Science.gov

Sample records for acyl coa binding

  1. Acyl CoA Binding Proteins are Required for Cuticle Formation and Plant Responses to Microbes.

    PubMed

    Xia, Ye; Yu, Keshun; Gao, Qing-Ming; Wilson, Ella V; Navarre, Duroy; Kachroo, Pradeep; Kachroo, Aardra

    2012-01-01

    Fatty acids (FA) and lipids are well known regulators of plant defense. Our previous studies have shown that components of prokaryotic (plastidal) FA biosynthesis pathway regulate various aspects of plant defense. Here, we investigated the defense related roles of the soluble acyl CoA binding proteins (ACBPs), which are thought to facilitate the intracellular transport of FA/lipids. We show that ACBP3 and 4 are required for maintaining normal lipid levels and that ACBP3 contributes to the lipid flux between the prokaryotic and eukaryotic pathways. We also show that loss of ACBP3, 4, or 6 impair normal development of the cuticle and affect both basal and resistance protein-mediated defense against bacterial and fungal pathogens. Loss of ACBP3, 4, or 6 also inhibits the induction of systemic acquired resistance (SAR) due to the plants inability to generate SAR inducing signal(s). Together, these data show that ACBP3, ACBP4, and ACBP6 are required for cuticle development as well as defense against microbial pathogens.

  2. ACBP and cholesterol differentially alter fatty acyl CoA utilization by microsomal ACAT.

    PubMed

    Chao, Hsu; Zhou, Minglong; McIntosh, Avery; Schroeder, Friedhelm; Kier, Ann B

    2003-01-01

    Microsomal acyl CoA:cholesterol acyltransferase (ACAT) is stimulated in vitro and/or in intact cells by proteins that bind and transfer both substrates, cholesterol, and fatty acyl CoA. To resolve the role of fatty acyl CoA binding independent of cholesterol binding/transfer, a protein that exclusively binds fatty acyl CoA (acyl CoA binding protein, ACBP) was compared. ACBP contains an endoplasmic reticulum retention motif and significantly colocalized with acyl-CoA cholesteryl acyltransferase 2 (ACAT2) and endoplasmic reticulum markers in L-cell fibroblasts and hepatoma cells, respectively. In the presence of exogenous cholesterol, ACAT was stimulated in the order: ACBP > sterol carrier protein-2 (SCP-2) > liver fatty acid binding protein (L-FABP). Stimulation was in the same order as the relative affinities of the proteins for fatty acyl CoA. In contrast, in the absence of exogenous cholesterol, these proteins inhibited microsomal ACAT, but in the same order: ACBP > SCP-2 > L-FABP. The extracellular protein BSA stimulated microsomal ACAT regardless of the presence or absence of exogenous cholesterol. Thus, ACBP was the most potent intracellular fatty acyl CoA binding protein in differentially modulating the activity of microsomal ACAT to form cholesteryl esters independent of cholesterol binding/transfer ability.

  3. Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids.

    PubMed Central

    Wadum, Majken C T; Villadsen, Jens K; Feddersen, Søren; Møller, Rikke S; Neergaard, Thomas B F; Kragelund, Birthe B; Højrup, Peter; Faergeman, Nils J; Knudsen, Jens

    2002-01-01

    Long-chain acyl-CoA esters are key metabolites in lipid synthesis and beta-oxidation but, at the same time, are important regulators of intermediate metabolism, insulin secretion, vesicular trafficking and gene expression. Key tools in studying the regulatory functions of acyl-CoA esters are reliable methods for the determination of free acyl-CoA concentrations. No such method is presently available. In the present study, we describe the synthesis of two acyl-CoA sensors for measuring free acyl-CoA concentrations using acyl-CoA-binding protein as a scaffold. Met24 and Ala53 of bovine acyl-CoA-binding protein were replaced by cysteine residues, which were covalently modified with 6-bromoacetyl-2-dimethylaminonaphthalene to make the two fluorescent acyl-CoA indicators (FACIs) FACI-24 and FACI-53. FACI-24 and FACI-53 showed fluorescence emission maximum at 510 and 525 nm respectively, in the absence of ligand (excitation 387 nm). Titration of FACI-24 and FACI-53 with hexadecanoyl-CoA and dodecanoyl-CoA increased the fluorescence yield 5.5-and 4.7-fold at 460 and 495 nm respectively. FACI-24 exhibited a high, and similar increase in, fluorescence yield at 460 nm upon binding of C14-C20 saturated and unsaturated acyl-CoA esters. Both indicators bind long-chain (>C14) acyl-CoA esters with high specificity and affinity (K(d)=0.6-1.7 nM). FACI-53 showed a high fluorescence yield for C8-C12 acyl chains. It is shown that FACI-24 acts as a sensitive acyl-CoA sensor for measuring the concentration of free acyl-CoA, acyl-CoA synthetase activity and the concentrations of free fatty acids after conversion of the fatty acid into their respective acyl-CoA esters. PMID:12071849

  4. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ...

  5. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE PAGES

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  6. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    SciTech Connect

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.

  7. Acyl-CoA binding proteins: multiplicity and function.

    PubMed

    Gossett, R E; Frolov, A A; Roths, J B; Behnke, W D; Kier, A B; Schroeder, F

    1996-09-01

    The physiological role of long-chain fatty acyl-CoA is thought to be primarily in intermediary metabolism of fatty acids. However, recent data show that nM to microM levels of these lipophilic molecules are potent regulators of cell functions in vitro. Although long-chain fatty acyl-CoA are present at several hundred microM concentration in the cell, very little long-chain fatty acyl-CoA actually exists as free or unbound molecules, but rather is bound with high affinity to membrane lipids and/or proteins. Recently, there is growing awareness that cytosol contains nonenzymatic proteins also capable of binding long-chain fatty acyl-CoA with high affinity. Although the identity of the cytosolic long-chain fatty acyl-CoA binding protein(s) has been the subject of some controversy, there is growing evidence that several diverse nonenzymatic cytosolic proteins will bind long-chain fatty acyl-CoA. Not only does acyl-CoA binding protein specifically bind medium and long-chain fatty acyl-CoA (LCFA-CoA), but ubiquitous proteins with multiple ligand specificities such as the fatty acid binding proteins and sterol carrier protein-2 also bind LCFA-CoA with high affinity. The potential of these acyl-CoA binding proteins to influence the level of free LCFA-CoA and thereby the amount of LCFA-CoA bound to regulatory sites in proteins and enzymes is only now being examined in detail. The purpose of this article is to explore the identity, nature, function, and pathobiology of these fascinating newly discovered long-chain fatty acyl-CoA binding proteins. The relative contributions of these three different protein families to LCFA-CoA utilization and/or regulation of cellular activities are the focus of new directions in this field.

  8. Mycobacteria Encode Active and Inactive Classes of TesB Fatty-Acyl CoA Thioesterases Revealed through Structural and Functional Analysis.

    PubMed

    Swarbrick, Crystall M D; Bythrow, Glennon V; Aragao, David; Germain, Gabrielle A; Quadri, Luis E N; Forwood, Jade K

    2017-03-14

    Mycobacteria contain a large number of highly divergent species and exhibit unusual lipid metabolism profiles, believed to play important roles in immune invasion. Thioesterases modulate lipid metabolism through the hydrolysis of activated fatty-acyl CoAs; multiple copies are present in mycobacteria, yet many remain uncharacterized. Here, we undertake a comprehensive structural and functional analysis of a TesB thioesterase from Mycobacterium avium (MaTesB). Structural superposition with other TesB thioesterases reveals that the Asp active site residue, highly conserved across a wide range of TesB thioesterases, is mutated to Ala. Consistent with these structural data, the wild-type enzyme failed to hydrolyze an extensive range of acyl-CoA substrates. Mutation of this residue to an active Asp residue restored activity against a range of medium-chain length fatty-acyl CoA substrates. Interestingly, this Ala mutation is highly conserved across a wide range of Mycobacterium species but not found in any other bacteria or organism. Our structural homology analysis revealed that at least one other TesB acyl-CoA thioesterase also contains an Ala residue at the active site, while two other Mycobacterium TesB thioesterases harbor an Asp residue at the active site. The inactive TesBs display a common quaternary structure that is distinct from that of the active TesB thioesterases. Investigation of the effect of expression of either the catalytically active or inactive MaTesB in Mycobacterium smegmatis exposed, to the best of our knowledge, the first genotype-phenotype association implicating a mycobacterial tesB gene. This is the first report that mycobacteria encode active and inactive forms of thioesterases, the latter of which appear to be unique to mycobacteria.

  9. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation

    PubMed Central

    Xue, Yan; Xiao, Shi; Kim, Juyoung; Lung, Shiu-Cheung; Chen, Liang; Tanner, Julian A.; Suh, Mi Chung; Chye, Mee-Len

    2014-01-01

    The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)–flame ionization detector (FID) and GC–mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs. PMID:25053648

  10. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation.

    PubMed

    Xue, Yan; Xiao, Shi; Kim, Juyoung; Lung, Shiu-Cheung; Chen, Liang; Tanner, Julian A; Suh, Mi Chung; Chye, Mee-Len

    2014-10-01

    The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)-flame ionization detector (FID) and GC-mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs.

  11. Unraveling Cholesterol Catabolism in Mycobacterium tuberculosis: ChsE4-ChsE5 α2β2 Acyl-CoA Dehydrogenase Initiates β-Oxidation of 3-Oxo-cholest-4-en-26-oyl CoA

    PubMed Central

    2016-01-01

    The metabolism of host cholesterol by Mycobacterium tuberculosis (Mtb) is an important factor for both its virulence and pathogenesis, although how and why cholesterol metabolism is required is not fully understood. Mtb uses a unique set of catabolic enzymes that are homologous to those required for classical β-oxidation of fatty acids but are specific for steroid-derived substrates. Here, we identify and assign the substrate specificities of two of these enzymes, ChsE4-ChsE5 (Rv3504-Rv3505) and ChsE3 (Rv3573c), that carry out cholesterol side chain oxidation in Mtb. Steady-state assays demonstrate that ChsE4-ChsE5 preferentially catalyzes the oxidation of 3-oxo-cholest-4-en-26-oyl CoA in the first cycle of cholesterol side chain β-oxidation that ultimately yields propionyl-CoA, whereas ChsE3 specifically catalyzes the oxidation of 3-oxo-chol-4-en-24-oyl CoA in the second cycle of β-oxidation that generates acetyl-CoA. However, ChsE4-ChsE5 can catalyze the oxidation of 3-oxo-chol-4-en-24-oyl CoA as well as 3-oxo-4-pregnene-20-carboxyl-CoA. The functional redundancy of ChsE4-ChsE5 explains the in vivo phenotype of the igr knockout strain of Mycobacterium tuberculosis; the loss of ChsE1-ChsE2 can be compensated for by ChsE4-ChsE5 during the chronic phase of infection. The X-ray crystallographic structure of ChsE4-ChsE5 was determined to a resolution of 2.0 Å and represents the first high-resolution structure of a heterotetrameric acyl-CoA dehydrogenase (ACAD). Unlike typical homotetrameric ACADs that bind four flavin adenine dinucleotide (FAD) cofactors, ChsE4-ChsE5 binds one FAD at each dimer interface, resulting in only two substrate-binding sites rather than the classical four active sites. A comparison of the ChsE4-ChsE5 substrate-binding site to those of known mammalian ACADs reveals an enlarged binding cavity that accommodates steroid substrates and highlights novel prospects for designing inhibitors against the committed β-oxidation step in the first

  12. Identification of 3-Sulfinopropionyl Coenzyme A (CoA) Desulfinases within the Acyl-CoA Dehydrogenase Superfamily

    PubMed Central

    Schürmann, Marc; Demming, Rebecca Michaela; Krewing, Marco; Rose, Judith; Wübbeler, Jan Hendrik

    2014-01-01

    In a previous study, the essential role of 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase acyl-CoA dehydrogenase (Acd) in Advenella mimigardefordensis strain DPN7T (AcdDPN7) during degradation of 3,3′-dithiodipropionic acid (DTDP) was elucidated. DTDP is a sulfur-containing precursor substrate for biosynthesis of polythioesters (PTEs). AcdDPN7 showed high amino acid sequence similarity to acyl-CoA dehydrogenases but was unable to catalyze a dehydrogenation reaction. Hence, it was investigated in the present study whether 3SP-CoA desulfinase activity is an uncommon or a widespread property within the acyl-CoA dehydrogenase superfamily. Therefore, proteins of the acyl-CoA dehydrogenase superfamily from Advenella kashmirensis WT001, Bacillus cereus DSM31, Cupriavidus necator N-1, Escherichia coli BL21, Pseudomonas putida KT2440, Burkholderia xenovorans LB400, Ralstonia eutropha H16, Variovorax paradoxus B4, Variovorax paradoxus S110, and Variovorax paradoxus TBEA6 were expressed in E. coli strains. All purified acyl-CoA dehydrogenases appeared as homotetramers, as revealed by size exclusion chromatography. AcdS110, AcdB4, AcdH16, and AcdKT2440 were able to dehydrogenate isobutyryl-CoA. AcdKT2440 additionally dehydrogenated butyryl-CoA and valeryl-CoA, whereas AcdDSM31 dehydrogenated only butyryl-CoA and valeryl-CoA. No dehydrogenation reactions were observed with propionyl-CoA, isovaleryl-CoA, succinyl-CoA, and glutaryl-CoA for any of the investigated acyl-CoA dehydrogenases. Only AcdTBEA6, AcdN-1, and AcdLB400 desulfinated 3SP-CoA and were thus identified as 3SP-CoA desulfinases within the acyl-CoA dehydrogenase family, although none of these three Acds dehydrogenated any of the tested acyl-CoA thioesters. No appropriate substrates were identified for AcdBL21 and AcdWT001. Spectrophotometric assays provided apparent Km and Vmax values for active substrates and indicated the applicability of phylogenetic analyses to predict the substrate range of

  13. Identification of 3-sulfinopropionyl coenzyme A (CoA) desulfinases within the Acyl-CoA dehydrogenase superfamily.

    PubMed

    Schürmann, Marc; Demming, Rebecca Michaela; Krewing, Marco; Rose, Judith; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2014-02-01

    In a previous study, the essential role of 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase acyl-CoA dehydrogenase (Acd) in Advenella mimigardefordensis strain DPN7(T) (AcdDPN7) during degradation of 3,3'-dithiodipropionic acid (DTDP) was elucidated. DTDP is a sulfur-containing precursor substrate for biosynthesis of polythioesters (PTEs). AcdDPN7 showed high amino acid sequence similarity to acyl-CoA dehydrogenases but was unable to catalyze a dehydrogenation reaction. Hence, it was investigated in the present study whether 3SP-CoA desulfinase activity is an uncommon or a widespread property within the acyl-CoA dehydrogenase superfamily. Therefore, proteins of the acyl-CoA dehydrogenase superfamily from Advenella kashmirensis WT001, Bacillus cereus DSM31, Cupriavidus necator N-1, Escherichia coli BL21, Pseudomonas putida KT2440, Burkholderia xenovorans LB400, Ralstonia eutropha H16, Variovorax paradoxus B4, Variovorax paradoxus S110, and Variovorax paradoxus TBEA6 were expressed in E. coli strains. All purified acyl-CoA dehydrogenases appeared as homotetramers, as revealed by size exclusion chromatography. AcdS110, AcdB4, AcdH16, and AcdKT2440 were able to dehydrogenate isobutyryl-CoA. AcdKT2440 additionally dehydrogenated butyryl-CoA and valeryl-CoA, whereas AcdDSM31 dehydrogenated only butyryl-CoA and valeryl-CoA. No dehydrogenation reactions were observed with propionyl-CoA, isovaleryl-CoA, succinyl-CoA, and glutaryl-CoA for any of the investigated acyl-CoA dehydrogenases. Only AcdTBEA6, AcdN-1, and AcdLB400 desulfinated 3SP-CoA and were thus identified as 3SP-CoA desulfinases within the acyl-CoA dehydrogenase family, although none of these three Acds dehydrogenated any of the tested acyl-CoA thioesters. No appropriate substrates were identified for AcdBL21 and AcdWT001. Spectrophotometric assays provided apparent Km and Vmax values for active substrates and indicated the applicability of phylogenetic analyses to predict the substrate range of

  14. Ricinus communis contains and acyl-CoA synthetase that preferentially activates ricinoleate to its CoA thioester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of our effort to identify enzymes that are critical for producing large amounts of ricinoleate in castor oil, we have isolated three cDNAs encoding acyl-CoA synthetase (ACS) in the castor plant. Analysis of the cDNA sequences reveals that two of them, designated RcACS 2 and RcACS 4, contain...

  15. Effect of various eicosanoid products of arachidonic acid on the acyl CoA: Cholesterol acyl transferase activity in three different mammalian cell lines

    SciTech Connect

    Malo, P.El.

    1988-01-01

    Acylcoenzyme A:cholesterol acyltransferase (ACAT) catalyzes cholesterol ester synthesis intracellularly and has been implicated in the development of atherosclerosis. An in vitro assay has been adapted for determining ACAT activity from rat FU5AH hepatoma, Chinese hamster ovary (CHO) and rat thoracic aortic smooth muscle (RSM) cells. Formation of {sup 14}C-labelled cholesteryl oleate at 0 to 60 min {plus minus} cholesterol was determined; in the presence of exogenous cholesterol, ACAT activity was approximately linear and surpassed the plateau observed in ACAT activity without cholesterol. Increasing exogenous cholesterol concentration, the amount of oleoyl CoA or the amount of microsomal protein produced a corresponding increase in ACAT activity, while ester formation was slightly increased by decreasing the ratio of Triton WR-1339 to cholesterol. Both the thromboxane A{sub 2} (TxA{sub 2}) mimic, U-44069, and the inflammatory lipoxygenase product, LTB{sub 4}, decreased optimal in vitro microsomal ACAT activity from RSM, but not form FU5AH, while CHO ACAT activity was suppressed by LTB{sub r} only. PGI{sub 2}, PGE{sub 2} and PGF{sub 2{alpha}} had minimal effects for each cell type.

  16. Sudden unexpected infant death (SUDI) in a newborn due to medium chain acyl CoA dehydrogenase (MCAD) deficiency with an unusual severe genotype

    PubMed Central

    2012-01-01

    Medium chain acyl CoA dehydrogenase deficiency (MCAD) is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23) mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI) and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death. PMID:23095120

  17. Production of a Brassica napus Low-Molecular Mass Acyl-Coenzyme A-Binding Protein in Arabidopsis Alters the Acyl-Coenzyme A Pool and Acyl Composition of Oil in Seeds1[C][W][OPEN

    PubMed Central

    Yurchenko, Olga; Singer, Stacy D.; Nykiforuk, Cory L.; Gidda, Satinder; Mullen, Robert T.; Moloney, Maurice M.; Weselake, Randall J.

    2014-01-01

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expression of a Brassica napus ACBP (BnACBP) complementary DNA in the developing seeds of Arabidopsis (Arabidopsis thaliana) resulted in increased levels of polyunsaturated FAs at the expense of eicosenoic acid (20:1cisΔ11) and saturated FAs in seed oil. In this study, we investigated whether alterations in the FA composition of seed oil at maturity were correlated with changes in the acyl-coenzyme A (CoA) pool in developing seeds of transgenic Arabidopsis expressing BnACBP. Our results indicated that both the acyl-CoA pool and seed oil of transgenic Arabidopsis lines expressing cytosolic BnACBP exhibited relative increases in linoleic acid (18:2cisΔ9,12; 17.9%–44.4% and 7%–13.2%, respectively) and decreases in 20:1cisΔ11 (38.7%–60.7% and 13.8%–16.3%, respectively). However, alterations in the FA composition of the acyl-CoA pool did not always correlate with those seen in the seed oil. In addition, we found that targeting of BnACBP to the endoplasmic reticulum resulted in FA compositional changes that were similar to those seen in lines expressing cytosolic BnACBP, with the most prominent exception being a relative reduction in α-linolenic acid (18:3cisΔ9,12,15) in both the acyl-CoA pool and seed oil of the former (48.4%–48.9% and 5.3%–10.4%, respectively). Overall, these data support the role of ACBP in acyl trafficking in developing seeds and validate its use as a biotechnological tool for modifying the FA composition of seed oil. PMID:24740000

  18. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    PubMed Central

    Bowman, Thomas A.; O'Keeffe, Kayleigh R.; D'Aquila, Theresa; Yan, Qing Wu; Griffin, John D.; Killion, Elizabeth A.; Salter, Deanna M.; Mashek, Douglas G.; Buhman, Kimberly K.; Greenberg, Andrew S.

    2016-01-01

    Objective The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ACSL isoforms. In vitro studies have suggested a role for ACSL5 in triglyceride synthesis; however, we have limited understanding of the in vivo actions of this ACSL isoform. Methods To elucidate the in vivo actions of ACSL5 we generated a line of mice in which ACSL5 expression was ablated in all tissues (ACSL5−/−). Results Ablation of ACSL5 reduced ACSL activity by ∼80% in jejunal mucosa, ∼50% in liver, and ∼37% in brown adipose tissue lysates. Body composition studies revealed that ACSL5−/−, as compared to control ACSL5loxP/loxP, mice had significantly reduced fat mass and adipose fat pad weights. Indirect calorimetry studies demonstrated that ACSL5−/− had increased metabolic rates, and in the dark phase, increased respiratory quotient. In ACSL5−/− mice, fasting glucose and serum triglyceride were reduced; and insulin sensitivity was improved during an insulin tolerance test. Both hepatic mRNA (∼16-fold) and serum levels of fibroblast growth factor 21 (FGF21) (∼13-fold) were increased in ACSL5−/− as compared to ACSL5loxP/loxP. Consistent with increased FGF21 serum levels, uncoupling protein-1 gene (Ucp1) and PPAR-gamma coactivator 1-alpha gene (Pgc1α) transcript levels were increased in gonadal adipose tissue. To further evaluate ACSL5 function in intestine, mice were gavaged with an olive oil bolus; and the rate of triglyceride appearance in serum was found to be delayed in ACSL5−/− mice as compared to control mice. Conclusions In summary, ACSL5−/− mice have increased hepatic and serum FGF21 levels, reduced adiposity, improved insulin sensitivity, increased energy expenditure and delayed triglyceride absorption. These studies

  19. Acyl-CoA binding protein expression is fiber type- specific and elevated in muscles from the obese insulin-resistant Zucker rat.

    PubMed

    Franch, Jesper; Knudsen, Jens; Ellis, Bronwyn A; Pedersen, Preben K; Cooney, Gregory J; Jensen, Jørgen

    2002-02-01

    Accumulation of acyl-CoA is hypothesized to be involved in development of insulin resistance. Acyl-CoA binds to acyl-CoA binding protein (ACBP) with high affinity, and therefore knowledge about ACBP concentration is important for interpreting acyl-CoA data. In the present study, we used a sandwich enzyme-linked immunosorbent assay to quantify ACBP concentration in different muscle fiber types. Furthermore, ACBP concentration was compared in muscles from lean and obese Zucker rats. Expression of ACBP was highest in the slow-twitch oxidative soleus muscle and lowest in the fast-twitch glycolytic white gastrocnemius (0.46 +/- 0.02 and 0.16 +/- 0.005 microg/mg protein, respectively). Expression of ACBP was soleus > red gastrocnemius > extensor digitorum longus > white gastrocnemius. Similar fiber type differences were found for carnitine palmitoyl transferase (CPT)-1, and a correlation was observed between ACBP and CPT-1. Muscles from obese Zucker rats had twice the triglyceride content, had approximately twice the long-chain acyl CoA content, and were severely insulin resistant. ACBP concentration was approximately 30% higher in all muscles from obese rats. Activities of CPT-1 and 3-hydroxy-acyl-CoA dehydrogenase were increased in muscles from obese rats, whereas citrate synthase activity was similar. In conclusion, ACBP expression is fiber type-specific with the highest concentration in oxidative muscles and the lowest in glycolytic muscles. The 90% increase in the concentration of acyl-CoA in obese Zucker muscle compared with only a 30% increase in the concentration of ACBP supports the hypothesis that an increased concentration of free acyl-CoA is involved in the development of insulin resistance.

