered to function as a dedicated myristoyltransferase, but the mutant enzyme instead selected both myristoyl and pentadecanoyl groups, was devoid of the exciton, and displayed a 21 degrees C reduction in thermal stability. We now demonstrate that the structural perturbation results from a buried thiolate anion attributed to suppression of the Cys sulfhydryl group pK(a) from 9.4 in aqueous solvent to 7.5 in the hydrocarbon ruler microenvironment. The Cys thiol is sandwiched at the interface between a nonpolar and a polar beta-barrel interior milieu, suggesting that local electrostatics near the otherwise hydrophobic hydrocarbon ruler pocket serve to perturb the thiol pK(a). Neutralization of the Cys thiolate anion by protonation restores wild-type exciton and thermal stability signatures to Gly88Cys PagP, which then functions as a dedicated myristoyltransferase at pH 7. Gly88Cys PagP assembled in bacterial membranes recapitulates lipid A myristoylation in vivo. Hydrocarbon ruler-exciton coupling in PagP thus reveals a thiol-thiolate ionization mechanism for modulating lipid acyl chain selection.

  20. Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs.

    PubMed

    Romano, Andrea; van der Plas, Linus H W; Witholt, Bernard; Eggink, Gerrit; Mooibroek, Hans

    2005-01-01

    Medium-chain-length poly-3-(R)-hydroxyalkanoates (mcl-PHAs) belong to the group of microbial polyesters. The minimum gene-set for the accumulation of mcl-PHAs from de novo fatty acid biosynthesis has been identified in prokaryotes as consisting of the Pha-C1 polymerase and the ACP-CoA-transacylase. In this paper, the synthesis of mcl-PHAs has been attempted in transgenic potato (Solanum tuberosum L.) using the same set of genes that were introduced into potato by particle bombardment. Polymer contents of transgenic lines were analysed by gas chromatography and by a new simple method employing a size-exclusion filter column. The expression of the Pha-C1 polymerase and the ACP-CoA-transacylase in the plastids of transgenic potato led to the synthesis of a hydrophobic polymer composed of mcl-hydroxy-fatty acids with carbon chain lengths ranging from C-6 to C-12 in leaves of the selected transgenic lines. We strongly suggest that the polymer observed consists of mcl-PHAs and that this report establishes for the first time a possible route for the production of mcl-PHAs from de novo fatty acid biosynthesis in plants. PMID:15351883

  1. Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis

    SciTech Connect

    Kishino, Hideyuki; Eguchi, Hiroki; Takagi, Keiko; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori

    2014-03-07

    Highlights: • Dioctanoyl-PC (diC8PC) supported growth of a yeast mutant defective in PC synthesis. • diC8PC was converted to PC species containing longer acyl residues in the mutant. • Both acyl residues of diC8PC were replaced by longer fatty acids in vitro. • This system will contribute to the elucidation of the acyl chain remodeling of PC. - Abstract: A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipid methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of {sup 13}C-labeled diC8PC ((methyl-{sup 13}C){sub 3}-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-{sup 13}C){sub 3}-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast.

  2. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  3. Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase.

    PubMed

    Joshi, Anil K; Witkowski, Andrzej; Berman, Harvey A; Zhang, Lei; Smith, Stuart

    2005-03-15

    A natural linker of approximately 20 residues connects the acyl carrier protein with the carboxy-terminal thioesterase domain of the animal fatty acid synthase. This study examines the effects of changes in the length and amino acid composition of this linker on catalytic activity, product composition, and segmental motion of the thioesterase domain. Deletion of 10 residues, almost half of the interdomain linker, had no effect on either mobility of the thioesterase domain, estimated from fluorescence polarization of a pyrenebutyl methylphosphono moiety bound covalently to the active site serine residue, or functionality of the fatty acid synthase; further shortening of the linker limited mobility of the thioesterase domain and resulted in reduced fatty acid synthase activity and an increase in product chain length from 16 to 18 and 20 carbon atoms. Surprisingly, however, even when the entire linker region was deleted, the fatty acid synthase retained 28% activity. Lengthening of the linker, by insertion of an unusually long acyl carrier protein-thioesterase linker from a modular polyketide synthase, increased mobility of the thioesterase domain without having any significant effect on catalytic properties of the complex. Interdomain linkers could also be used to tether, to the acyl carrier protein domain of the fatty acid synthase, a thioesterase active toward shorter chain length acyl thioesters generating novel short-chain fatty acid synthases. These studies reveal that although truncation of the interdomain linker partially impacts the ability of the thioesterase domain to terminate growth of the acyl chain, the overall integrity of the fatty acid synthase is quite tolerant to moderate changes in linker length and flexibility. The retention of fatty acid synthesizing activity on deletion of the entire linker region implies that the inherent flexibility of the phosphopantetheine "swinging arm" also contributes significantly to the successful docking of the long-chain

  4. Food-chain length and adaptive foraging.

    PubMed

    Kondoh, Michio; Ninomiya, Kunihiko

    2009-09-01

    Food-chain length, the number of feeding links from the basal species to the top predator, is a key characteristic of biological communities. However, the determinants of food-chain length still remain controversial. While classical theory predicts that food-chain length should increase with increasing resource availability, empirical supports of this prediction are limited to those from simple, artificial microcosms. A positive resource availability-chain length relationship has seldom been observed in natural ecosystems. Here, using a theoretical model, we show that those correlations, or no relationships, may be explained by considering the dynamic food-web reconstruction induced by predator's adaptive foraging. More specifically, with foraging adaptation, the food-chain length becomes relatively invariant, or even decreases with increasing resource availability, in contrast to a non-adaptive counterpart where chain length increases with increasing resource availability; and that maximum chain length more sharply decreases with resource availability either when species richness is higher or potential link number is larger. The interactive effects of resource availability, adaptability and community complexity may explain the contradictory effects of resource availability in simple microcosms and larger ecosystems. The model also explains the recently reported positive effect of habitat size on food-chain length as a result of increased species richness and/or decreased connectance owing to interspecific spatial segregation.

  5. Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis.

    PubMed

    Kishino, Hideyuki; Eguchi, Hiroki; Takagi, Keiko; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori

    2014-03-01

    A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipid methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of (13)C-labeled diC8PC ((methyl-(13)C)3-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-(13)C)3-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast.

  6. Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest an alternative mechanism for medium-chain production in seeds.

    PubMed

    Voelker, T A; Jones, A; Cranmer, A M; Davies, H M; Knutzon, D S

    1997-06-01

    In the current model of medium-chain (C8-14) fatty acid biosynthesis in seeds, specialized FatB acyl-acyl-carrier-protein (ACP) thioesterases are responsible for the production of medium chains. We have isolated and characterized FatB cDNAs from the maturing seeds of elm (Ulmus americana) and nutmeg (Myristica fragrans), which accumulate predominantly caprate (10:0)- and myristate (14:0)-containing oils, respectively. In neither species were we able to find cDNAs encoding enzymes specialized for these chain lengths. Nutmeg FatB hydrolyses C14-18 substrates in vitro and expression in Brassica napus seeds leads to an oil enriched in C14-18 saturates. Elm FatB1 displays a binary specificity: one activity is centered on 10:0-ACP, and a second is centered on palmitate (16:0)-ACP. After expression in B. napus seeds the oil is enriched in C10-18 saturates, predominantly 16:0, 14:0, and 10:0. The composition of free fatty acids produced by elm FatB1 in Escherichia coli shifts from C14-16 to mostly C8-10 by increasing the rate of chain termination by this enzyme. These results suggest the existence of an alternative mechanism used in the evolution of medium-chain production, a model of which is presented. PMID:9193098

  7. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    SciTech Connect

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  8. Environmental correlates of food chain length.

    PubMed

    Briand, F; Cohen, J E

    1987-11-13

    In 113 community food webs from natural communities, the average and maximal lengths of food chains are independent of primary productivity, contrary to the hypothesis that longer food chains should arise when more energy is available at their base. Environmental variability alone also does not appear to constrain average or maximal chain length. Environments that are three dimensional or solid, however, such as a forest canopy or the water column of the open ocean, have distinctly longer food chains than environments that are two dimensional or flat, such as a grassland or lake bottom.

  9. Determination of individual long-chain fatty acyl-CoA esters in heart and skeletal muscle.

    PubMed

    Molaparast-Saless, F; Shrago, E; Spennetta, T L; Donatello, S; Kneeland, L M; Nellis, S H; Liedtke, A J

    1988-05-01

    A method has been developed for determination of individual long-chain fatty acyl-CoA esters from heart and skeletal muscle using high performance liquid chromatography (HPLC). The esters were extracted from freeze-clamped tissue of pig and rat hearts and rat skeletal muscle for analysis on a radially compressed C18 5mu reverse-phase column. Nine peaks in the extract with carbon chain lengths from C12 to C20 that subsequently disappeared on alkaline hydrolysis were identified. The major acyl-CoA peaks were 14:1, 18:2, 16:0 and 18:1 and additionally in rat heart 18:0. Total long-chain acyl-CoA esters obtained by summation of the individual molecular species was 11.34 +/- 1.48 nmol/g wet wt. pig heart; 14.51 +/- 2.11 nmol/g wet wt. in rat heart, and 4.35 +/- 0.71 nmol/g wet wt. in rat skeletal muscle. These values were approximately 132% of those obtained using a separate procedure that measured total CoA by HPLC after alkaline hydrolysis of the esters. The described method demonstrates the quantitation of individual acyl-CoA species in muscle tissue. Therefore, it has a number of advantages in that it permits information to be obtained on the individual molecular species under various nutritional and metabolic conditions.

  10. The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure[S

    PubMed Central

    Son, Mijin; London, Erwin

    2013-01-01

    Lipid asymmetry, the difference in inner and outer leaflet lipid composition, is an important feature of biomembranes. By utilizing our recently developed MβCD-catalyzed exchange method, the effect of lipid acyl chain structure upon the ability to form asymmetric membranes was investigated. Using this approach, SM was efficiently introduced into the outer leaflet of vesicles containing various phosphatidylcholines (PC), but whether the resulting vesicles were asymmetric (SM outside/PC inside) depended upon PC acyl chain structure. Vesicles exhibited asymmetry using PC with two monounsaturated chains of >14 carbons; PC with one saturated and one unsaturated chain; and PC with phytanoyl chains. Vesicles were most weakly asymmetric using PC with two 14 carbon monounsaturated chains or with two polyunsaturated chains. To define the origin of this behavior, transverse diffusion (flip-flop) of lipids in vesicles containing various PCs was compared. A correlation between asymmetry and transverse diffusion was observed, with slower transverse diffusion in vesicles containing PCs that supported lipid asymmetry. Thus, asymmetric vesicles can be prepared using a wide range of acyl chain structures, but fast transverse diffusion destroys lipid asymmetry. These properties may constrain acyl chain structure in asymmetric natural membranes to avoid short or overly polyunsaturated acyl chains. PMID:23093551

  11. Thioesterase superfamily member 2 (Them2)/acyl-CoA thioesterase 13 (Acot13): a homotetrameric hotdog fold thioesterase with selectivity for long-chain fatty acyl-CoAs

    PubMed Central

    Wei, Jie; Kang, Hye Won; Cohen, David E.

    2011-01-01

    Them2 (thioesterase superfamily member 2) is a 140-aminoacid protein of unknown biological function that comprises a single hotdog fold thioesterase domain. On the basis of its putative association with mitochondria, accentuated expression in oxidative tissues and interaction with StarD2 (also known as phosphatidylcholine-transfer protein, PC-TP), a regulator of fatty acid metabolism, we explored whether Them2 functions as a physiologically relevant fatty acyl-CoA thioesterase. In solution, Them2 formed a stable homotetramer, which denatured in a single transition at 59.3 °C. Them2 exhibited thioesterase activity for medium- and long-chain acyl-CoAs, with Km values that decreased exponentially as a function of increasing acyl chain length. Steady-state kinetic parameters for Them2 were characteristic of long-chain mammalian acyl-CoA thioesterases, with minimal values of Km and maximal values of kcat/Km observed for myristoyl-CoA and palmitoyl-CoA. For these acyl-CoAs, substrate inhibition was observed when concentrations approached their critical micellar concentrations. The acyl-CoA thioesterase activity of Them2 was optimized at physiological temperature, ionic strength and pH. For both myristoyl-CoA and palmitoyl-CoA, the addition of StarD2 increased the kcat of Them2. Enzymatic activity was decreased by the addition of phosphatidic acid/phosphatidylcholine small unilamellar vesicles. Them2 expression, which was most pronounced in mouse heart, was associated with mitochondria and was induced by activation of PPARα (peroxisome-proliferator-activated receptor α). We conclude that, under biological conditions, Them2 probably functions as a homotetrameric long-chain acyl-CoA thioesterase. Accordingly, Them2 has been designated as the 13th member of the mammalian acyl-CoA thioesterase family, Acot13. PMID:19405909

  12. Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains

    PubMed Central

    Wattelet-Boyer, Valérie; Brocard, Lysiane; Jonsson, Kristoffer; Esnay, Nicolas; Joubès, Jérôme; Domergue, Frédéric; Mongrand, Sébastien; Raikhel, Natasha; Bhalerao, Rishikesh P.; Moreau, Patrick; Boutté, Yohann

    2016-01-01

    The post-Golgi compartment trans-Golgi Network (TGN) is a central hub divided into multiple subdomains hosting distinct trafficking pathways, including polar delivery to apical membrane. Lipids such as sphingolipids and sterols have been implicated in polar trafficking from the TGN but the underlying mechanisms linking lipid composition to functional polar sorting at TGN subdomains remain unknown. Here we demonstrate that sphingolipids with α-hydroxylated acyl-chains of at least 24 carbon atoms are enriched in secretory vesicle subdomains of the TGN and are critical for de novo polar secretory sorting of the auxin carrier PIN2 to apical membrane of Arabidopsis root epithelial cells. We show that sphingolipid acyl-chain length influences the morphology and interconnections of TGN-associated secretory vesicles. Our results uncover that the sphingolipids acyl-chain length links lipid composition of TGN subdomains with polar secretory trafficking of PIN2 to apical membrane of polarized epithelial cells. PMID:27681606

  13. The peroxisomal Acyl-CoA thioesterase Pte1p from Saccharomyces cerevisiae is required for efficient degradation of short straight chain and branched chain fatty acids.

    PubMed

    Maeda, Isamu; Delessert, Syndie; Hasegawa, Seiko; Seto, Yoshiaki; Zuber, Sophie; Poirier, Yves

    2006-04-28

    The role of the Saccharomyces cerevisae peroxisomal acyl-coenzyme A (acyl-CoA) thioesterase (Pte1p) in fatty acid beta-oxidation was studied by analyzing the in vitro kinetic activity of the purified protein as well as by measuring the carbon flux through the beta-oxidation cycle in vivo using the synthesis of peroxisomal polyhydroxyalkanoate (PHA) from the polymerization of the 3-hydroxyacyl-CoAs as a marker. The amount of PHA synthesized from the degradation of 10-cis-heptadecenoic, tridecanoic, undecanoic, or nonanoic acids was equivalent or slightly reduced in the pte1Delta strain compared with wild type. In contrast, a strong reduction in PHA synthesized from heptanoic acid and 8-methyl-nonanoic acid was observed for the pte1Delta strain compared with wild type. The poor catabolism of 8-methyl-nonanoic acid via beta-oxidation in pte1Delta negatively impacted the degradation of 10-cis-heptadecenoic acid and reduced the ability of the cells to efficiently grow in medium containing such fatty acids. An increase in the proportion of the short chain 3-hydroxyacid monomers was observed in PHA synthesized in pte1Delta cells grown on a variety of fatty acids, indicating a reduction in the metabolism of short chain acyl-CoAs in these cells. A purified histidine-tagged Pte1p showed high activity toward short and medium chain length acyl-CoAs, including butyryl-CoA, decanoyl-CoA and 8-methyl-nonanoyl-CoA. The kinetic parameters measured for the purified Pte1p fit well with the implication of this enzyme in the efficient metabolism of short straight and branched chain fatty acyl-CoAs by the beta-oxidation cycle.

  14. Retrobiosynthetic Approach Delineates the Biosynthetic Pathway and the Structure of the Acyl Chain of Mycobacterial Glycopeptidolipids*

    PubMed Central

    Vats, Archana; Singh, Anil Kumar; Mukherjee, Raju; Chopra, Tarun; Ravindran, Madhu Sudhan; Mohanty, Debasisa; Chatterji, Dipankar; Reyrat, Jean-Marc; Gokhale, Rajesh S.

    2012-01-01

    Glycopeptidolipids (GPLs) are dominant cell surface molecules present in several non-tuberculous and opportunistic mycobacterial species. GPLs from Mycobacterium smegmatis are composed of a lipopeptide core unit consisting of a modified C26-C34 fatty acyl chain that is linked to a tetrapeptide (Phe-Thr-Ala-alaninol). The hydroxyl groups of threonine and terminal alaninol are further modified by glycosylations. Although chemical structures have been reported for 16 GPLs from diverse mycobacteria, there is still ambiguity in identifying the exact position of the hydroxyl group on the fatty acyl chain. Moreover, the enzymes involved in the biosynthesis of the fatty acyl component are unknown. In this study we show that a bimodular polyketide synthase in conjunction with a fatty acyl-AMP ligase dictates the synthesis of fatty acyl chain of GPL. Based on genetic, biochemical, and structural investigations, we determine that the hydroxyl group is present at the C-5 position of the fatty acyl component. Our retrobiosynthetic approach has provided a means to understand the biosynthesis of GPLs and also resolve the long-standing debate on the accurate structure of mycobacterial GPLs. PMID:22798073

  15. Carbohydrate conformation and lipid condensation in monolayers containing glycosphingolipid Gb3: influence of acyl chain structure.

    PubMed

    Watkins, Erik B; Gao, Haifei; Dennison, Andrew J C; Chopin, Nathalie; Struth, Bernd; Arnold, Thomas; Florent, Jean-Claude; Johannes, Ludger

    2014-09-01

    Globotriaosylceramide (Gb3), a glycosphingolipid found in the plasma membrane of animal cells, is the endocytic receptor of the bacterial Shiga toxin. Using x-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), lipid monolayers containing Gb3 were investigated at the air-water interface. XR probed Gb3 carbohydrate conformation normal to the interface, whereas GIXD precisely characterized Gb3's influence on acyl chain in-plane packing and area per molecule (APM). Two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), were used to study Gb3 packing in different lipid environments. Furthermore, the impact on monolayer structure of a naturally extracted Gb3 mixture was compared to synthetic Gb3 species with uniquely defined acyl chain structures. XR results showed that lipid environment and Gb3 acyl chain structure impact carbohydrate conformation with greater solvent accessibility observed for smaller phospholipid headgroups and long Gb3 acyl chains. In general, GIXD showed that Gb3 condensed phospholipid packing resulting in smaller APM than predicted by ideal mixing. Gb3's capacity to condense APM was larger for DSPC monolayers and exhibited different dependencies on acyl chain structure depending on the lipid environment. The interplay between Gb3-induced changes in lipid packing and the lipid environment's impact on carbohydrate conformation has broad implications for glycosphingolipid macromolecule recognition and ligand binding.

  16. Carbohydrate Conformation and Lipid Condensation in Monolayers Containing Glycosphingolipid Gb3: Influence of Acyl Chain Structure

    PubMed Central

    Watkins, Erik B.; Gao, Haifei; Dennison, Andrew J.C.; Chopin, Nathalie; Struth, Bernd; Arnold, Thomas; Florent, Jean-Claude; Johannes, Ludger

    2014-01-01

    Globotriaosylceramide (Gb3), a glycosphingolipid found in the plasma membrane of animal cells, is the endocytic receptor of the bacterial Shiga toxin. Using x-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), lipid monolayers containing Gb3 were investigated at the air-water interface. XR probed Gb3 carbohydrate conformation normal to the interface, whereas GIXD precisely characterized Gb3’s influence on acyl chain in-plane packing and area per molecule (APM). Two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), were used to study Gb3 packing in different lipid environments. Furthermore, the impact on monolayer structure of a naturally extracted Gb3 mixture was compared to synthetic Gb3 species with uniquely defined acyl chain structures. XR results showed that lipid environment and Gb3 acyl chain structure impact carbohydrate conformation with greater solvent accessibility observed for smaller phospholipid headgroups and long Gb3 acyl chains. In general, GIXD showed that Gb3 condensed phospholipid packing resulting in smaller APM than predicted by ideal mixing. Gb3’s capacity to condense APM was larger for DSPC monolayers and exhibited different dependencies on acyl chain structure depending on the lipid environment. The interplay between Gb3-induced changes in lipid packing and the lipid environment’s impact on carbohydrate conformation has broad implications for glycosphingolipid macromolecule recognition and ligand binding. PMID:25185550

  17. Altering the sphingolipid acyl chain composition prevents LPS/GLN-mediated hepatic failure in mice by disrupting TNFR1 internalization

    PubMed Central

    Ali, M; Fritsch, J; Zigdon, H; Pewzner-Jung, Y; Schütze, S; Futerman, A H

    2013-01-01

    The involvement of ceramide in death receptor-mediated apoptosis has been widely examined with most studies focusing on the role of ceramide generated from sphingomyelin hydrolysis. We now analyze the effect of the ceramide acyl chain length by studying tumor necrosis factor α receptor-1 (TNFR1)-mediated apoptosis in a ceramide synthase 2 (CerS2) null mouse, which cannot synthesize very-long acyl chain ceramides. CerS2 null mice were resistant to lipopolysaccharide/galactosamine-mediated fulminant hepatic failure even though TNFα secretion from macrophages was unaffected. Cultured hepatocytes were also insensitive to TNFα-mediated apoptosis. In addition, in both liver and in hepatocytes, caspase activities were not elevated, consistent with inhibition of TNFR1 pro-apoptotic signaling. In contrast, Fas receptor activation resulted in the death of CerS2 null mice. Caspase activation was blocked because of the inability of CerS2 null mice to internalize the TNFR1; whereas Fc-TNFα was internalized to a perinuclear region in hepatocytes from wild-type mice, no internalization was detected in CerS2 null mice. Our results indicate that altering the acyl chain composition of sphingolipids inhibits TNFR1 internalization and inhibits selective pro-apoptotic downstream signaling for apoptosis. PMID:24263103

  18. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase

    PubMed Central

    Kawelke, Steffen; Feussner, Ivo

    2015-01-01

    Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2) and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2) was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity. PMID:26714272

  19. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase.

    PubMed

    Kawelke, Steffen; Feussner, Ivo

    2015-01-01

    Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2) and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2) was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity.

  20. Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma

    PubMed Central

    Marien, Eyra; Meister, Michael; Muley, Thomas; del Pulgar, Teresa Gomez; Derua, Rita; Spraggins, Jeffrey M.; Van de Plas, Raf; Vanderhoydonc, Frank; Machiels, Jelle; Binda, Maria Mercedes; Dehairs, Jonas; Willette-Brown, Jami; Hu, Yinling; Dienemann, Hendrik; Thomas, Michael; Schnabel, Philipp A.; Caprioli, Richard M.; Lacal, Juan Carlos; Waelkens, Etienne; Swinnen, Johannes V.

    2016-01-01

    Lung cancer is the leading cause of cancer death. Beyond first line treatment, few therapeutic options are available, particularly for squamous cell carcinoma (SCC). Here, we have explored the phospholipidomes of 30 human SCCs and found that they almost invariably (in 96.7% of cases) contain phospholipids with longer acyl chains compared to matched normal tissues. This trait was confirmed using in situ 2D-imaging MS on tissue sections and by phospholipidomics of tumor and normal lung tissue of the L-IkkαKA/KA mouse model of lung SCC. In both human and mouse, the increase in acyl chain length in cancer tissue was accompanied by significant changes in the expression of acyl chain elongases (ELOVLs). Functional screening of differentially expressed ELOVLs by selective gene knockdown in SCC cell lines followed by phospholipidomics revealed ELOVL6 as the main elongation enzyme responsible for acyl chain elongation in cancer cells. Interestingly, inhibition of ELOVL6 drastically reduced colony formation of multiple SCC cell lines in vitro and significantly attenuated their growth as xenografts in vivo in mouse models. These findings identify acyl chain elongation as one of the most common traits of lung SCC discovered so far and pinpoint ELOVL6 as a novel potential target for cancer intervention. PMID:26862848

  1. Small Mismatches in Fatty Acyl Tail Lengths Can Effect Non Steroidal Anti-Inflammatory Drug Induced Membrane Fusion.

    PubMed

    Majumdar, Anupa; Sarkar, Munna

    2016-06-01

    Biological membranes are made up of a variety of lipids with diverse physicochemical properties. The lipid composition modulates different lipidic parameters, such as hydration, dynamics, lipid packing, curvature strain, etc. Changes in these parameters affect various membrane-mediated processes, such as membrane fusion which is an integral step in many biological processes. Packing defects, which originate either from mismatch in the headgroup region or in the hydrophobic acyl tail region, play a major role in modulating membrane dynamics. In this study, we demonstrate how even a small mismatch in the fatty acyl chain length, achieved by incorporation of low concentrations (up to 30 mol %) of dipalmitoylphosphatidylcholine (DPPC) into dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles (SUVs), alters several lipidic parameters like packing, dynamics, and headgroup hydration. This in turn affects non steroidal anti-inflammatory drug (NSAID) induced membrane fusion. Dynamic light scattering, differential scanning calorimetry, second-derivative absorption spectrophotometry, and steady-state and time-resolved fluorescence have been used to elucidate the effect of small mismatch in the tails in DMPC/DPPC mixed vesicles and how it modulates membrane fusion induced by the oxicam NSAIDs, meloxicam (Mx), piroxicam (Px), and tenoxicam (Tx). Fusion kinetics was monitored using fluorescence based fusion assays. At low DPPC concentration of 10 mol %, additional fluidization promotes lipid mixing to some extent for Mx, but at higher mol % of DPPC, subsequent increase in rigidity of membrane interior along with increase in headgroup hydration, synergistically inhibits fusion to various extents for the three different drugs, Mx, Px, and Tx.

  2. Genetics Home Reference: short-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... Download PDF Open All Close All Description Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is a condition that prevents the body from converting certain fats into energy, especially during periods without food (fasting). Signs and symptoms of SCAD deficiency may ...

  3. Diacylglycerol Kinase ϵ Is Selective for Both Acyl Chains of Phosphatidic Acid or Diacylglycerol*

    PubMed Central

    Lung, Michael; Shulga, Yulia V.; Ivanova, Pavlina T.; Myers, David S.; Milne, Stephen B.; Brown, H. Alex; Topham, Matthew K.; Epand, Richard M.

    2009-01-01

    The phosphatidylinositol (PI) cycle mediates many cellular events by controlling the metabolism of many lipid second messengers. Diacylglycerol kinase ϵ (DGKϵ) has an important role in this cycle. DGKϵ is the only DGK isoform to show inhibition by its product phosphatidic acid (PA) as well as substrate specificity for sn-2 arachidonoyl-diacylglycerol (DAG). Here, we show that this inhibition and substrate specificity are both determined by selectivity for a combination of the sn-1 and sn-2 acyl chains of PA or DAG, respectively, preferring the most prevalent acyl chain composition of lipids involved specifically in the PI cycle, 1-stearoyl-2-arachidonoyl. Although the difference in rate for closely related lipid species is small, there is a significant enrichment of 1-stearoyl-2-arachidonoyl PI because of the cyclical nature of PI turnover. We also show that the inhibition of DGKϵ by PA is competitive and that the deletion of the hydrophobic segment and cationic cluster of DGKϵ does not affect its selectivity for the acyl chains of PA or DAG. Thus, this active site not only recognizes the lipid headgroup but also a combination of the two acyl chains in PA or DAG. We propose a mechanism of DGKϵ regulation where its dual acyl chain selectivity is used to negatively regulate its enzymatic activity in a manner that ensures DGKϵ remains committed to the PI turnover cycle. This novel mechanism of enzyme regulation within a signaling pathway could serve as a template for the regulation of enzymes in other pathways in the cell. PMID:19744926

  4. Cationic amphiphiles with fatty acyl chain asymmetry of coconut oil deliver genes selectively to mouse lung.

    PubMed

    Chandrashekhar, Voshavar; Srujan, Marepally; Prabhakar, Rairala; Reddy, Rakesh C; Sreedhar, Bojja; Rentam, Kiran K R; Kanjilal, Sanjit; Chaudhuri, Arabinda

    2011-03-16

    Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.

  5. Neutron chain length distributions in subcritical systems

    SciTech Connect

    Nolen, S.D.; Spriggs, G.

    1999-09-27

    In this paper, the authors present the results of the chain-length distribution as a function of k in subcritical systems. These results were obtained from a point Monte Carlo code and a three-dimensional Monte Carlo code, MC++. Based on these results, they then attempt to explain why several of the common neutron noise techniques, such as the Rossi-{alpha} and Feynman's variance-to-mean techniques, are difficult to perform in highly subcritical systems using low-efficiency detectors.

  6. Partial deletion of beta9 loop in pancreatic lipase-related protein 2 reduces enzyme activity with a larger effect on long acyl chain substrates.

    PubMed

    Dridi, Kaouthar; Amara, Sawsan; Bezzine, Sofiane; Rodriguez, Jorge A; Carrière, Frédéric; Gaussier, Hélène

    2013-07-01

    Structural studies on pancreatic lipase have revealed a complex architecture of surface loops surrounding the enzyme active site and potentially involved in interactions with lipids. Two of them, the lid and beta loop, expose a large hydrophobic surface and are considered as acyl chain binding sites based on their interaction with an alkyl phosphonate inhibitor. While the role of the lid in substrate recognition and selectivity has been extensively studied, the implication of beta9 loop in acyl chain stabilization remained hypothetical. The characterization of an enzyme with a natural deletion of the lid, guinea pig pancreatic lipase-related protein 2 (GPLRP2), suggests however an essential contribution of the beta9 loop in the stabilization of the acyl enzyme intermediate formed during the lipolysis reaction. A GPLRP2 mutant with a seven-residue deletion of beta9 loop (GPLRP2-deltabeta9) was produced and its enzyme activity was measured using various substrates (triglycerides, monoglycerides, galactolipids, phospholipids, vinyl esters) with short, medium and long acyl chains. Whatever the substrate tested, GPLRP2-deltabeta9 activity is drastically reduced compared to that of wild-type GPLRP2 and this effect is more pronounced as the length of substrate acyl chain increases. Changes in relative substrate selectivity and stereoselectivity remained however weak. The deletion within beta9 loop has also a negative effect on the rate of enzyme inhibition by alkyl phosphonates. All these findings indicate that the reduced enzyme turnover observed with GPLRP2-deltabeta9 results from a weaker stabilization of the acyl enzyme intermediate due to a loss of hydrophobic interactions. PMID:24046870

  7. Phenethyl alcohol disorders phospholipid acyl chains and promotes translocation of the mitochondrial precursor protein apocytochrome c across a lipid bilayer.

    PubMed

    Jordi, W; Nibbeling, R; de Kruijff, B

    1990-02-12

    The interaction of phenethyl alcohol with model membranes and its effect on translocation of the chemically prepared mitochondrial precursor protein apocytochrome c across a lipid bilayer was studied. Phenethyl alcohol efficiently penetrates into monolayers and causes acyl chain disordering judged from deuterium nuclear magnetic resonance measurements with specific acyl chain-deuterated phospholipids. Translocation of apocytochrome c across a phospholipid bilayer was stimulated on addition of phenethyl alcohol indicating that the efficiency of translocation of this precursor protein is enhanced due to a disorder of the acyl chain region of the bilayer.

  8. Evidence for the Intercalation of Lipid Acyl Chains into Polypropylene Fiber Matrices.

    PubMed

    Schadock-Hewitt, Abby J; Bruce, Terri F; Marcus, R Kenneth

    2015-09-29

    Headgroup-functionalized lipids are being developed as ligand tethers for high selectivity separations on polypropylene capillary-channeled polymer fiber stationary phases. Surface modification is affected under ambient conditions from aqueous solution. This basic methodology has promise in many areas where robust modifications are desired on hydrophobic surfaces. In order to understand the mode of adsorption of the lipid tail to the polypropylene surface, lipids labeled with the environmentally sensitive 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD) fluorophore were used, with NBD covalently attached to the headgroup (NBD-PE) or the acyl chain (acyl NBD-PE) of the lipid. When modified with the acyl NBD-PE, fluorescence imaging of the fiber at excitation wavelengths increasing from 470 to 510 nm caused a 32 nm shift in emission toward the red edge of the absorption band, indicating that the NBD molecule (and thus the lipid tail) is motionally restricted. Fluorescence imaging on fibers modified with NBD-PE or the free NBD-Cl dye molecule yields no change in the emission response. The results of these imaging studies provide evidence that the acyl chain portions of the lipids intercalate into free volume of the polypropylene fiber structure, yielding a robust means of surface modification and the potential for high ligand densities. PMID:26381380

  9. Synthesis of rapeseed biodiesel using short-chained alkyl acetates as acyl acceptor.

    PubMed

    Jeong, Gwi-Taek; Park, Don-Hee

    2010-05-01

    In this study, we conducted experiments using a response surface methodology to determine the optimal reaction conditions for the enzymatic synthesis of biodiesel from rapeseed oil and short-chained alkyl acetates, such as methyl acetate or ethyl acetate, as the acyl acceptor at 40 degrees C. Based on our response surface methodology experiments, the optimal reaction conditions for the synthesis of biodiesel were as follows: methyl acetate as acyl acceptor, catalyst concentration of 16.50%, oil-to-methyl acetate molar ratio of 1:12.44, and reaction time of 19.70 h; ethyl acetate as acyl acceptor, catalyst concentration of 16.95%, oil-to-ethyl acetate molar ratio of 1:12.56, and reaction time of 19.73 h. The fatty acid ester content under the above conditions when methyl acetate and ethyl acetate were used as the acyl acceptor was 58.0% and 62.6%, respectively. The statistical method described in this study can be applied to effectively optimize the enzymatic conditions required for biodiesel production with short-chained alkyl acetates.

  10. Synthesis of rapeseed biodiesel using short-chained alkyl acetates as acyl acceptor.

    PubMed

    Jeong, Gwi-Taek; Park, Don-Hee

    2010-05-01

    In this study, we conducted experiments using a response surface methodology to determine the optimal reaction conditions for the enzymatic synthesis of biodiesel from rapeseed oil and short-chained alkyl acetates, such as methyl acetate or ethyl acetate, as the acyl acceptor at 40 degrees C. Based on our response surface methodology experiments, the optimal reaction conditions for the synthesis of biodiesel were as follows: methyl acetate as acyl acceptor, catalyst concentration of 16.50%, oil-to-methyl acetate molar ratio of 1:12.44, and reaction time of 19.70 h; ethyl acetate as acyl acceptor, catalyst concentration of 16.95%, oil-to-ethyl acetate molar ratio of 1:12.56, and reaction time of 19.73 h. The fatty acid ester content under the above conditions when methyl acetate and ethyl acetate were used as the acyl acceptor was 58.0% and 62.6%, respectively. The statistical method described in this study can be applied to effectively optimize the enzymatic conditions required for biodiesel production with short-chained alkyl acetates. PMID:19802734

  11. Autoxidation of medium chain length polyhydroxyalkanoate.

    PubMed

    Schmid, Manfred; Ritter, Axel; Grubelnik, Andreas; Zinn, Manfred

    2007-02-01

    Polyhydroxyalkanoates (PHAs) are a class of biopolymers that are currently the subject of intensive research for various applications (packaging, consumer products, medical applications, etc.). It is known from synthetic polymers that all plastic materials show more or less pronounced autoxidation (aging induced by UV radiation, temperature, heavy metal ions, etc.). There is less knowledge as yet regarding the autoxidation behavior of biopolymers. The autoxidative behavior of medium chain length poly[(R)-3-hydroxyalkanoate] (mcl-PHA) was therefore investigated. mcl-PHA (co)polymers with amounts of 0, 10, 50, and 75 mol % of olefinic side chains with terminal double bonds were tempered at 60 degrees C in air for 3 months. After 1, 2, 4, 8, and 12 weeks, samples were removed and analyzed for changes in chemical and physical properties by sol-gel analysis (Soxhlet extraction), size exclusion chromatography (SEC), infrared analysis (IR), and gas chromatography/flame ionization detection (GC/FID). It became apparent that the content of double bonds greatly influences the autoxidation of mcl-PHA. A low amount of unsaturated moiety (0 and 10 mol %) resulted in chain scission, whereas samples with 50 and 75 mol % olefinic side chains showed cross-linking and became insoluble after a few weeks. Kinetic data of oxidation behavior were investigated by performing isothermal DSC experiments at elevated temperatures. The kinetic data combined with the experiment enabled the gelation time to be predicted and the shelf-life of mcl-PHA to be estimated. Because of the detected sensitivity of mcl-PHA regarding autoxidation, it is recommended that these biopolymers should be stored cold (at least -5 degrees C) and in an inert gas atmosphere or stabilized by suitable additives (antioxidants).

  12. Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase

    PubMed Central

    Tran, Timothy H.; Hsiao, Yu-Shan; Jo, Jeanyoung; Chou, Chi-Yuan; Dietrich, Lars E.P.; Walz, Thomas; Tong, Liang

    2014-01-01

    Biotin-dependent carboxylases are widely distributed in nature and have important functions in the metabolism of fatty acids, amino acids, carbohydrates, cholesterol and other compounds 1–6. Defective mutations in several of these enzymes have been linked to serious metabolic diseases in humans, and acetyl-CoA carboxylase (ACC) is a target for drug discovery against diabetes, cancer and other diseases 7–9. We report here the identification and biochemical, structural and functional characterizations of a novel single-chain (120 kD), multi-domain biotin-dependent carboxylase in bacteria. It has preference for long-chain acyl-CoA substrates, although it is also active toward short- and medium-chain acyl-CoAs, and we have named it long-chain acyl-CoA carboxylase (LCC). The holoenzyme is a homo-hexamer with molecular weight of 720 kD. The 3.0 Å crystal structure of Mycobacterium avium subspecies paratuberculosis LCC (MapLCC) holoenzyme revealed an architecture that is strikingly different compared to those of related biotin-dependent carboxylases 10,11. In addition, the domains of each monomer have no direct contacts with each other. They are instead extensively swapped in the holoenzyme, such that one cycle of catalysis involves the participation of four monomers. Functional studies in Pseudomonas aeruginosa suggest that the enzyme is involved in the utilization of selected carbon and nitrogen sources. PMID:25383525

  13. Lipid Gymnastics: Evidence of Complete Acyl Chain Reversal in Oxidized Phospholipids from Molecular Simulations

    PubMed Central

    Khandelia, Himanshu; Mouritsen, Ole G.

    2009-01-01

    In oxidative environments, biomembranes contain oxidized lipids with short, polar acyl chains. Two stable lipid oxidation products are PoxnoPC and PazePC. PoxnoPC has a carbonyl group, and PazePC has an anionic carboxyl group pendant at the end of the short, oxidized acyl chain. We have used MD simulations to explore the possibility of complete chain reversal in OXPLs in POPC-OXPL mixtures. The polar AZ chain of PazePC undergoes chain reversal without compromising the lipid bilayer integrity at concentrations up to 25% OXPL, and the carboxyl group points into the aqueous phase. Counterintuitively, the perturbation of overall membrane structural and dynamic properties is stronger for PoxnoPC than for PazePC. This is because of the overall condensing and ordering effect of sodium ions bound strongly to the lipids in the PazePC simulations. The reorientation of AZ chain is similar for two different lipid force fields. This work provides the first molecular evidence of the “extended lipid conformation” in phospholipid membranes. The chain reversal of PazePC lipids decorates the membrane interface with reactive, negatively charged functional groups. Such chain reversal is likely to exert a profound influence on the structure and dynamics of biological membranes, and on membrane-associated biological processes. PMID:19348756

  14. Production of medium chain length fatty alcohols from glucose in Escherichia coli

    PubMed Central

    Youngquist, J. Tyler; Schumacher, Martin H.; Rose, Joshua P.; Raines, Thomas C.; Politz, Mark C.; Copeland, Matthew F.; Pfleger, Brian F.

    2013-01-01

    Metabolic engineering offers the opportunity to produce a wide range of commodity chemicals that are currently derived from petroleum or other non-renewable resources. Microbial synthesis of fatty alcohols is an attractive process because it can control the distribution of chain lengths and utilize low cost fermentation substrates. Specifically, primary alcohols with chain lengths of 12 to 14 carbons have many uses in the production of detergents, surfactants, and personal care products. The current challenge is to produce these compounds at titers and yields that would make them economically competitive. Here, we demonstrate a metabolic engineering strategy for producing fatty alcohols from glucose. To produce a high level of 1-dodecanol and 1-tetradecanol, an acyl-ACP thioesterase (BTE), an acyl-CoA ligase (FadD), and an acyl-CoA/aldehyde reductase (MAACR) were overexpressed in an engineered strain of Escherichia coli. Yields were improved by balancing expression levels of each gene, using a fed-batch cultivation strategy, and adding a solvent to the culture for extracting the product from cells. Using these strategies, a titer of over 1.6 g/L fatty alcohol with a yield of over 0.13 g fatty alcohol / g carbon source was achieved. These are the highest reported yield of fatty alcohols produced from glucose in E. coli. PMID:24141053

  15. Cardiac Hypertrophy in Mice with Long-Chain Acyl-CoA Dehydrogenase (LCAD) or Very Long-Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency

    PubMed Central

    Cox, Keith B.; Liu, Jian; Tian, Liqun; Barnes, Stephen; Yang, Qinglin; Wood, Philip A.

    2009-01-01

    Cardiac hypertrophy is a common finding in human patients with inborn errors of long-chain fatty acid oxidation. Mice with either very long-chain acyl-CoA dehydrogenase deficiency (VLCAD−/−) or long-chain acyl-CoA dehydrogenase deficiency (LCAD−/−) develop cardiac hypertrophy. Cardiac hypertrophy, initially measured using heart/body weight ratios, was manifested most severely in LCAD−/− male mice. VLCAD−/− mice, as a group, showed a mild increase in normalized cardiac mass (8.8% hypertrophy compared to all wild-type [WT] mice). In contrast, LCAD−/− mice as a group showed more severe cardiac hypertrophy (32.2% increase compared to all WT mice). Based on a clear male predilection, we investigated the role of dietary plant estrogenic compounds commonly found in mouse diets due to soy or alfalfa components providing natural phytoestrogens or isoflavones in cardioprotection of LCAD−/− mice. Male LCAD−/− mice fed an isoflavone-free test diet had more severe cardiac hypertrophy (58.1% hypertrophy compared to WT mice fed the same diet. There were no significant differences in the female groups fed any of the diets. Echocardiography measurement performed on male LCAD deficient mice fed a standard diet at ~3 months of age confirmed the substantial cardiac hypertrophy in these mice compared with WT controls. Left ventricular wall thickness of interventricular septum and posterior wall was remarkably increased in LCAD−/− mice compared with that of WT controls. Accordingly, the calculated LV mass after normalization to body weight was increased about 40% in the LCAD−/− mice compared with WT mice. In summary, we found that metabolic cardiomyopathy, expressed as hypertrophy, developed in mice due to either VLCAD deficiency or LCAD deficiency; however, LCAD deficiency was the most profound and appeared to be attenuated either by endogenous estrogen in females or phytoestrogens in the diet as isoflavones in males. PMID:19736549

  16. Acyl chain-dependent effect of lysophosphatidylcholine on endothelium-dependent vasorelaxation.

    PubMed

    Rao, Shailaja P; Riederer, Monika; Lechleitner, Margarete; Hermansson, Martin; Desoye, Gernot; Hallström, Seth; Graier, Wolfgang F; Frank, Saša

    2013-01-01

    Previously we identified palmitoyl-, oleoyl-, linoleoyl-, and arachidonoyl-lysophosphatidylcholine (LPC 16:0, 18:1, 18:2 and 20:4) as the most prominent LPC species generated by endothelial lipase (EL). In the present study, we examined the impact of those LPC on acetylcholine (ACh)- induced vascular relaxation. All tested LPC attenuated ACh-induced relaxation, measured ex vivo, using mouse aortic rings and wire myography. The rank order of potency was as follows: 18:2>20:4>16:0>18:1. The attenuating effect of LPC 16:0 on relaxation was augmented by indomethacin-mediated cyclooxygenase (COX)-inhibition and CAY10441, a prostacyclin (PGI2)- receptor (IP) antagonist. Relaxation attenuated by LPC 20:4 and 18:2 was improved by indomethacin and SQ29548, a thromboxane A2 (TXA2)- receptor antagonist. The effect of LPC 20:4 could also be improved by TXA2- and PGI2-synthase inhibitors. As determined by EIA assays, the tested LPC promoted secretion of PGI2, TXA2, PGF2α, and PGE2, however, with markedly different potencies. LPC 16:0 was the most potent inducer of superoxide anion production by mouse aortic rings, followed by LPC 18:2, 20:4 and 18:1, respectively. The strong antioxidant tempol recovered relaxation impairment caused by LPC 18:2, 18:1 and 20:4, but not by LPC 16:0. The tested LPC attenuate ACh-induced relaxation through induction of proconstricting prostanoids and superoxide anions. The potency of attenuating relaxation and the relative contribution of underlying mechanisms are strongly related to LPC acyl-chain length and degree of saturation. PMID:23741477

  17. Electronic effects in the length distribution of atom chains.

    PubMed

    Crain, J N; Stiles, M D; Stroscio, J A; Pierce, D T

    2006-04-21

    Gold deposited on Si(553) leads to self-assembly of atomic chains, which are broken into finite segments by defects. Scanning tunneling microscopy is used to investigate the distribution of chain lengths and the correlation between defects separating the chains. The length distribution reveals oscillations that indicate changes in the cohesive energy as a function of chain length. We present a possible interpretation in terms of the electronic scattering vectors at the Fermi surface of the surface states. The pairwise correlation function between defects shows long-range correlations that extend beyond nearest-neighbor defects, indicating coupling between chains.

  18. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide.

    PubMed

    Eminoglu, Tuba F; Tumer, Leyla; Okur, Ilyas; Ezgu, Fatih S; Biberoglu, Gursel; Hasanoglu, Alev

    2011-07-15

    Very-long-chain acyl-coenzyme A (CoA) dehydrogenase deficiency (VLCADD) (OMIM #201475) is an autosomal recessive disorder of fatty acid oxidation. Major phenotypic expressions are hypoketotic hypoglycemia, hepatomegaly, cardiomyopathy, myopathy, rhabdomyolysis, elevated creatinine kinase, and lipid infiltration of liver and muscle. At the same time, it is a rare cause of Sudden Infant Death Syndrome (SIDS) or unexplained death in the neonatal period [1-4]. We report a patient with VLCADD whose parents were investigated for infanticide because her three previous siblings had suddenly died after normal deliveries.

  19. Modified branched-chain amino acid pathways give rise to acyl acids of sucrose esters exuded from tobacco leaf trichomes.

    PubMed

    Kandra, G; Severson, R; Wagner, G J

    1990-03-10

    A major diversion of carbon from branched-chain amino acid biosynthesis/catabolism to form acyl moieties of sucrose esters (6-O-acetyl-2,3,4-tri-O-acyl-alpha-D-glucopyranosyl-beta-D- fructofuranosides) was observed to be associated with specialized trichome head cells which secrete large amounts of sucrose esters. Surface chemistry and acetyl and acyl substituent groups of tobacco (T.I. 1068) sucrose esters were identified and quantified by gas chromatography/mass spectrometry. Sucrose esters were prominent surface constituents and 3-methylvaleric acid, 2- and 3-methylbutyric acid, and methylpropionic acid accounted for 60%, 25% and 9%, respectively, of total C3--C7 acyl substituents. Radiolabeled Thr, Ile, Val, Leu, pyruvate and Asp, metabolites of branched-chain amino acid pathways, were compared with radioactively labeled acetate and sucrose as donors of carbon to sucrose, acetyl and acyl components of sucrose esters using epidermal peels with undisturbed trichomes. Preparations of biosynthetically competent trichome heads (site of sucrose ester formation) were also examined. Results indicate that 3-methylvaleryl and 2-methylbutyryl groups are derived from the Thr pathway of branched-chain amino acid metabolism, 3-methylbutyryl and methylpropionyl groups are formed via the pyruvate pathway, and that acetyl groups are principally formed directly via acetyl-CoA. Arguments are presented which rule out participation of fatty acid synthase in the formation of prominent acyl acids. Results suggest that the shunting of carbon away from the biosynthesis of Val, Leu and Ile may be due to a low level of amino acid utilization in protein synthesis in specialized glandular head cells of trichomes. This would result in the availability of corresponding oxo acids for CoA activation and esterification to form sucrose esters. Preliminary evidence was found for the involvement of cycling reactions in oxo-acid-chain lengthening and for utilization of pyruvate-derived 2

  20. Inhibition of Long Chain Fatty Acyl-CoA Synthetase (ACSL) and Ischemia Reperfusion Injury

    PubMed Central

    Prior, Allan M.; Zhang, Man; Blakeman, Nina; Datta, Palika; Pham, Hung; Young, Lindon H.; Weis, Margaret T.; Hua, Duy H.

    2014-01-01

    Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [14C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion. PMID:24480468

  1. Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols.

    PubMed

    Jin, Zhu; Wong, Adison; Foo, Jee Loon; Ng, Joey; Cao, Ying-Xiu; Chang, Matthew Wook; Yuan, Ying-Jin

    2016-04-01

    Fatty aldehydes and alcohols are valuable precursors used in the industrial manufacturing of a myriad of specialty products. Herein, we demonstrate the de novo production of odd chain-length fatty aldehydes and fatty alcohols in Saccharomyces cerevisiae by expressing a novel biosynthetic pathway involving cytosolic thioesterase, rice α-dioxygenase and endogenous aldehyde reductases. We attained production titers of ∼20 mg/l fatty aldehydes and ∼20 mg/l fatty alcohols in shake flask cultures after 48 and 60 h respectively without extensive fine-tuning of metabolic fluxes. In contrast to prior studies which relied on bi-functional fatty acyl-CoA reductase to produce even chain-length fatty alcohols, our biosynthetic route exploits α-oxidation reaction to produce odd chain-length fatty aldehyde intermediates without using NAD(P)H cofactor, thereby conserving cellular resource during the overall synthesis of odd chain-length fatty alcohols. The biosynthetic pathway presented in this study has the potential to enable sustainable and efficient synthesis of fatty acid-derived chemicals from processed biomass. PMID:26461930

  2. Ontogenic development of the fatty acyl chain composition of the turkey (Meleagris gallopavo) pectoralis superficialis muscle membranes: an allometric approach.

    PubMed

    Szabó, A; Fébel, Hedvig; Horn, P; Andrássy-Baka, G; Bázár, Gy; Romvári, R

    2006-06-01

    The growth-associated development of the m. pectoralis superficialis (MPS) phospholipid (PL) and triacylglycerol (TAG) fatty acyl (FA) chain composition was determined in BUT8 meat-type turkeys. Samples (3 d, 8, 12, 16 and 20 wk) of each 6 males were analysed by lipid fractionation and subsequent gas chromatography. Results were interpreted on an allometric basis. The MPS mass increased linearly (MPS weight = 0.2787 BW- 123.67; R2 = 0.9935, P<0.001, n = 30). In the total phospholipids 62-63% unsaturated fatty acids were found irrespective of the diet. A negative allometric alteration was found for the total saturated acyl chains (B = -0.012), while a positive value for the calculated unsaturation index (B = 0.026) was obtained. Within the PUFA chains, the n3- n6 balance was markedly changed, on the favour of the n3 fatty acyl chains, namely competitive allometric trends were found for the total n3 (B = 0.087) and n6 (B = 0.032) fatty acid groups. The alterations of the TAG FA chain composition were diet-dependent. The serum creatine kinase activity increased by over one class of magnitude during the trial. The allometric approach was found to be powerful in the characterization of the basic, non diet-dependent ontogenic alterations of the phospholipid fatty acyl chain composition.

  3. Diet-Sensitive Sources of Reactive Oxygen Species in Liver Mitochondria: Role of Very Long Chain Acyl-CoA Dehydrogenases

    PubMed Central

    Cardoso, Ariel R.; Kakimoto, Pâmela A. H. B.; Kowaltowski, Alicia J.

    2013-01-01

    High fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD). We found that mitochondria from HFD livers present no differences in maximal respiratory rates and coupling, but generate more ROS specifically when fatty acids are used as substrates. Indeed, many acyl-CoA dehydrogenase isoforms were found to be more highly expressed in HFD livers, although only the very long chain acyl-CoA dehydrogenase (VLCAD) was more functionally active. Studies conducted with permeabilized mitochondria and different chain length acyl-CoA derivatives suggest that VLCAD is also a source of ROS production in mitochondria of HFD animals. This production is stimulated by the lack of NAD+. Overall, our studies uncover VLCAD as a novel, diet-sensitive, source of mitochondrial ROS. PMID:24116206

  4. Surface active molecules: preparation and properties of long chain n-acyl-l-alpha-amino-omega-guanidine alkyl acid derivatives.

    PubMed

    Infante, R; Dominguez, J G; Erra, P; Julia, R; Prats, M

    1984-12-01

    Synopsis A new route for the synthesis of long chain N(alpha)-acyl-l-alpha-amino-omega-guamdine alkyl acid derivatives, with cationic or amphoteric character has been established. The general formula of these compounds is shown below. A physico-chemical and antimicrobial study of these products as a function of the alkyl ester or sodium salt (R), the straight chain length of the fatty acid residue (x) and the number of carbons between the omega-guanidine and omega-carboxyl group (n) has been investigated. The water solubility, surface tension, critical micelle concentration (c.m.c.) and minimum inhibitory concentration (MIC) against Gram-positive and Gram-negative bacteria (including Pseudomonas) has been determined. Dicyclohexylcarbodiimide has been used to condense fatty acids and alpha-amino-omega-guanidine alkyl acids. In these conditions protection of the omega-guanidine group is not necessary. The main characteristic of this synthetic procedure is the use of very mild experimental conditions (temperature, pH) to form the amide linkage which leads to pure optical compounds in high yield in the absence of electrolytes. The results show that some structural modifications, particularly the protection of the carboxyl group, promote variations of the surfactant and antimicrobial properties. Only those molecules with the blocked carboxyl group (cationic molecules, where R = Me, Et or Pr) showed a good surfactant and antimicrobial activity. When the carboxyl group was unprotected (amphoteric molecules, where R = Na(+)) the resulting compounds were inactive.

  5. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate

    PubMed Central

    Kormanik, Kaitlyn; Kang, Heejung; Cuebas, Dean; Vockley, Jerry; Mohsen, Al-Walid

    2012-01-01

    Sodium phenylbutyrate is used for treating urea cycle disorders, providing an alternative for ammonia excretion. Following conversion to its CoA ester, phenylbutyryl-CoA is postulated to undergo one round of β-oxidation to phenylacetyl-CoA, the active metabolite. Molecular modeling suggests that medium chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3), a key enzyme in straight chain fatty acid β-oxidation, could utilize phenylbutyryl-CoA as substrate. Moreover, phenylpropionyl-CoA has been shown to be a substrate for MCAD and its intermediates accumulate in patients with MCAD deficiency. We have examined the involvement of MCAD and other acyl-CoA dehydrogenases (ACADs) in the metabolism of phenylbutyryl-CoA. Anaerobic titration of purified recombinant human MCAD with phenylbutyryl-CoA caused changes in the MCAD spectrum that are similar to those induced by octanoyl-CoA, its bona fide substrate, and unique to the development of the charge transfer ternary complex. The calculated apparent dissociation constant (KD app) for these substrates was 2.16 μM and 0.12 μM, respectively. The MCAD reductive and oxidative half reactions were monitored using the electron transfer flavoprotein (ETF) fluorescence reduction assay. The catalytic efficiency and the Km for phenylbutyryl-CoA were 0.2 mM−1· sec−1 and 5.3 μM compared to 4.0 mM−1· sec−1 and 2.8 μM for octanoyl-CoA. Extracts of wild type and MCAD-deficient lymphoblast cells were tested for the ability to reduce ETF using phenylbutyryl-CoA as substrate. While ETF reduction activity was detected in extracts of wild type cells, it was undetectable in extracts of cells deficient in MCAD. The results are consistent with MCAD playing a key role in phenylbutyrate metabolism. PMID:23141465

  6. Constraints on food chain length arising from regional metacommunity dynamics.

    PubMed

    Calcagno, Vincent; Massol, François; Mouquet, Nicolas; Jarne, Philippe; David, Patrice

    2011-10-22

    Classical ecological theory has proposed several determinants of food chain length, but the role of metacommunity dynamics has not yet been fully considered. By modelling patchy predator-prey metacommunities with extinction-colonization dynamics, we identify two distinct constraints on food chain length. First, finite colonization rates limit predator occupancy to a subset of prey-occupied sites. Second, intrinsic extinction rates accumulate along trophic chains. We show how both processes concur to decrease maximal and average food chain length in metacommunities. This decrease is mitigated if predators track their prey during colonization (habitat selection) and can be reinforced by top-down control of prey vital rates (especially extinction). Moreover, top-down control of colonization and habitat selection can interact to produce a counterintuitive positive relationship between perturbation rate and food chain length. Our results show how novel limits to food chain length emerge in spatially structured communities. We discuss the connections between these constraints and the ones commonly discussed, and suggest ways to test for metacommunity effects in food webs.

  7. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    SciTech Connect

    Serek, Robert; Forwood, Jade K.; Hume, David A.; Martin, Jennifer L.; Kobe, Bostjan

    2006-02-01

    The C-terminal domain of the mouse long-chain acyl-CoA thioesterase has been expressed in bacteria and crystallized by vapour diffusion. The crystals diffract to 2.4 Å resolution. The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination.

  8. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain.

    PubMed Central

    Holte, L. L.; Peter, S. A.; Sinnwell, T. M.; Gawrisch, K.

    1995-01-01

    Solid-state 2H nuclear magnetic resonance spectroscopy was used to determine the orientational order parameter profiles for a series of phosphatidylcholines with perdeuterated stearic acid, 18:0d35, in position sn-1 and 18:1 omega 9, 18:2 omega 6, 18:3 omega 3, 20:4 omega 6, 20:5 omega 3, or 22:6 omega 3 in position sn-2. The main phase transition temperatures were derived from a first moment analysis, and order parameter profiles of sn-1 chains were calculated from dePaked nuclear magnetic resonance powder patterns. Comparison of the profiles at 37 degrees C showed that unsaturation causes an inhomogenous disordering along the sn-1 chain. Increasing sn-2 chain unsaturation from one to six double bonds resulted in a 1.6-kHz decrease in quadrupolar splittings of the sn-1 chain in the upper half of the chain (or plateau region) and maximum splitting difference of 4.4 kHz at methylene carbon 14. The change in chain order corresponds to a decrease in the 18:0 chain length of 0.4 +/- 0.2 A with 18:2 omega 6 versus 18:1 omega 9 in position sn-2. Fatty acids containing three or more double bonds in sn-2 showed a decrease in sn-1 chain length of 0.7 +/- 0.2 A compared with 18:1 omega 9. The chain length of all lipids decreased with increasing temperature. Highly unsaturated phosphatidylcholines (three or more double bonds in sn-2) had shorter sn-1 chains, but the chain length was somewhat less sensitive to temperature. The profiles reveal that the sn-1 chain exhibits a selective increase in motional freedom in a region located toward the bottom half of the chain as sn-2 unsaturation is increased. This corresponds to an area increase around carbon atom number 14 that is three to four times greater than the increase for the top part of the chain. A similar asymmetric decrease in order, largest toward the methyl end of the chain, was observed when 1 -palmitoyl-2-oleoylphosphatidylethanolamine goes from a lamellar to an inverse hexagonal (H,,) phase. This is consistent with a

  9. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase.

    PubMed Central

    Fraisl, Peter; Forss-Petter, Sonja; Zigman, Mihaela; Berger, Johannes

    2004-01-01

    It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely. PMID:14516277

  10. Purification and characterization of a novel pumpkin short-chain acyl-coenzyme A oxidase with structural similarity to acyl-coenzyme A dehydrogenases.

    PubMed

    De Bellis, L; Gonzali, S; Alpi, A; Hayashi, H; Hayashi, M; Nishimura, M

    2000-05-01

    A novel pumpkin (Cucurbita pepo) short-chain acyl-coenzyme A (CoA) oxidase (ACOX) was purified to homogeneity by hydrophobic-interaction, hydroxyapatite, affinity, and anion-exchange chromatography. The purified enzyme is a tetrameric protein, consisting of apparently identical 47-kD subunits. The protein structure of this oxidase differs from other plant and mammalian ACOXs, but is similar to the protein structure of mammalian mitochondrial acyl-CoA dehydrogenase (ACDH) and the recently identified plant mitochondrial ACDH. Subcellular organelle separation by sucrose density gradient centrifugation revealed that the enzyme is localized in glyoxysomes, whereas no immunoreactive bands of similar molecular weight were detected in mitochondrial fractions. The enzyme selectively catalyzes the oxidation of CoA esters of fatty acids with 4 to 10 carbon atoms, and exhibits the highest activity on C-6 fatty acids. Apparently, the enzyme has no activity on CoA esters of branched-chain or dicarboxylic fatty acids. The enzyme is slightly inhibited by high concentrations of substrate and it is not inhibited by Triton X-100 at concentrations up to 0.5% (v/v). The characteristics of this novel ACOX enzyme are discussed in relation to other ACOXs and ACDHs. PMID:10806249

  11. Comparative studies of Acyl-CoA dehydrogenases for monomethyl branched chain substrates in amino acid metabolism.

    PubMed

    Liu, Xiaojun; Wu, Long; Deng, Guisheng; Chen, Gong; Li, Nan; Chu, Xiusheng; Li, Ding

    2013-04-01

    Short/branched chain acyl-CoA dehydrogenase (SBCAD), isovaleryl-CoA dehydrogenase (IVD), and isobutyryl-CoA dehydrogenase (IBD) are involved in metabolism of isoleucine, leucine, and valine, respectively. These three enzymes all belong to acyl-CoA dehydrogenase (ACD) family, and catalyze the dehydrogenation of monomethyl branched-chain fatty acid (mmBCFA) thioester derivatives. In the present work, the catalytic properties of rat SBCAD, IVD, and IBD, including their substrate specificity, isomerase activity, and enzyme inhibition, were comparatively studied. Our results indicated that SBCAD has its catalytic properties relatively similar to those of straight-chain acyl-CoA dehydrogenases in terms of their isomerase activity and enzyme inhibition, while IVD and IBD are different. IVD has relatively broader substrate specificity than those of the other two enzymes in accommodating various substrate analogs. The present study increased our understanding for the metabolism of monomethyl branched-chain fatty acids (mmBCFAs) and branched-chain amino acids (BCAAs), which should also be useful for selective control of a particular reaction through the design of specific inhibitors. PMID:23474214

  12. Heterogeneity of Alkane Chain Length in Freshwater and Marine Cyanobacteria

    PubMed Central

    Shakeel, Tabinda; Fatma, Zia; Fatma, Tasneem; Yazdani, Syed Shams

    2015-01-01

    The potential utilization of cyanobacteria for the biological production of alkanes represents an exceptional system for the next generation of biofuels. Here, we analyzed a diverse group of freshwater and marine cyanobacterial isolates from Indian culture collections for their ability to produce both alkanes and alkenes. Among the 50 cyanobacterial isolates screened, 32 isolates; 14 freshwater and 18 marine isolates; produced predominantly alkanes. The GC-MS/MS profiles revealed a higher percentage of pentadecane and heptadecane production for marine and freshwater strains, respectively. Oscillatoria species were found to be the highest producers of alkanes. Among the freshwater isolates, Oscillatoria CCC305 produced the maximum alkane level with 0.43 μg/mg dry cell weight, while Oscillatoria formosa BDU30603 was the highest producer among the marine isolates with 0.13 μg/mg dry cell weight. Culturing these strains under different media compositions showed that the alkane chain length was not influenced by the growth medium but was rather an inherent property of the strains. Analysis of the cellular fatty acid content indicated the presence of predominantly C16 chain length fatty acids in marine strains, while the proportion of C18 chain length fatty acids increased in the majority of freshwater strains. These results correlated with alkane chain length specificity of marine and freshwater isolates indicating that alkane chain lengths may be primarily determined by the fatty acid synthesis pathway. Moreover, the phylogenetic analysis showed clustering of pentadecane-producing marine strains that was distinct from heptadecane-producing freshwater strains strongly suggesting a close association between alkane chain length and the cyanobacteria habitat. PMID:25853127

  13. Dual mesomorphic assemblage of chitin normal acylates and rapid enthalpy relaxation of their side chains.

    PubMed

    Teramoto, Yoshikuni; Miyata, Tomoya; Nishio, Yoshiyuki

    2006-01-01

    Chitin derivatives having normalacyl groups (C(n)H(2n-1)O-; n = 4-20) were synthesized with pyridine, p-toluenesulfonyl chloride, and normal alkanoic acid in an N,N-dimethylacetamide-lithium chloride homogeneous system. The products (C(n)-ACs; degree of acyl substitution, DS = 1.7-1.9) showed an n-dependent thermal transition behavior: no evident transition (n = 4-10), a glass transition (n = 12 and 14), and a pseudo-first-order phase transition (n = 16-20), the latter two occurring usually below room temperature when examined by differential scanning calorimetry. Wide-angle X-ray diffractometry (WAXD) at 20 degrees C displayed a sharp diffraction peak (2theta = 2 degrees -7 degrees ) and a diffuse halo (2theta approximately 20 degrees ) for the respective C(n)-ACs. The former d-spacing (1.5-3.6 nm) increased with an increase in n to yield two stages of mutually different increasing rates, which reflects a systematic n-dependence of the period of a layered structure of the main chains. The molecular assembly of C(n)-ACs exhibited "dual mesomorphy"; nematic ordering for the semirigid carbohydrate trunk and smectic one for the flexible side chains. On the other hand, WAXD profiles of C(n)-ACs (n = 14-18) indicated almost no temperature dependence from -150 to +220 degrees C. Therefore, it was reasonably assumed that the pseudo-first-order transition observed in thermograms of C(n)-ACs (n = 16-20) was due to the enthalpy relaxation of the side-chain assemblage. An insight was provided into the kinetics of the characteristic aging behavior as a liquid-crystalline glass, in comparison with the corresponding data for other noncrystalline macromolecules.

  14. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length.