  20. Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells.

    PubMed

    Chao, Che-Yi; Huang, Ching-jang

    2003-01-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-dependent transcription factor that regulates the expression of genes involved in lipid metabolism and transport. Ligands/activators of PPARalpha, like fibrate-type drugs, may have hypolipidemic effects. To identify food that contains activators of PPARalpha, a transactivation assay employing a clone of CHO-K1 cells stably transfected with a (UAS)(4)-tk-alkaline phosphatase reporter and a chimeric receptor of Gal4-rPPARalpha LBD was used to screen ethyl acetate (EA) extracts of a large variety of food materials. It was found that the EA extract of bitter gourd (Momordica charantia), a common oriental vegetable, activated PPARalpha to an extent that was equivalent to or even higher than 10 microM Wy-14643, a known ligand of PPARalpha. This extract also activated PPARgamma to a significant extent which was comparable to 0.5 microM BRL-49653. The activity toward PPARalpha was mainly in the soluble fraction of the organic solvent. The EA extract prepared from the whole fruit showed significantly higher activity than that from seeds or flesh alone. The bitter gourd EA extract was then incorporated into the medium for treatment of a peroxisome proliferator-responsive murine hepatoma cell line, H4IIEC3, for 72 h. Treated cells showed significantly higher activity of acyl CoA oxidase and higher expressions of mRNA of this enzyme and fatty acid-binding protein, indicating that the bitter gourd EA extract was able to act on a natural PPARalpha signaling pathway in this cell line. It is thus worth further investigating the PPAR-associated health benefits of bitter gourd.

  1. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    PubMed Central

    Tuck, Laura R.; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D.; Campopiano, Dominic J.; Clarke, David J.; Marles-Wright, Jon

    2016-01-01

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032

  2. Crystallographic trapping of the glutamyl-CoA thioester intermediate of family I CoA transferases

    SciTech Connect

    Rangarajan,E.; Li, Y.; Ajamian, E.; Iannuzzi, P.; Kernaghan, S.; Fraser, M.; Cygler, M.; Matte, A.

    2005-01-01

    Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 Angstrom resolution, respectively. YdiF is organized into tetramers, with each monomer having an open {alpha}/{beta} structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent {gamma}-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.

  3. Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition.

    PubMed

    Ye, Zi-Wei; Lung, Shiu-Cheung; Hu, Tai-Hua; Chen, Qin-Fang; Suen, Yung-Lee; Wang, Mingfu; Hoffmann-Benning, Susanne; Yeung, Edward; Chye, Mee-Len

    2016-12-01

    Arabidopsis thaliana ACYL-COA-BINDING PROTEIN6 (AtACBP6) encodes a cytosolic 10-kDa AtACBP. It confers freezing tolerance in transgenic Arabidopsis, possibly by its interaction with lipids as indicated by the binding of acyl-CoA esters and phosphatidylcholine to recombinant AtACBP6. Herein, transgenic Arabidopsis transformed with an AtACBP6 promoter-driven β-glucuronidase (GUS) construct exhibited strong GUS activity in the vascular tissues. Immunoelectron microscopy using anti-AtACBP6 antibodies showed AtACBP6 localization in the phloem especially in the companion cells and sieve elements. Also, the presence of gold grains in the plasmodesmata indicated its potential role in systemic trafficking. The AtACBP6 protein, but not its mRNA, was found in phloem exudate of wild-type Arabidopsis. Fatty acid profiling using gas chromatography-mass spectrometry revealed an increase in the jasmonic acid (JA) precursor, 12-oxo-cis,cis-10,15-phytodienoic acid (cis-OPDA), and a reduction in JA and/or its derivatives in acbp6 phloem exudates in comparison to the wild type. Quantitative real-time PCR showed down-regulation of COMATOSE (CTS) in acbp6 rosettes suggesting that AtACBP6 affects CTS function. AtACBP6 appeared to affect the content of JA and/or its derivatives in the sieve tubes, which is consistent with its role in pathogen-defense and in its wound-inducibility of AtACBP6pro::GUS. Taken together, our results suggest the involvement of AtACBP6 in JA-biosynthesis in Arabidopsis phloem tissues.

  4. Production of a Brassica napus low-molecular mass acyl-coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expressio...

  5. Computational Prediction of acyl-coA Binding Proteins Structure in Brassica napus.

    PubMed

    Raboanatahiry, Nadia Haingotiana; Lu, Guangyuan; Li, Maoteng

    2015-01-01

    Acyl-coA binding proteins could transport acyl-coA esters from plastid to endoplasmic reticulum, prior to fatty acid biosynthesis, leading to the formation of triacylglycerol. The structure and the subcellular localization of acyl-coA binding proteins (ACBP) in Brassica napus were computationally predicted in this study. Earlier, the structure analysis of ACBPs was limited to the small ACBPs, the current study focused on all four classes of ACBPs. Physicochemical parameters including the size and the length, the intron-exon structure, the isoelectric point, the hydrophobicity, and the amino acid composition were studied. Furthermore, identification of conserved residues and conserved domains were carried out. Secondary structure and tertiary structure of ACBPs were also studied. Finally, subcellular localization of ACBPs was predicted. The findings indicated that the physicochemical parameters and subcellular localizations of ACBPs in Brassica napus were identical to Arabidopsis thaliana. Conserved domain analysis indicated that ACBPs contain two or three kelch domains that belong to different families. Identical residues in acyl-coA binding domains corresponded to eight amino acid residues in all ACBPs of B. napus. However, conserved residues of common ACBPs in all species of animal, plant, bacteria and fungi were only inclusive in small ACBPs. Alpha-helixes were displayed and conserved in all the acyl-coA binding domains, representing almost the half of the protein structure. The findings confirm high similarities in ACBPs between A. thaliana and B. napus, they might share the same functions but loss or gain might be possible.

  6. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis.

    PubMed

    Lü, Shiyou; Song, Tao; Kosma, Dylan K; Parsons, Eugene P; Rowland, Owen; Jenks, Matthew A

    2009-08-01

    Plant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8/LACS1, one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C(24)) were elevated more than 155%. The C(16) cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C(18) monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C(20)-C(30), with highest activity for C(30) acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C(16) but not C(18) cutin monomers are reduced in lacs1, and C(16) acids are the next most preferred acid (behind C(30)) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C(16) monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C(16)) fatty acids for cutin synthesis.

  7. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    PubMed

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered.

  8. Increased long chain acyl-Coa synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles.

    PubMed

    Nchoutmboube, Jules A; Viktorova, Ekaterina G; Scott, Alison J; Ford, Lauren A; Pei, Zhengtong; Watkins, Paul A; Ernst, Robert K; Belov, George A

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  9. Short-term exposures of fish to perfluorooctane sulfonate: acute effects on fatty acyl-coa oxidase activity, oxidative stress, and circulating sex steroids.

    PubMed

    Oakes, Ken D; Sibley, Paul K; Martin, Jon W; MacLean, Dan D; Solomon, Keith R; Mabury, Scott A; Van Der Kraak, Glen J

    2005-05-01

    This study investigated the effects of exposure to waterborne perfluorooctane sulfonate (PFOS) on oxidative stress and reproductive endpoints in fish. Exposures utilized species commonly used in toxicological testing, including the fathead minnow (Pimephales promelas) and rainbow trout (Oncorhynchus mykiss), as well as relatively insensitive taxa such as creek chub (Semotilus atromaculatus), spottail shiner (Notropis hudsonius), and white sucker (Catostomus commersoni). In all fish species, short-term (14-28 d) exposure to PFOS produced only modest mortality at concentrations consistent with environmental spill scenarios. However, PFOS consistently increased hepatic fatty acyl-CoA oxidase activity and increased oxidative damage, as quantified using the 2-thiobarbituric acid-reactive substances assay. Plasma testosterone, 11-ketotestosterone, and 17beta-estradiol titers were often elevated with PFOS exposure. Vitellogenin, the egg yolk precursor protein, was occasionally altered in the plasma with PFOS exposure, but responses varied with maturity. Oviposition frequency and egg deposition in fathead minnow were not significantly impaired with PFOS exposure, despite a trend toward progressive impairment with increasing exposure concentrations. Although short-term PFOS exposure produced significant impacts on biochemical and reproductive endpoints in fish at concentrations consistent with environmental spills, the impact of long-term exposure to environmentally relevant concentrations of PFOS is unclear.

  10. A Rare Case of Short-Chain Acyl-COA Dehydrogenase Deficiency: The Apparent Rarity of the Disorder Results in Under Diagnosis.

    PubMed

    Reddy, G Shilpa; Sujatha, M

    2011-07-01

    Short-chain acyl-CoA dehydrogenase (ACAD) deficiency is an extremely rare inherited mitochondrial disorder of fat metabolism. This belongs to a group of diseases known as fatty acid oxidation disorders. Screening programmes have provided evidence that all the fatty acid oxidation disorders combined are among the most common inborn errors of metabolism. Mitochondrial beta oxidation of fatty acids is an essential energy producing pathway. It is a particularly important pathway during prolonged periods of starvation and during periods of reduced caloric intake due to gastrointestinal illness or increased energy expenditure during febrile illness. The most common presentation is an acute episode of life threatening coma and hypoglycemia induced by a period of fasting due to defective hepatic ketogenesis. Here, the case of a 4 month old female patient who had seizures since the third day of her birth and persistent hypoglycemia is described. She was born to parents of second degree consanguinity after 10 years of infertility treatment. There was history of delayed cry after birth. Metabolic screening for TSH, galactosemia, 17-OHP, G6PD, cystic fibrosis, biotinidase were normal. Tandem mass spectrometric (TMS) screening for blood amino acids, organic acids, fatty acids showed elevated butyryl carnitine (C4) as 3.40 μmol/L (normal <2.00 μmol/L), hexanoyl carnitine (C6) as 0.92 μmol/L (normal <0.72 μmol/L), C4/C3 as 2.93 μmol/L (normal <1.18 μmol/L). The child was started immediately on carnitor syrup (carnitine) 1/2 ml twice daily. Limitation of fasting stress and dietary fat was advised. Baby responded well by gaining weight and seizures were controlled. Until now, less than 25 patients have been reported worldwide. The limited number of patients diagnosed until now is due to the rarity of the disorder resulting in under diagnosis.

  11. COAs: Behind the Masks.

    ERIC Educational Resources Information Center

    Birke, Szifra

    1993-01-01

    Provides information on alcoholism and codependency to help teachers identify and respond to children of alcoholics (COAs). Discusses characteristics of alcoholic homes and problems encountered by children and adult COAs. Examines survival "masks" of COAs, including hero, rebel, adjustor, clown, and caretaker. Lists organizational,…

  12. An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members.

    PubMed

    Xiao, Shi; Chye, Mee-Len

    2009-06-01

    In Arabidopsis thaliana, a gene family of six members encodes acyl-CoA-binding proteins (ACBPs). These Arabidopsis ACBPs (designated ACBP1 to ACBP6) range in size from 10.4kDa to 73.1kDa and display varying affinities for acyl-CoA esters, suggesting that they have different roles in plant lipid metabolism. In contrast, only the 10-kDa ACBPs have been well-characterized from other eukaryote species. Our previous studies have revealed that ACBP1 and ACBP2 are membrane-associated proteins, while ACBP3 is extracellularly-targeted. More recently, we have reported that the remaining three members in this protein family (namely ACBP4, ACBP5 and ACBP6) are subcellularly localized to the cytosol in Arabidopsis. The subcellular localizations of ACBP4, ACBP5 and ACBP6 in the cytosol were demonstrated using a number of different approaches incorporating biochemical fractionation, confocal microscopy of transgenic Arabidopsis expressing autofluorescence-tagged fusions and immunoelectron microscopy using ACBP-specific antibodies. Our results indicate that all three ACBPs in the cytosol are potential candidates for acyl-CoA binding and trafficking in plant cells. In this review, the functional redundancy and differences among the three cytosolic ACBPs are discussed by comparison of their light-regulated expression and substrate affinities to acyl-CoA esters, and from biochemical analyses on their knockout mutants and/or overexpression in transgenic Arabidopsis. The transcriptionally light-induced ACBP4 and ACBP5, which encode the two largest forms of Arabidopsis ACBPs, bind oleoyl-CoA esters and likely transfer oleoyl-CoAs from the plastids (the site of de novo fatty acid biosynthesis) to the endoplasmic reticulum for the biosynthesis of non-plastidial membrane lipids in Arabidopsis.

  13. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  14. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  15. Arabidopsis Acyl-CoA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats.

    PubMed

    Li, Hong-Ye; Chye, Mee-Len

    2004-01-01

    Cytosolic acyl-CoA-binding proteins (ACBP) bind long-chain acyl-CoAs and act as intracellular acyl-CoA transporters and maintain acyl-CoA pools. Arabidopsis thaliana ACBP2 shows conservation at the acyl-CoA-binding domain to cytosolic ACBPs but is distinct by the presence of an N-terminal transmembrane domain and C-terminal ankyrin repeats. The function of the acyl-CoA-binding domain in ACBP2 has been confirmed by site-directed mutagenesis and four conserved residues crucial for palmitoyl-CoA binding have been identified. Results from ACBP2:GFP fusions transiently expressed in onion epidermal cells have demonstrated that the transmembrane domain functions in plasma membrane targeting, suggesting that ACBP2 transfers acyl-CoA esters to this membrane. In this study, we investigated the significance of its ankyrin repeats in mediating protein-protein interactions by yeast two-hybrid analysis and in vitro protein-binding assays; we showed that ACBP2 interacts with the A. thaliana ethylene-responsive element-binding protein AtEBP via its ankyrin repeats. This interaction was lacking in yeast two-hybrid analysis upon removal of the ankyrin repeats. When the subcellular localizations of ACBP2 and AtEBP were further investigated using autofluorescent protein fusions in transient expression by agroinfiltration of tobacco leaves, the DsRed:ACBP2 fusion protein was localized to the plasma membrane while the GFP:AtEBP fusion protein was targeted to the nucleus and plasma membrane. Co-expression of DsRed:ACBP2 and GFP:AtEBP showed a common localization of both proteins at the plasma membrane, suggesting that ACBP2 likely interacts with AtEBP at the plasma membrane.

  16. Molecular properties of the class III subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acyl-CoA binding proteins (ACBPs) have been identified in most branches of life. A single prototypical ACBP was first discovered in yeast, and was found to play a signficant role in lipid metabolism, among other functions. Plants also contain the prototype small, soluble ACBP, but have also evolve...

  17. A hydrophobic loop in acyl-CoA binding protein is functionally important for binding to palmitoyl-coenzyme A: a molecular dynamics study.

    PubMed

    Vallejo, Diego F G; Grigera, J Raúl; Costabel, Marcelo D

    2008-04-01

    Acyl-CoA binding protein (ACBP) plays a key role in lipid metabolism, interacting via a partly unknown mechanism with high affinity with long chain fatty acyl-CoAs (LCFA-CoAs). At present there is no study of the microscopic way ligand binding is accomplished. We analyzed this process by molecular dynamics (MDs) simulations. We proposed a computational model of ligand, able to reproduce some evidence from nuclear magnetic resonance (NMR) data, quantitative time resolved fluorometry and X-ray crystallography. We found that a hydrophobic loop, not in the active site, is important for function. Besides, multiple sequence alignment shows hydrophobicity (and not the residues itselves) conservation.

  18. Lipid membranes and acyl-CoA esters promote opposing effects on acyl-CoA binding protein structure and stability.

    PubMed

    Micheletto, Mariana C; Mendes, Luís F S; Basso, Luis G M; Fonseca, Raquel G; Costa-Filho, Antonio J

    2017-04-05

    Acyl-CoA Binding Proteins (ACBP) form a housekeeping family of proteins that is responsible for the buffering of long chain acyl-coenzyme A esters (LCFA-CoA) inside the cell. Even though numerous studies have focused on the characterization of different members of the ACBP family, the knowledge about the impact of both LCFA-CoA and phospholipids on ACBP structure and stability remains scarce. Besides, there are still controversies regarding the possible interaction of ACBP with biological membranes, even though this might be essential for the cargo capture and delivery. In this study, we observed that LCFA-CoA and phospholipids play opposite roles on protein stability and that the interaction with the membrane is dictated by electrostatic interaction. Furthermore, the results support the hypothesis that the LCFA-CoA delivery is driven by the increase of the negative charge on the membrane surface. The combined influence played by the different molecules on ACBP structure is discussed on the light of cargo capture/delivery giving new insights about this important process.

  19. Structure of YciA from Haemophilus influenzae (HI0827), a Hexameric Broad Specificity Acyl-Coenzyme A Thioesterase

    SciTech Connect

    Willis, Mark A.; Zhuang, Zhihao; Song, Feng; Howard, Andrew; Dunaway-Mariano, Debra; Herzberg, Osnat

    2008-04-02

    The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated 'hypothetical protein' in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase 'hot dog' fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupied by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.

  20. Light-regulated Arabidopsis ACBP4 and ACBP5 encode cytosolic acyl-CoA-binding proteins that bind phosphatidylcholine and oleoyl-CoA ester.

    PubMed

    Xiao, Shi; Chen, Qin-Fang; Chye, Mee-Len

    2009-10-01

    In Arabidopsis thaliana, six genes encode acyl-CoA-binding proteins (ACBPs) that show conservation of an acyl-CoA-binding domain. These ACBPs display varying affinities for acyl-CoA esters, suggesting of different cellular roles. We have recently reported that three members (ACBP4, ACBP5 and ACBP6) are subcellularly localized to the cytosol by biochemical fractionation, confocal microscopy of transgenic Arabidopsis expressing autofluorescence-tagged fusions and immuno-electron microscopy using ACBP-specific antibodies. In this study, we observed by Northern blot analysis that ACBP4 and ACBP5 mRNAs in rosettes were up-regulated by light and dampened-off in darkness, mimicking FAD7 which encodes omega-3-fatty acid desaturase, an enzyme involved in plastidial lipid metabolism. Results from in vitro binding assays indicate that recombinant ACBP4 and ACBP5 proteins bind [(14)C]oleoyl-CoA esters better than recombinant ACBP6, suggesting that light-regulated ACBP4 and ACBP5 encode cytosolic ACBPs that are potential candidates for the intracellular transport of oleoyl-CoA ester exported from the chloroplast to the endoplasmic reticulum for the biosynthesis of non-plastidial membrane lipids. Nonetheless, His-tagged ACBP4 and ACBP5 resemble ACBP6 in their ability to bind phosphatidylcholine suggesting that all three ACBPs are available for the intracellular transfer of phosphatidylcholine.

  1. Interactions of acyl-coenzyme A with phosphatidylcholine bilayers and serum albumin

    SciTech Connect

    Boylan, J.G.; Hamilton, J.A. )

    1992-01-21

    Interactions of oleoyl- and octanoyl-coenzyme A (CoA) with phosphatidylcholine (PC) vesicles and bovine serum albumin (BSA) were investigated by NMR spectroscopy. Binding of acyl-CoA to small unilamellar PC vesicles and to BSA was detected by changes in {sup 13}C and {sup 31}P chemical shifts relative to the chemical shifts for aqueous acyl-CoA. PC vesicles remained intact with {le} 15 mol % oleoyl-CoA, while higher oleoyl-CoA proportions produced mixed micelles. In contrast, {sup 13}C spectra revealed rapid exchange (ms) of octanoyl-CoA between the aqueous phase and PC vesicles and a low affinity for the bilayer. Thus, the binding affinity of acyl-CoA for PC bilayers is dependent on the acyl chain length. Addition of ({sup 13}C)carboxyl-enriched oleic acid to oleoyl-CoA/BSA mixtures revealed simultaneous binding of oleic acid and oleoyl-CoA to BSA, with some perturbation of binding interactions. Thus, BSA contains multiple binding sites for oleoyl-CoA and can bind fatty acid and acyl-CoA simultaneously.

  2. Remodeling of host phosphatidylcholine by Chlamydia acyltransferase is regulated by acyl-CoA binding protein ACBD6 associated with lipid droplets

    PubMed Central

    Soupene, Eric; Wang, Derek; Kuypers, Frans A

    2015-01-01

    The bacterial human pathogen Chlamydia trachomatis invades cells as an infectious elementary body (EB). The EB is internalized into a vacuole that is hidden from the host defense mechanism, and is modified to sustain the development of the replicative reticulate body (RB). Inside this parasitophorous compartment, called the inclusion, the pathogen survives supported by an active exchange of nutrients and proteins with the host cell. We show that host lipids are scavenged and modified into bacterial-specific lipids by the action of a shared human-bacterial acylation mechanism. The bacterial acylating enzymes for the essential lipids 1-acyl-sn-glycerol 3-phosphate and 1-acyl-sn-phosphatidylcholine were identified as CT453 and CT775, respectively. Bacterial CT775 was found to be associated with lipid droplets (LDs). During the development of C. trachomatis, the human acyl-CoA carrier hACBD6 was recruited to cytosolic LDs and translocated into the inclusion. hACBD6 protein modulated the activity of CT775 in an acyl-CoA dependent fashion and sustained the activity of the bacterial acyltransferase by buffering the concentration of acyl-CoAs. We propose that disruption of the binding activity of the acyl-CoA carrier might represent a new drug-target to prevent growth of C. trachomatis. PMID:25604091

  3. Synthesis of coenzyme A thioesters using methyl acyl phosphates in an aqueous medium.

    PubMed

    Pal, Mohan; Bearne, Stephen L

    2014-12-28

    Regioselective S-acylation of coenzyme A (CoA) is achieved under aqueous conditions using various aliphatic and aromatic carboxylic acids activated as their methyl acyl phosphate monoesters. Unlike many hydrophobic activating groups, the anionic methyl acyl phosphate mixed anhydride is more compatible with aqueous solvents, making it useful for conducting acylation reactions in an aqueous medium.

  4. Fluorescence anisotropy-based measurement of Pseudomonas aeruginosa penicillin-binding protein 2 transpeptidase inhibitor acylation rate constants.

    PubMed

    Shapiro, Adam B; Gao, Ning; Gu, Rong-Fang; Thresher, Jason

    2014-10-15

    High-molecular-weight penicillin-binding proteins (PBPs) are essential integral membrane proteins of the bacterial cytoplasmic membrane responsible for biosynthesis of peptidoglycan. They are the targets of antibacterial β-lactam drugs, including penicillins, cephalosporins, and carbapenems. β-Lactams covalently acylate the active sites of the PBP transpeptidase domains. Because β-lactams are time-dependent inhibitors, quantitative assessment of the inhibitory activity of these compounds ideally involves measurement of their second-order acylation rate constants. We previously described a fluorescence anisotropy-based assay to measure these rate constants for soluble constructs of PBP3 (Anal. Biochem. 439 (2013) 37-43). Here we report the expression and purification of a soluble construct of Pseudomonas aeruginosa PBP2 as a fusion protein with NusA. This soluble PBP2 was used to measure second-order acylation rate constants with the fluorescence anisotropy assay. Measurements were obtained for mecillinam, which reacts specifically with PBP2, and for several carbapenems. The assay also revealed that PBP2 slowly hydrolyzed mecillinam and was used to measure the rate constant for this deacylation reaction.

  5. Structural Basis for Substrate Fatty Acyl Chain Specificity: Crystal Structure of Human Very-Long-Chain Acyl-CoA Dehydrogenase

    SciTech Connect

    McAndrew, Ryan P.; Wang, Yudong; Mohsen, Al-Walid; He, Miao; Vockley, Jerry; Kim, Jung-Ja P.

    2008-08-26

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) is a member of the family of acyl-CoA dehydrogenases (ACADs). Unlike the other ACADs, which are soluble homotetramers, VLCAD is a homodimer associated with the mitochondrial membrane. VLCAD also possesses an additional 180 residues in the C terminus that are not present in the other ACADs. We have determined the crystal structure of VLCAD complexed with myristoyl-CoA, obtained by co-crystallization, to 1.91-{angstrom} resolution. The overall fold of the N-terminal {approx}400 residues of VLCAD is similar to that of the soluble ACADs including medium-chain acyl-CoA dehydrogenase (MCAD). The novel C-terminal domain forms an {alpha}-helical bundle that is positioned perpendicular to the two N-terminal helical domains. The fatty acyl moiety of the bound substrate/product is deeply imbedded inside the protein; however, the adenosine pyrophosphate portion of the C14-CoA ligand is disordered because of partial hydrolysis of the thioester bond and high mobility of the CoA moiety. The location of Glu-422 with respect to the C2-C3 of the bound ligand and FAD confirms Glu-422 to be the catalytic base. In MCAD, Gln-95 and Glu-99 form the base of the substrate binding cavity. In VLCAD, these residues are glycines (Gly-175 and Gly-178), allowing the binding channel to extend for an additional 12{angstrom} and permitting substrate acyl chain lengths as long as 24 carbons to bind. VLCAD deficiency is among the more common defects of mitochondrial {beta}-oxidation and, if left undiagnosed, can be fatal. This structure allows us to gain insight into how a variant VLCAD genotype results in a clinical phenotype.

  6. Maturation and Activity of Sterol Regulatory Element Binding Protein 1 Is Inhibited by Acyl-CoA Binding Domain Containing 3

    PubMed Central

    Chen, Yong; Patel, Vishala; Bang, Sookhee; Cohen, Natalie; Millar, John; Kim, Sangwon F.

    2012-01-01

    Imbalance of lipid metabolism has been linked with pathogenesis of a variety of human pathological conditions such as diabetes, obesity, cancer and neurodegeneration. Sterol regulatory element binding proteins (SREBPs) are the master transcription factors controlling the homeostasis of fatty acids and cholesterol in the body. Transcription, expression, and activity of SREBPs are regulated by various nutritional, hormonal or stressful stimuli, yet the molecular and cellular mechanisms involved in these adaptative responses remains elusive. In the present study, we found that overexpressed acyl-CoA binding domain containing 3 (ACBD3), a Golgi-associated protein, dramatically inhibited SREBP1-sensitive promoter activity of fatty acid synthase (FASN). Moreover, lipid deprivation-stimulated SREBP1 maturation was significantly attenuated by ACBD3. With cell fractionation, gene knockdown and immunoprecipitation assays, it was showed that ACBD3 blocked intracellular maturation of SREBP1 probably through directly binding with the lipid regulator rather than disrupted SREBP1-SCAP-Insig1 interaction. Further investigation revealed that acyl-CoA domain-containing N-terminal sequence of ACBD3 contributed to its inhibitory effects on the production of nuclear SREBP1. In addition, mRNA and protein levels of FASN and de novo palmitate biosynthesis were remarkably reduced in cells overexpressed with ACBD3. These findings suggest that ACBD3 plays an essential role in maintaining lipid homeostasis via regulating SREBP1's processing pathway and thus impacting cellular lipogenesis. PMID:23166793

  7. Solid-phase synthesis and screening of N-acylated polyamine (NAPA) combinatorial libraries for protein binding.

    PubMed

    Iera, Jaclyn A; Jenkins, Lisa M Miller; Kajiyama, Hiroshi; Kopp, Jeffrey B; Appella, Daniel H

    2010-11-15

    Inhibitors for protein-protein interactions are challenging to design, in part due to the unique and complex architectures of each protein's interaction domain. Most approaches to develop inhibitors for these interactions rely on rational design, which requires prior structural knowledge of the target and its ligands. In the absence of structural information, a combinatorial approach may be the best alternative to finding inhibitors of a protein-protein interaction. Current chemical libraries, however, consist mostly of molecules designed to inhibit enzymes. In this manuscript, we report the synthesis and screening of a library based on an N-acylated polyamine (NAPA) scaffold that we designed to have specific molecular features necessary to inhibit protein-protein interactions. Screens of the library identified a member with favorable binding properties to the HIV viral protein R (Vpr), a regulatory protein from HIV, that is involved in numerous interactions with other proteins critical for viral replication.

  8. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    SciTech Connect

    Nemazanyy, Ivan . E-mail: nemazanyy@imbg.org.ua; Panasyuk, Ganna; Breus, Oksana; Zhyvoloup, Alexander; Filonenko, Valeriy; Gout, Ivan T. . E-mail: i.gout@ucl.ac.uk

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.

  9. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    ERIC Educational Resources Information Center

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  10. Acyl-CoA-binding domain containing 3 modulates NAD+ metabolism through activating poly(ADP-ribose) polymerase 1.

    PubMed

    Chen, Yong; Bang, Sookhee; Park, Soohyun; Shi, Hanyuan; Kim, Sangwon F

    2015-07-15

    NAD(+) plays essential roles in cellular energy homoeostasis and redox state, functioning as a cofactor along the glycolysis and citric acid cycle pathways. Recent discoveries indicated that, through the NAD(+)-consuming enzymes, this molecule may also be involved in many other cellular and biological outcomes such as chromatin remodelling, gene transcription, genomic integrity, cell division, calcium signalling, circadian clock and pluripotency. Poly(ADP-ribose) polymerase 1 (PARP1) is such an enzyme and dysfunctional PARP1 has been linked with the onset and development of various human diseases, including cancer, aging, traumatic brain injury, atherosclerosis, diabetes and inflammation. In the present study, we showed that overexpressed acyl-CoA-binding domain containing 3 (ACBD3), a Golgi-bound protein, significantly reduced cellular NAD(+) content via enhancing PARP1's polymerase activity and enhancing auto-modification of the enzyme in a DNA damage-independent manner. We identified that extracellular signal-regulated kinase (ERK)1/2 as well as de novo fatty acid biosynthesis pathways are involved in ACBD3-mediated activation of PARP1. Importantly, oxidative stress-induced PARP1 activation is greatly attenuated by knocking down the ACBD3 gene. Taken together, these findings suggest that ACBD3 has prominent impacts on cellular NAD(+) metabolism via regulating PARP1 activation-dependent auto-modification and thus cell metabolism and function.

  11. The Role of the β5-α11 Loop in the Active-Site Dynamics of Acylated Penicillin-Binding Protein A from Mycobacterium tuberculosis

    SciTech Connect

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher

    2013-04-22

    Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constants for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5–α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5–α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.

  12. A fluorescent assay to quantitatively measure in vitro acyl CoA:diacylglycerol acyltransferase activity.

    PubMed

    McFie, Pamela J; Stone, Scot J

    2011-09-01

    Triacylglycerols (TG) are the major storage form of energy in eukaryotic organisms and are synthesized primarily by acyl CoA:1,2-diacylglycerol acyltransferase (DGAT) enzymes. In vitro DGAT activity has previously been quantified by measuring the incorporation of either radiolabeled fatty acyl CoA or diacylglycerol (DG) into TG. We developed a modified acyltransferase assay using a fluorescent fatty acyl CoA substrate to accurately quantify in vitro DGAT activity. In the modified assay, radioactive fatty acyl CoA is replaced with fluorescent NBD-palmitoyl CoA, which is used as a substrate by DGAT with DG to produce NBD-TG. After extraction with organic solvents and separation by thin layer chromatography, NBD-TG formation can be detected and accurately quantified using a fluorescent imaging system. We demonstrate that this method can be adapted to detect other acyltransferase activities. Because NBD-palmitoyl CoA is commercially available at a much lower cost compared with radioactive acyl CoA substrates, it is a more economical alternative to radioactive tracers. In addition, the exposure of laboratory personnel to radioactivity is greatly reduced.

  13. DNA-binding studies and biological activities of new nitrosubstituted acyl thioureas

    NASA Astrophysics Data System (ADS)

    Tahir, Shaista; Badshah, Amin; Hussain, Raja Azadar; Tahir, Muhammad Nawaz; Tabassum, Saira; Patujo, Jahangir Ali; Rauf, Muhammad Khawar

    2015-11-01

    Four new nitrosubstituted acylthioureas i.e. 1-acetyl-3-(4-nitrophenyl)thiourea (TU1), 1-acetyl-3-(2-methyl-4-nitrophenyl)thiourea (TU2), 1-acetyl-3-(2-methoxy-4-nitrophenyl)thiourea (TU3) and 1-acetyl-3-(4-chloro-3-nitrophenyl)thiourea (TU4) have been synthesized and characterized (by C13 and H1 nuclear magnetic resonance, Fourier transform infrared spectroscopy and single crystal X-ray diffraction). As a preliminary investigation of the anti-cancer potencies of the said compounds, DNA interaction studies have been carried out using cyclic voltammetry and UV-vis spectroscopy along with verification from computational studies. The drug-DNA binding constants are found to be in the order, KTU3 9.04 × 106 M-1 > KTU4 8.57 × 106 M-1 > KTU2 6.05 × 106 M-1 > KTU1 1.16 × 106 M-1. Furthermore, the antioxidant, cytotoxic, antibacterial and antifungal activities have been carried out against DPPH (1,1-diphenyl-2-dipicrylhydrazyl), Brine shrimp eggs, gram positive (Micrococcus luteus, Staphylococcus aureus) and gram negative (Bordetella bronchiseptica, Salmonella typhimurium, Enterobacter aerogens) and fungal cultures (Aspergillus fumigatus, Mucor species, Aspergillus niger, Aspergillus flavus) respectively.

  14. Mechanistic insight with HBCH2CoA as a probe to polyhydroxybutyrate (PHB) synthases.

    PubMed

    Zhang, Wei; Shrestha, Ruben; Buckley, Rachael M; Jewell, Jamie; Bossmann, Stefan H; Stubbe, JoAnne; Li, Ping

    2014-08-15

    Polyhydroxybutyrate (PHB) synthases catalyze the polymerization of 3-(R)-hydroxybutyrate coenzyme A (HBCoA) to produce polyoxoesters of 1-2 MDa. A substrate analogue HBCH2CoA, in which the S in HBCoA is replaced with a CH2 group, was synthesized in 13 steps using a chemoenzymatic approach in a 7.5% overall yield. Kinetic studies reveal it is a competitive inhibitor of a class I and a class III PHB synthases, with Kis of 40 and 14 μM, respectively. To probe the elongation steps of the polymerization, HBCH2CoA was incubated with a synthase acylated with a [(3)H]-saturated trimer-CoA ([(3)H]-sTCoA). The products of the reaction were shown to be the methylene analogue of [(3)H]-sTCoA ([(3)H]-sT-CH2-CoA), saturated dimer-([(3)H]-sD-CO2H), and trimer-acid ([(3)H]-sT-CO2H), distinct from the expected methylene analogue of [(3)H]-saturated tetramer-CoA ([(3)H]-sTet-CH2-CoA). Detection of [(3)H]-sT-CH2-CoA and its slow rate of formation suggest that HBCH2CoA may be reporting on the termination and repriming process of the synthases, rather than elongation.

  15. Molecular cloning and chromosomal localization of a pseudogene related to the human Acyl-CoA binding protein/diazepam binding inhibitor

    SciTech Connect

    Gersuk, V.H.; Rose, T.M.; Todaro, G.J.

    1995-01-20

    The acyl-CoA binding protein (ACBP) and the diazepam binding inhibitor (DBI) or endozepine are independent isolates of a single 86-amino-acid, 10-kDa protein. ACBP/DBI is highly conserved between species and has been identified in several diverse organisms, including human, cow, rat, frog, duck, insects, plants, and yeast. Although the genomic locus has not yet been cloned in humans, complementary DNA clones with different 5{prime} ends have been isolated and characterized. These cDNA clones appear to be encoded by a single gene. However, Southern blot analyses, in situ hybridizations, and somatic cell hybrid chromosomal mapping all suggest that there are multiple ACBP/DBI-related sequences in the genome. To identify potential members of this gene family, degenerate oligonucleotides corresponding to highly conserved regions of ACBP/DBI were used to screen a human genomic DNA library using the polymerase chain reaction. A novel gene, DBIP1, that is closely related to ACBP/DBI but is clearly distinct was identified. DBIP1 bears extensive sequence homology to ACBP/DBI but lacks the introns predicted by rat and duck genomic sequence studies. A 1-base deletion in the coding region results in a frameshift and, along with the absence of introns and the lack of a detectable transcript, suggests that DBIP1 is a pseudogene. ACBP/DBI has previously been mapped to chromosome 2, although this was recently disputed, and a chromosome 6 location was suggested. We show that ACBP/DBI is correctly placed on chromosome 2 and that the gene identified on chromosome 6 is DBIP1. 33 refs., 3 figs., 1 tab.

  16. A Chemo-Enzymatic Road Map to the Synthesis of CoA Esters.

    PubMed

    Peter, Dominik M; Vögeli, Bastian; Cortina, Niña Socorro; Erb, Tobias J

    2016-04-20

    Coenzyme A (CoA) is a ubiquitous cofactor present in every known organism. The thioesters of CoA are core intermediates in many metabolic processes, such as the citric acid cycle, fatty acid biosynthesis and secondary metabolism, including polyketide biosynthesis. Synthesis of CoA-thioesters is vital for the study of CoA-dependent enzymes and pathways, but also as standards for metabolomics studies. In this work we systematically tested five chemo-enzymatic methods for the synthesis of the three most abundant acyl-CoA thioester classes in biology; saturated acyl-CoAs, α,β-unsaturated acyl-CoAs (i.e., enoyl-CoA derivatives), and α-carboxylated acyl-CoAs (i.e., malonyl-CoA derivatives). Additionally we report on the substrate promiscuity of three newly described acyl-CoA dehydrogenases that allow the simple conversion of acyl-CoAs into enoyl-CoAs. With these five methods, we synthesized 26 different CoA-thioesters with a yield of 40% or higher. The CoA esters produced range from short- to long-chain, include branched and α,β-unsaturated representatives as well as other functional groups. Based on our results we provide a general guideline to the optimal synthesis method of a given CoA-thioester in respect to its functional group(s) and the commercial availability of the precursor molecule. The proposed synthetic routes can be performed in small scale and do not require special chemical equipment, making them convenient also for biological laboratories.

  17. Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition.

    PubMed

    Xiao, Shi; Li, Hong-Ye; Zhang, Jiao-Ping; Chan, Suk-Wah; Chye, Mee-Len

    2008-12-01

    In Arabidopsis thaliana, acyl-CoA-binding proteins (ACBPs) are encoded by six genes, and they display varying affinities for acyl-CoA esters. Recombinant ACBP4 and ACBP5 have been shown to bind oleoyl-CoA esters in vitro. In this study, the subcellular localizations of ACBP4 and ACBP5 were determined by biochemical fractionation followed by western blot analyses using anti-ACBP4 and anti-ACBP5 antibodies and immuno-electron microscopy. Confocal microscopy of autofluorescence-tagged ACBP4 and ACBP5, expressed transiently in onion epidermal cells and in transgenic Arabidopsis, confirmed their expression in the cytosol. Taken together, ACBP4 and ACBP5 are available in the cytosol to bind and transfer cytosolic oleoyl-CoA esters. Lipid profile analysis further revealed that an acbp4 knockout mutant showed decreases in membrane lipids (digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol) while acbp4-complemented lines attained levels similar to wild type, suggesting that ACBP4 plays a role in the biosynthesis of membrane lipids including galactolipids and phospholipids.

  18. Biochemical and Structural Characterization of Germicidin Synthase: Analysis of a Type III Polyketide Synthase That Employs Acyl-ACP as a Starter Unit Donor

    SciTech Connect

    Chemler, Joseph A.; Buchholz, Tonia J.; Geders, Todd W.; Akey, David L.; Rath, Christopher M.; Chlipala, George E.; Smith, Janet L.; Sherman, David H.

    2012-08-10

    Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 {angstrom} germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.

  19. Mitochondrial storage form of acetyl CoA carboxylase in fasted and alloxan diabetic rats

    SciTech Connect

    Roman-Lopez, C.R.; Allred, J.B.

    1986-05-01

    Sodium dodecyl sulfate-denatured biotinyl proteins will bind (/sup 14/C)methyl avidin which remains bound through polyacrylamide gel electrophoresis. The method has been used to demonstrate the presence of two high molecular weight subunit forms of acetyl CoA carboxylase in rat liver cytoplasm, both of which are precipitated by antibody to purifed rat liver acetyl CoA carboxylase prepared from sheep serum. Rat liver mitochondria contained five distinct biotinyl protein subunits, the two largest of which have been identified as acetyl CoA carboxylase subunits on the basis of precipitation by anti-acetyl CoA carboxylase antibody. The small quantity of acetyl CoA carboxylase associated with rat liver microsomes could be attributed to cytoplasmic contamination. The binding of radioactive avidin is sufficiently tight to use as a measure of the quantity of acetyl CoA carboxylase. The quantity and activity of the cytoplasmic enzyme was reduced in fasted and in alloxan diabetic rats compared to that in fed controls but the quantity of the enzyme associated with isolated mitochondria was not reduced. The results indicate that there is a mitochondrial storage form of acetyl CoA carboxylase.

  20. Primary structure of a cerulenin-binding. beta. -ketoacyl-(acyl carrier protein) synthase from barley chloroplasts

    SciTech Connect

    Siggaard-Andersen, M.; Kauppinen, S. ); von Wettstein-Knowles, P. Univ. of Copenhagen )

    1991-05-15

    The radioactively labeled {beta}-ketoacyl thioester synthase inhibitor ({sup 3}H)cerulenin was used to tag three dimeric barley chloroplast proteins ({alpha}{alpha}, {alpha}{beta}, and {beta}{beta}) from the stromal fraction. Oligonucleotides corresponding to amino acid sequences obtained from the purified proteins were used to generate with the polymerase chain reaction a probe for cDNAs encoding the {beta} subunit. cDNA sequencing revealed an open reading frame for 462 residues comprising the mature protein and a 35-amino acid transit peptide. The deduced amino acid sequence of the mature protein is homologous to the {beta}-ketoacyl-(acyl carrier protein) (ACP) synthase I (3-oxoacyl-ACP synthase; acyl-ACP:malonyl-ACP C-acyltransferase (decarboxylating), EC 2.3.1.41) of Escherichia coli. Under analogous experimental conditions ({sup 3}H)cerulenin tagged a single dimeric protein from spinach chloroplasts.

  1. In vitro acylation of okadaic acid in the presence of various bivalves' extracts.

    PubMed

    Konoki, Keiichi; Onoda, Tatsuya; Watanabe, Ryuichi; Cho, Yuko; Kaga, Shinnosuke; Suzuki, Toshiyuki; Yotsu-Yamashita, Mari

    2013-01-29

    The dinoflagellate Dinophysis spp. is responsible for diarrhetic shellfish poisoning (DSP). In the bivalves exposed to the toxic bloom of the dinoflagellate, dinophysistoxin 3 (DTX3), the 7-OH acylated form of either okadaic acid (OA) or DTX1, is produced. We demonstrated in vitro acylation of OA with palmitoyl CoA in the presence of protein extract from the digestive gland, but not other tissues of the bivalve Mizuhopecten yessoensis. The yield of 7-O-palmitoyl OA reached its maximum within 2 h, was the highest at 37 °C followed by 28 °C, 16 °C and 4 °C and was the highest at pH 8 in comparison with the yields at pH 6 and pH 4. The transformation also proceeded when the protein extract was prepared from the bivalves Corbicula japonica and Crassostrea gigas. The OA binding protein OABP2 identified in the sponge Halichondria okadai was not detected in the bivalve M. yessoensis, the bivalve Mytilus galloprovincialis and the ascidian Halocynthia roretzi, though they are known to accumulate diarrhetic shellfish poisoning toxins. Since DTX3 does not bind to protein phosphatases 1 and 2A, the physiological target for OA and DTXs in mammalian cells, the acylation of DSP toxins would be related to a detoxification mechanism for the bivalve species.

  2. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis.

    PubMed

    Dias, Marcio Vinicius Bertacine; Vasconcelos, Igor Bordin; Prado, Adriane Michele Xavier; Fadel, Valmir; Basso, Luiz Augusto; de Azevedo, Walter Filgueira; Santos, Diógenes Santiago

    2007-09-01

    The resumption of tuberculosis led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. Isoniazid (INH), the most prescribed drug to treat TB, inhibits an NADH-dependent enoyl-acyl carrier protein reductase (InhA) that provides precursors of mycolic acids, which are components of the mycobacterial cell wall. InhA is the major target of the mode of action of isoniazid. INH is a pro-drug that needs activation to form the inhibitory INH-NAD adduct. Missense mutations in the inhA structural gene have been identified in clinical isolates of Mycobacterium tuberculosis resistant to INH. To understand the mechanism of resistance to INH, we have solved the structure of two InhA mutants (I21V and S94A), identified in INH-resistant clinical isolates, and compare them to INH-sensitive WT InhA structure in complex with the INH-NAD adduct. We also solved the structure of unliganded INH-resistant S94A protein, which is the first report on apo form of InhA. The salient features of these structures are discussed and should provide structural information to improve our understanding of the mechanism of action of, and resistance to, INH in M. tuberculosis. The unliganded structure of InhA allows identification of conformational changes upon ligand binding and should help structure-based drug design of more potent antimycobacterial agents.

  3. Spectrophotometric studies of acyl-coenzyme A synthetases of rat liver mitochondria

    PubMed Central

    Garland, P. B.; Yates, D. W.; Haddock, B. A.