    PubMed

    Sydor, Tobias; von Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-03-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. PMID:23078612

  15. Effects of short-chain acyl-CoA dehydrogenase on cardiomyocyte apoptosis.

    PubMed

    Zeng, Zhenhua; Huang, Qiuju; Shu, Zhaohui; Liu, Peiqing; Chen, Shaorui; Pan, Xuediao; Zang, Linquan; Zhou, Sigui

    2016-07-01

    Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, plays an important role in cardiac hypertrophy. However, its effect on the cardiomyocyte apoptosis remains unknown. We aimed to determine the role of SCAD in tert-butyl hydroperoxide (tBHP)-induced cardiomyocyte apoptosis. The mRNA and protein expression of SCAD were significantly down-regulated in the cardiomyocyte apoptosis model. Inhibition of SCAD with siRNA-1186 significantly decreased SCAD expression, enzyme activity and ATP content, but obviously increased the content of free fatty acids. Meanwhile, SCAD siRNA treatment triggered the same apoptosis as cardiomyocytes treated with tBHP, such as the increase in cell apoptotic rate, the activation of caspase3 and the decrease in the Bcl-2/Bax ratio, which showed that SCAD may play an important role in primary cardiomyocyte apoptosis. The changes of phosphonate AMP-activated protein kinase α (p-AMPKα) and Peroxisome proliferator-activated receptor α (PPARα) in cardiomyocyte apoptosis were consistent with that of SCAD. Furthermore, PPARα activator fenofibrate and AMPKα activator AICAR treatment significantly increased the expression of SCAD and inhibited cardiomyocyte apoptosis. In conclusion, for the first time our findings directly demonstrated that SCAD may be as a new target to prevent cardiomyocyte apoptosis through the AMPK/PPARα/SCAD signal pathways. PMID:26989860

  16. Inhibition of Long Chain Acyl Coenzyme A Synthetases during Fatty Acid Loading Induces Lipotoxicity in Macrophages

    PubMed Central

    Saraswathi, Viswanathan; Hasty, Alyssa H.

    2009-01-01

    OBJECTIVES Obesity is often associated with hypertriglyceridemia and elevated free fatty acids (FFAs) which are independent risk factors for cardiovascular disease and diabetes. While impairment of cholesterol homeostasis is known to induce toxicity in macrophages, the consequence of altered fatty acid homeostasis is not clear. METHODS AND RESULTS Long chain acyl CoA synthetases (ACSLs) play a critical role in fatty acid homeostasis by channeling fatty acids to diverse metabolic pools. We treated mouse peritoneal macrophages (MPMs) with VLDL or FFAs in the presence of triacsin C, an inhibitor of the three ACSL isoforms present in macrophages. Treatment of macrophages with VLDL and triacsin C resulted in reduced TG accumulation but increased intracellular FFA levels which induced lipotoxicity characterized by induction of apoptosis. Treatment of MPMs with the saturated fatty acid stearic acid in the presence of triacsin C increased intracellular stearic acid and induced apoptosis. Stromal vascular cells collected from high fat diet-fed mice displayed foam cell morphology and exhibited increased mRNA levels of macrophage markers and ACSL1. Importantly, all of these changes were associated with increased FFA level in AT. CONCLUSIONS Inhibition of ACSLs during fatty acid loading results in apoptosis via accumulation of FFAs. Our data have implications in understanding the consequences of dysregulated fatty acid metabolism in macrophages. PMID:19679826

  17. Chain length scaling of protein folding time: Beta sheet structures

    NASA Astrophysics Data System (ADS)

    Dimitrievski, K.; Kasemo, B.; Zhdanov, V. P.

    2000-07-01

    We present comprehensive 3D lattice Monte Carlo simulations of the folding kinetics of two-turn antiparallel β sheets. The model employed takes into account isotropic nonspecific interactions as in previous flexible heteropolymer models and also orientation-dependent monomer-monomer interactions, mimicking the formation of hydrogen bonds and chain rigidity. The chain length is varied from N=15 to 33. For each chain length, we calculate the fastest folding temperature, Tfast, folding temperature, Tfold, and glass-transition temperature, Tg. The time-averaged occupation probability of the native state is found to be nearly independent of N at all temperatures. The dependence of Tfast and Tfold on N is accordingly relatively weak. The temperature interval where the folding is fast rapidly decreases with increasing N. For the chain lengths chosen, Tfold slightly exceeds Tg. The dependence of the folding time τf on N is well fitted by using the power law, τf∝Nλ. The exponent λ is found to depend on temperature and on the distribution of nonspecific interactions in the chain. In particular, λ=2.7-4.0 at T=Tfast and 5.2 at T slightly below Tfold. Evaluating τf in real units at T near Tfold yields physically reasonable results.

  18. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves

    SciTech Connect

    Roughan, G.; Nishida, I. )

    1990-01-01

    Fatty acid synthesis from (1-14C)acetate by chloroplasts isolated from peas and amaranthus was linear for at least 15 min, whereas incorporation of the tracer into long-chain acyl-acyl carrier protein (ACP) did not increase after 2-3 min. When reactions were transferred to the dark after 3-5 min, long-chain acyl-ACPs lost about 90% of their radioactivity and total fatty acids retained all of theirs. Half-lives of the long-chain acyl-ACPs were estimated to be 10-15 s. Concentrations of palmitoyl-, stearoyl-, and oleoyl-ACP as indicated by equilibrium labeling during steady-state fatty acid synthesis, ranged from 0.6-1.1, 0.2-0.7, and 0.4-1.6 microM, respectively, for peas and from 1.6-1.9, 1.3-2.6, and 0.6-1.4 microM, respectively, for amaranthus. These values are based on a chloroplast volume of 47 microliters/mg chlorophyll and varied according to the mode of the incubation. A slow increase in activity of the fatty acid synthetase in safflower chloroplasts resulted in long-chain acyl-ACPs continuing to incorporate labeled acetate for 10 min. Upon re-illumination following a dark break, however, both fatty acid synthetase activity and acyl-ACP concentrations increased very rapidly. Palmitoyl-ACP was present at concentrations up to 2.5 microM in safflower chloroplasts, whereas those of stearoyl- and oleoyl-ACPs were in the lower ranges measured for peas. Acyl-ACPs were routinely separated from extracts of chloroplasts that had been synthesising long-chain fatty acids from labeled acetate by a minor modification of the method of Mancha et al. The results compared favorably with those obtained using alternative analytical methods such as adsorption to filter paper and partition chromatography on silicic acid columns.

  19. Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH).

    PubMed

    Jiang, Wen; Jiang, Yanfang; Bentley, Gayle J; Liu, Di; Xiao, Yi; Zhang, Fuzhong

    2015-08-01

    Branched-chain fatty acids (BCFAs) are important precursors for the production of advanced biofuels with improved cold-flow properties. Previous efforts in engineering type II fatty acid synthase (FAS) for BCFA production suffered from low titers and/or the co-production of a large amount of straight-chain fatty acids (SCFAs), making it nearly impossible for further conversion of BCFAs to branched biofuels. Synthesis of both SCFAs and BCFAs requires FabH, the only β-ketoacyl-(acyl-carrier-protein) synthase in Escherichia coli that catalyzes the initial condensation reaction between malonyl-ACP and a short-chain acyl-CoA. In this study, we demonstrated that replacement of the acetyl-CoA-specific E. coli FabH with a branched-chain-acyl-CoA-specific FabH directed the flux to the synthesis of BCFAs, resulting in a significant enhancement in BCFA titer compared to a strain containing both acetyl-CoA- and branched-chain-acyl-CoA-specific FabHs. We further demonstrated that the composition of BCFAs can be tuned by engineering the upstream pathway to control the supply of different branched-chain acyl-CoAs, leading to the production either even-chain-iso-, odd-chain-iso-, or odd-chain-anteiso-BCFAs separately. Overall, the top-performing strain from this study produced BCFAs at 126 mg/L, comprising 52% of the total free fatty acids.

  20. Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH).

    PubMed

    Jiang, Wen; Jiang, Yanfang; Bentley, Gayle J; Liu, Di; Xiao, Yi; Zhang, Fuzhong

    2015-08-01

    Branched-chain fatty acids (BCFAs) are important precursors for the production of advanced biofuels with improved cold-flow properties. Previous efforts in engineering type II fatty acid synthase (FAS) for BCFA production suffered from low titers and/or the co-production of a large amount of straight-chain fatty acids (SCFAs), making it nearly impossible for further conversion of BCFAs to branched biofuels. Synthesis of both SCFAs and BCFAs requires FabH, the only β-ketoacyl-(acyl-carrier-protein) synthase in Escherichia coli that catalyzes the initial condensation reaction between malonyl-ACP and a short-chain acyl-CoA. In this study, we demonstrated that replacement of the acetyl-CoA-specific E. coli FabH with a branched-chain-acyl-CoA-specific FabH directed the flux to the synthesis of BCFAs, resulting in a significant enhancement in BCFA titer compared to a strain containing both acetyl-CoA- and branched-chain-acyl-CoA-specific FabHs. We further demonstrated that the composition of BCFAs can be tuned by engineering the upstream pathway to control the supply of different branched-chain acyl-CoAs, leading to the production either even-chain-iso-, odd-chain-iso-, or odd-chain-anteiso-BCFAs separately. Overall, the top-performing strain from this study produced BCFAs at 126 mg/L, comprising 52% of the total free fatty acids. PMID:25788017

  1. Identification of Amino Acids Conferring Chain Length Substrate Specificities on Fatty Alcohol-forming Reductases FAR5 and FAR8 from Arabidopsis thaliana*

    PubMed Central

    Chacón, Micaëla G.; Fournier, Ashley E.; Tran, Frances; Dittrich-Domergue, Franziska; Pulsifer, Ian P.; Domergue, Frédéric; Rowland, Owen

    2013-01-01

    Fatty alcohols play a variety of biological roles in all kingdoms of life. Fatty acyl reductase (FAR) enzymes catalyze the reduction of fatty acyl-coenzyme A (CoA) or fatty acyl-acyl carrier protein substrates to primary fatty alcohols. FAR enzymes have distinct substrate specificities with regard to chain length and degree of saturation. FAR5 (At3g44550) and FAR8 (At3g44560) from Arabidopsis thaliana are 85% identical at the amino acid level and are of equal length, but they possess distinct specificities for 18:0 or 16:0 acyl chain length, respectively. We used Saccharomyces cerevisiae as a heterologous expression system to assess FAR substrate specificity determinants. We identified individual amino acids that affect protein levels or 16:0-CoA versus 18:0-CoA specificity by expressing in yeast FAR5 and FAR8 domain-swap chimeras and site-specific mutants. We found that a threonine at position 347 and a serine at position 363 were important for high FAR5 and FAR8 protein accumulation in yeast and thus are likely important for protein folding and stability. Amino acids at positions 355 and 377 were important for dictating 16:0-CoA versus 18:0-CoA chain length specificity. Simultaneously converting alanine 355 and valine 377 of FAR5 to the corresponding FAR8 residues, leucine and methionine, respectively, almost fully converted FAR5 specificity from 18:0-CoA to 16:0-CoA. The reciprocal amino acid conversions, L355A and M377V, made in the active FAR8-S363P mutant background converted its specificity from 16:0-CoA to 18:0-CoA. This study is an important advancement in the engineering of highly active FAR proteins with desired specificities for the production of fatty alcohols with industrial value. PMID:24005667

  2. At what chain length do unbranched alkanes prefer folded conformations?

    PubMed

    Byrd, Jason N; Bartlett, Rodney J; Montgomery, John A

    2014-03-01

    Short unbranched alkanes are known to prefer linear conformations, whereas long unbranched alkanes are folded. It is not known with certainty at what chain length the linear conformation is no longer the global minimum. To clarify this point, we use ab initio and density functional methods to compute the relative energies of the linear and hairpin alkane conformers for increasing chain lengths. Extensive electronic structure calculations are performed to obtain optimized geometries, harmonic frequencies, and accurate single point energies for the selected alkane conformers from octane through octadecane. Benchmark CCSD(T)/cc-pVTZ single point calculations are performed for chains through tetradecane, whereas approximate methods are required for the longer chains up to octadecane. Using frozen natural orbitals to unambiguously truncate the virtual orbital space, we are able to compute composite CCSD FNO(T) single point energies for all the chain lengths. This approximate composite method has significant computational savings compared to full CCSD(T) while retaining ∼0.15 kcal/mol accuracy compared to the benchmark results. More approximate dual-basis resolution-of-the-identity double-hybrid DFT calculations are also performed and shown to have reasonable 0.2-0.4 kcal/mol errors compared with our benchmark values. After including contributions from temperature dependent internal energy shifts, we find the preference for folded conformations to lie between hexadecane and octadecane, in excellent agreement with recent experiments [ Lüttschwager , N. O. ; Wassermann , T. N. ; Mata , R. A. ; Suhm , M. A. Angew. Chem. Int. Ed. 2013 , 52 , 463 ]. PMID:24524689

  3. Electrical communication between glucose oxidase and different ferrocenylalkanethiol chain lengths

    SciTech Connect

    Rubin, S.; Bar, G.; Cutts, R.W.; Zawodzinski, T.A. Jr.; Chow, J.T.; Ferraris, J.P.

    1995-12-31

    We describe the factors affecting the electron transfer process between the different components of a self-assembled mixed monolayer. The system is comprised of mixed monolayers containing aminoalkanethiols (AMATs) and ferrocenylakanethiols (FATs) of variable chain lengths. We study the effects of different ratio of the two mixed monolayer components on the permeability of the monolayer toward a Ru(NH{sub 3}{sub 6}Cl{sub 3} redox probe. In order to study the electrical communication between the enzyme and the mediator molecules, the enzyme glucose oxidase (GOx) was attached to the AMAT sites to create a biosensor device. The relative efficiency of a biosensor of each chain-length combination of FAT and AMAT was examined. In light of this comparison, we consider the critical factors for efficient electron transfer between the ferrocene mediator and the GOx redox active site immobilized as part of the surface-confined system. We find that the biosensor response is greatest when the enzyme and the FATs are attached to the surface with different alkane chain lengths. We also find strong evidence for the existence of domains of FAT and AMAT in the mixed monolayer system.

  4. An esterase on the outer membrane of Pseudomonas aeruginosa for the hydrolysis of long chain acyl esters.

    PubMed

    Ohkawa, I; Shiga, S; Kageyama, M

    1979-09-01

    A new esterase activity which hydrolyzes palmitoyl-CoA was found in the membrane fraction of Pseudomonas aeruginosa. All the 11 strains of P. aeruginosa tested possessed this esterase activity. The esterase was constitutive and was fully active on the intact cell bodies toward substrates in the medium. It was located on the outer membrane of the cell envelope, and was not released into the culture medium. This activity was designated as OM (outer membrane) esterase. OM esterase was solubilized from the cell envelope with EDTA-Triton X-100 and purified 690-fold. It was a minor component of the outer membrane. Its molecular weight was approximately 55,000. The activity was rather stable to heat, a wide range of pH, and treatment with detergents and organic solvents. No cofactors were required. The pH optimum of the reaction was 8.5. Among various acyl-CoAs, only long chain (C12--C18) thioesters were hydrolyzed. OM esterase also hydrolyzed some kinds of oxy-esters such as p-nitrophenyl acyl esters, monoacyl esters of sucrose and Tween 80 (polyoxyethylene sorbitan monooleate). On the other hand, triglycerides, phospholipids, or hydrophobic monoesters were not hydrolyzed at all. Thus, this enzyme seems to have specificity for long chain acyl esters with hydrophilic groups, whether thio- or oxy-ester. Mutants deficient in this esterase activity were isolated. These mutants were unable to grow on Tween 80 as a sole carbon source. This suggests a possible role of OM esterase in the utilization of acyl esters as carbon sources.

  5. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes.

    PubMed

    Školová, Barbora; Janůšová, Barbora; Vávrová, Kateřina

    2016-02-01

    The composition and organization of stratum corneum lipids play an essential role in skin barrier function. Ceramides represent essential components of this lipid matrix; however, the importance of the individual structural features in ceramides is not fully understood. To probe the structure-permeability relationships in ceramides, we prepared analogs of N-lignoceroylsphingosine with shortened sphingosine (15 and 12 carbons) and acyl chains (2, 4 and 6 carbons) and studied their behavior in skin and in model lipid membranes. Ceramide analogs with pentadecasphingosine (15C) chains were more barrier-perturbing than 12C- and 18C-sphingosine ceramides; the greatest effects were found with 4 to 6C acyls (up to 15 times higher skin permeability compared to an untreated control and up to 79 times higher permeability of model stratum corneum lipid membranes compared to native very long-chain ceramides). Infrared spectroscopy using deuterated lipids and X-ray powder diffraction showed surprisingly similar behavior of the short ceramide membranes in terms of lipid chain order and packing, phase transitions and domain formation. The high- and low-permeability membranes differed in their amide I band shape and lamellar organization. These skin and membrane permeabilization properties of some short ceramides may be explored, for example, for the rational design of permeation enhancers for transdermal drug delivery.

  6. Interactions of the C-terminus of lung surfactant protein B with lipid bilayers are modulated by acyl chain saturation.

    PubMed

    Antharam, Vijay C; Farver, R Suzanne; Kuznetsova, Anna; Sippel, Katherine H; Mills, Frank D; Elliott, Douglas W; Sternin, Edward; Long, Joanna R

    2008-11-01

    Lung surfactant protein B (SP-B) is critical to minimizing surface tension in the alveoli. The C-terminus of SP-B, residues 59-80, has much of the surface activity of the full protein and serves as a template for the development of synthetic surfactant replacements. The molecular mechanisms responsible for its ability to restore lung compliance were investigated with circular dichroism, differential scanning calorimetry, and (31)P and (2)H solid-state NMR spectroscopy. SP-B(59-80) forms an amphipathic helix which alters lipid organization and acyl chain dynamics in fluid lamellar phase 4:1 DPPC:POPG and 3:1 POPC:POPG MLVs. At higher levels of SP-B(59-80) in the POPC:POPG lipid system a transition to a nonlamellar phase is observed while DPPC:POPG mixtures remain in a lamellar phase. Deuterium NMR shows an increase in acyl chain order in DPPC:POPG MLVs on addition of SP-B(59-80); in POPC:POPG MLVs, acyl chain order parameters decrease. Our results indicate SP-B(59-80) penetrates deeply into DPPC:POPG bilayers and binds more peripherally to POPC:POPG bilayers. Similar behavior has been observed for KL(4), a peptide mimetic of SP-B which was originally designed using SP-B(59-80) as a template and has been clinically demonstrated to be successful in treating respiratory distress syndrome. The ability of these helical peptides to differentially partition into lipid lamellae based on their degree of monounsaturation and subsequent changes in lipid dynamics suggest a mechanism for lipid organization and trafficking within the dynamic lung environment. PMID:18694722

  7. Peptoid oligomers with alpha-chiral, aromatic side chains: effects of chain length on secondary structure.

    PubMed

    Wu, C W; Sanborn, T J; Zuckermann, R N; Barron, A E

    2001-04-01

    Oligomeric N-substituted glycines or "peptoids" with alpha-chiral, aromatic side chains can adopt stable helices in organic or aqueous solution, despite their lack of backbone chirality and their inability to form intrachain hydrogen bonds. Helical ordering appears to be stabilized by avoidance of steric clash as well as by electrostatic repulsion between backbone carbonyls and pi clouds of aromatic rings in the side chains. Interestingly, these peptoid helices exhibit intense circular dichroism (CD) spectra that closely resemble those of peptide alpha-helices. Here, we have utilized CD to systematically study the effects of oligomer length, concentration, and temperature on the chiral secondary structure of organosoluble peptoid homooligomers ranging from 3 to 20 (R)-N-(1-phenylethyl)glycine (Nrpe) monomers in length. We find that a striking evolution in CD spectral features occurs for Nrpe oligomers between 4 and 12 residues in length, which we attribute to a chain length-dependent population of alternate structured conformers having cis versus trans amide bonds. No significant changes are observed in CD spectra of oligomers between 13 and 20 monomers in length, suggesting a minimal chain length of about 13 residues for the formation of stable poly(Nrpe) helices. Moreover, no dependence of circular dichroism on concentration is observed for an Nrpe hexamer, providing evidence that these helices remain monomeric in solution. In light of these new data, we discuss chain length-related factors that stabilize organosoluble peptoid helices of this class, which are important for the design of helical, biomimetic peptoids sharing this structural motif.

  8. Glycogen with short average chain length enhances bacterial durability

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Wise, Michael J.

    2011-09-01

    Glycogen is conventionally viewed as an energy reserve that can be rapidly mobilized for ATP production in higher organisms. However, several studies have noted that glycogen with short average chain length in some bacteria is degraded very slowly. In addition, slow utilization of glycogen is correlated with bacterial viability, that is, the slower the glycogen breakdown rate, the longer the bacterial survival time in the external environment under starvation conditions. We call that a durable energy storage mechanism (DESM). In this review, evidence from microbiology, biochemistry, and molecular biology will be assembled to support the hypothesis of glycogen as a durable energy storage compound. One method for testing the DESM hypothesis is proposed.

  9. Identification of Regiospecific Isomers of Diricinoleoyl-acyl-glycerols containing one non-ricinoleoyl chain in Castor Oil by ESI-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HPLC fractions of diricinoleoyl-acyl-glycerols containing one non-ricinoleoyl chain from castor oil were used to identify the regiospecific location of this non-ricinoleoyl chain on the glycerol backbone using electrospray ionization-MS3 of lithium adducts. The regiospecific ions used were from...

  10. Modulation of cellulase activity by charged lipid bilayers with different acyl chain properties for efficient hydrolysis of ionic liquid-pretreated cellulose.

    PubMed

    Mihono, Kai; Ohtsu, Takeshi; Ohtani, Mai; Yoshimoto, Makoto; Kamimura, Akio

    2016-10-01

    The stability of cellulase activity in the presence of ionic liquids (ILs) is critical for the enzymatic hydrolysis of insoluble cellulose pretreated with ILs. In this work, cellulase was incorporated in the liposomes composed of negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and zwitterionic phosphatidylcholines (PCs) with different length and degree of unsaturation of the acyl chains. The liposomal cellulase-catalyzed reaction was performed at 45°C in the acetate buffer solution (pH 4.8) with 2.0g/L CC31 as cellulosic substrate. The crystallinity of CC31 was reduced by treating with 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) at 120°C for 30min. The liposomal cellulase continuously catalyzed hydrolysis of the pretreated CC31 for 48h producing glucose in the presence of 15wt% [Bmim]Cl. The charged lipid membranes were interactive with [Bmim](+), as elucidated by the [Bmim]Cl-induced alterations in fluorescence polarization of the membrane-embedded 1,6-diphenyl-1,3,5-hexatriene (DPH) molecules. The charged membranes offered the microenvironment where inhibitory effects of [Bmim]Cl on the cellulase activity was relieved. The maximum glucose productivity GP of 10.8 mmol-glucose/(hmol-lipid) was obtained at the reaction time of 48h with the cellulase incorporated in the liposomes ([lipid]=5.0mM) composed of 50mol% POPG and 1,2-dilauroyl-sn-glycero-3-phosohocholine (DLPC) with relatively short and saturated acyl chains. PMID:27318965

  11. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice

    PubMed Central

    Sugimoto, Masayuki; Wakabayashi, Masato; Shimizu, Yoichi; Yoshioka, Takeshi; Higashino, Kenichi; Numata, Yoshito; Okuda, Tomohiko; Zhao, Songji; Sakai, Shota; Igarashi, Yasuyuki; Kuge, Yuji

    2016-01-01

    Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18–C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18–C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys. PMID:27010944

  12. Molecular cloning and sequence analysis of complementary DNA encoding rat mammary gland medium-chain S-acyl fatty acid synthetase thio ester hydrolase

    SciTech Connect

    Safford, R.; de Silva, J.; Lucas, C.; Windust, J.H.C.; Shedden, J.; James, C.M.; Sidebottom, C.M.; Slabas, A.R.; Tombs, M.P.; Hughes, S.G.

    1987-03-10

    Poly(A) + RNA from pregnant rat mammary glands was size-fractionated by sucrose gradient centrifugation, and fractions enriched in medium-chain S-acyl fatty acid synthetase thio ester hydrolase (MCH) were identified by in vitro translation and immunoprecipitation. A cDNA library was constructed, in pBR322, from enriched poly(A) + RNA and screened with two oligonucleotide probes deduced from rat MCH amino acid sequence data. Cross-hybridizing clones were isolated and found to contain cDNA inserts ranging from approx. 1100 to 1550 base pairs (bp). A 1550-bp cDNA insert, from clone 43H09, was confirmed to encode MCH by hybrid-select translation/immunoprecipitation studies and by comparison of the amino acid sequence deduced from the DNA sequence of the clone to the amino acid sequence of the MCH peptides. Northern blot analysis revealed the size of the MCH mRNA to be 1500 nucleotides, and it is therefore concluded that the 1550-bp insert (including G x C tails) of clone 43H09 represents a full- or near-full-length copy of the MCH gene. The rat MCH sequence is the first reported sequence of a thioesterase from a mammalian source, but comparison of the deduced amino acid sequences of MCH and the recently published mallard duck medium-chain S-acyl fatty acid synthetase thioesterase reveals significant homology. In particular, a seven amino acid sequence containing the proposed active serine of the duck thioesterase is found to be perfectly conserved in rat MCH.

  13. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter

    1998-01-06

    Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  14. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  15. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  16. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-03-18

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs.

  17. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs)

    PubMed Central

    Recuero-Checa, Maria A.; Sharma, Manu; Lau, Constance; Watkins, Paul A.; Gaydos, Charlotte A.; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3–6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  18. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells

    PubMed Central

    Golej, Deidre L.; Askari, Bardia; Kramer, Farah; Barnhart, Shelley; Vivekanandan-Giri, Anuradha; Pennathur, Subramaniam; Bornfeldt, Karin E.

    2011-01-01

    Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids play important roles in vascular homeostasis and disease, yet the role of ACSL4 in vascular cells is largely unknown. In the present study, the ACSL4 splice variant expressed in human arterial smooth muscle cells (SMCs) was identified as variant 1. To investigate the function of ACSL4 in SMCs, ACSL4 variant 1 was overexpressed, knocked-down by small interfering RNA, or its enzymatic activity acutely inhibited in these cells. Overexpression of ACSL4 resulted in a markedly increased synthesis of arachidonoyl-CoA, increased 20:4 incorporation into phosphatidylethanolamine, phosphatidylinositol, and triacylglycerol, and reduced cellular levels of unesterified 20:4. Accordingly, secretion of prostaglandin E2 (PGE2) was blunted in ACSL4-overexpressing SMCs compared with controls. Conversely, acute pharmacological inhibition of ACSL4 activity resulted in increased release of PGE2. However, long-term downregulation of ACSL4 resulted in markedly reduced PGE2 secretion. Thus, ACSL4 modulates PGE2 release from human SMCs. ACSL4 may regulate a number of processes dependent on the release of arachidonic acid-derived lipid mediators in the arterial wall. PMID:21242590

  19. Crystal structures of SIRT3 reveal that the α2-α3 loop and α3-helix affect the interaction with long-chain acyl lysine.

    PubMed

    Gai, Wei; Li, He; Jiang, Hualiang; Long, Yaqiu; Liu, Dongxiang

    2016-09-01

    SIRT1-7 play important roles in many biological processes and age-related diseases. In addition to a NAD(+) -dependent deacetylase activity, they can catalyze several other reactions, including the hydrolysis of long-chain fatty acyl lysine. To study the binding modes of sirtuins to long-chain acyl lysines, we solved the crystal structures of SIRT3 bound to either a H3K9-myristoylated- or a H3K9-palmitoylated peptide. Interaction of SIRT3 with the palmitoyl group led to unfolding of the α3-helix. The myristoyl and palmitoyl groups bind to the C-pocket and an allosteric site near the α3-helix, respectively. We found that the residues preceding the α3-helix determine the size of the C-pocket. The flexibility of the α2-α3 loop and the plasticity of the α3-helix affect the interaction with long-chain acyl lysine. PMID:27501476

  20. Chain length determination of prenyltransferases: both heteromeric subunits of medium-chain (E)-prenyl diphosphate synthase are involved in the product chain length determination.

    PubMed

    Zhang, Y W; Li, X Y; Koyama, T

    2000-10-17

    Among prenyltransferases, medium-chain (E)-prenyl diphosphate synthases are unusual because of their heterodimeric structures. The larger subunit has highly conserved regions typical of (E)-prenyltransferases. The smaller one has recently been shown to be involved in the binding of allylic substrate as well as determining the chain length of the reaction product [Zhang, Y.-W., et al. (1999) Biochemistry 38, 14638-14643]. To better understand the product chain length determination mechanism of these enzymes, several amino acid residues in the larger subunits of Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase and Bacillus subtilis heptaprenyl diphosphate synthase were selected for substitutions by site-directed mutagenesis and examined by combination with the corresponding wild-type or mutated smaller subunits. Replacement of the Ala at the fifth position upstream to the first Asp-rich motif with bulky amino acids in both larger subunits resulted in shortening the chain lengths of the major products, and a double combination of mutant subunits of the heptaprenyl diphosphate synthase, I-D97A/II-A79F, yielded exclusively geranylgeranyl diphosphate. However, the combination of a mutant subunit and the wild-type, I-Y103S/II-WT or I-WT/II-I76G, produced a C(40) prenyl diphosphate, and the double combination of the mutants, I-Y103S/II-I76G, gave a reaction product with longer prenyl chain up to C(50). These results suggest that medium-chain (E)-prenyl diphosphate synthases take a novel mode for the product chain length determination, in which both subunits cooperatively participate in maintaining and determining the product specificity of each enzyme.

  1. The role of Δ6-desaturase acyl-carrier specificity in the efficient synthesis of long-chain polyunsaturated fatty acids in transgenic plants.

    PubMed

    Sayanova, Olga; Ruiz-Lopez, Noemi; Haslam, Richard P; Napier, Johnathan A

    2012-02-01

    The role of acyl-CoA-dependent Δ6-desaturation in the heterologous synthesis of omega-3 long-chain polyunsaturated fatty acids was systematically evaluated in transgenic yeast and Arabidopsis thaliana. The acyl-CoA Δ6-desaturase from the picoalga Ostreococcus tauri and orthologous activities from mouse (Mus musculus) and salmon (Salmo salar) were shown to generate substantial levels of Δ6-desaturated acyl-CoAs, in contrast to the phospholipid-dependent Δ6-desaturases from higher plants that failed to modify this metabolic pool. Transgenic plants expressing the acyl-CoA Δ6-desaturases from either O. tauri or salmon, in conjunction with the two additional activities required for the synthesis of C20 polyunsaturated fatty acids, contained higher levels of eicosapentaenoic acid compared with plants expressing the borage phospholipid-dependent Δ6-desaturase. The use of acyl-CoA-dependent Δ6-desaturases almost completely abolished the accumulation of unwanted biosynthetic intermediates such as γ-linolenic acid in total seed lipids. Expression of acyl-CoA Δ6-desaturases resulted in increased distribution of long-chain polyunsaturated fatty acids in the polar lipids of transgenic plants, reflecting the larger substrate pool available for acylation by enzymes of the Kennedy pathway. Expression of the O. tauriΔ6-desaturase in transgenic Camelina sativa plants also resulted in the accumulation of high levels of Δ6-desaturated fatty acids. This study provides evidence for the efficacy of using acyl-CoA-dependent Δ6-desaturases in the efficient metabolic engineering of transgenic plants with high value traits such as the synthesis of omega-3 LC-PUFAs. PMID:21902798

  2. Phosphatidylinositol-(4,5)-Bisphosphate Acyl Chains Differentiate Membrane Binding of HIV-1 Gag from That of the Phospholipase Cδ1 Pleckstrin Homology Domain

    PubMed Central

    Olety, Balaji; Veatch, Sarah L.

    2015-01-01

    ABSTRACT HIV-1 Gag, which drives virion assembly, interacts with a plasma membrane (PM)-specific phosphoinositide, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. While cellular acidic phospholipid-binding proteins/domains, such as the PI(4,5)P2-specific pleckstrin homology domain of phospholipase Cδ1 (PHPLCδ1), mediate headgroup-specific interactions with corresponding phospholipids, the exact nature of the Gag-PI(4,5)P2 interaction remains undetermined. In this study, we used giant unilamellar vesicles (GUVs) to examine how PI(4,5)P2 with unsaturated or saturated acyl chains affect membrane binding of PHPLCδ1 and Gag. Both unsaturated dioleoyl-PI(4,5)P2 [DO-PI(4,5)P2] and saturated dipalmitoyl-PI(4,5)P2 [DP-PI(4,5)P2] successfully recruited PHPLCδ1 to membranes of single-phase GUVs. In contrast, DO-PI(4,5)P2 but not DP-PI(4,5)P2 recruited Gag to GUVs, indicating that PI(4,5)P2 acyl chains contribute to stable membrane binding of Gag. GUVs containing PI(4,5)P2, cholesterol, and dipalmitoyl phosphatidylserine separated into two coexisting phases: one was a liquid phase, and the other appeared to be a phosphatidylserine-enriched gel phase. In these vesicles, the liquid phase recruited PHPLCδ1 regardless of PI(4,5)P2 acyl chains. Likewise, Gag bound to the liquid phase when PI(4,5)P2 had DO-acyl chains. DP-PI(4,5)P2-containing GUVs showed no detectable Gag binding to the liquid phase. Unexpectedly, however, DP-PI(4,5)P2 still promoted recruitment of Gag, but not PHPLCδ1, to the dipalmitoyl-phosphatidylserine-enriched gel phase of these GUVs. Altogether, these results revealed different roles for PI(4,5)P2 acyl chains in membrane binding of two PI(4,5)P2-binding proteins, Gag and PHPLCδ1. Notably, we observed that nonmyristylated Gag retains the preference for PI(4,5)P2 containing an unsaturated acyl chain over DP-PI(4,5)P2, suggesting that Gag sensitivity to PI(4,5)P2 acyl chain saturation is determined directly by the matrix-PI(4,5)P2 interaction, rather

  3. The Effect of Temperature, Cations, and Number of Acyl Chains on the Lamellar to Non-Lamellar Transition in Lipid-A Membranes: A Microscopic View.

    PubMed

    Pontes, Frederico J S; Rusu, Victor H; Soares, Thereza A; Lins, Roberto D

    2012-10-01

    Lipopolysaccharides (LPS) are the main constituent of the outer bacterial membrane of Gram-negative bacteria. Lipid-A is the structural region of LPS that interacts with the innate immune system and induces inflammatory responses. It is formed by a phosphorylated β-d-glucosaminyl-(1→6)-α-N-glucosamine disaccharide backbone containing ester-linked and amide-linked long-chain fatty acids, which may vary in length and number depending on the bacterial strains and the environment. Phenotypical variation (i.e., number of acyl chains), cation type, and temperature influence the phase transition, aggregate structure, and endotoxic activity of Lipid-A. We have applied an extension of the GROMOS force field 45a4 carbohydrate parameter set to investigate the behavior of hexa- and pentaacylated Lipid-A of Pseudomonas aeruginosa at two temperatures (300 and 328 K) and in the presence of mono- and divalent cations (represented by Ca(2+) and Na(+), respectively) through molecular dynamics simulations. The distinct phase of Lipid-A aggregates was characterized by structural properties, deuterium order parameters, the molecular shape of the lipid units (conical versus cylindrical), and molecular packing. Our results show that Na(+) ions induce a transition from the lamellar to nonlamellar phase. In contrast, the bilayer integrity is maintained in the presence of Ca(2+) ions. Through these findings, we present microscopic insights on the influence of different cations on the molecular behavior of Lipid-A associated with the lamellar to nonlamellar transition.

  4. The Effect of Temperature, Cations, and Number of Acyl Chains on the Lamellar to Non-Lamellar Transition in Lipid-A Membranes: A Microscopic View

    SciTech Connect

    Pontes, Frederico J.; Rusu, Victor H.; Soares, Thereza A.; Lins, Roberto D.

    2012-05-24

    Lipopolysaccharides (LPS) are the main constituent of the outer bacterial membrane of Gram-negative bacteria. Lipid-A is the structural region of LPS that interacts with the innate immune system and induces inflammatory responses. It is formed by a phosphorylated β-d-glucosaminyl-(1→6)-α-N-glucosamine disaccharide backbone containing ester-linked and amide-linked long-chain fatty acids, which may vary in length and number depending on the bacterial strains and the environment. Phenotypical variation (i.e., number of acyl chains), cation type, and temperature influence the phase transition, aggregate structure, and endotoxic activity of Lipid-A. We have applied an extension of the GROMOS force field 45a4 carbohydrate parameter set to investigate the behavior of hexa- and pentaacylated Lipid-A of Pseudomonas aeruginosa at two temperatures (300 and 328 K) and in the presence of mono- and divalent cations (represented by Ca2+ and Na+, respectively) through molecular dynamics simulations. The distinct phase of Lipid-A aggregates was characterized by structural properties, deuterium order parameters, the molecular shape of the lipid units (conical versus cylindrical), and molecular packing. Our results show that Na+ ions induce a transition from the lamellar to nonlamellar phase. In contrast, the bilayer integrity is maintained in the presence of Ca2+ ions. Through these findings, we present microscopic insights on the influence of different cations on the molecular behavior of Lipid-A associated with the lamellar to nonlamellar transition.

  5. Fatty Acid Oxidation Mediated by Acyl-CoA Synthetase Long Chain 3 Is Required for Mutant KRAS Lung Tumorigenesis.

    PubMed

    Padanad, Mahesh S; Konstantinidou, Georgia; Venkateswaran, Niranjan; Melegari, Margherita; Rindhe, Smita; Mitsche, Matthew; Yang, Chendong; Batten, Kimberly; Huffman, Kenneth E; Liu, Jingwen; Tang, Ximing; Rodriguez-Canales, Jaime; Kalhor, Neda; Shay, Jerry W; Minna, John D; McDonald, Jeffrey; Wistuba, Ignacio I; DeBerardinis, Ralph J; Scaglioni, Pier Paolo

    2016-08-01

    KRAS is one of the most commonly mutated oncogenes in human cancer. Mutant KRAS aberrantly regulates metabolic networks. However, the contribution of cellular metabolism to mutant KRAS tumorigenesis is not completely understood. We report that mutant KRAS regulates intracellular fatty acid metabolism through Acyl-coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3), which converts fatty acids into fatty Acyl-CoA esters, the substrates for lipid synthesis and β-oxidation. ACSL3 suppression is associated with depletion of cellular ATP and causes the death of lung cancer cells. Furthermore, mutant KRAS promotes the cellular uptake, retention, accumulation, and β-oxidation of fatty acids in lung cancer cells in an ACSL3-dependent manner. Finally, ACSL3 is essential for mutant KRAS lung cancer tumorigenesis in vivo and is highly expressed in human lung cancer. Our data demonstrate that mutant KRAS reprograms lipid homeostasis, establishing a metabolic requirement that could be exploited for therapeutic gain. PMID:27477280

  6. Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA

    PubMed Central

    Albesa-Jové, David; Svetlíková, Zuzana; Tersa, Montse; Sancho-Vaello, Enea; Carreras-González, Ana; Bonnet, Pascal; Arrasate, Pedro; Eguskiza, Ander; Angala, Shiva K.; Cifuente, Javier O.; Korduláková, Jana; Jackson, Mary; Mikušová, Katarína; Guerin, Marcelo E.

    2016-01-01

    The biosynthesis of phospholipids and glycolipids are critical pathways for virtually all cell membranes. PatA is an essential membrane associated acyltransferase involved in the biosynthesis of mycobacterial phosphatidyl-myo-inositol mannosides (PIMs). The enzyme transfers a palmitoyl moiety from palmitoyl–CoA to the 6-position of the mannose ring linked to 2-position of inositol in PIM1/PIM2. We report here the crystal structures of PatA from Mycobacterium smegmatis in the presence of its naturally occurring acyl donor palmitate and a nonhydrolyzable palmitoyl–CoA analog. The structures reveal an α/β architecture, with the acyl chain deeply buried into a hydrophobic pocket that runs perpendicular to a long groove where the active site is located. Enzyme catalysis is mediated by an unprecedented charge relay system, which markedly diverges from the canonical HX4D motif. Our studies establish the mechanistic basis of substrate/membrane recognition and catalysis for an important family of acyltransferases, providing exciting possibilities for inhibitor design. PMID:26965057

  7. Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA.

    PubMed

    Albesa-Jové, David; Svetlíková, Zuzana; Tersa, Montse; Sancho-Vaello, Enea; Carreras-González, Ana; Bonnet, Pascal; Arrasate, Pedro; Eguskiza, Ander; Angala, Shiva K; Cifuente, Javier O; Korduláková, Jana; Jackson, Mary; Mikušová, Katarína; Guerin, Marcelo E

    2016-01-01

    The biosynthesis of phospholipids and glycolipids are critical pathways for virtually all cell membranes. PatA is an essential membrane associated acyltransferase involved in the biosynthesis of mycobacterial phosphatidyl-myo-inositol mannosides (PIMs). The enzyme transfers a palmitoyl moiety from palmitoyl-CoA to the 6-position of the mannose ring linked to 2-position of inositol in PIM1/PIM2. We report here the crystal structures of PatA from Mycobacterium smegmatis in the presence of its naturally occurring acyl donor palmitate and a nonhydrolyzable palmitoyl-CoA analog. The structures reveal an α/β architecture, with the acyl chain deeply buried into a hydrophobic pocket that runs perpendicular to a long groove where the active site is located. Enzyme catalysis is mediated by an unprecedented charge relay system, which markedly diverges from the canonical HX4D motif. Our studies establish the mechanistic basis of substrate/membrane recognition and catalysis for an important family of acyltransferases, providing exciting possibilities for inhibitor design. PMID:26965057

  8. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement.

    PubMed

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon; Strauss, Holger M; Rahbek, Ulrik L; Andresen, Thomas L

    2015-10-01

    Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate its influence on intestinal cell translocation and membrane interaction. We find that acylation drastically increases in vitro intestinal peptide flux and confers a transient permeability enhancing effect on the cell layer. The analogues permeabilize model lipid membranes, indicating that the effect is due to a solubilization of the cell membrane, similar to transcellular oral permeation enhancers. The effect is dependent on pH, with larger effect at lower pH, and is impacted by acylation chain length and position. Compared to the unacylated peptide backbone, N-terminal acylation with a short chain provides 6- or 9-fold increase in peptide translocation at pH 7.4 and 5.5, respectively. Prolonging the chain length appears to hamper translocation, possibly due to self-association or aggregation, although the long chain acylated analogues remain superior to the unacylated peptide. For K(18)-acylation a short chain provides a moderate improvement, whereas medium and long chain analogues are highly efficient, with a 12-fold increase in permeability compared to the unacylated peptide backbone, on par with currently employed oral permeation enhancers. For K(18)-acylation the medium chain acylation appears to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may

  9. Effects of experimental hypo- and hyperthyroidism on hepatic long-chain fatty acyl-CoA synthetase and hydrolase.

    PubMed

    Dang, A Q; Faas, F H; Carter, W J

    1989-07-01

    The effects of T3 treatment and thyroidectomy on rat liver microsomal long-chain fatty acyl-CoA (LCFA-CoA) synthetase and LCFA-CoA hydrolase activities were determined. Hyperthyroid rats had a 36-42% decrease in LCFA-CoA synthetase with no change in hydrolase activity. This may contribute to the redirection of fatty acids from esterification to oxidation reactions in hyperthyroidism. Thyroidectomized rats had a 40-44% decrease in synthetase and a 27-42% decrease in LCFA-CoA hydrolase activity. The decrease in both LCFA-CoA synthetase and hydrolase activities in hypothyroidism may indicate that the LCFA-CoA turnover in this futile cycle is decreased in the liver.

  10. Medium-chain acyl-CoA deficiency: outlines from newborn screening, in silico predictions, and molecular studies.

    PubMed

    Catarzi, Serena; Caciotti, Anna; Thusberg, Janita; Tonin, Rodolfo; Malvagia, Sabrina; la Marca, Giancarlo; Pasquini, Elisabetta; Cavicchi, Catia; Ferri, Lorenzo; Donati, Maria A; Baronio, Federico; Guerrini, Renzo; Mooney, Sean D; Morrone, Amelia

    2013-01-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is a disorder of fatty acid oxidation characterized by hypoglycemic crisis under fasting or during stress conditions, leading to lethargy, seizures, brain damage, or even death. Biochemical acylcarnitines data obtained through newborn screening by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were confirmed by molecular analysis of the medium-chain acyl-CoA dehydrogenase (ACADM) gene. Out of 324.000 newborns screened, we identified 14 MCADD patients, in whom, by molecular analysis, we found a new nonsense c.823G>T (p.Gly275∗) and two new missense mutations: c.253G>C (p.Gly85Arg) and c.356T>A (p.Val119Asp). Bioinformatics predictions based on both phylogenetic conservation and functional/structural software were used to characterize the new identified variants. Our findings confirm the rising incidence of MCADD whose existence is increasingly recognized due to the efficacy of an expanded newborn screening panel by LC-MS/MS making possible early specific therapies that can prevent possible crises in at-risk infants. We noticed that the "common" p.Lys329Glu mutation only accounted for 32% of the defective alleles, while, in clinically diagnosed patients, this mutation accounted for 90% of defective alleles. Unclassified variants (UVs or VUSs) are especially critical when considering screening programs. The functional and pathogenic characterization of genetic variants presented here is required to predict their medical consequences in newborns. PMID:24294134

  11. Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site

    PubMed Central

    Bharathi, Sivakama S.; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E.; Rardin, Matthew J.; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W.; Hirschey, Matthew D.; Goetzman, Eric S.

    2013-01-01

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  12. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site.

    PubMed

    Bharathi, Sivakama S; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E; Rardin, Matthew J; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W; Hirschey, Matthew D; Goetzman, Eric S

    2013-11-22

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  13. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing.

  14. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. PMID:26284828

  15. Phase behavior of grafted chain molecules: Influence of head size and chain length

    NASA Astrophysics Data System (ADS)

    Stadler, C.; Schmid, F.

    1999-05-01

    Constant pressure Monte Carlo simulations of a coarse-grained off-lattice model for monolayers of amphiphilic molecules at the air-water interface are presented. Our study focuses on phase transitions within a monolayer rather than on self-aggregation. We thus model the molecules as stiff chains of Lennard-Jones spheres with one slightly larger repulsive end bead (head) grafted to a planar surface. Depending on the size of the head, the temperature and the pressure, we find a variety of phases, which differ in tilt order (including tilt direction), and in positional order. In particular, we observe a modulated phase with a striped superstructure. The modulation results from the competition between two length scales, the head size, and the tail diameter. As this mechanism is fairly general, it may conceivably also be relevant in experimental monolayers. We argue that the superstructure would be very difficult to detect in a scattering experiment, which perhaps accounts for the fact that it has not been reported so far. Finally the effect of varying the chain length on the phase diagram is discussed. Except at high pressures and temperatures, the phase boundaries in systems with longer chains are shifted to higher temperatures.

  16. Development and pathomechanisms of cardiomyopathy in very long-chain acyl-CoA dehydrogenase deficient (VLCAD(-/-)) mice.

    PubMed

    Tucci, Sara; Flögel, Ulrich; Hermann, Sven; Sturm, Marga; Schäfers, Michael; Spiekerkoetter, Ute

    2014-05-01

    Hypertrophic cardiomyopathy is a typical manifestation of very long-chain acyl-CoA dehydrogenase deficiency (VLCADD), the most common long-chain β-oxidation defects in humans; however in some patients cardiac function is fully compensated. Cardiomyopathy may also be reversed by supplementation of medium-chain triglycerides (MCT). We here characterize cardiac function of VLCAD-deficient (VLCAD(-/-)) mice over one year. Furthermore, we investigate the long-term effect of a continuous MCT diet on the cardiac phenotype. We assessed cardiac morphology and function in VLCAD(-/-) mice by in vivo MRI. Cardiac energetics were measured by (31)P-MRS and myocardial glucose uptake was quantified by positron-emission-tomography (PET). Metabolic adaptations were identified by the expression of genes regulating glucose and lipid metabolism using real-time-PCR. VLCAD(-/-) mice showed a progressive decrease in heart function over 12 months accompanied by a reduced phosphocreatine-to-ATP-ratio indicative of chronic energy deficiency. Long-term MCT supplementation aggravated the cardiac phenotype into dilated cardiomyopathy with features similar to diabetic heart disease. Cardiac energy production and function in mice with a β-oxidation defect cannot be maintained with age. Compensatory mechanisms are insufficient to preserve the cardiac energy state over time. However, energy deficiency by impaired β-oxidation and long-term MCT induce cardiomyopathy by different mechanisms. Cardiac MRI and MRS may be excellent tools to assess minor changes in cardiac function and energetics in patients with β-oxidation defects for preventive therapy.

  17. Strategies for Correcting Very Long Chain Acyl-CoA Dehydrogenase Deficiency*

    PubMed Central

    Tenopoulou, Margarita; Chen, Jie; Bastin, Jean; Bennett, Michael J.; Ischiropoulos, Harry; Doulias, Paschalis-Thomas

    2015-01-01

    Very long acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic pediatric disorder presenting with a spectrum of phenotypes that remains for the most part untreatable. Here, we present a novel strategy for the correction of VLCAD deficiency by increasing mutant VLCAD enzymatic activity. Treatment of VLCAD-deficient fibroblasts, which express distinct mutant VLCAD protein and exhibit deficient fatty acid β-oxidation, with S-nitroso-N-acetylcysteine induced site-specific S-nitrosylation of VLCAD mutants at cysteine residue 237. Cysteine 237 S-nitrosylation was associated with an 8–17-fold increase in VLCAD-specific activity and concomitant correction of acylcarnitine profile and β-oxidation capacity, two hallmarks of the disorder. Overall, this study provides biochemical evidence for a potential therapeutic modality to correct β-oxidation deficiencies. PMID:25737446

  18. Chain length selectivity during the polycondensation of siloxane-containing esters and alcohols by immobilized Candida antarctica lipase B.

    PubMed

    Frampton, Mark B; Zelisko, Paul M

    2014-05-10

    We have examined the chain length selectivity for a series of acyl donors by lipase B from Candida antarctica (CalB). CalB accepted aliphatic diesters of C4, C6 and C12 chain lengths equally. The introduction of a carbon-carbon double bond into the C4 esters dramatically lowered the rate constant associated with polymerization highlighting the role of geometry in catalysis; fumarate esters were polymerized at a reduced rate compared to the succinate esters, while the maleate esters were not polymerized above 5% over the course of 24h. A disiloxane-containing diester impeded catalysis by CalB. We examined a series of vinyl siloxane esters and alcohols, and learned that the Z arrangement around the double bond stalled esterification by CalB completely. The distance between the ester carbonyl and the dimethylsiloxy group was shown to be an important factor in mediating catalysis. The rate constants were similar when the methylene spacer was 3, 4, or 5 units in length; beyond 6 methylene units, the rate constants increased. This has been tentatively attributed to the local reduction on the steric bulk when the larger siloxane moiety lies outside of the active site of the enzyme.

  19. Chain length selectivity during the polycondensation of siloxane-containing esters and alcohols by immobilized Candida antarctica lipase B.

    PubMed

    Frampton, Mark B; Zelisko, Paul M

    2014-05-10

    We have examined the chain length selectivity for a series of acyl donors by lipase B from Candida antarctica (CalB). CalB accepted aliphatic diesters of C4, C6 and C12 chain lengths equally. The introduction of a carbon-carbon double bond into the C4 esters dramatically lowered the rate constant associated with polymerization highlighting the role of geometry in catalysis; fumarate esters were polymerized at a reduced rate compared to the succinate esters, while the maleate esters were not polymerized above 5% over the course of 24h. A disiloxane-containing diester impeded catalysis by CalB. We examined a series of vinyl siloxane esters and alcohols, and learned that the Z arrangement around the double bond stalled esterification by CalB completely. The distance between the ester carbonyl and the dimethylsiloxy group was shown to be an important factor in mediating catalysis. The rate constants were similar when the methylene spacer was 3, 4, or 5 units in length; beyond 6 methylene units, the rate constants increased. This has been tentatively attributed to the local reduction on the steric bulk when the larger siloxane moiety lies outside of the active site of the enzyme. PMID:24731830

  20. Genetics Home Reference: medium-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... down (metabolize) a group of fats called medium-chain fatty acids. These fatty acids are found in foods and the body's fat tissues. Fatty acids are a major source of energy for the heart and muscles. During periods of fasting, ... of this enzyme, medium-chain fatty acids are not metabolized properly. As a ...

  1. Genetics Home Reference: very long-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... metabolize) a group of fats called very long-chain fatty acids. These fatty acids are found in foods and the body's fat tissues. Fatty acids are a major source of energy for the heart and muscles. During periods of fasting, ... of this enzyme, very long-chain fatty acids are not metabolized properly. As a ...

  2. A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket.

    PubMed

    Chai, Ai-Fen; Bulloch, Esther M M; Evans, Genevieve L; Lott, J Shaun; Baker, Edward N; Johnston, Jodie M

    2015-04-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Access to iron in host macrophages depends on iron-chelating siderophores called mycobactins and is strongly correlated with Mtb virulence. Here, the crystal structure of an Mtb enzyme involved in mycobactin biosynthesis, MbtN, in complex with its FAD cofactor is presented at 2.30 Å resolution. The polypeptide fold of MbtN conforms to that of the acyl-CoA dehydrogenase (ACAD) family, consistent with its predicted role of introducing a double bond into the acyl chain of mycobactin. Structural comparisons and the presence of an acyl carrier protein, MbtL, in the same gene locus suggest that MbtN acts on an acyl-(acyl carrier protein) rather than an acyl-CoA. A notable feature of the crystal structure is the tubular density projecting from N(5) of FAD. This was interpreted as a covalently bound polyethylene glycol (PEG) fragment and resides in a hydrophobic pocket where the substrate acyl group is likely to bind. The pocket could accommodate an acyl chain of 14-21 C atoms, consistent with the expected length of the mycobactin acyl chain. Supporting this, steady-state kinetics show that MbtN has ACAD activity, preferring acyl chains of at least 16 C atoms. The acyl-binding pocket adopts a different orientation (relative to the FAD) to other structurally characterized ACADs. This difference may be correlated with the apparent ability of MbtN to catalyse the formation of an unusual cis double bond in the mycobactin acyl chain.

  3. Evolutionary consequences of food chain length in kelp forest communities.

    PubMed Central

    Steinberg, P D; Estes, J A; Winter, F C

    1995-01-01

    Kelp forests are strongly influenced by macroinvertebrate grazing on fleshy macroalgae. In the North Pacific Ocean, sea otter predation on macroinvertebrates substantially reduces the intensity of herbivory on macroalgae. Temperate Australasia, in contrast, has no known predator of comparable influence. These ecological and biogeographic patterns led us to predict that (i) the intensity of herbivory should be greater in temperate Australasia than in the North Pacific Ocean; thus (ii) Australasian seaweeds have been under stronger selection to evolve chemical defenses and (iii) Australasian herbivores have been more strongly selected to tolerate these compounds. We tested these predictions first by measuring rates of algal tissue loss to herbivory at several locations in Australasian and North Pacific kelp forests. There were significant differences in grazing rates among sea otter-dominated locations in the North Pacific (0-2% day-1), Australasia (5-7% day-1), and a North Pacific location lacking sea otters (80% day-1). The expectations that chronically high rates of herbivory in Australasia have selected for high concentrations of defensive secondary metabolites (phlorotannins) in brown algae and increased tolerance of these defenses in the herbivores also were supported. Phlorotannin concentrations in kelps and fucoids from Australasia were, on average, 5-6 times higher than those in a comparable suite of North Pacific algae, confirming earlier findings. Furthermore, feeding rates of Australasian herbivores were largely unaffected by phlorotannins, regardless of the compounds' regional source. North Pacific herbivores, in contrast, were consistently deterred by phlorotannins from both Australasia and the North Pacific. These findings suggest that top-level consumers, acting through food chains of various lengths, can strongly influence the ecology and evolution of plantherbivore interactions. Images Fig. 1 Fig. 2 Fig. 3 PMID:11607573

  4. Antibacterial effect of phosphates and polyphosphates with different chain length.

    PubMed

    Lorencová, Eva; Vltavská, Pavlína; Budinský, Pavel; Koutný, Marek

    2012-01-01

    The aim of this study was to monitor the antibacterial effect of seven phosphate salts on selected strains of Gram-negative and Gram-positive bacteria, which could be considered responsible for food-borne diseases (Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Micrococcus luteus, Staphylococcus aureus, Citrobacter freundii, Escherichia coli, Proteus mirabilis, Salmonella enterica ser. Enteritidis and Pseudomonas aeruginosa). For these purposes, phosphates differing in chain length were used. The tested concentrations were in the range of 0.1-2.0% (wt v(-1)) applied at the model conditions. In the majority of cases the visible inhibitory effect on the growth of observed microorganisms could be seen. Due to the chemical structure of salts and their dissociation both the pH values of cultivation broth and similarly the growth characteristics of bacterial strains were affected. The inhibition of above mentioned bacteria was apparently supported by this dissociation. Phosphates obviously made the development of most Gram-positive bacteria impossible. Especially Micrococcus luteus was extremely sensitive to the presence of these substances. On the other hand, Gram-negative bacteria seemed to be resistant to the phosphate incidence. The exemption clause from the tested salts was represented by a high alkaline trisodium phosphate. It should be pointed out that generally the most significant antibacterial effects were shown by polyphosphates HEXA68 and HEXA70, trisodium phosphate undecahydrate, tetrasodium pyrophosphate and finally trisodium phosphate. By comparing the inhibitory effects of various phosphate salts can be concluded that the antibacterial activity was not determined only by the condensation degree but there was also proved the dependence on pH values.

  5. A Peroxisomal Long-Chain Acyl-CoA Synthetase from Glycine max Involved in Lipid Degradation

    PubMed Central

    Jiang, Bingjun; Sun, Xuegang; Gu, Shoulai; Han, Tianfu; Hou, Wensheng

    2014-01-01

    Seed storage oil, in the form of triacylglycerol (TAG), is degraded to provide carbon and energy during germination and early seedling growth by the fatty acid β-oxidation in the peroxisome. Although the pathways for lipid degradation have been uncovered, understanding of the exact involved enzymes in soybean is still limited. Long-chain acyl-CoA synthetase (ACSL) is a critical enzyme that activates free fatty acid released from TAG to form the fatty acyl-CoA. Recent studies have shown the importance of ACSL in lipid degradation and synthesis, but few studies were focused on soybean. In this work, we cloned a ACSL gene from soybean and designated it as GmACSL2. Sequence analysis revealed that GmACSL2 encodes a protein of 733 amino acid residues, which is highly homologous to the ones in other higher plants. Complementation test showed that GmACSL2 could restore the growth of an ACS-deficient yeast strain (YB525). Co-expression assay in Nicotiana benthamiana indicated that GmACSL2 is located at peroxisome. Expression pattern analysis showed that GmACSL2 is highly expressed in germinating seedling and strongly induced 1 day after imbibition, which indicate that GmACSL2 may take part in the seed germination. GmACSL2 overexpression in yeast and soybean hairy root severely reduces the contents of the lipids and fatty acids, compared with controls in both cells, and enhances the β-oxidation efficiency in yeast. All these results suggest that GmACSL2 may take part in fatty acid and lipid degradation. In conclusion, peroxisomal GmACSL2 from Glycine max probably be involved in the lipid degradation during seed germination. PMID:24992019

  6. Intestinal acyl-CoA synthetase 5: activation of long chain fatty acids and behind.

    PubMed

    Klaus, Christina; Jeon, Min Kyung; Kaemmerer, Elke; Gassler, Nikolaus

    2013-11-14

    The intestinal mucosa is characterized by a high complexity in terms of structure and functions and allows for a controlled demarcation towards the gut lumen. On the one hand it is responsible for pulping and selective absorption of alimentary substances ensuring the immunological tolerance, on the other hand it prevents the penetration of micro-organisms as well as bacterial outgrowth. The continuous regeneration of surface epithelia along the crypt-villus-axis in the small intestine is crucial to assuring these various functions. The core phenomena of intestinal epithelia regeneration comprise cell proliferation, migration, differentiation, and apoptosis. These partly contrarily oriented processes are molecularly balanced through numerous interacting signaling pathways like Wnt/β-catenin, Notch and Hedgehog, and regulated by various modifying factors. One of these modifiers is acyl-CoA synthetase 5 (ACSL5). It plays a key role in de novo lipid synthesis, fatty acid degradation and membrane modifications, and regulates several intestinal processes, primarily through different variants of protein lipidation, e.g., palmitoylation. ACSL5 was shown to interact with proapoptotic molecules, and besides seems to inhibit proliferation along the crypt-villus-axis. Because of its proapoptotic and antiproliferative characteristics it could be of significant relevance for intestinal homeostasis, cellular disorder and tumor development. PMID:24259967

  7. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases.

    PubMed

    Narita, Tomomi; Naganuma, Tatsuro; Sase, Yurie; Kihara, Akio

    2016-01-01

    Transport of dietary lipids into small-intestinal epithelial cells is pathologically and nutritionally important. However, lipid uptake remains an almost unexplored research area. Although we know that long-chain bases (LCBs), constituents of sphingolipids, can enter into cells efficiently, the molecular mechanism of LCB uptake is completely unclear. Here, we found that the yeast acyl-CoA synthetases (ACSs) Faa1 and Faa4 are redundantly involved in LCB uptake. In addition to fatty acid-activating activity, transporter activity toward long-chain fatty acids (LCFAs) has been suggested for ACSs. Both LCB and LCFA transports were largely impaired in faa1Δ faa4Δ cells. Furthermore, LCB and LCFA uptakes were mutually competitive. However, the energy dependency was different for their transports. Sodium azide/2-deoxy-D-glucose treatment inhibited import of LCFA but not that of LCB. Furthermore, the ATP-AMP motif mutation FAA1 S271A largely impaired the metabolic activity and LCFA uptake, while leaving LCB import unaffected. These results indicate that only LCFA transport requires ATP. Since ACSs do not metabolize LCBs as substrates, Faa1 and Faa4 are likely directly involved in LCB transport. Furthermore, we revealed that ACSs are also involved in LCB transport in mammalian cells. Thus, our findings provide strong support for the hypothesis that ACSs directly transport LCFAs. PMID:27136724

  8. Allometric scaling of fatty acyl chains in fowl liver, lung and kidney, but not in brain phospholipids.

    PubMed

    Szabó, András; Mézes, Miklós; Romvári, Róbert; Fébel, Hedvig

    2010-03-01

    The phospholipid (PL) fatty acyl chain (FA) composition (mol%) was determined in the kidney, liver, lung and brain of 8 avian species ranging in body mass from 150g (Japanese quail, Coturnix coturnix japonica) to 19kg (turkey, Meleagris gallopavo). In all organs except the brain, docosahexaenoic acid (C22:6 n3, DHA) was found to show a negative allometric scaling (allometric exponent: B=-0.18; -0.20 and -0.24, for kidney, liver and lung, respectively). With minor inter-organ differences, smaller birds had more n3 FAs and longer FA chains in the renal, hepatic and pulmonary PLs. Comparing our results with literature data on avian skeletal muscle, liver mitochondria and kidney microsomes and divergent mammalian tissues, the present findings in the kidney, liver and lung PLs seem to be a part of a general relationship termed "membranes as metabolic pacemakers". Marked negative allometric scaling was found furthermore for the tissue malondialdehyde concentrations in all organs except the brain (B=-0.17; -0.13 and -0.05, respectively). In the liver and kidney a strong correlation was found between the tissue MDA and DHA levels, expressing the role of DHA in shaping the allometric properties of membrane lipids.

  9. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds.

    PubMed

    Aznar-Moreno, Jose A; Venegas Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Mullen, Robert; Gidda, Satinder K; Salas, Joaquín J

    2014-03-01

    Long chain fatty acid synthetases (LACSs) activate the fatty acid chains produced by plastidial de novo biosynthesis to generate acyl-CoA derivatives, important intermediates in lipid metabolism. Oilseeds, like sunflower, accumulate high levels of triacylglycerols (TAGs) in their seeds to nourish the embryo during germination. This requires that sunflower seed endosperm supports very active glycerolipid synthesis during development. Sunflower seed plastids produce large amounts of fatty acids, which must be activated through the action of LACSs, in order to be incorporated into TAGs. We cloned two different LACS genes from developing sunflower endosperm, HaLACS1 and HaLACS2, which displayed sequence homology with Arabidopsis LACS9 and LACS8 genes, respectively. These genes were expressed at high levels in developing seeds and exhibited distinct subcellular distributions. We generated constructs in which these proteins were fused to green fluorescent protein and performed transient expression experiments in tobacco cells. The HaLACS1 protein associated with the external envelope of tobacco chloroplasts, whereas HaLACS2 was strongly bound to the endoplasmic reticulum. Finally, both proteins were overexpressed in Escherichia coli and recovered as active enzymes in the bacterial membranes. Both enzymes displayed similar substrate specificities, with a very high preference for oleic acid and weaker activity toward stearic acid. On the basis of our findings, we discuss the role of these enzymes in sunflower oil synthesis.

  10. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases

    PubMed Central

    Narita, Tomomi; Naganuma, Tatsuro; Sase, Yurie; Kihara, Akio

    2016-01-01

    Transport of dietary lipids into small-intestinal epithelial cells is pathologically and nutritionally important. However, lipid uptake remains an almost unexplored research area. Although we know that long-chain bases (LCBs), constituents of sphingolipids, can enter into cells efficiently, the molecular mechanism of LCB uptake is completely unclear. Here, we found that the yeast acyl-CoA synthetases (ACSs) Faa1 and Faa4 are redundantly involved in LCB uptake. In addition to fatty acid-activating activity, transporter activity toward long-chain fatty acids (LCFAs) has been suggested for ACSs. Both LCB and LCFA transports were largely impaired in faa1Δ faa4Δ cells. Furthermore, LCB and LCFA uptakes were mutually competitive. However, the energy dependency was different for their transports. Sodium azide/2-deoxy-D-glucose treatment inhibited import of LCFA but not that of LCB. Furthermore, the ATP-AMP motif mutation FAA1 S271A largely impaired the metabolic activity and LCFA uptake, while leaving LCB import unaffected. These results indicate that only LCFA transport requires ATP. Since ACSs do not metabolize LCBs as substrates, Faa1 and Faa4 are likely directly involved in LCB transport. Furthermore, we revealed that ACSs are also involved in LCB transport in mammalian cells. Thus, our findings provide strong support for the hypothesis that ACSs directly transport LCFAs. PMID:27136724

  11. Anesthetic agents in patients with very long-chain acyl-coenzyme A dehydrogenase deficiency: a literature review.

    PubMed

    Redshaw, Charlotte; Stewart, Catherine

    2014-11-01

    Very long-chain acyl-coenzyme A dehydrongenase deficiency (VLCADD) is a rare disorder of fatty acid metabolism that renders sufferers susceptible to hypoglycemia, liver failure, cardiomyopathy, and rhabdomyolysis. The literature about the management of these patients is hugely conflicting, suggesting that both propofol and volatile anesthesia should be avoided. We have reviewed the literature and have concluded that the source papers do not support the statements that volatile anesthetic agents are unsafe. The reports on rhabdomyolysis secondary to anesthesia appear to be due to inadequate supply of carbohydrate not volatile agents. Catabolism must be avoided with minimal fasting, glucose infusions based on age and weight, and attenuation of emotional and physical stress. General anesthesia appears to be protective of stress-induced catabolism and may offer benefits in children and anxious patients over regional anesthesia. Propofol has not been demonstrated to be harmful in VLCADD but is presented in an emulsion containing very long-chain fatty acids which can cause organ lipidosis and itself can inhibit mitochondrial fatty acid metabolism. It is therefore not recommended. Suxamethonium-induced myalgia may mimic symptoms of rhabdomyolysis and cause raised CK therefore should be avoided. Opioids, NSAIDS, regional anesthesia, and local anesthetic techniques have all been used without complication. PMID:25069536

  12. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases.