    1970-01-01

    1. Deca-2,4,6,8-tetraenoic acid is a substrate for both ATP-specific (EC 6.2.1.2 or 3) and GTP-specific (EC 6.2.1.–) acyl-CoA synthetases of rat liver mitochondria. The enzymic synthesis of decatetraenoyl-CoA results in new spectral characteristics. The difference spectrum for the acyl-CoA minus free acid has a maximum at 376nm with εmM 34. Isosbestic points are at 345nm and 440nm. 2. The acylation of CoA by decatetraenoate in mitochondrial suspensions can be continuously measured with a dual-wavelength spectrophotometer. 3. By using this technique, three distinct types of acyl-CoA synthetase activity were demonstrated in rat liver mitochondria. One of these utilized added CoA and ATP, required added Mg2+ and corresponded to a previously described `external' acyl-CoA synthetase. The other two acyl-CoA synthetase activities utilized intramitochondrial CoA and did not require added Mg2+. Of these two `internal' acyl-CoA synthetases, one was insensitive to uncoupling agents, was inhibited by phosphate or arsenate, and corresponded to the GTP-specific enzyme. The other corresponded to the ATP-specific enzyme. 4. Atractylate inhibited the activity of the two internal acyl-CoA synthetases only when the energy source was added ATP. 5. The amount of intramitochondrial CoA acylated by decatetraenoate was independent of whether the internal ATP-specific or GTP-specific acyl-CoA synthetase was active. It is concluded that these two internal acyl-CoA synthetases have access to the same intramitochondrial pool of CoA. 6. The amount of intramitochondrial CoA that could be acylated with decatetraenoate was decreased by the addition of palmitoyl-dl-carnitine, 2-oxoglutarate, or pyruvate. These observations indicated that pyruvate dehydrogenase (EC 1.2.4.1), oxoglutarate dehydrogenase (EC 1.2.4.2), carnitine palmitoyltransferase (EC 2.3.1.–), citrate synthase (EC 4.1.3.7), and succinyl-CoA synthetase (EC 6.2.1.4) all have access to the same intramitochondrial pool of CoA as do

  4. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    SciTech Connect

    Halavaty, Andrei S.; Kim, Youngchang; Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James; Zhou, Min; Onopriyenko, Olena; Skarina, Tatiana; Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N.; Joachimiak, Andrzej; Savchenko, Alexei; Anderson, Wayne F.

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  5. Isolation and characterization of a cDNA encoding a membrane bound acyl-CoA binding protein from Agave americana L. epidermis.

    PubMed

    Guerrero, Consuelo; Martín-Rufián, M; Reina, José J; Heredia, Antonio

    2006-01-01

    A cDNA encoding an acyl-CoA binding protein (ACBP) homologue has been cloned from a cDNA library made from mRNA isolated from epidermis of young leaves of Agave americana L. The derived amino acid sequence reveals a protein corresponding to the membrane-associated form of ACBPs only previously described in Arabidopsis and rice. Northern blot analysis showed that the A. americana ACBP gene is mainly expressed in the epidermis of mature zone of the leaves. The epidermis of A. americana leaves have a well developed cuticle with the highest amounts of the cuticular components waxes, cutin and cutan suggesting a potential role of the protein in cuticle formation.

  6. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate

    PubMed Central

    Maloney, Finn P.; Gerwick, Lena; Gerwick, William H.; Sherman, David H.; Smith, Janet L.

    2016-01-01

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA. PMID:27573844

  7. Fatty acid acylation of rat brain myelin proteolipid protein in vitro: identification of the lipid donor.

    PubMed

    Bizzozero, O A; Lees, M B

    1986-02-01

    The immediate acyl chain donor for fatty acid esterification of proteolipid protein (PLP) was identified in an in vitro system. Rat brain total membranes, after removal of crude nuclear and mitochondrial fractions, were incubated with radioactive acyl donors, extracted with chloroform/methanol, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of [3H]palmitic acid, CoA, ATP, and Mg2+, acylation of endogenous PLP occurred at a linear rate for at least 2 h. The radioactivity was associated with the protein via an ester linkage, mainly as palmitic acid. Omission of ATP, CoA, Mg2+, or all three reduced fatty acid incorporation into PLP to 44, 27, 8, and 4%, respectively, of the values in the complete system. Incubation of the membrane fraction with [3H]palmitoyl-CoA in the absence of CoA and ATP led to highly labeled PLP. These data demonstrate that activation of free fatty acid is required for acylation. Phospholipids and glycolipids were not able to acylate the PLP directly. Finally, when isolated myelin was incubated with [3H]palmitoyl-CoA in the absence of cofactors, only PLP was labeled, thus confirming the identity of palmitoyl-CoA as the direct acyl chain donor and suggesting that the acylating activity and the PLP pool available for acylation are both in the myelin.

  8. Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism.

    PubMed

    Xie, Li-Juan; Yu, Lu-Jun; Chen, Qin-Fang; Wang, Feng-Zhu; Huang, Li; Xia, Fan-Nv; Zhu, Tian-Ren; Wu, Jian-Xin; Yin, Jian; Liao, Bin; Yao, Nan; Shu, Wensheng; Xiao, Shi

    2015-01-01

    In Arabidopsis thaliana, acyl-CoA-binding proteins (ACBPs) are encoded by a family of six genes (ACBP1 to ACBP6), and are essential for diverse cellular activities. Recent investigations suggest that the membrane-anchored ACBPs are involved in oxygen sensing by sequestration of group VII ethylene-responsive factors under normoxia. Here, we demonstrate the involvement of Arabidopsis ACBP3 in hypoxic tolerance. ACBP3 transcription was remarkably induced following submergence under both dark (DS) and light (LS) conditions. ACBP3-overexpressors (ACBP3-OEs) showed hypersensitivity to DS, LS and ethanolic stresses, with reduced transcription of hypoxia-responsive genes as well as accumulation of hydrogen peroxide in the rosettes. In contrast, suppression of ACBP3 in ACBP3-KOs enhanced plant tolerance to DS, LS and ethanol treatments. By analyses of double combinations of OE-1 with npr1-5, coi1-2, ein3-1 as well as ctr1-1 mutants, we observed that the attenuated hypoxic tolerance in ACBP3-OEs was dependent on NPR1- and CTR1-mediated signaling pathways. Lipid profiling revealed that both the total amounts and very-long-chain species of phosphatidylserine (C42:2- and C42:3-PS) and glucosylinositolphosphorylceramides (C22:0-, C22:1-, C24:0-, C24:1-, and C26:1-GIPC) were significantly lower in ACBP3-OEs but increased in ACBP3-KOs upon LS exposure. By microscale thermophoresis analysis, the recombinant ACBP3 protein bound VLC acyl-CoA esters with high affinities in vitro. Further, a knockout mutant of MYB30, a master regulator of very-long-chain fatty acid (VLCFA) biosynthesis, exhibited enhanced sensitivities to LS and ethanolic stresses, phenotypes that were ameliorated by ACBP3-RNAi. Taken together, these findings suggest that Arabidopsis ACBP3 participates in plant response to hypoxia by modulating VLCFA metabolism.

  9. Binding Sites for Acylated Trehalose Analogs of Glycolipid Ligands on an Extended Carbohydrate Recognition Domain of the Macrophage Receptor Mincle*

    PubMed Central

    Feinberg, Hadar; Rambaruth, Neela D. S.; Jégouzo, Sabine A. F.; Jacobsen, Kristian M.; Djurhuus, Rasmus; Poulsen, Thomas B.; Weis, William I.; Taylor, Maureen E.; Drickamer, Kurt

    2016-01-01

    The macrophage receptor mincle binds to trehalose dimycolate on the surface of Mycobacterium tuberculosis. Signaling initiated by this interaction leads to cytokine production, which underlies the ability of mycobacteria to evade the immune system and also to function as adjuvants. In previous work the mechanism for binding of the sugar headgroup of trehalose dimycolate to mincle has been elucidated, but the basis for enhanced binding to glycolipid ligands, in which hydrophobic substituents are attached to the 6-hydroxyl groups, has been the subject of speculation. In the work reported here, the interaction of trehalose derivatives with bovine mincle has been probed with a series of synthetic mimics of trehalose dimycolate in binding assays, in structural studies by x-ray crystallography, and by site-directed mutagenesis. Binding studies reveal that, rather than reflecting specific structural preference, the apparent affinity of mincle for ligands with hydrophobic substituents correlates with their overall size. Structural and mutagenesis analysis provides evidence for interaction of the hydrophobic substituents with multiple different portions of the surface of mincle and confirms the presence of three Ca2+-binding sites. The structure of an extended portion of the extracellular domain of mincle, beyond the minimal C-type carbohydrate recognition domain, also constrains the way the binding domains may interact on the surface of macrophages. PMID:27542410

  10. Acyl-CoA synthetase activity links wild-type but not mutant α-synuclein to brain arachidonate metabolism

    PubMed Central

    Golovko, Mikhail Y.; Rosenberger, Thad A.; Faergeman, Nils J.; Feddersen, Søren; Cole, Nelson B.; Pribill, Ingrid; Berger, Johannes; Nussbaum, Robert L.; Murphy, Eric J.

    2008-01-01

    Because α-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of α-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-14C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using an established steady-state kinetic model. Liver was used as a negative control and no changes were observed between groups. In Snca-/- brains, there was a marked reduction in 20:4n-6-CoA mass and in microsomal acyl-CoA synthetases (Acsl) activity toward 20:4n-6. Microsomal Acsl activity was completely restored after the addition of exogenous wt mouse or human α-synuclein, but not by A30P, E46K, and A53T forms of α-synuclein. Acsl and acyl-CoA hydrolase expression was not different between groups. The incorporation and turnover of 20:4n-6 into brain phospholipid pools was markedly reduced. The dilution coefficient lambda, which indicates 20:4n-6 recycling between the acyl-CoA pool and brain phospholipids, was increased 3.3-fold, indicating more 20:4n-6 was entering the 20:4n-6-CoA pool from the plasma relative to that being recycled from the phospholipids. This is consistent with the reduction in Acsl activity observed in the Snca-/- mice. Using titration microcalorimetry, we determined that α-synuclein bound free 20:4n-6 (Kd of 3.7 μM), but did not bind 20:4n-6-CoA. These data suggest α-synuclein is involved in substrate presentation to Acsl rather than product removal. In summary, our data demonstrate that α-synuclein has a major role in brain 20:4n-6 metabolism through its modulation of endoplasmic reticulum localized acyl-CoA synthetase activity, although mutants forms of α-synuclein fail to restore this activity. PMID:16734431

  11. Structural and docking studies of Leucaena leucocephala Cinnamoyl CoA reductase.

    PubMed

    Prasad, Nirmal K; Vindal, Vaibhav; Kumar, Vikash; Kabra, Ashish; Phogat, Navneet; Kumar, Manoj

    2011-03-01

    Lignin, a major constituent of plant call wall, is a phenolic heteropolymer. It plays a major role in the development of plants and their defense mechanism against pathogens. Therefore Lignin biosynthesis is one of the critical metabolic pathways. In lignin biosynthesis, the Cinnamoyl CoA reductase is a key enzyme which catalyzes the first step in the pathway. Cinnamoyl CoA reductase provides the substrates which represent the main transitional molecules of lignin biosynthesis pathway, exhibits a high in vitro kinetic preference for feruloyl CoA. In present study, the three-dimensional model of cinnamoyl CoA reductase was constructed based on the crystal structure of Grape Dihydroflavonol 4-Reductase. Furthermore, the docking studies were performed to understand the substrate interactions to the active site of CCR. It showed that residues ARG51, ASN52, ASP54 and ASN58 were involved in substrate binding. We also suggest that residue ARG51 in CCR is the determinant residue in competitive inhibition of other substrates. This structural and docking information have prospective implications to understand the mechanism of CCR enzymatic reaction with feruloyl CoA, however the approach will be applicable in prediction of substrates and engineering 3D structures of other enzymes as well.

  12. Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling.

    PubMed

    Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha

    2015-03-01

    The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in

  13. Acyl-Coenzyme A Binding Protein Regulates Beta Oxidation Required for Growth and Survival of Non-Small Cell Lung Cancer

    PubMed Central

    Harris, Fredrick T.; Rahman, S.M. Jamshedur; Hassanein, Mohamed; Qian, Jun; Hoeksema, Megan D.; Chen, Heidi; Eisenberg, Rosana; Chaurand, Pierre; Caprioli, Richard M.; Shiota, Masakazu; Massion, Pierre P.

    2014-01-01

    We identified Acyl-Coenzyme A Binding Protein (ACBP) as part of a proteomic signature predicting the risk of having lung cancer. Because ACBP is known to regulate beta oxidation (β-oxidation), which in turn controls cellular proliferation, we hypothesized that ACBP contributes to regulation of cellular proliferation and survival of non-small cell lung cancer (NSCLC) by modulating β-oxidation. We utilized matrix assisted laser desorption ionization- imaging mass spectrometry (MALDI-IMS) and immunohistochemistry (IHC) to confirm ACBP’s tissue localization in pre-invasive and invasive NSCLCs. We correlated ACBP gene expression levels in NSCLC with clinical outcomes. In loss of function studies, we tested the effect of the downregulation of ACBP on cellular proliferation and apoptosis in normal bronchial and NSCLC cell lines. Using tritiated-palmitate (3H-palmitate), we measured β-oxidation levels and tested the effect of etomoxir, a β-oxidation inhibitor, on proliferation and apoptosis. MALDI-IMS and IHC analysis confirmed that ACBP is overexpressed in preinvasive and invasive lung cancers. High ACBP gene expression levels in NSCLCs correlated with worse survival (HR = 1.73). We observed a 40% decrease in β-oxidation and concordant decreases in proliferation and increases in apoptosis in ACBP depleted NSCLC cells as compared to bronchial airway epithelial cells. Inhibition of β-oxidation by etomoxir in ACBP overexpressing cells produced dose-dependent decrease in proliferation, and increase in apoptosis (p=0.01 and p <0.001 respectively). These data suggest a role for ACBP in controlling lung cancer progression by regulating β-oxidation. PMID:24819876

  14. The structure of SSO2064, the first representative of Pfam family PF01796, reveals a novel two-domain zinc-ribbon OB-fold architecture with a potential acyl-CoA-binding role

    PubMed Central

    Krishna, S. Sri; Aravind, L.; Bakolitsa, Constantina; Caruthers, Jonathan; Carlton, Dennis; Miller, Mitchell D.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Rife, Christopher L.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    SSO2064 is the first structural representative of PF01796 (DUF35), a large prokaryotic family with a wide phylogenetic distribution. The structure reveals a novel two-domain architecture comprising an N-terminal, rubredoxin-like, zinc ribbon and a C-terminal, oligonucleotide/oligosaccharide-binding (OB) fold domain. Additional N-terminal helical segments may be involved in protein–protein interactions. Domain architectures, genomic context analysis and functional evidence from certain bacterial representatives of this family suggest that these proteins form a novel fatty-acid-binding component that is involved in the biosynthesis of lipids and polyketide antibiotics and that they possibly function as acyl-CoA-binding proteins. This structure has led to a re-evaluation of the DUF35 family, which has now been split into two entries in the latest Pfam release (v.24.0). PMID:20944206

  15. Ghrelin acylation and metabolic control.

    PubMed

    Al Massadi, O; Tschöp, M H; Tong, J

    2011-11-01

    Since its discovery, many physiologic functions have been ascribed to ghrelin, a gut derived hormone. The presence of a median fatty acid side chain on the ghrelin peptide is required for the binding and activation of the classical ghrelin receptor, the growth hormone secretagogue receptor (GHSR)-1a. Ghrelin O-acyl transferase (GOAT) was recently discovered as the enzyme responsible for this acylation process. GOAT is expressed in all tissues that have been found to express ghrelin and has demonstrated actions on several complex endocrine organ systems such as the hypothalamus-pituitary-gonadal, insular and adrenal axis as well as the gastrointestinal (GI) tract, bone and gustatory system. Ghrelin acylation is dependent on the function of GOAT and the availability of substrates such as proghrelin and short- to medium-chain fatty acids (MCFAs). This process is governed by GOAT activity and has been shown to be modified by dietary lipids. In this review, we provided evidence that support an important role of GOAT in the regulation of energy homeostasis and glucose metabolism by modulating acyl ghrelin (AG) production. The relevance of GOAT and AG during periods of starvation remains to be defined. In addition, we summarized the recent literature on the metabolic effects of GOAT specific inhibitors and shared our view on the potential of targeting GOAT for the treatment of metabolic disorders such as obesity and type 2 diabetes.

  16. Fatty acyl-CoA elongation in Blatella germanica integumental microsomes.

    PubMed

    Juárez, M Patricia

    2004-08-01

    Insect cuticular hydrocarbons are synthesized de novo in integumental tissue through the concerted action of fatty acid synthases (FASs), fatty acyl-CoA elongases, a reductase, and a decarboxylase to produce hydrocarbons and CO2. Elongation of fatty acyl-CoAs to very long chain fatty acids was studied in the integumental microsomes of the German cockroach, Blatella germanica. Incubation of [1-14C]palmitoyl-CoA, malonyl-CoA, and NADPH resulted in the production of 18-CoA with minor amounts of C20, C22, C24, C30, and C32 labeled acyl-CoA moieties. Similar experiments with [1-14C]stearoyl-CoA rendered C20-CoA as the major product, and lesser amounts of C22 and C24-CoAs were also detected. After solubilization of the microsomal FAS, kinetic parameters were determined radiochemically or by measuring NADPH consumption. The reaction velocity was linear for up to 3 min incubation time, and with a protein concentration up to 0.025 microg/microl. The effect of the chain length on the reaction velocity was compared for palmitoyl-CoA, stearoyl-CoA, and eicosanoyl-CoA. The optimal substrate concentration was 10 microM for C16-CoA, between 8 and 12 microM for C18-CoA, and close to 3 microM for C20-CoA. In vivo hydrocarbon biosynthesis was inhibited from 55.5 to 72.5% in the presence of 1 mM trichloroacetic acid, a known inhibitor of elongation reactions.

  17. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  18. Insulin Signaling Regulates Fatty Acid Catabolism at the Level of CoA Activation

    PubMed Central

    Xu, Xiaojun; Gopalacharyulu, Peddinti; Seppänen-Laakso, Tuulikki; Ruskeepää, Anna-Liisa; Aye, Cho Cho; Carson, Brian P.; Mora, Silvia; Orešič, Matej; Teleman, Aurelio A.

    2012-01-01

    The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG) catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS). We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis. PMID:22275878

  19. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site

    PubMed Central

    Sayer, Christopher; Finnigan, William; Isupov, Michail N.; Levisson, Mark; Kengen, Servé W. M.; van der Oost, John; Harmer, Nicholas J.; Littlechild, Jennifer A.

    2016-01-01

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974

  20. The ETFDH c.158A>G variation disrupts the balanced interplay of ESE- and ESS-binding proteins thereby causing missplicing and multiple Acyl-CoA dehydrogenation deficiency.

    PubMed

    Olsen, Rikke K J; Brøner, Sabrina; Sabaratnam, Rugivan; Doktor, Thomas K; Andersen, Henriette S; Bruun, Gitte H; Gahrn, Birthe; Stenbroen, Vibeke; Olpin, Simon E; Dobbie, Angus; Gregersen, Niels; Andresen, Brage S

    2014-01-01

    Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only diagnostically but also for prognosis and for assessment of treatment. In the present study, we show that a predicted benign ETFDH missense variation (c.158A>G/p.Lys53Arg) in exon 2 causes exon skipping and degradation of ETFDH protein in patient samples. Using splicing reporter minigenes and RNA pull-down of nuclear proteins, we show that the c.158A>G variation increases the strength of a preexisting exonic splicing silencer (ESS) motif UAGGGA. This ESS motif binds splice inhibitory hnRNP A1, hnRNP A2/B1, and hnRNP H proteins. Binding of these inhibitory proteins prevents binding of the positive splicing regulatory SRSF1 and SRSF5 proteins to nearby and overlapping exonic splicing enhancer elements and this causes exon skipping. We further suggest that binding of hnRNP proteins to UAGGGA is increased by triggering synergistic hnRNP H binding to GGG triplets located upstream and downsteam of the UAGGGA motif. A number of disease-causing exonic elements that induce exon skipping in other genes have a similar architecture as the one in ETFDH exon 2.

  1. Acyl glucuronides: the good, the bad and the ugly.

    PubMed

    Regan, Sophie L; Maggs, James L; Hammond, Thomas G; Lambert, Craig; Williams, Dominic P; Park, B Kevin

    2010-10-01

    Acyl glucuronidation is the major metabolic conjugation reaction of most carboxylic acid drugs in mammals. The physiological consequences of this biotransformation have been investigated incompletely but include effects on drug metabolism, protein binding, distribution and clearance that impact upon pharmacological and toxicological outcomes. In marked contrast, the exceptional but widely disparate chemical reactivity of acyl glucuronides has attracted far greater attention. Specifically, the complex transacylation and glycation reactions with proteins have provoked much inconclusive debate over the safety of drugs metabolised to acyl glucuronides. It has been hypothesised that these covalent modifications could initiate idiosyncratic adverse drug reactions. However, despite a large body of in vitro data on the reactions of acyl glucuronides with protein, evidence for adduct formation from acyl glucuronides in vivo is limited and potentially ambiguous. The causal connection of protein adduction to adverse drug reactions remains uncertain. This review has assessed the intrinsic reactivity, metabolic stability and pharmacokinetic properties of acyl glucuronides in the context of physiological, pharmacological and toxicological perspectives. Although numerous experiments have characterised the reactions of acyl glucuronides with proteins, these might be attenuated substantially in vivo by rapid clearance of the conjugates. Consequently, to delineate a relationship between acyl glucuronide formation and toxicological phenomena, detailed pharmacokinetic analysis of systemic exposure to the acyl glucuronide should be undertaken adjacent to determining protein adduct concentrations in vivo. Further investigation is required to ascertain whether acyl glucuronide clearance is sufficient to prevent covalent modification of endogenous proteins and consequentially a potential immunological response.

  2. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  3. Oxidative acylation using thioacids

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.

    1997-01-01

    Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.

  4. Measuring long-chain acyl-coenzyme A concentrations and enrichment using liquid chromatography/tandem mass spectrometry with selected reaction monitoring.

    PubMed

    Blachnio-Zabielska, Agnieszka U; Koutsari, Christina; Jensen, Michael D

    2011-08-15

    Long-chain acyl-coenzymes A (acyl-CoAs) (LCACoA) are the activated forms of long-chain fatty acids and serve as key lipid metabolites. Excess accumulation of intracellular LCACoA, diacylglycerols (DAGs) and ceramides may create insulin resistance with respect to glucose metabolism. We present a new method to measure LCACoA concentrations and isotopic enrichment of palmitoyl-CoA ([U-(13) C]16-CoA) and oleoyl-CoA ([U-(13) C]18:1-CoA) using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) to quantitate seven different LCACoA (C14-CoA, C16-CoA, C16:1-CoA, C18-CoA, C18:1-CoA, C18:2-CoA, C20-CoA). The molecules are separated on a reversed-phase UPLC column using a binary gradient with ammonium hydroxide (NH(4) OH) in water and NH(4) OH in acetonitrile (ACN). The LCACoA are quantified using selected reaction monitoring (SRM) on a triple quadrupole mass spectrometer in positive electrospray ionization (ESI) mode. All LCACoA ions except enriched palmitate enrichment of palmitoyl-CoA ([U(-13)C]16-CoA) and oleoyl-CoA ([U(-13)C]18:1-CoA) using ultra-performance liquid chromatography/mass spectrometry (UPLC/MS/MS) to quantitate seven different LCACoA (C14-CoA, C16-CoA, C16:1-CoA, C18-CoA, C18:1-CoA, C18:2-CoA, C20-CoA). The molecules are separated on a reversed-phase UPLC column using a binary gradient with ammonium hydroxide (NH(4) OH) in water and NH(4) OH in acetonitrile. The LCACoA are quantified using selected reaction monitoring (SRM) on a triple quadrupolemass spectrometer in positive electrospray ionization (ESI) mode. All LCACoA ions except enriched palmitate and oleate were monitored as [M+2+H](+) and [U(13)C]16-CoA and [U(13)C]18:1-CoA were monitored as [M+16+H](+) and [M+18+H](+), respectively. The method is simple, sensitive and efficient (run time as short as 5 min) and allowed us to measure the concentration and detect enrichment in intramyocellular [U(13) C]16-CoA and [U(13) C]18:1-CoA during a low dose intravenous infusion of [U(13

  5. Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents.