    PubMed

    Narita, Tomomi; Naganuma, Tatsuro; Sase, Yurie; Kihara, Akio

    2016-05-03

    Transport of dietary lipids into small-intestinal epithelial cells is pathologically and nutritionally important. However, lipid uptake remains an almost unexplored research area. Although we know that long-chain bases (LCBs), constituents of sphingolipids, can enter into cells efficiently, the molecular mechanism of LCB uptake is completely unclear. Here, we found that the yeast acyl-CoA synthetases (ACSs) Faa1 and Faa4 are redundantly involved in LCB uptake. In addition to fatty acid-activating activity, transporter activity toward long-chain fatty acids (LCFAs) has been suggested for ACSs. Both LCB and LCFA transports were largely impaired in faa1Δ faa4Δ cells. Furthermore, LCB and LCFA uptakes were mutually competitive. However, the energy dependency was different for their transports. Sodium azide/2-deoxy-D-glucose treatment inhibited import of LCFA but not that of LCB. Furthermore, the ATP-AMP motif mutation FAA1 S271A largely impaired the metabolic activity and LCFA uptake, while leaving LCB import unaffected. These results indicate that only LCFA transport requires ATP. Since ACSs do not metabolize LCBs as substrates, Faa1 and Faa4 are likely directly involved in LCB transport. Furthermore, we revealed that ACSs are also involved in LCB transport in mammalian cells. Thus, our findings provide strong support for the hypothesis that ACSs directly transport LCFAs.

  13. Transcriptomic and Reverse Genetic Analysesof Branched-Chain Fatty Acid and Acyl Sugar Production in Solanum pennellii and Nicotiana benthamiana1[W][OA

    PubMed Central

    Slocombe, Stephen P.; Schauvinhold, Ines; McQuinn, Ryan P.; Besser, Katrin; Welsby, Nicholas A.; Harper, Andrea; Aziz, Naveed; Li, Yi; Larson, Tony R.; Giovannoni, James; Dixon, Richard A.; Broun, Pierre

    2008-01-01

    Acyl sugars containing branched-chain fatty acids (BCFAs) are exuded by glandular trichomes of many species in Solanaceae, having an important defensive role against insects. From isotope-feeding studies, two modes of BCFA elongation have been proposed: (1) fatty acid synthase-mediated two-carbon elongation in the high acyl sugar-producing tomato species Solanum pennellii and Datura metel; and (2) α-keto acid elongation-mediated one-carbon increments in several tobacco (Nicotiana) species and a Petunia species. To investigate the molecular mechanisms underlying BCFAs and acyl sugar production in trichomes, we have taken a comparative genomic approach to identify critical enzymatic steps followed by gene silencing and metabolite analysis in S. pennellii and Nicotiana benthamiana. Our study verified the existence of distinct mechanisms of acyl sugar synthesis in Solanaceae. From microarray analyses, genes associated with α-keto acid elongation were found to be among the most strongly expressed in N. benthamiana trichomes only, supporting this model in tobacco species. Genes encoding components of the branched-chain keto-acid dehydrogenase complex were expressed at particularly high levels in trichomes of both species, and we show using virus-induced gene silencing that they are required for BCFA production in both cases and for acyl sugar synthesis in N. benthamiana. Functional analysis by down-regulation of specific KAS I genes and cerulenin inhibition indicated the involvement of the fatty acid synthase complex in BCFA production in S. pennellii. In summary, our study highlights both conserved and divergent mechanisms in the production of important defense compounds in Solanaceae and defines potential targets for engineering acyl sugar production in plants for improved pest tolerance. PMID:18931142

  14. Effects of cholesterol and saturated sphingolipids on acyl chain order in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers--a comparative study with phase-selective fluorophores.

    PubMed

    Engberg, Oskar; Nurmi, Henrik; Nyholm, Thomas K M; Slotte, J Peter

    2015-04-14

    Saturated sphingolipids have high acyl chain order. Our aim was to study how palmitoylated sphingomyelin (PSM), ceramide (PCer), glucosyl (GlcPCer)-, and galactosylceramide (GalPCer) were able to order the bulk acyl chains of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), in comparison with cholesterol. For this reason, we used lipid probes which had preferred phases that were either the disordered phase (1-oleoyl-2-propionyl[DPH-sn-glycero-3-phosphcholine (18:1-DPH-PC) or the ordered phase (trans parinaric acid (tPA). DPH was also used, although it has no clear phase preference. We measured steady-state anisotropy (all probes) and performed fluorescence lifetime analysis (tPA) as a function of composition and temperature. At concentrations where the saturated sphingolipids were not aggregated into ordered domains (and 23 °C), they did not increase POPC acyl chain order as determined from 18:1-DPH-PC anisotropy. As expected, cholesterol increased the POPC acyl chain order linearly as a function of concentration (0-28 mol %). Since PCer already forms ordered domains below 5 mol % (at 23 °C), we measured the acyl chain ordering effect of PCer at 50 °C (0-13 mol %) and observed that PCer ordered POPC acyl chains as efficiently as cholesterol. We conclude that the bulk acyl chain order of POPC was not markedly affected in bilayers where disordered and ordered domains coexist.

  15. Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase

    SciTech Connect

    Vandevoorde, Severine; Saha, Bijali; Mahadevan, Anu; Razdan, Raj K.; Pertwee, Roger G.; Martin, Billy R.; Fowler, Christopher J. . E-mail: cf@pharm.umu.se

    2005-11-11

    Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC{sub 50} values in the range 5.1-8.2 {mu}M), whereas the two compounds with a single unsaturated bond were less potent (IC{sub 50} values 19 and 21 {mu}M). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC{sub 50} values of 12 and 32 {mu}M, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC{sub 50} value 4.5 {mu}M). Introduction of an {alpha}-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL.

  16. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.

    PubMed

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo

    2013-03-01

    Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.

  17. The Effect of Causal Chain Length on Counterfactual Conditional Reasoning

    ERIC Educational Resources Information Center

    Beck, Sarah R.; Riggs, Kevin J.; Gorniak, Sarah L.

    2010-01-01

    We investigated German and Nichols' finding that 3-year-olds could answer counterfactual conditional questions about short causal chains of events, but not long. In four experiments (N = 192), we compared 3- and 4-year-olds' performance on short and long causal chain questions, manipulating whether the child could draw on general knowledge to…

  18. Molecular dynamics study of the isothermal crystallization mechanism of polyethylene chain: the combined effects of chain length and temperature.

    PubMed

    Gao, Rui; He, Xuelian; Zhang, Haiyang; Shao, Yunqi; Liu, Zhen; Liu, Boping

    2016-03-01

    A molecular level understanding of the polyethylene (PE) crystallization process was elucidated by molecular dynamics simulation of three states, with varying chain length and temperature. The process can be classified into the following three states: (1) nucleation controlled state, (2) competitive state of crystal growth process and new nuclei formation, and (3) crystal growth controlled state, which could be quantified by the evolution of nuclei number. With increasing chain length, two phenomena occur: the single crystallization mechanism changes from state (1) to (3), and the crystal size increases while the b/a axial ratio in the lateral surface decreases. These changes can be explained from a thermodynamic point of view, in that the van der Waals (vdW) interaction per CH2 unit is strengthened and more nucleation sites are generated for longer chain. Size effect (meaning different surface fractions when the chain collapses into a globule) was an important factor determining vdW energy per unit and the crystallization states of a single PE chain. On the other hand, the crystallization states were independent of chain length for short chains systems with the same size effect. In both conditions, a long chain generates multi-crystal domains, and a short chain prefers a single crystal domain. Our results not only provide molecular level evidence for crystallization states but also clarify the influence of chain length on the crystallization process.

  19. Development and pathomechanisms of cardiomyopathy in very long-chain acyl-CoA dehydrogenase deficient (VLCAD(-/-)) mice.

    PubMed

    Tucci, Sara; Flögel, Ulrich; Hermann, Sven; Sturm, Marga; Schäfers, Michael; Spiekerkoetter, Ute

    2014-05-01

    Hypertrophic cardiomyopathy is a typical manifestation of very long-chain acyl-CoA dehydrogenase deficiency (VLCADD), the most common long-chain β-oxidation defects in humans; however in some patients cardiac function is fully compensated. Cardiomyopathy may also be reversed by supplementation of medium-chain triglycerides (MCT). We here characterize cardiac function of VLCAD-deficient (VLCAD(-/-)) mice over one year. Furthermore, we investigate the long-term effect of a continuous MCT diet on the cardiac phenotype. We assessed cardiac morphology and function in VLCAD(-/-) mice by in vivo MRI. Cardiac energetics were measured by (31)P-MRS and myocardial glucose uptake was quantified by positron-emission-tomography (PET). Metabolic adaptations were identified by the expression of genes regulating glucose and lipid metabolism using real-time-PCR. VLCAD(-/-) mice showed a progressive decrease in heart function over 12 months accompanied by a reduced phosphocreatine-to-ATP-ratio indicative of chronic energy deficiency. Long-term MCT supplementation aggravated the cardiac phenotype into dilated cardiomyopathy with features similar to diabetic heart disease. Cardiac energy production and function in mice with a β-oxidation defect cannot be maintained with age. Compensatory mechanisms are insufficient to preserve the cardiac energy state over time. However, energy deficiency by impaired β-oxidation and long-term MCT induce cardiomyopathy by different mechanisms. Cardiac MRI and MRS may be excellent tools to assess minor changes in cardiac function and energetics in patients with β-oxidation defects for preventive therapy. PMID:24530811

  20. Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency.

    PubMed

    Diekman, E F; Visser, G; Schmitz, J P J; Nievelstein, R A J; de Sain-van der Velden, M; Wardrop, M; Van der Pol, W L; Houten, S M; van Riel, N A W; Takken, T; Jeneson, J A L

    2016-01-01

    Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr) and inorganic phosphate (Pi) concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD. PMID:26881790

  1. Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency

    PubMed Central

    Diekman, E. F.; Visser, G.; Schmitz, J. P. J.; Nievelstein, R. A. J.; de Sain-van der Velden, M.; Wardrop, M.; Van der Pol, W. L.; Houten, S. M.; van Riel, N. A. W.; Takken, T.; Jeneson, J. A. L.

    2016-01-01

    Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr) and inorganic phosphate (Pi) concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD. PMID:26881790

  2. LC-MS/MS-based analysis of coenzyme A and short-chain acyl-coenzyme A thioesters.

    PubMed

    Neubauer, Stefan; Chu, Dinh Binh; Marx, Hans; Sauer, Michael; Hann, Stephan; Koellensperger, Gunda

    2015-09-01

    Absolute quantification of intracellular coenzyme A (CoA), coenzyme A disulfide, and short-chain acyl-coenzyme A thioesters was addressed by developing a tailored metabolite profiling method based on liquid chromatography in combination with tandem mass spectrometric detection (LC-MS/MS). A reversed phase chromatographic separation was established which is capable of separating a broad spectrum of CoA, its corresponding derivatives, and their isomers despite the fact that no ion-pairing reagent was used (which was considered as a key advantage of the method). Excellent analytical figures of merit such as high sensitivity (LODs in the nM to sub-nM range) and high repeatability (routinely 4 %; N = 15) were obtained. Method validation comprised a study on standard purity, stability, and recoveries during sample preparation. Uniformly labeled U(13)C yeast cell extracts offered ideal internal standards for validation purposes and for a quantification exercise in the rumen bacterium Megasphaera elsdenii.

  3. Separation of isomeric short-chain acyl-CoAs in plant matrices using ultra-performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Purves, Randy W; Ambrose, Stephen J; Clark, Shawn M; Stout, Jake M; Page, Jonathan E

    2015-02-01

    Acyl coenzyme A (acyl-CoA) thioesters are important intermediates in cellular metabolism and being able to distinguish among them is critical to fully understanding metabolic pathways in plants. Although significant advances have been made in the identification and quantification of acyl-CoAs using liquid chromatography tandem mass spectrometry (LC-MS/MS), separation of isomeric species such as isobutyryl- and n-butyrl-CoA has remained elusive. Here we report an ultra-performance liquid chromatography (UPLC)-MS/MS method for quantifying short-chain acyl-CoAs including isomeric species n-butyryl-CoA and isobutyryl-CoA as well as n-valeryl-CoA and isovaleryl-CoA. The method was applied to the analysis of extracts of hop (Humulus lupulus) and provided strong evidence for the existence of an additional structural isomer of valeryl-CoA, 2-methylbutyryl-CoA, as well as an unexpected isomer of hexanoyl-CoA. The results showed differences in the acyl-CoA composition among varieties of Humulus lupulus, both in glandular trichomes and cone tissues. When compared with the analysis of hemp (Cannabis sativa) extracts, the contribution of isobutyryl-CoAs in hop was greater as would be expected based on the downstream polyketide products. Surprisingly, branched chain valeryl-CoAs (isovaleryl-CoA and 2-methylbutyryl-CoA) were the dominant form of valeryl-CoAs in both hop and hemp. The capability to separate these isomeric forms will help to understand biochemical pathways leading to specialized metabolites in plants.

  4. Complex changes in the liver mitochondrial proteome of short chain acyl-CoA dehydrogenase deficient mice.

    PubMed

    Wang, Wei; Mohsen, Al-Walid; Uechi, Guy; Schreiber, Emanuel; Balasubramani, Manimalha; Day, Billy; Michael Barmada, M; Vockley, Jerry

    2014-05-01

    Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an autosomal recessive inborn error of metabolism that leads to the impaired mitochondrial fatty acid β-oxidation of short chain fatty acids. It is heterogeneous in clinical presentation including asymptomatic in most patients identified by newborn screening. Multiple mutations have been identified in patients; however, neither clear genotype-phenotype relationships nor a good correlation between genotype and current biochemical markers for diagnosis has been identified. The definition and pathophysiology of this deficiency remain unclear. To better understand this disorder at a global level, quantitative alterations in the mitochondrial proteome in SCAD deficient mice were examined using a combined proteomics approach: two-dimensional gel difference electrophoresis (2DIGE) followed by protein identification with MALDI-TOF/TOF and iTRAQ labeling followed by nano-LC/MALDI-TOF/TOF. We found broad mitochondrial dysfunction in SCAD deficiency. Changes in the levels of multiple energy metabolism related proteins were identified indicating that a more complex mechanism for development of symptoms may exist. Affected pathways converge on disorders with neurologic symptoms, suggesting that even asymptomatic individuals with SCAD deficiency may be at risk to develop more severe disease. Our results also identified a pattern associated with hepatotoxicity implicated in mitochondrial dysfunction, fatty acid metabolism, decrease of depolarization of mitochondria and mitochondrial membranes, and swelling of mitochondria, demonstrating that SCAD deficiency relates more directly to mitochondrial dysfunction and alteration of fatty acid metabolism. We propose several candidate molecules that may serve as markers for recognition of clinical risk associated with this disorder.

  5. Dependence on chain length of NMR relaxation times in mixtures of alkanes

    NASA Astrophysics Data System (ADS)

    Freed, Denise E.

    2007-05-01

    Many naturally occurring fluids, such as crude oils, consist of a very large number of components. It is often of interest to determine the composition of the fluids in situ. Diffusion coefficients and nuclear magnetic resonance (NMR) relaxation times can be measured in situ and depend on the size of the molecules. It has been shown [D. E. Freed et al., Phys. Rev. Lett. 94, 067602 (2005)] that the diffusion coefficient of each component in a mixture of alkanes follows a scaling law in the chain length of that molecule and in the mean chain length of the mixture, and these relations were used to determine the chain length distribution of crude oils from NMR diffusion measurements. In this paper, the behavior of NMR relaxation times in mixtures of chain molecules is addressed. The author explains why one would expect scaling laws for the transverse and longitudinal relaxation times of mixtures of short chain molecules and mixtures of alkanes, in particular. It is shown how the power law dependence on the chain length can be calculated from the scaling laws for the translational diffusion coefficients. The author fits the literature data for NMR relaxation in binary mixtures of alkanes and finds that its dependence on chain length agrees with the theory. Lastly, it is shown how the scaling laws in the chain length and the mean chain length can be used to determine the chain length distribution in crude oils that are high in saturates. A good fit is obtained between the NMR-derived chain length distributions and the ones from gas chromatography.

  6. The presence of acyl-CoA hydrolase in rat brown-adipose-tissue peroxisomes.

    PubMed

    Alexson, S E; Osmundsen, H; Berge, R K

    1989-08-15

    The subcellular distribution of acyl-CoA hydrolase was studied in rat brown adipose tissue, with special emphasis on possible peroxisomal localization. Subcellular fractionation by sucrose-density-gradient centrifugation, followed by measurement of short-chain (propionyl-CoA) acyl-CoA hydrolase in the presence of NADH, resulted in two peaks of activity in the gradient: one peak corresponded to the distribution of cytochrome oxidase (mitochondrial marker enzyme), and another peak of activity coincided with the peroxisomal marker enzyme catalase. The distribution of the NADH-inhibited short-chain hydrolase activity fully resembled that of cytochrome oxidase. The substrate-specificity curve of the peroxisomal acyl-CoA hydrolase activity indicated the presence of a single enzyme exhibiting a broad substrate specificity, with maximal activity towards fatty acids with chain lengths of 3-12 carbon atoms. The mitochondrial acyl-CoA hydrolase substrate specificity, in contrast, indicated the presence of at least two acyl-CoA hydrolases (of short- and medium-chain-length specificity). The peroxisomal acyl-CoA hydrolase activity was inhibited by CoA at low (microM) concentrations and by ATP at high concentrations (greater than 0.8 mM). In contrast with the mitochondrial short-chain hydrolase, the peroxisomal acyl-CoA hydrolase activity was not inhibited by NADH. PMID:2573347

  7. Sexual dimorphism of lipid metabolism in very long-chain acyl-CoA dehydrogenase deficient (VLCAD-/-) mice in response to medium-chain triglycerides (MCT).

    PubMed

    Tucci, Sara; Flögel, Ulrich; Spiekerkoetter, Ute

    2015-07-01

    Medium-chain triglycerides (MCT) are widely applied in the treatment of long-chain fatty acid oxidation disorders. Previously it was shown that long-term MCT supplementation strongly affects lipid metabolism in mice. We here investigate sex-specific effects in mice with very-long-chain-acyl-CoA dehydrogenase (VLCAD) deficiency in response to a long-term MCT modified diet. We quantified blood lipids, acylcarnitines, glucose, insulin and free fatty acids, as well as tissue triglycerides in the liver and skeletal muscle under a control and an MCT diet over 1 year. In addition, visceral and hepatic fat content and muscular intramyocellular lipids (IMCL) were assessed by in vivo(1)H magnetic resonance spectroscopy (MRS) techniques. The long-term application of an MCT diet induced a marked alteration of glucose homeostasis. However, only VLCAD-/- female mice developed a severe metabolic syndrome characterized by marked insulin resistance, dyslipidemia, severe hepatic and visceral steatosis, whereas VLCAD-/- males seemed to be protected and only presented with milder insulin resistance. Moreover, the highly saturated MCT diet is associated with a decreased hepatic stearoyl-CoA desaturase 1 (SCD1) activity in females aggravating the harmful effects of a saturated MCT diet. Long-term MCT supplementation deeply affects lipid metabolism in a sexual dimorphic manner resulting in a severe metabolic syndrome only in female mice. These findings are striking since the first signs of insulin resistance already occur in female VLCAD-/- mice during their reproductive period. How these metabolic adaptations are finally regulated needs to be determined. More important, the relevance of these findings for humans under these dietary modifications needs to be investigated. PMID:25887160

  8. Sexual dimorphism of lipid metabolism in very long-chain acyl-CoA dehydrogenase deficient (VLCAD-/-) mice in response to medium-chain triglycerides (MCT).

    PubMed

    Tucci, Sara; Flögel, Ulrich; Spiekerkoetter, Ute

    2015-07-01

    Medium-chain triglycerides (MCT) are widely applied in the treatment of long-chain fatty acid oxidation disorders. Previously it was shown that long-term MCT supplementation strongly affects lipid metabolism in mice. We here investigate sex-specific effects in mice with very-long-chain-acyl-CoA dehydrogenase (VLCAD) deficiency in response to a long-term MCT modified diet. We quantified blood lipids, acylcarnitines, glucose, insulin and free fatty acids, as well as tissue triglycerides in the liver and skeletal muscle under a control and an MCT diet over 1 year. In addition, visceral and hepatic fat content and muscular intramyocellular lipids (IMCL) were assessed by in vivo(1)H magnetic resonance spectroscopy (MRS) techniques. The long-term application of an MCT diet induced a marked alteration of glucose homeostasis. However, only VLCAD-/- female mice developed a severe metabolic syndrome characterized by marked insulin resistance, dyslipidemia, severe hepatic and visceral steatosis, whereas VLCAD-/- males seemed to be protected and only presented with milder insulin resistance. Moreover, the highly saturated MCT diet is associated with a decreased hepatic stearoyl-CoA desaturase 1 (SCD1) activity in females aggravating the harmful effects of a saturated MCT diet. Long-term MCT supplementation deeply affects lipid metabolism in a sexual dimorphic manner resulting in a severe metabolic syndrome only in female mice. These findings are striking since the first signs of insulin resistance already occur in female VLCAD-/- mice during their reproductive period. How these metabolic adaptations are finally regulated needs to be determined. More important, the relevance of these findings for humans under these dietary modifications needs to be investigated.

  9. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.

  10. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  11. cDNA cloning of rat and human medium chain acyl-CoA dehydrogenase (MCAD)

    SciTech Connect

    Matsubara, Y.; Kraus, J.P.; Rosenberg, L.E.; Tanaka, K.

    1986-05-01

    MCAD is one of three mitochondrial flavoenzymes which catalyze the first step in the ..beta..-oxidation of straight chain fatty acids. It is a tetramer with a subunit Mr of 45 kDa. MCAD is synthesized in the cytosol as a 49 kDa precursor polypeptide (pMCAD), imported into mitochondria, and cleaved to the mature form. Genetic deficiency of MCAD causes recurrent episodes of hypoglycemic coma accompanied by medium chain dicarboxylic aciduria. Employing a novel approach, the authors now report isolation of partial rat and human cDNA clones encoding pMCAD. mRNA encoding pMCAD was purified to near homogeneity by polysome immunoadsorption using polyclonal monospecific antibody. Single-stranded (/sup 32/P)labeled cDNA probe was synthesized using the enriched mRNA as template, and was used to screen directly 16,000 colonies from a total rat liver cDNA library constructed in pBR322. One clone (600 bp) was detected by in situ hybridization. Hybrid-selected translation with this cDNA yielded a 49 kDa polypeptide indistinguishable in size from rat pMCAD and immunoprecipitable with anti-MCAD antibody. Using the rat cDNA as probe, 43,000 colonies from a human liver cDNA library were screened. Four identical positive clones (400 bp) were isolated and positively identified by hybrid-selected translation and immunoprecipitation. The sizes of rat and human mRNAs encoding pMCAD were 2.2 kb and 2.4 kb, respectively, as determined by Northern blotting.

  12. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain.

    PubMed

    Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-01-01

    Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.

  13. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain.

    PubMed

    Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-01-01

    Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder. PMID:26871048

  14. Gating of the Mitochondrial Permeability Transition Pore by Long Chain Fatty Acyl Analogs in Vivo*

    PubMed Central

    Samovski, Dmitri; Kalderon, Bella; Yehuda-Shnaidman, Einav; Bar-Tana, Jacob

    2010-01-01

    The role played by long chain fatty acids (LCFA) in promoting energy expenditure is confounded by their dual function as substrates for oxidation and as putative classic uncouplers of mitochondrial oxidative phosphorylation. LCFA analogs of the MEDICA (MEthyl-substituted DICarboxylic Acids) series are neither esterified into lipids nor β-oxidized and may thus simulate the uncoupling activity of natural LCFA in vivo, independently of their substrate role. Treatment of rats or cell lines with MEDICA analogs results in low conductance gating of the mitochondrial permeability transition pore (PTP), with 10–40% decrease in the inner mitochondrial membrane potential. PTP gating by MEDICA analogs is accounted for by inhibition of Raf1 expression and kinase activity, resulting in suppression of the MAPK/RSK1 and the adenylate cyclase/PKA transduction pathways. Suppression of RSK1 and PKA results in a decrease in phosphorylation of their respective downstream targets, Bad(Ser-112) and Bad(Ser-155). Decrease in Bad(Ser-112, Ser-155) phosphorylation results in increased binding of Bad to mitochondrial Bcl2 with concomitant displacement of Bax, followed by PTP gating induced by free mitochondrial Bax. Low conductance PTP gating by LCFA/MEDICA may account for their thyromimetic calorigenic activity in vivo. PMID:20037159

  15. Growth of Highly Oriented Ultrathin Crystalline Organic Microstripes: Effect of Alkyl Chain Length.

    PubMed

    Zhu, Tao; Xiao, Chengliang; Wang, Binghao; Hu, Xiaorong; Wang, Zi; Fan, Jian; Huang, Lizhen; Yan, Donghang; Chi, Lifeng

    2016-09-13

    The growth of organic semiconductor with controllable morphology is a crucial issue for achieving high-performance devices. Here we present the systematic study of the effect of the alkyl chain attached to the functional entity on controlling the growth of oriented microcrystals by dip-coating. Alkylated DTBDT-based molecules with variable chain lengths from n-butyl to n-dodecyl formed into one-dimensional micro- or nanostripe crystals at different pulling speeds. The alignment and ordering are significantly varied with alkyl chain length, as is the transistor performance. Highly uniform oriented and higher-molecular-order crystalline stripes with improved field-effect mobility can be achieved with an alkyl-chain length of around 6. We attribute this effect to the alkyl-chain-length-dependent packing, solubility, and self-assembly behavior. PMID:27548053

  16. Insertion of apoLp-III into a lipid monolayer is more favorable for saturated, more ordered, acyl-chains

    SciTech Connect

    Rathnayake, Sewwandi S.; Mirheydari, Mona; Schulte, Adam; Gillahan, James E.; Gentit, Taylor; Phillips, Ashley N.; Okonkwo, Rose K.; Burger, Koert N.J.; Mann, Elizabeth K.; Vaknin, David; Bu, Wei; Agra-Kooijman, Dena Mae; Kooijman, Edgar E.

    2013-10-04

    Neutral lipid transport in mammals is complicated involving many types of apolipoprotein. The exchangeable apolipoproteins mediate the transfer of hydrophobic lipids between tissues and particles, and bind to cell surface receptors. Amphipathic a-helices form a common structural motif that facilitates their lipid binding and exchangeability. ApoLp-III, the only exchangeable apolipoprotein found in insects, is a model amphipathic a:helix bundle protein and its three dimensional structure and function mimics that of the mammalian proteins apoE and apoAI. Even the intracellular exchangeable lipid droplet protein TIP47/perilipin 3 contains an a-helix bundle domain with high structural similarity to that of apoE and apoLp-III. Here, we investigated the interaction of apoLp-III from Locusta migratoria with lipid monolayers. Consistent with earlier work we find that insertion of apoLp-III into fluid lipid monolayers is highest for diacylglycerol. We observe a preference for saturated and more highly ordered lipids, suggesting a new mode of interaction for amphipathic a-helix bundles. X-ray reflectivity shows that apoLp-III unfolds at a hydrophobic interface and flexible loops connecting the amphipathic cc-helices stay in solution. X-ray diffraction indicates that apoLp-III insertion into diacylglycerol monolayers induces additional ordering of saturated acyl-chains. These results thus shed important new insight into the protein-lipid interactions of a model exchangeable apolipoprotein with significant implications for its mammalian counterparts. (C) 2013 Elsevier B.V. All rights reserved.

  17. Effects of hypo- and hyperthyroidism on rat liver microsomal long-chain fatty acyl-CoA synthetase and hydrolase

    SciTech Connect

    Dang, A.Q.; Faas, F.H.; Carter, W.J.

    1986-05-01

    The effects of hyperthyroidism (hyperT/sub 3/), (tri-iodothryonine (T/sub 3/) injected rats), and hypothyroidism (hypoT/sub 3/) (thyroidectomized rats) on the activation of fatty acids by a microsomal long-chain fatty acyl-CoA (LCA-CoA) synthetase and the degradation of LCA-CoA by a microsomal LCA-CoA hydrolase was determined. MAS was assayed by measuring the (1-/sup 14/C)-palmitate or -1-/sup 14/C) oleate incorporated into its water soluble CoA ester. MAH was assayed spectrophotomerically by following the reduction of 5',5'-dithiobis-(2-nitrobenzoic acid) by the CoA released from palmitoyl-CoA or oleoyl-CoA. Enzyme activities are given as mean (nmoles/mg/min) +/- SEM. MAS activities were decreased 36-44% (p < 0.01) in both hypoT/sub 3/ and hyperT/sub 3/ (controls = 101 +/- 4 (n = 11, (1-/sup 14/C)-palmitate) of 72 +/- 2 (n = 5,(1-/sup 14/C)oleate)). These decreases may contribute to the decreased triacelyglycerol (TG) and phospholipid contents in the hyperT/sub 3/ liver and the decreased clearance rate of plasma TG in the hypoT/sub 3/. MAH was decreased 27-42% (p<0.01) only in hypoT/sub 3/ (controls = 77 +/- 3 (n = 11, palmitoyl-CoA) or 45 +/- 1 (n = 5, oleoyl-CoA)). This decrease was corrected by T/sub 3/ treatment. Since the decreased MAH would increase the availability of LCA-CoA, it may contribute to the increased TG synthesis in hypoT/sub 3/.

  18. Effects of long-chain fatty-acyl esters of coenzyme A and carnitine on cell-free rat heart preparations.

    PubMed

    Varela, A; Savino, E A

    1987-06-01

    The purpose of this study was to investigate the effects of fatty acyl CoA and carnitine esters on the glycolytic system of the rat heart. Using a respiring incubation mixture containing a whole-heart homogenate it was observed that oleoyl-CoA slowed down the glucose disappearance whereas lactate accumulation did not change. Experiments were also performed by means of an incubation mixture prepared with a soluble heart extract, considered to contain all glycolytic enzymes present in heart fibres. Palmitoyl-CoA or oleoyl-CoA as well as palmitoyl carnitine, added separately or together, were unable to alter the glucose disappearance and lactate accumulation in this mixture. These data suggest that long chain acyl-esters have not direct inhibitory actions on the heart glycolytic activity. However, CoA esters seem to exert indirect inhibitory effects which may be relevant to the myocardium under oxygen restriction situations.

  19. Thiolases of Escherichia coli: purification and chain length specificities.

    PubMed Central

    Feigenbaum, J; Schulz, H

    1975-01-01

    The presence of only one thiolase (EC 2.3.1.9) in wild-type Escherichia coli induced for enzymes of beta oxidation was demonstrated. A different thiolase was shown to be present in a mutant constitutive for the enzymes of butyrate degradation. The two thiolases were purified to near homogeneity by a simple two-step procedure and were found to be associated with different proteins as shown by gel electrophoresis. The thiolase isolated from induced wild-type Escherichia coli cell was active on beta-ketoacyl-coenzyme A derivatives containing 4 to 16 carbons, but exhibited optimal activity with medium-chain substrates. In contrast, the thiolase isolated from the constitutive mutant was shown to be specific for acetoacetyl-coenzyme A. PMID:236278

  20. Chain Length and Grafting Density Dependent Enhancement in the Hydrolysis of Ester-Linked Polymer Brushes.

    PubMed

    Melzak, Kathryn A; Yu, Kai; Bo, Deng; Kizhakkedathu, Jayachandran N; Toca-Herrera, José L

    2015-06-16

    Poly(N,N-dimethylacrylamide) (PDMA) brushes with different grafting density and chain length were grown from an ester group-containing initiator using surface-initiated polymerization. Hydrolysis of the PDMA chains from the surface was monitored by measuring thickness of the polymer layer by ellipsometry and extension length by atomic force microscopy. It was found that the initial rate of cleavage of one end-tethered PDMA chains was dependent on the grafting density and chain length; the hydrolysis rate was faster for high grafting density brushes and brushes with higher molecular weights. Additionally, the rate of cleavage of polymer chains during a given experiment changed by up to 1 order of magnitude as the reaction progressed, with a distinct transition to a lower rate as the grafting density decreased. Also, polymer chains undergo selective cleavage, with longer chains in a polydisperse brush being preferentially cleaved at one stage of the hydrolysis reaction. We suggest that the enhanced initial hydrolysis rates seen at high grafting densities and high chain lengths are due to mechanical activation of the ester bond connecting the polymer chains to the surface in association with high lateral pressure within the brush. These results have implications for the preparation of polymers brushes, their stability under harsh conditions, and the analysis of polymer brushes from partial hydrolysates. PMID:26010390

  1. A molecule that detects the length of DNA by using chain fluctuations

    NASA Astrophysics Data System (ADS)

    Iwasa, Kuni H.; Florescu, Ana Maria

    2016-05-01

    A class of nucleosome remodelling motors translocates the nucleosomes, to which they are attached, towards the middle of the DNA chain in the presence of ATP during in vitro experiments. This biological activity is likely based on a physical mechanism for detecting and comparing the lengths of the flanking polymer chains. Here we propose that a pivoting mode of DNA fluctuations near the surface of the nucleosome coupled with a binding reaction with a DNA binding site of the motor provides a physical basis for length detection. Since the mean frequency of the fluctuations is higher for a shorter chain than a longer one due to its lower drag coefficient, a shorter chain has a higher rate of receptor binding, which triggers the ATP-dependent activity of the remodelling motor. The dimerisation of these units allows the motor to compare the length of the flanking DNA chains, enabling the translocation of the nucleosome towards the centre of the DNA.

  2. Biosynthesis and Elongation of Short- and Medium-Chain-Length Fatty Acids

    PubMed Central

    van der Hoeven, Rutger S.; Steffens, John C.

    2000-01-01

    Short- and medium-chain-length fatty acids (FAs) are important constituents of a wide array of natural products. Branched and straight short-chain-length FAs originate from branched chain amino acid metabolism, and serve as primers for elongation in FA synthase-like reactions. However, a recent model proposes that the one-carbon extension reactions that utilize 2-oxo-3-methylbutyric acid in leucine biosynthesis also catalyze a repetitive one-carbon elongation of short-chain primers to medium-chain-length FAs. The existence of such a mechanism would require a novel form of regulation to control carbon flux between amino acid and FA biosynthesis. A critical re-analysis of the data used to support this pathway fails to support the hypothesis for FA elongation by one-carbon extension cycles of α-ketoacids. Therefore, we tested the hypothesis experimentally using criteria that distinguish between one- and two-carbon elongation mechanisms: (a) isotopomer patterns in terminal carbon atom pairs of branched and straight FAs resulting from differential labeling with [13C]acetate; (b) [13C]threonine labeling patterns in odd- and even chain length FAs; and (c) differential sensitivity of elongation reactions to inhibition by cerulenin. All three criteria indicated that biosynthesis of medium-chain length FAs is mediated primarily by FA synthase-like reactions. PMID:10631271

  3. Singular eigenstates in the even(odd) length Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Ranjan Giri, Pulak; Deguchi, Tetsuo

    2015-05-01

    We study the implications of the regularization for the singular solutions on the even(odd) length spin-1/2 XXX chains in some specific down-spin sectors. In particular, the analytic expressions of the Bethe eigenstates for three down-spin sector have been obtained along with their numerical forms in some fixed length chains. For an even-length chain if the singular solutions \\{{{λ }α }\\} are invariant under the sign changes of their rapidities \\{{{λ }α }\\}=\\{-{{λ }α }\\}, then the Bethe ansatz equations are reduced to a system of (M-2)/2((M-3)/2) equations in an even (odd) down-spin sector. For an odd N length chain in the three down-spin sector, it has been analytically shown that there exist singular solutions in any finite length of the spin chain of the form N=3(2k+1) with k=1,2,3,\\cdots . It is also shown that there exist no singular solutions in the four down-spin sector for some odd-length spin-1/2 XXX chains.

  4. Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: regional experience and high incidence of carnitine deficiency

    PubMed Central

    2013-01-01

    Background Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited defect in the mitochondrial fatty acid oxidation pathway, resulting in significant morbidity and mortality in undiagnosed patients. Newborn screening (NBS) has considerably improved MCADD outcome, but the risk of complication remains in some patients. The aim of this study was to evaluate the relationship between genotype, biochemical parameters and clinical data at diagnosis and during follow-up, in order to optimize monitoring of these patients. Methods We carried out a multicenter study in southwest Europe, of MCADD patients detected by NBS. Evaluated NBS data included free carnitine (C0) and the acylcarnitines C8, C10, C10:1 together with C8/C2 and C8/C10 ratios, clinical presentation parameters and genotype, in 45 patients. Follow-up data included C0 levels, duration of carnitine supplementation and occurrence of metabolic crises. Results C8/C2 ratio and C8 were the most accurate biomarkers of MCADD in NBS. We found a high number of patients homozygous for the prevalent c.985A > G mutation (75%). Moreover, in these patients C8, C8/C10 and C8/C2 were higher than in patients with other genotypes, while median value of C0 was significantly lower (23 μmol/L vs 36 μmol/L). The average follow-up period was 43 months. To keep carnitine levels within the normal range, carnitine supplementation was required in 82% of patients, and for a longer period in patients homozygotes for the c.985A>G mutation than in patients with other genotypes (average 31 vs 18 months). Even with treatment, median C0 levels remained lower in homozygous patients than in those with other genotypes (14 μmol/L vs 22 μmol/L). Two patients died and another three suffered a metabolic crisis, all of whom were homozygous for the c.985 A>G mutation. Conclusions Our data show a direct association between homozygosity for c.985A>G and lower carnitine values at diagnosis, and a higher dose of carnitine

  5. Preparation of quinolinium salts differing in the length of the alkyl side chain.

    PubMed

    Marek, Jan; Buchta, Vladimir; Soukup, Ondrej; Stodulka, Petr; Cabal, Jiri; Ghosh, Kallol K; Musilek, Kamil; Kuca, Kamil

    2012-05-25

    Quaternary quinolinium salts differing in alkyl chain length are members of a widespread group of cationic surfactants. These compounds have numerous applications in various branches of industry and research. In this work, the preparation of quinoline-derived cationic surface active agents differing in the length of the side alkyl chains (from C₈ to C₂₀) is described. An HPLC method was successfully developed for distinction of all members of the series of prepared long-chain quinolinium derivatives. In conclusion, some possibilities of intended tests or usage have been summarized. In vitro testing using a microdilution broth method showed good activity of a substance with a C12 chain length against Gram-positive cocci and Candida species.

  6. Unraveling heterogeneous microviscosities of the 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with different chain lengths.

    PubMed

    Li, Boxuan; Qiu, Meng; Long, Saran; Wang, Xuefei; Guo, Qianjin; Xia, Andong

    2013-10-14

    The rotational dynamics of coumarin 153 (C153) have been investigated in a series of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with different alkyl chain lengths (alkyl = butyl, pentyl, hexyl, heptyl, octyl) ([Cnmim][PF6], n = 4-8) to examine the alkyl chain length dependent local viscosity of the microenvironment surrounding the probe molecules. The excimer-to-monomer fluorescence emission intensity ratio (IE/IM) of a well-known microviscosity probe, 1,3-bis(1-pyrenyl)propane (BPP), is also employed to study the microviscosity of [Cnmim][PF6] as a complementary measurement. The rotational dynamics of C153 show that at a certain length of the alkyl chain there are incompact and compact domains within [Cnmim][PF6], resulting in fast and slow components of C153 rotational dynamics. The microviscosities in different structural domains of [Cnmim][PF6] with different alkyl chain lengths are investigated by studying the fluorescence anisotropy decay of probe molecules. The obtained average rotation time constants show that with an increase in the length of the alkyl chain, the microviscosity of [Cnmim][PF6] is obviously increased first and then slightly decreased. The steady state fluorescence measurements with the microviscosity probe of BPP further prove that the microviscosity is not increased as much as expected when ionic liquids [Cnmim][PF6] have a relatively long alkyl chain. The different heterogeneous structures of [Cnmim][PF6] with different lengths of the alkyl chain are proposed to interpret the unusual microviscosity behaviors.

  7. Regulation of chain length in two diatoms as a growth-fragmentation process

    NASA Astrophysics Data System (ADS)

    Gherardi, Marco; Amato, Alberto; Bouly, Jean-Pierre; Cheminant, Soizic; Ferrante, Maria Immacolata; d'Alcalá, Maurizio Ribera; Iudicone, Daniele; Falciatore, Angela; Cosentino Lagomarsino, Marco

    2016-08-01

    Chain formation in diatoms is relevant because of several aspects of their adaptation to the ecosystem. However, the tools to quantify the regulation of their assemblage and infer specific mechanisms in a laboratory setting are scarce. To address this problem, we define an approach based on a statistical physics model of chain growth and separation in combination with experimental evaluation of chain-length distributions. Applying this combined analysis to data from Chaetoceros decipiens and Phaeodactylum tricornutum, we find that cells of the first species control chain separation, likely through a cell-to-cell communication process, while the second species only modulates the separation rate. These results promote quantitative methods for characterizing chain formation in several chain-forming species and in diatoms in particular.

  8. Regulation of chain length in two diatoms as a growth-fragmentation process.

    PubMed

    Gherardi, Marco; Amato, Alberto; Bouly, Jean-Pierre; Cheminant, Soizic; Ferrante, Maria Immacolata; d'Alcalá, Maurizio Ribera; Iudicone, Daniele; Falciatore, Angela; Cosentino Lagomarsino, Marco

    2016-08-01

    Chain formation in diatoms is relevant because of several aspects of their adaptation to the ecosystem. However, the tools to quantify the regulation of their assemblage and infer specific mechanisms in a laboratory setting are scarce. To address this problem, we define an approach based on a statistical physics model of chain growth and separation in combination with experimental evaluation of chain-length distributions. Applying this combined analysis to data from Chaetoceros decipiens and Phaeodactylum tricornutum, we find that cells of the first species control chain separation, likely through a cell-to-cell communication process, while the second species only modulates the separation rate. These results promote quantitative methods for characterizing chain formation in several chain-forming species and in diatoms in particular. PMID:27627344

  9. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    SciTech Connect

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  10. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    PubMed

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  11. Reversible competitive α-ketoheterocycle inhibitors of fatty acid amide hydrolase containing additional conformational constraints in the acyl side chain: orally active, long-acting analgesics.

    PubMed

    Ezzili, Cyrine; Mileni, Mauro; McGlinchey, Nicholas; Long, Jonathan Z; Kinsey, Steven G; Hochstatter, Dustin G; Stevens, Raymond C; Lichtman, Aron H; Cravatt, Benjamin F; Bilsky, Edward J; Boger, Dale L

    2011-04-28

    A series of α-ketooxazoles containing conformational constraints in the C2 acyl side chain of 2 (OL-135) were examined as inhibitors of fatty acid amide hydrolase (FAAH). Only one of the two possible enantiomers displayed potent FAAH inhibition (S vs R enantiomer), and their potency is comparable or improved relative to 2, indicating that the conformational restriction in the C2 acyl side chain is achievable. A cocrystal X-ray structure of the α-ketoheterocycle 12 bound to a humanized variant of rat FAAH revealed its binding details, confirmed that the (S)-enantiomer is the bound active inhibitor, shed light on the origin of the enantiomeric selectivity, and confirmed that the catalytic Ser241 is covalently bound to the electrophilic carbonyl as a deprotonated hemiketal. Preliminary in vivo characterization of the inhibitors 12 and 14 is reported demonstrating that they raise brain anandamide levels following either intraperitoneal (ip) or oral (po) administration indicative of effective in vivo FAAH inhibition. Significantly, the oral administration of 12 caused dramatic accumulation of anandamide in the brain, with peak levels achieved between 1.5 and 3 h, and these elevations were maintained over 9 h. Additional studies of these two representative members of the series (12 and 14) in models of thermal hyperalgesia and neuropathic pain are reported, including the demonstration that 12 administered orally significantly attenuated mechanical (>6 h) and cold (>9 h) allodynia for sustained periods consistent with its long-acting effects in raising the endogenous concentration of anandamide.

  12. Deposition of Ag nanoparticles on fluoroalkylsilane self-assembled monolayers with varying chain length

    NASA Astrophysics Data System (ADS)

    Zuo, Juan; Keil, Patrick; Valtiner, Markus; Thissen, Peter; Grundmeier, Guido

    2008-12-01

    Silver nanoparticles were prepared by means of electron beam evaporation of silver on top of self-assembled fluoroalkylsilane monolayers with different fluoroalkyl chain length. The surface properties of the different self-assembled monolayers (SAMs) were evaluated by surface energy measurements and X-ray photoelectron spectroscopy. The morphology of the silver nanostructures, characterized by their size, size distribution, shape and interparticle separation, was observed to be dependent on the chemical composition, fluoroalkyl chain length and surface energy of the sub-layer as well as the degradation of the monolayer during the deposition process. The resulting morphology of the evaporated Ag nanostructures on the different surfaces could be explained based on the basis of surface energy and the role of ordering, disordering and defects of the monolayers caused by the impinging silver atoms during evaporation. Depending on the fluoroalkyl chain length significant changes in the chemical and physical structure of the SAMs after the evaporation process could be detected.

  13. Chain length dependence of {alpha}-olefin readsorption in Fischer-Tropsch synthesis

    SciTech Connect

    Kuipers, E.W.; Vinkenburg, I.H.; Oosterbeek, H.

    1995-03-01

    The total product concentration and the paraffin/olefin ratio have been measured up to C{sub 14} for Fischer-Tropsch synthesis on polycrystalline Co foils. The influences due to surface area, a wax coating, the H{sub 2}/CO ratio and flow velocity on concentration and selectivity have been determined. The paraffin/olefin ratio increases exponentially with chain length which is attributed to a chain-length-dependent olefin readsorption mechanism. The probability of readsorption depends on the heat of physisorption of the olefins on the catalyst as well as on their heat of dissolution in and their diffusivity through the product wax. All three factors predict an increase of the paraffin/olefin ratio with carbon number. Physisorption and dissolution are shown to cause a much stronger chain-length dependence than diffusion and will usually dominate. 36 refs., 9 figs.

  14. Structural dependence of silver nanowires on polyvinyl pyrrolidone (PVP) chain length

    NASA Astrophysics Data System (ADS)

    Zeng, Xiping; Zhou, Bingpu; Gao, Yibo; Wang, Cong; Li, Shunbo; Yeung, Chau Yeung; Wen, WeiJia

    2014-12-01

    The effect of the chain length of polyvinyl pyrrolidone (PVP) on the structures of silver nanowires (AgNWs) is explored in this study. It was found in the experiments that PVP, when serving as a capping agent, has a great impact on the morphology and structure of AgNWs. By means of a series of experiments and the inquiry of the growth mechanism, the critical minimum PVP chain length for the successful formation of uniform nanowires was discovered, below which only nanoparticles or short nanorods can be obtained. Surprisingly, a core-shell structure of a nanowire with a polycrystal was observed when PVP with a very long chain length was employed in the processing.

  15. Spectroscopic study on interaction between three cationic surfactants with different alkyl chain lengths and DNA.

    PubMed

    Guo, Lili; Zhang, Zhaohong; Qiao, Heng; Liu, Miao; Shen, Manli; Yuan, Tianxin; Chen, Jing; Dionysiou, Dionysios D

    2015-01-01

    In this study, the interaction between cationic surfactants with different alkyl chain lengths, such as hexyltrimethyl ammonium bromide (HTAB), dodecyltrimethyl ammonium bromide (DTAB) and cetyltrimethyl ammonium bromide (CTAB), and DNA was investigated by UV-vis spectroscopy, fluorescence spectroscopy and viscosity techniques. The results showed that these three cationic surfactants with different hydrocarbon chain lengths could all interact with DNA. Their binding modes were estimated and their interaction strength was compared. In addition, the effects of the surfactant, NaCl and phosphate ion concentrations on the interaction were reviewed. It is wished that this work would provide some valuable references to investigate the influence of cationic surfactants with different alkyl chain lengths on DNA.

  16. Interaction between DNA and trimethyl-ammonium bromides with different alkyl chain lengths.

    PubMed

    Cheng, Chao; Ran, Shi-Yong

    2014-01-01

    The interaction between λ--DNA and cationic surfactants with varying alkyl chain lengths was investigated. By dynamic light scattering method, the trimethyl-ammonium bromides-DNA complex formation was shown to be dependent on the length of the surfactant's alkyl chain. For surfactants with sufficient long alkyl chain (CTAB, TTAB, DTAB), the compacted particles exist with a size of ~60-110 nm at low surfactant concentrations. In contrast, high concentration of surfactants leads to aggregates with increased sizes. Atomic force microscope scanning also supports the above observation. Zeta potential measurements show that the potential of the particles decreases with the increase of surfactant concentration (CTAB, TTAB, DTAB), which contributes much to the coagulation of the particles. For OTAB, the surfactant with the shortest chain in this study, it cannot fully neutralize the charges of DNA molecules; consequently, the complex is looser than other surfactant-DNA structures.

  17. Interaction between DNA and Trimethyl-Ammonium Bromides with Different Alkyl Chain Lengths

    PubMed Central

    Cheng, Chao; Ran, Shi-Yong

    2014-01-01

    The interaction between λ—DNA and cationic surfactants with varying alkyl chain lengths was investigated. By dynamic light scattering method, the trimethyl-ammonium bromides-DNA complex formation was shown to be dependent on the length of the surfactant's alkyl chain. For surfactants with sufficient long alkyl chain (CTAB, TTAB, DTAB), the compacted particles exist with a size of ~60–110 nm at low surfactant concentrations. In contrast, high concentration of surfactants leads to aggregates with increased sizes. Atomic force microscope scanning also supports the above observation. Zeta potential measurements show that the potential of the particles decreases with the increase of surfactant concentration (CTAB, TTAB, DTAB), which contributes much to the coagulation of the particles. For OTAB, the surfactant with the shortest chain in this study, it cannot fully neutralize the charges of DNA molecules; consequently, the complex is looser than other surfactant-DNA structures. PMID:24574926

  18. Bond-length-alternation and the hyperpolarizabilities of a charged soliton in polyenic chains

    NASA Astrophysics Data System (ADS)

    An, Z.; Wong, K. Y.

    2003-07-01

    Nonlinear optical responses of a charged soliton were studied using a model charged polyenic chain. It was found that simple derivative relations exist between the spatial profile of the bond-length-alternation and the profiles of the real-space description of the linear polarizability and the first and second hyperpolarizabilities of the chain. These relations can be understood if the soliton is assumed to undergo a sliding translational motion under the influence of an external electric field.

  19. Fat-free plain yogurt manufactured with inulins of various chain lengths and Lactobacillus acidophilus.

    PubMed

    Aryana, K J; Plauche, S; Rao, R M; McGrew, P; Shah, N P

    2007-04-01

    Inulin is a prebiotic food ingredient that increases the activity of Lactobacillus acidophilus, increases calcium absorption, and is a good source of dietary fiber. The objective was to determine the effect of short, medium, and long chain inulins on the physicochemical, sensory, and microbiological characteristics of fat-free plain yogurt containing L. acidophilus. Inulins of short (P95), medium (GR), and long (HP) chain lengths were incorporated at 1.5% w/w of the yogurt mix. Viscosity, pH, syneresis, sensory properties (flavor, body and texture, and appearance and color), L. acidophilus counts, and color (L*, a*, and b*) of yogurts were determined at 1, 11, and 22 d after yogurt manufacture. The P95 containing yogurt had a significantly lower pH than the remaining yogurts, higher flavor scores than the yogurt containing HP, and comparable flavor scores with the control. The yogurts containing HP had less syneresis than the control and a better body and texture than the remaining yogurts. Yogurts containing prebiotics of different chain lengths had comparable L. acidophilus counts with each other but higher counts than the control. However, inulins of various chain lengths did not affect viscosity, color, and product appearance. Chain length of prebiotics affected some quality attributes of probiotic yogurts.

  20. Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus.

    PubMed

    Alves-Bezerra, Michele; Klett, Eric L; De Paula, Iron F; Ramos, Isabela B; Coleman, Rosalind A; Gondim, Katia C

    2016-07-01

    Long-chain acyl-CoA esters are important intermediates in lipid metabolism and are synthesized from fatty acids by long-chain acyl-CoA synthetases (ACSL). The hematophagous insect Rhodnius prolixus, a vector of Chagas' disease, produces glycerolipids in the midgut after a blood meal, which are stored as triacylglycerol in the fat body and eggs. We identified twenty acyl-CoA synthetase genes in R. prolixus, two encoding ACSL isoforms (RhoprAcsl1 and RhoprAcsl2). RhoprAcsl1 transcripts increased in posterior midgut on the second day after feeding, and RhoprAcsl2 was highly transcribed on the tenth day. Both enzymes were expressed in Escherichia coli. Recombinant RhoprACSL1 and RhoprACSL2 had broad pH optima (7.5-9.5 and 6.5-9.5, respectively), were inhibited by triacsin C, and were rosiglitazone-insensitive. Both showed similar apparent Km for palmitic and oleic acid (2-6 μM), but different Km for arachidonic acid (0.5 and 6 μM for RhoprACSL1-Flag and RhoprACSL2-Flag, respectively). The knockdown of RhoprAcsl1 did not result in noticeable phenotypes. However, RhoprACSL2 deficient insects exhibited a 2.5-fold increase in triacylglycerol content in the fat body, and 90% decrease in fatty acid β-oxidation. RhoprAcsl2 knockdown also resulted in 20% increase in lifespan, delayed digestion, 30% reduced oviposition, and 50% reduction in egg hatching. Laid eggs and hatched nymphs showed remarkable alterations in morphology. In summary, R. prolixus ACSL isoforms have distinct roles on lipid metabolism. Although RhoprACSL1 functions remain unclear, we propose that RhoprACSL2 is the main contributor for the formation of the intracellular acyl-CoA pool channeled for β-oxidation in the fat body, and is also required for normal reproduction. PMID:27091636

  1. Synthesis and evaluation of novel acyl derivatives from jatropha oil as potential lubricant basestocks.

    PubMed

    Sammaiah, Arukali; Padmaja, Korlipara V; Prasad, Rachapudi B N

    2014-05-21

    A novel class of jatropha oil-based acylated derivatives from hydroxy alkyl esters of jatropha fatty acids (C1, C3, C4, and C8) and various anhydrides (C2, C3, C4, and C6) were synthesized and their physicochemical and lubricant properties reported. Jatropha fatty acid alkyl esters were dihydroxylated using the in situ performic acid method and further acylated with different anhydrides to produce acylated derivatives. Acylated derivatives of dihydroxy jatropha fatty acid alkyl esters were charaterized by NMR, FTIR, GC, and GC-MS analysis and were evaluated for their viscosity, viscosity index, pour and flash points, and oxidation stability. Most of the derivatives are either in ISO VG 22 or 32 viscosity grade with good viscosity index. It was observed that increase in acyl chain length and branching in the end-chain ester improved the pour point of the diacyl derivatives. All of the hexanoylated esters exhibited better oxidation stability compared to other acylated products, and their pour points are comparable to those of synthetic esters such as TMP trioleates. In general, isoalcohol esters with longer acyl chains showed promise as potential candidates for hydraulic fluids and metal-working fluids in ISO VG 22 and 32 viscosity range.

  2. Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes.

    PubMed

    El Khoury, Elsy; Patra, Digambara

    2016-05-01

    Using fluorescence quenching of curcumin in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes by brominated derivatives of fatty acids, the location of curcumin has been studied, which indicates length of hydrocarbon chain has an effect on the location of curcumin in liposomes. Change of fluorescence intensity of curcumin with temperature in the presence of liposomes helps to estimate the phase transition temperature of these liposomes, thus, influence of cholesterol on liposome properties has been studied using curcumin as a molecule probe. The cooperativity due to the interactions between the hydrocarbon chains during melting accelerates the phase transition of DPPC liposomes in the presence of high percentage of cholesterol whereas high percentage of cholesterol generates a rather rigid DMPC liposome over a wide range of temperatures. We used ethanol to induce interdigitation between the hydrophobic chains of the lipids and studied this effect using curcumin as fluorescence probe. As a result of interdigitation, curcumin fluorescence is quenched in liposomes. The compact arrangement of the acyl chains prevents curcumin from penetrating deep near the midplane. In the liquid crystalline phase ethanol introduces a kind of order to the more fluid liposome, and does not leave space for curcumin to be inserted away from water.

  3. Chain length specificity for activation of cPLA2alpha by C1P: use of the dodecane delivery system to determine lipid-specific effects.

    PubMed

    Wijesinghe, Dayanjan S; Subramanian, Preeti; Lamour, Nadia F; Gentile, Luciana B; Granado, Maria H; Bielawska, Alicja; Szulc, Zdzislaw; Gomez-Munoz, Antonio; Chalfant, Charles E

    2009-10-01

    Previously, our laboratory demonstrated that ceramide-1-phosphate (C1P) specifically activated group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) in vitro. In this study, we investigated the chain length specificity of this interaction. C1P with an acyl-chain of >or=6 carbons efficiently activated cPLA(2)alpha in vitro, whereas C(2)-C1P, was unable to do so. Delivery of C1P to cells via the newly characterized ethanol/dodecane system demonstrated a lipid-specific activation of cPLA(2)alpha, AA release, and PGE(2) synthesis (EC(50) = 400 nM) when compared to structurally similar lipids. C1P delivered as vesicles in water also induced a lipid-specific increase in AA release. Mass spectrometric analysis demonstrated that C1P delivered via ethanol/dodecane induced a 3-fold increase in endogenous C1P with little metabolism to ceramide. C1P was also more efficiently delivered (>3-fold) to internal membranes by ethanol/dodecane as compared to vesiculated C1P. Using this now established delivery method for lipids, C(2)-C1P was shown to be ineffective in the induction of AA release as compared with C(6)-C1P, C(16)-C1P, and C(18:1) C1P. Here, we demonstrate that C1P requires >or=6 carbon acyl-chain to activate cPLA(2)alpha. Thus, published reports on the biological activity of C(2)-C1P are not via eicosanoid synthesis. Furthermore, this study demonstrates that the alcohol/dodecane system can be used to efficiently deliver exogenous phospholipids to cells for the examination of specific biological effects.

  4. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  5. [Progress on the biosynthesis of medium-chain-length polyhydroxyalkanoates by microorganisms].

    PubMed

    Yan, Q; Li, Y; Chen, J; Du, G C

    2001-09-01

    Polyhydroxylkanoates(PHAs) are a class of polyesters produced as reserve materials by a large number of microorganisms under metabolic stress. The most fascinating feature of PHAs is its degradability, and which is supposed to take place of the traditional plastics made from petroleum in the future. PHAs are divided into two classes: short-chain-length PHAs(scl-PHAs) and medium-chain-length PHAs. mcl-PHAs is more welcome owing to its more wide crystallinity and higher extension to break than scl-PHAs, especially when some kind of new functional groups were incorporated into the side chain of the polyester. Since Psedumonas oleovorans is the most typical microorganism to produce mcl-PHAs, here the author summarized how P. oleovorans synthesize the mcl-PHAs and the production of mcl-PHAs by fermentation and give some of the idea about the future research of this field. PMID:11797205

  6. Antiproliferative activity of long chain acylated esters of quercetin-3-O-glucoside in hepatocellular carcinoma HepG2 cells

    PubMed Central

    Sudan, Sudhanshu

    2015-01-01

    Despite their strong role in human health, poor bioavailability of flavonoids limits their biological effects in vivo. Enzymatically catalyzed acylation of fatty acids to flavonoids is one of the approaches of increasing cellular permeability and hence, biological activities. In this study, six long chain fatty acid esters of quercetin-3-O-glucoside (Q3G) acylated enzymatically and were used for determining their antiproliferative action in hepatocellular carcinoma cells (HepG2) in comparison to precursor compounds and two chemotherapy drugs (Sorafenib and Cisplatin). Fatty acid esters of Q3G showed significant inhibition of HepG2 cell proliferation by 85 to 90% after 6 h and 24 h of treatment, respectively. The cell death due to these novel compounds was associated with cell-cycle arrest in S-phase and apoptosis observed by DNA fragmentation, fluorescent microscopy and elevated caspase-3 activity and strong DNA topoisomerase II inhibition. Interestingly, Q3G esters showed significantly low toxicity to normal liver cells than Sorafenib (P < 0.05), a chemotherapy drug for hepatocellular carcinoma. Among all, oleic acid ester of Q3G displayed the greatest antiproliferation action and a high potential as an anti-cancer therapeutic. Overall, the results of the study suggest strong antiproliferative action of these novel food-derived compounds in treatment of cancer. PMID:25681471

  7. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase.

    PubMed

    Zhang, Yuxun; Bharathi, Sivakama S; Rardin, Matthew J; Uppala, Radha; Verdin, Eric; Gibson, Bradford W; Goetzman, Eric S

    2015-01-01

    SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane. PMID:25811481

  8. Effects of spacer chain length of amino acid-based gemini surfactants on wormlike micelle formation.

    PubMed

    Sakai, Kenichi; Nomura, Kazuyuki; Shrestha, Rekha Goswami; Endo, Takeshi; Sakamoto, Kazutami; Sakai, Hideki; Abe, Masahiko

    2014-01-01

    We studied the effects of the spacer chain length of amino acid-based gemini surfactants on the formation of wormlike micelles in aqueous solutions. The surfactants used were synthesized by reacting dodecanoylglutamic acid anhydride with diamine compounds (ethylenediamine, pentanediamine, and octanediamine), and were abbreviated as 12-GsG-12 (s: the spacer chain length of 2, 5, and 8 methylene units). These surfactants yielded viscoelastic wormlike micellar solutions at pH 9 upon mixing with a cationic monomeric surfactant, hexadecyltrimethylammonium bromide (HTAB). We found that the rheological behavior was strongly dependent on the spacer chain length and HTAB concentration. When the shortest spacer chain analogue (12-G2G-12) was used, an increased HTAB concentration resulted in the following structural transformations of the micelles: (i) spherical or rodlike micelles; (ii) anionic wormlike micelles exhibiting a transient network structure; (iii) anionic wormlike micelles with a micellar branching or interconnected structure; and (iv) cationic wormlike micelles. Similarly, when the middle spacer chain analogue (12-G5G-12) was used, a structural transformation from anionic to cationic wormlike micelles occurs; however, molecular aggregates with a lower positive curvature were also formed in this transition region. When the longest spacer analogue (12-G8G-12) was used, the formation of cation-rich molecular aggregates was not observed. These transition behaviors were attributed to the packing geometry of the gemini surfactants with HTAB. Additionally, as the spacer chain length increased, the zero-shear viscosity in the anionic wormlike micellar region decreased, suggesting limited one-dimensional micellar growth of spherical, rodlike, or anionic wormlike micelles.

  9. Free fatty acids chain length distribution affects the permeability of skin lipid model membranes.

    PubMed

    Uchiyama, Masayuki; Oguri, Masashi; Mojumdar, Enamul H; Gooris, Gert S; Bouwstra, Joke A

    2016-09-01

    The lipid matrix in the stratum corneum (SC) plays an important role in the barrier function of the skin. The main lipid classes in this lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to determine whether a variation in CER subclass composition and chain length distribution of FFAs affect the permeability of this matrix. To examine this, we make use of lipid model membranes, referred to as stratum corneum substitute (SCS). We prepared SCS containing i) single CER subclass with either a single FFA or a mixture of FFAs and CHOL, or ii) a mixture of various CER subclasses with either a single FFA or a mixture of FFAs and CHOL. In vitro permeation studies were performed using ethyl-p-aminobenzoic acid (E-PABA) as a model drug. The flux of E-PABA across the SCS containing the mixture of FFAs was higher than that across the SCS containing a single FA with a chain length of 24 C atoms (FA C24), while the E-PABA flux was not effected by the CER composition. To select the underlying factors for the changes in permeability, the SCSs were examined by Fourier transform infrared spectroscopy (FTIR) and Small angle X-ray scattering (SAXS). All lipid models demonstrated a similar phase behavior. However, when focusing on the conformational ordering of the individual FFA chains, the shorter chain FFA (with a chain length of 16, 18 or 20 C atoms forming only 11m/m% of the total FFA level) had a higher conformational disordering, while the conformational ordering of the chains of the CER and FA C24 and FA C22 hardly did not change irrespective of the composition of the SCS. In conclusion, the conformational mobility of the short chain FFAs present only at low levels in the model SC lipid membranes has a great impact on the permeability of E-PABA. PMID:27287726

  10. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure.

    PubMed

    Li, Xianyu; ShamsiJazeyi, Hadi; Pesek, Stacy L; Agrawal, Aditya; Hammouda, Boualem; Verduzco, Rafael

    2014-03-28

    We explore the phase behaviour, solution conformation, and interfacial properties of bottlebrush polymers with side-chains comprised of poly(N-isopropylacrylamide) (PNIPAAM), a thermally responsive polymer that exhibits a lower critical solution temperature (LCST) in water. PNIPAAM bottlebrush polymers with controlled side-chain length and side-chain end-group structure are prepared using a "grafting-through" technique. Due to reduced flexibility of bottlebrush polymer side-chains, side-chain end-groups have a disproportionate effect on bottlebrush polymer solubility and phase behaviour. Bottlebrush polymers with a hydrophobic end-group have poor water solubilities and depressed LCSTs, whereas bottlebrush polymers with thiol-terminated side-chains are fully water-soluble and exhibit an LCST greater than that of PNIPAAM homopolymers. The temperature-dependent solution conformation of PNIPAAM bottlebrush polymers in D2O is analyzed by small-angle neutron scattering (SANS), and data analysis using the Guinier-Porod model shows that the bottlebrush polymer radius decreases as the temperature increases towards the LCST for PNIPAAM bottlebrush polymers with relatively long 9 kg mol(-1) side-chains. Above the LCST, PNIPAAM bottlebrush polymers can form a lyotropic liquid crystal phase in water. Interfacial tension measurements show that bottlebrush polymers reduce the interfacial tension between chloroform and water to levels comparable to PNIPAAM homopolymers without the formation of microemulsions, suggesting that bottlebrush polymers are unable to stabilize highly curved interfaces. These results demonstrate that bottlebrush polymer side-chain length and flexibility impact phase behavior, solubility, and interfacial properties.