    PubMed

    Matarlo, Joe S; Evans, Christopher E; Sharma, Indrajeet; Lavaud, Lubens J; Ngo, Stephen C; Shek, Roger; Rajashankar, Kanagalaghatta R; French, Jarrod B; Tan, Derek S; Tonge, Peter J

    2015-10-27

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1), which has an IC50 value of ≤25 nM for Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in Staphylococcus aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ∼1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure-activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively charged keto acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future.

  6. Mechanism of MenE Inhibition by Acyl-Adenylate Analogues and Discovery of Novel Antibacterial Agents

    PubMed Central

    Sharma, Indrajeet; Lavaud, Lubens J.; Ngo, Stephen C.; Shek, Roger; Rajashankar, Kanagalaghatta R.; French, Jarrod B.; Tan, Derek S.; Tonge, Peter J.

    2015-01-01

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1) which has an IC50 value of ≤ 25 nM for the Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in S. aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ~1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure–activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto-acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively-charged keto-acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future. PMID:26394156

  7. {alpha}-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice

    SciTech Connect

    Lee, Young; Naseem, R. Haris; Park, Byung-Hyun; Garry, Daniel J.; Richardson, James A.; Schaffer, Jean E.; Unger, Roger H. . E-mail: roger.unger@utsouthwestern.edu

    2006-05-26

    {alpha}-Lipoic acid ({alpha}-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, {alpha}-LA protects against cardiac lipotoxicity, {alpha}-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In {alpha}-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activated receptor-{gamma} cofactor-1{alpha} mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that {alpha}-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity.

  8. Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications.

    PubMed

    Kem, Michelle P; Butler, Alison

    2015-06-01

    Acyl peptidic siderophores are produced by a variety of bacteria and possess unique amphiphilic properties. Amphiphilic siderophores are generally produced in a suite where the iron(III)-binding headgroup remains constant while the fatty acid appendage varies by length and functionality. Acyl peptidic siderophores are commonly synthesized by non-ribosomal peptide synthetases; however, the method of peptide acylation during biosynthesis can vary between siderophores. Following biosynthesis, acyl siderophores can be further modified enzymatically to produce a more hydrophilic compound, which retains its ferric chelating abilities as demonstrated by pyoverdine from Pseudomonas aeruginosa and the marinobactins from certain Marinobacter species. Siderophore hydrophobicity can also be altered through photolysis of the ferric complex of certain β-hydroxyaspartic acid-containing acyl peptidic siderophores.

  9. Purification and Characterization of a Novel Pumpkin Short-Chain Acyl-Coenzyme A Oxidase with Structural Similarity to Acyl-Coenzyme A Dehydrogenases

    PubMed Central

    De Bellis, Luigi; Gonzali, Silvia; Alpi, Amedeo; Hayashi, Hiroshi; Hayashi, Makoto; Nishimura, Mikio

    2000-01-01

    A novel pumpkin (Cucurbita pepo) short-chain acyl-coenzyme A (CoA) oxidase (ACOX) was purified to homogeneity by hydrophobic-interaction, hydroxyapatite, affinity, and anion-exchange chromatography. The purified enzyme is a tetrameric protein, consisting of apparently identical 47-kD subunits. The protein structure of this oxidase differs from other plant and mammalian ACOXs, but is similar to the protein structure of mammalian mitochondrial acyl-CoA dehydrogenase (ACDH) and the recently identified plant mitochondrial ACDH. Subcellular organelle separation by sucrose density gradient centrifugation revealed that the enzyme is localized in glyoxysomes, whereas no immunoreactive bands of similar molecular weight were detected in mitochondrial fractions. The enzyme selectively catalyzes the oxidation of CoA esters of fatty acids with 4 to 10 carbon atoms, and exhibits the highest activity on C-6 fatty acids. Apparently, the enzyme has no activity on CoA esters of branched-chain or dicarboxylic fatty acids. The enzyme is slightly inhibited by high concentrations of substrate and it is not inhibited by Triton X-100 at concentrations up to 0.5% (v/v). The characteristics of this novel ACOX enzyme are discussed in relation to other ACOXs and ACDHs. PMID:10806249

  10. Acylation of the alpha-amino group in neuropeptide Y(12-36) increases binding affinity for the Y2 receptor.

    PubMed

    Murase, S; Yumoto, N; Petukhov, M G; Yoshikawa, S

    1996-01-01

    Competition assays using three series of analogs of neuropeptide Y (NPY) ([Xaa11]NPY(11-36), [Xaa12]NPY(12-36), and [Xaa13]NPY(13-36) revealed that the binding affinity for the Y2 receptor was considerably lowered by truncation of residue 11. Upon acetylation or succinylation of the alpha-amino group, the binding affinity of [Xaa12]NPY(12-36) recovered to a level similar to that of [Xaa11]NPY(11-36). No significant difference was observed between the increases caused by acetylation and those caused by succinylation, suggesting that the increase in binding affinity cannot be explained by the change in the net charge at the N-terminus as a consequence of the modification. The scattered data points on a plot of the alpha-helix content vs. IC50 of all these analogs revealed the absence of any apparent relationship, an indication that prior formation of the alpha-helix is not necessary for binding to the Y2 receptor. It has been widely accepted that fewer than 12 residues from the C-terminus are directly involved in binding of NPY to the Y2 receptor, while the remaining part of NPY only assists in the adoption of a favorable conformation by the C-terminal hexapeptide for recognition by the receptor. However, the present results suggest that the region around residue 12 does not project from the Y2 receptor.

  11. Fatty acyl-CoA inhibition of beta-hydroxy-beta-methylglutaryl-CoA reductase activity.

    PubMed

    Faas, F H; Carter, W J; Wynn, J O

    1978-11-22

    The influence of the fatty acyl-CoA thioesters on rat liver microsomal hydroxymethylglutaryl-CoA reductase activity was tested in vitro to determine if the previously demonstrated inhibition of [14C]acetate incorporation into cholesterol is due to inhibition of this rate limiting step in cholesterol synthesis. The polyunsaturated fatty acyl-CoA thioesters caused the greatest inhibition of enzyme activity, 50 micron arachidonoyl-CoA inhibiting 67% and 5 micron inhibiting 22%. 50 micron linoleoyl-CoA inhibited 56% with the more saturated thioesters causing less inhibition. 50--100 micron free fatty acids, free CoA, cholesterol esters, phospholipids, carnitine derivatives, prostaglandins and non-specific detergents caused little or no inhibition of enzyme activity. Kinetic studies revealed the inhibition to be noncompetitive with respect to hydroxymethylglutaryl-CoA with a Ki for arachidonoyl CoA of 3.10 micron. Fatty acyl-CoA inhibition of in vitro cholesterol synthesis is due to inhibition of hydroxymethylglutaryl-CoA reductase activity. Variation in intracellular concentrations of fatty acyl-CoA thioesters may signficantly alter cholesterol synthesis.

  12. Crystal structure of the essential Mycobacterium tuberculosis phosphopantetheinyl transferase PptT, solved as a fusion protein with maltose binding protein.

    PubMed

    Jung, James; Bashiri, Ghader; Johnston, Jodie M; Brown, Alistair S; Ackerley, David F; Baker, Edward N

    2014-12-01

    Phosphopantetheinyl transferases (PPTases) are key enzymes in the assembly-line production of complex molecules such as fatty acids, polyketides and polypeptides, where they activate acyl or peptidyl carrier proteins, transferring a 4'-phosphopantetheinyl moiety from coenzyme A (CoA) to a reactive serine residue on the carrier protein. The human pathogen Mycobacterium tuberculosis encodes two PPTases, both essential and therefore attractive drug targets. We report the structure of the type-II PPTase PptT, obtained from crystals of a fusion protein with maltose binding protein. The structure, at 1.75Å resolution (R=0.156, Rfree=0.191), reveals an α/β fold broadly similar to other type-II PPTases, but with differences in peripheral structural elements. A bound CoA is clearly defined with its pantetheinyl arm tucked into a hydrophobic pocket. Interactions involving the CoA diphosphate, bound Mg(2+) and three active site acidic side chains suggest a plausible pathway for proton transfer during catalysis.

  13. Use of thermodynamic coupling between antibody-antigen binding and phospholipid acyl chain phase transition energetics to predict immunoliposome targeting affinity.

    PubMed

    Klegerman, Melvin E; Zou, Yuejiao; Golunski, Eva; Peng, Tao; Huang, Shao-Ling; McPherson, David D

    2014-09-01

    Thermodynamic analysis of ligand-target binding has been a useful tool for dissecting the nature of the binding mechanism and, therefore, potentially can provide valuable information regarding the utility of targeted formulations. Based on a consistent coupling of antibody-antigen binding and gel-liquid crystal transition energetics observed for antibody-phosphatidylethanolamine (Ab-PE) conjugates, we hypothesized that the thermodynamic parameters and the affinity for antigen of the Ab-PE conjugates could be effectively predicted once the corresponding information for the unconjugated antibody is determined. This hypothesis has now been tested in nine different antibody-targeted echogenic liposome (ELIP) preparations, where antibody is conjugated to dipalmitoylphosphatidylethanolamine (DPPE) head groups through a thioether linkage. Predictions were satisfactory (affinity not significantly different from the population of values found) in five cases (55.6%), but the affinity of the unconjugated antibody was not significantly different from the population of values found in six cases (66.7%), indicating that the affinities of the conjugated antibody tended not to deviate appreciably from those of the free antibody. While knowledge of the affinities of free antibodies may be sufficient to judge their suitability as targeting agents, thermodynamic analysis may still provide valuable information regarding their usefulness for specific applications.

  14. Ralstonia solanacearum RSp0194 Encodes a Novel 3-Keto-Acyl Carrier Protein Synthase III.

    PubMed

    Mao, Ya-Hui; Ma, Jin-Cheng; Li, Feng; Hu, Zhe; Wang, Hai-Hong

    2015-01-01

    Fatty acid synthesis (FAS), a primary metabolic pathway, is essential for survival of bacteria. Ralstonia solanacearum, a β-proteobacteria member, causes a bacterial wilt affecting more than 200 plant species, including many economically important plants. However, thus far, the fatty acid biosynthesis pathway of R. solanacearum has not been well studied. In this study, we characterized two forms of 3-keto-ACP synthase III, RsFabH and RsFabW, in R. solanacearum. RsFabH, the homologue of Escherichia coli FabH, encoded by the chromosomal RSc1050 gene, catalyzes the condensation of acetyl-CoA with malonyl-ACP in the initiation steps of fatty acid biosynthesis in vitro. The RsfabH mutant lost de novo fatty acid synthetic ability, and grows in medium containing free fatty acids. RsFabW, a homologue of Pseudomonas aeruginosa PA3286, encoded by a megaplasmid gene, RSp0194, condenses acyl-CoA (C2-CoA to C10-CoA) with malonyl-ACP to produce 3-keto-acyl-ACP in vitro. Although the RsfabW mutant was viable, RsfabW was responsible for RsfabH mutant growth on medium containing free fatty acids. Our results also showed that RsFabW could condense acyl-ACP (C4-ACP to C8-ACP) with malonyl-ACP, to produce 3-keto-acyl-ACP in vitro, which implies that RsFabW plays a special role in fatty acid synthesis of R. solanacearum. All of these data confirm that R. solanacearum not only utilizes acetyl-CoA, but also, utilizes medium-chain acyl-CoAs or acyl-ACPs as primers to initiate fatty acid synthesis.

  15. Global Hawk Pacific (GloPac) COA and Mission Coordination

    NASA Technical Reports Server (NTRS)

    Dillon, Mark; Hall, Philip

    2010-01-01

    This slide presentation reviews the science objectives of the Global Hawk unmanned aircraft system (UAS) in the Pacific region, shows examp le flight tracks, the satellite under-flight requirement, the flight planning, and the agencies coordination of the airspace required for the Certificate of Authorization (COA).

  16. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  17. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  18. Purified membrane and soluble folate binding proteins from cultured KB cells have similar amino acid compositions and molecular weights but differ in fatty acid acylation

    SciTech Connect

    Luhrs, C.A.; Pitiranggon, P.; Costa, M.D.; Rothenberg, S.P.; Slomiany, B.L.; Brink, L.; Tous, G.I.; Stein, S.

    1987-09-01

    A membrane-associated folate binding protein (FBP) and a soluble FBP, which is released into the culture medium, have been purified from human KB cells using affinity chromatography. By NaDodSO/sub 4/PAGE, both proteins have an apparent M/sub r/ of approx. 42,000. However, in the presence of Triton X-100, the soluble FBP eluted from a Sephadex G-150 column with an apparent M/sub r/ of approx. 40,000 (similar to NaDodSO/sub 4/PAGE) but the membrane-associated FBP eluted with an apparent M/sub r/ of approx. = 160,000, indicating that this species contains a hydrophobic domain that interacts with the detergent micelles. The amino acid compositions of both forms of FBP were similar, especially with respect to the apolar amino acids. In addition, the 18 amino acids at the amino termini of both proteins were identical. The membrane FBP, following delipidation with chloroformmethanol, contained 7.1 mol of fatty acid per mol of protein, of which 4.7 mol was amide-linked and 2.4 mol was ester-linked. The soluble FBP contained only 0.05 mol of fatty acid per mol of protein. These studies indicate that the membrane FBP of KB cells contains covalently bound fatty acids that may serve to anchor the protein in the cell membrane.

  19. Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds.

    PubMed

    Banaś, Walentyna; Sanchez Garcia, Alicia; Banaś, Antoni; Stymne, Sten

    2013-06-01

    The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.

  20. Synthesis and magnetic properties of superparamagnetic CoAs nanostructures

    NASA Astrophysics Data System (ADS)

    Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.

    2015-03-01

    This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.

  1. Crystal structure of human mitochondrial acyl-CoA thioesterase (ACOT2)

    PubMed Central

    Mandel, Corey R.; Tweel, Benjamin; Tong, Liang

    2009-01-01

    Acyl-CoA thioesterases (ACOTs) catalyze the hydrolysis of CoA esters to free CoA and carboxylic acids and have important functions in lipid metabolism and other cellular processes. Type I ACOTs are found only in animals and contain an α/β hydrolase domain, through currently no structural information is available on any of these enzymes. We report here the crystal structure at 2.1 Å resolution of human mitochondrial ACOT2, a type I enzyme. The structure contains two domains, N and C domains. The C domain has the α/β hydrolase fold, with the catalytic triad Ser294-His422-Asp388. The N domain contains a seven-stranded β-sandwich, which has some distant structural homologs in other proteins. The active site is located in a large pocket at the interface between the two domains. The structural information has significant relevance for other type I ACOTs and related enzymes. PMID:19497300

  2. Crystal structure of human mitochondrial acyl-CoA thioesterase (ACOT2).

    PubMed

    Mandel, Corey R; Tweel, Benjamin; Tong, Liang

    2009-08-07

    Acyl-CoA thioesterases (ACOTs) catalyze the hydrolysis of CoA esters to free CoA and carboxylic acids and have important functions in lipid metabolism and other cellular processes. Type I ACOTs are found only in animals and contain an alpha/beta hydrolase domain, through currently no structural information is available on any of these enzymes. We report here the crystal structure at 2.1A resolution of human mitochondrial ACOT2, a type I enzyme. The structure contains two domains, N and C domains. The C domain has the alpha/beta hydrolase fold, with the catalytic triad Ser294-His422-Asp388. The N domain contains a seven-stranded beta-sandwich, which has some distant structural homologs in other proteins. The active site is located in a large pocket at the interface between the two domains. The structural information has significant relevance for other type I ACOTs and related enzymes.

  3. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    SciTech Connect

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  4. Acylation of Glucagon-Like Peptide-2: Interaction with Lipid Membranes and In Vitro Intestinal Permeability

    PubMed Central

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon; Andresen, Thomas Lars; Rahbek, Ulrik Lytt

    2014-01-01

    Background Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation as well as increasing enzymatic stability without disrupting biological potency. Acylation has furthermore been shown to increase interactions with the lipid membranes of mammalian cells. The extent to which such interactions hinder or benefit delivery of acylated peptide drugs across cellular barriers such as the intestinal epithelia is currently unknown. The present study investigates the effect of acylating peptide drugs from a drug delivery perspective. Purpose We hypothesize that the membrane interaction is an important parameter for intestinal translocation, which may be used to optimize the acylation chain length for intestinal permeation. This work aims to characterize acylated analogues of the intestinotrophic Glucagon-like peptide-2 by systematically increasing acyl chain length, in order to elucidate its influence on membrane interaction and intestinal cell translocation in vitro. Results Peptide self-association and binding to both model lipid and cell membranes was found to increase gradually with acyl chain length, whereas translocation across Caco-2 cells depended non-linearly on chain length. Short and medium acyl chains increased translocation compared to the native peptide, but long chain acylation displayed no improvement in translocation. Co-administration of a paracellular absorption enhancer was found to increase translocation irrespective of acyl chain length, whereas a transcellular enhancer displayed increased synergy with the long chain acylation. Conclusions These results show that membrane interactions play a prominent role during intestinal translocation of an acylated peptide. Acylation benefits permeation for shorter and medium chains due to increased membrane interactions, however, for longer chains insertion in the membrane becomes dominant and hinders translocation, i.e. the peptides get ‘stuck’ in the cell

  5. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling.

    PubMed Central

    Faergeman, N J; Knudsen, J

    1997-01-01

    The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl-CoA binding protein and that acetyl-CoA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of acyl-CoA indicate that long-chain acyl-CoA esters can act as regulatory molecules in vivo. This view is further supported by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase. PMID:9173866

  6. Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function

    PubMed Central

    Seedorf, Udo; Raabe, Martin; Ellinghaus, Peter; Kannenberg, Frank; Fobker, Manfred; Engel, Thomas; Denis, Simone; Wouters, Fred; Wirtz, Karel W.A.; Wanders, Ronald J.A.; Maeda, Nobuyo; Assmann, Gerd

    1998-01-01

    Gene targeting in mice was used to investigate the unknown function of Scp2, encoding sterol carrier protein-2 (SCP2; a peroxisomal lipid carrier) and sterol carrier protein-x (SCPx; a fusion protein between SCP2 and a peroxisomal thiolase). Complete deficiency of SCP2 and SCPx was associated with marked alterations in gene expression, peroxisome proliferation, hypolipidemia, impaired body weight control, and neuropathy. Along with these abnormalities, catabolism of methyl-branched fatty acyl CoAs was impaired. The defect became evident from up to 10-fold accumulation of the tetramethyl-branched fatty acid phytanic acid in Scp2(−/−) mice. Further characterization supported that the gene disruption led to inefficient import of phytanoyl-CoA into peroxisomes and to defective thiolytic cleavage of 3-ketopristanoyl-CoA. These results corresponded to high-affinity binding of phytanoyl-CoA to the recombinant rat SCP2 protein, as well as high 3-ketopristanoyl-CoA thiolase activity of the recombinant rat SCPx protein. PMID:9553048

  7. Acylation of Ferrocene: A Greener Approach

    ERIC Educational Resources Information Center

    Birdwhistell, Kurt R.; Nguyen, Andy; Ramos, Eric J.; Kobelja, Robert

    2008-01-01

    The acylation of ferrocene is a common reaction used in organic laboratories to demonstrate Friedel-Crafts acylation and the purification of compounds using column chromatography. This article describes an acylation of ferrocene experiment that is more eco-friendly than the conventional acylation experiment. The traditional experiment was modified…

  8. Involvement of S1P1 receptor pathway in angiogenic effects of a novel adenosine-like nucleic acid analog COA-Cl in cultured human vascular endothelial cells

    PubMed Central

    Igarashi, Junsuke; Hashimoto, Takeshi; Kubota, Yasuo; Shoji, Kazuyo; Maruyama, Tokumi; Sakakibara, Norikazu; Takuwa, Yoh; Ujihara, Yoshihiro; Katanosaka, Yuki; Mohri, Satoshi; Naruse, Keiji; Yamashita, Tetsuo; Okamoto, Ryuji; Hirano, Katsuya; Kosaka, Hiroaki; Takata, Maki; Konishi, Ryoji; Tsukamoto, Ikuko

    2014-01-01

    COA-Cl (2Cl-C.OXT-A) is a recently developed adenosine-like nucleic acid analog that promotes angiogenesis via the mitogen-activated protein (MAP) kinases ERK1/2. Endothelial S1P1 receptor plays indispensable roles in developmental angiogenesis. In this study, we examined the functions of S1P1 in COA-Cl-induced angiogenic responses. Antagonists for S1P1, W146, and VPC23019, substantially but still partly inhibited the effects of COA-Cl with regard to ERK1/2 activation and tube formation in cultured human umbilical vein endothelial cells (HUVEC). Antagonists for adenosine A1 receptor and purinergic P2Y1 receptor were without effect. Genetic knockdown of S1P1 with siRNA, but not that of S1P3, attenuated COA-Cl-elicited ERK1/2 responses. The signaling properties of COA-Cl showed significant similarities to those of sphingosine 1-phosphate, an endogenous S1P1 ligand, in that both induced responses sensitive to pertussis toxin (Gα i/o inhibitor), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), (calcium chelator), and PP2 (c-Src tyrosine kinase inhibitor). COA-Cl elevated intracellular Ca2+ concentration and induced tyrosine phosphorylation of p130Cas, a substrate of c-Src, in HUVEC. COA-Cl displaced [3H]S1P in a radioligand-binding competition assay in chem-1 cells overexpressing S1P1. However, COA-Cl activated ERK1/2 in CHO-K1 cells that lack functional S1P1 receptor, suggesting the presence of additional yet-to-be-defined COA-Cl target in these cells. The results thus suggest the major contribution of S1P1 in the angiogenic effects of COA-Cl. However, other mechanism such as that seen in CHO-K1 cells may also be partly involved. Collectively, these findings may lead to refinement of the design of this nucleic acid analog and ultimately to development of small molecule-based therapeutic angiogenesis. PMID:25505610

  9. Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase III (mtFabH) assay: principles and method.

    PubMed

    Sachdeva, Sarbjot; Reynolds, Kevin A

    2008-01-01

    Fatty acid biosynthesis is one of the relatively newer targets in antibacterial drug discovery. The presence of distinct fatty acid synthases (FAS) in mammals and bacteria and the fact that most bacterial FAS enzymes are essential for viability make this a very attractive antimicrobial drug target. The enzyme beta-ketoacyl ACP synthase (KASIII or FabH) is the key enzyme that initiates fatty acid biosynthesis in a type II dissociated FAS. This enzyme catalyzes the condensation of acyl CoA and malonyl ACP (acyl carrier protein) to form a beta-ketoacyl ACP product, which is further processed to form mature fatty acids that are involved in various essential cellular processes and structures like phospholipid biosynthesis, cell wall formation, etc. Herein we describe a new assay for the Mycobacterium tuberculosis FabH (mtFabH) enzyme involved in a key initiation step in the synthesis of mycolic acids, which are an integral component of the cell wall. The assay eliminates the need for the cumbersome washing steps or specialty scintillation proximity assay beads and the preparation of acyl carrier proteins required in other assay formats. This discontinuous assay involves the reduction of radiolabled long-chain beta-ketoacyl CoA product to its dihydroxy derivative, which partitions into a nonpolar phase for quantitation, while the reduced radiolabeled substrate derivative remains in the aqueous phase.