  11. Influence of alkane chain length on adsorption on an α-alumina surface by MD simulations

    NASA Astrophysics Data System (ADS)

    Turgut, C.; Pandiyan, S.; Mether, L.; Belmahi, M.; Nordlund, K.; Philipp, P.

    2015-06-01

    Plasma surface techniques provide both an efficient and ecological tool for the functionalization of surfaces. Hence, a proper understanding of the plasma-surface interactions of precursors and radicals during the deposition process is of great importance. Especially during the initial deposition process, the deposition of molecules and fragments is difficult to investigate by experimental techniques and import insights can be obtained by molecular dynamics simulations. In this work, the reactive force field developed by the group of Kieffer at the University of Michigan was used to study the adsorption of single linear alkane chains on an α-alumina surface. The chain length was changed from 6 backbone carbon atoms to 16 carbon atoms, the deposition energy from 0.01 to 10 eV and the incidence angle from 0° to 60° with respect to the surface normal. Results show that the adsorption depends a lot on the ratio of deposition energy to alkane chain length and the incidence angle. More grazing incidence reduces the adsorption probability and a low ratio of energy to chain length increases it.

  12. Electrochemical survey of the chain length influence in phytochelatins competitive binding by cadmium.

    PubMed

    Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2010-11-01

    Multivariate curve resolution with alternating least squares (MCR-ALS) was applied to voltammetric data obtained in the analysis of the competitive binding of glutathione (GSH) and phytochelatins [(gammaGlu-Cys)(n)-Gly, PC(n), n=2-5] by Cd(2+). The displacements between ligands and chain length influence on the competitive binding of PC(n) toward Cd(2+) were investigated. The analysis of the resulting pure voltammograms and concentration profiles of the resolved components suggests that ligands containing more thiol groups are able to displace the shortest chain ligands from their metal complexes, whereas the opposite does not happen. However, when the length of the chain surpasses that of PC(3), the binding capacity of the molecule still increases (i.e., it can bind more metal ions), but the position and shape of the voltammetric signals practically rest unchanged. This suggests that at this level, the stability of metal binding could depend more on the nature of the binding sites separately than on the quantity of the sites (i.e., the chain length).

  13. Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation.

    PubMed

    Grevengoed, Trisha J; Cooper, Daniel E; Young, Pamela A; Ellis, Jessica M; Coleman, Rosalind A

    2015-11-01

    Because hearts with a temporally induced knockout of acyl-CoA synthetase 1 (Acsl1(T-/-)) are virtually unable to oxidize fatty acids, glucose use increases 8-fold to compensate. This metabolic switch activates mechanistic target of rapamycin complex 1 (mTORC1), which initiates growth by increasing protein and RNA synthesis and fatty acid metabolism, while decreasing autophagy. Compared with controls, Acsl1(T-/-) hearts contained 3 times more mitochondria with abnormal structure and displayed a 35-43% lower respiratory function. To study the effects of mTORC1 activation on mitochondrial structure and function, mTORC1 was inhibited by treating Acsl1(T-/-) and littermate control mice with rapamycin or vehicle alone for 2 wk. Rapamycin treatment normalized mitochondrial structure, number, and the maximal respiration rate in Acsl1(T-/-) hearts, but did not improve ADP-stimulated oxygen consumption, which was likely caused by the 33-51% lower ATP synthase activity present in both vehicle- and rapamycin-treated Acsl1(T-/-) hearts. The turnover of microtubule associated protein light chain 3b in Acsl1(T-/-) hearts was 88% lower than controls, indicating a diminished rate of autophagy. Rapamycin treatment increased autophagy to a rate that was 3.1-fold higher than in controls, allowing the formation of autophagolysosomes and the clearance of damaged mitochondria. Thus, long-chain acyl-CoA synthetase isoform 1 (ACSL1) deficiency in the heart activated mTORC1, thereby inhibiting autophagy and increasing the number of damaged mitochondria. PMID:26220174

  14. Manipulation of prenyl chain length determination mechanism of cis-prenyltransferases.

    PubMed

    Kharel, Yugesh; Takahashi, Seiji; Yamashita, Satoshi; Koyama, Tanetoshi

    2006-02-01

    The carbon backbones of Z,E-mixed isoprenoids are synthesized by sequential cis-condensation of isopentenyl diphosphate (IPP) and an allylic diphosphate through actions of a series of enzymes called cis-prenyltransferases. Recent molecular analyses of Micrococcus luteus B-P 26 undecaprenyl diphosphate (UPP, C55) synthase [Fujihashi M, Zhang Y-W, Higuchi Y, Li X-Y, Koyama T & Miki K (2001) Proc Natl Acad Sci USA98, 4337-4342.] showed that not only the primary structure but also the crystal structure of cis-prenyltransferases were totally different from those of trans-prenyltransferases. Although many studies on structure-function relationships of cis-prenyltransferases have been reported, regulation mechanisms for the ultimate prenyl chain length have not yet been elucidated. We report here that the ultimate chain length of prenyl products can be controlled through structural manipulation of UPP synthase of M. luteus B-P 26, based on comparisons between structures of various cis-prenyltransferases. Replacements of Ala72, Phe73, and Trp78, which are located in the proximity of the substrate binding site, with Leu--as in Z,E-farnesyl diphosphate (C15) synthase--resulted in shorter ultimate products with C(20-35). Additional mutation of F223H resulted in even shorter products. On the other hand, insertion of charged residues originating from long-chain cis-prenyltransferases into helix-3, which participates in constitution of the large hydrophobic cleft, resulted in lengthening of the ultimate product chain length, leading to C(60-75). These results helped us understand reaction mechanisms of cis-prenyltransferase including regulation of the ultimate prenyl chain-length.

  15. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions.

    PubMed

    Budin, Itay; Prwyes, Noam; Zhang, Na; Szostak, Jack W

    2014-10-01

    A requirement for concentrated and chemically homogeneous pools of molecular building blocks would severely restrict plausible scenarios for the origin of life. In the case of membrane self-assembly, models of prebiotic lipid synthesis yield primarily short, single-chain amphiphiles that can form bilayer vesicles only at very high concentrations. These high critical aggregation concentrations (cacs) pose significant obstacles for the self-assembly of single-chain lipid membranes. Here, we examine membrane self-assembly in mixtures of fatty acids with varying chain lengths, an expected feature of any abiotic lipid synthesis. We derive theoretical predictions for the cac of mixtures by adapting thermodynamic models developed for the analogous phenomenon of mixed micelle self-assembly. We then use several complementary methods to characterize aggregation experimentally, and find cac values in close agreement with our theoretical predictions. These measurements establish that the cac of fatty acid mixtures is dramatically lowered by minor fractions of long-chain species, thereby providing a plausible route for protocell membrane assembly. Using an NMR-based approach to monitor aggregation of isotopically labeled samples, we demonstrate the incorporation of individual components into mixed vesicles. These experiments suggest that vesicles assembled in dilute, mixed solutions are depleted of the shorter-chain-length lipid species, a finding that carries implications for the composition of primitive cell membranes. PMID:25296310

  16. Chain-Length Heterogeneity Allows for the Assembly of Fatty Acid Vesicles in Dilute Solutions

    PubMed Central

    Budin, Itay; Prwyes, Noam; Zhang, Na; Szostak, Jack W.

    2014-01-01

    A requirement for concentrated and chemically homogeneous pools of molecular building blocks would severely restrict plausible scenarios for the origin of life. In the case of membrane self-assembly, models of prebiotic lipid synthesis yield primarily short, single-chain amphiphiles that can form bilayer vesicles only at very high concentrations. These high critical aggregation concentrations (cacs) pose significant obstacles for the self-assembly of single-chain lipid membranes. Here, we examine membrane self-assembly in mixtures of fatty acids with varying chain lengths, an expected feature of any abiotic lipid synthesis. We derive theoretical predictions for the cac of mixtures by adapting thermodynamic models developed for the analogous phenomenon of mixed micelle self-assembly. We then use several complementary methods to characterize aggregation experimentally, and find cac values in close agreement with our theoretical predictions. These measurements establish that the cac of fatty acid mixtures is dramatically lowered by minor fractions of long-chain species, thereby providing a plausible route for protocell membrane assembly. Using an NMR-based approach to monitor aggregation of isotopically labeled samples, we demonstrate the incorporation of individual components into mixed vesicles. These experiments suggest that vesicles assembled in dilute, mixed solutions are depleted of the shorter-chain-length lipid species, a finding that carries implications for the composition of primitive cell membranes. PMID:25296310

  17. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions.

    PubMed

    Budin, Itay; Prwyes, Noam; Zhang, Na; Szostak, Jack W

    2014-10-01

    A requirement for concentrated and chemically homogeneous pools of molecular building blocks would severely restrict plausible scenarios for the origin of life. In the case of membrane self-assembly, models of prebiotic lipid synthesis yield primarily short, single-chain amphiphiles that can form bilayer vesicles only at very high concentrations. These high critical aggregation concentrations (cacs) pose significant obstacles for the self-assembly of single-chain lipid membranes. Here, we examine membrane self-assembly in mixtures of fatty acids with varying chain lengths, an expected feature of any abiotic lipid synthesis. We derive theoretical predictions for the cac of mixtures by adapting thermodynamic models developed for the analogous phenomenon of mixed micelle self-assembly. We then use several complementary methods to characterize aggregation experimentally, and find cac values in close agreement with our theoretical predictions. These measurements establish that the cac of fatty acid mixtures is dramatically lowered by minor fractions of long-chain species, thereby providing a plausible route for protocell membrane assembly. Using an NMR-based approach to monitor aggregation of isotopically labeled samples, we demonstrate the incorporation of individual components into mixed vesicles. These experiments suggest that vesicles assembled in dilute, mixed solutions are depleted of the shorter-chain-length lipid species, a finding that carries implications for the composition of primitive cell membranes.

  18. How fatty acids of different chain length enter and leave cells by free diffusion.

    PubMed

    Kamp, Frits; Hamilton, James A

    2006-09-01

    Opposing views exist as to how unesterified fatty acids (FA) enter and leave cells. It is commonly believed that for short- and medium-chain FA free diffusion suffices whereas it is questioned whether proteins are required to facilitate transport of long-chain fatty acid (LCFA). Furthermore, it is unclear whether these proteins facilitate binding to the plasma membrane, trans-membrane movement, dissociation into the cytosol and/or transport in the cytosol. In this mini-review we approach the controversy from a different point of view by focusing on the membrane permeability constant (P) of FA with different chain length. We compare experimentally derived values of the P of short and medium-chain FA with values of apparent permeability coefficients for LCFA calculated from their dissociation rate constant (k(off)), flip-flop rate constant (k(flip)) and partition coefficient (Kp) in phospholipid bilayers. It was found that Overton's rule is valid as long as k(flip)chain length, the permeability increases according to increasing Kp and reaches a maximum for LCFA with chain length of 18 carbons or longer. For fast flip-flop (e.g. k(flip)=15s(-1)), the apparent permeability constant for palmitic acid is very high (P(app)=1.61 cm/s). Even for a slow flip-flop rate constant (e.g. k(flip)=0.3s(-1)), the permeability constant of LCFA is still several orders of magnitude larger than the P of water and other small non-electrolytes. Since polyunsaturated FA have basically the same physico-chemical properties as LCFA, they have similar membrane permeabilities. The implications for theories involving proteins to facilitate uptake of FA are discussed. PMID:16829065

  19. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    PubMed

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  20. Genetic replacement of tesB with PTE1 affects chain-length proportions of 3-hydroxyalkanoic acids produced through β-oxidation of oleic acid in Escherichia coli.

    PubMed

    Seto, Yoshiaki; Kang, Junkyu; Ming, Li; Habu, Naoto; Nihei, Ken-ichi; Ueda, Shunsaku; Maeda, Isamu

    2010-10-01

    Acyl-CoA thioesterase II (TesB), which catalyzes hydrolysis of acyl-CoAs to free fatty acids and CoA, is involved in 3-hydroxyalkanoic acid production in Escherichia coli. Effects of genetic replacement of tesB with Saccharomyces cerevisiae acyl-CoA thioesterase gene PTE1 on 3-hydroxyalkanoic acid production from oleic acid through β-oxidation were examined. Kinetic analyses using β-oxidation intermediates showed that hydrolyses of C4-acyl substrates are more efficient by PTE1 than by TesB. Deletion of tesB in E. coli decreased 3-hydroxybutyric acid, 3-hydroxyhexanoic acid, 3-hydroxyoctanoic acid, and hexanoic acid in medium after cultivation with oleic acid as a sole carbon source. Hexanoic acid concentration was much lower than those of 3-hydroxyacids. In genetic complementation of tesB deletion, use of PTE1, instead of tesB, affected proportions of the 3-hydroxyalkanoic acids. Proportion of 3-hydroxybutyric acid was higher in a PTE1-complemented strain than in a tesB-complemented strain, while proportions of 3-hydroxyhexanoic acid and 3-hydroxyoctanoic acid markedly increased in the tesB-complemented strain. Proportion of 3-hydroxyoctanoic acid did not significantly increase in the PTE1-complemented strain. These data indicate possibilities of 3-hydroxyalkanoic acid production from oleic acid through β-oxidation and customization of their chain-length proportions by genetic replacement of tesB with a gene encoding acyl-CoA thioesterase with a different kinetic property.

  1. Butyric acid esterification kinetics over Amberlyst solid acid catalysts: the effect of alcohol carbon chain length.

    PubMed

    Pappu, Venkata K S; Kanyi, Victor; Santhanakrishnan, Arati; Lira, Carl T; Miller, Dennis J

    2013-02-01

    The liquid phase esterification of butyric acid with a series of linear and branched alcohols is examined. Four strong cation exchange resins, Amberlyst™ 15, Amberlyst™ 36, Amberlyst™ BD 20, and Amberlyst™ 70, were used along with para-toluenesulfonic acid as a homogeneous catalyst. The effect of increasing alcohol carbon chain length and branching on esterification rate at 60°C is presented. For all catalysts, the decrease in turnover frequency (TOF) with increasing carbon chain length of the alcohol is described in terms of steric hindrance, alcohol polarity, and hydroxyl group concentration. The kinetics of butyric acid esterification with 2-ethylhexanol using Amberlyst™ 70 catalyst is described with an activity-based, pseudo-homogeneous kinetic model that includes autocatalysis by butyric acid.

  2. Effect of Composition and Chain Length on χ Parameter of Polyolefin Blends: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Khare, Rajesh; Ravichandran, Ashwin; Chen, Chau-Chyun

    Polymer blends exhibit complex phase behavior which is governed by several factors including temperature, composition and molecular weight of components. The thermodynamics of polymer blends is commonly described using the χ parameter. While variety of experimental studies exist on identifying the factors affecting the χ parameter, a detailed molecular scale understanding of these is a topic of current research. We have studied the effect of blend composition and chain length on χ parameter values for two model polyolefin blends. The blends studied are: polyisobutylene (PIB)/polybutadiene (PBD) and polyethylene (PE)/atactic polypropylene (aPP). Molecular dynamics simulations in combination with the integral equation theory formalism proposed by Schweizer and Curro [Journal of Chemical Physics, 91, 5059 (1989)] are used to determine the χ parameter for these systems and thereby study the effect of blend composition and chain length. The resulting χ parameter values are explained in terms of the molecular structure of these polymeric systems.

  3. Draft Genome Sequence of Medium-Chain-Length Polyhydroxyalkanoate-Producing Pseudomonas putida Strain LS46.

    PubMed

    Sharma, Parveen K; Fu, Jilagamazhi; Zhang, Xiangli; Fristensky, Brian W; Davenport, Karen; Chain, Patrick S G; Sparling, Richard; Levin, David B

    2013-04-18

    We describe the draft genome sequence of Pseudomonas putida strain LS46, a novel isolate that synthesizes medium-chain-length polyhydroxyalkanoates. The draft genome of P. putida LS46 consists of approximately 5.86 million bp, with a G+C content of 61.69%. A total of 5,316 annotated genes and 5,219 coding sequences (CDS) were identified.

  4. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length.

    PubMed

    Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E

    2013-09-01

    The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.

  5. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length.

    PubMed

    Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E

    2013-09-01

    The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended. PMID:24026215

  6. Productivity, Disturbance and Ecosystem Size Have No Influence on Food Chain Length in Seasonally Connected Rivers

    PubMed Central

    Warfe, Danielle M.; Jardine, Timothy D.; Pettit, Neil E.; Hamilton, Stephen K.; Pusey, Bradley J.; Bunn, Stuart E.; Davies, Peter M.; Douglas, Michael M.

    2013-01-01

    The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions. PMID:23776641

  7. Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers.

    PubMed

    Warfe, Danielle M; Jardine, Timothy D; Pettit, Neil E; Hamilton, Stephen K; Pusey, Bradley J; Bunn, Stuart E; Davies, Peter M; Douglas, Michael M

    2013-01-01

    The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions. PMID:23776641

  8. Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers.

    PubMed

    Warfe, Danielle M; Jardine, Timothy D; Pettit, Neil E; Hamilton, Stephen K; Pusey, Bradley J; Bunn, Stuart E; Davies, Peter M; Douglas, Michael M

    2013-01-01

    The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions.

  9. Effects of nutrient recycling and food-chain length on resilience

    SciTech Connect

    DeAngelis, D.L.; Bartell, S.M. ); Brenkert, A.L. )

    1989-11-01

    The attempt to explain the observed structure of ecological food webs has been one of the recent key issues of theoretical ecology. Unquestionably, many factors are involved in determining food-web structure. The dissipation of available energy from one trophic level to the next has been emphasized by Yodzis as the major factor limiting the length of food chains. However, Pimm and Lawton and Pimm have argued that a decrease in relative stability with increasing food-chain length may also be a factor. By relative stability (more commonly, resilience), we mean the rate at which a stable ecological system returns to a steady state following a perturbation. Resilience can be defined more precisely as the inverse of the return time T{sub R}, the time it takes a systems to return a specified fraction of the way toward a steady state following a perturbation. Besides its possible significance to food-web structure, ecosystem resilience is a factor of practical importance, since it is a measure of the rate at which the ecosystem can recover from disturbances. Our purpose is to investigate resilience in food-chain and food-web models as nutrient input and the trophic structure are varied and to offer explanations of the observed model behaviors. In this paper we present the basic results by first using a simple abstract food-chain model at steady state and then showing that these results hold for a more complex food-web simulation model without a constant steady state solution.

  10. Analysis of the Ketosynthase-Chain Length Factor Heterodimer from the Fredericamycin Polyketide Synthase

    PubMed Central

    Szu, Ping-Hui; Govindarajan, Sridhar; Meehan, Michael J.; Das, Abhirup; Nguyen, Don D.; Dorrestein, Pieter C.; Minshull, Jeremy; Khosla, Chaitan

    2011-01-01

    SUMMARY The pentadecaketide fredericamycin has the longest carbon chain backbone among polycyclic aromatic polyketide antibiotics whose biosynthetic genes have been sequenced. This backbone is synthesized by the bimodular fdm polyketide synthase (PKS). The initiation module is thought to synthesize a C6 intermediate that is then transferred onto the elongation PKS module, which extends it into a C30 poly-β-ketoacyl product. Here we demonstrate that the bimodular fdm PKS as well as its elongation module alone synthesize undecaketides and dodecaketides. Thus, unlike other homologues, the fdm ketosynthase – chain length factor (KS-CLF) heterodimer does not exclusively control the backbone length of its natural product. Using sequence- and structure-based approaches, 48 multiple mutants of the CLF were engineered and analyzed. Unexpectedly, the I134F mutant was unable to turn over, but could initiate and at least partially elongate the polyketide chain. This unprecedented mutant suggests that the KS-CLF heterodimer harbors an as yet uncharacterized chain termination mechanism. Together, our findings reveal fundamental mechanistic differences between the fdm PKS and its well-studied homologues. PMID:21867917

  11. Local density approximation results for bond length alternation in the infinite polyyne chain

    NASA Astrophysics Data System (ADS)

    Bylaska, Eric; Weare, John

    1998-03-01

    Calculations for large even numbered carbon ring molecules and band structure calculations for the infinite polyyne chain within the local density approximation are reported. We studied the alternation of bond lengths in this system as a function of size. Particular focus is on alternation in the infinite system. For intermediate and large sized Cn rings with n satisfying n=4N (doubly-antiaromatic rings) there is a substantial first order Jahn-Teller distortion which decreases for large N. On the other hand, for Cn rings satisfying n=4N+2 (doubly-aromatic rings) the second order Jahn-Teller distortion does not produce bond length alternation even by the large C_42 ring. The persistance of aromatic behavior in the very large carbon rings manifests itself in the band structure calculations by making the amount of bond length alternation predicted for the infinite polyyne chain extremely sensitive to the numerical treatment of the Brillouin zone. We have shown that the infinite polyyne has a finite amount of bond length alternation but the condensation energy is very small.

  12. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium.

    PubMed

    Pulcastro, Hannah C; Awinda, Peter O; Breithaupt, Jason J; Tanner, Bertrand C W

    2016-07-01

    Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles. PMID:26763941

  13. Structural basis for acyl-group discrimination by human Gcn5L2

    PubMed Central

    Ringel, Alison E.; Wolberger, Cynthia

    2016-01-01

    Gcn5 is a conserved acetyltransferase that regulates transcription by acetylating the N-terminal tails of histones. Motivated by recent studies identifying a chemically diverse array of lysine acyl modifications in vivo, the acyl-chain specificity of the acetyltransferase human Gcn5 (Gcn5L2) was examined. Whereas Gcn5L2 robustly catalyzes lysine acetylation, the acyltransferase activity of Gcn5L2 becomes progressively weaker with increasing acyl-chain length. To understand how Gcn5 discriminates between different acyl-CoA molecules, structures of the catalytic domain of human Gcn5L2 bound to propionyl-CoA and butyryl-CoA were determined. Although the active site of Gcn5L2 can accommodate propionyl-CoA and butyryl-CoA without major structural rearrangements, butyryl-CoA adopts a conformation incompatible with catalysis that obstructs the path of the incoming lysine residue and acts as a competitive inhibitor of Gcn5L2 versus acetyl-CoA. These structures demonstrate how Gcn5L2 discriminates between acyl-chain donors and explain why Gcn5L2 has weak activity for acyl moieties that are larger than an acetyl group. PMID:27377381

  14. Determination and comparison of how the chain number and chain length of a lipid affects its interactions with a phospholipid at an air/water interface.

    PubMed

    Ngyugen, Hang; McNamee, Cathy E

    2014-06-01

    We determined how the number of chains in a lipid and its chain length affects its interactions with a phospholipid model membrane, and whether the number of chains or the chain length of lipids affects their interactions with the phospholipids more. This was achieved by using a Langmuir trough and a fluorescence microscope to study the interactions of mono-, di-, and triglycerides with a phospholipid monolayer at an air/water interface. The effect of the number of chains in a lipid on its interactions with phospholipids at air/water interfaces was shown by surface pressure-area per molecule isotherms and their thermodynamic analysis to worsen as the number of alkyl chains was increased to be greater than one. An increase in the packing density decreased the mixing ability of the lipids with the phospholipids, resulting in the formation of aggregates in the mixed monolayer. The aggregation was explained by the intermolecular hydrophobic and van der Waals attractions between the lipid molecules. Fluorescence microscopy revealed partial mixing without aggregation for monoglycerides, but the presence of lipid aggregation for diglycerides and triglycerides. The effect of decreasing the chain length of triglycerides from a long chain to a medium chain caused the interactions of the lipids with the phospholipid molecules at the air/water interface to significantly improve. Decreasing the chain length of monoglycerides from a long chain to a medium chain worsened their interaction with the phospholipid molecules. The effect of decreasing the triglyceride chain length on their interactions with phospholipids was much greater than the effect of decreasing the number of alkyl chains in the lipid.

  15. Cation alkyl side chain length and symmetry effects on the surface tension of ionic liquids.

    PubMed

    Almeida, Hugo F D; Freire, Mara G; Fernandes, Ana M; Lopes-da-Silva, José A; Morgado, Pedro; Shimizu, Karina; Filipe, Eduardo J M; Lopes, José N Canongia; Santos, Luís M N B F; Coutinho, João A P

    2014-06-10

    Aiming at providing a comprehensive study of the influence of the cation symmetry and alkyl side chain length on the surface tension and surface organization of ionic liquids (ILs), this work addresses the experimental measurements of the surface tension of two extended series of ILs, namely R,R'-dialkylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C(n)C(n)im][NTf2]) and R-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C(n)C(1)im][NTf2]), and their dependence with temperature (from 298 to 343 K). For both series of ILs the surface tension decreases with an increase in the cation side alkyl chain length up to aliphatic chains no longer than hexyl, here labeled as critical alkyl chain length (CACL). For ILs with aliphatic moieties longer than CACL the surface tension displays an almost constant value up to [C12C12im][NTf2] or [C16C1im][NTf2]. These constant values further converge to the surface tension of long chain n-alkanes, indicating that, for sufficiently long alkyl side chains, the surface ordering is strongly dominated by the aliphatic tails present in the IL. The enthalpies and entropies of surface were also derived and the critical temperatures were estimated from the experimental data. The trend of the derived thermodynamic properties highlights the effect of the structural organization of the IL at the surface with visible trend shifts occurring at a well-defined CACL in both symmetric and asymmetric series of ILs. Finally, the structure of a long-alkyl side chain IL at the vacuum-liquid interface was also explored using Molecular Dynamics simulations. In general, it was found that for the symmetric series of ILs, at the outermost polar layers, more cations point one of their aliphatic tails outward and the other inward, relative to the surface, than cations pointing both tails outward. The number of the former, while being the preferred conformation, exceeds the latter by around 75%.

  16. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds.

    PubMed

    Larson, Tony R; Edgell, Teresa; Byrne, James; Dehesh, Katayoon; Graham, Ian A

    2002-11-01

    Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.

  17. Kinetic and structural basis for acyl-group selectivity and NAD+-dependence in Sirtuin-catalyzed deacylation

    PubMed Central

    Thelen, Julie N.; Ito, Akihiro; Yoshida, Minoru; Denu, John M.

    2015-01-01

    Acylation of lysine is an important protein modification regulating diverse biological processes. It was recently demonstrated that members of the human Sirtuin family are capable of catalyzing long-chain deacylation, in addition to the well-known NAD+-dependent deacetylation activity.1 Here we provide a detailed kinetic and structural analysis that describes the interdependence of NAD+ and acyl-group length for a diverse series of human Sirtuins, SIRT1, SIRT2, SIRT3 and SIRT6. Steady-state and rapid-quench kinetic analyses indicated that differences in NAD+ saturation and susceptibility to nicotinamide inhibition reflect unique kinetic behavior displayed by each Sirtuin and depend on acyl-substrate chain length. Though the rate of nucleophilic attack of the 2′-hydroxyl on the C1′-O-alkylimidate intermediate varies with acyl substrate chain length, this step remains rate-determining for SIRT2 and SIRT3; however for SIRT6, this step is no longer rate-limiting for long-chain substrates. Co-crystallization of SIRT2 with myristoylated peptide and NAD+ yielded a co-complex structure with reaction product 2′-O-myristoyl-ADP-ribose, revealing a latent hydrophobic cavity to accommodate the long chain acyl group, and suggesting a general mechanism for long chain deacylation. Comparing two separately solved co-complex structures containing either a myristoylated peptide or 2′-O-myristoyl-ADP-ribose indicate there are conformational changes at the myristoyl-ribose linkage with minimal structural differences in the enzyme active site. During the deacylation reaction, the fatty acyl group is held in a relatively fixed position. We describe a kinetic and structural model to explain how various Sirtuins display unique acyl-substrate preferences and how different reaction kinetics influence NAD+ dependence. The biological implications are discussed. PMID:25897714

  18. Effect of chain length and unsaturation on elasticity of lipid bilayers.

    PubMed Central

    Rawicz, W; Olbrich, K C; McIntosh, T; Needham, D; Evans, E

    2000-01-01

    Micropipette pressurization of giant bilayer vesicles was used to measure both elastic bending k(c) and area stretch K(A) moduli of fluid-phase phosphatidylcholine (PC) membranes. Twelve diacyl PCs were chosen: eight with two 18 carbon chains and degrees of unsaturation from one double bond (C18:1/0, C18:0/1) to six double bonds per lipid (diC18:3), two with short saturated carbon chains (diC13:0, diC14:0), and two with long unsaturated carbon chains (diC20:4, diC22:1). Bending moduli were derived from measurements of apparent expansion in vesicle surface area under very low tensions (0.001-0.5 mN/m), which is dominated by smoothing of thermal bending undulations. Area stretch moduli were obtained from measurements of vesicle surface expansion under high tensions (>0.5 mN/m), which involve an increase in area per molecule and a small-but important-contribution from smoothing of residual thermal undulations. The direct stretch moduli varied little (< +/-10%) with either chain unsaturation or length about a mean of 243 mN/m. On the other hand, the bending moduli of saturated/monounsaturated chain PCs increased progressively with chain length from 0.56 x 10(-19) J for diC13:0 to 1.2 x 10(-19) J for diC22:1. However, quite unexpectedly for longer chains, the bending moduli dropped precipitously to approximately 0.4 x 10(-19) J when two or more cis double bonds were present in a chain (C18:0/2, diC18:2, diC18:3, diC20:4). Given nearly constant area stretch moduli, the variations in bending rigidity with chain length and polyunsaturation implied significant variations in thickness. To test this hypothesis, peak-to-peak headgroup thicknesses h(pp) of bilayers were obtained from x-ray diffraction of multibilayer arrays at controlled relative humidities. For saturated/monounsaturated chain bilayers, the distances h(pp) increased smoothly from diC13:0 to diC22:1 as expected. Moreover, the distances and elastic properties correlated well with a polymer brush model of the

  19. Ligand binding to the ACBD6 protein regulates the acyl-CoA transferase reactions in membranes[S

    PubMed Central

    Soupene, Eric; Kuypers, Frans A.

    2015-01-01

    The binding determinants of the human acyl-CoA binding domain-containing protein (ACBD) 6 and its function in lipid renewal of membranes were investigated. ACBD6 binds acyl-CoAs of a chain length of 6 to 20 carbons. The stoichiometry of the association could not be fitted to a 1-to-1 model. Saturation of ACBD6 by C16:0-CoA required higher concentration than less abundant acyl-CoAs. In contrast to ACBD1 and ACBD3, ligand binding did not result in the dimerization of ACBD6. The presence of fatty acids affected the binding of C18:1-CoA to ACBD6, dependent on the length, the degree of unsaturation, and the stereoisomeric conformation of their aliphatic chain. ACBD1 and ACBD6 negatively affected the formation of phosphatidylcholine (PC) and phosphatidylethanolamine in the red blood cell membrane. The acylation rate of lysophosphatidylcholine into PC catalyzed by the red cell lysophosphatidylcholine-acyltransferase 1 protein was limited by the transfer of the acyl-CoA substrate from ACBD6 to the acyltransferase enzyme. These findings provide evidence that the binding properties of ACBD6 are adapted to prevent its constant saturation by the very abundant C16:0-CoA and protect membrane systems from the detergent nature of free acyl-CoAs by controlling their release to acyl-CoA-utilizing enzymes. PMID:26290611

  20. Effect of side chain length on intrahelical interactions between carboxylate- and guanidinium-containing amino acids.

    PubMed

    Kuo, Hsiou-Ting; Yang, Po-An; Wang, Wei-Ren; Hsu, Hao-Chun; Wu, Cheng-Hsun; Ting, Yu-Te; Weng, Ming-Huei; Kuo, Li-Hung; Cheng, Richard P

    2014-08-01

    The charge-containing hydrophilic functionalities of encoded charged amino acids are linked to the backbone via different numbers of hydrophobic methylenes, despite the apparent electrostatic nature of protein ion pairing interactions. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on ion pairing interactions, α-helical peptides containing Zbb-Xaa (i, i + 3), (i, i + 4) and (i, i + 5) (Zbb = carboxylate-containing residues Aad, Glu, Asp in decreasing length; Xaa = guanidinium residues Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by circular dichroism spectroscopy (CD). The helicity of Aad- and Glu-containing peptides was similar and mostly pH independent, whereas the helicity of Asp-containing peptides was mostly pH dependent. Furthermore, the Arg-containing peptides consistently exhibited higher helicity compared to the corresponding Agp-, Agb-, and Agh-containing peptides. Side chain conformational analysis by molecular mechanics calculations showed that the Zbb-Xaa (i, i + 3) and (i, i + 4) interactions mainly involved the χ 1 dihedral combinations (g+, g+) and (g-, g+), respectively. These low energy conformations were also observed in intrahelical Asp-Arg and Glu-Arg salt bridges of natural proteins. Accordingly, Asp and Glu provides variation in helix characteristics associated with Arg, but Aad does not provide features beyond those already delivered by Glu. Importantly, nature may have chosen the side chain length of Arg to support helical conformations through inherent high helix propensity coupled with stabilizing intrahelical ion pairing interactions with the carboxylate-containing residues.

  1. Fatty Acid Chain Length Dependence of Phase Separation Kinetics in Stratum Corneum Models by IR Spectroscopy.

    PubMed

    Mendelsohn, Richard; Rabie, Emann; Walters, Russel M; Flach, Carol R

    2015-07-30

    The main barrier to permeability in human skin resides in the stratum corneum (SC), a layered structure consisting of anucleated, flattened cells (corneocytes) embedded in a heterogeneous lamellar lipid matrix. While lipid structures and packing propensities in the SC and in SC models have been extensively investigated, only limited data are available concerning the kinetics and mechanism of formation of lamellar phases and particular lipid packing motifs. In our prior investigation, kinetic IR spectroscopy measurements probed the temporal sequence of phase separation leading to ordered structures in a three component SC model of equimolar structurally heterogeneous ceramide[NS], chain perdeuterated stearic acid, and cholesterol. In the current work, the phase separation kinetic effects of specific fatty acid chain lengths with a synthetic structurally homogeneous ceramide[NS] in similar ternary mixtures are examined. These are compared with a mixture containing ceramide[NS] with an unsaturated acid chain. The kinetic events are sensitive to the difference in chain lengths between the ceramide acid chain and the fatty acid as well as to the presence of unsaturation in the former. The observed kinetic behaviors span a wide range of phase separation times, ranging from the formation of a solid solution stable for at least 200 h, to a system in which an orthorhombic fatty acid structure is essentially completely formed within the time resolution of the experiment (15 min). The data seem to offer some features of a spinodal phase separation at relatively short times. Overall the approach offers a possible means for addressing several unanswered questions pertinent to skin pharmacology, such as the roles of a wide variety of ceramide and fatty acid species and the design of therapeutic interventions for repair of pathological conditions of the SC.

  2. A macroscopic description of lipid bilayer phase transitions of mixed-chain phosphatidylcholines: chain-length and chain-asymmetry dependence.

    PubMed Central

    Chen, L; Johnson, M L; Biltonen, R L

    2001-01-01

    A macroscopic model is presented to quantitatively describe lipid bilayer gel to fluid phase transitions. In this model, the Gibbs potential of the lipid bilayer is expressed in terms of a single order parameter q, the average chain orientational order parameter. The Gibbs potential is based on molecular mean-field and statistical mechanical calculations of inter and intrachain interactions. Chain-length and chain-asymmetry are incorporated into the Gibbs potential so that one equation provides an accurate description of mixed-chain phosphatidylcholines of a single class. Two general classes of lipids are studied in this work: lipid bilayers of partially or noninterdigitated gel phases, and bilayers of mixed interdigitated gel phases. The model parameters are obtained by fitting the transition temperature and enthalpy data of phosphatidylcholines to the model. The proposed model provides estimates for the transition temperature and enthalpy, van der Waals energy, number of gauche bonds, chain orientational order parameter, and bond rotational and excluded volume entropies, achieving excellent agreement with existing data obtained with various techniques. PMID:11159399

  3. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  4. Two fatty acyl reductases involved in moth pheromone biosynthesis.

    PubMed

    Antony, Binu; Ding, Bao-Jian; Moto, Ken'Ichi; Aldosari, Saleh A; Aldawood, Abdulrahman S

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective 'single pgFARs' produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a 'single reductase' can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  5. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  6. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  7. Acyl-lipid metabolism.

    PubMed

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X; Arondel, Vincent; Bates, Philip D; Baud, Sébastien; Bird, David; Debono, Allan; Durrett, Timothy P; Franke, Rochus B; Graham, Ian A; Katayama, Kenta; Kelly, Amélie A; Larson, Tony; Markham, Jonathan E; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  8. The Characterization of Modified Starch Branching Enzymes: Toward the Control of Starch Chain-Length Distributions

    PubMed Central

    Li, Cheng; Wu, Alex Chi; Go, Rob Marc; Malouf, Jacob; Turner, Mark S.; Malde, Alpeshkumar K.; Mark, Alan E.; Gilbert, Robert G.

    2015-01-01

    Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality. PMID:25874689

  9. The chain length dependence of polyelectrolyte mobility in free solution and in gels

    SciTech Connect

    Hoagland, D.A.; Arvanitidou, E.S.

    1993-12-31

    Electrophoretic techniques fractionate linear flexible polymer chains according to degree of polymerization N and linear charge density Q/L, where Q is the effective charge of the chain an L is its contour length. Above a critical Q/L, associated with {open_quotes}ion condensation{close_quotes}, the mobility {mu} becomes independent of Q/L. in this regime, the free solution mobility {mu}{sub o} is a function of both N and the ionic strength I. This paper will report experimental results obtained by electrophoretic light scattering and capillary electrophoresis on the function {mu}{sub o}(I,N). This function has not been measured accurately, and the theoretically interesting low N regime has never been probed; results for polystyrene sulfonate conflict with existing theory. The N dependence of {mu} can be written {mu}={mu}{sub o}(I,N)f(R/{xi}), where R is the equilibrium polymer size and {xi} is a characteristic matrix pore size. Three forms of transport - sieving, entropic barriers, and reptation - are needed to explain gel data. The authors discuss the intermediate transport regime, entropic barriers, in light of experiments in which chain length and topology are varied. Such data confirm the critical role of matrix inhomogeneity, an effect not adequately captured in a single pore size. Mobility in an inhomogenous matrix is dictated by the spatial variation of confinement entropy, and N, rather than R, correlates {mu} where under these conditions.

  10. Solvation Thermodynamics of Oligoglycine with Respect to Chain Length and Flexibility.

    PubMed

    Drake, Justin A; Harris, Robert C; Pettitt, B Montgomery

    2016-08-23

    Oligoglycine is a backbone mimic for all proteins and is prevalent in the sequences of intrinsically disordered proteins. We have computed the absolute chemical potential of glycine oligomers at infinite dilution by simulation with the CHARMM36 and Amber ff12SB force fields. We performed a thermodynamic decomposition of the solvation free energy (ΔG(sol)) of Gly2-5 into enthalpic (ΔH(sol)) and entropic (ΔS(sol)) components as well as their van der Waals and electrostatic contributions. Gly2-5 was either constrained to a rigid/extended conformation or allowed to be completely flexible during simulations to assess the effects of flexibility on these thermodynamic quantities. For both rigid and flexible oligoglycine models, the decrease in ΔG(sol) with chain length is enthalpically driven with only weak entropic compensation. However, the apparent rates of decrease of ΔG(sol), ΔH(sol), ΔS(sol), and their elec and vdw components differ for the rigid and flexible models. Thus, we find solvation entropy does not drive aggregation for this system and may not explain the collapse of long oligoglycines. Additionally, both force fields yield very similar thermodynamic scaling relationships with respect to chain length despite both force fields generating different conformational ensembles of various oligoglycine chains. PMID:27558719

  11. Nucleobase-templated polymerization: copying the chain length and polydispersity of living polymers into conjugated polymers.

    PubMed

    Lo, Pik Kwan; Sleiman, Hanadi F

    2009-04-01

    Conjugated polymers synthesized by step polymerization mechanisms typically suffer from poor molecular weight control and broad molecular weight distributions. We report a new method which uses nucleobase recognition to read out and efficiently copy the controlled chain length and narrow molecular weight distribution of a polymer template generated by living polymerization, into a daughter conjugated polymer. Aligning nucleobase-containing monomers on their complementary parent template using hydrogen-bonding interactions, and subsequently carrying out a Sonogashira polymerization, leads to the templated synthesis of a conjugated polymer. Remarkably, this daughter strand is found to possess a narrow molecular weight distribution and a chain length nearly equivalent to that of the parent template. On the other hand, nontemplated polymerization or polymerization with the incorrect template generates a short conjugated oligomer with a significantly broader molecular weight distribution. Hence, nucleobase-templated polymerization is a useful tool in polymer synthesis, in this case allowing the use of a large number of polymers generated by living methods, such as anionic polymerization, controlled radical polymerizations (NMP, ATRP, and RAFT) and other mechanisms to program the structure, length, and molecular weight distribution of polymers normally generated by step polymerization methods and significantly enhance their properties.

  12. Radiation crosslinking of a bacterial medium-chain-length poly(hydroxyalkanoate) elastomer from tallow.

    PubMed

    Ashby, R D; Cromwick, A M; Foglia, T A

    1998-07-01

    Pseudomonas resinovorans produces a medium-chain-length poly(hydroxyalkanoate) (MCL-PHA) copolymer when grown on tallow (PHA-tal). This polymer had a repeat unit composition ranging from C4 to C14 with some mono-unsaturation in the C12 and C14 alkyl side chains. Thermal analysis indicated that the polymer was semi-crystalline with a melting temperature (T(m)) of 43.5 +/- 0.2 degrees C and a glass transition temperature (Tg) of -43.4 +/- 2.0 degrees C. The presence of unsaturated side chains allowed crosslinking by gamma-irradiation. Irradiated polymer films had decreased solubility in organic solvents that indicated an increase in the crosslinking density within the film matrix. The addition of linseed oil to the gamma-irradiated film matrix enhanced polymer recovery while minimizing chain scission. Linseed oil also caused a decrease in the enthalpy of fusion (delta Hm) of the films (by an average of 60%) as well as enhanced mineralization. The effects of crosslinking on the mechanical properties and biodegradability of the polymer were determined. Radiation had no effect on the storage modulus (E') of the polymer. However, radiation doses of 25 and 50 kGy did increase the Young modulus of the polymer by 129 and 114%, and the tensile strength of the polymer by 76 and 35%, respectively. Finally, the formation of a higher crosslink density within the polymer matrix decreased the biodegradability of the PHA films.

  13. Radiation crosslinking of a bacterial medium-chain-length poly(hydroxyalkanoate) elastomer from tallow.

    PubMed

    Ashby, R D; Cromwick, A M; Foglia, T A

    1998-07-01

    Pseudomonas resinovorans produces a medium-chain-length poly(hydroxyalkanoate) (MCL-PHA) copolymer when grown on tallow (PHA-tal). This polymer had a repeat unit composition ranging from C4 to C14 with some mono-unsaturation in the C12 and C14 alkyl side chains. Thermal analysis indicated that the polymer was semi-crystalline with a melting temperature (T(m)) of 43.5 +/- 0.2 degrees C and a glass transition temperature (Tg) of -43.4 +/- 2.0 degrees C. The presence of unsaturated side chains allowed crosslinking by gamma-irradiation. Irradiated polymer films had decreased solubility in organic solvents that indicated an increase in the crosslinking density within the film matrix. The addition of linseed oil to the gamma-irradiated film matrix enhanced polymer recovery while minimizing chain scission. Linseed oil also caused a decrease in the enthalpy of fusion (delta Hm) of the films (by an average of 60%) as well as enhanced mineralization. The effects of crosslinking on the mechanical properties and biodegradability of the polymer were determined. Radiation had no effect on the storage modulus (E') of the polymer. However, radiation doses of 25 and 50 kGy did increase the Young modulus of the polymer by 129 and 114%, and the tensile strength of the polymer by 76 and 35%, respectively. Finally, the formation of a higher crosslink density within the polymer matrix decreased the biodegradability of the PHA films. PMID:9644597

  14. Alkyl Chain Length Dependence of the Dynamics and Structure in the Ionic Regions of Room-Temperature Ionic Liquids.

    PubMed

    Tamimi, Amr; Bailey, Heather E; Fayer, Michael D

    2016-08-01

    The dynamics of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide room-temperature ionic liquids (RTILs) with carbon chain lengths of 2, 4, 6, and 10 were studied by measuring the orientational and spectral diffusion dynamics of the vibrational probe SeCN(-). Vibrational absorption spectra, two-dimensional infrared (2D IR), and polarization-selective pump-probe (PSPP) experiments were performed on the CN stretch. In addition, optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments were performed on the bulk liquids. The PSPP experiments yielded triexponential anisotropy decays, which were analyzed with the wobbling-in-a-cone model. The slowest decay, the complete orientational randomization, slows with increasing chain length in a hydrodynamic trend consistent with the increasing viscosity. The shortest time scale wobbling motions are insensitive to chain length, while the intermediate time scale wobbling slows mildly as the chain length increases. The 2D IR spectra measured in parallel (⟨XXXX⟩) and perpendicular (⟨XXYY⟩) polarization configurations gave different decays, showing that reorientation-induced spectral diffusion (RISD) contributes to the dynamics. The spectral diffusion caused by the RTIL structural fluctuations was obtained by removing the RISD contributions. The faster structural fluctuations are relatively insensitive to chain length. The slowest structural fluctuations slow substantially when going from Emim (2 carbon chain) to Bmim (4 carbon chain) and slow further, but more gradually, as the chain length is increased. It was shown previously that K(+) causes local ion clustering in the Emim RTIL. The K(+) effect increases with increasing chain length. The OHD-OKE measured complete structural randomization times slow substantially with increasing chain length and are much slower than the dynamics experienced by the SeCN(-) located in the ionic regions of the RTILs.

  15. The role of discharge variation in scaling of drainage area and food chain length in rivers

    USGS Publications Warehouse

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  16. The role of discharge variation in scaling of drainage area and food chain length in rivers.

    PubMed

    Sabo, John L; Finlay, Jacques C; Kennedy, Theodore; Post, David M

    2010-11-12

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  17. Effects of varying surfactant chain lengths on the magnetic, optical and hyperthermia properties of ferrofluids

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Vaishnava, Prem; Regmi, Rajesh; Sudakar, Chandran; Black, Correy; Lawes, Gavin; Naik, Ratna; Lavoie, Melissa; Kahn, David

    2009-03-01

    We report studies of the structural, magnetic, magneto-thermal and magneto-optic properties of dextran, oleic acid, lauric acid and myristic acid surfacted Fe3O4 nanoparticles of hydrodynamic sizes ranging from 32 nm to 92 nm. All the samples showed saturation magnetization of ˜50 emu/g, significantly smaller than the bulk value for Fe3O4, together with superparamagnetic behavior. The ac magnetization measurements on the dextran coated nanoparticles showed frequency dependent blocking temperature, consistent with superparamgnetic blocking. The ferrofluid heating rates in a 250 Gauss, 100 kHz ac magnetic field varied with the chain lengths of the surfactants, with higher heating rates for longer chains. DC-magnetic-field-induced light scattering patterns produced by two orthogonal He-Ne laser beams passing through the ferrofluid sample revealed different optical signatures for different surfactants.

  18. Dependence of micelle size and shape on detergent alkyl chain length and head group.

    PubMed

    Oliver, Ryan C; Lipfert, Jan; Fox, Daniel A; Lo, Ryan H; Doniach, Sebastian; Columbus, Linda

    2013-01-01

    Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC) currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS), micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.

  19. Carbon chains and the (5,5) single-walled nanotube: Structure and energetics versus length

    NASA Astrophysics Data System (ADS)

    Rodriguez, Kenneth R.; Williams, Shaun M.; Young, Matt A.; Teeters-Kennedy, Shannon; Heer, Joseph M.; Coe, James V.

    2006-11-01

    Reliable thermochemistry is computed for infinite stretches of pure-carbon materials including acetylenic and cumulenic carbon chains, graphene sheet, and single-walled carbon nanotubes (SWCNTs) by connection to the properties of finite size molecules that grow into the infinitely long systems. Using ab initio G3 theory, the infinite cumulenic chain (:CCCC:) is found to be 1.9±0.4kcal/mol per carbon less stable in free energy at room temperature than the acetylenic chain (C•C-CC•) which is 24.0kcal/mol less stable than graphite. The difference between carbon-carbon triple, double, and single bond lengths (1.257, 1.279, and 1.333Å, respectively) in infinite chains is evident but much less than with small hydrocarbon molecules. These results are used to evaluate the efficacy of similar calculations with the less rigorous PM3 semiempirical method on the (5,5) SWCNT, which is too large to be studied with high-level ab initio methods. The equilibrium electronic energy change for C(g )→C[infinite (5,5) SWCNT] is -166.7kcal/mol, while the corresponding free energy change at room temperature is -153.3kcal/mol (6.7kcal/mol less stable than graphite). A threefold alternation (6.866, 6.866, and 6.823Å) in the ring diameter of the equilibrium structure of infinitely long (5,5) SWCNT is apparent, although the stability of this structure over the constant diameter structure is small compared to the zero point energy of the nanotube. In general, different (n,m) SWCNTs have different infinite tube energetics, as well as very different energetic trends that vary significantly with length, diameter, and capping.

  20. The effect of elastomer chain length on properties of silicone-modified polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Ezzell, S.

    1981-01-01

    A series of polyimides containing silicone elastomers was synthesized in order to study the effects of the elastomer chain length on polymer properties. The elastomer with repeat units varying from n=10 to 105 was chemically reacted into the backbone of an addition polyimide oligomer via reactive aromatic amine groups. Glass transition temperatures of the elastomer and polyimide phases were observed by torsional braid analysis. The elastomer-modified polyimides were tested as adhesives for bonding titanium in order to determine their potential for aerospace applications. Adhesive lap shear tests were performed before and after aging bonded specimens at elevated temperatures.

  1. Human 20S proteasome activity towards fluorogenic peptides of various chain lengths.

    PubMed

    Rut, Wioletta; Drag, Marcin

    2016-09-01

    The proteasome is a multicatalytic protease responsible for the degradation of misfolded proteins. We have synthesized fluorogenic substrates in which the peptide chain was systematically elongated from two to six amino acids and evaluated the effect of peptide length on all three catalytic activities of human 20S proteasome. In the cases of five- and six-membered peptides, we have also synthesized libraries of fluorogenic substrates. Kinetic analysis revealed that six-amino-acid substrates are significantly better for chymotrypsin-like and caspase-like activity than shorter peptidic substrates. In the case of trypsin-like activity, a five-amino-acid substrate was optimal. PMID:27176742

  2. Human 20S proteasome activity towards fluorogenic peptides of various chain lengths.

    PubMed

    Rut, Wioletta; Drag, Marcin

    2016-09-01

    The proteasome is a multicatalytic protease responsible for the degradation of misfolded proteins. We have synthesized fluorogenic substrates in which the peptide chain was systematically elongated from two to six amino acids and evaluated the effect of peptide length on all three catalytic activities of human 20S proteasome. In the cases of five- and six-membered peptides, we have also synthesized libraries of fluorogenic substrates. Kinetic analysis revealed that six-amino-acid substrates are significantly better for chymotrypsin-like and caspase-like activity than shorter peptidic substrates. In the case of trypsin-like activity, a five-amino-acid substrate was optimal.

  3. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    SciTech Connect

    Ngoi, Kuan Hoon; Chia, Chin-Hua Zakaria, Sarani; Chiu, Wee Siong

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  4. Structural Characterization of Closely Related O-antigen Lipopolysaccharide (LPS) Chain Length Regulators*

    PubMed Central

    Kalynych, Sergei; Yao, Deqiang; Magee, James; Cygler, Miroslaw

    2012-01-01

    The surface O-antigen polymers of Gram-negative bacteria exhibit a modal length distribution that depends on dedicated chain length regulator periplasmic proteins (polysaccharide co-polymerases, PCPs) anchored in the inner membrane by two transmembrane helices. In an attempt to determine whether structural changes underlie the O-antigen modal length specification, we have determined the crystal structures of several closely related PCPs, namely two chimeric PCP-1 family members solved at 1.6 and 2.8 Å and a wild-type PCP-1 from Shigella flexneri solved at 2.8 Å. The chimeric proteins form circular octamers, whereas the wild-type WzzB from S. flexneri was found to be an open trimer. We also present the structure of a WzzFepE mutant, which exhibits severe attenuation in its ability to produce very long O-antigen polymers. Our findings suggest that the differences in the modal length distribution depend primarily on the surface-exposed amino acids in specific regions rather than on the differences in the oligomeric state of the PCP protomers. PMID:22437828

  5. Two Activities of Long-Chain Acyl-Coenzyme A Synthetase Are Involved in Lipid Trafficking between the Endoplasmic Reticulum and the Plastid in Arabidopsis1

    PubMed Central

    Jessen, Dirk; Roth, Charlotte; Wiermer, Marcel

    2015-01-01

    In plants, fatty acids are synthesized within the plastid and need to be distributed to the different sites of lipid biosynthesis within the cell. Free fatty acids released from the plastid need to be converted to their corresponding coenzyme A thioesters to become metabolically available. This activation is mediated by long-chain acyl-coenzyme A synthetases (LACSs), which are encoded by a family of nine genes in Arabidopsis (Arabidopsis thaliana). So far, it has remained unclear which of the individual LACS activities are involved in making plastid-derived fatty acids available to cytoplasmic glycerolipid biosynthesis. Because of its unique localization at the outer envelope of plastids, LACS9 was regarded as a candidate for linking plastidial fatty export and cytoplasmic use. However, data presented in this study show that LACS9 is involved in fatty acid import into the plastid. The analyses of mutant lines revealed strongly overlapping functions of LACS4 and LACS9 in lipid trafficking from the endoplasmic reticulum to the plastid. In vivo labeling experiments with lacs4 lacs9 double mutants suggest strongly reduced synthesis of endoplasmic reticulum-derived lipid precursors, which are required for the biosynthesis of glycolipids in the plastids. In conjunction with this defect, double-mutant plants accumulate significant amounts of linoleic acid in leaf tissue. PMID:25540329

  6. Rapid detection of medium chain acyl-CoA dehydrogenase gene mutations by non-radioactive, single strand conformation polymorphism minigels.

    PubMed Central

    Iolascon, A; Parrella, T; Perrotta, S; Guardamagna, O; Coates, P M; Sartore, M; Surrey, S; Fortina, P

    1994-01-01

    Medium chain acyl-CoA dehydrogenase (MCAD) deficiency is a common inherited metabolic disorder affecting fatty acid beta oxidation. Identification of carriers is important since the disease can be fatal and is readily treatable once diagnosed. Twelve molecular defects have been identified in the MCAD gene; however, a single highly prevalent mutation, A985G, accounts for > 90% of mutant alleles in the white population. In order to facilitate the molecular diagnosis of MCAD deficiency, oligonucleotide primers were designed to amplify the exon regions encompassing the 12 mutations enzymatically, and PCR products were then screened with a single strand conformation polymorphism (SSCP) based method. Minigels were used allowing much faster run times, and silver staining was used after gel electrophoresis to eliminate the need for radioisotopic labelling strategies. Our non-radioactive, minigel SSCP approach showed that normals can be readily distinguished from heterozygotes and homozygotes for all three of the 12 known MCAD mutations which were detected in our sampling of 48 persons. In addition, each band pattern is characteristic for a specific mutation, including those mapping in the same PCR product like A985G and T1124C. When necessary, the molecular defect was confirmed using either restriction enzyme digestion of PCR products or by direct DNA sequence analysis or both. This rapid, non-radioactive approach can become routine for molecular diagnosis of MCAD deficiency and other genetic disorders. Images PMID:7966191

  7. Structure of a Specialized Acyl Carrier Protein Essential for Lipid A Biosynthesis with Very Long-chain Fatty Acids in Open and Closed Conformations

    SciTech Connect

    Ramelot, Theresa A.; Rossi, Paolo M.; Forouhar, Farhad; Lee, Hsiau-Wei; Yang, Yunhuang; Ni, Shuisong; Unser, Sarah; Lew, Scott; Seetharaman, Jayaraman; Xiao, Rong; Acton, Thomas; Everett, John K.; Prestegard, James H.; Hunt, John F.; Montelione, Gaetano; Kennedy, Michael A.

    2012-09-18

    The solution nuclear magnetic resonance (NMR) structures and backbone (15)N dynamics of the specialized acyl carrier protein (ACP), RpAcpXL, from Rhodopseudomonas palustris, in both the apo form and holo form modified by covalent attachment of 4'-phosphopantetheine at S37, are virtually identical, monomeric, and correspond to the closed conformation. The structures have an extra α-helix compared to the archetypical ACP from Escherichia coli, which has four helices, resulting in a larger opening to the hydrophobic cavity. Chemical shift differences between apo- and holo-RpAcpXL indicated some differences in the hinge region between α2 and α3 and in the hydrophobic cavity environment, but corresponding changes in nuclear Overhauser effect cross-peak patterns were not detected. In contrast to the NMR structures, apo-RpAcpXL was observed in an open conformation in crystals that diffracted to 2.0 Å resolution, which resulted from movement of α3. On the basis of the crystal structure, the predicted biological assembly is a homodimer. Although the possible biological significance of dimerization is unknown, there is potential that the resulting large shared hydrophobic cavity could accommodate the very long-chain fatty acid (28-30 carbons) that this specialized ACP is known to synthesize and transfer to lipid A. These structures are the first representatives of the AcpXL family and the first to indicate that dimerization may be important for the function of these specialized ACPs.

  8. Influence of Solute Charge and Pyrrolidinium Ionic Liquid Alkyl Chain Length on Probe Rotational Reorientation Dynamics

    SciTech Connect

    Guo, Jianchang; Mahurin, Shannon Mark; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Shaw, Robert W

    2014-01-01

    In recent years, the effect of molecular charge on the rotational dynamics of probe solutes in room temperature ionic liquids (RTILs) has been a subject of growing interest. For the purpose of extending our understanding of charged solute behavior within RTILs, we have studied the rotational dynamics of three illustrative xanthene fluorescent probes within a series of N-alkylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Cnmpyr][Tf2N]) RTILs with different n-alkyl chain lengths (n = 3, 4, 6, 8, or 10) using time-resolved fluorescence anisotropy decay. The rotational dynamics of the neutral probe rhodamine B dye lies between the stick and slip boundary conditions due to the influence of specific hydrogen bonding interactions. The rotation of the negatively-charged sulforhodamine 640 is slower than that of its positively-charged counterpart rhodamine 6G. An analysis based upon Stokes-Einstein-Debye hydrodynamics indicates that SR640 adheres to stick boundary conditions due to specific interactions, whereas the faster rotation of R6G is attributed to weaker electrostatic interactions. No dependence of the rotational dynamics on the solvent alkyl chain length was observed for any of the three dyes, suggesting that the specific interactions between dyes and RTILs are independent of this solvent parameter.

  9. A coiled-coil domain acts as a molecular ruler in LPS chain length regulation

    PubMed Central

    Tuukkanen, Anne; Danciu, Iulia; Svergun, Dmitri I.; Hussain, Rohanah; Liu, Huanting; Whitfield, Chris; Naismith, James H.

    2014-01-01

    Long-chain bacterial polysaccharides play important roles in pathogenicity. In Escherichia coli O9a, a model for ABC transporter dependent polysaccharide assembly, a large extracellular carbohydrate with a narrow distribution of size is polymerized from monosaccharides by a complex of two proteins, WbdA (polymerase) and WbdD (terminating protein). Such careful control of polymerization is recurring theme in biology. Combining crystallography and small angle X-ray scattering, we show that the C-terminal domain of WbdD contains an extended coiled-coil that physically separates WbdA from the catalytic domain of WbdD. The effects of insertions and deletions within the coiled-coil region were analyzed in vivo, revealing that polymer size is controlled by varying the length of the coiled-coil domain. Thus, the coiled-coil domain of WbdD functions as a molecular ruler that, along with WbdA:WbdD stoichiometry, controls the chain length of a model bacterial polysaccharide. PMID:25504321

  10. Enhancement of DNA compaction by negatively charged nanoparticles: effect of nanoparticle size and surfactant chain length.

    PubMed

    Rudiuk, Sergii; Yoshikawa, Kenichi; Baigl, Damien

    2012-02-15

    We study the compaction of genomic DNA by a series of alkyltrimethylammonium bromide surfactants having different hydrocarbon chain lengths n: dodecyl-(DTAB, n=12), tetradecyl-(TTAB, n=14) and hexadecyl-(CTAB, n=16), in the absence and in the presence of negatively charged silica nanoparticles (NPs) with a diameter in the range 15-100 nm. We show that NPs greatly enhance the ability of all cationic surfactants to induce DNA compaction and that this enhancement increases with an increase in NP diameter. In the absence of NP, the ability of cationic surfactants to induce DNA compaction increases with an increase in n. Conversely, in the presence of NPs, the enhancement of DNA compaction increases with a decrease in n. Therefore, although CTAB is the most efficient surfactant to compact DNA, maximal enhancement by NPs is obtained for the largest NP diameter (here, 100 nm) and the smallest surfactant chain length (here, DTAB). We suggest a mechanism where the preaggregation of surfactants on NP surface mediated by electrostatic interactions promotes cooperative binding to DNA and thus enhances the ability of surfactants to compact DNA. We show that the amplitude of enhancement is correlated with the difference between the surfactant concentration corresponding to aggregation on DNA alone and that corresponding to the onset of adsorption on nanoparticles.

  11. Water uptake by sodium chloride particles coated with insoluble organics: impact of chain length

    NASA Astrophysics Data System (ADS)

    Robinson, C. B.; Zarzana, K. J.; Hasenkopf, C. A.; Tolbert, M. A.

    2011-12-01

    Light extinction by particles is strongly dependent on chemical composition, particle size, and water uptake. Relative humidity affects extinction by causing changes in refractive index and particle size due to hygroscopic growth. The ability of particles to take up water depends on its composition and structure. Organic compounds and inorganic salts are often found to be internally mixed within the same aerosol particle. There is currently a great deal of interest in aqueous particles with an insoluble organic coating. The impact of organic films on particle water uptake is uncertain. Therefore, a systematic study that examines water uptake as a function of the chemical nature, packing structure, and coating thickness is highly desirable. These data are critical to evaluate the aerosol direct effect on climate, which is the most uncertain aspect of future climate change. To determine how tightly packed the organic component is, a range organic compounds with different chain lengths, such as decanoic (C10), myristic (C14), stearic (C18), and docosanoic (C22) acids, were used. Coated aerosols are generated and sized using a TSI constant output atomizer and scanning mobility particle sizer. A cavity ring-down aerosol extinction spectrometer at 532 nm is used to measure the optical growth factor as a function of relative humidity for the internally mixed particles. We explored the relationship between optical growth and packing structure by varying the organic component chain length and working with different coating thicknesses.

  12. Random length assortment of human and mouse T cell receptor for antigen alpha and beta chain CDR3.

    PubMed

    Johnson, G; Wu, T T

    1999-10-01

    In view of the recently determined three-dimensional structures of complexes formed by the T cell receptor for antigen (TCR), the processed peptide and the MHC class I molecule, it is expected that the combined configuration formed by the third complementarity determining regions (CDR3) of TCR alpha and beta chains will be very restricted in size and shape due to the limited length variations of the processed peptides. Thus, the combined TCR alpha and beta chain CDR3 lengths should have a fairly narrow distribution. This feature can be due to the selective association of long alpha chain CDR3 with short beta chain CDR3 and vice versa or due to random assortment of alpha and beta chain CDR3 of even narrower length distribution. Based on existing translated amino acid sequence data, it has been found that the latter mechanism is responsible.

  13. Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases.

    PubMed

    Xie, Dizhi; Chen, Fang; Lin, Siyuan; You, Cuihong; Wang, Shuqi; Zhang, Qinghao; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou

    2016-08-01

    Both the spotted scat Scatophagus argus and rabbitfish Siganus canaliculatus belong to the few cultured herbivorous marine teleost, however, their fatty acyl desaturase (Fad) system involved in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is different. The S. argus has a △6 Fad, while the rabbitfish has △4 and △6/△5 Fads, which were the first report in vertebrate and marine teleost, respectively. In order to compare the characteristics of elongases of very long-chain fatty acids (Elovl) between them, two Elovl cDNAs were cloned from S. argus in the present study. One has 885bp of open read fragment (ORF) encoding a protein with 294 amino acid (aa) showing Elovl5 activity functionally characterized by heterologous expression in yeast, which was primarily active for the elongation of C18 and C20 PUFAs. The other has 915bp of ORF coding for a 305 aa protein showing Elovl4 activity, which was more efficient in the elongation of C20 and C22 PUFAs. Tissue distribution analyses by RT-PCR showed that elovl5 was highly expressed in the liver compared to other tissues determined, whereas elovl4 transcripts were only detected in the eye. The expression of elovl5 and elovl4 were significantly affected by dietary fatty acid composition, with highest expression of mRNA in the liver and eye of fish fed a diet with an 18:3n-3/18:2n-6 ratio of 1.7:1. These results indicated that the S. argus has a similar Elovl system in the LC-PUFA biosynthetic pathway to that of rabbitfish although their Fad system was different, suggesting that the diversification of fish LC-PUFA biosynthesis specificities is more associated with its Fad system. These new insights expand our knowledge and understanding of the molecular basis and regulation of LC-PUFA biosynthesis in fish. PMID:27050407

  14. Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency.

    PubMed

    Olsen, Rikke K J; Koňaříková, Eliška; Giancaspero, Teresa A; Mosegaard, Signe; Boczonadi, Veronika; Mataković, Lavinija; Veauville-Merllié, Alice; Terrile, Caterina; Schwarzmayr, Thomas; Haack, Tobias B; Auranen, Mari; Leone, Piero; Galluccio, Michele; Imbard, Apolline; Gutierrez-Rios, Purificacion; Palmfeldt, Johan; Graf, Elisabeth; Vianey-Saban, Christine; Oppenheim, Marcus; Schiff, Manuel; Pichard, Samia; Rigal, Odile; Pyle, Angela; Chinnery, Patrick F; Konstantopoulou, Vassiliki; Möslinger, Dorothea; Feichtinger, René G; Talim, Beril; Topaloglu, Haluk; Coskun, Turgay; Gucer, Safak; Botta, Annalisa; Pegoraro, Elena; Malena, Adriana; Vergani, Lodovica; Mazzà, Daniela; Zollino, Marcella; Ghezzi, Daniele; Acquaviva, Cecile; Tyni, Tiina; Boneh, Avihu; Meitinger, Thomas; Strom, Tim M; Gregersen, Niels; Mayr, Johannes A; Horvath, Rita; Barile, Maria; Prokisch, Holger

    2016-06-01

    Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis. PMID:27259049

  15. Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases.

    PubMed

    Xie, Dizhi; Chen, Fang; Lin, Siyuan; You, Cuihong; Wang, Shuqi; Zhang, Qinghao; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou

    2016-08-01

    Both the spotted scat Scatophagus argus and rabbitfish Siganus canaliculatus belong to the few cultured herbivorous marine teleost, however, their fatty acyl desaturase (Fad) system involved in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is different. The S. argus has a △6 Fad, while the rabbitfish has △4 and △6/△5 Fads, which were the first report in vertebrate and marine teleost, respectively. In order to compare the characteristics of elongases of very long-chain fatty acids (Elovl) between them, two Elovl cDNAs were cloned from S. argus in the present study. One has 885bp of open read fragment (ORF) encoding a protein with 294 amino acid (aa) showing Elovl5 activity functionally characterized by heterologous expression in yeast, which was primarily active for the elongation of C18 and C20 PUFAs. The other has 915bp of ORF coding for a 305 aa protein showing Elovl4 activity, which was more efficient in the elongation of C20 and C22 PUFAs. Tissue distribution analyses by RT-PCR showed that elovl5 was highly expressed in the liver compared to other tissues determined, whereas elovl4 transcripts were only detected in the eye. The expression of elovl5 and elovl4 were significantly affected by dietary fatty acid composition, with highest expression of mRNA in the liver and eye of fish fed a diet with an 18:3n-3/18:2n-6 ratio of 1.7:1. These results indicated that the S. argus has a similar Elovl system in the LC-PUFA biosynthetic pathway to that of rabbitfish although their Fad system was different, suggesting that the diversification of fish LC-PUFA biosynthesis specificities is more associated with its Fad system. These new insights expand our knowledge and understanding of the molecular basis and regulation of LC-PUFA biosynthesis in fish.

  16. Bridging Adhesion of Mussel-Inspired Peptides: Role of Charge, Chain Length, and Surface Type

    PubMed Central

    2015-01-01

    The 3,4-dihydroxyphenylalanine (Dopa)-containing proteins of marine mussels provide attractive design paradigms for engineering synthetic polymers that can serve as high performance wet adhesives and coatings. Although the role of Dopa in promoting adhesion between mussels and various substrates has been carefully studied, the context by which Dopa mediates a bridging or nonbridging macromolecular adhesion to surfaces is not understood. The distinction is an important one both for a mechanistic appreciation of bioadhesion and for an intelligent translation of bioadhesive concepts to engineered systems. On the basis of mussel foot protein-5 (Mfp-5; length 75 res), we designed three short, simplified peptides (15–17 res) and one relatively long peptide (30 res) into which Dopa was enzymatically incorporated. Peptide adhesion was tested using a surface forces apparatus. Our results show that the short peptides are capable of weak bridging adhesion between two mica surfaces, but this adhesion contrasts with that of full length Mfp-5, in that (1) while still dependent on Dopa, electrostatic contributions are much more prominent, and (2) whereas Dopa surface density remains similar in both, peptide adhesion is an order of magnitude weaker (adhesion energy Ead ∼ −0.5 mJ/m2) than full length Mfp-5 adhesion. Between two mica surfaces, the magnitude of bridging adhesion was approximately doubled (Ead ∼ −1 mJ/m2) upon doubling the peptide length. Notably, the short peptides mediate much stronger adhesion (Ead ∼ −3.0 mJ/m2) between mica and gold surfaces, indicating that a long chain length is less important when different interactions are involved on each of the two surfaces. PMID:25540823

  17. Characterization of a Novel Subgroup of Extracellular Medium-Chain-Length Polyhydroxyalkanoate Depolymerases from Actinobacteria

    PubMed Central

    Gangoiti, Joana; Santos, Marta; Prieto, María Auxiliadora; de la Mata, Isabel; Llama, María J.

    2012-01-01

    Nineteen medium-chain-length (mcl) poly(3-hydroxyalkanoate) (PHA)-degrading microorganisms were isolated from natural sources. From them, seven Gram-positive and three Gram-negative bacteria were identified. The ability of these microorganisms to hydrolyze other biodegradable plastics, such as short-chain-length (scl) PHA, poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), and poly(l-lactide) (PLA), has been studied. On the basis of the great ability to degrade different polyesters, Streptomyces roseolus SL3 was selected, and its extracellular depolymerase was biochemically characterized. The enzyme consisted of one polypeptide chain of 28 kDa with a pI value of 5.2. Its maximum activity was observed at pH 9.5 with chromogenic substrates. The purified enzyme hydrolyzed mcl PHA and PCL but not scl PHA, PES, and PLA. Moreover, the mcl PHA depolymerase can hydrolyze various substrates for esterases, such as tributyrin and p-nitrophenyl (pNP)-alkanoates, with its maximum activity being measured with pNP-octanoate. Interestingly, when poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate [11%]) was used as the substrate, the main hydrolysis product was the monomer (R)-3-hydroxyoctanoate. In addition, the genes of several Actinobacteria strains, including S. roseolus SL3, were identified on the basis of the peptide de novo sequencing of the Streptomyces venezuelae SO1 mcl PHA depolymerase by tandem mass spectrometry. These enzymes did not show significant similarity to mcl PHA depolymerases characterized previously. Our results suggest that these distinct enzymes might represent a new subgroup of mcl PHA depolymerases. PMID:22865072

  18. ELISA assays and alcohol: increasing carbon chain length can interfere with detection of cytokines.

    PubMed

    von Maltzan, Kristine; Pruett, Stephen B

    2011-02-01

    Enzyme-linked immunosorbent assays (ELISAs) are frequently used in studies on cytokine production in response to treatment of cell cultures or laboratory animals. When an ELISA assay is performed on cell culture supernatants, samples often contain the treatment agents. The purpose of the present study was to determine if some of the agents evaluated might inhibit cytokine detection by interfering with the ELISA, leaving the question of whether cytokine production was inhibited unanswered. Mouse and human cytokine ELISA kits from BD Biosciences were used according to the manufacturer's instructions. Cytokine proteins were subjected to one to five carbon alcohols at 86.8mM (methanol, ethanol, 1-propanol, 2-propanol, n-butanol, and n-pentanol). After treating cell cultures with alcohols of different carbon chain lengths, we found that some of the alcohols interfered with measurement of some cytokines by ELISA, thus making their effects on cytokine production by cells in culture unclear. Increasing carbon chain length of straight chain alcohols positively correlated with their ability to inhibit detection of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10), but not with the detection of interleukin 6 (IL-6), interleukin 8, (IL-8), and interleukin 12 (IL-12). To avoid misinterpretation of treatment effects, ELISA assays should be tested with the reference protein and the treatment agent first, before testing biological samples. These results along with other recent results we obtained using circular dichroism indicate that alcohols with two or more carbons can directly alter protein conformation enough to disrupt binding in an ELISA (shown in the present study) or to inhibit ligand-induced conformational changes (results not shown). Such direct effects have not been given enough consideration as a mechanism of ethanol action in the immune system.

  19. Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths

    PubMed Central

    Böhm, Sandro; Jacky, Nadine; Maier, Louis-Philippe; Dening, Kirstin; Pechook, Sasha; Pokroy, Boaz; Gorb, Stanislav

    2014-01-01

    Summary The impeding effect of plant surfaces covered with three-dimensional wax on attachment and locomotion of insects has been shown previously in numerous experimental studies. The aim of this study was to examine the effect of different parameters of crystalline wax coverage on insect attachment. We performed traction experiments with the beetle Coccinella septempunctata and pull-off force measurements with artificial adhesive systems (tacky polydimethylsiloxane semi-spheres) on bioinspired wax surfaces formed by four alkanes of varying chain lengths (C36H74, C40H82, C44H90, and C50H102). All these highly hydrophobic coatings were composed of crystals having similar morphologies but differing in size and distribution/density, and exhibited different surface roughness. The crystal size (length and thickness) decreased with an increase of the chain length of the alkanes that formed these surfaces, whereas the density of the wax coverage, as well as the surface roughness, showed an opposite relationship. Traction tests demonstrated a significant, up to 30 fold, reduction of insect attachment forces on the wax surfaces when compared with the reference glass sample. Attachment of the beetles to the wax substrates probably relied solely on the performance of adhesive pads. We found no influence of the wax coatings on the subsequent attachment ability of beetles. The obtained data are explained by the reduction of the real contact between the setal tips of the insect adhesive pads and the wax surfaces due to the micro- and nanoscopic roughness introduced by wax crystals. Experiments with polydimethylsiloxane semi-spheres showed much higher forces on wax samples when compared to insect attachment forces measured on these surfaces. We explain these results by the differences in material properties between polydimethylsiloxane probes and tenent setae of C. septempunctata beetles. Among wax surfaces, force experiments showed stronger insect attachment and higher pull

  20. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients.

    PubMed

    van Smeden, Jeroen; Janssens, Michelle; Kaye, Edward C J; Caspers, Peter J; Lavrijsen, Adriana P; Vreeken, Rob J; Bouwstra, Joke A

    2014-01-01

    An important feature of atopic eczema (AE) is a decreased skin barrier function. The stratum corneum (SC) lipids - comprised of ceramides (CERs), free fatty acids (FFAs) and cholesterol - fulfil a predominant role in the skin barrier function. In this clinical study, the carbon chain length distribution of SC lipids (FFAs and CERs) and their importance for the lipid organization and skin barrier function were examined in AE patients and compared with control subjects. A reduction in FFA chain length and an increase in unsaturated FFAs are observed in non-lesional and lesional SC of AE patients. The reduction in FFA chain length associates with a reduced CER chain length, suggesting a common synthetic pathway. The lipid chain length reduction correlates with a less dense lipid organization and a decreased skin barrier function. All changes are more pronounced in lesional SC compared with non-lesional skin. No association was observed between lipid properties and filaggrin mutations, an important predisposing factor for developing AE. The results of this study demonstrate an altered SC lipid composition and signify the importance of these changes (specifically regarding the CER and FFA chain lengths) for the impaired skin barrier function in AE. This provides insights into epidermal lipid metabolism as well as new opportunities for skin barrier repair.

  1. Effect of Heparin Oligomer Chain Length on the Activation of Valvular Interstitial Cells

    PubMed Central

    Pedron, Sara; Kasko, Andrea M.; Peinado, Carmen; Anseth, Kristi S.

    2010-01-01

    A key event in connective tissue remodeling involves the transformation of fibroblasts to myofibroblasts, also revealed by expression of α-smooth muscle actin (α-SMA). However, misregulation of this transition can lead to fibrosis, an overgrowth and hardening of tissue due to excess extracellular matrix deposition, a process that is linked to heart valve disease and many others. Both disease treatment and regenerative strategies would benefit from strategies for the controlled delivery and presentation of bioactive factors that can promote or suppress this transformation. In this regard, the ability of heparin to complex a plethora of growth factors offers a broad range of possibilities for this purpose. Here, the effects of heparin chain length and structure on valvular interstitial cell (VIC) phenotypic expression were explored. Heparin from porcine intestinal mucosa was depolymerized with heparinase and fractionated to obtain oligosaccharides of different sizes. VICs cultured with octasaccharides and decasaccharides exhibited higher expression of a-SMA when compared to other saccharides and full-length heparin. No activation of VICs was observed in response to full-length heparin presence in media. PMID:20446725

  2. Exploring extraction/dissolution procedures for analysis of starch chain-length distributions.

    PubMed

    Wu, Alex Chi; Li, EnPeng; Gilbert, Robert G

    2014-12-19

    The analysis of starch chain-length distributions (CLDs) is important for understanding starch biosythesis-structure-property relations. It is obtained by analyzing the number distribution of the linear glucan chains released by enzymatic debranching of starch α-(1→6) glycosidic bonds for subsequent characterization by techniques such as fluorophore-assisted carbohydrate electrophoresis (FACE) or size-exclusion chromatography (SEC). Current literature pretreatments for debranching prior to CLD determination involve varying protocols, which might yield artifactual results. This paper examines the two widely used starch dissolution treatments with dimethyl sulfoxide (DMSO) containing 0.5% (w/w) lithium bromide (DMSO-LiBr) at 80°C and with aqueous alkaline (i.e. NaOH) solvents at 100 ˚C. Analyses by FACE with a very high range of degree of polymerization, and by SEC, of the CLD of barley starches with different structures show the following. (1) The NaOH treatment, even at a dilute concentration, causes significant degradation at higher degrees of polymerization, leading to quantitatively incorrect CLD results in longer amylopectin and in amylose chains. (2) Certain features in both amylopectin and amylose fractions of the CLD reduced to bumps or are missing with NaOH treatment. (3) Overestimation of amylose chains in starch CLD due to incomplete amylopectin dissolution with dilute NaOH concentration. These results indicate starch dissolution with DMSO-LiBr is the method of choice for minimizing artifacts. An improved pretreatment protocol is presented for starch CLD analysis by FACE and SEC. PMID:25263861

  3. Roles of Rat Renal Organic Anion Transporters in Transporting Perfluorinated Carboxylates with Different Chain Lengths

    PubMed Central

    Weaver, Yi M.; Ehresman, David J.; Butenhoff, John L.; Hagenbuch, Bruno

    2010-01-01

    Perfluorinated carboxylates (PFCAs) are generally stable to metabolic and environmental degradation and have been found at low concentrations in environmental and biological samples. Renal clearance of PFCAs depends on chain length, species, and, in some cases, gender within species. While perfluoroheptanoate (C7) is almost completely eliminated renally in both male and female rats, renal clearance of perfluorooctanoate (C8) and perfluorononanoate (C9) is much higher in female rats. Perfluorodecanoate (C10) mainly accumulates in the liver for both genders. Therefore, we tested whether PFCAs with different chain lengths are substrates of rat renal transporters with gender-specific expression patterns. Inhibition of uptake of model substrates was measured for the basolateral organic anion transporter (Oat)1 and Oat3 and the apical Oat2, organic anion transporting polypeptide (Oatp)1a1, and Urat1 with 10μM PFCAs with chain lengths from 2 to 18 (C2–C18) carbons. Perfluorohexanoate (C6), C7, and C8 inhibited Oat1-mediated p-aminohippurate transport, with C7 being the strongest inhibitor. C8 and C9 were the strongest inhibitors for Oat3-mediated estrone-3-sulfate transport, while Oatp1a1-mediated estradiol-17β-glucuronide uptake was inhibited by C9, C10, and perflouroundecanoate (C11), with C10 giving the strongest inhibition. No strong inhibitors were found for Oat2 or Urat1. Kinetic analysis was performed for the strongest inhibitors. Oat1 transported C7 and C8 with Km values of 50.5 and 43.2μM, respectively. Oat3 transported C8 and C9 with Km values of 65.7 and 174.5μM, respectively. Oatp1a1-mediated transport yielded Km values of 126.4 (C8), 20.5 (C9), and 28.5μM (C10). These results suggest that Oat1 and Oat3 are involved in renal secretion of C7–C9, while Oatp1a1 can contribute to the reabsorption of C8 through C10, with highest affinities for C9 and C10. PMID:19915082

  4. Salivary histatin 5: dependence of sequence, chain length, and helical conformation for candidacidal activity.

    PubMed

    Raj, P A; Edgerton, M; Levine, M J

    1990-03-01

    Histatin 5 (Asp1-Ser-His-Ala4-Lys-Arg-His-His8-Gly-Tyr-Lys-Arg12-Lys-Ph e-His-Glu16-Lys-His - His-Ser20-His-Arg-Gly-Tyr24), one of the basic histidine-rich peptides present in human parotid saliva and several of its fragments, 1-16 (N16), 9-24 (C16), 11-24 (C14), 13-24 (C12), 15-24 (C10), and 7-16 (M10), were synthesized by solid-phase procedures. Native histatin 5 from human parotid saliva was also purified. Their antifungal activities on two strains of Candida albicans have been studied and their conformational preferences both in aqueous and non-aqueous solutions examined by circular dichroism. The synthetic histatin 5, C16, and C14 peptides were highly active and inhibited the growth of C. albicans. The candidacidal activity data of synthetic histatin 5 were comparable to the values of the native histatin 5 isolated from parotid saliva and those reported previously, although the assay system used and the strains examined were different. The C16 fragment was as active as the whole peptide itself, whereas the N16 fragment was far less active than C14, suggesting that the sequence at the C-terminal is important for its fungicidal activity. An increase in the chain length of the C-terminal sequence from 12 to 16 residues increased the candidacidal activity, thereby indicating that a peptide chain length of at least 12 residues is necessary to elicit optimum biological activity. The CD spectra of these linear peptides showed that they are structurally more flexible, and they adopt different conformations depending on the solvent environment. CD studies provided evidence that histatin 5 and the longer fragments, C16, N16, and C14 preferred alpha-helical conformations in non-aqueous solvents such as trifluoroethanol and methanol, while in water and pH 7.4 phosphate buffers, they favored random coil structures. The shorter sequences seemed to adopt either turn structures or unordered structures both in aqueous and non-aqueous solutions. It appears that the sequence at

  5. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli.

    PubMed

    Heath, R J; Rock, C O

    1996-01-26

    Long chain acyl-acyl carrier protein (acyl-ACP) has been implicated as a physiological inhibitor of fatty acid biosynthesis since acyl-ACP degradation by thioesterase overexpression leads to constitutive, unregulated fatty acid production. The biochemical targets for acyl-ACP inhibition were unknown, and this work identified two biosynthetic enzymes that were sensitive to acyl-ACP feedback inhibition. Palmitoyl-ACP inhibited the incorporation of [14C]malonyl-CoA into long chain fatty acids in cell-free extracts of Escherichia coli. A short chain acyl-ACP species with the electrophoretic properties of beta-hydroxybutyryl-ACP accumulated concomitant with the overall decrease in the amount of [14C]malonyl-CoA incorporation, indicating that the first elongation cycle was targeted by acyl-ACP. All of the proteins required to catalyze the first round of fatty acid synthesis from acetyl-CoA plus malonyl-CoA in vitro were isolated, and the first fatty acid elongation cycle was reconstituted with these purified components. Analysis of the individual enzymes and the pattern of intermediate accumulation in the reconstituted system identified initiation of fatty acid synthesis by beta-ketoacyl-ACP synthase III (fabH) and enoyl-ACP reductase (fabI) in the elongation cycle as two steps attenuated by long chain acyl-ACP.

  6. Differential scanning calorimetric study of the effect of sterol side chain length and structure on dipalmitoylphosphatidylcholine thermotropic phase behavior.

    PubMed Central

    McMullen, T. P.; Vilchèze, C.; McElhaney, R. N.; Bittman, R.

    1995-01-01

    We have investigated the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers containing a series of cholesterol analogues varying in the length and structure of their alkyl side chains. We find that upon the incorporation of up to approximately 25 mol % of any of the side chain analogues, the DPPC main transition endotherm consists of superimposed sharp and broad components representing the hydrocarbon chain melting of sterol-poor and sterol-rich phospholipid domains, respectively. Moreover, the behavior of these components is dependent on sterol side chain length. Specifically, for all sterol/DPPC mixtures, the sharp component enthalpy decreases linearly to zero by 25 mol % sterol while the cooperativity is only moderately reduced from that observed in the pure phospholipid. In addition, the sharp component transition temperature decreases for all sterol/DPPC mixtures; however, the magnitude of the decrease is dependent on the sterol side chain length. With respect to the broad component, the enthalpy initially increases to a maximum around 25 mol % sterol, thereafter decreasing toward zero by 50 mol % sterol with the exception of the sterols with very short alkyl side chains. Both the transition temperature and cooperativity of the broad component clearly exhibit alkyl chain length-dependent effects, with both the transition temperature and cooperativity decreasing more dramatically for sterols with progressively shorter side chains. We ascribe the chain length-dependent effects on transition temperature and cooperativity to the hydrophobic mismatch between the sterol and the host DPPC bilayer (see McMullen, T. P. W., Lewis, R. N. A. H., and McElhaney, R. N. (1993) Biochemistry 32:516-522). Moreover, the effective stoichiometry of sterol/DPPC interactions is altered by a significantly large degree of hydrophobic mismatch between the sterol and the DPPC bilayer. Thus the short chain sterols appear to exhibit considerable immiscibility in

  7. Physical characterisation of high amylose maize starch and acylated high amylose maize starches.

    PubMed

    Lim, Ya-Mei; Hoobin, Pamela; Ying, DanYang; Burgar, Iko; Gooley, Paul R; Augustin, Mary Ann

    2015-03-01

    The particle size, water sorption properties and molecular mobility of high amylose maize starch (HAMS) and high amylose maize starch acylated with acetate (HAMSA), propionate (HAMSP) and butyrate (HAMSB) were investigated. Acylation increased the mean particle size (D(4,3)) and lowered the specific gravity (G) of the starch granules with an inverse relationship between the length of the fatty acid chain and particle size. Acylation of HAMS with fatty acids lowered the monolayer moisture content with the trend being HAMSBlength of the fatty acid chain. Measurement of molecular mobility of the starch granules by NMR spectroscopy with Carr-Purcell-Meiboom-Gill (CMPG) experiments showed that T2 long was reduced in acylated starches and that drying and storage of the starch granules further reduced T2 long. Analysis of the Free Induction Decay (FID) focussing on the short components of T2 (correlated to the solid matrix), indicated that drying and subsequent storage resulted in alterations of starch at 0.33a(w) and that these changes were reduced with acylation. In vitro enzymatic digestibility of heated starch dispersions by bacterial α-amylase was increased by acylation (HAMSlength of the fatty acid chain. Digestibility was enhanced with an increase in particle size, or decrease in G, and inversely proportional to the total T2 signal. It is suggested that both external surface area and an internal network of pores and channels collectively influence the digestibility of starch. PMID:25498636

  8. Natural variability in acyl moieties of sugar esters produced by certain tobacco and other Solanaceae species.

    PubMed

    Kroumova, Antoaneta B M; Zaitlin, Dave; Wagner, George J

    2016-10-01

    A unique feature of glandular trichomes of plants in the botanical family Solanaceae is that they produce sugar esters (SE), chemicals that have been shown to possess insecticidal, antifungal, and antibacterial properties. Sugar esters of tobacco (Nicotiana tabacum) provide pest resistance, and are important flavor precursors in oriental tobacco cultivars. Acyl moieties of SEs in Nicotiana spp., petunia, and tomato are shown to vary with respect to carbon length and isomer structure (2-12 carbon chain length; anteiso-, iso-, and straight-chain). Sugar esters and their acyl groups could serve as a model to explore the basis of phenotypic diversity and adaptation to natural and agricultural environments. However, information on the diversity of acyl composition among species, cultivars, and accessions is lacking. Herein, described is the analysis of SE acyl groups found in 21 accessions of Nicotiana obtusifolia (desert tobacco), six of Nicotiana occidentalis subsp. hesperis, three of Nicotiana alata, two of N. occidentalis, four modern tobacco cultivars, five petunia hybrids, and one accession each of a primitive potato (Solanum berthaultii) and tomato (Solanum pennellii). A total of 20 different acyl groups was observed that were represented differently among cultivars, species, and accessions. In Nicotiana species, acetate and iso- and anteiso-branched acids prevailed. Straight-chain groups (2-8 carbons) were prominent in petunias, while octanoic acid was prominent in N. alata and N. × sanderae. Two unexpected acyl groups, 8-methyl nonanoate and decanoate were found in N. occidentalis subsp. hesperis. Longer chain groups were found in the petunia, tomato, and potato species studied. PMID:27262877

  9. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    PubMed Central

    Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha

    2014-01-01

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198

  10. Ancestry inference in complex admixtures via variable-length Markov chain linkage models.

    PubMed

    Rodriguez, Jesse M; Bercovici, Sivan; Elmore, Megan; Batzoglou, Serafim

    2013-03-01

    Inferring the ancestral origin of chromosomal segments in admixed individuals is key for genetic applications, ranging from analyzing population demographics and history, to mapping disease genes. Previous methods addressed ancestry inference by using either weak models of linkage disequilibrium, or large models that make explicit use of ancestral haplotypes. In this paper we introduce ALLOY, an efficient method that incorporates generalized, but highly expressive, linkage disequilibrium models. ALLOY applies a factorial hidden Markov model to capture the parallel process producing the maternal and paternal admixed haplotypes, and models the background linkage disequilibrium in the ancestral populations via an inhomogeneous variable-length Markov chain. We test ALLOY in a broad range of scenarios ranging from recent to ancient admixtures with up to four ancestral populations. We show that ALLOY outperforms the previous state of the art, and is robust to uncertainties in model parameters. PMID:23421795

  11. A method for the determination of the carbon chain length composition of amine oxides.

    PubMed

    Langley, N A; Suddaby, D; Coupland, K

    1988-12-01

    Synopsis Alkylamine oxides and alkylamidopropyldimethylamine oxides belong to an important group of surfactant materials. They are used extensively in formulations for cosmetics, toiletries and household products. Although there are numerous analytical methods available to evaluate physical and chemical properties of these compounds, there remains a demand for a qualitative method for the determination of the carbon chain length composition. Amine oxides cannot be analysed directly by gas liquid chromatography (GLC) as they decompose at temperatures above 100 degrees C to give the terminal alkenes and tertiary amines. However, amine oxides can be analysed by GLC if they are first reduced to the tertiary amines. Examples of each type of amine oxide were reduced with triphenylphosphine in boiling glacial acetic acid between 1 and 1.5 h. In this paper a rapid qualitative analytical procedure is described. PMID:19456939

  12. Effect of Alkyl Chain Length and Unsaturation of the Phospholipid on the Physicochemical Properties of Lipid Nanoparticles.

    PubMed

    Funakoshi, Yuka; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    Previously, we developed lipid nanoparticles (LNs) containing poorly water-soluble drugs using two types of phospholipids, a neutral phospholipid (hydrogenated soybean phosphatidylcholine) and a negatively-charged phospholipid (dipalmitoylphosphatidylglycerol), with mean particle sizes of less than 100 nm. Here, we studied the effects of alkyl chain length and unsaturation of neutral and negatively-charged phospholipids on the physicochemical properties of LNs. Three neutral phospholipids, dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine, having different alkyl chain lengths, were compared. The mean particle size of the LNs increased with the alkyl chain length, while the concentration of the drug entrapped in the LNs decreased. The particle size of all of the LNs could be maintained at less than 100 nm for 1 month in cool and dark conditions, with the LNs with longer alkyl chain lipids showing greater stability. In the unsaturated phospholipids, the double bond in the alkyl chain of dioleoylphosphatidylcholine and dierucoylphosphatidylcholine did not affect the physicochemical properties of the LNs. The negatively-charged phospholipids dipalmitoylphosphatidylglycerol and distearoylphosphatidylglycerol were also compared; LNs with longer alkyl chain lipids had larger particle sizes and lower drug concentrations, similar to the results for neutral phospholipids. We concluded that although some changes in physicochemical properties were observed among LNs with different phospholipid alkyl chain lengths, this methodology was general. LNs with suitable physicochemical properties could be prepared irrespective of the type of phospholipids used.

  13. Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils.

    PubMed

    Lim, Siew-Ping; Gan, Seng-Neon; Tan, Irene K P

    2005-07-01

    Bacterial polyhydroxyalkanoates (PHAs) are perceived to be a suitable alternative to petrochemical plastics because they have similar material properties, are environmentally degradable, and are produced from renewable resources. In this study, the in situ degradation of medium-chain-length PHA (PHAMCL) films in tropical forest and mangrove soils was assessed. The PHAMCL was produced by Pseudomonas putida PGA1 using saponified palm kernel oil (SPKO) as the carbon source. After 112 d of burial, there was 16.7% reduction in gross weight of the films buried in acidic forest soil (FS), 3.0% in the ones buried in alkaline forest soil by the side of a stream (FSst) and 4.5% in those buried in mangrove soil (MS). There was a slight decrease in molecular weight for the films buried in FS but not for the films buried in FSst and in MS. However, no changes were observed for the melting temperature, glass transition temperature, monomer compositions, structure, and functional group analyses of the films from any of the burial sites during the test period. This means that the integral properties of the films were maintained during that period and degradation was by surface erosion. Scanning electron microscopy of the films from the three sites revealed holes on the film surfaces which could be attributed to attack by microorganisms and bigger organisms such as detritivores. For comparison purposes, films of polyhydroxybutyrate (PHB), a short-chain-length PHA, and polyethylene (PE) were buried together with the PHAMCL films in all three sites. The PHB films disintegrated completely in MS and lost 73.5% of their initial weight in FSst, but only 4.6% in FS suggesting that water movement played a major role in breaking up the brittle PHB films. The PE films did not register any weight loss in any of the test sites. PMID:16014996

  14. Leaf waxes in riparian trees: hydrogen isotopes, concentrations, and chain-length patterns

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Ehleringer, J.; Doman, C.; Khachaturyan, S.

    2011-12-01

    The stable hydrogen isotope ratios of epicuticular leaf wax n-alkanes record aspects of a plant's ecophysiological conditions. However, it remains unclear as to whether n-alkane hydrogen isotope values (δ2H) directly reflect environmental water (source water or tissue water) or environmental water in combination with a biochemical fractionation. Furthermore, it is uncertain if leaf n-alkane δ2H values reflect a single time interval during leaf expansion or if n-alkane δ2H values record the combination of inputs throughout the entire lifespan of a leaf. These different possibilities will influence how leaf wax biomarkers are interpreted in both ecological and environmental reconstruction contexts. To address these issues, we sampled leaves/buds, stems, and water sources of five common western U.S. riparian species under natural field conditions throughout the growing season. Riparian species were selected because the input water source is most likely to be nearly constant through the growing season. We found that species in this study demonstrated marked and systematic variations in n-alkane concentration, average chain length, and δ2H values. Intraspecific patterns were consistent: average chain lengths and δ2H values increased from bud opening through full leaf expansion with little variation during the remainder of the sampling interval, while leaf-wax concentration as a fraction of total biomass increased throughout the growing season. These data imply that leaf-wax δ2H values reflect multiple periods of wax growth and that the leaf wax is continually produced throughout a leaf's lifespan.

  15. Crystallization and its effect on the mechanical properties of a medium chain length polyhydroxyalkanoate.

    PubMed

    Larrañaga, A; Fernández, J; Vega, A; Etxeberria, A; Ronchel, C; Adrio, J L; Sarasua, J R

    2014-11-01

    Medium chain length polyhydroxyalkanoates (mcl-PHAs) could play a role in the growing demand for highly elastic and biodegradable materials in the medical field. In this study, a poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate) (P(3HO-co-3HH)) was first fully characterized in terms of molecular weight, microstructural chain parameters and chemical structure by means of gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR). As determined by NMR, the synthesized polymer contained 94.3% and 5.7% molar content of 3-hydroxyoctanoate and 3-hydroxyhexanoate, respectively. Since mechanical properties are closely related to thermal history, the effect of crystallization on tensile properties was also investigated in the present study. Three crystallization temperatures were selected (0, 23 and 37°C), the conclusion reached is that the maximum crystallization rate for this copolymer was achieved at 0°C. On the other hand, evolution of tensile properties of P(3HO-co-3HH) films stored at room temperature demonstrated that, as crystallization occurred toward the equilibrium state, the polymer underwent a stiffening process. In this sense, secant modulus and tensile strength increased respectively from 8.3 ± 1.0 MPa and 6.4 ± 0.8 MPa after 1 day stored at room temperature to 36.2 ± 3.3 MPa and 16.3 ± 2.1 MPa after 16 weeks.

  16. Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs.

    PubMed

    Patterson, Jannine K; Yasuda, Koji; Welch, Ross M; Miller, Dennis D; Lei, Xin Gen

    2010-12-01

    Previously, we showed that supplementation of diets with short-chain inulin (P95), long-chain inulin (HP), and a 50:50 mixture of both (Synergy 1) improved body iron status and altered expression of the genes involved in iron homeostasis and inflammation in young pigs. However, the effects of these 3 types of inulin on intestinal bacteria remain unknown. Applying terminal restriction fragment length polymorphism analysis, we determined the abundances of luminal and adherent bacterial populations from 6 segments of the small and large intestines of pigs (n = 4 for each group) fed an iron-deficient basal diet (BD) or the BD supplemented with 4% of P95, Synergy 1, or HP for 5 wk. Compared with BD, all 3 types of inulin enhanced (P < 0.05) the abundance of beneficial bifidobacteria and lactobacilli in the microbiota adherent to intestinal mucus of various gut segments of pigs. These changes were seen as proximal as in the jejunum with P95 but did not appear until the distal ileum or cecum with HP. Similar effects of inulin on bacterial populations in the lumen contents were found. Meanwhile, all 3 types of inulin suppressed the less desirable bacteria Clostridium spp. and members of the Enterobacteriaceae in the lumen and mucosa of various gut segments. Our findings suggest that the ability of dietary inulin to alter intestinal bacterial populations may partially account for its iron bioavailability-promoting effect and possibly other health benefits.

  17. Primitive models of chemical association. II. Polymerization into flexible chain molecules of prescribed length

    SciTech Connect

    Kalyuzhnyi, Y.V. |; Lin, C.; Stell, G.

    1997-02-01

    The structural properties of the totally flexible sticky two-point (S2P) model for polymerization into chain molecules of fixed length are studied. The model is represented by an n-component mixture of hard spheres of the same size with species 2,{hor_ellipsis},n{minus}1 bearing two attractive sticky sites A and B, randomly distributed on the surface. The hard spheres of species 1 and n have only one site per particle, site B for species 1 and site A for species n. Due to the specific choice for the attractive interaction, which is present only between site B of the particles of species a and site A of the particles of species a+1, this version of the S2P model represents an associating fluid that polymerizes into freely jointed tangent hard-sphere chain molecules. The correlation functions of this model are studied at all degrees of association using a recently obtained general solution of the polymer Percus{endash}Yevick (PPY) approximation [Yu. Kalyuzhnyi and P. Cummings, J. Chem. Phys. {bold 103}, 3265 (1995)]. Comparison of the results of the present theory in the complete association limit with corresponding computer-simulation results and results of other theories is presented and discussed. The complete-association results constitute a quantitatively successful theory of the mean monomer{endash}monomer distribution functions for n{le}16 but for n=50 these functions are no longer quantitatively accurate. {copyright} {ital 1997 American Institute of Physics.}

  18. Supplemental Dietary Inulin of Variable Chain Lengths Alters Intestinal Bacterial Populations in Young Pigs123

    PubMed Central

    Patterson, Jannine K.; Yasuda, Koji; Welch, Ross M.; Miller, Dennis D.; Lei, Xin Gen

    2010-01-01

    Previously, we showed that supplementation of diets with short-chain inulin (P95), long-chain inulin (HP), and a 50:50 mixture of both (Synergy 1) improved body iron status and altered expression of the genes involved in iron homeostasis and inflammation in young pigs. However, the effects of these 3 types of inulin on intestinal bacteria remain unknown. Applying terminal restriction fragment length polymorphism analysis, we determined the abundances of luminal and adherent bacterial populations from 6 segments of the small and large intestines of pigs (n = 4 for each group) fed an iron-deficient basal diet (BD) or the BD supplemented with 4% of P95, Synergy 1, or HP for 5 wk. Compared with BD, all 3 types of inulin enhanced (P < 0.05) the abundance of beneficial bifidobacteria and lactobacilli in the microbiota adherent to intestinal mucus of various gut segments of pigs. These changes were seen as proximal as in the jejunum with P95 but did not appear until the distal ileum or cecum with HP. Similar effects of inulin on bacterial populations in the lumen contents were found. Meanwhile, all 3 types of inulin suppressed the less desirable bacteria Clostridium spp. and members of the Enterobacteriaceae in the lumen and mucosa of various gut segments. Our findings suggest that the ability of dietary inulin to alter intestinal bacterial populations may partially account for its iron bioavailability-promoting effect and possibly other health benefits. PMID:20980641

  19. Shorter Food Chain Length in Ancient Lakes: Evidence from a Global Synthesis

    PubMed Central

    Doi, Hideyuki; Vander Zanden, M. Jake; Hillebrand, Helmut

    2012-01-01

    Food webs may be affected by evolutionary processes, and effective evolutionary time ultimately affects the probability of species evolving to fill the niche space. Thus, ecosystem history may set important evolutionary constraints on community composition and food web structure. Food chain length (FCL) has long been recognized as a fundamental ecosystem attribute. We examined historical effects on FCL in large lakes spanning >6 orders of magnitude in age. We found that food chains in the world’s ancient lakes (n = 8) were significantly shorter than in recently formed lakes (n = 10) and reservoirs (n = 3), despite the fact that ancient lakes harbored much higher species richness, including many endemic species. One potential factor leading to shorter FCL in ancient lakes is an increasing diversity of trophic omnivores and herbivores. Speciation could simply broaden the number of species within a trophic group, particularly at lower trophic levels and could also lead to a greater degree of trophic omnivory. Our results highlight a counter-intuitive and poorly-understood role of evolutionary history in shaping key food web properties such as FCL. PMID:22701583

  20. Shorter food chain length in ancient lakes: evidence from a global synthesis.

    PubMed

    Doi, Hideyuki; Vander Zanden, M Jake; Hillebrand, Helmut

    2012-01-01

    Food webs may be affected by evolutionary processes, and effective evolutionary time ultimately affects the probability of species evolving to fill the niche space. Thus, ecosystem history may set important evolutionary constraints on community composition and food web structure. Food chain length (FCL) has long been recognized as a fundamental ecosystem attribute. We examined historical effects on FCL in large lakes spanning >6 orders of magnitude in age. We found that food chains in the world's ancient lakes (n = 8) were significantly shorter than in recently formed lakes (n = 10) and reservoirs (n = 3), despite the fact that ancient lakes harbored much higher species richness, including many endemic species. One potential factor leading to shorter FCL in ancient lakes is an increasing diversity of trophic omnivores and herbivores. Speciation could simply broaden the number of species within a trophic group, particularly at lower trophic levels and could also lead to a greater degree of trophic omnivory. Our results highlight a counter-intuitive and poorly-understood role of evolutionary history in shaping key food web properties such as FCL.

  1. An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435.

    PubMed

    Sánchez, Daniel Alberto; Tonetto, Gabriela Marta; Ferreira, María Luján

    2016-02-20

    In this work, the ethanolysis of triglycerides catalyzed by immobilized lipase was studied, focusing on the secondary reaction of acyl migration. The catalytic tests were performed in a solvent-free reaction medium using Novozym 435 as biocatalyst. The selected experimental variables were biocatalyst loading (5-20mg), reaction time (30-90min), and chain length of the fatty acids in triglycerides with and without unsaturation (short (triacetin), medium (tricaprylin) and long (tripalmitin/triolein)). The formation of 2-monoglyceride by ethanolysis of triglycerides was favored by long reaction times and large biocatalyst loading with saturated short- to medium-chain triglycerides. In the case of long-chain triglycerides, the formation of this monoglyceride was widely limited by acyl migration. In turn, acyl migration increased the yield of ethyl esters and minimized the content of monoglycerides and diglycerides. Thus, the enzymatic synthesis of biodiesel was favored by long-chain triglycerides (which favor the acyl migration), long reaction times and large biocatalyst loading. The conversion of acylglycerides made from long-chain fatty acids with unsaturation was relatively low due to limitations in their access to the active site of the lipase. PMID:26795690

  2. Three RFLPs defining a haplotype associated with the common mutation in a human medium-chain acyl-CoA dehydrogenase (MCAD) deficiency occur in Alu repeats

    SciTech Connect

    Zhifang Zhang; Yeqing Zhou; Kelly, D.P.; Strauss, A.W. St. Louis Children's Hospital, MO ); Kolvraa, S.; Gregersen, N. )

    1993-06-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a common inborn error of fatty-acid oxidation and may cause sudden infant death. Previous studies revealed that (i) homozygosity for an A-to-G mutation at nucleotide 985 of the mRNA coding region (A985G) is an extremely common cause of MCAD deficiency and (ii) MCAD deficiency is strongly associated with a particular haplotype for RFLPs for BanII, PstI, and TaqI. TaqI allele 2 is always associated with the A985G mutation in human MCAD deficiency. In this study, the authors have delineated the molecular basis of the RFLPs for PstI, BamHI, and TaqI in the human MCAD gene. Their results prove that the three RFLPs are caused by point mutations in the 8 kb of DNA encompassing exons 8--10 of the human MCAD gene. The TaqI polymorphism is caused by a C-to-A substitution 392 bp upstream of the exon 8, and the PstI and BamHI polymorphisms are due to T-to-C and G-to-A substitutions, respectively, which are 727 and 931 bp downstream of exon 10, respectively. All three RFLPs lie within Alu repetitive sequences. Comparison of intronic sequences immediately following exon 10 from two normal individuals with different haplotypes showed that this region contains densely packed Alu repeats and is highly polymorphic. The results are consistent both with a founder effect as the cause of the high prevalence of a single (A985G) mutation in MCAD deficiency and with its association with a particular haplotype for these intragenic RFLPs. 27 refs., 6 figs., 1 tab.

  3. Chain length, temperature and solvent effects on the structural properties of α-aminoisobutyric acid homooligopeptides.

    PubMed

    Grubišić, Sonja; Chandramouli, Balasubramanian; Barone, Vincenzo; Brancato, Giuseppe

    2016-07-27

    Non-coded α-amino acids, originally exploited by nature, have been successfully reproduced by recent synthetic strategies to confer special structural and functional properties to small peptides. The most known and well-studied atypical residue is α-aminoisobutyric acid (Aib), which is contained in a fairly large number of peptides with known antibiotic effects. Here, we report on a molecular dynamics (MD) study of a series of homooligopeptides based on α-aminoisobutyric acid (Aib) with increasing length (Ac-(Aib)n-NMe, n = 5, 6, 7 and 10) and at various temperatures, employing a recent extension of the AMBER force field tailored for the Aib residue. Solvent effects have been analyzed by comparative MD simulations of a heptapeptide in water and dimethylsulfoxide at different temperatures. Our results show that the preference for the 310- and/or α-helix structures, which typically characterize Aib based peptides, is finely tuned by several factors including the chain length, temperature and solvent nature. While the transitions between intra-molecular i → i + 3 and i → i + 4 hydrogen bonds characterizing 310 and α-helices, respectively, are rather fast in small peptides (in the picosecond timescale), our analysis shows that the above physical and chemical factors modulate the relative equilibrium populations of the two helical structures. The obtained results nicely agree with available experimental data and support the use of the new force field for modeling Aib containing peptides. PMID:27402118

  4. Effects of particle size and chain length on flotation of quaternary ammonium salts onto kaolinite

    NASA Astrophysics Data System (ADS)

    Longhua, Xu; Yuehua, Hu; Faqin, Dong; Hao, Jiang; Houqin, Wu; Zhen, Wang; Ruohua, Liu

    2015-06-01

    Effects of particle size and chain length on flotation of quaternary ammonium salts (QAS) onto kaolinite have been investigated by flotation tests. Dodecyltrimethylammonium chloride (DTAC) and cetyltrimethylammonium chloride (CTAC) were used as collectors for kaolinite in different particle size fractions (0.075 ~ 0.01 mm, 0.045 ~ 0.075 mm, 0 ~ 0.045 mm). The anomalous flotation behavior of kaolinite have been further explained based on crystal structure considerations by adsorption tests and molecular dynamics (MD) simulation. The results show that the flotation recovery of kaolinite in all different particle size fractions decreases with an increase in pH. As the concentration of collectors increases, the flotation recovery increases. The longer the carbon chain of QAS is, the higher the recoveries of coarse kaolinite (0.075 ~ 0.01 mm and 0.045 ~ 0.075 mm) are. But the flotation recovery of the finest kaolinite (0 ~ 0.045 mm) decreases with chain lengths of QAS collectors increasing, which is consistent with the flotation results of unscreened kaolinite (0 ~ 0.075 mm). It is explained by the froth stability related to the residual concentration of QAS collector in mineral pulp. In lower residual concentration, the froth stability becomes worse. Within the range of flotation collector concentration, it's easy of CTAC to be completely adsorbed by kaolinite in the particle size fraction (0-0.045 mm), which led to lower flotation recovery. Moreover, it is interesting that the coarser particle size of kaolinite is, the higher flotation recovery is. The anomalous flotation behavior of kaolinite is rationalized based on crystal structure considerations. The results of MD simulations show that the (001) kaolinite surface has the strongest interaction with DTAC, compared with the (00 1) face, (010) and (110) edges. On the other hand, when particle size of kaolinite is altered, the number of basal planes and edge planes is changed. It is observed that the finer kaolinite

  5. Chain length dependent excited-state decay processes of diluted PF2/6 solutions.

    PubMed

    Pina, João; Seixas de Melo, J Sérgio; Koenen, Niels; Scherf, Ulli

    2013-06-20

    The excited-state dynamics of a series of four poly[2,7-(9,9-bis(2-ethylhexyl)fluorene] fractions, PF2/6, with different chain length (degrees of polymerization DP: 5, 10, 39, and 205) was investigated in dilute solutions by steady-state and time-resolved fluorescence techniques. Two decay components are extracted from time-resolved fluorescence experiments in the picosecond time domain: a chain length dependent, fast decay time (τ(2)) for shorter emission wavelengths (ranging from 30 to 41 ps), which is associated with a rising component at longer wavelengths, and a longer decay time, τ(1) (ranging from 387 to 452 ps). The system was investigated with kinetic formalisms involving (i) a two-state system (A and B) involving conformational relaxation of the initially excited PF2/6 segment (A) under formation of a more planar (B) relaxed state and (ii) a time-dependent red shift of the emission spectrum using the Stokes shift correlation function (SSCF). In the case of (i), the kinetic scheme was solved considering the simultaneous excitation of A and B or only of A, and the rate constants for formation [k′(CR) or k′(CR)(α)], dissociation (k(–CR)), and deactivation (k(B)(*)) were obtained together with the fraction of species A and B present in the ground state. The use of the SSCF in (ii) was found to be more adequate leading to a decay law with a 3.4 ps component (associated with the slow part of the solvation dynamics process) and a longer decay (43.3 ps) associated with the conformational/torsional relaxation process with a rate constant k(CR). This longer component of the SSCF was found to be identical to the short-living decay (τ(2)) component of the biexponential decays, displaying an Arrhenius-type behavior with activation energy values in the range 5.8–8.9 kJ mol(–1) in toluene and 6.5–10.7 kJ mol(–1) in decalin. From the dependence of the fast decay component (k(CR) ≡ 1/τ(2)) on solvent viscosity and temperature, the activation energy

  6. The Physiology of Protein S-acylation

    PubMed Central

    Chamberlain, Luke H.; Shipston, Michael J.

    2015-01-01

    Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field. PMID:25834228

  7. Effect of chain length on thermal conversion of alkoxy-substituted copper phthalocyanine precursors.

    PubMed

    Fukuda, Takamitsu; Kikukawa, Yuu; Tsuruya, Ryota; Fuyuhiro, Akira; Ishikawa, Naoto; Kobayashi, Nagao

    2011-11-21

    A series of dialkoxy-substituted copper phthalocyanine (CuPc) precursors (4a-4d) have been prepared by treating phthalonitrile with the corresponding lithium alkoxide under mild conditions. The precursors exhibited high solubilities in common organic solvents, including acetone, toluene, tetrahydrofuran (THF), CH(2)Cl(2), and CHCl(3). Elongation of the alkoxy chains improved the solubilities of the precursors effectively, and accordingly, the butoxy-substituted derivative (4d) showed the highest solubility among 4a-4d. X-ray crystallography clarified that the conjugated skeletons of 4a-4d are all isostructural, and have two alkoxy groups in a syn-conformation fashion, leading to highly bent structures. Thermal conversions of the precursors examined by thermogravimetry (TG) and differential thermal analysis (DTA) demonstrate that 4a was converted into CuPc via two distinct exothermic processes in the 200-250 °C temperature range, while 4d exhibits only one exothermic signal in the DTA. In the field emission scanning electron microscopy (FESEM) images of 4a, the presence of two types of distinct crystal morphology (prismatic and plate-like crystals) can be recognized, implying that the two observed exothermic processes in the DTA can be attributed to the different crystal morphologies of the samples rather than the step-by-step elimination of the alkoxy groups. The thermal formation of CuPc from the precursors has been unambiguously confirmed by X-ray powder diffraction, UV-vis spectroscopy, and elemental analysis. The precursors were converted into CuPc at lower temperature with increasing chain length, presumably because of the increased void volume in the crystals. Thermal conversion performed in the solution phase results in a bright blue-colored solution with prominent absorption bands in the 650-700 nm region, strongly supporting the formation of CuPc.

  8. Surface energy of silicas, grafted with alkyl chains of increasing lengths, as measured by contact angle techniques

    SciTech Connect

    Kessaissia, Z. Papirer, E.; Donnet, J.B.

    1981-08-01

    Silica, modified by esterification with linear alcohols having between 1 and 20 carbon atoms, is compacted into smooth discs. Their surface polarity, measured by contact angle techniques, decreases with increasing surface coverage and chain length of the grafts. For the longer chains, the surface energy of the grafted silicas reaches a value close to the one of poly(ethylene). The spreading pressures of water on the modified silicas were measured either by contact angle or vapor adsorption techniques. 13 references.

  9. Poly(2-aminoethyl methacrylate) with well-defined chain-length for DNA vaccine delivery to dendritic cells

    PubMed Central

    Ji, Weihang; Panus, David; Palumbo, R. Noelle; Tang, Rupei; Wang, Chun

    2011-01-01

    Poly(2-aminoethyl methacrylate) (PAEM) homopolymers with defined chain-length and narrow molecular weight distribution were synthesized using atom transfer radical polymerization (ATRP), and a comprehensive study was conducted to evaluate the colloidal properties of PAEM/plasmid DNA polyplexes, the uptake and subcellular trafficking of polyplexes in antigen-presenting dendritic cells (DCs), and the biological performance of PAEM as a potential DNA vaccine carrier. PAEM of different chain-length (45, 75 and 150 repeating units) showed varying strength in condensing plasmid DNA into narrowly dispersed nanoparticles with very low cytotoxicity. Longer polymer chain-length resulted in higher levels of overall cellular uptake and nuclear uptake of plasmid DNA, but shorter polymer chains favored intracellular and intra-nuclear release of free plasmid from the polyplexes. Despite its simple chemical structure, PAEM transfected DCs very efficiently in vitro in media with or without serum and led to phenotypic maturation of DCs. When a model antigen-encoding ovalbumin plasmid was used, transfected DCs stimulated the activation of naïve CD8+ T cells to produce high levels of interferon-γ. The efficiency of transfection, DC maturation, and CD8+ T cell activation showed varying degrees of polymer chain-length dependence. These structurally defined cationic polymers may have much potential as efficient DNA vaccine carriers and immunostimulatory adjuvants. They may also serve as a model material system for elucidating structural and intracellular mechanisms of polymer-mediated DNA vaccine delivery. PMID:22082257

  10. Plasmon-assisted photocurrent generation from silver nanoparticle monolayers combined with porphyrins via their different chain-length alkylcarboxylates.

    PubMed

    Kakuta, Takayoshi; Kon, Hiroki; Kajikawa, Azusa; Kanaizuka, Katsuhiko; Yagyu, Shigeta; Miyake, Ryosuke; Ishizakil, Manabu; Uruma, Keirei; Togashi, Takanari; Sakamoto, Masatomi; Kurihara, Masato

    2014-06-01

    Three-typed porphyrin derivatives with a different chain-length alkylcarboxylic acid as their peripheral anchor group have been prepared. Anodic photocurrents were observed in a simple system where the porphyrin derivatives were directly anchored on an indium tin oxide (ITO) electrode. Cathodic photocurrents and their plasmon-assisted enhancement appeared from an Ag nanoparticle (Ag NP) composite monolayer combined with the porphyrin derivatives on the ITO electrode. In the photocurrent generation mechanism, Ag NPs played both the roles as photon- and energy-transfer to the porphyrin derivatives. The plasmon-assisted enhancement was affected by the chain-lengths of the peripheral anchor groups. PMID:24738356

  11. Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter.

    PubMed

    Clarke, Bradley R; Cuthbertson, Leslie; Whitfield, Chris

    2004-08-20

    The chain length of bacterial lipopolysaccharide O antigens is regulated to give a modal distribution that is critical for pathogenesis. This paper describes the process of chain length determination in the ATP-binding cassette (ABC) transporter-dependent pathway, a pathway that is widespread among Gram-negative bacteria. Escherichia coli O8 and O9/O9a polymannans are synthesized in the cytoplasm, and an ABC transporter exports the nascent polymer across the inner membrane prior to completion of the LPS molecule. The polymannan O antigens have nonreducing terminal methyl groups. The 3-O-methyl group in serotype O8 is transferred from S-adenosylmethionine by the WbdD(O8) enzyme, and this modification terminates polymerization. Methyl groups are added to the O9a polymannan in a reaction dependent on preceding phosphorylation. The bifunctional WbdD(O9a) catalyzes both reactions, but only the kinase activity controls chain length. Chain termination occurs in a mutant lacking the ABC transporter, indicating that it precedes export. An E. coli wbdD(O9a) mutant accumulated O9a polymannan in the cytoplasm, indicating that WbdD activity coordinates polymannan chain termination with export across the inner membrane.

  12. Influence of alkyl chain length on the surface activity of antibacterial polymers derived from ROMP.

    PubMed

    Altay, Esra; Yapaöz, Melda Altıkatoğlu; Keskin, Bahadır; Yucesan, Gundoğ; Eren, Tarik

    2015-03-01

    The purpose of this study is to understand the antibacterial properties of cationic polymers on solid surfaces by investigating the structure-activity relationships. The polymer synthesis was carried via ring opening metathesis polymerization (ROMP) of oxanorbornene derivatives. Modulation of molecular weights and alkyl chain lengths of the polymers were studied to investigate the antibacterial properties on the glass surface. Fluorescein (Na salt) staining contact angle measurements were used to characterize the positive charge density and hydrophobicity on the polymer coated surfaces. Positive charge density for the surface coated polymers with molecular weights of 3000 and 10,000 g mol(-1) is observed to be in the range of 2.3-28.5 nmol cm(-2). The ROMP based cationic pyridinium polymer with hexyl unit exhibited the highest bactericidal efficiency against Escherichia coli on solid surface killing 99% of the bacteria in 5 min. However, phenyl and octyl functionalized quaternary pyridinium groups exhibited lower biocidal properties on the solid surfaces compared to their solution phase biocidal properties. Studying the effect of threshold polymer concentrations on the antibacterial properties indicated that changing the concentrations of polymer coatings on the solid surface dramatically influences antibacterial efficiency.

  13. Discrete nascent chain lengths are required for the insertion of presecretory proteins into microsomal membranes

    PubMed Central

    1993-01-01

    Ribosomes synthesizing nascent secretory proteins are targeted to the membrane by the signal recognition particle (SRP), a small ribonucleoprotein that binds to the signal peptide as it emerges from the ribosome. SRP arrests further elongation, causing ribosomes to stack behind the arrested ribosome. Upon interaction of SRP with its receptor on the ER membrane, the translation arrest is released and the ribosome becomes bound to the ER membrane. We have examined the distribution of unattached and membrane-bound ribosomes during the translation of mRNAs encoding two secretory proteins, bovine preprolactin and rat preproinsulin I. We find that the enhancement of ribosome stacking that occurs when SRP arrests translation of these proteins is relaxed in the presence of microsomal membranes. We also demonstrate that two previously described populations of membrane- associated ribosomes, distinguished by their sensitivity to high salt or EDTA extraction, correspond to ribosomes that have synthesized differing lengths of the nascent polypeptide. This analysis has revealed that nascent chain insertion into the membrane begins at distinct points for different presecretory proteins. PMID:8389768

  14. Bilayer registry in a multicomponent asymmetric membrane: Dependence on lipid composition and chain length

    SciTech Connect

    Polley, Anirban; Mayor, Satyajit; Rao, Madan E-mail: madan@ncbs.res.in

    2014-08-14

    A question of considerable interest to cell membrane biology is whether phase segregated domains across an asymmetric bilayer are strongly correlated with each other and whether phase segregation in one leaflet can induce segregation in the other. We answer both these questions in the affirmative, using an atomistic molecular dynamics simulation to study the equilibrium statistical properties of a 3-component asymmetric lipid bilayer comprising an unsaturated palmitoyl-oleoyl-phosphatidyl-choline, a saturated sphingomyelin, and cholesterol with different composition ratios. Our simulations are done by fixing the composition of the upper leaflet to be at the coexistence of the liquid ordered (l{sub o})-liquid disordered (l{sub d}) phases, while the composition of the lower leaflet is varied from the phase coexistence regime to the mixed l{sub d} phase, across a first-order phase boundary. In the regime of phase coexistence in each leaflet, we find strong transbilayer correlations of the l{sub o} domains across the two leaflets, resulting in bilayer registry. This transbilayer correlation depends sensitively upon the chain length of the participating lipids and possibly other features of lipid chemistry, such as degree of saturation. We find that the l{sub o} domains in the upper leaflet can induce phase segregation in the lower leaflet, when the latter is nominally in the mixed (l{sub d}) phase.

  15. Is average chain length of plant lipids a potential proxy for vegetation, environment and climate changes?

    NASA Astrophysics Data System (ADS)

    Wang, M.; Zhang, W.; Hou, J.

    2015-04-01

    Average chain length (ACL) of leaf wax components preserved in lacustrine sediments and soil profiles has been widely adopted as a proxy indicator for past changes in vegetation, environment and climate during the late Quaternary. The fundamental assumption is that woody plants produce leaf waxes with shorter ACL values than non-woody plants. However, there is a lack of systematic survey of modern plants to justify the assumption. Here, we investigated various types of plants at two lakes, Blood Pond in the northeastern USA and Lake Ranwu on the southeastern Tibetan Plateau, and found that the ACL values were not significantly different between woody and non-woody plants. We also compiled the ACL values of modern plants in the literatures and performed a meta-analysis to determine whether a significant difference exists between woody and non-woody plants at single sites. The results showed that the ACL values of plants at 19 out of 26 sites did not show a significant difference between the two major types of plants. This suggests that extreme caution should be taken in using ACL as proxy for past changes in vegetation, environment and climate.

  16. Imidiazolium based ionic liquids: effects of different anions and alkyl chains lengths on the barley seedlings.

    PubMed

    Cvjetko Bubalo, Marina; Hanousek, Karla; Radošević, Kristina; Gaurina Srček, Višnja; Jakovljević, Tamara; Radojčić Redovniković, Ivana

    2014-03-01

    We studied the effects of five imidiazolium based ionic liquids with different anions and length of alkyl chains linked to imidazolium ring on the early development of barley (Hordeum vulgare). The inhibitory effect depends on the ionic liquids concentration and chemical structure, whereby the most toxic one was [C10mim][Br], followed by [C7mim][Br], [C4mim][Br], [C4mim][CH3CO2] and [C4mim][BF4]. Both anion and cation structures affected the toxicity of ionic liquid indicating that selection of more biocompatible anions such as [CH3CO2] does not necessarily indicate lower toxicity. Alternation in the extent of oxidative stress and antioxidant enzymes activities were found in barley plants due to ionic liquid treatments. When seedlings were exposed to higher concentrations of ionic liquids, antioxidant system could not effectively remove reactive oxidative species, leading to lipid peroxidation and damage of the photosynthetic system. However, overall data indicated that the performance of barley seedling was improved when all measured enzymes involved in scavenging of reactive oxygen species (ROS) were increased with special emphasis on GPX activities. Since there are no studies about ionic liquid (IL) toxicity in plants, that simultaneously evaluates the antioxidative enzyme system in response to different ILs, this work is valuable for gaining knowledge about the protection mechanism of plants from oxidative stress caused by IL exposure.

  17. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica.

    PubMed

    Gao, Cuijuan; Qi, Qingsheng; Madzak, Catherine; Lin, Carol Sze Ki

    2015-09-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or β-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture. Nevertheless, it cannot naturally synthesize PHA, as it does not express an intrinsic PHA synthase. Here, we constructed a genetically modified strain of Y. lipolytica by heterologously expressing PhaC1 gene from P. aeruginosa PAO1 with a PTS1 peroxisomal signal. When in single copy, the codon optimized PhaC1 allowed the synthesis of 0.205 % DCW of PHA after 72 h cultivation in YNBD medium containing 0.1 % oleic acid. By using a multi-copy integration strategy, PHA content increased to 2.84 % DCW when the concentration of oleic acid in YNBD was 1.0 %. Furthermore, when the recombinant yeast was grown in the medium containing triolein, PHA accumulated up to 5.0 % DCW with as high as 21.9 g/L DCW, which represented 1.11 g/L in the culture. Our results demonstrated the potential use of Y. lipolytica as a promising microbial cell factory for PHA production using food waste, which contains lipids and other essential nutrients. PMID:26153503

  18. Effects of amylose chain length and heat treatment on amylose-glycerol monocaprate complex formation.

    PubMed

    Zhou, Xing; Wang, Ren; Zhang, Yuxian; Yoo, Sang-Ho; Lim, Seung-Taik

    2013-06-01

    Aqueous mixtures of amylose with different chain lengths (DP 23-849), which had been enzymatically synthesized or isolated from potato and maize starches, and glycerol monocaprate (GMC, 5:1 weight ratio) were analyzed by using a differential scanning calorimeter (DSC). The mixtures were thermally treated (first DSC scan: 20-140 °C, 5 °C/min and prolonged heat treatment: 100 °C for 24 h) and its effect on the amylose-GMC complex formation was analyzed by DSC and X-ray diffractometer. The amylose, especially short ones, readily associated in the dispersion forming the amylose-amylose crystals but the presence of GMC inhibited the crystal formation. The longer amylose had the greater possibility for the complex formation with GMC, and the prolonged heat treatment facilitated the amylose-GMC complex formation. Both type I and type II complexes were formed during quenching after the initial DSC heating. However, only the type II complexes were formed after the prolonged heat treatment with improved crystallinity and thermostability. PMID:23618264

  19. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica.

    PubMed

    Gao, Cuijuan; Qi, Qingsheng; Madzak, Catherine; Lin, Carol Sze Ki

    2015-09-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or β-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture. Nevertheless, it cannot naturally synthesize PHA, as it does not express an intrinsic PHA synthase. Here, we constructed a genetically modified strain of Y. lipolytica by heterologously expressing PhaC1 gene from P. aeruginosa PAO1 with a PTS1 peroxisomal signal. When in single copy, the codon optimized PhaC1 allowed the synthesis of 0.205 % DCW of PHA after 72 h cultivation in YNBD medium containing 0.1 % oleic acid. By using a multi-copy integration strategy, PHA content increased to 2.84 % DCW when the concentration of oleic acid in YNBD was 1.0 %. Furthermore, when the recombinant yeast was grown in the medium containing triolein, PHA accumulated up to 5.0 % DCW with as high as 21.9 g/L DCW, which represented 1.11 g/L in the culture. Our results demonstrated the potential use of Y. lipolytica as a promising microbial cell factory for PHA production using food waste, which contains lipids and other essential nutrients.

  20. Chain-length and mode-delocalization dependent amide-I anharmonicity in peptide oligomers

    NASA Astrophysics Data System (ADS)

    Zhao, Juan; Wang, Jianping

    2012-06-01

    The diagonal anharmonicities of the amide-I mode in the alanine oligomers are examined in the normal-mode basis by ab initio calculations. The selected oligomers range from dimer to heptamer, in either the α-helical or β-sheet conformations. It is found that the anharmonicity varies from mode to mode within the same oligomer. For a given amide-I mode, the anharmonicity is closely related to the delocalization extent of the mode: the less it delocalizes, the larger the anharmonicity it has. Thus, the single-mode potential energy distribution (PEDmax) can be used as an indicator of the magnitude of the anharmonicity. It is found that as the peptide chain length increases, the averaged diagonal anharmonicity generally decreases; however, the sum of the averaged diagonal and off-diagonal anharmonicities within a peptide roughly remains a constant for all the oligomers examined, indicating the excitonic characteristics of the amide-I modes. Excitonic coupling tends to decrease the diagonal anharmonicities in a coupled system with multiple chromophores, which explains the observed behavior of the anharmonicities. The excitonic nature of the amide-I band in peptide oligomers is thus verified by the anharmonic computations. Isotopic substitution effect on the anharmonicities and mode localizations of the amide-I modes in peptides is also discussed.

  1. Fungal Polyketide Synthase Product Chain-Length Control by Partnering Thiohydrolase

    PubMed Central

    2015-01-01

    Fungal highly reducing polyketide synthases (HRPKSs) are an enigmatic group of multidomain enzymes that catalyze the biosynthesis of structurally diverse compounds. This variety stems from their intrinsic programming rules, which permutate the use of tailoring domains and determine the overall number of iterative cycles. From genome sequencing and mining of the producing strain Eupenicillium brefeldianum ATCC 58665, we identified an HRPKS involved in the biosynthesis of an important protein transport-inhibitor Brefeldin A (BFA), followed by reconstitution of its activity in Saccharomyces cerevisiae and in vitro. Bref-PKS demonstrated an NADPH-dependent reductive tailoring specificity that led to the synthesis of four different octaketide products with varying degrees of reduction. Furthermore, contrary to what is expected from the structure of BFA, Bref-PKS is found to be a nonaketide synthase in the absence of an associated thiohydrolase Bref-TH. Such chain-length control by the partner thiohydrolase was found to be present in other HRPKS systems and highlights the importance of including tailoring enzyme activities in predicting fungal HRPKS functions and their products. PMID:24845309

  2. Mutagenicity Assessment of Organophosphates using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Assay

    PubMed Central

    Bhinder, Preety; Chaudhry, Asha

    2013-01-01

    Objectives: In this study we have evaluated the mutagenicity of organophosphate pesticides acephate, chlorpyrifos, and profenofos using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with the mosquito Culex quinquefasciatus taken as an experimental model. Materials and Methods: Second instar larvae were treated with LC20 of each pesticide for 24 h and mutations induced in the sequence of mitochondrial COII gene (690bp) were studied from restriction patterns generated with AluI, PacI, and PsiI restriction endonucleases. Results: Variations in the number and size of digested fragments were recorded from treated individuals compared with controls showing that the restriction enzymes created a cut at different locations. In addition, sequences of COII gene from control and treated individuals were also used to confirm the RFLP patterns. From the sequence alignment data, it was found that mutations caused the destruction and generation of restriction sites in the gene sequence of treated individuals. Conclusion: This study indicates that all the three pesticides had potential to induce mutations in the normal sequence of COII gene and also advocates the use of PCR-RFLP assay as an efficient, rapid, and sensitive technique to detect mutagenicity of pesticides. PMID:24403735

  3. Identification of N-Acyl Phosphatidylserine Molecules in Eukaryotic Cells

    PubMed Central

    Guan, Ziqiang; Li, Shengrong; Smith, Dale C.; Shaw, Walter A.; Raetz, Christian R. H.