  10. Purification of Pseudomonas putida acyl coenzyme A ligase active with a range of aliphatic and aromatic substrates.

    PubMed Central

    Fernández-Valverde, M; Reglero, A; Martinez-Blanco, H; Luengo, J M

    1993-01-01

    Acyl coenzyme A (acyl-CoA) ligase (acyl-CoA synthetase [ACoAS]) from Pseudomonas putida U was purified to homogeneity (252-fold) after this bacterium was grown in a chemically defined medium containing octanoic acid as the sole carbon source. The enzyme, which has a mass of 67 kDa, showed maximal activity at 40 degrees C in 10 mM K2PO4H-NaPO4H2 buffer (pH 7.0) containing 20% (wt/vol) glycerol. Under these conditions, ACoAS showed hyperbolic behavior against acetate, CoA, and ATP; the Kms calculated for these substrates were 4.0, 0.7, and 5.2 mM, respectively. Acyl-CoA ligase recognizes several aliphatic molecules (acetic, propionic, butyric, valeric, hexanoic, heptanoic, and octanoic acids) as substrates, as well as some aromatic compounds (phenylacetic and phenoxyacetic acids). The broad substrate specificity of ACoAS from P. putida was confirmed by coupling it with acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum to study the formation of several penicillins. Images PMID:8476289

  11. The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR

    PubMed Central

    van Aalten, Daan M.F.; DiRusso, Concetta C.; Knudsen, Jens

    2001-01-01

    FadR is an acyl-CoA-responsive transcription factor, regulating fatty acid biosynthetic and degradation genes in Escherichia coli. The apo-protein binds DNA as a homodimer, an interaction that is disrupted by binding of acyl-CoA. The recently described structure of apo-FadR shows a DNA binding domain coupled to an acyl-CoA binding domain with a novel fold, but does not explain how binding of the acyl-CoA effector molecule >30 Å away from the DNA binding site affects transcriptional regulation. Here, we describe the structures of the FadR–operator and FadR– myristoyl-CoA binary complexes. The FadR–DNA complex reveals a novel winged helix–turn–helix protein–DNA interaction, involving sequence-specific contacts from the wing to the minor groove. Binding of acyl-CoA results in dramatic conformational changes throughout the protein, with backbone shifts up to 4.5 Å. The net effect is a rearrangement of the DNA binding domains in the dimer, resulting in a change of 7.2 Å in separation of the DNA recognition helices and the loss of DNA binding, revealing the molecular basis of acyl-CoA-responsive regulation. PMID:11296236

  12. Investigations into the post-translational modification and mechanism of isopenicillin N:acyl-CoA acyltransferase using electrospray mass spectrometry.

    PubMed Central

    Aplin, R T; Baldwin, J E; Roach, P L; Robinson, C V; Schofield, C J

    1993-01-01

    Electrospray mass spectrometry (e.s.m.s.) was used to confirm the position of the post-translational cleavage of the isopenicillin N:acyl-CoA acyltransferase preprotein to give the alpha- and beta-subunits. The e.s.m.s. studies suggested partial modification of the alpha-subunit in vivo by exogenously added substituted acetic acids. E.s.m.s. has also allowed the observation in vitro of the transfer of the acyl group from several acyl-CoAs to the beta-subunit. N.m.r. data for the CoA species have been deposited as Supplementary Publication SUP 500173 (2 pages) at the British Library Document Supply Centre (DSC), Boston Spa, Wetherby, West Yorkshire LS23 7BQ, from whom copies can be obtained on the terms indicated in Biochem. J. (1993) 289, 9. Images Figure 1 PMID:8396910

  13. Role of intramitochondrial arachidonic acid and acyl-CoA synthetase 4 in angiotensin II-regulated aldosterone synthesis in NCI-H295R adrenocortical cell line.

    PubMed

    Mele, Pablo G; Duarte, Alejandra; Paz, Cristina; Capponi, Alessandro; Podestá, Ernesto J

    2012-07-01

    Although the role of arachidonic acid (AA) in angiotensin II (ANG II)- and potassium-stimulated steroid production in zona glomerulosa cells is well documented, the mechanism responsible for AA release is not fully described. In this study we evaluated the mechanism involved in the release of intramitochondrial AA and its role in the regulation of aldosterone synthesis by ANG II in glomerulosa cells. We show that ANG II and potassium induce the expression of acyl-coenzyme A (CoA) thioesterase 2 and acyl-CoA synthetase 4, two enzymes involved in intramitochondrial AA generation/export system well characterized in other steroidogenic systems. We demonstrate that mitochondrial ATP is required for AA generation/export system, steroid production, and steroidogenic acute regulatory protein induction. We also demonstrate the role of protein tyrosine phosphatases regulating acyl-CoA synthetase 4 and steroidogenic acute regulatory protein induction, and hence ANG II-stimulated aldosterone synthesis.

  14. The Acyl Desaturase CER17 Is Involved in Producing Wax Unsaturated Primary Alcohols and Cutin Monomers.

    PubMed

    Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K; Tomasi, Pernell; Dyer, John M; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Parsons, Eugene P; Jenks, Matthew A; Lü, Shiyou

    2017-02-01

    We report n-6 monounsaturated primary alcohols (C26:1, C28:1, and C30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4's principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation's effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem.

  15. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    PubMed

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  16. Overexpression of Human Fatty Acid Transport Protein 2/Very Long Chain Acyl-CoA Synthetase 1 (FATP2/Acsvl1) Reveals Distinct Patterns of Trafficking of Exogenous Fatty Acids

    PubMed Central

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2014-01-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4hr. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  17. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    SciTech Connect

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  18. Subcellular relocalization of a long-chain fatty acid CoA ligase by a suppressor mutation alleviates a respiration deficiency in Saccharomyces cerevisiae.

    PubMed Central

    Harington, A; Schwarz, E; Slonimski, P P; Herbert, C J

    1994-01-01

    We have isolated an extragenic suppressor, FAM1-1, which is able to restore respiratory growth to a deletion of the CEM1 gene (mitochondrial beta-keto-acyl synthase). The sequence of the suppressor strongly suggests that it encodes a long-chain fatty acid CoA ligase (fatty-acyl-CoA synthetase). We have also cloned and sequenced the wild-type FAM1 gene, which is devoid of suppressor activity. The comparison of the two sequences shows that the suppressor mutation is an A-->T transversion, which creates a new initiation codon and adds 18 amino acids to the N-terminus of the protein. This extension has all the characteristics of a mitochondrial targeting sequence, whilst the N-terminus of the wild-type protein has none of these characteristics. In vitro mitochondrial import experiments show that the N-terminal half of the suppressor protein, but not of the wild-type, is transported into mitochondria. Thus, we hypothesize that the suppressor acts by changing the subcellular localization of the protein and relocating at least some of the enzyme from the cytosol to the mitochondria. These results support the hypothesis that some form of fatty acid synthesis, specific for the mitochondria, is essential for the function of the organelle. Images PMID:7988550

  19. Functional reconstitution of the Mycobacterium tuberculosis long-chain acyl-CoA carboxylase from multiple acyl-CoA subunits.

    PubMed

    Bazet Lyonnet, Bernardo; Diacovich, Lautaro; Gago, Gabriela; Spina, Lucie; Bardou, Fabienne; Lemassu, Anne; Quémard, Annaïk; Gramajo, Hugo

    2017-02-21

    Mycobacterium tuberculosis produces a large number of structurally diverse lipids that have been implicated in the pathogenicity, persistence and antibiotic resistance of this organism. Most building blocks involved in the biosynthesis of all these lipids are generated by acyl-CoA carboxylases (ACCase) whose subunit composition and physiological roles have not yet been clearly established. A rather controversial data in the literature refers to the exact protein composition and substrate specificity of the enzyme complex that produces the long-chain α-carboxy-acyl-CoAs; one of the substrates involved in the last step of condensation mediated by the polyketide synthase Pks13 to synthesize mature mycolic acids. Here we have successfully reconstituted the so called long-chain acyl-CoA carboxylase complex (LCC) from its purified components: the α-subunit AccA3, the ε-subunit AccE5 and the two β-subunits AccD4 and AccD5, and demonstrated that the four subunits are essential for its LCC activity. Furthermore, we also showed by substrate competition experiments and the use of a specific inhibitor of the AccD5 subunit, that its role in the carboxylation of the long acyl-CoAs, as part of the LCC complex, was structural rather than catalytic. Moreover, AccD5 was also able to carboxylate its natural substrates, acetyl-CoA and propionyl-CoA, in the context of the LCC enzyme complex. Thus, the supercomplex formed by these four subunits has the potential to generate the main substrates, malonyl-CoA, methylmalonyl-CoA and α-carboxy-C24-26 -CoA, used as condensing units for the biosynthesis of all the lipids present in this pathogen. This article is protected by copyright. All rights reserved.

  20. Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord

    SciTech Connect

    Sato, Miho; Nakahara, Keiko; Goto, Shintaro; Kaiya, Hiroyuki; Miyazato, Mikiya . E-mail: a0d201u@cc.miyazaki-u.ac.jp; Date, Yukari; Nakazato, Masamitsu; Kangawa, Kenji; Murakami, Noboru

    2006-11-24

    Expressions of the growth hormone secretagogue receptor (GHS-R) mRNA and its protein were confirmed in rat fetal spinal cord tissues by RT-PCR and immunohistochemistry. In vitro, over 3 nM ghrelin and des-acyl ghrelin induced significant proliferation of primary cultured cells from the fetal spinal cord. The proliferating cells were then double-stained using antibodies against the neuronal precursor marker, nestin, and the cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), and the nestin-positive cells were also found to be co-stained with antibody against GHS-R. Furthermore, binding studies using [{sup 125}I]des-acyl ghrelin indicated the presence of a specific binding site for des-acyl ghrelin, and confirmed that the binding was displaced with unlabeled des-acyl ghrelin or ghrelin. These results indicate that ghrelin and des-acyl ghrelin induce proliferation of neuronal precursor cells that is both dependent and independent of GHS-R, suggesting that both ghrelin and des-acyl ghrelin are involved in neurogenesis of the fetal spinal cord.

  1. Mitochondrial disease genes COA6, COX6B and SCO2 have overlapping roles in COX2 biogenesis

    PubMed Central

    Ghosh, Alok; Pratt, Anthony T.; Soma, Shivatheja; Theriault, Sarah G.; Griffin, Aaron T.; Trivedi, Prachi P.; Gohil, Vishal M.

    2016-01-01

    Biogenesis of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain, is a complex process facilitated by several assembly factors. Pathogenic mutations were recently reported in one such assembly factor, COA6, and our previous work linked Coa6 function to mitochondrial copper metabolism and expression of Cox2, a copper-containing subunit of CcO. However, the precise role of Coa6 in Cox2 biogenesis remained unknown. Here we show that yeast Coa6 is an orthologue of human COA6, and like Cox2, is regulated by copper availability, further implicating it in copper delivery to Cox2. In order to place Coa6 in the Cox2 copper delivery pathway, we performed a comprehensive genetic epistasis analysis in the yeast Saccharomyces cerevisiae and found that simultaneous deletion of Coa6 and Sco2, a mitochondrial copper metallochaperone, or Coa6 and Cox12/COX6B, a structural subunit of CcO, completely abrogates Cox2 biogenesis. Unlike Coa6 deficient cells, copper supplementation fails to rescue Cox2 levels of these double mutants. Overexpression of Cox12 or Sco proteins partially rescues the coa6Δ phenotype, suggesting their overlapping but non-redundant roles in copper delivery to Cox2. These genetic data are strongly corroborated by biochemical studies demonstrating physical interactions between Coa6, Cox2, Cox12 and Sco proteins. Furthermore, we show that patient mutations in Coa6 disrupt Coa6–Cox2 interaction, providing the biochemical basis for disease pathogenesis. Taken together, these results place COA6 in the copper delivery pathway to CcO and, surprisingly, link it to a previously unidentified function of CcO subunit Cox12 in Cox2 biogenesis. PMID:26669719

  2. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement.

    PubMed

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon; Strauss, Holger M; Rahbek, Ulrik L; Andresen, Thomas L

    2015-10-01

    Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate its influence on intestinal cell translocation and membrane interaction. We find that acylation drastically increases in vitro intestinal peptide flux and confers a transient permeability enhancing effect on the cell layer. The analogues permeabilize model lipid membranes, indicating that the effect is due to a solubilization of the cell membrane, similar to transcellular oral permeation enhancers. The effect is dependent on pH, with larger effect at lower pH, and is impacted by acylation chain length and position. Compared to the unacylated peptide backbone, N-terminal acylation with a short chain provides 6- or 9-fold increase in peptide translocation at pH 7.4 and 5.5, respectively. Prolonging the chain length appears to hamper translocation, possibly due to self-association or aggregation, although the long chain acylated analogues remain superior to the unacylated peptide. For K(18)-acylation a short chain provides a moderate improvement, whereas medium and long chain analogues are highly efficient, with a 12-fold increase in permeability compared to the unacylated peptide backbone, on par with currently employed oral permeation enhancers. For K(18)-acylation the medium chain acylation appears to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may

  3. Trapping of the Enoyl-Acyl Carrier Protein Reductase–Acyl Carrier Protein Interaction

    PubMed Central

    Tallorin, Lorillee; Finzel, Kara; Nguyen, Quynh G.; Beld, Joris; La Clair, James J.; Burkart, Michael D.

    2016-01-01

    An ideal target for metabolic engineering, fatty acid biosynthesis remains poorly understood on a molecular level. These carrier protein-dependent pathways require fundamental protein–protein interactions to guide reactivity and processivity, and their control has become one of the major hurdles in successfully adapting these biological machines. Our laboratory has developed methods to prepare acyl carrier proteins (ACPs) loaded with substrate mimetics and cross-linkers to visualize and trap interactions with partner enzymes, and we continue to expand the tools for studying these pathways. We now describe application of the slow-onset, tight-binding inhibitor triclosan to explore the interactions between the type II fatty acid ACP from Escherichia coli, AcpP, and its corresponding enoyl-ACP reductase, FabI. We show that the AcpP–triclosan complex demonstrates nM binding, inhibits in vitro activity, and can be used to isolate FabI in complex proteomes. PMID:26938266

  4. Mutations in COA6 cause cytochrome c oxidase deficiency and neonatal hypertrophic cardiomyopathy.

    PubMed

    Baertling, Fabian; A M van den Brand, Mariel; Hertecant, Jozef L; Al-Shamsi, Aisha; P van den Heuvel, Lambert; Distelmaier, Felix; Mayatepek, Ertan; Smeitink, Jan A; Nijtmans, Leo G J; Rodenburg, Richard J T

    2015-01-01

    COA6/C1ORF31 is involved in cytochrome c oxidase (complex IV) biogenesis. We present a new pathogenic COA6 variant detected in a patient with neonatal hypertrophic cardiomyopathy and isolated complex IV deficiency. For the first time, clinical details about a COA6-deficient patient are given and patient fibroblasts are functionally characterized: COA6 protein is undetectable and steady-state levels of complex IV and several of its subunits are reduced. The monomeric COX1 assembly intermediate accumulates. Using pulse-chase experiments, we demonstrate an increased turnover of mitochondrial encoded complex IV subunits. Although monomeric complex IV is decreased in patient fibroblasts, the CI/CIII2 /CIVn -supercomplexes remain unaffected. Copper supplementation shows a partial rescue of complex IV deficiency in patient fibroblasts. We conclude that COA6 is required for complex IV subunit stability. Furthermore, the proposed role in the copper delivery pathway to complex IV subunits is substantiated and a therapeutic lead for COA6-deficient patients is provided.

  5. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form.

    PubMed

    Baum, Bernhard; Lecker, Laura S M; Zoltner, Martin; Jaenicke, Elmar; Schnell, Robert; Hunter, William N; Brenk, Ruth

    2015-08-01

    Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  6. Chemical Reporters for Exploring Protein Acylation

    PubMed Central

    Thinon, Emmanuelle; Hang, Howard C.

    2015-01-01

    Proteins are acylated by a variety of metabolites that regulates many important cellular pathways in all kingdoms of life. Acyl groups in cells can vary in structure from the smallest unit, acetate, to modified long chain fatty acids, all of which can be activated and covalently attached to diverse amino acid side chains and consequently modulate protein function. For example, acetylation of Lys residues can alter the charge state of proteins and generate new recognition elements for protein–protein interactions. Alternatively, long chain fatty-acylation targets proteins to membranes and enables spatial control of cell signalling. To facilitate the analysis of protein acylation in biology, acyl analogues bearing alkyne or azide tags have been developed that enable fluorescent imaging and proteomic profiling of modified proteins using bioorthogonal ligation methods. Herein, we summarize the currently available acylation chemical reporters and highlight their utility to discover and quantify the roles of protein acylation in biology. PMID:25849926

  7. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis.

    PubMed

    Hemsley, Piers A; Kemp, Alison C; Grierson, Claire S

    2005-09-01

    TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.

  8. Cloning of nitroalkane oxidase from Fusarium oxysporum identifies a new member of the acyl-CoA dehydrogenase superfamily

    PubMed Central

    Daubner, S. Colette; Gadda, Giovanni; Valley, Michael P.; Fitzpatrick, Paul F.

    2002-01-01

    The flavoprotein nitroalkane oxidase (NAO) from Fusarium oxysporum catalyzes the oxidation of nitroalkanes to the respective aldehydes with production of nitrite and hydrogen peroxide. The sequences of several peptides from the fungal enzyme were used to design oligonucleotides for the isolation of a portion of the NAO gene from an F. oxysporum genomic DNA preparation. This sequence was used to clone the cDNA for NAO from an F. oxysporum cDNA library. The sequence of the cloned cDNA showed that NOA is a member of the acyl-CoA dehydrogenase (ACAD) superfamily. The members of this family share with NAO a mechanism that is initiated by proton removal from carbon, suggesting a common chemical reaction for this superfamily. NAO was expressed in Escherichia coli and the recombinant enzyme was characterized. Recombinant NAO has identical kinetic parameters to enzyme isolated from F. oxysporum but is isolated with oxidized FAD rather than the nitrobutyl-FAD found in the fungal enzyme. NAO purified from E. coli or from F. oxysporum has no detectable ACAD activity on short- or medium-chain acyl CoAs, and medium-chain acyl-CoA dehydrogenase and short-chain acyl-CoA dehydrogenase are unable to catalyze oxidation of nitroalkanes. PMID:11867731

  9. Determination of individual long-chain fatty acyl-CoA esters in heart and skeletal muscle.

    PubMed

    Molaparast-Saless, F; Shrago, E; Spennetta, T L; Donatello, S; Kneeland, L M; Nellis, S H; Liedtke, A J

    1988-05-01

    A method has been developed for determination of individual long-chain fatty acyl-CoA esters from heart and skeletal muscle using high performance liquid chromatography (HPLC). The esters were extracted from freeze-clamped tissue of pig and rat hearts and rat skeletal muscle for analysis on a radially compressed C18 5mu reverse-phase column. Nine peaks in the extract with carbon chain lengths from C12 to C20 that subsequently disappeared on alkaline hydrolysis were identified. The major acyl-CoA peaks were 14:1, 18:2, 16:0 and 18:1 and additionally in rat heart 18:0. Total long-chain acyl-CoA esters obtained by summation of the individual molecular species was 11.34 +/- 1.48 nmol/g wet wt. pig heart; 14.51 +/- 2.11 nmol/g wet wt. in rat heart, and 4.35 +/- 0.71 nmol/g wet wt. in rat skeletal muscle. These values were approximately 132% of those obtained using a separate procedure that measured total CoA by HPLC after alkaline hydrolysis of the esters. The described method demonstrates the quantitation of individual acyl-CoA species in muscle tissue. Therefore, it has a number of advantages in that it permits information to be obtained on the individual molecular species under various nutritional and metabolic conditions.

  10. Acetyl CoA carboxylase inactivation and meiotic maturation in mouse oocytes.

    PubMed

    Valsangkar, Deepa S; Downs, Stephen M

    2015-09-01

    In mouse oocytes, meiotic induction by pharmacological activation of PRKA (adenosine monophosphate-activated protein kinase; formerly known as AMPK) or by hormones depends on stimulation of fatty acid oxidation (FAO). PRKA stimulates FAO by phosphorylating and inactivating acetyl CoA carboxylase (ACAC; formerly ACC), leading to decreased malonyl CoA levels and augmenting fatty-acid transport into mitochondria. We investigated a role for ACAC inactivation in meiotic resumption by testing the effect of two ACAC inhibitors, CP-640186 and Soraphen A, on mouse oocytes maintained in meiotic arrest in vitro. These inhibitors significantly stimulated the resumption of meiosis in arrested cumulus cell-enclosed oocytes, denuded oocytes, and follicle-enclosed oocytes. This stimulation was accompanied by an increase in FAO. Etomoxir, a malonyl CoA analogue, prevented meiotic resumption as well as the increase in FAO induced by ACAC inhibition. Citrate, an ACAC activator, and CBM-301106, an inhibitor of malonyl CoA decarboxylase, which converts malonyl CoA to acetyl CoA, suppressed both meiotic induction and FAO induced by follicle-stimulating hormone, presumably by maintaining elevated malonyl CoA levels. Mouse oocyte-cumulus cell complexes contain both isoforms of ACAC (ACACA and ACACB); when wild-type and Acacb(-/-) oocytes characteristics were compared, we found that these single-knockout oocytes showed a significantly higher FAO level and a reduced ability to maintain meiotic arrest, resulting in higher rates of germinal vesicle breakdown. Collectively, these data support the model that ACAC inactivation contributes to the maturation-promoting activity of PRKA through stimulation of FAO.

  11. Recombinant C3adesArg/acylation stimulating protein (ASP) is highly bioactive: a critical evaluation of C5L2 binding and 3T3-L1 adipocyte activation.