    2008-01-01

    While profiling the lipidome of the mouse brain by mass spectrometry, we discovered a novel family of N-acyl phosphatidylserine (N-acyl-PS) molecules. These N-acyl-PS species were enriched by DEAE-cellulose column chromatography, and they were then characterized by accurate mass measurements, tandem mass spectrometry, liquid chromatography/mass spectrometry, and comparison to an authentic standard. Mouse brain N-acyl-PS molecules are heterogeneous and constitute about 0.1 % of the total lipid. In addition to various ester-linked fatty acyl chains on their glycerol backbones, the complexity of the N-acyl-PS series is further increased by the presence of diverse amide-linked N-acyl chains, which include saturated, mono-unsaturated and poly-unsaturated species. N-acyl-PS molecular species were also detected in the lipids of pig brain, mouse RAW264.7 macrophage tumor cells and yeast, but not E. coli. N-acyl-PSs may be biosynthetic precursors of N-acyl serine molecules, such as the recently reported signaling lipid N-arachidonoyl serine from bovine brain. We suggest that a phospholipase D might cleave N-acyl-PS to generate N-acyl serine, in analogy to the biosynthesis of the endocannabinoid N-arachidonoyl ethanolamine (anadamide) from N-arachidonoyl phosphatidylethanolamine. PMID:18031065

  4. Embedding the outer chain movement for main partition of β-number with length [1, 0, 0,…

    NASA Astrophysics Data System (ADS)

    Mohommed, Eman F.; Ibrahim, Haslinda; Ahmad, Nazihah; Mahmood, Ammar

    2016-08-01

    One of the graphical representations for any partition of a non-negative integers in the modular representation theory of diagram algebra is James abacus using Beta numbers. In this work James abacus is divided positions into several chains. A new diagram Atco is introduced by employing on the outer chain with length [1, 0, 0,…] on the active James abacus. Finally a consecutive new diagram of b2, b3,…, be can be found from active diagram Atco which is found after applying chain movement.

  5. Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer

    PubMed Central

    Chen, Wei-Ching; Wang, Chih-Yang; Hung, Yu-Hsuan; Weng, Tzu-Yang; Yen, Meng-Chi; Lai, Ming-Derg

    2016-01-01

    Dysregulated lipid metabolism contributes to cancer progression. Our previous study indicates that long-chain fatty acyl-Co A synthetase (ACSL) 3 is essential for lipid upregulation induced by endoplasmic reticulum stress. In this report, we aimed to identify the role of ACSL family in cancer with systematic analysis and in vitro experiment. We explored the ACSL expression using Oncomine database to determine the gene alteration during carcinogenesis and identified the association between ACSL expression and the survival of cancer patient using PrognoScan database. ACSL1 may play a potential oncogenic role in colorectal and breast cancer and play a potential tumor suppressor role in lung cancer. Co-expression analysis revealed that ACSL1 was coexpressed with MYBPH, PTPRE, PFKFB3, SOCS3 in colon cancer and with LRRFIP1, TSC22D1 in lung cancer. In accordance with PrognoScan analysis, downregulation of ACSL1 in colon and breast cancer cell line inhibited proliferation, migration, and anchorage-independent growth. In contrast, increase of oncogenic property was observed in lung cancer cell line by attenuating ACSL1. High ACSL3 expression predicted a better prognosis in ovarian cancer; in contrast, high ACSL3 predicted a worse prognosis in melanoma. ACSL3 was coexpressed with SNUPN, TRIP13, and SEMA5A in melanoma. High expression of ACSL4 predicted a worse prognosis in colorectal cancer, but predicted better prognosis in breast, brain and lung cancer. ACSL4 was coexpressed with SERPIN2, HNRNPCL1, ITIH2, PROCR, LRRFIP1. High expression of ACSL5 predicted good prognosis in breast, ovarian, and lung cancers. ACSL5 was coexpressed with TMEM140, TAPBPL, BIRC3, PTPRE, and SERPINB1. Low ACSL6 predicted a worse prognosis in acute myeloid leukemia. ACSL6 was coexpressed with SOX6 and DARC. Altogether, different members of ACSLs are implicated in diverse types of cancer development. ACSL-coexpressed molecules may be used to further investigate the role of ACSL family in

  6. The horizontal transfer of antibiotic resistance genes is enhanced by ionic liquid with different structure of varying alkyl chain length.

    PubMed

    Wang, Qing; Lu, Qian; Mao, Daqing; Cui, Yuxiao; Luo, Yi

    2015-01-01

    Antibiotic resistance genes (ARGs) have become a global health concern. In our previous study, an ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) had been proven to facilitate the dissemination of ARGs in the environment. However, enhanced alkyl group chain length or the substitution of alkyl groups with the cation ring corresponded with increased antimicrobial effects. In this study, we investigated how different structures of ILs with 4, 6, and 8 C atoms in the longer alkyl chain on the imidazolium cations facilitated the dissemination of ARGs. The promotion of plasmid RP4 transfer frequency decreased with [CnMIM][BF4] increasing the alkyl chain length from 4 carbon atoms to 8 carbon atoms on the imidazolium cations, which is observed with [BMIM][BF4] (n = 4, 5.9 fold) > HMIM][BF4] (n = 6, 2.2 fold) > [OMIM][BF4] (n = 8, 1.7 fold). This illustrates that [CnMIM][BF4] with increasing the alkyl chain length exert decreasing ability in facilitating plasmid RP4 horizontal transfer, which is possibly related to IL-structure dependent toxicity. The IL-structure dependent plasmid RP4 transfer frequency was attributable to bacterial cell membrane permeability weaken with increasing alkyl chain length of [CnMIM][PF4], which was evidenced by flow cytometry. In freshwater microcosm, [CnMIm][BF4] promoted the relative abundance of the sulI and intI genes for 4.6 folds, aphA and traF for 5.2 folds higher than the untreated groups, promoting the propagation of ARGs in the aquatic environment. This is the first report that ILs with different structure of varying alkyl chain length facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment, and thus add the adverse effects of the environmental risk of ILs.

  7. The horizontal transfer of antibiotic resistance genes is enhanced by ionic liquid with different structure of varying alkyl chain length

    PubMed Central

    Wang, Qing; Lu, Qian; Mao, Daqing; Cui, Yuxiao; Luo, Yi

    2015-01-01

    Antibiotic resistance genes (ARGs) have become a global health concern. In our previous study, an ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) had been proven to facilitate the dissemination of ARGs in the environment. However, enhanced alkyl group chain length or the substitution of alkyl groups with the cation ring corresponded with increased antimicrobial effects. In this study, we investigated how different structures of ILs with 4, 6, and 8 C atoms in the longer alkyl chain on the imidazolium cations facilitated the dissemination of ARGs. The promotion of plasmid RP4 transfer frequency decreased with [CnMIM][BF4] increasing the alkyl chain length from 4 carbon atoms to 8 carbon atoms on the imidazolium cations, which is observed with [BMIM][BF4] (n = 4, 5.9 fold) > HMIM][BF4] (n = 6, 2.2 fold) > [OMIM][BF4] (n = 8, 1.7 fold). This illustrates that [CnMIM][BF4] with increasing the alkyl chain length exert decreasing ability in facilitating plasmid RP4 horizontal transfer, which is possibly related to IL-structure dependent toxicity. The IL-structure dependent plasmid RP4 transfer frequency was attributable to bacterial cell membrane permeability weaken with increasing alkyl chain length of [CnMIM][PF4], which was evidenced by flow cytometry. In freshwater microcosm, [CnMIm][BF4] promoted the relative abundance of the sulI and intI genes for 4.6 folds, aphA and traF for 5.2 folds higher than the untreated groups, promoting the propagation of ARGs in the aquatic environment. This is the first report that ILs with different structure of varying alkyl chain length facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment, and thus add the adverse effects of the environmental risk of ILs. PMID:26379641

  8. Synthesis, Surface Active Properties and Cytotoxicity of Sodium N-Acyl Prolines.

    PubMed

    Sreenu, Madhumanchi; Narayana Prasad, Rachapudi Badari; Sujitha, Pombala; Kumar, Chityal Ganesh

    2015-01-01

    Sodium N-acyl prolines (NaNAPro) were synthesized using mixture of fatty acids obtained from coconut, palm, karanja, Sterculia foetida and high oleic sunflower oils via Schotten-Baumann reaction in 58-75% yields to study the synergetic effect of mixture of hydrophobic fatty acyl functionalities like saturation, unsaturation and cyclopropene fatty acids with different chain lengths and aliphatic hetero cyclic proline head group on their surface and cytotoxicity activities. The products were characterized by chromatographic and spectral techniques. The synthesized products were evaluated for their surface active properties such as surface tension, wetting power, foaming characteristics, emulsion stability, calcium tolerance, critical micelle concentration (CMC) and thermodynamic properties. The results revealed that all the products exhibited superior surface active properties like CMC, calcium tolerance and emulsion stability as compared to the standard surfactant, sodium lauryl sulphate (SLS). In addition, palm, Sterculia foetida and high oleic sunflower fatty N-acyl prolines exhibited promising cytotoxicity against different tumor cell lines.

  9. Excited-state dynamics of water-soluble polythiophene derivatives: temperature and side-chain length effects.

    PubMed

    Ma, Ying-Zhong; Shaw, Robert W; Yu, Xiang; O'Neill, Hugh M; Hong, Kunlun

    2012-12-13

    We report synthesis and detailed spectroscopic study of three water-soluble polythiophene derivatives with distinct homologous oligo(ethylene oxide) side-chain lengths and lower critical solution temperatures (LCSTs). The linear absorption spectra exhibit reversible shifts and broadening with the variation of their aqueous solution temperature, whereas the corresponding steady-state fluorescence emission spectra were found to show negligible shifts and only minor changes in their line shape. Measurements of picosecond time-resolved fluorescence at chosen emission wavelengths reveal a strong dependence of the isotropic decays on both side-chain length and aqueous solution temperature. With lengthening of the side chain, the isotropic decays become not only remarkably slow but also increasingly complex. Except for the polymer with the shortest side chain, significant acceleration of the isotropic decays was found when the solution temperature was raised to the corresponding LCSTs and beyond, which further causes formation of large aggregates as evident by the physical appearance change from clear solutions to turbid suspensions. Direct evidence for a temperature-induced change of polymer chain conformation was obtained through measurements of time-resolved fluorescence anisotropies, which are characterized by a substantial increase of the initial values from ~0.2 to 0.4 and the appearance of a pronounced fast decay component with an estimated lifetime of 36 ps. The high initial anisotropy of ~0.4 observed for the two polymers with longer side-chains above their LCSTs suggests that the polymer chains are highly ordered in the aggregates. The observed effects of side-chain length and solution temperature are discussed by considering the conformational relaxation of the polymer backbones and occurrence of interchain energy transfer.

  10. Attenuating HIV Tat/TAR-mediated protein expression by exploring the side chain length of positively charged residues.

    PubMed

    Wu, Cheng-Hsun; Chen, Yi-Ping; Liu, Shing-Lung; Chien, Fan-Ching; Mou, Chung-Yuan; Cheng, Richard P

    2015-12-01

    RNA is a drug target involved in diverse cellular functions and viral processes. Molecules that inhibit the HIV TAR RNA-Tat protein interaction may attenuate Tat/TAR-dependent protein expression and potentially serve as anti-HIV therapeutics. By incorporating positively charged residues with mixed side chain lengths, we designed peptides that bind TAR RNA with enhanced intracellular activity. Tat-derived peptides that were individually substituted with positively charged residues with varying side chain lengths were evaluated for TAR RNA binding. Positively charged residues with different side chain lengths were incorporated at each Arg and Lys position in the Tat-derived peptide to enhance TAR RNA binding. The resulting peptides showed enhanced TAR RNA binding affinity, cellular uptake, nuclear localization, proteolytic resistance, and inhibition of intracellular Tat/TAR-dependent protein expression compared to the parent Tat-derived peptide with no cytotoxicity. Apparently, the enhanced inhibition of protein expression by these peptides was not determined by RNA binding affinity, but by proteolytic resistance. Despite the high TAR binding affinity, a higher binding specificity would be necessary for practical purposes. Importantly, altering the positively charged residue side chain length should be a viable strategy to generate potentially useful RNA-targeting bioactive molecules.

  11. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida

    PubMed Central

    2014-01-01

    Background Pseudomnas putida is a natural producer of medium chain length polyhydroxyalkanoates (mcl-PHA), a polymeric precursor of bioplastics. A two-fold increase of mcl-PHA production via inactivation of the glucose dehydrogenase gene gcd, limiting the metabolic flux towards side products like gluconate was achieved before. Here, we investigated the overproduction of enzymes catalyzing limiting steps of mcl-PHA precursor formation. Results A genome-based in silico model for P. putida KT2440 metabolism was employed to identify potential genetic targets to be engineered for the improvement of mcl-PHA production using glucose as sole carbon source. Here, overproduction of pyruvate dehydrogenase subunit AcoA in the P. putida KT2440 wild type and the Δgcd mutant strains led to an increase of PHA production. In controlled bioreactor batch fermentations PHA production was increased by 33% in the acoA overexpressing wild type and 121% in the acoA overexpressing Δgcd strain in comparison to P. putida KT2440. Overexpression of pgl-encoding 6-phosphoglucolactonase did not influence PHA production. Transcriptome analyses of engineered PHA producing P. putida in comparison to its parental strains revealed the induction of genes encoding glucose 6-phosphate dehydrogenase and pyruvate dehydrogenase. In addition, NADPH seems to be quantitatively consumed for efficient PHA synthesis, since a direct relationship between low levels of NADPH and high concentrations of the biopolymer were observed. In contrast, intracellular levels of NADH were found increased in PHA producing organisms. Conclusion Production of mcl-PHAs was enhanced in P. putida when grown on glucose via overproduction of a pyruvate dehydrogenase subunit (AcoA) in combination with a deletion of the glucose dehydrogenase (gcd) gene as predicted by in silico elementary flux mode analysis. PMID:24948031

  12. Identification of fungemia agents using the polymerase chain reaction and restriction fragment length polymorphism analysis.

    PubMed

    Santos, M S; Souza, E S; S Junior, R M; Talhari, S; Souza, J V B

    2010-08-01

    Prompt and specific identification of fungemia agents is important in order to define clinical treatment. However, in most cases conventional culture identification can be considered to be time-consuming and not without errors. The aim of the present study was to identify the following fungemia agents: Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata, Cryptococcus neoformans, Cryptococcus gattii, and Histoplasma capsulatum using the polymerase chain reaction and restriction fragment length polymorphism analysis (PCR/RFLP). More specifically: a) to evaluate 3 different amplification regions, b) to investigate 3 different restriction enzymes, and c) to use the best PCR/RFLP procedure to indentify 60 fungemia agents from a culture collection. All 3 pairs of primers (ITS1/ITS4, NL4/ITS5 and Primer1/Primer2) were able to amplify DNA from the reference strains. However, the size of these PCR products did not permit the identification of all the species studied. Three restriction enzymes were used to digest the PCR products: HaeIII, Ddel and Bfal. Among the combinations of pairs of primers and restriction enzymes, only one (primer pair NL4/ITS5 and restriction enzyme Ddel) produced a specific RFLP pattern for each microorganism studied. Sixty cultures of fungemia agents (selected from the culture collection of Fundação de Medicina Tropical do Amazonas--FMTAM) were correctly identified by PCR/RFLP using the prime pair NL4/ITS5 and Ddel. We conclude that the method proved to be both simple and reproducible, and may offer potential advantages over phenotyping methods.

  13. Production and characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7.

    PubMed

    Chen, Yi-Jr; Huang, Yan-Chia; Lee, Chia-Yin

    2014-08-01

    The polyhydroxyalkanoate (PHA) production and growth of Pseudomonas mosselii TO7, a newly isolated Pseudomonas species from the wastewater of a vegetable oil manufacturing facility, was analyzed. Phenotypic analysis and phylogenetic analysis of the 16S rRNA gene revealed that it is closely related to Pseudomonas mosselii. In the presence of palm kernel and soybean oils, P. mosselii TO7 produced up to 50% cell dry weight (CDW) medium-chain-length (MCL) PHAs comprising high poly(3-hydroxyoctanoate) (P(3HO)) content; P(3HO) content increased to 45% CDW when grown in octanoate using a single-step culture process. The PHA monomer was identified by (13)C nuclear magnetic resonance spectroscopy. The average molecular weight and polydispersity index of PHA were 218.30 ± 31.73 and 2.21 ± 0.18, respectively. The PHA produced by P. mosselii TO7 in the presence of palm kernel oil had two melting temperature (Tm) values of 37.2°C and 55.7°C with melting enthalpy (ΔHm) values of 51.09 J g(-1) and 26.57 J g(-1), respectively. Inhibition analyses using acrylic and 2-bromooctanoic acids revealed β-oxidation as the primary pathway for MCL-PHA biosynthesis using octanoic acid. Moreover, Pseudomonas putida GPp104 PHA(-), harboring the PHA synthase genes of P. mosselii (phaC1pm and phaC2pm) was used for heterologous expression, which demonstrated that phaC1pm is the main PHA synthesis enzyme, and 3-hydroxyoctanoyl-CoA is its major substrate. This was the first report of a P. mosselii TO7 isolate producing high-yield P(3HO) through utilization of plant oils.

  14. Identification of fungemia agents using the polymerase chain reaction and restriction fragment length polymorphism analysis.

    PubMed

    Santos, M S; Souza, E S; S Junior, R M; Talhari, S; Souza, J V B

    2010-08-01

    Prompt and specific identification of fungemia agents is important in order to define clinical treatment. However, in most cases conventional culture identification can be considered to be time-consuming and not without errors. The aim of the present study was to identify the following fungemia agents: Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata, Cryptococcus neoformans, Cryptococcus gattii, and Histoplasma capsulatum using the polymerase chain reaction and restriction fragment length polymorphism analysis (PCR/RFLP). More specifically: a) to evaluate 3 different amplification regions, b) to investigate 3 different restriction enzymes, and c) to use the best PCR/RFLP procedure to indentify 60 fungemia agents from a culture collection. All 3 pairs of primers (ITS1/ITS4, NL4/ITS5 and Primer1/Primer2) were able to amplify DNA from the reference strains. However, the size of these PCR products did not permit the identification of all the species studied. Three restriction enzymes were used to digest the PCR products: HaeIII, Ddel and Bfal. Among the combinations of pairs of primers and restriction enzymes, only one (primer pair NL4/ITS5 and restriction enzyme Ddel) produced a specific RFLP pattern for each microorganism studied. Sixty cultures of fungemia agents (selected from the culture collection of Fundação de Medicina Tropical do Amazonas--FMTAM) were correctly identified by PCR/RFLP using the prime pair NL4/ITS5 and Ddel. We conclude that the method proved to be both simple and reproducible, and may offer potential advantages over phenotyping methods. PMID:20640387

  15. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    DOE PAGES

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; Zhao, Huimin

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products inmore » BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.« less

  16. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    SciTech Connect

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; Zhao, Huimin

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.

  17. Influence of alkyl chain length on calcium phosphate deposition onto titanium surfaces modified with alkylphosphonic acid monolayers.

    PubMed

    Wu, Jiang; Hirata, Isao; Zhao, Xianghui; Gao, Bo; Okazaki, Masayuki; Kato, Koichi

    2013-08-01

    Much attention has been paid to the modification of a titanium surface with an alkylphosphonic acid (PA)-based self-assembled monolayer (SAM) to accelerate hydroxyapatite (HA) deposition on the surface. In order to further accelerate the rate of HA deposition, we examined here the effect of alkyl chain length of SAMs on the formation of a HA layer. PAs with three different alkyl chain lengths (3, 6, and 16 methylene units) were used for the preparation of a SAM on titanium. The titanium specimens with monolayers were soaked in a simulated body fluid under physiological conditions for 4 weeks. The deposited substances were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. These analyses revealed that the formation of PA SAMs accelerate the deposition of poorly crystallized HA, in an alkyl chain length-dependent manner. Among PAs studied here, PA containing a 16-carbon alkyl chain gave rise to the titanium surface most effective for the deposition of HA.

  18. Vibrational density of states of triphenylene based discotic liquid crystals: dependence on the length of the alkyl chain.

    PubMed

    Krause, Christina; Zorn, Reiner; Emmerling, Franziska; Falkenhagen, Jana; Frick, Bernhard; Huber, Patrick; Schönhals, Andreas

    2014-04-28

    The vibrational density of states of a series of homologous triphenylene-based discotic liquid crystals HATn (n = 5, 6, 8, 10, 12) depending on the length of the aliphatic side chain is investigated by means of inelastic neutron scattering. All studied materials have a plastic crystalline phase at low temperatures, followed by a hexagonally ordered liquid crystalline phase at higher temperatures and a quasi isotropic phase at the highest temperatures. The X-ray scattering pattern for the plastic crystalline phase of all materials shows a sharp Bragg reflection corresponding to the intercolumnar distance in the lower q-range and a peak at circa 17 nm(-1) related to intracolumnar distances between the cores perpendicular to the columns as well as a broad amorphous halo related to the disordered structure of the methylene groups in the side chains in the higher q-range. The intercolumnar distance increases linearly with increasing chain length for the hexagonal columnar ordered liquid crystalline phase. A similar behaviour is assumed for the plastic crystalline phase. Besides n = 8 all materials under study exhibit a Boson peak. With increasing chain length, the frequency of the Boson peak decreases and its intensity increases. This can be explained by a self-organized confinement model. The peaks for n = 10, 12 are much narrower than for n = 5, 6 which might imply the transformation from a rigid system to a softer one with increasing chain length. Moreover the results can also be discussed in the framework of a transition from an uncorrelated to a correlated disorder with increasing n where n = 8 might be speculatively considered as a transitional state.

  19. Influence of alkyl chain length on charge transport in symmetrically substituted poly(2,5-dialkoxy- p -phenylenevinylene) polymers

    NASA Astrophysics Data System (ADS)

    Tuladhar, Sachetan M.; Sims, Marc; Kirkpatrick, James; Maher, Robert C.; Chatten, Amanda J.; Bradley, Donal D. C.; Nelson, Jenny; Etchegoin, Pablo G.; Nielsen, Christian B.; Massiot, Philippe; George, Wayne N.; Steinke, Joachim H. G.

    2009-01-01

    We report on the hole transport characteristics, as measured by time of flight, of a family of symmetrically substituted dialkoxy poly( p -phenylenevinylene) polymers with different side-chain length. As side-chain length is decreased, the magnitude of the hole mobility μh increases while the field dependence of μh becomes more positive and the temperature dependence of μh becomes stronger. For the shortest side-chain derivative studied, μh exceeds 10-4cm2V-1s-1 at electric fields greater than 105Vcm-1 . The trend in magnitude of μh with side-chain length is consistent with the expected increase in electronic wave-function overlap as interchain separation decreases, while the trends in electric-field and temperature dependences of μh are consistent with increasing site energy disorder. We show that the electrostatic contribution to the site energy difference for pairs of oligomers follows the observed trend as a function of interchain separation, although the pairwise contribution is too small to explain the data quantitatively. Nonresonant Raman spectroscopy is used to characterize the microstructure of our films. We construct spatial maps of the Raman ratio I1280/I1581 and confirm an expected decrease in average film density with side-chain extension. The structural heterogeneity in the maps is analyzed but no clear correlation is observed with transport properties, suggesting that the structural variations relevant for charge transport occur on a length scale finer than the resolution of ˜1μm .

  20. Highly grafted polystyrene/polyvinylpyridine polymer gold nanoparticles in a good solvent: effects of chain length and composition.

    PubMed

    Posel, Zbyšek; Posocco, Paola; Lísal, Martin; Fermeglia, Maurizio; Pricl, Sabrina

    2016-04-21

    In this work, the structural features of spherical gold nanoparticles (NPs) decorated with highly grafted poly(styrene) (PS), poly(vinylpyridine) (PVP) and PS-PVP diblock copolymer brushes immersed in a good solvent are investigated by means of Dissipative Particle Dynamics (DPD) simulations as a function of grafted chain length and of homopolymer and copolymer chain composition. For NPs grafted either by PS or PVP homopolymer brushes (selected as a proof of concept), good agreement between the Daoud-Cotton theory, experimental evidence, and our DPD simulations is observed in the scaling behavior of single chain properties, especially for longer grafted chains, and in brush thickness prediction. On the other hand, for grafted chain lengths comparable to NP dimensions parabolic-like profiles of the end-monomer distributions are obtained. Furthermore, a region of high concentration of polymer segments is observed in the monomer density distribution for long homopolymers. In the case of copolymer-decorated NPs, the repulsion between PS and PVP blocks is found to substantially influence the radius of gyration and the shape of the end-monomer distribution of the relevant polymer shell. Moreover, for diblock chains, the un-swollen region is observed to be thinner (and, correspondingly, the swollen layer thicker) than that of a NP modified with a homopolymer of the same length. Finally, the lateral segregation of PS and PVP blocks is evidenced by our calculations and a detailed analysis of the corona behavior is reported, thus revealing the key parameters in controlling the surface properties and the response of diblock copolymer modified nanoparticles. PMID:26980360

  1. Prevalence and mutation analysis of short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) detected on newborn screening in Wisconsin.

    PubMed

    Van Calcar, Sandra C; Baker, Mei W; Williams, Phillip; Jones, Susan A; Xiong, Blia; Thao, Mai Choua; Lee, Sheng; Yang, Mai Khou; Rice, Greg M; Rhead, William; Vockley, Jerry; Hoffman, Gary; Durkin, Maureen S

    2013-01-01

    Short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD), also called 2-methylbutyryl CoA dehydrogenase deficiency (2-MBCDD), is a disorder of l-isoleucine metabolism of uncertain clinical significance. SBCADD is inadvertently detected on expanded newborn screening by elevated 2-methylbutyrylcarnitine (C5), which has the same mass to charge (m/s) on tandem mass spectrometry (MS/MS) as isovalerylcarnitine (C5), an analyte that is elevated in isovaleric acidemia (IVA), a disorder in leucine metabolism. SBCADD cases identified in the Hmong-American population have been found in association with the c.1165 A>G mutation in the ACADSB gene. The purposes of this study were to: (a) estimate the prevalence of SBCADD and carrier frequency of the c.1165 A>G mutation in the Hmong ethnic group; (b) determine whether the c.1165 A>G mutation is common to all Hmong newborns screening positive for SBCADD; and (c) evaluate C5 acylcarnitine cut-off values to detect and distinguish between SBCADD and IVA diagnoses. During the first 10years of expanded newborn screening using MS/MS in Wisconsin (2001-2011), 97 infants had elevated C5 values (≥0.44μmol/L), of whom five were Caucasian infants confirmed to have IVA. Of the remaining 92 confirmed SBCADD cases, 90 were of Hmong descent. Mutation analysis was completed on an anonymous, random sample of newborn screening cards (n=1139) from Hmong infants. Fifteen infants, including nine who had screened positive for SBCADD based on a C5 acylcarnitine concentration ≥0.44μmol/L, were homozygous for the c.1165 A>G mutation. This corresponds to a prevalence in this ethnic group of being homozygous for the mutation of 1.3% (95% confidence interval 0.8-2.2%) and of being heterozygous for the mutation of 21.8% (95% confidence interval 19.4-24.3%), which is consistent with the Hardy-Weinberg equilibrium. Detection of homozygous individuals who were not identified on newborn screening suggests that the C5 screening cut-off would need to

  2. Prevalence and mutation analysis of short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) detected on newborn screening in Wisconsin

    PubMed Central

    Van Calcar, Sandra C.; Baker, Mei W.; Williams, Phillip; Jones, Susan A.; Xiong, Blia; Thao, Mai Choua; Lee, Sheng; Yang, Mai Khou; Rice, Greg M.; Rhead, William; Vockley, Jerry; Hoffman, Gary; Durkin, Maureen S.

    2015-01-01

    Short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD), also called 2-methylbutyryl CoA dehydrogenase deficiency (2-MBCDD), is a disorder of L-isoleucine metabolism of uncertain clinical significance. SBCADD is inadvertently detected on expanded newborn screening by elevated 2-methylbutyrylcarnitine (C5), which has the same mass to charge (m/s) on tandem mass spectrometry (MS/MS) as isovalerylcarnitine (C5), an analyte that is elevated in isovaleric acidemia (IVA), a disorder in leucine metabolism. SBCADD cases identified in the Hmong-American population have been found in association with the c.1165 A>G mutation in the ACADSB gene. The purposes of this study were to: (a) estimate the prevalence of SBCADD and carrier frequency of the c.1165 A>G mutation in the Hmong ethnic group; (b) determine whether the c.1 165 A>G mutation is common to all Hmong newborns screening positive for SBCADD; and (c) evaluate C5 acylcarnitine cut-off values to detect and distinguish between SBCADD and IVA diagnoses. During the first 10 years of expanded newborn screening using MS/MS in Wisconsin (2001–2011), 97 infants had elevated C5 values (≥0.44 μmol/L), of whom five were Caucasian infants confirmed to have IVA Of the remaining 92 confirmed SBCADD cases, 90 were of Hmong descent. Mutation analysis was completed on an anonymous, random sample of newborn screening cards (n = 1139) from Hmong infants. Fifteen infants, including nine who had screened positive for SBCADD based on a C5 acylcarnitine concentrations ≥0.44 μmol/L, were homozygous for the c.1165 A>G mutation. This corresponds to a prevalence in this ethnic group of being homozygous for the mutation of 1.3% (95% confidence interval 0.8–2.2%) and of being heterozygous for the mutation of 21.8% (95% confidence interval 19.4–24.3%), which is consistent with the Hardy-Weinberg equilibrium. Detection of homozygous individuals who were not identified on newborn screening suggests that the C5 screening cut

  3. The effect of the cation alkyl chain length on density and diffusion in dialkylpyrrolidinium bis(mandelato)borate ionic liquids.

    PubMed

    Filippov, Andrei; Taher, Mamoun; Shah, Faiz Ullah; Glavatskih, Sergei; Antzutkin, Oleg N

    2014-12-28

    The physicochemical properties of ionic liquids are strongly affected by the selective combination of the cations and anions comprising the ionic liquid. In particular, the length of the alkyl chains of ions has a clear influence on the ionic liquid's performance. In this paper, we study the self-diffusion of ions in a series of halogen-free boron-based ionic liquids (hf-BILs) containing bis(mandelato)borate anions and dialkylpyrrolidinium cations with long alkyl chains CnH2n+1 with n from 4 to 14 within a temperature range of 293-373 K. It was found that the hf-BILs with n = 4-7 have very similar diffusion coefficients, while hf-BILs with n = 10-14 exhibit two liquid sub-phases in almost the entire temperature range studied (293-353 K). Both liquid sub-phases differ in their diffusion coefficients, while values of the slower diffusion coefficients are close to those of hf-BILs with shorter alkyl chains. To explain the particular dependence of diffusion on the alkyl chain length, we examined the densities of the hf-BILs studied here. It was shown that the dependence of the density on the number of CH2 groups in long alkyl chains of cations can be accurately described using a "mosaic type" model, where regions of long alkyl chains of cations (named 'aliphatic' regions) and the residual chemical moieties in both cations and anions (named 'ionic' regions) give additive contributions. Changes in density due to an increase in temperature and the number of CH2 groups in the long alkyl chains of cations are determined predominantly by changes in the free volume of the 'ionic' regions, while 'aliphatic' regions are already highly compressed by van der Waals forces, which results in only infinitesimal changes in their free volumes with temperature.

  4. Study on the biosynthesis of dolichol in yeast: recognition of the prenyl chain length in polyprenol reduction.

    PubMed

    Tateyama, S; Sagami, H

    2001-02-01

    We synthesized three water-soluble biotin-tagged compounds with different prenyl chain lengths, biotinylated farnesal (BF), biotinylated C(55)-polyprenal (BP55), and biotinylated C(80)-polyprenal (BP80), and examined their effects on in vitro dolichol synthesis from farnesyl diphosphate. BF and BP55 did not affect the dolichol synthesis, whereas BP80 inhibited the reduction pathway from polyprenol to dolichol, accompanied by a decrease in the entire polyprenol and dolichol synthesis. Comparison of BP80 with eighteen detergents, including Triton X-100, CHAPS, octylglucoside, deoxycholate, and Tween 80, revealed the specific effect of BP80 on the reduction pathway. On SDS-polyacrylamide gel electrophoresis, BP80 was detected in an associated form with a 50 kDa protein. These results suggest that the reduction of polyprenol to dolichol in the dolichol biosynthetic pathway proceeds with the recognition of the polyprenol chain length by a 50 kDa protein.

  5. Effects of alkyl chain length on the optoelectronic properties and performance of pyrrolo-perylene solar cells.

    PubMed

    Liu, Xianqing; Kim, Yu Jin; Ha, Yeon Hee; Zhao, Qinghua; Park, Chan Eon; Kim, Yun-Hi

    2015-04-29

    While the impact of alkyl side-chain length on the photovoltaic properties of conjugated polymers and their performance in bulk heterojunction (BHJ) solar cells has been studied extensively, analogous studies on pyrrolo-perylene-based polymers have not received adequate attention. To explore these effects, we synthesized two copolymers based on N-annulated pyrrolo-perylene and consisting of cyano group substituents on thiophene vinylene thiophene units with two different alkyl groups of 2-decyltetradecyl and 7-decylnonadecyl, and we studied them with regard to chemical structure and photovoltaic performance. UV-vis spectroscopy and cyclic voltammetry studies showed that variations in alkyl chain length affect crystallization, light absorption, and the highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels. These factors have a pronounced impact on the morphology of BHJ thin films and their charge carrier separation and transportation characteristics, which, in turn, influences photovoltaic properties.

  6. Impact of glucose polymer chain length on heat and physical stability of milk protein-carbohydrate nutritional beverages.

    PubMed

    Chen, Biye; O'Mahony, James A

    2016-11-15

    This study investigated the impact of glucose polymer chain length on heat and physical stability of milk protein isolate (MPI)-carbohydrate nutritional beverages containing 8.5% w/w total protein and 5% w/w carbohydrate. The maltodextrin and corn syrup solids glucose polymers used had dextrose equivalent (DE) values of 17 or 38, respectively. Increasing DE value of the glucose polymers resulted in a greater increase in brown colour development, ionic calcium, protein particle size, apparent viscosity and pseudoplastic rheological behaviour, and greater reduction in pH, hydration and heat stability on sterilisation at 120°C. Incorporation of glucose polymers with MPI retarded sedimentation of protein during accelerated physical stability testing, with maltodextrin DE17 causing a greater reduction in sedimentation velocity and compressibility of sediment formed than corn syrup solids DE38. The results demonstrate that chain length of the glucose polymer used strongly impacts heat and physical stability of MPI-carbohydrate nutritional beverages.

  7. Achlorophyllous alga Prototheca zopfii oxidizes n-alkanes with different carbon-chain lengths through a unique subterminal oxidation pathway.

    PubMed

    Takimura, Yasushi; Sakuradani, Eiji; Natsume, Yusuke; Miyake, Takashi; Ogawa, Jun; Shimizu, Sakayu

    2014-03-01

    Some Prototheca spp. were previously reported to convert n-hexadecane to 5-hexadecanol and then to 5-hexadecanone through a unique subterminal oxidation pathway. Further analysis of derivatives derived from n-hexadecane indicated that Prototheca zopfii oxidized n-alkanes with C11 to C17 chain lengths at not only the 5th but also the 4th, 3rd and 2nd positions. PMID:24099955

  8. Atomistic Simulations of the Effects of Polyglutamine Chain Length and Solvent Quality on Conformational Equilibria and Spontaneous Homodimerization

    PubMed Central

    Vitalis, Andreas; Wang, Xiaoling; Pappu, Rohit V.

    2009-01-01

    Summary Aggregation of expanded polyglutamine tracts is associated with nine different neurodegenerative diseases, including Huntington’s disease. Experiments and computer simulations have demonstrated that monomeric forms of polyglutamine molecules sample heterogeneous sets of collapsed structures in water. The current work focuses on a mechanistic characterization of polyglutamine homodimerization as a function of chain length and temperature. These studies were carried out using molecular simulations based on a recently developed continuum solvation model that was designed for studying conformational and binding equilibria of intrinsically disordered molecules such as polyglutamine systems. The main results are as follows: Polyglutamine molecules form disordered, collapsed globules in aqueous solution. These molecules spontaneously associate at conditions approaching those of typical in vitro experiments for chains of length N ≥ 15. The spontaneity of these homotypic associations increases with increasing chain length and decreases with increasing temperature. Similar and generic driving forces govern both collapse and spontaneous homodimerization of polyglutamine in aqueous milieus. Collapse and dimerization maximize self-interactions and reduce the interface between polyglutamine molecules and the surrounding solvent. Other than these generic considerations, there do not appear to be any specific structural requirements for either chain collapse or chain dimerization, i.e., both collapse and dimerization are non-specific in that disordered globules form disordered dimers. In fact, it is shown that the driving force for intermolecular associations is governed by spontaneous conformational fluctuations within monomeric polyglutamine. These results suggest that polyglutamine aggregation is unlikely to follow a homogeneous nucleation mechanism with the monomer as the critical nucleus. Instead, the results support the formation of disordered, non beta

  9. The Impact of Chain Length and Flexibility in the Interaction between Sulfated Alginates and HGF and FGF-2.

    PubMed

    Arlov, Øystein; Aachmann, Finn L; Feyzi, Emadoldin; Sundan, Anders; Skjåk-Bræk, Gudmund

    2015-11-01

    Alginate is a promising polysaccharide for use in biomaterials as it is biologically inert. One way to functionalize alginate is by chemical sulfation to emulate sulfated glycosaminoglycans, which interact with a variety of proteins critical for tissue development and homeostasis. In the present work we studied the impact of chain length and flexibility of sulfated alginates for interactions with FGF-2 and HGF. Both growth factors interact with defined sequences of heparan sulfate (HS) at the cell surface or in the extracellular matrix. Whereas FGF-2 interacts with a pentasaccharide sequence containing a critical 2-O-sulfated iduronic acid, HGF has been suggested to require a highly sulfated HS/heparin octasaccharide. Here, oligosaccharides of alternating mannuronic and guluronic acid (MG) were sulfated and assessed by their relative efficacy at releasing growth factor bound to the surface of myeloma cells. 8-mers of sulfated MG (SMG) alginate showed significant HGF release compared to shorter fragments, while the maximum efficacy was achieved at a chain length average of 14 monosaccharides. FGF-2 release required a higher concentration of the SMG fragments, and the 14-mer was less potent compared to an equally sulfated high-molecular weight SMG. Sulfated mannuronan (SM) was subjected to periodate oxidation to increase chain flexibility. To assess the change in flexibility, the persistence length was estimated by SEC-MALLS analysis and the Bohdanecky approach to the worm-like chain model. A high degree of oxidation of SM resulted in approximately twice as potent HGF release compared to the nonoxidized SM alginate. The release of FGF-2 also increased with the degree of oxidation, but to a lower degree compared to that of HGF. It was found that the SM alginates were more efficient at releasing FGF-2 than the SMG alginates, indicating a greater dependence on monosaccharide identity and charge orientation over chain flexibility and charge density. PMID:26406104

  10. Formulation of oil-in-water β-carotene microemulsions: effect of oil type and fatty acid chain length.

    PubMed

    Roohinejad, Shahin; Oey, Indrawati; Wen, Jingyuan; Lee, Sung Je; Everett, David W; Burritt, David J

    2015-05-01

    The impact of oil type and fatty acid chain length on the development of food-grade microemulsions for the entrapment of β-carotene was investigated. The microemulsion region of a ternary phase diagram containing short chain monoglycerides was larger than for di- and triglycerides when Tween 80 was used as surfactant. The cytotoxicity of microemulsions composed of a 30% monoglyceride oil, 20% Tween 80 and 50% aqueous buffer were evaluated using an in vitro cell culture model (human epithelial colorectal adenocarcinoma, Caco-2). The cytotoxicity test showed that the viability of Caco-2 cells against β-carotene microemulsions at concentrations of 0.03125% (v/v) was higher than 90%. This study suggests that short chain monoglycerides could be used with Tween 80 to prepare transparent β-carotene-encapsulated O/W microemulsions in the particle size range of 12-100 nm. PMID:25529680

  11. Chain length affects pancreatic lipase activity and the extent and pH-time profile of triglyceride lipolysis.

    PubMed

    Benito-Gallo, Paloma; Franceschetto, Alessandro; Wong, Jonathan C M; Marlow, Maria; Zann, Vanessa; Scholes, Peter; Gershkovich, Pavel

    2015-06-01

    Triglycerides (TG) are one of the most common excipients used in oral lipid-based formulations. The chain length of the TG plays an important role in the oral bioavailability of the co-administered drug. Fatty acid (FA) chain-length specificity of porcine pancreatic lipase was studied by means of an in vitro lipolysis model under bio-relevant conditions at pH 6.80. In order to determine the total extent of lipolysis, back-titration experiments at pH 11.50 were performed. Results suggest that there is a specific chain length range (C2-C8) for which pancreatic lipase shows higher activity. This specificity could result from a combination of physicochemical properties of TGs, 2-monoglycerides (2-MGs) and FAs, namely the droplet size of the TGs, the solubility of 2-MGs within mixed micelles, and the relative stability of the FAs as leaving groups in the hydrolysis reaction. During experimentation, it was evident that an optimisation of lipolysis conditions was needed for tighter control over pH levels so as to better mimic in vivo conditions. 1M NaOH, 3.5 mL/min maximum dosing rate, and 3 μL/min minimum dosing rate were the optimised set of conditions that allowed better pH control, as well as the differentiation of the lipolysis of different lipid loads.

  12. Photoinitiated electron transfer to selected physisorbed alkyl bromides: The effects of alkyl chain length on dissociation cross sections

    SciTech Connect

    Khan, K.A.; Camillone, N. III; Osgood, R.M. Jr.

    1999-06-01

    We report the results of measurements of the cross section as a function of wavelength (351, 248, and 193 nm) for photoinitiated dissociative electron attachment to three normal alkyl bromides [CH{sub 3}(CH{sub 2}){sub n{minus}1}Br, n=1, 2, and 3] physisorbed on GaAs(110). Upon UV exposure, the molecules undergo C{endash}Br bond cleavage due to a substrate-mediated electron-transfer process. The cross sections for all three molecules increase monotonically with decreasing wavelength. Our results suggest a {approximately}1 eV higher threshold for dissociation of ethyl and propyl bromide than for methyl bromide. A simple model of the electron-transfer process is employed to estimate the peak per-electron cross section for dissociative attachment in the monolayer. We find that the cross sections for the physisorbed molecules are approximately five times smaller than those for gas-phase molecules, due to a reduction in the lifetime of the molecular anion in the vicinity of the surface. In addition, we also find an increase in cross section with chain length very similar to that observed in the gas phase; the gas-phase behavior has been explained by an increase in the anion lifetime with chain length. Our results suggest that while quenching of the molecular anion at the surface is important, it does not eliminate the progression of anion lifetime with chain length. {copyright} {ital 1999 American Institute of Physics.}

  13. Chain length affects pancreatic lipase activity and the extent and pH-time profile of triglyceride lipolysis.

    PubMed

    Benito-Gallo, Paloma; Franceschetto, Alessandro; Wong, Jonathan C M; Marlow, Maria; Zann, Vanessa; Scholes, Peter; Gershkovich, Pavel

    2015-06-01

    Triglycerides (TG) are one of the most common excipients used in oral lipid-based formulations. The chain length of the TG plays an important role in the oral bioavailability of the co-administered drug. Fatty acid (FA) chain-length specificity of porcine pancreatic lipase was studied by means of an in vitro lipolysis model under bio-relevant conditions at pH 6.80. In order to determine the total extent of lipolysis, back-titration experiments at pH 11.50 were performed. Results suggest that there is a specific chain length range (C2-C8) for which pancreatic lipase shows higher activity. This specificity could result from a combination of physicochemical properties of TGs, 2-monoglycerides (2-MGs) and FAs, namely the droplet size of the TGs, the solubility of 2-MGs within mixed micelles, and the relative stability of the FAs as leaving groups in the hydrolysis reaction. During experimentation, it was evident that an optimisation of lipolysis conditions was needed for tighter control over pH levels so as to better mimic in vivo conditions. 1M NaOH, 3.5 mL/min maximum dosing rate, and 3 μL/min minimum dosing rate were the optimised set of conditions that allowed better pH control, as well as the differentiation of the lipolysis of different lipid loads. PMID:25936853

  14. Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism.

    PubMed

    Pougovkina, Olga; Te Brinke, Heleen; Wanders, Ronald J A; Houten, Sander M; de Boer, Vincent C J

    2014-09-01

    Inherited disorders of acyl-CoA metabolism, such as defects in amino acid metabolism and fatty acid oxidation can present with severe clinical symptoms either neonatally or later in life, but the pathophysiological mechanisms are often incompletely understood. We now report the discovery of a novel biochemical mechanism that could contribute to the pathophysiology of these disorders. We identified increased protein lysine butyrylation in short-chain acyl-CoA dehydrogenase (SCAD) deficient mice as a result of the accumulation of butyryl-CoA. Similarly, in SCAD deficient fibroblasts, lysine butyrylation was increased. Furthermore, malonyl-CoA decarboxylase (MCD) deficient patient cells had increased levels of malonylated lysines and propionyl-CoA carboxylase (PCC) deficient patient cells had increased propionylation of lysines. Since lysine acylation can greatly impact protein function, aberrant lysine acylation in inherited disorders associated with acyl-CoA accumulation may well play a role in their disease pathophysiology. PMID:24531926

  15. Modification of alkanethiolate monolayers by O(3P) atomic oxygen: effect of chain length and surface temperature.

    PubMed

    Yuan, Hanqiu; Gibson, K D; Li, Wenxin; Sibener, S J

    2013-04-25

    We have conducted a comprehensive study of ground-state O((3)P) atomic oxygen reactions with 1-hexadecanethiolate (CH3(CH2)15SH) and 1-undecanethiolate (CH3(CH2)10SH) self-assembled monolayers adsorbed onto Au/mica substrates, using X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, ellipsometry, and contact angle measurements. In general, the reactions are not limited to the terminal methyl groups. Apparently, the incident O((3)P) (translational energy per atom of 0.11 kJ mol(-1)) can penetrate below the surface of the monolayer. The ability of the atoms to penetrate, and thus the reaction rate of the backbone -CH2-, is dependent upon both the temperature and the chain length, with the longer chain having a large difference between the rate at room temperature and 150 K. In particular, the long-chain SAM exhibits clearly reduced reactivity with respect to the incident beam of atomic oxygen when the film is cooled to 150 K as compared to room temperature. This is a notable finding and demonstrates the crucial importance that structural order and dynamical fluctuations, both of which depend on chain length and substrate temperature, have in determining the surface passivation and protection characteristics of SAM overlayers with respect to attack by energetic reagents.

  16. New surfactants for EOR applications: Effect of chain length on performance

    NASA Astrophysics Data System (ADS)

    Mushtaq, Muhammad; Tan, Isa M.; Sagir, Muhammad

    2014-10-01

    Two surfactants were synthesized using natural oil derivative as raw material. The surfactants contained n-propoxy and n-hexoxy pendent chains. In this multistep synthesis, hydroxyl groups (OH) were successfully protected by the acetylation reaction and the subsequent sulfonation step produced sulfonated surfactants. The relative yield of sulfonation for hexoxy chain surfactant was found lower when compared to short chain propoxy surfactant. Steric hindrance and high viscosity were the factors which showed influence on the production yield. Both surfactants were found excellent performers in EOR evaluation tests. The surfactants were found tolerant against heat and mild salinity. Microemulsion was generated by both surfactants with crude oil resulting good solubilisation parameters. The surfactant with longer side chain (10-Acetoxy-9-hexoxy-2-sulfo-octadecanoic acid methyl ester) showed low interfacial tension (IFT) (0.019 mN/m) and high oil recovery (93.2%). The propoxy side chain surfactant (10-Acetoxy-9-propoxy-2-sulfo-octadecanoic acid methyl ester) showed 0.033 mN/m IFT and a recovery of 89.3 %. It is concluded that both surfactants are suitable for Chemical EOR applications.

  17. Identification and molecular characterization of acyl-CoA synthetase in human erythrocytes and erythroid precursors.

    PubMed

    Malhotra, K T; Malhotra, K; Lubin, B H; Kuypers, F A

    1999-11-15

    Full-length cDNA species encoding two forms of acyl-CoA synthetase from a K-562 human erythroleukaemic cell line were cloned, sequenced and expressed. The first form, named long-chain acyl-CoA synthetase 5 (LACS5), was found to be a novel, unreported, human acyl-CoA synthetase with high similarity to rat brain ACS2 (91% identical). The second form (66% identical with LACS5) was 97% identical with human liver LACS1. The LACS5 gene encodes a highly expressed 2.9 kb mRNA transcript in human haemopoietic stem cells from cord blood, bone marrow, reticulocytes and fetal blood cells derived from fetal liver. An additional 6.3 kb transcript is also found in these erythrocyte precursors; 2.9 and 9.6 kb transcripts of LACS5 are found in human brain, but transcripts are virtually absent from human heart, kidney, liver, lung, pancreas, spleen and skeletal muscle. The 78 kDa expressed LACS5 protein used the long-chain fatty acids palmitic acid, oleic acid and arachidonic acid as substrates. Antibodies directed against LACS5 cross-reacted with erythrocyte membranes. We conclude that early erythrocyte precursors express at least two different forms of acyl-CoA synthetase and that LACS5 is present in mature erythrocyte plasma membranes.

  18. Effect of perfluoroalkyl chain length on monolayer behavior of partially fluorinated oleic acid molecules at the air-water interface.

    PubMed

    Baba, Teruhiko; Takai, Katsuki; Takagi, Toshiyuki; Kanamori, Toshiyuki

    2013-01-01

    A series of oleic acid (OA) analogs containing terminal perfluoroalkyl groups (CF3, C2F5, n-C3F7, n-C4F9 or n-C8F17) was synthesized to clarify how the fluorinated chain length affects the stability and molecular packing of liquid-expanded OA monolayers at the air-water interface. Although the substitution of terminal CF3 group for CH3 in OA had no effect on monolayer stability, further fluorination led to a gradual increase in monolayer stability at 25 °C. Surface pressure-area isotherm revealed that partially fluorinated OA analogs form more expanded monolayers than OA at low surface pressures, and that the monolayer behavior of OA analogs with the even-carbon numbered fluorinated chain is almost the same as that of OA upon monolayer compression, whereas the behavior of OA analogs with the odd-carbon numbered fluorinated chain significantly differs from that of OA. These results indicate: (i) the terminal short part (at least C2 residue) in OA predominantly determines the liquid-expanded monolayer stability; (ii) the molecular packing state of OA may be perturbed by the substitution of a short odd-carbon numbered fluorinated chain; (iii) hence, OA analogs with even-carbon numbered chain are considered to be preferable as hydrophobic building blocks for the synthesis of fluorinated phospholipids.

  19. Impact of chain length, temperature, and humidity on the growth of long alkyltrichlorosilane self-assembled monolayers.

    PubMed

    Desbief, Simon; Patrone, Lionel; Goguenheim, Didier; Guérin, David; Vuillaume, Dominique

    2011-02-21

    In this work, we have studied the growth of self-assembled monolayers (SAMs) on silicon dioxide (SiO(2)) made of various long alkyltrichlorosilane chains (16, 18, 20, 24, and 30 carbon atoms in the alkyl chain), at several values of temperature (11 and 20 °C in most cases) and relative humidity (18 and 45% RH). Using atomic force microscopy analysis, thickness measurements by ellipsometry, and contact angle measurements, we have built a model of growth behaviour of SAMs of those molecules according to the deposition conditions and the chain length. Particularly, this work brings not only a better knowledge of the less studied growth of triacontyltrichlorosilane (C(30)H(61)SiCl(3)) SAMs but also new results on SAMs of tetracosyltrichlorosilane (C(24)H(49)SiCl(3)) that have not already been studied to our knowledge. We have shown that the SAM growth behaviour of triacontyltrichlorosilane at 20 °C and 45% RH is similar to that obtained at 11 °C and 45% RH for shorter molecules of hexadecyltrichlorosilane (C(16)H(33)SiCl(3)), octadecyltrichlorosilane (C(18)H(37)SiCl(3)), eicosyltrichlorosilane (C(20)H(41)SiCl(3)) and tetracosyltrichlorosilane (C(24)H(49)SiCl(3)). We have also observed that the monolayers grow faster at 45% than at 18% RH, and surprisingly slower at 20 °C than at 11 °C. Another important result is that the growth time constant decreases with the number of carbon atoms in the alkyl chain except for C(24)H(49)SiCl(3) at 11 °C and 18% RH, and for C(30)H(61)SiCl(3). To our knowledge, such a chain length dependence of the growth time constant has never been reported. The latter and all the other results are interpreted by adapting a diffusion limited aggregation growth model. PMID:21161113

  20. Effect of temperature and cationic chain length on the physical properties of ammonium nitrate-based protic ionic liquids.

    PubMed

    Capelo, S Bouzón; Méndez-Morales, T; Carrete, J; López Lago, E; Vila, J; Cabeza, O; Rodríguez, J R; Turmine, M; Varela, L M

    2012-09-13

    We report a systematic study of the effect of the cationic chain length and degree of hydrogen bonding on several equilibrium and transport properties of the first members of the alkylammonium nitrate protic ionic liquids (PILs) family (ethylammonium, propylammonium, and butylammonium nitrate) in the temperature range between 10 and 40 °C. These properties were observed by means of several experimental techniques, including density, surface tension, refractometry, viscosimetry, and conductimetry. The dilatation coefficients and compressibilities, as well as the Rao coefficients, were calculated, and an increase of these magnitudes with alkyl chain length was detected. Moreover, the surface entropies and enthalpies of the studied PILs were analyzed, and the temperature dependence of the surface tension was observed to be describable by means of a harmonic oscillator model with surface energies and critical temperatures that are increasing functions of the cationic chain length. Moreover, the refractive indexes were measured and the thermo-optic coefficient and Abbe numbers were calculated, and the contribution of the electrostrictive part seemed to dominate the temperature dependence of the electric polarization. The electric conductivity and the viscosity were measured and the influence of the degree of hydrogen bonding in the supercooled liquid region analyzed. Hysteresis loops were detected in freezing-melting cycles and the effect of the length of the alkyl chain of the cation on the size of the loop analyzed, showing that longer chains lead to a narrowing of the supercooled region. The temperature dependence of the conductivity was studied in the Vogel-Fulcher-Tamman (VFT) framework and the fragility indices, the effective activation energies, and the Vogel temperatures obtained. A high-temperature Arrhenius analysis was also performed, and the activation energies of conductivity and viscosity were calculated, showing that these transport processes are

  1. Effect of temperature and cationic chain length on the physical properties of ammonium nitrate-based protic ionic liquids.

    PubMed

    Capelo, S Bouzón; Méndez-Morales, T; Carrete, J; López Lago, E; Vila, J; Cabeza, O; Rodríguez, J R; Turmine, M; Varela, L M

    2012-09-13

    We report a systematic study of the effect of the cationic chain length and degree of hydrogen bonding on several equilibrium and transport properties of the first members of the alkylammonium nitrate protic ionic liquids (PILs) family (ethylammonium, propylammonium, and butylammonium nitrate) in the temperature range between 10 and 40 °C. These properties were observed by means of several experimental techniques, including density, surface tension, refractometry, viscosimetry, and conductimetry. The dilatation coefficients and compressibilities, as well as the Rao coefficients, were calculated, and an increase of these magnitudes with alkyl chain length was detected. Moreover, the surface entropies and enthalpies of the studied PILs were analyzed, and the temperature dependence of the surface tension was observed to be describable by means of a harmonic oscillator model with surface energies and critical temperatures that are increasing functions of the cationic chain length. Moreover, the refractive indexes were measured and the thermo-optic coefficient and Abbe numbers were calculated, and the contribution of the electrostrictive part seemed to dominate the temperature dependence of the electric polarization. The electric conductivity and the viscosity were measured and the influence of the degree of hydrogen bonding in the supercooled liquid region analyzed. Hysteresis loops were detected in freezing-melting cycles and the effect of the length of the alkyl chain of the cation on the size of the loop analyzed, showing that longer chains lead to a narrowing of the supercooled region. The temperature dependence of the conductivity was studied in the Vogel-Fulcher-Tamman (VFT) framework and the fragility indices, the effective activation energies, and the Vogel temperatures obtained. A high-temperature Arrhenius analysis was also performed, and the activation energies of conductivity and viscosity were calculated, showing that these transport processes are

  2. Molecular mobility depending on chain length and thermally induced molecular motion of n-alkane/urea inclusion compounds

    NASA Astrophysics Data System (ADS)

    Nakaoki, Takahiko; Nagano, Hiromasa; Yanagida, Toshinori

    2004-08-01

    Solid-state high resolution 13C NMR was used to analyze the end group conformation and molecular mobility of n-alkanes in a urea host as a function of the carbon number of the n-alkane. It was shown that the chemical shift of the inner methylenes could be interpreted by the γ- gauche effect. Of further interest is our finding that the chemical shift of 3-methylene is independent of both chain length and temperature, a result indicating that the torsional rotation of the bond ω 3 between the 4-methylene and 5-methylene carbons is so inhibited that there is little gauche conformation. The chemical shift of the inner methylenes indicated a different tendency between the even- and the odd-numbered n-alkanes. The fact that the signals of the even-numbered n-alkanes were observed at a comparatively more upfield location than those of the odd-numbered ones indicated that the even-numbered n-alkane had a higher molecular mobility and tended to adopt a more gauche conformation. The decomposition temperature obtained by thermal analysis also suggested a difference between the even- and odd-numbered n-alkanes. The decomposition temperature of the even-numbered n-alkane/urea inclusion compounds was a little lower than that of the odd-numbered ones, a disparity corresponding to the higher molecular mobility of the n-alkane in the urea host. The spin-lattice relaxation time ( T1C) increased with increasing chain length for chains with less than the 14 carbon atoms but reached a constant value for all longer chains. This result is completely different from that for the n-alkane crystal, which gave a longer T1C depending on the chain length, and can be explained by a reduced intermolecular interaction between the n-alkane and the urea host. Clearly, T1C measurements can be applied to confirm the formation of inclusion compounds. However, the different T1C values between the methyl, 2-, 3-, and inner methylene carbons indicates that the n-alkane molecule does not rotate so fast

  3. Ion solvation in polymer blends and block copolymer melts: effects of chain length and connectivity on the reorganization of dipoles.

    PubMed

    Nakamura, Issei

    2014-05-29

    We studied the thermodynamic properties of ion solvation in polymer blends and block copolymer melts and developed a dipolar self-consistent field theory for polymer mixtures. Our theory accounts for the chain connectivity of polymerized monomers, the compressibility of the liquid mixtures under electrostriction, the permanent and induced dipole moments of monomers, and the resultant dielectric contrast among species. In our coarse-grained model, dipoles are attached to the monomers and allowed to rotate freely in response to electrostatic fields. We demonstrate that a strong electrostatic field near an ion reorganizes dipolar monomers, resulting in nonmonotonic changes in the volume fraction profile and the dielectric function of the polymers with respect to those of simple liquid mixtures. For the parameter sets used, the spatial variations near an ion can be in the range of 1 nm or larger, producing significant differences in the solvation energy among simple liquid mixtures, polymer blends, and block copolymers. The solvation energy of an ion depends substantially on the chain length in block copolymers; thus, our theory predicts the preferential solvation of ions arising from differences in chain length.

  4. Dependence of buffer acidity and surfactant chain-length on electro-osmotic mobility in thermoplastic microchannels.

    PubMed

    Wang, Shau-Chun; Lee, Chia-Yu; Chen, Hsiao-Ping

    2005-04-15

    In this paper, we report the dependence of buffer pH and coating surfactant chain-length on electro-osmotic (EO) mobility in co-polyester microchannels. Thermoplastics co-polyester hydrolyzes to anionic functionality to create electrical double layer on the micro-channel walls. These negatively charged sites are partially or completely screened when long-chain surfactants are added into the buffer. This ancillary technique to modify surface charge polarity to avoid analyte adsorption is known as dynamic coating. We develop a theory to predict the EO mobility tendency on buffer acidity considering the combination of pH-dependent surfactant aggregation and surface dissociation. Our findings of pH-dependent EO mobility in coated channels, using three types of quaternary ammonium surfactants, lauryltrimethyammonium bromide (LTAB), trimethyl (tetradecyl) ammonium bromide (TTAB), and cetyltrimethyammonium bromide (CTAB), agree with our theoretical prediction. We also explain the chain-length dependence of mobility with a collaborative adsorption mechanism of surfactant aggregates.

  5. Polypropylene non-woven meshes with conformal glycosylated layer for lectin affinity adsorption: the effect of side chain length.

    PubMed

    Ye, Xiang-Yu; Huang, Xiao-Jun; Xu, Zhi-Kang

    2014-03-01

    The unique characteristics of polypropylene non-woven meshes (PPNWMs), like random network of overlapped fibers, multiple connected pores and overall high porosity, make them high potentials for use as separation or adsorption media. Meanwhile, carbohydrates can specifically recognize certain lectin through multivalent interactions. Therefore glycosylated PPNWMs, combing the merits of both, can be regarded as superior affinity membranes for lectin adsorption and purification. Here, we describe a versatile strategy for the glycosylation of PPNWMs. Two hydrophilic polymers with different side chain length, poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA), were first conformally tethered on the polypropylene fiber surface by a modified plasma pretreatment and benzophenone (BP) entrapment UV irradiation process. Then glucose ligands were bound through the reaction between the hydroxyl group and acetyl glucose. Chemical changes of the PPNWMs surface were monitored by FT-IR/ATR. SEM pictures show that conformal glucose ligands can be achieved through the modified process. After deprotection, the glycosylated PPNWMs became superhydrophilic and had high specific recognition capability toward Concanavalin A (Con A). Static Con A adsorption experiments were further performed and the results indicate that fast adsorption kinetics and high binding capacity can be accomplished at the same time. We also found that increasing the side chain length of polymer brushes had positive effect on protein binding capacity due to improved chain mobility. Model studies suggest a multilayer adsorption behavior of Con A. PMID:24398082

  6. Enhanced target recognition of nanoparticles by cocktail PEGylation with chains of varying lengths.

    PubMed

    Ishii, Takehiko; Miyata, Kanjiro; Anraku, Yasutaka; Naito, Mitsuru; Yi, Yu; Jinbo, Takao; Takae, Seiji; Fukusato, Yu; Hori, Mao; Osada, Kensuke; Kataoka, Kazunori

    2016-01-25

    Monodispersed gold nanoparticles (AuNPs) were simultaneously decorated with lactosylated and non-modified shorter poly(ethylene glycol)s (PEGs) to enhance their target recognition. The decoration with sufficiently shorter PEGs dramatically enhanced the multivalent binding ability of lactosylated AuNPs to the lectin-fixed surface, possibly due to the enhanced mobility of the ligands via the spacer effect generated by the shorter PEG chains. PMID:26658952

  7. Multiplex time-reducing quantitative polymerase chain reaction assay for determination of telomere length in blood and tissue DNA.

    PubMed

    Jiao, Jingjing; Kang, Jing X; Tan, Rui; Wang, Jingdong; Zhang, Yu

    2012-04-01

    In this paper we describe a multiplex time-reducing quantitative polymerase chain reaction (qPCR) method for determination of telomere length. This multiplex qPCR assay enables two pairs of primers to simultaneously amplify telomere and single copy gene (albumin) templates, thus reducing analysis time and labor compared with the previously established singleplex assay. The chemical composition of the master mix and primers for the telomere and albumin were systematically optimized. The thermal cycling program was designed to ensure complete separation of the melting processes of the telomere and albumin. Semi-log standard curves of DNA concentration versus cycle threshold (C (t)) were established, with a linear relationship over an 81-fold DNA concentration range. The well-performed intra-assay (RSD range 2.4-4.7%) and inter-assay (RSD range: 3.1-5.0%) reproducibility were demonstrated to ensure measurement stability. Using wild-type, Lewis lung carcinoma and H22 liver carcinoma C57BL/6 mouse models, significantly different telomere lengths among different DNA samples were not observed in wild-type mice. However, the relative telomere lengths of the tumor DNA in the two strains of tumor-bearing mice were significantly shorter than the lengths in the surrounding non-tumor DNA of tumor-bearing mice and the tissue DNA of wild-type mice. These results suggest that the shortening of telomere lengths may be regarded as an important indicator for cancer control and prevention. Quantification of telomere lengths was further confirmed by the traditional Southern blotting method. This method could be successfully used to reduce the time needed for rapid, precise measurement of telomere lengths in biological samples.

  8. Room temperature ionic liquids: A simple model. Effect of chain length and size of intermolecular potential on critical temperature.

    PubMed

    Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando

    2015-04-21

    A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.

  9. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities

    PubMed Central

    Zhou, Han; Li, Fang; Weir, Michael D.; Xu, Hockin H.K.

    2013-01-01

    Objectives Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Methods Six QAMs were synthesized with CL = 3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond Multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL = 16) was mixed into SBMP at mass fraction = 0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4 hours. Biofilm colony-forming units (CFU) were measured at 2 days. Results Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL = 16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Conclusions Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. PMID:23948394

  10. Immobilization of Lipases on Alkyl Silane Modified Magnetic Nanoparticles: Effect of Alkyl Chain Length on Enzyme Activity

    PubMed Central

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R.

    2012-01-01

    Background Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Methodology/Principal Findings Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe3O4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. Conclusions/Significance The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization

  11. LasR receptor for detection of long-chain quorum-sensing signals: identification of N-acyl-homoserine lactones encoded by the avsI locus of Agrobacterium vitis.

    PubMed

    Savka, Michael A; Le, Phuong T; Burr, Thomas J

    2011-01-01

    Bacterial biosensor strains have greatly facilitated the rapid discovery, isolation, and study of quorum-sensing systems. In this study, we determined the relative sensitivity of a LasR-based E. coli bacterial bioluminescence biosensor JM109 (pSB1075) for 13 diverse long-chain N-acyl-homoserine lactones (AHLs) including oxygen-substituted and -unsubstituted AHLs containing 14, 16, and 18 carbons and with and without double bonds. Furthermore, we show by bioassay, HPLC, and GC/MS that four long-chain AHLs of the C16-HSL family are encoded by the avsI gene of Agrobacterium vitis strain F2/5, a non-tumorigenic strain that inhibits pathogenic strains of A. vitis from causing crown gall on grape. The four C16-HSLs include: C16-HSL, N-hexadecanoyl homoserine lactone; 3-oxo-C16-HSL, N-(3-oxohexadecanoyl)homoserine lactone; C16:1-HSL, N-(cis-9-octadecenoyl)homoserine lactone; and 3-oxo-C16:1-HSL, N-(3-oxo-cis-11-hexadecenoyl)homoserine lactone. Thus, the LasR-based bioluminescent biosensor tested in this study should serve as a useful tool for the detection of various long-chain AHLs with and without double bonds as well as those oxylated at the third carbon from uninvestigated species. PMID:20514483

  12. On the possibility of using short chain length mono-carboxylic acids for stabilization of magnetic fluids

    NASA Astrophysics Data System (ADS)

    Avdeev, Mikhail V.; Bica, Doina; Vékás, Ladislau; Marinica, Oana; Balasoiu, Maria; Aksenov, Victor L.; Rosta, László; Garamus, Vasil M.; Schreyer, Andreas

    2007-04-01

    Short chain length mono-carboxylic acids (lauric and myristic acids) are used to coat magnetite nanoparticles in non-polar organic liquids, which results in highly stable magnetic fluids. The new fluids are compared with classical organic fluids stabilized by oleic acid (OA). Magnetic granulometry and small-angle neutron scattering (polarized mode) reveal a great difference in the particle size distribution function for the studied magnetic fluids, particularly a decrease in the characteristic particle radius of magnetite when lauric and myristic acids are used instead of OA.

  13. Novel triazolyl-functionalized chitosan derivatives with different chain lengths of aliphatic alcohol substituent: Design, synthesis, and antifungal activity.

    PubMed

    Li, Qing; Tan, Wenqiang; Zhang, Caili; Gu, Guodong; Guo, Zhanyong

    2015-12-11

    Chemical modification of chitosan is increasingly studied for its potential of providing new application for chitosan. Here, we modify chitosan at its primary hydroxyl via 'click chemistry', and a group of novel water soluble chitosan derivatives with substituted 1,2,3-triazolyl group were designed and synthesized. Aliphatic alcohols with different lengths were used as functional dendrons to improve the antifungal activity of chitosan derivatives. Meanwhile, their antifungal activity against two kinds of phytopathogens was estimated by hypha measurement in vitro. All the chitosan derivatives exhibited excellent activity against tested fungi. It is found that the antifungal activity of chitosan derivatives against the tested fungi increases with augment in the chain length of straight aliphatic alcohols. And the hydrophobic moiety (alkyl) at the periphery of the synthesized chitosan derivatives tends to affect their antifungal activity.

  14. Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by 1H NMR spectroscopy

    PubMed Central

    Yi, Ruiyang; Volden, Paul A.; Conzen, Suzanne D.

    2015-01-01

    Quantifying the amounts and types of lipids present in mixtures is important in fields as diverse as medicine, food science, and biochemistry. Nuclear magnetic resonance (NMR) spectroscopy can quantify the total amounts of saturated and unsaturated fatty acids in mixtures, but identifying the length of saturated fatty acid or the position of unsaturation by NMR is a daunting challenge. We have developed an NMR technique, aliphatic chain length by isotropic mixing, to address this problem. Using a selective total correlation spectroscopy technique to excite and transfer magnetization from a resolved resonance, we demonstrate that the time dependence of this transfer to another resolved site depends linearly on the number of aliphatic carbons separating the two sites. This technique is applied to complex natural mixtures allowing the identification and quantification of the constituent fatty acids. The method has been applied to whole adipocytes demonstrating that it will be of great use in studies of whole tissues. PMID:24831341

  15. PssP2 Is a Polysaccharide Co-Polymerase Involved in Exopolysaccharide Chain-Length Determination in Rhizobium leguminosarum

    PubMed Central

    Marczak, Małgorzata; Matysiak, Paulina; Kutkowska, Jolanta; Skorupska, Anna

    2014-01-01

    Production of extracellular polysaccharides is a complex process engaging proteins localized in different subcellular compartments, yet communicating with each other or even directly interacting in multicomponent complexes. Proteins involved in polymerization and transport of exopolysaccharide (EPS) in Rhizobium leguminosarum are encoded within the chromosomal Pss-I cluster. However, genes implicated in polysaccharide synthesis are common in rhizobia, with several homologues of pss genes identified in other regions of the R. leguminosarum genome. One such region is chromosomally located Pss-II encoding proteins homologous to known components of the Wzx/Wzy-dependent polysaccharide synthesis and transport systems. The pssP2 gene encodes a protein similar to polysaccharide co-polymerases involved in determination of the length of polysaccharide chains in capsule and O-antigen biosynthesis. In this work, a mutant with a disrupted pssP2 gene was constructed and its capabilities to produce EPS and enter into a symbiotic relationship with clover were studied. The pssP2 mutant, while not altered in lipopolysaccharide (LPS), displayed changes in molecular mass distribution profile of EPS. Lack of the full-length PssP2 protein resulted in a reduction of high molecular weight EPS, yet polymerized to a longer length than in the RtTA1 wild type. The mutant strain was also more efficient in symbiotic performance. The functional interrelation between PssP2 and proteins encoded within the Pss-I region was further supported by data from bacterial two-hybrid assays providing evidence for PssP2 interactions with PssT polymerase, as well as glycosyltransferase PssC. A possible role for PssP2 in a complex involved in EPS chain-length determination is discussed. PMID:25268738

  16. Physiological Consequences of Compartmentalized Acyl-CoA Metabolism*

    PubMed Central

    Cooper, Daniel E.; Young, Pamela A.; Klett, Eric L.; Coleman, Rosalind A.

    2015-01-01

    Meeting the complex physiological demands of mammalian life requires strict control of the metabolism of long-chain fatty acyl-CoAs because of the multiplicity of their cellular functions. Acyl-CoAs are substrates for energy production; stored within lipid droplets as triacylglycerol, cholesterol esters, and retinol esters; esterified to form membrane phospholipids; or used to activate transcriptional and signaling pathways. Indirect evidence suggests that acyl-CoAs do not wander freely within cells, but instead, are channeled into specific pathways. In this review, we will discuss the evidence for acyl-CoA compartmentalization, highlight the key modes of acyl-CoA regulation, and diagram potential mechanisms for controlling acyl-CoA partitioning. PMID:26124277

  17. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    NASA Astrophysics Data System (ADS)

    Das, Kaushik; Kundu, Sarathi

    2016-05-01

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba2+ ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (πc > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  18. Probing solvation decay length in order to characterize hydrophobicity-induced bead-bead attractive interactions in polymer chains.

    PubMed

    Das, Siddhartha; Chakraborty, Suman

    2011-08-01

    In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.

  19. Poly(ethylene glycol)-mediated molar mass control of short-chain- and medium-chain-length poly(hydroxyalkanoates) from Pseudomonas oleovorans.

    PubMed

    Ashby, R D; Solaiman, D K Y; Foglia, T A

    2002-10-01

    Three strains of Pseudomonas oleovorans, a well known poly(hydroxyalkanoate) (PHA) producer, were tested for the ability to control PHA molar mass and end group structure by addition of poly(ethylene glycol) (PEG) to the fermentation medium. Each strain of P. oleovorans - NRRL B-14682 (B-14682), NRRL B-14683 (B-14683), and NRRL B-778 (B-778) - synthesized a different type of PHA from oleic acid when cultured under identical growth conditions. Strain B-14682 produced poly(3-hydroxybutyrate) (PHB), while B-14683 synthesized a medium-chain-length PHA ( mcl-PHA) with a repeat unit composition ranging from C4 to C14 and some mono-unsaturation in the C14 alkyl side chains. Strain B-778 synthesized a mixture of PHB (95 mol%) and mcl-PHA (5 mol%). The addition of 0.5% (v/v) PEG (M(n) =200 g/mol, PEG-200) to the fermentation broth of strains B-14682 and B-778 resulted in chain termination through esterification at the carboxyl terminus of the PHB with PEG chain segments, thus reducing the molar mass by 54% and 23%, respectively. The molar mass of the mcl-PHA produced by strains B-14683 and B-778 also showed a 34% and 47% reduction in the presence of PEG-200, respectively, but no evidence of esterification was present. PEG-400 (M(n) =400 g/mol) had a reduced effect on PHA molar mass. In fact, the molar masses of the mcl-PHA derived from strain B-14683 and both the PHB and mcl-PHA from B-778 were unchanged by PEG-400. In contrast, the PHB produced by B-14682 showed a 35% reduction in molar mass in the presence of PEG-400. PMID:12382057

  20. An analytical approximation for the orientation-dependent excluded volume of tangent hard sphere chains of arbitrary chain length and flexibility

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Vlugt, Thijs J. H.; Gross, Joachim

    2012-07-01

    Onsager-like theories are commonly used to describe the phase behavior of nematic (only orientationally ordered) liquid crystals. A key ingredient in such theories is the orientation-dependent excluded volume of two molecules. Although for hard convex molecular models this is generally known in analytical form, for more realistic molecular models that incorporate intramolecular flexibility, one has to rely on approximations or on computationally expensive Monte Carlo techniques. In this work, we provide a general correlation for the excluded volume of tangent hard-sphere chains of arbitrary chain length and flexibility. The flexibility is introduced by means of the rod-coil model. The resulting correlation is of simple analytical form and accurately covers a wide range of pure component excluded volume data obtained from Monte Carlo simulations of two-chain molecules. The extension to mixtures follows naturally by applying simple combining rules for the parameters involved. The results for mixtures are also in good agreement with data from Monte Carlo simulations. We have expressed the excluded volume as a second order power series in sin (γ), where γ is the angle between the molecular axes. Such a representation is appealing since the solution of the Onsager Helmholtz energy functional usually involves an expansion of the excluded volume in Legendre coefficients. Both for pure components and mixtures, the correlation reduces to an exact expression in the limit of completely linear chains. The expression for mixtures, as derived in this work, is thereby an exact extension of the pure component result of Williamson and Jackson [Mol. Phys. 86, 819-836 (1995)], 10.1080/00268979500102391.

  1. DNA fragment length polymorphism analysis of Mycobacterium tuberculosis isolates by arbitrarily primed polymerase chain reaction.

    PubMed

    Palittapongarnpim, P; Chomyc, S; Fanning, A; Kunimoto, D

    1993-04-01

    Strain identification of Mycobacterium tuberculosis would prove whether transmission had occurred between individuals. A method to characterize strains of M. tuberculosis has been developed utilizing polymerase chain reaction (PCR). Purified chromosomal DNA of cultured clinical samples of M. tuberculosis were subjected to PCR using short (10-12 nucleotide) oligonucleotide primers. PCR products visualized after agarose gel electrophoresis and ethidium bromide staining demonstrated that different strains of M. tuberculosis give different banding patterns. This technique was used to confirm the relationship between cases of tuberculosis in several clusters, prove the lack of relationship between 2 isolates with the same antibiotic-resistance pattern, confirm a suspected mislabeling event, and suggest the source of infection in a case of tuberculous meningitis. This method is rapid and simple and does not require radioactive probes.

  2. How Alcohol Chain-Length and Concentration Modulate Hydrogen Bond Formation in a Lipid Bilayer

    PubMed Central

    Dickey, Allison N.; Faller, Roland

    2007-01-01

    Molecular dynamics simulations are used to measure the change in properties of a hydrated dipalmitoylphosphatidylcholine bilayer when solvated with ethanol, propanol, and butanol solutions. There are eight oxygen atoms in dipalmitoylphosphatidylcholine that serve as hydrogen bond acceptors, and two of the oxygen atoms participate in hydrogen bonds that exist for significantly longer time spans than the hydrogen bonds at the other six oxygen atoms for the ethanol and propanol simulations. We conclude that this is caused by the lipid head group conformation, where the two favored hydrogen-bonding sites are partially protected between the head group choline and the sn-2 carbonyl oxygen. We find that the concentration of the alcohol in the ethanol and propanol simulations does not have a significant influence on the locations of the alcohol/lipid hydrogen bonds, whereas the concentration does impact the locations of the butanol/lipid hydrogen bonds. The concentration is important for all three alcohol types when the lipid chain order is examined, where, with the exception of the high-concentration butanol simulation, the alcohol molecules having the longest hydrogen-bonding relaxation times at the favored carbonyl oxygen acceptor sites also have the largest order in the upper chain region. The lipid behavior in the high-concentration butanol simulation differs significantly from that of the other alcohol concentrations in the order parameter, head group rotational relaxation time, and alcohol/lipid hydrogen-bonding location and relaxation time. This appears to be the result of the system being very near to a phase transition, and one occurrence of lipid flip-flop is seen at this concentration. PMID:17218462

  3. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli.

    PubMed

    Wu, Hui; San, Ka-Yiu

    2014-11-01

    Free fatty acids (FFAs) can be used as precursors for the production of biofuels or chemicals. Different composition of FFAs will be useful for further modification of the biofuel/biochemical quality. Microbial biosynthesis of even chain FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into E. coli. In this study, odd straight medium chain FFAs production was investigated by using metabolic engineered E. coli carrying acyl-ACP thioesterase (TE, Ricinus communis), propionyl-CoA synthase (Salmonella enterica), and β-ketoacyl-acyl carrier protein synthase III (four different sources) with supplement of extracellular propionate. By using these metabolically engineered E. coli, significant quantity of C13 and C15 odd straight-chain FFAs could be produced from glucose and propionate. The highest concentration of total odd straight chain FFAs attained was 1205 mg/L by the strain HWK201 (pXZ18, pBHE2), and 85% of the odd straight chain FFAs was C15. However, the highest percentage of odd straight chain FFAs was achieved by the strain HWK201 (pXZ18, pBHE3) of 83.2% at 48 h. This strategy was also applied successfully in strains carrying different TE, such as the medium length acyl-ACP thioesterase gene from Umbellularia californica. C11 and C13 became the major odd straight-chain FFAs.

  4. Topology and acylation of spiralin.

    PubMed Central

    Wróblewski, H; Nyström, S; Blanchard, A; Wieslander, A

    1989-01-01

    Of the 51 polypeptides detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the plasma membrane of the helical mollicute Spiroplasma melliferum, 21 are acylated, predominantly with myristic (14:0) and palmitic (16:0) chains. This is notably the case for spiralin, the major membrane protein of this bacterium, which contains an average of 0.7 acyl chains per polypeptide, attached very probably by ester bonds to alcohol amino acids. The amphiphilicity of spiralin was demonstrated by the behavior of the protein in charge-shift electrophoresis, its incorporation into liposomes, and its ability to form in the absence of lipids and detergents, globular protein micelles (diameter, approximately 15 nm). The presence of epitopes on the two faces of the cell membrane, as probed by antibody adsorption and crossed immunoelectrophoresis, and the strong interaction between spiralin and the intracytoplasmic fibrils show that spiralin is a transmembrane protein. The mean hydropathy of the amino acid composition of spiralin (-0.30) is on the hydrophilic side of the scale. Surprisingly, the water-insoluble core of spiralin micelles, which is the putative membrane anchor, has a still more hydrophilic amino acid composition (mean hydropathy, -0.70) and is enriched in glycine and serine residues. Taking into account all these properties, we propose a topological model for spiralin featuring a transbilayer localization with hydrophilic domains protruding on the two faces of the membrane and connected by a small domain embedded within the apolar region of the lipid bilayer. In this model, the membrane anchoring of the protein is strengthened by a covalently bound acyl chain. Images PMID:2768198

  5. Stealth filaments: Polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X.

    PubMed

    Lee, Karin L; Shukla, Sourabh; Wu, Mengzhi; Ayat, Nadia R; El Sanadi, Caroline E; Wen, Amy M; Edelbrock, John F; Pokorski, Jonathan K; Commandeur, Ulrich; Dubyak, George R; Steinmetz, Nicole F

    2015-06-01

    Nanoparticles hold great promise for delivering medical cargos to cancerous tissues to enhance contrast and sensitivity of imaging agents or to increase specificity and efficacy of therapeutics. A growing body of data suggests that nanoparticle shape, in combination with surface chemistry, affects their in vivo fates, with elongated filaments showing enhanced tumor targeting and tissue penetration, while promoting immune evasion. The synthesis of high aspect ratio filamentous materials at the nanoscale remains challenging using synthetic routes; therefore we turned toward nature's materials, developing and studying the filamentous structures formed by the plant virus potato virus X (PVX). We recently demonstrated that PVX shows enhanced tumor homing in various preclinical models. Like other nanoparticle systems, the proteinaceous platform is cleared from circulation and tissues by the mononuclear phagocyte system (MPS). To increase bioavailability we set out to develop PEGylated stealth filaments and evaluate the effects of PEG chain length and conformation on pharmacokinetics, biodistribution, as well as potential immune and inflammatory responses. We demonstrate that PEGylation effectively reduces immune recognition while increasing pharmacokinetic profiles. Stealth filaments show reduced interaction with cells of the MPS; the protein:polymer hybrids are cleared from the body tissues within hours to days indicating biodegradability and biocompatibility. Tissue compatibility is indicated with no apparent inflammatory signaling in vivo. Tailoring PEG chain length and conformation (brush vs. mushroom) allows tuning of the pharmacokinetics, yielding long-circulating stealth filaments for applications in nanomedicine.

  6. Epigenetic Control of Salmonella enterica O-Antigen Chain Length: A Tradeoff between Virulence and Bacteriophage Resistance.

    PubMed

    Cota, Ignacio; Sánchez-Romero, María Antonia; Hernández, Sara B; Pucciarelli, M Graciela; García-Del Portillo, Francisco; Casadesús, Josep

    2015-11-01

    The Salmonella enterica opvAB operon is a horizontally-acquired locus that undergoes phase variation under Dam methylation control. The OpvA and OpvB proteins form intertwining ribbons in the inner membrane. Synthesis of OpvA and OpvB alters lipopolysaccharide O-antigen chain length and confers resistance to bacteriophages 9NA (Siphoviridae), Det7 (Myoviridae), and P22 (Podoviridae). These phages use the O-antigen as receptor. Because opvAB undergoes phase variation, S. enterica cultures contain subpopulations of opvABOFF and opvABON cells. In the presence of a bacteriophage that uses the O-antigen as receptor, the opvABOFF subpopulation is killed and the opvABON subpopulation is selected. Acquisition of phage resistance by phase variation of O-antigen chain length requires a payoff: opvAB expression reduces Salmonella virulence. However, phase variation permits resuscitation of the opvABOFF subpopulation as soon as phage challenge ceases. Phenotypic heterogeneity generated by opvAB phase variation thus preadapts Salmonella to survive phage challenge with a fitness cost that is transient only. PMID:26583926

  7. Epigenetic Control of Salmonella enterica O-Antigen Chain Length: A Tradeoff between Virulence and Bacteriophage Resistance

    PubMed Central

    Cota, Ignacio; Sánchez-Romero, María Antonia; Hernández, Sara B.; Pucciarelli, M. Graciela; García-del Portillo, Francisco; Casadesús, Josep

    2015-01-01

    The Salmonella enterica opvAB operon is a horizontally-acquired locus that undergoes phase variation under Dam methylation control. The OpvA and OpvB proteins form intertwining ribbons in the inner membrane. Synthesis of OpvA and OpvB alters lipopolysaccharide O-antigen chain length and confers resistance to bacteriophages 9NA (Siphoviridae), Det7 (Myoviridae), and P22 (Podoviridae). These phages use the O-antigen as receptor. Because opvAB undergoes phase variation, S. enterica cultures contain subpopulations of opvAB OFF and opvAB ON cells. In the presence of a bacteriophage that uses the O-antigen as receptor, the opvAB OFF subpopulation is killed and the opvAB ON subpopulation is selected. Acquisition of phage resistance by phase variation of O-antigen chain length requires a payoff: opvAB expression reduces Salmonella virulence. However, phase variation permits resuscitation of the opvAB OFF subpopulation as soon as phage challenge ceases. Phenotypic heterogeneity generated by opvAB phase variation thus preadapts Salmonella to survive phage challenge with a fitness cost that is transient only. PMID:26583926

  8. Rod shaped oxovanadium(IV) Schiff base complexes: Synthesis, mesomorphism and influence of flexible alkoxy chain lengths

    NASA Astrophysics Data System (ADS)

    Gupta, Bishop Dev; Datta, Chitraniva; Das, Gobinda; Bhattacharjee, Chira R.

    2014-06-01

    A series of oxovanadium(IV) complexes of bidentate [N,O] donor Schiff-base ligands of the type [VO(L)2], [L = N-(4-n-alkoxysalicylaldimine)-4‧-octadecyloxyaniline, n = 8, 10, 12, 14, 16 and 18] have been synthesized. The compounds were characterized by elemental analyses, Fourier transform infrared spectroscopy (FTIR), 1H, 13C nuclear magnetic resonance (NMR), ultraviolet-visible spectroscopy (UV-Vis), and fast atom bombardment (FAB) mass spectrometry. The mesomorphic behavior of the compounds was studied by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The ligands and complexes are all thermally stable exhibiting smectic mesomorphism. The ligands 8-OR to16-OR show SmC phase at ∼113-118 °C and an unidentified SmX phase reminiscent of soft crystal at ∼77-91 °C whereas the complexes all showed SmA phases. Interestingly the complexes with C10 and C12 alkoxy chain length exhibited additionally SmC phases also. The melting points of the ligands linearly increases whereas mesophase to isotropic transition temperature decreases as a function of increasing carbon chain length of alkoxy arm while no trend was apparently noticeable for the complexes.

  9. Synthesis and Photophysical Properties of Soluble Low-Bandgap Thienothiophene Polymers with Various Alkyl Side-Chain Lengths

    SciTech Connect

    Bae, W. J.; Scilla, C.; Duzhko, V. V.; Jo, Jang; Coughlin, E. B.

    2011-05-27

    We report the facile synthesis and characterization of a class of thienothiophene polymers with various lengths of alkyl side chains. A series of 2-alkylthieno[3,4-b]thiophene monomers (Ttx) have been synthesized in a two-step protocol in an overall yield of 28–37%. Poly(2-alkylthieno[3,4-b]thiophenes) (PTtx, alkyl: pentyl, hexyl, heptyl, octyl, and tridecyl) were synthesized by oxidative polymerization with FeCl₃ or via Grignard metathesis (GRIM) polymerization methods. The polymers are readily soluble in common organic solvents. The polymers synthesized by GRIM polymerization method (PTtx-G) have narrower molecular weight distribution (Ð) with lower molecular weight (Mn) than those synthesized by oxidative polymerization (PTtx-O). The band structures of the polymers with various lengths of alkyl side chains were investigated by UV–vis spectroscopy, cyclic voltammetry, and ultraviolet photoelectron spectroscopy. These low-bandgap polymers are good candidates for organic transistors, organic light-emitting diodes, and organic photovoltaic cells.

  10. Stealth filaments: polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X

    PubMed Central

    Lee, Karin L.; Shukla, Sourabh; Wu, Mengzhi; Ayat, Nadia R.; El Sanadi, Caroline E.; Wen, Amy M.; Edelbrock, John F.; Pokorski, Jonathan K.; Commandeur, Ulrich; Dubyak, George R.

    2015-01-01

    Nanoparticles hold great promise for delivering medical cargos to cancerous tissues to enhance contrast and sensitivity of imaging agents or to increase specificity and efficacy of therapeutics. A growing body of data suggests that nanoparticle shape, in combination with surface chemistry, affects their in vivo fates, with elongated filaments showing enhanced tumor targeting and tissue penetration, while promoting immune evasion. The synthesis of high aspect ratio filamentous materials at the nanoscale remains challenging using synthetic routes; therefore we turned toward nature’s materials, developing and studying the filamentous structures formed by the plant virus potato virus X (PVX). We recently demonstrated that PVX shows enhanced tumor homing in various preclinical models. Like other nanoparticle systems, the proteinaceous platform is cleared from circulation and tissues by the mononuclear phagocyte system (MPS). To increase bioavailability we set out to develop PEGylated stealth filaments and evaluate the effects of PEG chain length and conformation on pharmacokinetics, biodistribution, as well as potential immune and inflammatory responses. We demonstrate that PEGylation effectively reduces immune recognition while increasing pharmacokinetic profiles. Stealth filaments show biodistribution consistent with MPS clearance mechanisms; the protein:polymer hybrids are cleared from the body indicating biodegradability and biocompatibility. Tissue compatibility is indicated with no apparent inflammatory signaling in vivo. Tailoring PEG chain length and conformation (brush vs. mushroom) allows tuning of the pharmacokinetics, yielding long-circulating stealth filaments for applications in nanomedicine. PMID:25769228

  11. Modification of soy protein hydrolysates by Maillard reaction: Effects of carbohydrate chain length on structural and interfacial properties.

    PubMed

    Li, Weiwei; Zhao, Haibo; He, Zhiyong; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-02-01

    This study investigated the effects of carbohydrate chain length on the structural and interfacial properties of the Maillard reaction conjugates of soy protein hydrolysates (Mw>30 kDa). The covalent attachment of sugars to soy peptides was confirmed by amino acid analysis and examination of the Fourier-transform infrared spectra. The results suggested that the emulsion stability of the conjugates increased as the length of the carbohydrate chains increased. The surface activity measurement revealed that the soy peptide-dextran conjugates were closely packed and that each molecule occupied a small area of the interface. It was further confirmed that the soy peptide-dextran conjugates formed a thick adsorbed layer at the oil-water interface, as observed in the confocal laser scanning micrographs. The interfacial layer of soy peptides was rheologically complex with broad linear viscoelastic region and strong elastic modulus, and the soy peptide-dextran conjugates might form multilayer adsorption at the interface. This study suggested that the improved surface properties of the soy peptide-dextran conjugates were a result of the strong membrane formed by the closely packed molecular and multilayer adsorption at the interface, which provided steric hindrance to flocculation. PMID:26655794

  12. Epigenetic Control of Salmonella enterica O-Antigen Chain Length: A Tradeoff between Virulence and Bacteriophage Resistance.

    PubMed

    Cota, Ignacio; Sánchez-Romero, María Antonia; Hernández, Sara B; Pucciarelli, M Graciela; García-Del Portillo, Francisco; Casadesús, Josep

    2015-11-01

    The Salmonella enterica opvAB operon is a horizontally-acquired locus that undergoes phase variation under Dam methylation control. The OpvA and OpvB proteins form intertwining ribbons in the inner membrane. Synthesis of OpvA and OpvB alters lipopolysaccharide O-antigen chain length and confers resistance to bacteriophages 9NA (Siphoviridae), Det7 (Myoviridae), and P22 (Podoviridae). These phages use the O-antigen as receptor. Because opvAB undergoes phase variation, S. enterica cultures contain subpopulations of opvABOFF and opvABON cells. In the presence of a bacteriophage that uses the O-antigen as receptor, the opvABOFF subpopulation is killed and the opvABON subpopulation is selected. Acquisition of phage resistance by phase variation of O-antigen chain length requires a payoff: opvAB expression reduces Salmonella virulence. However, phase variation permits resuscitation of the opvABOFF subpopulation as soon as phage challenge ceases. Phenotypic heterogeneity generated by opvAB phase variation thus preadapts Salmonella to survive phage challenge with a fitness cost that is transient only.

  13. Electron mobility, free ion yields, and electron thermalization distances in n-alkane liquids: Effect of chain length

    NASA Astrophysics Data System (ADS)

    Gee, Norman; Senanayake, P. Chandani; Freeman, Gordon R.

    1988-09-01

    The electron mobility μo was measured as a function of temperature in liquid n-hexane, n-heptane, n-octane, n-nonane, and n-undecane, and at 295 K in n-pentane. Combination of these with earlier measurements of ours showed that μ0 at 295 K decreased monotonically with increasing carbon chain length in n-alkane liquids from ethane to n-tetradecane. There was no significant difference between odd and even carbon number compounds. The results were in accord with two-state interpretations of electron transport. Free ion yields were measured in liquid n-Cx H2x+2 (4≤x≤14, except 13) and electron thermalization ranges bGP were estimated using the extended Onsager model. The zero field free ion yield G0fi at 295 K decreased with increasing chain length. The density-normalized thermalization range of electrons was bGPd=(41±1)×10-7 kg/m2 in all n-alkanes from C4 to C14 under the conditions of this study.

  14. Impact of glucose polymer chain length on heat and physical stability of milk protein-carbohydrate nutritional beverages.

    PubMed

    Chen, Biye; O'Mahony, James A

    2016-11-15

    This study investigated the impact of glucose polymer chain length on heat and physical stability of milk protein isolate (MPI)-carbohydrate nutritional beverages containing 8.5% w/w total protein and 5% w/w carbohydrate. The maltodextrin and corn syrup solids glucose polymers used had dextrose equivalent (DE) values of 17 or 38, respectively. Increasing DE value of the glucose polymers resulted in a greater increase in brown colour development, ionic calcium, protein particle size, apparent viscosity and pseudoplastic rheological behaviour, and greater reduction in pH, hydration and heat stability on sterilisation at 120°C. Incorporation of glucose polymers with MPI retarded sedimentation of protein during accelerated physical stability testing, with maltodextrin DE17 causing a greater reduction in sedimentation velocity and compressibility of sediment formed than corn syrup solids DE38. The results demonstrate that chain length of the glucose polymer used strongly impacts heat and physical stability of MPI-carbohydrate nutritional beverages. PMID:27283657

  15. Calmodulin Polymerase Chain Reaction-Restriction Fragment Length Polymorphism for Leishmania Identification and Typing.

    PubMed

    Miranda, Aracelis; Samudio, Franklyn; González, Kadir; Saldaña, Azael; Brandão, Adeilton; Calzada, Jose E

    2016-08-01

    A precise identification of Leishmania species involved in human infections has epidemiological and clinical importance. Herein, we describe a preliminary validation of a restriction fragment length polymorphism assay, based on the calmodulin intergenic spacer region, as a tool for detecting and typing Leishmania species. After calmodulin amplification, the enzyme HaeIII yielded a clear distinction between reference strains of Leishmania mexicana, Leishmania amazonensis, Leishmania infantum, Leishmania lainsoni, and the rest of the Viannia reference species analyzed. The closely related Viannia species: Leishmania braziliensis, Leishmania panamensis, and Leishmania guyanensis, are separated in a subsequent digestion step with different restriction enzymes. We have developed a more accessible molecular protocol for Leishmania identification/typing based on the exploitation of part of the calmodulin gene. This methodology has the potential to become an additional tool for Leishmania species characterization and taxonomy.

  16. Deformation across length scales in polyolefines: effect of the chain microstructure on the polymorphism, phase transitions and morphological changes

    NASA Astrophysics Data System (ADS)

    Auriemma, Finizia; De Rosa, Claudio; di Girolamo, Rocco; Malafronte, Anna; Scoti, Miriam

    The transformations related to phase changes of the crystals, and at lamellar length scales by effect of tensile deformation are studied in the case of some isotactic polypropylene samples having high molecular mass, polydispersity index ~2, and stereodefects at different concentrations and with a uniform distribution, The stress induced transformations are followed in real time during stretching through wide and small angle X-ray scattering measurements. The data analysis evidences that during the transformations of the spherulitic into the fibrillar morphology, stress-induced phase transitions occurring during plastic deformation are regulated by the same factors that govern the textural and morphological changes, that is the ability of the entangled amorphous chains to transmit the stress and the intrinsic stability of the lamellar crystals. Since the relative stability of the different polymorphic forms involved in the structural transformations and the intrinsic flexibility of the chains depend on the stereoregularity, precise correlations between the stereoregularity of the chains, and the deformation behavior are outlined, paving the way for understanding the material properties at molecular level.

  17. Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications.

    PubMed

    Tortajada, Marta; da Silva, Luiziana Ferreira; Prieto, María Auxiliadora

    2013-03-01

    Polyhydroxyalkanoates (PHAs) are biodegradable biocompatible polyesters, which accumulate as granules in the cytoplasm of many bacteria under unbalanced growth conditions. Medium-chain-length PHAs (mcl-PHAs), characterized by C6-C14 branched monomer chains and typically produced by Pseudomonas species, are promising thermoelastomers, as they can be further modified by introducing functional groups in the side chains. Functionalized PHAs are obtained either by feeding structurally related substrates processed through the beta-oxidation pathway, or using specific strains able to transform sugars or glycerol into unsaturated PHA by de novo fatty-acid biosynthesis. Functionalized mcl-PHAs provide modified mechanical and thermal properties, and consequently have new processing requirements and highly diverse potential applications in emergent fields such as biomedicine. However, process development and sample availability are limited due to the toxicity of some precursors and still low productivity, which hinder investigation. Conversely, improved mutant strains designed through systems biology approaches and cofeeding with low-cost substrates may contribute to the widespread application of these biopolymers. This review focuses on recent developments in the production of functionalized mcl-PHAs, placing particular emphasis on strain and bioprocess design for cost-effective production.

  18. Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications.

    PubMed

    Tortajada, Marta; da Silva, Luiziana Ferreira; Prieto, María Auxiliadora

    2013-03-01

    Polyhydroxyalkanoates (PHAs) are biodegradable biocompatible polyesters, which accumulate as granules in the cytoplasm of many bacteria under unbalanced growth conditions. Medium-chain-length PHAs (mcl-PHAs), characterized by C6-C14 branched monomer chains and typically produced by Pseudomonas species, are promising thermoelastomers, as they can be further modified by introducing functional groups in the side chains. Functionalized PHAs are obtained either by feeding structurally related substrates processed through the beta-oxidation pathway, or using specific strains able to transform sugars or glycerol into unsaturated PHA by de novo fatty-acid biosynthesis. Functionalized mcl-PHAs provide modified mechanical and thermal properties, and consequently have new processing requirements and highly diverse potential applications in emergent fields such as biomedicine. However, process development and sample availability are limited due to the toxicity of some precursors and still low productivity, which hinder investigation. Conversely, improved mutant strains designed through systems biology approaches and cofeeding with low-cost substrates may contribute to the widespread application of these biopolymers. This review focuses on recent developments in the production of functionalized mcl-PHAs, placing particular emphasis on strain and bioprocess design for cost-effective production. PMID:24151777

  19. Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000

    NASA Astrophysics Data System (ADS)

    Grassberger, Peter

    1997-09-01

    We present an algorithm for simulating flexible chain polymers. It combines the Rosenbluth-Rosenbluth method with recursive enrichment. Although it can be applied also in more general situations, it is most efficient for three-dimensional θ polymers on the simple-cubic lattice. There it allows high statistics simulations of chains of length up to N=106. For storage reasons, this is feasable only for polymers in a finite volume. For free θ polymers in infinite volume, we present very high statistics runs with N=10 000. These simulations fully agree with previous simulations made by Hegger and Grassberger [J. Chem. Phys. 102, 6681 (1995)] with a similar but less efficient algorithm, showing that logarithmic corrections to mean field behavior are much stronger than predicted by field theory. But the finite volume simulations show that the density inside a collapsed globule scales with the distance from the θ point as predicted by mean field theory, in contrast to claims in the work mentioned above. In addition to the simple-cubic lattice, we also studied two versions of the bond fluctuation model, but with much shorter chains. Finally, we show that our method can be applied also to off-lattice models, and illustrate this with simulations of a model studied in detail by Freire et al. [Macromolecules 19, 452 (1986) and later work].

  20. The chain length of biologically produced (R)-3-hydroxyalkanoic acid affects biological activity and structure of anti-cancer peptides.

    PubMed

    Szwej, Emilia; Devocelle, Marc; Kenny, Shane; Guzik, Maciej; O'Connor, Stephen; Nikodinovic-Runic, Jasmina; Radivojevic, Jelena; Maslak, Veselin; Byrne, Annete T; Gallagher, William M; Zulian, Qun Ren; Zinn, Manfred; O'Connor, Kevin E

    2015-06-20

    Conjugation of DP18L peptide with (R)-3-hydroxydecanoic acid, derived from the biopolymer polyhydroxyalkanoate, enhances its anti-cancer activity (O'Connor et al., 2013. Biomaterials 34, 2710-2718). However, it is unknown if other (R)-3-hydroxyalkanoic acids (R3HAs) can enhance peptide activity, if chain length affects enhancement, and what effect R3HAs have on peptide structure. Here we show that the degree of enhancement of peptide (DP18L) anti-cancer activity by R3HAs is carbon chain length dependent. In all but one example the R3HA conjugated peptides were more active against cancer cells than the unconjugated peptides. However, R3HAs with 9 and 10 carbons were most effective at improving DP18L activity. DP18L peptide variant DP17L, missing a hydrophobic amino acid (leucine residue 4) exhibited lower efficacy against MiaPaCa cells. Circular dichroism analysis showed DP17L had a lower alpha helix content and the conjugation of any R3HA ((R)-3-hydroxyhexanoic acid to (R)-3-hydroxydodecanoic acid) to DP17L returned the helix content back to levels of DP18L. However (R)-3-hydroxyhexanoic did not enhance the anti-cancer activity of DP17L and at least 7 carbons were needed in the R3HA to enhance activity of D17L. DP17L needs a longer chain R3HA to achieve the same activity as DP18L conjugated to an R3HA. As a first step to assess the synthetic potential of polyhydroxyalkanoate derived R3HAs, (R)-3-hydroxydecanoic acid was synthetically converted to (±)3-chlorodecanoic acid, which when conjugated to DP18L improved its antiproliferative activity against MiaPaCa cells.

  1. Oxidative acylation using thioacids

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.

    1997-01-01

    Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.

  2. Alkyl chain length-dependent surface reaction of dodecahydro-N-alkylcarbazoles on Pt model catalysts

    SciTech Connect

    Gleichweit, Christoph; Amende, Max; Bauer, Udo; Schernich, Stefan; Höfert, Oliver; Lorenz, Michael P. A.; Zhao, Wei; Bachmann, Philipp; Papp, Christian; Müller, Michael; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg; Steinrück, Hans-Peter

    2014-05-28

    The concept of liquid organic hydrogen carriers (LOHC) holds the potential for large scale chemical storage of hydrogen at ambient conditions. Herein, we compare the dehydrogenation and decomposition of three alkylated carbazole-based LOHCs, dodecahydro-N-ethylcarbazole (H{sub 12}-NEC), dodecahydro-N-propylcarbazole (H{sub 12}-NPC), and dodecahydro-N-butylcarbazole (H{sub 12}-NBC), on Pt(111) and on Al{sub 2}O{sub 3}-supported Pt nanoparticles. We follow the thermal evolution of these systems quantitatively by in situ high-resolution X-ray photoelectron spectroscopy. We show that on Pt(111) the relevant reaction steps are not affected by the different alkyl substituents: for all LOHCs, stepwise dehydrogenation to NEC, NPC, and NBC is followed by cleavage of the C–N bond of the alkyl chain starting at 380–390 K. On Pt/Al{sub 2}O{sub 3}, we discern dealkylation on defect sites already at 350 K, and on ordered, (111)-like facets at 390 K. The dealkylation process at the defects is most pronounced for NEC and least pronounced for NBC.

  3. Growing up Radical: Investigation of Benzyl-Like Radicals with Increasing Chain Lengths

    NASA Astrophysics Data System (ADS)

    Korn, Joseph A.; Jawad, Khadija M.; Hewett, Daniel M.; Zwier, Timothy S.

    2015-06-01

    Combustion processes involve complex chemistry including pathways leading to polyaromatic hydrocarbons (PAHs) from small molecule precursors. Resonance stabilized radicals (RSRs) likely play an important role in the pathways to PAHs due to their unusual stability. Benzyl radical is a prototypical RSR that is stabilized by conjugation with the phenyl ring. Earlier work on α-methyl benzyl radical showed perturbations to the spectroscopy due to a hindered methyl rotor. If the alkyl chain is lengthened then multiple conformations become possible. This talk will discuss the jet-cooled spectroscopy of α-ethyl benzyl radical and α-propyl benzyl radical produced from the discharge of 1-phenyl propanol and 1-phenyl butanol respectively. Electronic spectra were obtained via resonant two-photon ionization, and IR spectra were obtained by resonant ion-dip infrared spectroscopy. Kidwell, N. M.; Reilly, N. J.; Nebgen, B.; Mehta-Hurt, D. N.; Hoehn, R. D.; Kokkin, D. L.; McCarthy, M. C.; Slipchenko, L. V.; Zwier, T. S. The Journal of Physical Chemistry A 2013, 117, 13465.

  4. Influence of carbon chain length on the synthesis and yield of fatty amine-coated iron-platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Taylor, Robert M.; Monson, Todd C.; Gullapalli, Rama R.

    2014-06-01

    Iron oxide nanoparticles are among the most widely used and characterized magnetic nanoparticles. However, metal alloys such as superparamagnetic iron-platinum particles (SIPPs), which have better magnetic properties, are receiving increased attention. Scalable techniques to routinely synthesize SIPPs in bulk need further study. Here, we focus on the role played by the fatty amine ligand in the formation of the bimetallic FePt nanocrystal. More specifically, we compare the effect of varying lengths of fatty amine ligands on the shape, structure, uniformity, composition, and magnetic properties of the SIPPs. We synthesized SIPPs by employing a `green' thermal decomposition reaction using fatty amine ligands containing 12 to 18 carbons in length. Greater fatty amine chain length increased the polydispersity, particle concentration, iron concentration, and the stability of the SIPPs. Additionally, longer reflux times increased the diameter of the particles, but decreased the iron concentration, suggesting that shorter reaction times are preferable. Fourier transform infrared spectroscopy of the SIPPs indicates that the ligands are successfully bound to the FePt cores through the amine group. Superconducting quantum interference device magnetometry measurements suggest that all of the SIPPs were superparamagnetic at room temperature and that SIPPs synthesized using tetradecylamine had the highest saturation magnetization. Our findings indicate that the octadecylamine ligand, which is currently used for the routine synthesis of SIPPs, may not be optimal. Overall, we found that using tetradecylamine and a 30-min reflux reaction resulted in optimal particles with the highest degree of monodispersity, iron content, stability, and saturation magnetization.

  5. Lessons from the gonadotropin-regulated long chain acyl-CoA synthetase (GR-LACS) null mouse model: a role in steroidogenesis, but not result in X-ALD phenotype.

    PubMed

    Sheng, Yi; Tsai-Morris, Chon-Hwa; Li, Jie; Dufau, Maria L

    2009-03-01

    Gonadotropin-regulated long chain fatty acid Acyl-CoA synthetase (GR-LACS), is a member of the LACS family that is regulated by gonadotropin in the rat Leydig cell (LC). Its mouse/human homologs, lipidosin/bubblegum, have been suggested to participate in X-linked adrenoleukodystrophy (X-ALD), an adreno/neurodegenerative disorder with accumulation of very long chain fatty acids (VLCFA) in tissues and plasma. To further gain insights into its regulatory function, a GR-LACS/lipidosin null mouse was generated. No apparent phenotypic abnormalities were observed in the X-ALD target tissues (brain, testis, adrenal). Nuclear inclusions seen in mice >15 month-old, were present in LC of 9 month-old GR-LACS(-/-) mice. LC of the null mice showed refractoriness to the gonadotropin-induced desensitization of testosterone production that is observed in adult animals. LCFAs were moderately increased in the testis, ovary and brain, but not in the adrenal gland of GR-LACS(-/-) mice, with no major changes in VLCFA. No change in LACS activity was observed in these tissues, suggesting a compensatory mechanism exhibited by other LACS members. The GR-LACS(-/-) model did not support its association with X-ALD. These studies revealed a role of GR-LACS in reducing the aging process of the LC, and its participation in gonadotropin-induced testicular desensitization of testosterone production.

  6. Effects of alkyl chain length and solvents on thermodynamic dissociation constants of the ionic liquids with one carboxyl group in the alkyl chain of imidazolium cations.

    PubMed

    Chen, Yuehua; Wang, Huiyong; Wang, Jianji

    2014-05-01

    Thermodynamic dissociation constants of the Brønsted acidic ionic liquids (ILs) are important for their catalytic and separation applications. In this work, a series of imidazolium bromides with one carboxylic acid substitute group in their alkyl chain ([{(CH2)nCOOH}mim]Br, n = 1,3,5,7) have been synthesized, and their dissociation constants (pKa) at different ionic strengths have been determined in aqueous and aqueous organic solvents at 0.1 mole fraction (x) of ethanol, glycol, iso-propanol, and dimethyl sulfoxide by potentiometric titrations at 298.2 K. The standard thermodynamic dissociation constants (pKa(T)) of the ILs in these solvents were calculated from the extended Debye-Hückel equation. It was found that the pKa values increased with the increase of ionic strength of the media and of the addition of organic solvent in water. The pKa(T) values also increased with the increase of the alkyl chain length of cations of the ILs. In addition, the effect of solvent nature on pKa(T) values is interpreted from solvation of the dissociation components and their Gibbs energy of transfer from water to aqueous organic solutions. PMID:24720707

  7. Effects of alkyl chain length and solvents on thermodynamic dissociation constants of the ionic liquids with one carboxyl group in the alkyl chain of imidazolium cations.

    PubMed

    Chen, Yuehua; Wang, Huiyong; Wang, Jianji

    2014-05-01

    Thermodynamic dissociation constants of the Brønsted acidic ionic liquids (ILs) are important for their catalytic and separation applications. In this work, a series of imidazolium bromides with one carboxylic acid substitute group in their alkyl chain ([{(CH2)nCOOH}mim]Br, n = 1,3,5,7) have been synthesized, and their dissociation constants (pKa) at different ionic strengths have been determined in aqueous and aqueous organic solvents at 0.1 mole fraction (x) of ethanol, glycol, iso-propanol, and dimethyl sulfoxide by potentiometric titrations at 298.2 K. The standard thermodynamic dissociation constants (pKa(T)) of the ILs in these solvents were calculated from the extended Debye-Hückel equation. It was found that the pKa values increased with the increase of ionic strength of the media and of the addition of organic solvent in water. The pKa(T) values also increased with the increase of the alkyl chain length of cations of the ILs. In addition, the effect of solvent nature on pKa(T) values is interpreted from solvation of the dissociation components and their Gibbs energy of transfer from water to aqueous organic solutions.

  8. Effects of chain-length and unsaturation on affinity and selectivity at muscarinic receptors.

    PubMed Central

    Barlow, R. B.; Holdup, D. W.; Harris, G.; Veale, M. A.; Williams, A.

    1990-01-01

    1. Lengthening the chain in diphenylacetylcholine decreases affinity for muscarinic cholinoceptors in guinea-pig ileum. Diphenylacetoxypropyldimethylamine and its quaternary trimethylammonium salt are roughly equiactive: the dimethylamine and the piperidine have some selectivity for ileum compared with atria, but are not as active nor as selective as 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) methobromide (MeBr). With the weaker diphenylacetoxybutyl compounds the base is more active than the quaternary salt. 2. The diphenylacetoxybutyl-, cis-butenyl and trans-butenyl compounds have similar affinities. The quaternary salts are less active than the tertiary bases, but they are less selective than the butynyl analogues studied in earlier work. 3. 1,1-Diphenyl-1-hydroxy-2,4-hexadiynyl dimethylamine and its trimethylammonium salt are inactive in concentrations below 100 microM, as are the (+)-camphor-sulphonyl ester of 4-hydroxy-N-methyl piperidine and its methiodide. The (+/-)-phenylcyclopentylacetyl ester of 4-hydroxy-N-methylpiperidine methobromide is more active than its cyclohexyl analogue and than 4-DAMP MeBr but it is less selective than 4-DAMP MeBr. 4. The high selectivity of p-fluoro-hexahydrosila-diphenidol is confirmed but this compound has relatively low affinity (for ileum log K = 7.8). 5. The results indicate steric constraints to binding at muscarinic receptors which could be used to check molecular modelling of the receptor based on its known amino acid sequence. The group binding the charged nitrogen is probably at the mouth of a cavity which can accommodate two large rings (as in 4-DAMP MeBr) but with a depth less than about 7 A so that the rod-like hexadiynes cannot fit.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2331586

  9. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    PubMed Central

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  10. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    PubMed

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  11. Acyl-coenzyme A:cholesterol acyltransferases

    PubMed Central

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C. Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease. PMID:19141679

  12. Phase equilibriums, self-assembly and interactions in two-, three- and four medium-chain length component systems.

    PubMed

    Rosenholm, Jarl B

    2014-03-01

    The Scandinavian surface (surfactant) and colloid science owes much of its success to Per Ekwall and Björn Lindman. In this review the main topics shared by their research groups at Åbo Akademi University in Finland and at Lund University in Sweden are described. The nature of surface active substances (cosolvents, co-surfactants and surfactants) and microemulsions are evaluated. It is shown that the properties of medium-chain length surfactants differ dramatically from long-chain surfactants. The phase equilibriums of binary systems are related to the phase equilibriums of ternary and quaternary systems referred to as microemulsions or more recently also as nanoemulsions. A distinction is made between hydrotrope liquids, detergentless microemulsions, surfactant mixture systems and microemulsions. Three component systems are assembled to "true" quaternary microemulsions. An exceptionally comprehensive network of thermodynamic parameters describing molecular site exchange and micelle formation are derived and related mutually. Gibbs free energy, enthalpy, entropy, volume, heat capacity, expansivity and compressibility can be used to illustrate the degree of aggregation cooperativity and to evaluate whether micelle formation is of a first-, second- or intermediate order phase transition. Theoretical simulations and experimental results show that the associate structures of medium-chain length surfactants are quite open and may be deformed due to small aggregation numbers. The self-assembly occurs over a number of distinct steps at a series of experimentally detectable critical concentrations. Despite the low aggregation tendency their phase behavior equals those of long-chain homologs in surfactant mixture and microemulsion systems. A number of models describing the self-assembly are reviewed. Nuclear magnetic resonance (shift, relaxation rate and diffusion), Laser Raman and infrared spectroscopies were chosen as key instruments for molecular interaction

  13. Effect of O side-chain length and composition on the virulence of Shigella flexneri 2a.

    PubMed

    Sandlin, R C; Goldberg, M B; Maurelli, A T

    1996-10-01

    IcsA of Shigella flexneri is required for intercellular spread and is located in the outer membrane at one pole of the bacterium, where it catalyses the polymerization of host-cell actin. The formation of the a tin tail provides the force to move the bacterium in a unidirectional manner through the host-cell cytoplasm. We have previously demonstrated that rough lipopolysaccharide (LPS) mutants of S. flexneri 2a are avirulent and cannot form plaques in tissue-culture monolayers. This inability to form plaques is associated with non-polar localization of IcsA and loss of host-cell membrane-protrusion formation ("fireworks'). To define the minimal LPS structure required for fireworks formation, we constructed a strain of S. flexneri (BS497) that contains a mutation in rfc, encoding the O side-chain polymerase, and a strain, BS520, that possesses a defective O side-chain ligase due to a mutation in rfaL. BS497 produces a LPS that consists of a core with one repeat unit of the O side-chain, while BS520 produces a LPS consisting of a complete core with no O side-chain. BS497 remained invasive but did not form fireworks or plaques in tissue-culture monolayers and was negative in the Serény test. BS520 was invasive, generated reduced numbers of short fireworks, and made tiny plaques, but it was negative in the Serény test. Analysis of BS497 with anti-IcsA antibody demonstrated that IcsA was distributed over the entire cell surface. The distribution of IcsA on the surface of BS520 was predominantly unipolar, with some trail-back of IcsA label along the sides of the bacterium. A similar pattern was seen when infected monolayers were stained for polymerized actin. These results suggest that both the presence and the length of the O side-chain are important in the proper localization or maintenance of IcsA at the pole which subsequently affects the ability to form actin tails and produce fireworks. This reduced ability to form actin tails and fireworks results in a decreased

  14. Acyl Coenzyme A Synthetase Long-Chain 1 (ACSL1) Gene Polymorphism (rs6552828) and Elite Endurance Athletic Status: A Replication Study

    PubMed Central

    Santiago, Catalina; Hu, Yang; Li, Yan-Chun; Gómez-Gallego, Félix; Fiuza-Luces, Carmen; Verde, Zoraida; Muniesa, Carlos A.; Oliván, Jesús; Santalla, Alfredo; Ruiz, Jonatan R.; Lucia, Alejandro

    2012-01-01

    The aim of this study was to determine the association between the rs6552828 polymorphism in acyl coenzyme A synthetase (ACSL1) and elite endurance athletic status. We studied 82 Caucasian (Spanish) World/Olympic-class endurance male athletes, and a group of sex and ethnically matched healthy young adults (controls, n = 197). The analyses were replicated in a cohort of a different ethnic origin (Chinese of the Han ethnic group), composed of elite endurance athletes (runners) [cases, n = 241 (128 male)] and healthy sedentary adults [controls, n = 504 (267 male)]. In the Spanish cohort, genotype (P = 0.591) and minor allele (A) frequencies were similar in cases and controls (P = 0.978). In the Chinese cohort, genotype (P = 0.973) and minor allele (G) frequencies were comparable in female endurance athletes and sedentary controls (P = 0.881), whereas in males the frequency of the G allele was higher in endurance athletes (0.40) compared with their controls (0.32, P = 0.040). The odds ratio (95%CI) for an elite endurance Chinese athlete to carry the G allele compared with ethnically matched controls was 1.381 (1.015–1.880) (P-value = 0.04). Our findings suggest that the ACSL1 gene polymorphism rs6552828 is not associated with elite endurance athletic status in Caucasians, yet a marginal association seems to exist for the Chinese (Han) male population. PMID:22829935

  15. Inhibition of Lux quorum-sensing system by synthetic N-acyl-L-homoserine lactone analogous.

    PubMed

    Wang, Wenzhao; Morohoshi, Tomohiro; Ikeda, Tsukasa; Chen, Liang

    2008-12-01

    In the present study, we investigated the inhibition of the Lux quorum-sensing system by N-acyl cyclopentylamine (Cn-CPA). The Lux quorum-sensing system regulates luminescence gene expression in Vibrio fischeri. We have already reported on the synthesis of Cn-CPA and their abilities as inhibitors of the quorum-sensing systems in Pseudomonas aeruginosa and Serratia marcescens. In the case of Pseudomonas aeruginosa (Las and Rhl quorum-sensing system) and Serratia marcescens (Spn quorum-sensing system), specific Cn-CPA with a particular acyl chain length showed the strongest inhibitory effect. In the case of the Lux quorum-sensing system, it was found that several kinds of Cn-CPA with a range from C5 to C10 showed similar strong inhibitory effects. Moreover, the inhibitory effect of Cn-CPA on the Lux quorum-sensing system was stronger than that of halogenated furanone, a natural quorum-sensing inhibitor.

  16. Electron-correlation effects on the static longitudinal polarizability of polymeric chains. II. Bond-length-alternation effects

    NASA Astrophysics Data System (ADS)

    Champagne, Benoît; Mosley, David H.; Vračko, Marjan; André, Jean-Marie

    1995-08-01

    Ab initio calculations of the static longitudinal polarizability of different molecular hydrogen model chains have been carried out at different levels of approximation to investigate the effects of including electron correlation as well as the variation of these effects as a function of the bond-length alternation of the systems. First, the coupled and uncoupled Hartree-Fock schemes have been employed. To assess the electron-correlation effects, the size-consistent Mo/ller-Plesset treatments limited to second (MP2), third (MP3), and fourth (MP4) order in electron-electron interactions, as well as the coupled-cluster techniques including all double substitutions (CCD), all single and double substitutions (CCSD), and all single and double substitutions with a perturbational estimate of the connected triple excitations [CCSD(T)] have been used. Within the MP4 treatment, a decomposition of the electron-correlation corrections according to the different classes of substitutions and different order highlights the relatively greater importance of the double substitutions at second and third orders. The main findings are that (i) the coupled Hartree-Fock (CHF) technique overestimates the asymptotic static longitudinal polarizability per unit cell for the three types of H2 chains under investigation; (ii) larger basis sets have to be employed when including electron correlation effects, otherwise, the correction is overestimated; (iii) these basis-set effects on the electron-correlation correction are enhanced in the case of the less alternating chains; (iv) using a sufficiently large atomic basis set, at the Mo/ller-Plesset or CCSD(T) levels, the more conjugated the chains, the less the relative magnitude of the electron-correlation correction to the CHF value, whereas using the CCD and CCSD techniques, these relative electron-correlation corrections slightly increase in the case of the less alternating molecular hydrogen chains; and (v) the more conjugated the systems

  17. Effect of Sophorolipid n-Alkyl Ester Chain Length on Its Interfacial Properties at the Almond Oil-Water Interface.

    PubMed

    Koh, Amanda; Linhardt, Robert J; Gross, Richard

    2016-06-01

    Sophorolipids (SLs), produced by Candida bombicola, are of interest as potential replacements for hazardous commercial surfactants. For the first time, a series of molecularly edited SLs with ethyl (EE), n-hexyl (HE), and n-decyl (DE) esters were evaluated at an oil (almond oil)-water interface for their ability to reduce interfacial tension (IFT) and generate stable emulsions. An increase in the n-alkyl ester chain length from ethyl to hexyl resulted in a maximum % decrease in the IFT from 86.1 to 95.3, respectively. Furthermore, the critical aggregation concentrations (CACs) decreased from 0.035 to 0.011 and 0.006 mg/mL as the ester chain length was increased from ethyl to n-hexyl and n-decyl, respectively. In contrast, the CAC of natural SL, composed of 50/50 acidic and LSL, is 0.142 mg/mL. Dynamic IFT analysis showed significant differences in diffusion coefficients for all SLs studied. Almond oil emulsions with up to 200:1 (by weight) oil/SL-DE were stable against oil separation for up to 1 week with average droplet sizes below 5 μm. Emulsions of almond oil with natural SLs showed consistent oil separation 24 h after emulsification. A unique connection between IFT and emulsification was found as SL-DE has both the lowest CAC and the best emulsification performance of all natural and modified SLs studied herein. This connection between CAC and emulsification may be generally applicable, providing a tool for the prediction of optimal surfactants in other oil-water interfacial applications. PMID:27159768

  18. Electrochemical measurement of lateral diffusion coefficients of ubiquinones and plastoquinones of various isoprenoid chain lengths incorporated in model bilayers.

    PubMed Central

    Marchal, D; Boireau, W; Laval, J M; Moiroux, J; Bourdillon, C

    1998-01-01

    The long-range diffusion coefficients of isoprenoid quinones in a model of lipid bilayer were determined by a method avoiding fluorescent probe labeling of the molecules. The quinone electron carriers were incorporated in supported dimyristoylphosphatidylcholine layers at physiological molar fractions (<3 mol%). The elaborate bilayer template contained a built-in gold electrode at which the redox molecules solubilized in the bilayer were reduced or oxidized. The lateral diffusion coefficient of a natural quinone like UQ10 or PQ9 was 2.0 +/- 0.4 x 10(-8) cm2 s(-1) at 30 degrees C, two to three times smaller than the diffusion coefficient of a lipid analog in the same artificial bilayer. The lateral mobilities of the oxidized or reduced forms could be determined separately and were found to be identical in the 4-13 pH range. For a series of isoprenoid quinones, UQ2 or PQ2 to UQ10, the diffusion coefficient exhibited a marked dependence on the length of the isoprenoid chain. The data fit very well the quantitative behavior predicted by a continuum fluid model in which the isoprenoid chains are taken as rigid particles moving in the less viscous part of the bilayer and rubbing against the more viscous layers of lipid heads. The present study supports the concept of a homogeneous pool of quinone located in the less viscous region of the bilayer. PMID:9545054

  19. Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics

    SciTech Connect

    Ford, JP; Immer, JG; Lamb, HH

    2012-03-29

    Supported metal catalysts containing 5 wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5 % H-2 at 300 A degrees C and 15 atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO + CO2 yield, CO2 selectivity, H-2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C-10-C-18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H-2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.

  20. Free energy calculations in electroactive self-assembled monolayers (SAMs): impact of the chain length on the redox reaction.

    PubMed

    Filippini, Gaelle; Israeli, Yael; Goujon, Florent; Limoges, Benoit; Bonal, Christine; Malfreyt, Patrice

    2011-10-13

    The free energy approach is used to study the effect of the relative chain length of the two constituents of electroactive self-assembled monolayers (SAMs) on gold. In this study, the ferrocene groups are exposed to the electrolyte solution. This situation is achieved by using shorter diluent alkanethiol chains. To this end, the mixed monolayers formed by the self-assembly of 11-ferrocenylundecanethiol and butanethiol FcC(11)S/C(4)S and of 6-ferrocenylhexanethiol and butanethiol FcC(6)S/C(4)S onto a gold surface are studied. Calculation of enthalpy and entropy differences are also performed using molecular simulations. Additionally, the electrochemical signatures of these systems are determined to allow a direct comparison with our calculations. The thermodynamic properties are discussed in terms of enthalpy and entropy changes. Two effects account for the thermodynamic behavior. The first one involves the ion pairing between the ferrocenium group and the perchlorate anion. The second one concerns the desolvation of the first hydration shell of the anions. Finally, this work is also completed with a microscopic description associated with an energy characterization of these SAMs as a function of the surface coverage under conditions close to experiments. PMID:21866943

  1. Effects of variation in chain length on ternary polymer electrolyte - Ionic liquid mixture - A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Raju, S. G.; Hariharan, Krishnan S.; Park, Da-Hye; Kang, HyoRang; Kolake, Subramanya Mayya

    2015-10-01

    Molecular dynamics (MD) simulations of ternary polymer electrolyte - ionic liquid mixtures are conducted using an all-atom model. N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CnMPy][TFSI], n = 1, 3, 6, 9) and polyethylene oxide (PEO) are used. Microscopic structure, energetics and dynamics of ionic liquid (IL) in these ternary mixtures are studied. Properties of these four pure IL are also calculated and compared to that in ternary mixtures. Interaction between pyrrolidinium cation and TFSI is stronger and there is larger propensity of ion-pair formation in ternary mixtures. Unlike the case in imidazolium IL, near neighbor structural correlation between TFSI reduces with increase in chain length on cation in both pure IL and ternary mixtures. Using spatial density maps, regions where PEO and TFSI interact with pyrrolidinium cation are identified. Oxygens of PEO are above and below the pyrrolidinium ring and away from the bulky alkyl groups whereas TFSI is present close to nitrogen atom of CnMPy. In pure IL, diffusion coefficient (D) of C3MPy is larger than of TFSI but D of C9MPy and C6MPy are larger than that of TFSI. The reasons for alkyl chain dependent phenomena are explored.

  2. Acyl-ACP Substrate Recognition in Burkholderia mallei BmaI1 Acyl-Homoserine Lactone Synthase

    PubMed Central

    2015-01-01

    The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates virulence in several pathogenic bacteria. The hallmark of an efficient quorum sensing system relies on the tight specificity in the signal generated by each bacterium. Since AHL signal specificity is derived from the acyl-chain of the acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must recognize and react with the native acyl-ACP with high catalytic efficiency while keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP substrate recognition in these enzymes, however, remains elusive. In this study, we investigated differences in catalytic efficiencies for shorter and longer chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP, the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA reacting with BmaI1 decreased by greater than 20-fold compared to the native octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest that non-native acyl-ACP substrates are unable to form a stable and productive BmaI1·acyl-ACP·SAM ternary complex and are thus effectively discriminated by the enzyme. These results offer insights into the molecular basis of substrate recognition for the BmaI1 enzyme. PMID:25215658

  3. Synthesis of short-/medium-chain-length poly(hydroxyalkanoate) blends by mixed culture fermentation of glycerol.

    PubMed

    Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A

    2005-01-01

    Glycerol was used as a substrate in the bio-production of poly(hydroxyalkanoates) (PHAs) in an effort to establish an alternative outlet for glycerol and produce value-added products. Pseudomonas oleovorans NRRL B-14682 and Pseudomonas corrugata 388 grew and synthesized poly(3-hydroxybutyrate) (P3HB) and medium-chain-length PHA (mcl-PHA) consisting primarily of 3-hydroxydecanoic acid (C(10:0); 44 +/- 2 mol %) and 3-hydroxydodecenoic acid (C(12:1); 31 +/- 2 mol %), respectively, from glycerol at concentrations up to 5% (v/v). Cellular productivity maximized at 40% for P. oleovorans in 5% (v/v) glycerol and 20% for P. corrugata in 2% (v/v) glycerol after 72 h. Increasing the glycerol media concentration from 1% to 5% (v/v) caused a 61% and 72% reduction in the molar mass (M(n)) of the P3HB and mcl-PHA polymers, respectively. Proton-NMR analysis of the glycerol-derived P3HB revealed that the M(n) decrease was the result of esterification of glycerol onto the polymer in a chain terminating position. However, no evidence of glycerol-based chain termination was present in the mcl-PHA. The growth patterns of P. oleovorans and P. corrugata on glycerol permitted their use as mixed cultures to produce natural blends of P3HB and mcl-PHA. By incorporating a staggered inoculation pattern and varying the duration of the fermentations, P3HB/mcl-PHA ratios were achieved that varied from 34:66 to 96:4. PMID:16004451

  4. A pathway where polyprenyl diphosphate elongates in prenyltransferase. Insight into a common mechanism of chain length determination of prenyltransferases.

    PubMed

    Ohnuma, S; Hirooka, K; Tsuruoka, N; Yano, M; Ohto, C; Nakane, H; Nishino, T

    1998-10-01

    Prenyltransferases catalyze the consecutive condensations of isopentenyl diphosphate to produce linear polyprenyl diphosphates. Each enzyme forms the final product with a specific chain length. The product specificity of an enzyme is thought to be determined by the structure around the unknown path through which the product elongates in the enzyme. To explore the path, we introduced a few mutations at the 5th, the 8th, and/or the 11th positions before the first aspartate-rich motif of geranylgeranyl-diphosphate synthase or farnesyl-diphosphate synthase. The side chains of these amino acids are situated on the same side of an alpha-helix. In geranylgeranyl-diphosphate synthase, a single mutated enzyme (F77S) mainly produces a C25 product (Ohnuma, S.-I., Hirooka, K., Hemmi, H., Ishida, C., Ohto, C., and Nishino, T. (1996) J. Biol. Chem. 271, 18831-18837). A double mutated enzyme (L74G and F77G) mainly produces a C35 compound with significant amounts of C30 and C40. A triple mutated enzyme (I71G, L74G, and F77G) mainly produces a C40 compound with C35 and C45. Mutated farnesyl-diphosphate synthases also show similar patterns. These findings indicate that the elongating product passages on a surface of the side chains of the mutated amino acids, the original bulky amino acids had blocked the elongation, and the path is conserved in prenyltransferases. Moreover, the fact that some double and triple mutated enzymes can also form small amounts of products longer than C50 indicates that the paths in these mutated enzymes can partially access the outer surface of the enzymes.

  5. Intake of small-to-medium-chain saturated fatty acids is associated with peripheral leukocyte telomere length in postmenopausal women.

    PubMed

    Song, Yan; You, Nai-Chieh Y; Song, Yiqing; Kang, Mo K; Hou, Lifang; Wallace, Robert; Eaton, Charles B; Tinker, Lesley F; Liu, Simin

    2013-06-01

    Dietary factors, including dietary fat, may affect the biological aging process, as reflected by the shortening of telomere length (TL), by affecting levels of oxidative stress and inflammatory responses. We examined the direct relations of total and types of dietary fats and fat-rich foods to peripheral leukocyte TL. In 4029 apparently healthy postmenopausal women who participated in the Women's Health Initiative, intakes of total fat, individual fatty acids, and fat-rich foods were assessed by a questionnaire. TL was measured by quantitative polymerase chain reaction. Intake of short-to-medium-chain saturated fatty acids (SMSFAs; aliphatic tails of ≤ 12 carbons) was inversely associated with TL. Compared with participants in other quartiles of SMSFA intake, women who were in the highest quartile (median: 1.29% of energy) had shorter TLs [mean: 4.00 kb (95% CI: 3.89, 4.11 kb)], whereas women in the lowest quartile of intake (median: 0.29% of energy) had longer TLs [mean: 4.13 kb (95% CI: 4.03, 4.24 kb); P-trend = 0.046]. Except for lauric acid, all other individual SMSFAs were inversely associated with TL (P < 0.05). In isoenergetic substitution models, the substitution of 1% of energy from SMSFAs with any other energy source was associated with 119 bp longer TLs (95% CI: 21, 216 bp). Intakes of nonskim milk, butter, and whole-milk cheese (major sources of SMSFAs) were all inversely associated with TL. No significant associations were found with long-chain saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids. In conclusion, we found that higher intakes of SMSFAs and SMSFA-rich foods were associated with shorter peripheral leukocyte TL among postmenopausal women. These findings suggest the potential roles of SMSFAs in the rate of biological aging.