    PubMed

    Cui, Wei; Lapointe, Marc; Gauvreau, Danny; Kalant, David; Cianflone, Katherine

    2009-10-01

    C5L2 is a recently identified receptor for C5a/C5adesArg, C3a and C3adesArg (ASP). C5a/C5adesArg bind with high affinity, with no identified activation. By contrast, some studies demonstrate C3a/ASP binding/activation to C5L2; others do not. Our aim is to critically evaluate ASP/C3adesArg-C5L2 binding and bioactivity. Cell-associated fluorescent-ASP (Fl-ASP) binding to C5L2 increased from transiently transfectedbinding (NSB, no cells), while albumin increased NSB. Binding to non-transfected HEK was comparable to NSB. Optimal specific binding was obtained at 20 degrees C (vs. 4 degrees C) in PBS or serum-free medium with K(d) 83.7+/-23.7 nM (C5L2-HEK), 66+/-15 nM (C5L2-CHO) and 76+/-14.3 nM (3T3-L1 preadipocytes); (125)I-C5a binding had greater affinity. Fl-ASP-C5L2 binding was comparable and concentration dependent (K(d) 31 nM (direct binding) and IC(50) 35 nM (competition binding) regardless of conditions). Recombinant ASP (rASP) produced in modified Escherichia coli Origami (DE3) (allowing folding and disulphide bridge formation), purified under non-denaturing conditions demonstrated 10x greater bioactivity vs. proteolytically derived plasma ASP for triglyceride synthesis and fatty acid uptake in 3T3-L1 adipocytes and preadipocytes while adipose tissue from C5L2 KO mice was non-responsive. rASP stimulation of adipocyte BODIPY-fatty acid uptake demonstrated EC(50) 115+/-93 nM and maximal stimulation of 413+/-33%, p<0.001. ASP binding has distinct characteristics that lead to C5L2 activation and increased

  12. Biochemical and Crystallographic Analysis of Substrate Binding and Conformational Changes in Acetyl-CoA Synthetase

    SciTech Connect

    Reger,A.; Carney, J.; Gulick, A.

    2007-01-01

    The adenylate-forming enzymes, including acyl-CoA synthetases, the adenylation domains of non-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping-pong mechanism. We have proposed a domain alternation mechanism for these enzymes whereby, upon completion of the initial adenylation reaction, the C-terminal domain of these enzymes undergoes a 140{sup o} rotation to perform the second thioester-forming half-reaction. Structural and kinetic data of mutant enzymes support this hypothesis. We present here mutations to Salmonella enterica acetyl-CoA synthetase (Acs) and test the ability of the enzymes to catalyze the complete reaction and the adenylation half-reaction. Substitution of Lys609 with alanine results in an enzyme that is unable to catalyze the adenylate reaction, while the Gly524 to leucine substitution is unable to catalyze the complete reaction yet catalyzes the adenylation half-reaction with activity comparable to the wild-type enzyme. The positions of these two residues, which are located on the mobile C-terminal domain, strongly support the domain alternation hypothesis. We also present steady-state kinetic data of putative substrate-binding residues and demonstrate that no single residue plays a dominant role in dictating CoA binding. We have also created two mutations in the active site to alter the acyl substrate specificity. Finally, the crystallographic structures of wild-type Acs and mutants R194A, R584A, R584E, K609A, and V386A are presented to support the biochemical analysis.

  13. The Physiology of Protein S-acylation

    PubMed Central

    Chamberlain, Luke H.; Shipston, Michael J.

    2015-01-01

    Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field. PMID:25834228

  14. Probing the active site of cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    PubMed

    Sonawane, Prashant; Patel, Krunal; Vishwakarma, Rishi Kishore; Srivastava, Sameer; Singh, Somesh; Gaikwad, Sushama; Khan, Bashir M

    2013-09-01

    Lack of three dimensional crystal structure of cinnamoyl CoA reductase (CCR) limits its detailed active site characterization studies. Putative active site residues involved in the substrate/NADPH binding and catalysis for Leucaena leucocephala CCR (Ll-CCRH1; GenBank: DQ986907) were identified by amino acid sequence alignment and homology modeling. Putative active site residues and proximal H215 were subjected for site directed mutagenesis, and mutated enzymes were expressed, purified and assayed to confirm their functional roles. Mutagenesis of S136, Y170 and K174 showed complete loss of activity, indicating their pivotal roles in catalysis. Mutant S212G exhibited the catalytic efficiencies less than 10% of wild type, showing its indirect involvement in substrate binding or catalysis. R51G, D77G, F30V and I31N double mutants showed significant changes in Km values, specifying their roles in substrate binding. Finally, chemical modification and substrate protection studies corroborated the presence Ser, Tyr, Lys, Arg and carboxylate group at the active site of Ll-CCRH1.

  15. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    SciTech Connect

    Baum, Bernhard; Lecker, Laura S. M.; Zoltner, Martin; Jaenicke, Elmar; Schnell, Robert; Hunter, William N.; Brenk, Ruth

    2015-07-28

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  16. The Acyl Desaturase CER17 Is Involved in Producing Wax Unsaturated Primary Alcohols and Cutin Monomers1[OPEN

    PubMed Central

    Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K.; Dyer, John M.; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Jenks, Matthew A.

    2017-01-01

    We report n-6 monounsaturated primary alcohols (C26:1, C28:1, and C30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4’s principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation’s effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem. PMID:28069670

  17. Spectroscopic Classification of SN 2017coa as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Tan, Hanjie; Li, Wenxiong; Zhang, Tianmeng; Xu, Zhijian; Yang, Zesheng; Song, Hao; Mo, Jun; Wang, Yuanhao; Zhou, Ziheng; Meng, Xianmin; Qian, Shenban; Jia, Junjun; Zhou, Xu; Zhang, Jujia

    2017-04-01

    We obtained an optical spectrum (range 360-840 nm) of SN 2017coa,discovered by Tsinghua-NAOC Transient Survey (TNTS), on UT Mar.31.49 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  18. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene.

    PubMed Central

    Zou, J; Katavic, V; Giblin, E M; Barton, D L; MacKenzie, S L; Keller, W A; Hu, X; Taylor, D C

    1997-01-01

    A putative yeast sn-2 acyltransferase gene (SLC1-1), reportedly a variant acyltransferase that suppresses a genetic defect in sphingolipid long-chain base biosynthesis, has been expressed in a yeast SLC deletion strain. The SLC1-1 gene product was shown in vitro to encode an sn-2 acyltransferase capable of acylating sn-1 oleoyl-lysophosphatidic acid, using a range of acyl-CoA thioesters, including 18:1-, 22:1-, and 24:0-CoAs. The SLC1-1 gene was introduced into Arabidopsis and a high erucic acid-containing Brassica napus cv Hero under the control of a constitutive (tandem cauliflower mosaic virus 35S) promoter. The resulting transgenic plants showed substantial increases of 8 to 48% in seed oil content (expressed on the basis of seed dry weight) and increases in both overall proportions and amounts of very-long-chain fatty acids in seed triacylglycerols (TAGs). Furthermore, the proportion of very-long-chain fatty acids found at the sn-2 position of TAGs was increased, and homogenates prepared from developing seeds of transformed plants exhibited elevated lysophosphatidic acid acyltransferase (EC 2.3.1.51) activity. Thus, the yeast sn-2 acyltransferase has been shown to encode a protein that can exhibit lysophosphatidic acid acyltransferase activity and that can be used to change total fatty acid content and composition as well as to alter the stereospecific acyl distribution of fatty acids in seed TAGs. PMID:9212466

  19. The utilization of the acyl-CoA and the involvement PDAT and DGAT in the biosynthesis of erucic acid-rich triacylglycerols in Crambe seed oil.

    PubMed

    Furmanek, Tomasz; Demski, Kamil; Banaś, Walentyna; Haslam, Richard; Napier, Jonathan; Stymne, Sten; Banaś, Antoni

    2014-04-01

    The triacylglycerol of Crambe abyssinica seeds consist of 95% very long chain (>18 carbon) fatty acids (86% erucic acid; 22:1∆13) in the sn-1 and sn-3 positions. This would suggest that C. abyssinica triacylglycerols are not formed by the action of the phospholipid:diacylglycerol acyltransferase (PDAT), but are rather the results of acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. However, measurements of PDAT and DGAT activities in microsomal membranes showed that C. abyssinica has significant PDAT activity, corresponding to about 10% of the DGAT activity during periods of rapid seed oil accumulation. The specific activity of DGAT for erucoyl-CoA had doubled at 19 days after flowering compared to earlier developmental stages, and was, at that stage, the preferred acyl donor, whereas the activities for 16:0-CoA and 18:1-CoA remained constant. This indicates that an expression of an isoform of DGAT with high specificity for erucoyl-CoA is induced at the onset of rapid erucic acid and oil accumulation in the C. abyssinica seeds. Analysis of the composition of the acyl-CoA pool during different stages of seed development showed that the percentage of erucoyl groups in acyl-CoA was much higher than in complex lipids at all stages of seed development except in the desiccation phase. These results are in accordance with published results showing that the rate limiting step in erucic acid accumulation in C. abyssinica oil is the utilization of erucoyl-CoA by the acyltransferases in the glycerol-3-phosphate pathway.

  20. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  1. Acyl hydrolases from trans-AT polyketide synthases target acetyl units on acyl carrier proteins.

    PubMed

    Jenner, Matthew; Afonso, Jose P; Kohlhaas, Christoph; Karbaum, Petra; Frank, Sarah; Piel, Jörn; Oldham, Neil J

    2016-04-18

    Acyl hydrolase (AH) domains are a common feature of trans-AT PKSs. They have been hypothesised to perform a proofreading function by removing acyl chains from stalled sites. This study determines the substrate tolerance of the AH PedC for a range of acyl-ACPs. Clear preference towards short, linear acyl-ACPs is shown, with acetyl-ACP the best substrate. These results imply a more targeted housekeeping role for PedC: namely the removal of unwanted acetyl groups from ACP domains caused by erroneous transfer of acetyl-CoA, or possibly by decarboxylation of malonyl-ACP.

  2. Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA: diacylglycerol acyltransferases.

    PubMed

    Wältermann, Marc; Stöveken, Tim; Steinbüchel, Alexander

    2007-02-01

    Triacylglycerols (TAGs) and wax esters (WEs) are beside polyhydroxyalkanoates (PHAs) important storage lipids in some groups of prokaryotes. Accumulation of these lipids occurs in cells when they are cultivated under conditions of unbalanced growth in the presence of high concentrations of a suitable carbon source, which can be used for fatty acid and storage lipid biosyntheses. The key enzymes, which mediate both WE and TAG formations from long-chain acyl-coenzyme A (CoA) as acyl donor and long-chain fatty alcohols or diacylglycerols as respective acyl acceptors in bacteria, are WE synthases/acyl-CoA:diacylglycerol acyltransferases (WS/DGATs). The WS/DGATs identified so far represent rather unspecific enzymes with broad spectra of possible substrates; this makes them interesting for many biotechnological applications. This review traces the molecular structure and biochemical properties including the probable regions responsible for acyltransferase properties, enzymatic activity and substrate specifities. The phylogenetic relationships based on amino acid sequence similarities of this unique class of enzymes were revealed. Furthermore, recent advances in understanding the physiological functions of WS/DGATs in their natural hosts including pathogenic Mycobacterium tuberculosis were discussed.

  3. The Endoplasmic Reticulum-Associated Maize GL8 Protein Is a Component of the Acyl-Coenzyme A Elongase Involved in the Production of Cuticular Waxes1

    PubMed Central

    Xu, Xiaojie; Dietrich, Charles R.; Lessire, Rene; Nikolau, Basil J.; Schnable, Patrick S.

    2002-01-01

    The gl8 gene is required for the normal accumulation of cuticular waxes on maize (Zea mays) seedling leaves. The predicted GL8 protein exhibits significant sequence similarity to a class of enzymes that catalyze the reduction of a ketone group to a hydroxyl group. Polyclonal antibodies raised against the recombinant Escherichia coli-expressed GL8 protein were used to investigate the function of this protein in planta. Subcellular fractionation experiments indicate that the GL8 protein is associated with the endoplasmic reticulum membranes. Furthermore, polyclonal antibodies raised against the partially purified leek (Allium porrum) microsomal acyl-coenzyme A (CoA) elongase can react with the E. coli-expressed GL8 protein. In addition, anti-GL8 immunoglobulin G inhibited the in vitro elongation of stearoyl-CoA by leek and maize microsomal acyl-CoA elongase. In combination, these findings indicate that the GL8 protein is a component of the acyl-CoA elongase. In addition, the finding that anti-GL8 immunoglobulin G did not significantly inhibit the 3-ketoacyl-CoA synthase, 3-ketoacyl-CoA dehydrase, and (E) 2,3-enoyl-CoA reductase partial reactions of leek or maize acyl-CoA elongase lends further support to our previous hypothesis that the GL8 protein functions as a β-ketoacyl reductase during the elongation of very long-chain fatty acids required for the production of cuticular waxes. PMID:11891248

  4. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  5. Crystallization and rhenium MAD phasing of the acyl-homoserinelactone synthase EsaI

    SciTech Connect

    Watson, W.T.; Murphy IV, Frank V.; Gould, Ty A.; Jambeck, Per; Val, Dale L.; Cronan, Jr., John E.; Beck von Bodman, Susan; Churchill, Mair E.A.

    2009-04-22

    Acyl-homoserine-L-lactones (AHLs) are diffusible chemical signals that are required for virulence of many Gram-negative bacteria. AHLs are produced by AHL synthases from two substrates, S-adenosyl-L-methionine and acyl-acyl carrier protein. The AHL synthase EsaI, which is homologous to the AHL synthases from other pathogenic bacterial species, has been crystallized in the primitive tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 66.40, c = 47.33 {angstrom}. The structure was solved by multiple-wavelength anomalous diffraction with a novel use of the rhenium anomalous signal. The rhenium-containing structure has been refined to a resolution of 2.5 {angstrom} and the perrhenate ion binding sites and liganding residues have been identified.

  6. Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production.

    PubMed

    Noguchi, Shingo; Putri, Sastia P; Lan, Ethan I; Laviña, Walter A; Dempo, Yudai; Bamba, Takeshi; Liao, James C; Fukusaki, Eiichiro

    Cyanobacterial 1-butanol production is an important model system for direct conversion of CO2 to fuels and chemicals. Metabolically-engineered cyanobacteria introduced with a heterologous Coenzyme A (CoA)-dependent pathway modified from Clostridium species can convert atmospheric CO2 into 1-butanol. Efforts to optimize the 1-butanol pathway in Synechococcus elongatus PCC 7942 have focused on the improvement of the CoA-dependent pathway thus, probing the in vivo metabolic state of the CoA-dependent pathway is essential for identifying its limiting steps. In this study, we performed quantitative target analysis and kinetic profiling of acyl-CoAs in the CoA-dependent pathway by reversed phase ion-pair liquid chromatography-triple quadrupole mass spectrometry. Using (13)C-labelled cyanobacterial cell extract as internal standard, measurement of the intracellular concentration of acyl-CoAs revealed that the reductive reaction of butanoyl-CoA to butanal is a possible rate-limiting step. In addition, improvement of the butanoyl-CoA to butanal reaction resulted in an increased rate of acetyl-CoA synthesis by possibly compensating for the limitation of free CoA species. We inferred that the efficient recycling of free CoA played a key role in enhancing the conversion of pyruvate to acetyl-CoA.

  7. Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca(2+)-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus.

    PubMed

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavón, Francisco J; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα(+)/calbindin(+) cells were closely surrounded by NAPE-PLD(+) fiber varicosities. No pyramidal PPARα(+)/calbindin(+) cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD(+)/calretinin(+) cells were specifically detected in CA3. NAPE-PLD(+) puncta surrounded the calretinin(+) cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions.

  8. Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    PubMed Central

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavón, Francisco J.; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca2+ fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca2+-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα+/calbindin+ cells were closely surrounded by NAPE-PLD+ fiber varicosities. No pyramidal PPARα+/calbindin+ cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD+/calretinin+ cells were specifically detected in CA3. NAPE-PLD+ puncta surrounded the calretinin+ cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions. PMID:24672435

  9. Impact of single-dose nandrolone decanoate on gonadotropins, blood lipids and HMG CoA reductase in healthy men.

    PubMed

    Gårevik, N; Börjesson, A; Choong, E; Ekström, L; Lehtihet, M

    2016-06-01

    The aim was to study the effect and time profile of a single dose of nandrolone decanoate (ND) on gonadotropins, blood lipids and HMG CoA reductase [3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR)] in healthy men. Eleven healthy male participants aged 29-46 years were given a single dose of 150 mg ND as an intramuscular dose of Deca Durabol®, Organon. Blood samples for sex hormones, lipids and HMGCR mRNA analysis were collected prior to ND administration day 0, 4 and 14. A significant suppression of luteinising hormone (LH) and follicle-stimulating hormone (FSH) was seen after 4 days. Total testosterone and bioavailable testosterone level decreased significantly throughout the observed study period. A small but significant decrease in sexual hormone-binding globulin (SHBG) was seen after 4 days but not after 14 days. Total serum (S)-cholesterol and plasma (P)-apolipoprotein B (ApoB) increased significantly after 14 days. In 80% of the individuals, the HMGCR mRNA level was increased 4 days after the ND administration. Our results show that a single dose of 150 mg ND increases (1) HMGCR mRNA expression, (2) total S-cholesterol and (3) P-ApoB level. The long-term consequences on cardiovascular risk that may appear in users remain to be elucidated.

  10. Carbohydrate Conformation and Lipid Condensation in Monolayers Containing Glycosphingolipid Gb3: Influence of Acyl Chain Structure

    PubMed Central

    Watkins, Erik B.; Gao, Haifei; Dennison, Andrew J.C.; Chopin, Nathalie; Struth, Bernd; Arnold, Thomas; Florent, Jean-Claude; Johannes, Ludger

    2014-01-01

    Globotriaosylceramide (Gb3), a glycosphingolipid found in the plasma membrane of animal cells, is the endocytic receptor of the bacterial Shiga toxin. Using x-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), lipid monolayers containing Gb3 were investigated at the air-water interface. XR probed Gb3 carbohydrate conformation normal to the interface, whereas GIXD precisely characterized Gb3’s influence on acyl chain in-plane packing and area per molecule (APM). Two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), were used to study Gb3 packing in different lipid environments. Furthermore, the impact on monolayer structure of a naturally extracted Gb3 mixture was compared to synthetic Gb3 species with uniquely defined acyl chain structures. XR results showed that lipid environment and Gb3 acyl chain structure impact carbohydrate conformation with greater solvent accessibility observed for smaller phospholipid headgroups and long Gb3 acyl chains. In general, GIXD showed that Gb3 condensed phospholipid packing resulting in smaller APM than predicted by ideal mixing. Gb3’s capacity to condense APM was larger for DSPC monolayers and exhibited different dependencies on acyl chain structure depending on the lipid environment. The interplay between Gb3-induced changes in lipid packing and the lipid environment’s impact on carbohydrate conformation has broad implications for glycosphingolipid macromolecule recognition and ligand binding. PMID:25185550

  11. Aminoacyl-coenzyme A synthesis catalyzed by a CoA ligase from Penicillium chrysogenum.

    PubMed

    Koetsier, Martijn J; Jekel, Peter A; Wijma, Hein J; Bovenberg, Roel A L; Janssen, Dick B

    2011-03-23

    Coenzyme A ligases play an important role in metabolism by catalyzing the activation of carboxylic acids. In this study we describe the synthesis of aminoacyl-coenzyme As (CoAs) catalyzed by a CoA ligase from Penicillium chrysogenum. The enzyme accepted medium-chain length fatty acids as the best substrates, but the proteinogenic amino acids L-phenylalanine and L-tyrosine, as well as the non-proteinogenic amino acids D-phenylalanine, D-tyrosine and (R)- and (S)-β-phenylalanine were also accepted. Of these amino acids, the highest activity was found for (R)-β-phenylalanine, forming (R)-β-phenylalanyl-CoA. Homology modeling suggested that alanine 312 is part of the active site cavity, and mutagenesis (A312G) yielded a variant that has an enhanced catalytic efficiency with β-phenylalanines and D-α-phenylalanine.

  12. Mosaic Conservation Opportunity Areas - Liberal Model (ECO_RES.COA_MOSAIC33)

    EPA Pesticide Factsheets

    The COA_Mosaic33 layer designates areas with potential for forest/grassland mosaic conservation. These are areas of natural or semi-natural forest/grassland mosaic land cover patches that are at least 75 meters away from roads and away from patch edges. OAs were modeled by creating distance grids using the National Land Cover Database and the Census Bureau's TIGER roads files

  13. Mosaic Conservation Opportunity Areas - Conservativel Model (ECO_RES.COA_MOSAIC66)

    EPA Pesticide Factsheets

    The COA_Mosaic66 layer designates areas with potential for forest/grassland mosaic conservation. These are areas of natural or semi-natural forest/grassland land cover patches that area at least 395 meters away from roads and away from patch edges. OAs were modeled by creating distance grids using the National Land Cover Database and the Census Bureau's TIGER road files.

  14. Regulation of schistosome egg production by HMG CoA reductase

    SciTech Connect

    VandeWaa, E.A.; Bennett, J.L.

    1986-03-05

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of /sup 14/C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivo were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production.

  15. Germline deletion of pantothenate kinases 1 and 2 reveals the key roles for CoA in postnatal metabolism.

    PubMed

    Garcia, Matthew; Leonardi, Roberta; Zhang, Yong-Mei; Rehg, Jerold E; Jackowski, Suzanne

    2012-01-01

    Pantothenate kinase (PanK) phosphorylates pantothenic acid (vitamin B(5)) and controls the overall rate of coenzyme A (CoA) biosynthesis. Pank1 gene deletion in mice results in a metabolic phenotype where fatty acid oxidation and gluconeogenesis are impaired in the fasted state, leading to mild hypoglycemia. Inactivating mutations in the human PANK2 gene lead to childhood neurodegeneration, but Pank2 gene inactivation in mice does not elicit a phenotype indicative of the neuromuscular symptoms or brain iron accumulation that accompany the human disease. Pank1/Pank2 double knockout (dKO) mice were derived to determine if the mild phenotypes of the single knockout mice are due to the ability of the two isoforms to compensate for each other in CoA biosynthesis. Postnatal development was severely affected in the dKO mice. The dKO pups developed progressively severe hypoglycemia and hyperketonemia by postnatal day 10 leading to death by day 17. Hyperketonemia arose from impaired whole-body ketone utilization illustrating the requirement for CoA in energy generation from ketones. dKO pups had reduced CoA and decreased fatty acid oxidation coupled with triglyceride accumulation in liver. dKO hepatocytes could not maintain the NADH levels compared to wild-type hepatocytes. These results revealed an important link between CoA and NADH levels, which was reflected by deficiencies in hepatic oleate synthesis and gluconeogenesis. The data indicate that PanK1 and PanK2 can compensate for each other to supply tissue CoA, but PanK1 is more important to CoA levels in liver whereas PanK2 contributes more to CoA synthesis in the brain.

  16. Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency

    PubMed Central

    Ghosh, Alok; Trivedi, Prachi P.; Timbalia, Shrishiv A.; Griffin, Aaron T.; Rahn, Jennifer J.; Chan, Sherine S. L.; Gohil, Vishal M.

    2014-01-01

    Mitochondrial respiratory chain biogenesis is orchestrated by hundreds of assembly factors, many of which are yet to be discovered. Using an integrative approach based on clues from evolutionary history, protein localization and human genetics, we have identified a conserved mitochondrial protein, C1orf31/COA6, and shown its requirement for respiratory complex IV biogenesis in yeast, zebrafish and human cells. A recent next-generation sequencing study reported potential pathogenic mutations within the evolutionarily conserved Cx9CxnCx10C motif of COA6, implicating it in mitochondrial disease biology. Using yeast coa6Δ cells, we show that conserved residues in the motif, including the residue mutated in a patient with mitochondrial disease, are essential for COA6 function, thus confirming the pathogenicity of the patient mutation. Furthermore, we show that zebrafish embryos with zfcoa6 knockdown display reduced heart rate and cardiac developmental defects, recapitulating the observed pathology in the human mitochondrial disease patient who died of neonatal hypertrophic cardiomyopathy. The specific requirement of Coa6 for respiratory complex IV biogenesis, its intramitochondrial localization and the presence of the Cx9CxnCx10C motif suggested a role in mitochondrial copper metabolism. In support of this, we show that exogenous copper supplementation completely rescues respiratory and complex IV assembly defects in yeast coa6Δ cells. Taken together, our results establish an evolutionarily conserved role of Coa6 in complex IV assembly and support a causal role of the COA6 mutation in the human mitochondrial disease patient. PMID:24549041

  17. 3-Hydroxy-3-methylglutaryl CoA lyase (HL): Mouse and human HL gene (HMGCL) cloning and detection of large gene deletions in two unrelated HL-deficient patients

    SciTech Connect

    Wang, S.P.; Robert, M.F.; Mitchell, G.A.