  6. Pulsed feeding strategy is more favorable to medium-chain-length polyhydroxyalkanoates production from waste rapeseed oil.

    PubMed

    Możejko, Justyna; Ciesielski, Slawomir

    2014-01-01

    This article presents the results of production and characterization of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using Pseudomonas sp. Gl01. Studies have been carried out to find suitable feeding strategies for mcl-PHAs production and, for the first time, to investigate in-depth the properties of biopolyesters obtained under controlled conditions with waste rapeseed oil as a substrate. Up to 44% mcl-PHAs of cell dry weight was produced at 41 h of biofermentor culture by employing pulsed feeding of waste rapeseed oil. GC analysis showed a polymer composition with monomer length of C6 to C12 with C8 and C10 as the principal monomers. The monomeric structure of the extracted polyesters did not depend on the cultivation time and the feeding strategy. Molecular weight of the mcl-PHAs was found to be ranging from 57 to 154 kDa. Thermal analyses showed the obtained mcl-polyhydroxyalkanaotes to be semi-crystalline biopolymer with promising thermal stability, having a glass transition temperature of -38 to -50°C.

  7. Identification of roots of woody species using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis

    PubMed

    Bobowski; Hole; Wolf; Bryant

    1999-03-01

    Within the last two decades, substantial progress has been made in understanding seed-bank dynamics and the contribution of the soil seed bank to a postdisturbance plant community. There has been relatively little progress, however, in understanding perennial bud-bank dynamics and the contribution of the soil bud bank to secondary succession. This lack of information is due primarily to the inability to reliably identify roots, rhizomes and lignotubers that lie dormant beneath the soil surface. This investigation addressed the issue of identification of below-ground woody structures. The first objective was to develop a method that used molecular tools to identify woody plant species from subsoil tissue samples. The second objective was to develop a key in which molecular markers served as criteria for the identification and differentiation of selected tree and shrub species common to the mountains of northeast Oregon and southeast Washington. Application of restriction fragment length polymorphism (RFLP) analysis of polymerase chain reaction (PCR)-amplified rbcL appears to be a reliable method to identify and differentiate 15 plants to the genus level. Two restriction enzymes, DpnII and HhaI, provided restriction site polymorphisms in the PCR product. The fragment number and length were used to develop an identification key. However, plants not analysed in this 'exploratory key' might share the same banding patterns, resulting in a false identification of unknowns. PMID:10199009

  8. Influence of carbon chain length on the synthesis and yield of fatty amine-coated iron-platinum nanoparticles

    PubMed Central

    2014-01-01

    Iron oxide nanoparticles are among the most widely used and characterized magnetic nanoparticles. However, metal alloys such as superparamagnetic iron-platinum particles (SIPPs), which have better magnetic properties, are receiving increased attention. Scalable techniques to routinely synthesize SIPPs in bulk need further study. Here, we focus on the role played by the fatty amine ligand in the formation of the bimetallic FePt nanocrystal. More specifically, we compare the effect of varying lengths of fatty amine ligands on the shape, structure, uniformity, composition, and magnetic properties of the SIPPs. We synthesized SIPPs by employing a ‘green’ thermal decomposition reaction using fatty amine ligands containing 12 to 18 carbons in length. Greater fatty amine chain length increased the polydispersity, particle concentration, iron concentration, and the stability of the SIPPs. Additionally, longer reflux times increased the diameter of the particles, but decreased the iron concentration, suggesting that shorter reaction times are preferable. Fourier transform infrared spectroscopy of the SIPPs indicates that the ligands are successfully bound to the FePt cores through the amine group. Superconducting quantum interference device magnetometry measurements suggest that all of the SIPPs were superparamagnetic at room temperature and that SIPPs synthesized using tetradecylamine had the highest saturation magnetization. Our findings indicate that the octadecylamine ligand, which is currently used for the routine synthesis of SIPPs, may not be optimal. Overall, we found that using tetradecylamine and a 30-min reflux reaction resulted in optimal particles with the highest degree of monodispersity, iron content, stability, and saturation magnetization. PACS 81.07.-b; 75.75.Fk; 61.46.Df PMID:25006334

  9. Effects of hydrophobic helix length and side chain chemistry on biomimicry in peptoid analogues of SP-C.

    PubMed

    Brown, Nathan J; Wu, Cindy W; Seurynck-Servoss, Shannon L; Barron, Annelise E

    2008-02-12

    The hydrophobic proteins of lung surfactant (LS), SP-B and SP-C, are critical constituents of an effective surfactant replacement therapy for the treatment of respiratory distress syndrome. Because of concerns and difficulties associated with animal-derived surfactants, recent investigations have focused on the creation of synthetic analogues of the LS proteins. However, creating an accurate mimic of SP-C that retains its biophysical surface activity is extraordinarily challenging given the lipopeptide's extreme hydrophobicity and propensity to misfold and aggregate. One successful approach that overcomes these difficulties is the use of poly-N-substituted glycines, or peptoids, to mimic SP-C. To develop a non-natural, bioactive mimic of SP-C and to investigate the effects of side chain chemistry and length of the helical hydrophobic region, we synthesized, purified, and performed in vitro testing of two classes of peptoid SP-C mimics: those having a rigid alpha-chiral aromatic helix and those having a biomimetic alpha-chiral aliphatic helix. The length of the two classes of mimics was also systematically altered. Circular dichroism spectroscopy gave evidence that all of the peptoid-based mimics studied here emulated SP-C's secondary structure, forming stable helical structures in solution. Langmuir-Wilhelmy surface balance, fluorescence microscopy, and pulsating bubble surfactometry experiments provide evidence that the aromatic-based SP-C peptoid mimics, in conjunction with a synthetic lipid mixture, have superior surface activity and biomimetic film morphology in comparison to the aliphatic-based mimics and that there is an increase in surface activity corresponding to increasing helical length.

  10. Characterization of the promoter region of the bovine long-chain acyl-CoA synthetase 1 gene: Roles of E2F1, Sp1, KLF15, and E2F4

    PubMed Central

    Zhao, Zhi-Dong; Zan, Lin-Sen; Li, An-Ning; Cheng, Gong; Li, Shi-Jun; Zhang, Ya-Ran; Wang, Xiao-Yu; Zhang, Ying-Ying

    2016-01-01

    The nutritional value and eating qualities of beef are enhanced when the unsaturated fatty acid content of fat is increased. Long-chain acyl-CoA synthetase 1 (ACSL1) plays key roles in fatty acid transport and degradation, as well as lipid synthesis. It has been identified as a plausible functional and positional candidate gene for manipulations of fatty acid composition in bovine skeletal muscle. In the present study, we determined that bovine ACSL1was highly expressed in subcutaneous adipose tissue and longissimus thoracis. To elucidate the molecular mechanisms involved in bovine ACSL1 regulation, we cloned and characterized the promoter region of ACSL1. Applying 5′-rapid amplification of cDNA end analysis (RACE), we identified multiple transcriptional start sites (TSSs) in its promoter region. Using a series of 5′ deletion promoter plasmids in luciferase reporter assays, we found that the proximal minimal promoter of ACSL1 was located within the region −325/−141 relative to the TSS and it was also located in the predicted CpG island. Mutational analysis and electrophoretic mobility shift assays demonstrated that E2F1, Sp1, KLF15 and E2F4 binding to the promoter region drives ACSL1 transcription. Together these interactions integrate and frame a key functional role for ACSL1 in mediating the lipid composition of beef. PMID:26782942

  11. Proteomics and gene expression analyses of mitochondria from squalene-treated apoE-deficient mice identify short-chain specific acyl-CoA dehydrogenase changes associated with fatty liver amelioration.

    PubMed

    Ramírez-Torres, Adela; Barceló-Batllori, Sílvia; Fernández-Vizarra, Erika; Navarro, María A; Arnal, Carmen; Guillén, Natalia; Acín, Sergio; Osada, Jesús

    2012-05-17

    Squalene, a hydrocarbon involved in cholesterol biosynthesis, is an abundant component in virgin olive oil. Previous studies showed that its administration decreased atherosclerosis and steatosis in male apoE knock-out mice. To study the effect of squalene on mitochondrial proteins in fatty liver, 1 g/kg/day of this isoprenoid was administered to those mice. After 10 weeks, hepatic fat was assessed and protein extracts from mitochondria enriched fractions from control and squalene-treated animals were analyzed by 2D-DIGE. Spots exhibiting significant differences were identified by MS analysis. Squalene administration modified the expression of eighteen proteins involved in different metabolic processes, 12 associated with hepatic fat content. Methionine adenosyltransferase I alpha (Mat1a) and short-chain specific acyl-CoA dehydrogenase (Acads) showed significant increased and decreased transcripts, respectively, consistent with their protein changes. These mRNAs were also studied in wild-type mice receiving squalene, where Mat1a was found increased and Acads decreased. However, this mRNA was significantly increased in the absence of apolipoprotein E. These results suggest that squalene action may be executed through a complex regulation of mitochondrial protein expression, including changes in Mat1a and Acads levels. Indeed, Mat1a is a target of squalene administration while Acads reflects the anti-steatotic properties of squalene.

  12. A Genetically Amenable Platensimycin- and Platencin- Overproducer as a Platform for Biosynthetic Explorations: a Showcase of PtmO4, a Long-Chain Acyl-CoA Dehydrogenase

    PubMed Central

    Rudolf, Jeffrey D.; Dong, Liao-Bin; Huang, Tingting; Shen, Ben

    2015-01-01

    Platensimycin (PTM) and platencin (PTN) are members of a new class of promising drug leads that target bacterial and mammalian fatty acid synthases. We previously cloned and sequenced the PTM and PTN gene clusters, discovered six additional PTM-PTN dual producing strains, and demonstrated the dramatic overproduction of PTM and PTN by inactivating the pathway-specific regulators ptmR1 or ptnR1 in four different strains. Our ability to utilize these PTM-PTN dual overproducing strains was limited by their lack of genetic amenability. Here we report the construction of Streptomyces platensis SB12029, a genetically amenable, in-frame ΔptmR1 dual PTM-PTN overproducing strain. To highlight the potential of this strain for future PTM and PTN biosynthetic studies, we created the ΔptmR1 ΔptmO4 double mutant S. platensis SB12030. Fourteen PTM and PTN congeners, ten of which were new, were isolated from SB12030, shedding new insights into PTM and PTN biosynthesis. PtmO4, a long-chain acyl-CoA dehydrogenase, is strongly implicated to catalyze β-oxidation of the diterpenoid intermediates in to the PTM and PTN scaffolds. SB12029 sets the stage for future biosynthetic and bioengineering studies of the PTM and PTN family of natural products. PMID:26055255

  13. Amplification refractory mutation system polymerase chain reaction versus optimized polymerase chain reaction restriction-fragment length polymorphism for apolipoprotein E genotyping of majorly depressed patients.

    PubMed

    You, Hongmin; Chen, Jin; Zhou, Jingjing; Huang, Hua; Pan, Junxi; Wang, Ziye; Lv, Lin; Zhang, Lujun; Li, Juan; Qin, Bin; Yang, Yongtao; Xie, Peng

    2015-11-01

    Major depressive disorder (MDD) is a prevalent, debilitating mood disorder that has been associated with several genetic polymorphisms. One such polymorphism, namely that of apolipoprotein E (APOE), has three allelic forms (ε2, ε3 and ε4) that encode for six unique isoforms of the APOE protein. A growing number of techniques have been developed for APOE genotyping; however, not all polymerase chain reaction (PCR)‑based genotyping techniques are equally accurate or cost‑effective. In order to find a more accurate and cost‑effective APOE genotyping method for MDD screening in large populations, the present study comparatively evaluated two genotyping methods, amplification refractory mutation system PCR (ARMS‑PCR) and optimized PCR restriction‑fragment length polymorphism (PCR‑RFLP), in blood samples taken from a population of 708 MDD patients. Although either of the two methods were able to detect all six unique APOE genotypes, comparisons of the two methods with Sanger sequencing demonstrated that ARMS‑PCR (94%) was significantly more accurate than optimized PCR‑RFLP (82%). ARMS‑PCR should prove useful in quickly verifying ambiguous results obtained by other APOE genotyping methods and can be cost-effectively performed in the setting of a small laboratory or a population-based screening program.

  14. ε-Poly-L-lysine peptide chain length regulated by the linkers connecting the transmembrane domains of ε-Poly-L-lysine synthetase.

    PubMed

    Hamano, Yoshimitsu; Kito, Naoko; Kita, Akihiro; Imokawa, Yuuki; Yamanaka, Kazuya; Maruyama, Chitose; Katano, Hajime

    2014-08-01

    ε-Poly-l-lysine (ε-PL), consisting of 25 to 35 l-lysine residues with linkages between the α-carboxyl groups and ε-amino groups, is produced by Streptomyces albulus NBRC14147. ε-PL synthetase (Pls) is a membrane protein with six transmembrane domains (TM1 to TM6) as well as both an adenylation domain and a thiolation domain, characteristic of the nonribosomal peptide synthetases. Pls directly generates ε-PL chain length diversity (25- to 35-mer), but the processes that control the chain length of ε-PL during the polymerization reaction are still not fully understood. Here, we report on the identification of Pls amino acid residues involved in the regulation of the ε-PL chain length. From approximately 12,000 variants generated by random mutagenesis, we found 8 Pls variants that produced shorter chains of ε-PL. These variants have one or more mutations in two linker regions connecting the TM1 and TM2 domains and the TM3 and TM4 domains. In the Pls catalytic mechanism, the growing chain of ε-PL is not tethered to the enzyme, implying that the enzyme must hold the growing chain until the polymerization reaction is complete. Our findings reveal that the linker regions are important contributors to grasp the growing chain of ε-PL. PMID:24907331

  15. The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    PubMed Central

    Altabe, Silvia G.; Aguilar, Pablo; Caballero, Gerardo M.; de Mendoza, Diego

    2003-01-01

    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids. PMID:12730185

  16. Comparison of Chain-Length Preferences and Glucan Specificities of Isoamylase-Type α-Glucan Debranching Enzymes from Rice, Cyanobacteria, and Bacteria

    PubMed Central

    Utsumi, Yoshinori; Fujita, Naoko; Umeda, Kazuhiro; Sawada, Takayuki; Kubo, Akiko; Abe, Jun-ichi; Colleoni, Christophe; Ball, Steven

    2016-01-01

    It has been believed that isoamylase (ISA)-type α-glucan debranching enzymes (DBEs) play crucial roles not only in α-glucan degradation but also in the biosynthesis by affecting the structure of glucans, although molecular basis on distinct roles of the individual DBEs has not fully understood. In an attempt to relate the roles of DBEs to their chain-length specificities, we analyzed the chain-length distribution of DBE enzymatic reaction products by using purified DBEs from various sources including rice, cyanobacteria, and bacteria. When DBEs were incubated with phytoglycogen, their chain-length specificities were divided into three groups. First, rice endosperm ISA3 (OsISA3) and Eschericia coli GlgX (EcoGlgX) almost exclusively debranched chains having degree of polymerization (DP) of 3 and 4. Second, OsISA1, Pseudomonas amyloderamosa ISA (PsaISA), and rice pullulanase (OsPUL) could debranch a wide range of chains of DP≧3. Third, both cyanobacteria ISAs, Cyanothece ATCC 51142 ISA (CytISA) and Synechococcus elongatus PCC7942 ISA (ScoISA), showed the intermediate chain-length preference, because they removed chains of mainly DP3-4 and DP3-6, respectively, while they could also react to chains of DP5-10 and 7–13 to some extent, respectively. In contrast, all these ISAs were reactive to various chains when incubated with amylopectin. In addition to a great variation in chain-length preferences among various ISAs, their activities greatly differed depending on a variety of glucans. Most strikingly, cyannobacteria ISAs could attack branch points of pullulan to a lesser extent although no such activity was found in OsISA1, OsISA3, EcoGlgX, and PsaISA. Thus, the present study shows the high possibility that varied chain-length specificities of ISA-type DBEs among sources and isozymes are responsible for their distinct functions in glucan metabolism. PMID:27309534

  17. Radionuclide migration through fractured rock for arbitrary-length decay chain: Analytical solution and global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Shahkarami, Pirouz; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2015-01-01

    This study presents an analytical approach to simulate nuclide migration through a channel in a fracture accounting for an arbitrary-length decay chain. The nuclides are retarded as they diffuse in the porous rock matrix and stagnant zones in the fracture. The Laplace transform and similarity transform techniques are applied to solve the model. The analytical solution to the nuclide concentrations at the fracture outlet is governed by nine parameters representing different mechanisms acting on nuclide transport through a fracture, including diffusion into the rock matrices, diffusion into the stagnant water zone, chain decay and hydrodynamic dispersion. Furthermore, to assess how sensitive the results are to parameter uncertainties, the Sobol method is applied in variance-based global sensitivity analyses of the model output. The Sobol indices show how uncertainty in the model output is apportioned to the uncertainty in the model input. This method takes into account both direct effects and interaction effects between input parameters. The simulation results suggest that in the case of pulse injections, ignoring the effect of a stagnant water zone can lead to significant errors in the time of first arrival and the peak value of the nuclides. Likewise, neglecting the parent and modeling its daughter as a single stable species can result in a significant overestimation of the peak value of the daughter nuclide. It is also found that as the dispersion increases, the early arrival time and the peak time of the daughter decrease while the peak value increases. More importantly, the global sensitivity analysis reveals that for time periods greater than a few thousand years, the uncertainty of the model output is more sensitive to the values of the individual parameters than to the interaction between them. Moreover, if one tries to evaluate the true values of the input parameters at the same cost and effort, the determination of priorities should follow a certain

  18. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    SciTech Connect

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit

    2014-03-14

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH{sub 2} + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH{sub 2}) considered are acetamide (CH{sub 3}CONH{sub 2}), propionamide (CH{sub 3}CH{sub 2}CONH{sub 2}), and butyramide (CH{sub 3}CH{sub 2}CH{sub 2}CONH{sub 2}); the electrolytes (LiX) are lithium perchlorate (LiClO{sub 4}), lithium bromide (LiBr), and lithium nitrate (LiNO{sub 3}). Differential scanning calorimetric measurements reveal glass transition temperatures (T{sub g}) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T{sub g}s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH{sub 3}CONH{sub 2} + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in

  19. Structures and redox reactivities of copper complexes of (2-pyridyl)alkylamine ligands. Effects of the alkyl linker chain length.

    PubMed

    Osako, Takao; Ueno, Yoshiki; Tachi, Yoshimitsu; Itoh, Shinobu

    2003-12-01

    Ligand effects on the structures and redox reactivities of copper complexes have been examined using (2-pyridyl)alkylamine derivatives as the supporting ligands, where particular attention has been focused on the effects of the alkyl linker chain length connecting the tertiary amine nitrogen atom and the pyridine nucleus: N[bond]CH(2)[bond]Py (Pym) vs N[bond]CH(2)CH(2)[bond]Py (Pye). X-ray crystallographic analysis of the copper(I) complex of tridentate ligand (Phe)L(Pym2) [N,N-di(2-pyridylmethyl)-2-phenylethylamine] (complex 1) has demonstrated that it possesses a trigonal pyramidal geometry in which a d[bond]pi interaction with an eta(1)-binding mode exists between the metal ion and one of the ortho carbons of the phenyl ring of the ligand side arm (phenethyl). The result shows sharp contrast to the d[bond]pi interaction with an eta(2)-binding mode existing in the copper(I) complex of (Phe)L(Pye2) [N,N-di[2-(2-pyridyl)ethyl]-2-phenethylamine] (complex 2). Such a d-pi interaction has been shown to affect the stability of the copper(I) complex in CH(2)Cl(2). Oxygenation of copper(I) complex 1 supported by (Phe)L(Pym2) produces a bis(mu-oxo)dicopper(III) complex, also being in sharp contrast to the case of the copper(I) complex 2 with ligand (Phe)L(Pye2), which preferentially affords a (micro-eta(2):eta(2)-peroxo)dicopper(II) complex in the reaction with O(2). Such an effect of the alkyl linker chain length of the metal binding site has also been found to operate in the RSSR (disulfide)/2RS(-) (thiolate) redox system. Namely, ligand (S2,R)L(Pym1) (di[2-[(alkyl)(2-pyridinylmethyl)amino]ethyl] disulfide) with the methylene linker group (Pym) induced the reductive disulfide bond cleavage in the reaction with copper(I) ion to give a bis(micro-thiolato)dicopper(II) complex, while the ligand with the ethylene linker group (Pye), (S2,Bn)L(Pye1) (di[2-[(benzyl)(2-(2-pyridinyl)ethyl)amino]ethyl] disulfide), gave a disulfide-dicopper(I) complex. These ligand effects in the Cu

  20. Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications.

    PubMed

    Kem, Michelle P; Butler, Alison

    2015-06-01

    Acyl peptidic siderophores are produced by a variety of bacteria and possess unique amphiphilic properties. Amphiphilic siderophores are generally produced in a suite where the iron(III)-binding headgroup remains constant while the fatty acid appendage varies by length and functionality. Acyl peptidic siderophores are commonly synthesized by non-ribosomal peptide synthetases; however, the method of peptide acylation during biosynthesis can vary between siderophores. Following biosynthesis, acyl siderophores can be further modified enzymatically to produce a more hydrophilic compound, which retains its ferric chelating abilities as demonstrated by pyoverdine from Pseudomonas aeruginosa and the marinobactins from certain Marinobacter species. Siderophore hydrophobicity can also be altered through photolysis of the ferric complex of certain β-hydroxyaspartic acid-containing acyl peptidic siderophores. PMID:25677460

  1. Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons.

    PubMed

    Hassan, Safia; Duclaux, Laurent; Lévêque, Jean-Marc; Reinert, Laurence; Farooq, Amjad; Yasin, Tariq

    2014-11-01

    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.

  2. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans.

    PubMed

    Zhang, Xinxing; Li, Kunhua; Jones, Rachel A; Bruner, Steven D; Butcher, Rebecca A

    2016-09-01

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state.

  3. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans.

    PubMed

    Zhang, Xinxing; Li, Kunhua; Jones, Rachel A; Bruner, Steven D; Butcher, Rebecca A

    2016-09-01

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state. PMID:27551084

  4. Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams.

    PubMed

    Fu, Jilagamazhi; Sharma, Umesh; Sparling, Richard; Cicek, Nazim; Levin, David B

    2014-07-01

    Medium-chain-length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46 was analyzed in shake-flask-based batch reactions, using pure chemical-grade glycerol (PG), biodiesel-derived "waste" glycerol (WG), and biodiesel-derived "waste" free fatty acids (WFA). Cell growth, substrate consumption, mcl-PHA accumulation within the cells, and the monomer composition of the synthesized biopolymers were monitored. The patterns of mcl-PHA synthesis in P. putida LS46 cells grown on PG and WG were similar but differed from that of cells grown with WFA. Polymer accumulation in glycerol-based cultures was stimulated by nitrogen limitation and plateaued after 48 h in both PG and WG cultures, with a total accumulation of 17.9% cell dry mass and 16.3% cell dry mass, respectively. In contrast, mcl-PHA synthesis was independent of nitrogen concentration in P. putida LS46 cells cultured with WFA, which accumulated to 29% cell dry mass. In all cases, the mcl-PHAs synthesized consisted primarily of 3-hydroxyoctanoate (C(8)) and 3-hydroxydecanoate (C(10)). WG and WFA supported similar or greater cell growth and mcl-PHA accumulation than PG under the experimental conditions used. These results suggest that biodiesel by-product streams could be used as low-cost carbon sources for sustainable mcl-PHA production.

  5. Limits of a rapid identification of common Mediterranean sandflies using polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    Bounamous, Azzedine; Lehrter, Véronique; Hadj-Henni, Leila; Delecolle, Jean-Claude; Depaquit, Jérôme

    2014-01-01

    A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b), t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA) on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin. PMID:24936911

  6. Biosynthesis of medium-chain-length poly(3-hydroxyalkanoates) by volatile aromatic hydrocarbons-degrading Pseudomonas fulva TY16.

    PubMed

    Ni, Yu-Yang; Kim, Do Young; Chung, Moon Gyu; Lee, Sun Hee; Park, Ho-Yong; Rhee, Young Ha

    2010-11-01

    Pseudomonas fulva TY16 biosynthesized medium-chain-length poly(3-hydroxyalkanoates) (MCL-PHAs) containing unsaturated 3-hydroxydodecenoate unit (approximately 8-9%) when grown with volatile aromatic compounds including benzene, toluene, and ethylbenzene as sole carbon substrate. In particular, when cultivated using a continuous feeding system designed to supply toluene at a flow rate of 0.42gL(-1)h(-1) into a 7-L jar fermentor, the growth of the organism reached up to approximately 3.87gL(-1) after the 48h fed-batch fermentation, representing an accumulated cellular MCL-PHA of 58.9% by weight. The obtained MCL-PHA was a copolyester primarily consisting of 3-hydroxydecanoate (55.2%) and 3-hydroxyoctanoate (26.8%) with minor constituents being 3-hydroxyhexanoate (3.7%), 3-hydroxydodecenoate (8.2%), and 3-hydroxydodecanoate (6.1%). The present results suggest that P. fulva TY16 is a promising candidate for the biotechnological conversion of toxic petrochemical wastes to valuable biopolymers.

  7. Discovery of Two β-1,2-Mannoside Phosphorylases Showing Different Chain-Length Specificities from Thermoanaerobacter sp. X-514

    PubMed Central

    Suzuki, Erika; Nishimoto, Mamoru; Kitaoka, Motomitsu; Ohtsubo, Ken'ichi; Nakai, Hiroyuki

    2014-01-01

    We characterized Teth514_1788 and Teth514_1789, belonging to glycoside hydrolase family 130, from Thermoanaerobacter sp. X-514. These two enzymes catalyzed the synthesis of 1,2-β-oligomannan using β-1,2-mannobiose and d-mannose as the optimal acceptors, respectively, in the presence of the donor α-d-mannose 1-phosphate. Kinetic analysis of the phosphorolytic reaction toward 1,2-β-oligomannan revealed that these enzymes followed a typical sequential Bi Bi mechanism. The kinetic parameters of the phosphorolysis of 1,2-β-oligomannan indicate that Teth514_1788 and Teth514_1789 prefer 1,2-β-oligomannans containing a DP ≥3 and β-1,2-Man2, respectively. These results indicate that the two enzymes are novel inverting phosphorylases that exhibit distinct chain-length specificities toward 1,2-β-oligomannan. Here, we propose 1,2-β-oligomannan:phosphate α-d-mannosyltransferase as the systematic name and 1,2-β-oligomannan phosphorylase as the short name for Teth514_1788 and β-1,2-mannobiose:phosphate α-d-mannosyltransferase as the systematic name and β-1,2-mannobiose phosphorylase as the short name for Teth514_1789. PMID:25500577

  8. Improved Polymerase Chain Reaction-restriction Fragment Length Polymorphism Genotyping of Toxic Pufferfish by Liquid Chromatography/Mass Spectrometry.

    PubMed

    Miyaguchi, Hajime

    2016-09-20

    An improved version of a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method for genotyping toxic pufferfish species by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is described. DNA extraction is carried out using a silica membrane-based DNA extraction kit. After the PCR amplification using a detergent-free PCR buffer, restriction enzymes are added to the solution without purifying the reaction solution. A reverse-phase silica monolith column and a Fourier transform high resolution mass spectrometer having a modified Kingdon trap analyzer are employed for separation and detection, respectively. The mobile phase, consisting of 400 mM 1,1,1,3,3,3-hexafluoro-2-propanol, 15 mM triethylamine (pH 7.9) and methanol, is delivered at a flow rate of 0.4 ml/min. The cycle time for LC/ESI-MS analysis is 8 min including equilibration of the column. Deconvolution software having an isotope distribution model of the oligonucleotide is used to calculate the corresponding monoisotopic mass from the mass spectrum. For analysis of oligonucleotides (range 26-79 nucleotides), mass accuracy was 0.62 ± 0.74 ppm (n = 280) and excellent accuracy and precision were sustained for 180 hr without use of a lock mass standard.

  9. Polymerase chain reaction-restriction fragment length polymorphism method for differentiation of uropathogenic specific protein gene types.

    PubMed

    Lai, Yun Mei; Zaw, Myo Thura; Shamsudin, Shamsul Bahari; Lin, Zaw

    2016-08-01

    The putative pathogenicity island (PAI) containing the uropathogenic specific protein (usp) gene and three small open reading frames (orfU1, orfU2, and orfU3) encoding 98, 97, and 96 amino acid proteins is widely distributed among uropathogenic Escherichia coli (UPEC) strains. This PAI was designated as PAIusp. Sequencing analysis of PAIusp has revealed that the usp gene can be divided into two types - uspI and uspII - based on sequence variation at the 3' terminal region and the number and position of orfUs differ from strain to strain. Based on usp gene types and orfU sequential patterns, PAIusp can be divided into four subtypes. Subtyping of PAIusp is a useful method to characterize UPEC strains. In this study, we developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to differentiate usp gene types. This method could correctly identify the usp gene type in usp-positive UPEC strains in our laboratory.

  10. Limits of a rapid identification of common Mediterranean sandflies using polymerase chain reaction-restriction fragment length polymorphism.

    PubMed

    Bounamous, Azzedine; Lehrter, Véronique; Hadj-Henni, Leila; Delecolle, Jean-Claude; Depaquit, Jérôme

    2014-07-01

    A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b), t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA) on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin.

  11. Taxonomic and ecological discrimination of Fagaceae species based on internal transcribed spacer polymerase chain reaction-restriction fragment length polymorphism.

    PubMed

    Coutinho, João Paulo; Carvalho, Ana; Lima-Brito, José

    2014-11-26

    The internal transcribed spacer (ITS) of ribosomal DNA has been used to confirm taxonomic classifications and define phylogenies in several plant species following sequencing or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques. In this study, co-dominant ITS PCR-RFLP molecular markers were produced in 30 Fagaceae individuals belonging to the Castanea, Fagus and Quercus genera in order to assess the potential of this technique for taxonomic discrimination and determination of phylogenies. The complete ITS region (ITS1-5.8S rRNA-ITS2) was amplified in most of the Fagaceae individuals as a single fragment of ∼700 bp. The ITS amplified products were digested with nine restriction enzymes, but only four (HaeIII, HpaII, TaqI and Sau96I) produced polymorphic/discriminative patterns. The total expected heterozygosity (HE) was 20.31 % and the gene diversity (I), 32.97 %. The ITS polymorphism was higher within the Quercus genus (85.3 %). The ITS PCR-RFLP markers clustered the Fagaceae species according to genus or infrageneric group (in the case of Quercus sp. individuals). Five oaks did not cluster in line with the adopted infrageneric classification, but three of these were grouped according to their actual ecological distributions. The ITS PCR-RFLP markers indicated their potential for phylogenetic studies since all Fagaceae individuals were discriminated according to genus, and most of the oaks were clustered according to infrageneric group or ecological area.

  12. Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates.

    PubMed

    Follonier, Stéphanie; Goyder, Miriam S; Silvestri, Anne-Claire; Crelier, Simon; Kalman, Franka; Riesen, Roland; Zinn, Manfred

    2014-11-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are biobased and biodegradable alternatives to petrol-derived polymers, whose break-through has been prevented by high production cost. Therefore we investigated whether wastes from the food industry (nine types of fruit pomace including apricots, cherries and grapes, and waste frying oil) could replace the costly sugars and fatty acids typically used as carbon substrates for the bacterial fermentations. A selection of enzyme preparations was tested for converting the residual polysaccharides from the pomaces into fermentable monosaccharides. From the pomace of apricots, cherries and Solaris grapes, 47, 49 and 106gL(-1) glucose were recovered, respectively. Solaris grapes had the highest sugar content whereas apricots contained the fewest growth inhibitors. These two pomaces were assessed for their suitability to produce mcl-PHA in bioreactor. A 2-step fermentation was established with Pseudomonas resinovorans, hydrolyzed pomace as growth substrate and WFO as mcl-PHA precursor. Solaris grapes proved to be a very promising growth substrate, resulting in the production of 21.3gPHA(Lpomace)(-1) compared to 1.4g PHA (L pomace)(-1) for apricots. Finally, capillary zone electrophoresis analyses allowed monitoring of sugar and organic acid uptake during the fermentation on apricots, which led to the discovery of reverse diauxie in P. resinovorans.

  13. Haplotyping the human T-cell receptor. beta. -chain gene complex by use of restriction fragment length polymorphisms

    SciTech Connect

    Charmley, P.; Chao, A.; Gatti, R.A. ); Concannon, P. ); Hood, L. )

    1990-06-01

    The authors have studied the genetic segregation of human T-cell receptor {beta}-chain (TCR{beta}) genes on chromosome 7q in 40 CEPH (Centre d'Etude du Polymorphisme Humain) families by using restriction fragment length polymorphisms (RFLPs). They constructed haplotypes from eight RFLPs by using variable- and constant-region cDNA probes, which detect polymorphisms that span more than 600 kilobases of the TCR{beta} gene complex. Analysis of allele distributions between TCR{beta} genes revealed significant linkage disequilibrium between only 6 of the 28 different pairs of RFLPs. This linkage disequilibrium strongly influences the most efficient order to proceed for typing of these RFLPs in order to achieve maximum genetic informativeness, which in this study revealed a 97.3% level of heterozygosity within the TCR{beta} gene complex. The results should provide new insight into recent reports of disease associations with the TCR{beta} gene complex and should assist in designing future experiments to detect or confirm the existence of disease-susceptibility loci in this region of the human genome.

  14. Improved Polymerase Chain Reaction-restriction Fragment Length Polymorphism Genotyping of Toxic Pufferfish by Liquid Chromatography/Mass Spectrometry.

    PubMed

    Miyaguchi, Hajime

    2016-01-01

    An improved version of a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method for genotyping toxic pufferfish species by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is described. DNA extraction is carried out using a silica membrane-based DNA extraction kit. After the PCR amplification using a detergent-free PCR buffer, restriction enzymes are added to the solution without purifying the reaction solution. A reverse-phase silica monolith column and a Fourier transform high resolution mass spectrometer having a modified Kingdon trap analyzer are employed for separation and detection, respectively. The mobile phase, consisting of 400 mM 1,1,1,3,3,3-hexafluoro-2-propanol, 15 mM triethylamine (pH 7.9) and methanol, is delivered at a flow rate of 0.4 ml/min. The cycle time for LC/ESI-MS analysis is 8 min including equilibration of the column. Deconvolution software having an isotope distribution model of the oligonucleotide is used to calculate the corresponding monoisotopic mass from the mass spectrum. For analysis of oligonucleotides (range 26-79 nucleotides), mass accuracy was 0.62 ± 0.74 ppm (n = 280) and excellent accuracy and precision were sustained for 180 hr without use of a lock mass standard. PMID:27684516

  15. Leishmania spp. identification by polymerase chain reaction-restriction fragment length polymorphism analysis and its applications in French Guiana.

    PubMed

    Simon, Stéphane; Veron, Vincent; Carme, Bernard

    2010-02-01

    Leishmania (Viannia) guyanensis was for many years the only species commonly identified in French Guiana, but precise species identifications were quite rare. We describe a new restriction fragment length polymorphism-polymerase chain reaction technique using a 615-bp fragment of the RNA polymerase II gene and 2 restriction enzymes, TspRI and HgaI. Seven reference strains (Leishmania (Leishmania) amazonensis, Leishmania (Viannia) lainsoni, Leishmania (Viannia) braziliensis, L. (V.) guyanensis, Leishmania (Viannia) naiffi, Leishmania (Leishmania) major, Leishmania (Leishmania) infantum) and 112 clinical samples from positive lesions were used for the development of the technique. The rates of positive species identification were 85.7% for punch skin biopsy specimens, 93.1% for positive Giemsa-stained smears, and 100% for positive culture supernatants. In the framework of cutaneous leishmaniasis species surveillance for the 2006 to 2008 period, parasite identification was carried out for 199 samples from different patients. The prevalence of the various Leishmania spp. was 84.4% for L. (V.) guyanensis, 8.0% for L. (V.) braziliensis, 5.0% for L. (L.) amazonensis, and 2.6% for L. (V.) lainsoni. L. (V.) braziliensis seems to be locally an emerging pathogen.

  16. Photoinduced intramolecular electron transfer reactions in fullerene-phenothiazine linked compounds: effects of magnetic field and spacer chain length

    NASA Astrophysics Data System (ADS)

    Yonemura, Hiroaki; Noda, Masakazu; Hayashi, Kazuya; Tokudome, Hiromasa; Moribe, Shinya; Yamada, Sunao

    Spectroscopic and electrochemical properties of two fullerene(C60)-phenothiazine(PH) linked compounds with different spacer chain length have been compared in benzonitrile (polar solvent) and in benzene (non-polar solvent). Transient absorption and fluorescence spectra indicated that photoinduced intramolecular electron transfer occurred in benzonitrile, but not in benzene. The results are due to solvent effect on energy levels of the photogenerated biradical. The driving forces for the electron transfer were determined by measuring the redox potentials of the C60 and PH moieties. Thermodynamic parameters for the electron transfer processes were evaluated and compared. In benzonitrile, the lifetime of the photogenerated biradical was very long, in spite of being around the top region in Marcus theory. The decay rate of the biradicals was retarded in the presence of magnetic fields. The decay rate constant decreased quickly with increasing the magnetic field and became constant above about 0.2 T. The magnetic field effects verified that the triplet biradical was generated by the intramolecular electron transfer from PH to the triplet excited state of C60 . The long lifetime is most probably ascribed to the spin multiplicities of the biradical.

  17. Correlation of chain length compatibility and surface properties of mixed foaming agents with fluid displacement efficiency and effective air mobility in porous media

    SciTech Connect

    Sharma, M.K.; Bringham, W.E.; Shah, D.O.

    1984-05-01

    The effects of chain length compatibility and surface properties of mixed foaming agents on fluid displacement efficiency and effective air mobility in porous media were investigated. Sodium dodecyl sulfate (C/sub 12/H/sub 25/SO/sub 4/Na) and various alkyl alcohols (e.g., C/sub 8/OH,C/sub 10/OH,C/sub 12/OH,C/sub 14/OH, and C/sub 16/OH) were used as mixed foaming agents. It was observed that the surface properties of surfactant solutions and flow behavior of foams through porous media were influenced by the chain length compatibility of the surfactant molecules. The increase in the length of porous media improved fluid displacement efficiency while breakthrough time per unit length decreased slightly with increase in the length of porous media. For mixed surfactant systems, a minimum in surface tension, a maximum in surface viscosity, a minimum in bubble size, a maximum in breakthrough time, a maximum in fluid displacement efficiency, and a minimum in effective air mobility were observed when the two components of the surfactant system had the same chain length. These results indicate that the surface properties of foaming solutions and molecular packing at interfaces exhibit a striking correlation with breakthrough time, fluid displacement efficiency, and effective air mobility in porous media.

  18. Effect of the non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activity toward medium-chain, long-chain and polyunsaturated fatty acids in mitochondria of mouse liver and brain.

    PubMed

    Kasuya, Fumiyo; Kazuhiro, Misumi; Tatsuya, Hasegawa; Nakamoto, Kazuo; Tokuyama, Shogo; Masuyama, Teiichi

    2013-02-01

    Effect of eleven non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activities toward octanoic, palmitic, arachidonic and docosahexaenoic acids was evaluated in mouse liver and brain mitochondria. The drugs tested were aspirin, salicylic acid, diflunisal, mefenamic acid, indomethacin, etodolac, ibuprofen, ketoprofen, naproxen, loxoprofen, flurbiprofen. In mouse liver mitochondria, diflunisal and mefenamic acid exhibited the inhibitory activities not only for octanoic acid (IC(50) = 78.7 and 64.7 µM) and but also for palmitic acid (IC(50) = 236.5 and 284.4 µM), respectively. Aspirin was an inhibitor for the activation of octanoic acid only (IC(50) = 411.0 µM). In the brain, mefenamic acid and diflunisal inhibited strongly palmitoyl-CoA formation (IC(50) = 57.3 and 114.0 µM), respectively. The activation of docosahexaenoic acid in brain was sensitive to inhibition by diflunisal and mefenamic acid compared with liver.

  19. Essential Role of the Donor Acyl Carrier Protein in Stereoselective Chain Translocation to a Fully Reducing Module of the Nanchangmycin Polyketide Synthase†

    PubMed Central

    Guo, Xun; Liu, Tiangang; Deng, Zixin; Cane, David E.

    2012-01-01

    Incubation of recombinant module 2 of the polyether nanchangmycin synthase (NANS), carrying an appended thioesterase domain, with the ACP-bound substrate (2RS)-2-methyl-3-ketobutyryl- NANS_ACP1 (2-ACP1) and methylmalonyl-CoA in the presence of NADPH gave diastereomerically pure (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (4a). These results contrast with the previously reported weak discrimination by NANS module 2+TE between the enantiomers of the corresponding N-acetylcysteamine-conjugated substrate analogue (±)-2- methyl-3-ketobutyryl-SNAC (2-SNAC), which resulted in formation of a 5:3 mixture of 4a and its (2S,4S)-diastereomer 4b. Incubation of NANS module 2+TE with 2-ACP1 in the absence of NADPH gave unreduced 3,5,6-trimethyl-4-hydroxypyrone (3) with a kcat of 4.4±0.9 min−1 and a kcat/Km 67 min−1 mM−1, corresponding to a ~2300-fold increase compared to the kcat/Km for the diffusive substrate 2-SNAC. Covalent tethering of the 2-methyl-3-ketobutyryl thioester substrate to the NANS ACP1 domain derived from the natural upstream PKS module of the nanchangmycin synthase significantly enhanced both the stereospecificity and the kinetic efficiency of the sequential polyketide chain translocation and condensation reactions catalyzed by the ketosynthase domain of NANS module 2. PMID:22229794

  20. Essential role of the donor acyl carrier protein in stereoselective chain translocation to a fully reducing module of the nanchangmycin polyketide synthase.

    PubMed

    Guo, Xun; Liu, Tiangang; Deng, Zixin; Cane, David E

    2012-01-31

    Incubation of recombinant module 2 of the polyether nanchangmycin synthase (NANS), carrying an appended thioesterase domain, with the ACP-bound substrate (2RS)-2-methyl-3-ketobutyryl-NANS_ACP1 (2-ACP1) and methylmalonyl-CoA in the presence of NADPH gave diastereomerically pure (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (4a). These results contrast with the previously reported weak discrimination by NANS module 2+TE between the enantiomers of the corresponding N-acetylcysteamine-conjugated substrate analogue (±)-2-methyl-3-ketobutyryl-SNAC (2-SNAC), which resulted in formation of a 5:3 mixture of 4a and its (2S,4S)-diastereomer 4b. Incubation of NANS module 2+TE with 2-ACP1 in the absence of NADPH gave unreduced 3,5,6-trimethyl-4-hydroxypyrone (3) with a k(cat) of 4.4 ± 0.9 min⁻¹ and a k(cat)/K(m) of 67 min⁻¹ mM⁻¹, corresponding to a ∼2300-fold increase compared to the k(cat)/K(m) for the diffusive substrate 2-SNAC. Covalent tethering of the 2-methyl-3-ketobutyryl thioester substrate to the NANS ACP1 domain derived from the natural upstream PKS module of the nanchangmycin synthase significantly enhanced both the stereospecificity and the kinetic efficiency of the sequential polyketide chain translocation and condensation reactions catalyzed by the ketosynthase domain of NANS module 2. PMID:22229794

  1. DATA COLLECTION CONSTRAINTS FOR THE USE OF LENGTH HETEROGENEITY POLYMERASE CHAIN REACTION (LH-PCR) AS AN INDICATOR OF STREAM SANITARY AND ECOLOGICAL CONDITION

    EPA Science Inventory

    This study is part of a larger project for the development of bacterial indicators of stream sanitary and ecological condition. Here we report preliminary research on the use of Length Heterogeneity Polymerase Chain Reaction (LH-PCR), which discriminates among 16S rRNA genes bas...

  2. Structural and Biochemical Analysis of a Single Amino-Acid Mutant of WzzBSF That Alters Lipopolysaccharide O-Antigen Chain Length in Shigella flexneri

    PubMed Central

    Casey, Lachlan W.; Lonhienne, Thierry; Benning, Friederike; Morona, Renato; Kobe, Bostjan

    2015-01-01

    Lipopolysaccharide (LPS), a surface polymer of Gram-negative bacteria, helps bacteria survive in different environments and acts as a virulence determinant of host infection. The O-antigen (Oag) component of LPS exhibits a modal chain-length distribution that is controlled by polysaccharide co-polymerases (PCPs). The molecular basis of the regulation of Oag chain-lengths remains unclear, despite extensive mutagenesis and structural studies of PCPs from Escherichia coli and Shigella. Here, we identified a single mutation (A107P) of the Shigella flexneri WzzBSF, by a random mutagenesis approach, that causes a shortened Oag chain-length distribution in bacteria. We determined the crystal structures of the periplasmic domains of wild-type WzzBSF and the A107P mutant. Both structures form a highly similar open trimeric assembly in the crystals, and show a similar tendency to self-associate in solution. Binding studies by bio-layer interferometry reveal cooperative binding of very short (VS)-core-plus-O-antigen polysaccharide (COPS) to the periplasmic domains of both proteins, but with decreased affinity for the A107P mutant. Our studies reveal that subtle and localized structural differences in PCPs can have dramatic effects on LPS chain-length distribution in bacteria, for example by altering the affinity for the substrate, which supports the role of the structure of the growing Oag polymer in this process. PMID:26378781

  3. The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata).

    PubMed

    Kuah, Meng-Kiat; Jaya-Ram, Annette; Shu-Chien, Alexander Chong

    2015-03-01

    The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores.

  4. Role of aromatic stacking interactions in the modulation of the two-electron reduction potentials of flavin and substrate/product in Megasphaera elsdenii short-chain acyl-coenzyme A dehydrogenase.

    PubMed

    Pellett, J D; Becker, D F; Saenger, A K; Fuchs, J A; Stankovich, M T

    2001-06-26

    The effects of aromatic stacking interactions on the stabilization of reduced flavin adenine dinucleotide (FAD) and substrate/product have been investigated in short-chain acyl-coenzyme A dehydrogenase (SCAD) from Megasphaera elsdenii. Mutations were made at the aromatic residues Phe160 and Tyr366, which flank either face of the noncovalently bound flavin cofactor. The electrochemical properties of the mutants were then measured in the presence and absence of a butyryl-CoA/crotonyl-CoA mixture. Results from these redox studies suggest that the phenylalanine and tyrosine both engage in favorable pi-sigma interactions with the isoalloxazine ring of the flavin to help stabilize formation of the anionic flavin hydroquinone. Disruption of these interactions by replacing either residue with a leucine (F160L and Y366L) causes the midpoint potential for the oxidized/hydroquinone couple (E(ox/hq)) to shift negative by 44-54 mV. The E(ox/hq) value was also found to decrease when aromatic residues containing electron-donating heteroatoms were introduced at the 160 position. Potential shifts of -32 and -43 mV for the F160Y and F160W mutants, respectively, are attributed to increased pi-pi repulsive interactions between the ring systems. This study also provides evidence for thermodynamic regulation of the substrate/product couple in the active site of SCAD. Binding to the wild-type enzyme caused the midpoint potential for the butyryl-CoA/crotonyl-CoA couple (E(BCoA/CCoA)) to shift 14 mV negative, stabilizing the oxidized product. Formation of product was found to be even more favorable in complexes with the F160Y and F160W mutants, suggesting that the electrostatic environment around the flavin plays a role in substrate/product activation.

  5. The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata).

    PubMed

    Kuah, Meng-Kiat; Jaya-Ram, Annette; Shu-Chien, Alexander Chong

    2015-03-01

    The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores. PMID:25542509

  6. Genetic divergence between Mexican Opuntia accessions inferred by polymerase chain reaction-restriction fragment length polymorphism analysis.

    PubMed

    Samah, S; Valadez-Moctezuma, E; Peláez-Luna, K S; Morales-Manzano, S; Meza-Carrera, P; Cid-Contreras, R C

    2016-01-01

    Molecular methods are powerful tools in characterizing and determining relationships between plants. The aim of this study was to study genetic divergence between 103 accessions of Mexican Opuntia. To accomplish this, polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis of three chloroplast intergenic spacers (atpB-rbcL, trnL-trnF, and psbA-trnH), one chloroplast gene (ycf1), two nuclear genes (ppc and PhyC), and one mitochondrial gene (cox3) was conducted. The amplified products from all the samples had very similar molecular sizes, and there were only very small differences between the undigested PCR amplicons for all regions, with the exception of ppc. We obtained 5850 bp from the seven regions, and 136 fragments were detected with eight enzymes, 37 of which (27.2%) were polymorphic. We found that 40% of the fragments from the chloroplast regions were polymorphic, 9.8% of the bands detected in the nuclear genes were polymorphic, and 20% of the bands in the mitochondrial locus were polymorphic. trnL-trnF and psbA-trnH were the most variable regions. The Nei and Li/Dice distance was very short, and ranged from 0 to 0.12; indeed, 77 of the 103 genotypes had the same genetic profile. All the xoconostle accessions (acidic fruits) were grouped together without being separated from three genotypes of prickly pear (sweet fruits). We assume that the genetic divergence between prickly pears and xoconostles is very low, and question the number of Opuntia species currently considered in Mexico. PMID:27323120

  7. Two-stage continuous process development for the production of medium-chain-length poly(3-hydroxyalkanoates).

    PubMed

    Jung, K; Hazenberg, W; Prieto, M; Witholt, B

    2001-01-01

    Pseudomonas oleovorans forms medium-chain-length poly(3-hydroxyalkanoate) (PHA) most effectively at growth rates below the maximum specific growth rate. Under adequate conditions, PHA accumulates in inclusion bodies in cells up to levels higher than half of the cell mass, which is a time-consuming process. For PHA production, a two-stage continuous cultivation system with two fermentors connected in series is a potentially useful system. It offers production of cells at a specific growth rate in a first compartment at conditions that lead cells to generate PHA at higher rates in a second compartment, with a relatively long residence time. In such a system, dilution rates of 0.21 h(-1) in the first fermentor (D(1)) and 0.16 h(-1) in the second fermentor (D(2)) were found to yield the highest volumetric PHA productivity. Transient-state experiments allowed investigation of D(1) and D(2) over a wide dilution rate range at high resolution in time-saving experiments. Furthermore, the influence of temperature, pH, nutrient limitation, and carbon source on PHA productivity was investigated and results similar to optimum conditions in single-stage chemostat cultivations of P. oleovorans were found. With all culture parameters optimized, a volumetric PHA productivity of 1.06 g L(-1) h(-1) was determined. Under these conditions, P. oleovorans cells contained 63% (dry weight) PHA in the effluent of the second fermentor. This is the highest PHA productivity and PHA content reported thus far for P. oleovorans cultures grown on alkanes. PMID:11084589

  8. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite.

    PubMed

    Zhang, Ke; Cheng, Lei; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin H K

    2016-03-01

    Composites containing nanoparticles of amorphous calcium phosphate (NACP) remineralize tooth lesions and inhibit caries. A recent study synthesized quaternary ammonium methacrylates (QAMs) with chain lengths (CLs) of 3-18 and determined their effects on a bonding agent. This study aimed to incorporate these QAMs into NACP nanocomposites for the first time to simultaneously endow the material with antibacterial and remineralizing capabilities and to investigate the effects of the CL on the mechanical and biofilm properties. Five QAMs were synthesized: DMAPM (CL3), DMAHM (CL6), DMADDM (CL12), DMAHDM (CL16), and DMAODM (CL18). Each QAM was incorporated into a composite containing 20% NACP and 50% glass fillers. A dental plaque microcosm biofilm model was used to evaluate the antibacterial activity. The flexural strength and elastic modulus of nanocomposites with QAMs matched those of a commercial control composite (n = 6; P > 0.1). Increasing the CL from 3 to 16 greatly enhanced the antibacterial activity of the NACP nanocomposite (P < 0.05); further increasing the CL to 18 decreased the antibacterial potency. The NACP nanocomposite with a CL of 16 exhibited biofilm metabolic activity and acid production that were 10-fold lesser than those of the control composite. The NACP nanocomposite with a CL of 16 produced 2-log decreases in the colony-forming units (CFU) of total microorganisms, total streptococci, and mutans streptococci. In conclusion, QAMs with CLs of 3-18 were synthesized and incorporated into an NACP nanocomposite for the first time to simultaneously endow the material with antibacterial and remineralization capabilities. Increasing the CL reduced the metabolic activity and acid production of biofilms and caused a 2-log decrease in CFU without compromising the mechanical properties. Nanocomposites exhibiting strong anti-biofilm activity, remineralization effects, and mechanical properties are promising materials for tooth restorations that inhibit caries

  9. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate.

    PubMed

    Nikodinovic, Jasmina; Kenny, Shane T; Babu, Ramesh P; Woods, Trevor; Blau, Werner J; O'Connor, Kevin E

    2008-09-01

    Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers--polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.

  10. Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) by Comamonas testosteroni during cultivation on vegetable oils.

    PubMed

    Thakor, Nehal; Trivedi, Ujjval; Patel, K C

    2005-11-01

    Comamonas testosteroni has been studied for its ability to synthesize and accumulate medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) during cultivation on vegetable oils available in the local market. Castor seed oil, coconut oil, mustard oil, cotton seed oil, groundnut oil, olive oil and sesame oil were supplemented in the mineral medium as a sole source of carbon for growth and PHAs accumulation. The composition of PHAs was analysed by a coupled gas chromatography/mass spectroscopy (GC/MS). PHAs contained C6 to C14 3-hydroxy acids, with a strong presence of 3-hydroxyoctanoate when coconut oil, mustard oil, cotton seed oil and groundnut oil were supplied. 3-hydroxydecanoate was incorporated at higher concentrations when castor seed oil, olive oil and sesame oil were the substrates. Purified PHAs samples were characterized by Fourier Transform Infrared (FTIR) and 13C NMR analysis. During cultivation on various vegetable oils, C. testosteroni accumulated PHAs up to 78.5-87.5% of the cellular dry material (CDM). The efficiency of the culture to convert oil to PHAs ranged from 53.1% to 58.3% for different vegetable oils. Further more, the composition of the PHAs formed was not found to be substrate dependent as PHAs obtained from C. testosteroni during growth on variety of vegetable oils showed similar compositions; 3-hydroxyoctanoic acid and/or 3-hydroxydecanoic acid being always predominant. The polymerizing system of C. testosteroni showed higher preference for C8 and C10 monomers as longer and smaller monomers were incorporated less efficiently. PMID:16084364

  11. Photochemical Modification of Single Crystalline GaN Film Using n-Alkene with Different Carbon Chain Lengths as Biolinker.

    PubMed

    Wang, Chun; Zhuang, Hao; Huang, Nan; Heuser, Steffen; Schlemper, Christoph; Zhai, Zhaofeng; Liu, Baodan; Staedler, Thorsten; Jiang, Xin

    2016-06-14

    As a potential material for biosensing applications, gallium nitride (GaN) films have attracted remarkable attention. In order to construct GaN biosensors, a corresponding immobilization of biolinkers is of great importance in order to render a surface bioactive. In this work, two kinds of n-alkenes with different carbon chain lengths, namely allylamine protected with trifluoroacetamide (TFAAA) and 10-aminodec-1-ene protected with trifluoroacetamide (TFAAD), were used to photochemically functionalize single crystalline GaN films. The successful linkage of both TFAAA and TFAAD to the GaN films is confirmed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement. With increased UV illumination time, the intensity of the secondary ions corresponding to the linker molecules initially increases and subsequently decreases in both cases. Based on the SIMS measurements, the maximum coverage of TFAAA is achieved after 14 h of UV illumination, while only 2 h is required in the case of TFAAD to reach the situation of a fully covered GaN surface. This finding leads to the conclusion that the reaction rate of TFAAD is significantly higher compared to TFAAA. Measurements by atomic force microscopy (AFM) indicate that the coverage of GaN films by a TFAAA layer leads to an increased surface roughness. The atomic terraces, which are clearly observable for the pristine GaN films, disappear once the surface is fully covered by a TFAAA layer. Such TFAAA layers will feature a homogeneous surface topography even for reaction times of 24 h. In contrast to this, TFAAD shows strong cross-polymerization on the surface, this is confirmed by optical microscopy. These results demonstrate that TFAAA is a more suitable candidate as biolinker in context of the GaN surfaces due to its improved controllability.

  12. Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) by Comamonas testosteroni during cultivation on vegetable oils.

    PubMed

    Thakor, Nehal; Trivedi, Ujjval; Patel, K C

    2005-11-01

    Comamonas testosteroni has been studied for its ability to synthesize and accumulate medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) during cultivation on vegetable oils available in the local market. Castor seed oil, coconut oil, mustard oil, cotton seed oil, groundnut oil, olive oil and sesame oil were supplemented in the mineral medium as a sole source of carbon for growth and PHAs accumulation. The composition of PHAs was analysed by a coupled gas chromatography/mass spectroscopy (GC/MS). PHAs contained C6 to C14 3-hydroxy acids, with a strong presence of 3-hydroxyoctanoate when coconut oil, mustard oil, cotton seed oil and groundnut oil were supplied. 3-hydroxydecanoate was incorporated at higher concentrations when castor seed oil, olive oil and sesame oil were the substrates. Purified PHAs samples were characterized by Fourier Transform Infrared (FTIR) and 13C NMR analysis. During cultivation on various vegetable oils, C. testosteroni accumulated PHAs up to 78.5-87.5% of the cellular dry material (CDM). The efficiency of the culture to convert oil to PHAs ranged from 53.1% to 58.3% for different vegetable oils. Further more, the composition of the PHAs formed was not found to be substrate dependent as PHAs obtained from C. testosteroni during growth on variety of vegetable oils showed similar compositions; 3-hydroxyoctanoic acid and/or 3-hydroxydecanoic acid being always predominant. The polymerizing system of C. testosteroni showed higher preference for C8 and C10 monomers as longer and smaller monomers were incorporated less efficiently.

  13. Photochemical Modification of Single Crystalline GaN Film Using n-Alkene with Different Carbon Chain Lengths as Biolinker.

    PubMed

    Wang, Chun; Zhuang, Hao; Huang, Nan; Heuser, Steffen; Schlemper, Christoph; Zhai, Zhaofeng; Liu, Baodan; Staedler, Thorsten; Jiang, Xin

    2016-06-14

    As a potential material for biosensing applications, gallium nitride (GaN) films have attracted remarkable attention. In order to construct GaN biosensors, a corresponding immobilization of biolinkers is of great importance in order to render a surface bioactive. In this work, two kinds of n-alkenes with different carbon chain lengths, namely allylamine protected with trifluoroacetamide (TFAAA) and 10-aminodec-1-ene protected with trifluoroacetamide (TFAAD), were used to photochemically functionalize single crystalline GaN films. The successful linkage of both TFAAA and TFAAD to the GaN films is confirmed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement. With increased UV illumination time, the intensity of the secondary ions corresponding to the linker molecules initially increases and subsequently decreases in both cases. Based on the SIMS measurements, the maximum coverage of TFAAA is achieved after 14 h of UV illumination, while only 2 h is required in the case of TFAAD to reach the situation of a fully covered GaN surface. This finding leads to the conclusion that the reaction rate of TFAAD is significantly higher compared to TFAAA. Measurements by atomic force microscopy (AFM) indicate that the coverage of GaN films by a TFAAA layer leads to an increased surface roughness. The atomic terraces, which are clearly observable for the pristine GaN films, disappear once the surface is fully covered by a TFAAA layer. Such TFAAA layers will feature a homogeneous surface topography even for reaction times of 24 h. In contrast to this, TFAAD shows strong cross-polymerization on the surface, this is confirmed by optical microscopy. These results demonstrate that TFAAA is a more suitable candidate as biolinker in context of the GaN surfaces due to its improved controllability. PMID:27217218

  14. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite

    PubMed Central

    Zhang, Ke; Cheng, Lei; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin HK

    2016-01-01

    Composites containing nanoparticles of amorphous calcium phosphate (NACP) remineralize tooth lesions and inhibit caries. A recent study synthesized quaternary ammonium methacrylates (QAMs) with chain lengths (CLs) of 3–18 and determined their effects on a bonding agent. This study aimed to incorporate these QAMs into NACP nanocomposites for the first time to simultaneously endow the material with antibacterial and remineralizing capabilities and to investigate the effects of the CL on the mechanical and biofilm properties. Five QAMs were synthesized: DMAPM (CL3), DMAHM (CL6), DMADDM (CL12), DMAHDM (CL16), and DMAODM (CL18). Each QAM was incorporated into a composite containing 20% NACP and 50% glass fillers. A dental plaque microcosm biofilm model was used to evaluate the antibacterial activity. The flexural strength and elastic modulus of nanocomposites with QAMs matched those of a commercial control composite (n = 6; P > 0.1). Increasing the CL from 3 to 16 greatly enhanced the antibacterial activity of the NACP nanocomposite (P < 0.05); further increasing the CL to 18 decreased the antibacterial potency. The NACP nanocomposite with a CL of 16 exhibited biofilm metabolic activity and acid production that were 10-fold lesser than those of the control composite. The NACP nanocomposite with a CL of 16 produced 2-log decreases in the colony-forming units (CFU) of total microorganisms, total streptococci, and mutans streptococci. In conclusion, QAMs with CLs of 3–18 were synthesized and incorporated into an NACP nanocomposite for the first time to simultaneously endow the material with antibacterial and remineralization capabilities. Increasing the CL reduced the metabolic activity and acid production of biofilms and caused a 2-log decrease in CFU without compromising the mechanical properties. Nanocomposites exhibiting strong anti-biofilm activity, remineralization effects, and mechanical properties are promising materials for tooth restorations that inhibit

  15. Lateral Chain Length in Polyalkyl Acrylates Determines the Mobility of Fibronectin at the Cell/Material Interface

    PubMed Central

    2015-01-01

    Cells, by interacting with surfaces indirectly through a layer of extracellular matrix proteins, can respond to a variety of physical properties, such as topography or stiffness. Polymer surface mobility is another physical property that is less well understood but has been indicated to hold the potential to modulate cell behavior. Polymer mobility is related to the glass-transition temperature (Tg) of the system, the point at which a polymer transitions from an amorphous solid to a more liquid-like state. This work shows that changes in polymer mobility translate to interfacial mobility of extracellular matrix proteins adsorbed on the material surface. This study has utilized a family of polyalkyl acrylates with similar chemistry but different degrees of mobility, obtained through increasing length of the side chain. These materials are used, in conjunction with fluorescent fibronectin, to determine the mobility of this interfacial layer of protein that constitutes the initial cell–material interface. Furthermore, the extent of fibronectin domain availability (III9, III10, - the integrin binding site), cell-mediated reorganization, and cell differentiation was also determined. A nonmonotonic dependence of fibronectin mobility on polymer surface mobility was observed, with a similar trend noted in cell-mediated reorganization of the protein layer by L929 fibroblasts. The availability of the integrin-binding site was higher on the more mobile surfaces, where a similar organization of the protein into networks at the material interface was observed. Finally, differentiation of C2C12 myoblasts was seen to be highly sensitive to surface mobility upon inhibition of cell contractility. Altogether, these findings show that polymer mobility is a subtle influence that translates to the cell/material interface through the protein layer to alter the biological activity of the surface. PMID:26715432

  16. Rapid detection of clarithromycin resistant Helicobacter pylori strains in Spanish patients by polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    Agudo, Sonia; Pérez-Pérez, Guillermo; Alarcón, Teresa; López-Brea, Manuel

    2014-01-01

    Introduction The aim of this study was to characterize the mutations types present in the 23S rRNA gene related to H. pylori clarithromycin-resistance strains in Spain and evaluate a novel PCR-RFLP method for detection of the most frequent point mutation in our population. Methods Gastric biopsies were obtained by endoscopy from patients with gastric symptoms. H. pylori was cultured according to standard microbiological procedures and clarithromycin resistance was determined by E-test. DNA extraction was performed by NucliSens platform with the NucliSens magnetic extraction reagents (bioMérieux) according to the manufacturer instructions. Analyses for point mutations in 23S rRNA gene strains were performed by sequence analysis of amplified polymerase chain reaction products. Restriction fragment length polymorphism was performed using BsaI enzyme to detect restriction sites that correspond to the mutation (A2143G). Result We found 42 out of 118 (35.6%) strains resistant to clarithromycin by E-test. E-test results were confirmed for the presence of point mutation in 34 (88.1%) of these strains. Mutation A2143G was found in 85.3% of the strains. Analyses with the restriction enzyme BsaI was able to confirm the presence of A2143G mutation. There were 8 H. pylori strains resistant to clarithromycin by E-test but without any point mutation in the 23 rRNA gene. Conclusion We conclude that PCR-RFLP is a reliable method to detect clarithromycin-resistance H. pylori strains in countries with a high prevalence of clarithromycin-resistance as Spain It may be useful before choosing regimens of H. pylori eradication. PMID:21412667

  17. Genetic divergence between Mexican Opuntia accessions inferred by polymerase chain reaction-restriction fragment length polymorphism analysis.

    PubMed

    Samah, S; Valadez-Moctezuma, E; Peláez-Luna, K S; Morales-Manzano, S; Meza-Carrera, P; Cid-Contreras, R C

    2016-06-03

    Molecular methods are powerful tools in characterizing and determining relationships between plants. The aim of this study was to study genetic divergence between 103 accessions of Mexican Opuntia. To accomplish this, polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis of three chloroplast intergenic spacers (atpB-rbcL, trnL-trnF, and psbA-trnH), one chloroplast gene (ycf1), two nuclear genes (ppc and PhyC), and one mitochondrial gene (cox3) was conducted. The amplified products from all the samples had very similar molecular sizes, and there were only very small differences between the undigested PCR amplicons for all regions, with the exception of ppc. We obtained 5850 bp from the seven regions, and 136 fragments were detected with eight enzymes, 37 of which (27.2%) were polymorphic. We found that 40% of the fragments from the chloroplast regions were polymorphic, 9.8% of the bands detected in the nuclear genes were polymorphic, and 20% of the bands in the mitochondrial locus were polymorphic. trnL-trnF and psbA-trnH were the most variable regions. The Nei and Li/Dice distance was very short, and ranged from 0 to 0.12; indeed, 77 of the 103 genotypes had the same genetic profile. All the xoconostle accessions (acidic fruits) were grouped together without being separated from three genotypes of prickly pear (sweet fruits). We assume that the genetic divergence between prickly pears and xoconostles is very low, and question the number of Opuntia species currently considered in Mexico.