    1996-04-01

    3-hydroxy-3-methylglutaryl CoA lyase (HL, EC 4.1.3.4) catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetic acid and acetyl CoA, the final reaction of both ketogenesis and leucine catabolism. Autosomal-recessive HL deficiency in humans results in episodes of hypoketotic hypoglycemia and coma. Using a mouse HL cDNA as a probe, we isolated a clone containing the full-length mouse HL gene that spans about 15 kb of mouse chromosome 4 and contains nine exons. The promoter region of the mouse HL gene contains elements characteristic of a housekeeping gene: a CpG island containing multiple Sp1 binding sites surrounds exon 1, and neither a TATA nor a CAAT box are present. We identified multiple transcription start sites in the mouse HL gene, 35 to 9 bases upstream of the translation start codon. We also isolated two human HL genomic clones that include HL exons 2 to 9 within 18 kb. The mouse and human HL genes (HGMW-approved symbol HMGCL) are highly homologous, with identical locations of intron-exon junctions. By genomic Southern blot analysis and exonic PCR, was found 2 of 33 HL-deficient probands to be homozygous for large deletions in the HL gene. 26 refs., 4 figs., 2 tabs.

  18. Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies.

    PubMed

    Pacheu-Grau, David; Bareth, Bettina; Dudek, Jan; Juris, Lisa; Vögtle, F-Nora; Wissel, Mirjam; Leary, Scot C; Dennerlein, Sven; Rehling, Peter; Deckers, Markus

    2015-06-02

    Three mitochondria-encoded subunits form the catalytic core of cytochrome c oxidase, the terminal enzyme of the respiratory chain. COX1 and COX2 contain heme and copper redox centers, which are integrated during assembly of the enzyme. Defects in this process lead to an enzyme deficiency and manifest as mitochondrial disorders in humans. Here we demonstrate that COA6 is specifically required for COX2 biogenesis. Absence of COA6 leads to fast turnover of newly synthesized COX2 and a concomitant reduction in cytochrome c oxidase levels. COA6 interacts transiently with the copper-containing catalytic domain of newly synthesized COX2. Interestingly, similar to the copper metallochaperone SCO2, loss of COA6 causes cardiomyopathy in humans. We show that COA6 and SCO2 interact and that corresponding pathogenic mutations in each protein affect complex formation. Our analyses define COA6 as a constituent of the mitochondrial copper relay system, linking defects in COX2 metallation to cardiac cytochrome c oxidase deficiency.

  19. Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of Mycobacterium tuberculosis

    PubMed Central

    2016-01-01

    Mycobacterium tuberculosis relies on its own ability to biosynthesize coenzyme A to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the essential pantothenate and coenzyme A biosynthesis pathways have attracted attention as targets for tuberculosis drug development. To identify the optimal step for coenzyme A pathway disruption in M. tuberculosis, we constructed and characterized a panel of conditional knockdown mutants in coenzyme A pathway genes. Here, we report that silencing of coaBC was bactericidal in vitro, whereas silencing of panB, panC, or coaE was bacteriostatic over the same time course. Silencing of coaBC was likewise bactericidal in vivo, whether initiated at infection or during either the acute or chronic stages of infection, confirming that CoaBC is required for M. tuberculosis to grow and persist in mice and arguing against significant CoaBC bypass via transport and assimilation of host-derived pantetheine in this animal model. These results provide convincing genetic validation of CoaBC as a new bactericidal drug target. PMID:27676316

  20. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase

    PubMed Central

    Laurent, Gaëlle; German, Natalie J.; Saha, Asish K.; de Boer, Vincent C. J.; Davies, Michael; Koves, Timothy R.; Dephoure, Noah; Fischer, Frank; Boanca, Gina; Vaitheesvaran, Bhavapriya; Lovitch, Scott B.; Sharpe, Arlene H.; Kurland, Irwin J.; Steegborn, Clemens; Gygi, Steven P.; Muoio, Deborah M.; Ruderman, Neil B.; Haigis, Marcia C.

    2013-01-01

    Summary Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a novel regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a novel SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis. PMID:23746352

  1. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein.

    PubMed

    Schaefer, A L; Val, D L; Hanzelka, B L; Cronan, J E; Greenberg, E P

    1996-09-03

    Many bacteria use acyl homoserine lactone signals to monitor cell density in a type of gene regulation termed quorum sensing and response. Synthesis of these signals is directed by homologs of the luxi gene of Vibrio fischeri. This communication resolves two critical issues concerning the synthesis of the V. fischeri signal. (i) The luxI product is directly involved in signal synthesis-the protein is an acyl homoserine lactone synthase; and (ii) the substrates for acyl homoserine lactone synthesis are not amino acids from biosynthetic pathways or fatty acid degradation products, but rather they are S-adenosylmethionine (SAM) and an acylated acyl carrier protein (ACP) from the fatty acid biosynthesis pathway. We purified a maltose binding protein-LuxI fusion polypeptide and showed that, when provided with the appropriate substrates, it catalyzes the synthesis of an acyl homoserine lactone. In V. fischeri, luxi directs the synthesis of N-(3-oxohexanoyl) homoserine lactone and hexanoyl homoserine lactone. The purified maltose binding protein-LuxI fusion protein catalyzes the synthesis of hexanoyl homoserine lactone from hexanoyl-ACP and SAM. There is a high level of specificity for hexanoyl-ACP over ACPs with differing acyl group lengths, and hexanoyl homoserine lactone was not synthesized when SAM was replaced with other amino acids, such as methionine, S-adenosylhomocysteine, homoserine, or homoserine lactone, or when hexanoyl-SAM was provided as the substrate. This provides direct evidence that the LuxI protein is an auto-inducer synthase that catalyzes the formation of an amide bond between SAM and a fatty acyl-ACP and then catalyzes the formation of the acyl homoserine lactone from the acyl-SAM intermediate.

  2. ROMPgel beads in IRORI format: acylations revisited.

    PubMed

    Roberts, Richard S

    2005-01-01

    Functionalized "designer" polymers derived from ring-opening metathesis polymerization (ROMPgels) are attractive for their high loading, high purity, and ease of synthesis. Their physical state may vary from liquid to gel to granular solid, making a general method of handling these polymers difficult. By incorporating a suitable norbornene-substituted linker on standard Wang beads, ROMPgels can be easily grafted onto the resin, adding the convenience of a bead format while still maintaining the high loading and excellent site accessibility. This advantage is demonstrated by the use of an N-hydroxysuccinimide ROMPgel (3.3 mmol g(-1), a 3-fold increase from the parent linker resin) in IRORI Kan format. Conditions for the acylation of these IRORI-formatted ROMPgels are reported, along with the scope and limitations of the choice of acylating reagents. Yields are greatly improved by the use of perfluorinated solvents as a nonparticipating cosolvent in the acylation process. A simple titration method for the quantification of the acylated ROMPgels is also reported. Spent Kans are regenerated after each use without apparent loss of activity or purity after several cycles. Due to the high loading and reduced swelling of the ROMPgel resin, up to 0.39 mmol acyl group has successfully been recovered from a single IRORI miniKan, demonstrating the high capacity of the resin and applicability to both lead discovery and optimization programs.

  3. Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B.

    PubMed

    Martinelle, M; Hult, K

    1995-09-06

    The acyl transfer reactions catalysed by Candida antartica lipase B in organic media followed a bi-bi ping-pong mechanism, with competitive substrate inhibition by the alcohols used as acyl acceptors. The effect of organic solvents on Vm and Km was investigated. The Vm values in acetonitrile was 40-50% of those in heptane. High Km values in acetonitrile compared to those in heptane could partly be explained by an increased solvation of the substrates in acetonitrile. Substrate solvation caused a 10-fold change in substrate specificity, defined as (Vm/Km)ethyl octanoate/(Vm/Km)octanoic acid, going from heptane to acetonitrile. Deacylation was the rate determining step for the acyl transfer in heptane with vinyl- and ethyl octanoate as acyl donors and (R)-2-octanol as acyl acceptor. With 1-octanol, a rate determining deacylation step in heptane was indicated using the same acyl donors. Using 1-octanol as acceptor in heptane, S-ethyl thiooctanoate had a 25- to 30-fold lower Vm/Km value and vinyl octanoate a 4-fold higher Vm/Km value than that for ethyl octanoate. The difference showed to be a Km effect for vinyl octanoate and mainly a Km effect for S-ethyl thiooctanoate. The Vm values of the esterification of octanoic acid with different alcohols was 10-30-times lower than those for the corresponding transesterification of ethyl octanoate. The low activity could be explained by a low pH around the enzyme caused by the acid or a withdrawing of active enzyme by nonproductive binding by the acid.

  4. In silico prediction of acyl glucuronide reactivity

    NASA Astrophysics Data System (ADS)

    Potter, Tim; Lewis, Richard; Luker, Tim; Bonnert, Roger; Bernstein, Michael A.; Birkinshaw, Timothy N.; Thom, Stephen; Wenlock, Mark; Paine, Stuart

    2011-11-01

    Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted 13C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs.

  5. Acyl-coenzyme A:cholesterol acyltransferases

    PubMed Central

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C. Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease. PMID:19141679

  6. Acyl silicates and acyl aluminates as activated intermediates in peptide formation on clays

    NASA Technical Reports Server (NTRS)

    White, D. H.; Kennedy, R. M.; Macklin, J.

    1984-01-01

    Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. The proposed mechanism has been confirmed by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespead, geologically realistic setting for prebiotic peptide formation via in situ activation.

  7. COA7 (C1orf163/RESA1) mutations associated with mitochondrial leukoencephalopathy and cytochrome c oxidase deficiency

    PubMed Central

    Martinez Lyons, Anabel; Ardissone, Anna; Reyes, Aurelio; Robinson, Alan J; Moroni, Isabella; Fernandez-Vizarra, Erika; Zeviani, Massimo

    2016-01-01

    Background Assembly of cytochrome c oxidase (COX, complex IV, cIV), the terminal component of the mitochondrial respiratory chain, is assisted by several factors, most of which are conserved from yeast to humans. However, some of them, including COA7, are found in humans but not in yeast. COA7 is a 231aa-long mitochondrial protein present in animals, containing five Sel1-like tetratricopeptide repeat sequences, which are likely to interact with partner proteins. Methods Whole exome sequencing was carried out on a 19 year old woman, affected by early onset, progressive severe ataxia and peripheral neuropathy, mild cognitive impairment and a cavitating leukodystrophy of the brain with spinal cord hypotrophy. Biochemical analysis of the mitochondrial respiratory chain revealed the presence of isolated deficiency of cytochrome c oxidase (COX) activity in skin fibroblasts and skeletal muscle. Mitochondrial localization studies were carried out in isolated mitochondria and mitoplasts from immortalized control human fibroblasts. Results We found compound heterozygous mutations in COA7: a paternal c.410A>G, p.Y137C, and a maternal c.287+1G>T variants. Lentiviral-mediated expression of recombinant wild-type COA7 cDNA in the patient fibroblasts led to the recovery of the defect in COX activity and restoration of normal COX amount. In mitochondrial localization experiments, COA7 behaved as the soluble matrix protein Citrate Synthase. Conclusions We report here the first patient carrying pathogenic mutations of COA7, causative of isolated COX deficiency and progressive neurological impairment. We also show that COA7 is a soluble protein localized to the matrix, rather than in the intermembrane space as previously suggested. PMID:27683825

  8. The multiple acyl-coenzyme A dehydrogenation disorders, glutaric aciduria type II and ethylmalonic-adipic aciduria. Mitochondrial fatty acid oxidation, acyl-coenzyme A dehydrogenase, and electron transfer flavoprotein activities in fibroblasts.

    PubMed Central

    Amendt, B A; Rhead, W J

    1986-01-01

    The multiple acyl-coenzyme A (CoA) dehydrogenation disorders (MAD) include severe (S) and mild (M) variants, glutaric aciduria type II (MAD:S) and ethylmalonic-adipic aciduria (MAD:M). Intact MAD:M mitochondria oxidized [1-14C]octanoate, [1-14C]palmityl-CoA, and [1,5-14C]glutarate at 20-46% of control levels; MAD:S mitochondria oxidized these three substrates at 0.4-18% of control levels. In MAD:M mitochondria, acyl-CoA dehydrogenase (ADH) activities were similar to control, whereas MAD:S ADH activities ranged from 38% to 73% of control. Electron transfer flavoprotein (ETF) activities in five MAD:M cell lines ranged from 29 to 51% of control (P less than 0.01); ETF deficiency was the primary enzymatic defect in two MAD:M lines. In four MAD:S patients, ETF activities ranged from 3% to 6% of control (P less than 0.001); flavin adenine dinucleotide addition increased residual ETF activity from 4% to 21% of control in a single MAD:S line (P less than 0.01). Three MAD:S patients had ETF activities ranging from 33 to 53% of control; other investigators found deficient ETF-dehydrogenase activity in these MAD:S and three of our MAD:M cell lines. PMID:3722376

  9. Acyl anion free N-heterocyclic carbene organocatalysis.

    PubMed

    Ryan, Sarah J; Candish, Lisa; Lupton, David W

    2013-06-21

    Reaction discovery using N-heterocyclic carbene organocatalysis has been dominated by the chemistry of acyl anion equivalents. Recent studies demonstrate that NHCs are far more diverse catalysts, with a variety of reactions discovered that proceed without acyl anion equivalent formation. In this tutorial review selected examples of acyl anion free NHC catalysis using carbonyl compounds are presented.

  10. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis*

    PubMed Central

    Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee

    2016-01-01

    Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3–17), helix II (residues 39–53), helix III (residues 60–64), and helix IV (residues 68–78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe45 in helix II and Phe18 in the α1α2 loop and a hydrogen bonding between Ser15 in helix I and Ile20 in the α1α2 loop, resulting in its high thermal stability. Phe45-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser58 in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains. PMID:26631734

  11. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis.

    PubMed

    Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee

    2016-01-22

    Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3-17), helix II (residues 39-53), helix III (residues 60-64), and helix IV (residues 68-78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe(45) in helix II and Phe(18) in the α1α2 loop and a hydrogen bonding between Ser(15) in helix I and Ile(20) in the α1α2 loop, resulting in its high thermal stability. Phe(45)-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser(58) in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.

  12. Acyl chain preference and inhibitor identification of Moraxella catarrhalis LpxA: Insight through crystal structure and computational studies.

    PubMed

    Pratap, Shivendra; Kesari, Pooja; Yadav, Ravi; Dev, Aditya; Narwal, Manju; Kumar, Pravindra

    2017-03-01

    Lipopolysaccharide (LPS) is an important surface component and a potential virulence factor in the pathogenesis of Gram-negative bacteria. UDP-N-acetylglucosamine acyltransferase (LpxA) enzyme catalyzes the first reaction of LPS biosynthesis, reversible transfer of R-3-hydroxy-acyl moiety from donor R-3-hydroxy-acyl-acyl carrier protein to the 3' hydroxyl position of UDP-N-acetyl-glucosamine. LpxA enzyme's essentiality in bacterial survival and absence of any homologous protein in humans makes it a promising target for anti-bacterial drug development. Herein, we present the crystal structure of Moraxella catarrhalis LpxA (McLpxA). We propose that L171 is responsible for limiting the acyl chain length in McLpxA to 10C or 12C. The study reveals the plausible interactions between the highly conserved clusters of basic residues at the C-terminal end of McLpxA and acidic residues of acyl carrier protein (ACP). Furthermore, the crystal structure of McLpxA was used to screen potential inhibitors from NCI open database using various computational approaches viz. pharmacophore mapping, virtual screening and molecular docking. Molecules Mol212032, Mol609399 and Mol152546 showed best binding affinity with McLpxA among all screened molecules. These molecules mimic the substrate-LpxA binding interactions.

  13. Continuous recording of long-chain acyl-coenzyme a synthetase activity using fluorescently labeled bovine serum albumin.

    PubMed

    Demant, E J; Nystrøm, B T

    2001-08-01

    The fluorescence-based long-chain fatty acid probe BSA-HCA (bovine serum albumin labeled with 7-hydroxycoumarin-4-acetic acid) is shown to respond to binding of long-chain acyl-CoA thioesters by quenching of the 450 nm fluorescence emission. As determined by spectrofluorometric titration, binding affinities for palmitoyl-, stearoyl-, and oleoyl-CoA (Kd = 0.2-0.4 microM) are 5-10 times lower than those for the corresponding nonesterified fatty acids. In the presence of detergent (Chaps, Triton X-100, n-octylglucoside) above the critical micelle concentration, acyl-CoA partitions from BSA-HCA and into the detergent micelles. This allows BSA-HCA to be used as a fluorescent probe for continuous recording of fatty acid concentrations in detergent solution with little interference from acyl-CoA. Using a calibration of the fluorescence signal with fatty acids in the C14 to C20 chain-length range, fatty acid consumption by Pseudomonas fragi and rat liver microsomal acyl-CoA synthetase activities are measured down to 0.05 microM/min with a data sampling rate of 10 points per second. This new method provides a very promising spectrofluorometric approach to the study of acyl-CoA synthetase reaction kinetics at physiologically relevant (nM) aqueous phase concentrations of fatty acid substrates and at a time resolution that cannot be obtained in isotopic sampling or enzyme-coupled assays.

  14. Fatty Acid Oxidation Mediated by Acyl-CoA Synthetase Long Chain 3 Is Required for Mutant KRAS Lung Tumorigenesis.

    PubMed

    Padanad, Mahesh S; Konstantinidou, Georgia; Venkateswaran, Niranjan; Melegari, Margherita; Rindhe, Smita; Mitsche, Matthew; Yang, Chendong; Batten, Kimberly; Huffman, Kenneth E; Liu, Jingwen; Tang, Ximing; Rodriguez-Canales, Jaime; Kalhor, Neda; Shay, Jerry W; Minna, John D; McDonald, Jeffrey; Wistuba, Ignacio I; DeBerardinis, Ralph J; Scaglioni, Pier Paolo

    2016-08-09

    KRAS is one of the most commonly mutated oncogenes in human cancer. Mutant KRAS aberrantly regulates metabolic networks. However, the contribution of cellular metabolism to mutant KRAS tumorigenesis is not completely understood. We report that mutant KRAS regulates intracellular fatty acid metabolism through Acyl-coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3), which converts fatty acids into fatty Acyl-CoA esters, the substrates for lipid synthesis and β-oxidation. ACSL3 suppression is associated with depletion of cellular ATP and causes the death of lung cancer cells. Furthermore, mutant KRAS promotes the cellular uptake, retention, accumulation, and β-oxidation of fatty acids in lung cancer cells in an ACSL3-dependent manner. Finally, ACSL3 is essential for mutant KRAS lung cancer tumorigenesis in vivo and is highly expressed in human lung cancer. Our data demonstrate that mutant KRAS reprograms lipid homeostasis, establishing a metabolic requirement that could be exploited for therapeutic gain.

  15. Characterization of Ten Heterotetrameric NDP-Dependent Acyl-CoA Synthetases of the Hyperthermophilic Archaeon Pyrococcus furiosus

    DOE PAGES

    Scott, Joseph W.; Poole, Farris L.; Adams, Michael W. W.

    2014-01-01

    Tmore » he hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of ATP. ACS1 and ACS2 were previously purified from P. furiosus and have α 2 β 2 structures but the genome contains genes encoding three additional α -subunits.he ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α 2 β 2 isoenzymes.he α -subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids.he β -subunit determined preference for adenine or guanine nucleotides.he GTP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GTP for GTP-dependent phosphoenolpyruvate carboxykinase and for other GTP-dependent processes.ranscriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both ATP and GTP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of thehermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.« less

  16. High acyl gellan as an emulsion stabilizer.

    PubMed

    Vilela, Joice Aline Pires; da Cunha, Rosiane Lopes

    2016-03-30

    High acyl gellan (0.01-0.2% w/w) was used as stabilizer in oil in water emulsions containing 30% (w/w) of sunflower oil and prepared under different process conditions. Stable emulsions to phase separation could be obtained using high acyl gellan (HA) content above 0.05% (w/w), while low acyl gellan (LA) prepared at the same conditions could not stabilize emulsions. Emulsions properties depended on the process used to mix the oil and gellan dispersion since high pressure homogenization favored stabilization while very high energy density applied by ultrasound led to systems destabilization. Emulsions prepared using high pressure homogenization showed zeta potential values ranging from -50 up to -59 mV, suggesting that electrostatic repulsion could be contributing to the systems stability. Rheological properties of continuous phase were also responsible for emulsions stabilization, since HA gellan dispersions showed high viscosity and gel-like behavior. The high viscosity of the continuous phase could be associated to the presence of high acyl gellan microgels/aggregates. Disentanglement of these aggregates performed by ultrasound strongly decreased the viscosity and consequently affected the emulsions behavior, reducing the stability to phase separation.

  17. Acylated pregnane glycosides from Caralluma russeliana.

    PubMed

    Abdel-Sattar, Essam; Ahmed, Ahmed A; Hegazy, Mohamed-Elamir F; Farag, Mohamed A; Al-Yahya, Mohammad Abdul-Aziz

    2007-05-01

    The chloroform extract of the aerial parts of Caralluma russeliana yielded four acylated pregnane glycosides, namely russeliosides E-H, three were found now. The structures of the compounds were elucidated using MS, 1H NMR, 13C NMR, 1H-1H COSY, HMQC, NOESY and HMBC experiments.

  18. The Role of Coa2 in Hemylation of Yeast Cox1 Revealed by Its Genetic Interaction with Cox10 ▿

    PubMed Central

    Bestwick, Megan; Khalimonchuk, Oleh; Pierrel, Fabien; Winge, Dennis R.

    2010-01-01

    Saccharomyces cerevisiae cells lacking the cytochrome c oxidase (CcO) assembly factor Coa2 are impaired in Cox1 maturation and exhibit a rapid degradation of newly synthesized Cox1. The respiratory deficiency of coa2Δ cells is suppressed either by the presence of a mutant allele of the Cox10 farnesyl transferase involved in heme a biosynthesis or through impaired proteolysis by the disruption of the mitochondrial Oma1 protease. Cox10 with an N196K substitution functions as a robust gain-of-function suppressor of the respiratory deficiency of coa2Δ cells but lacks suppressor activity for two other CcO assembly mutant strains, the coa1Δ and shy1Δ mutants. The suppressor activity of N196K mutant Cox10 is dependent on its catalytic function and the presence of Cox15, the second enzyme involved in heme a biosynthesis. Varying the substitution at Asn196 reveals a correlation between the suppressor activity and the stabilization of the high-mass homo-oligomeric Cox10 complex. We postulate that the mutant Cox10 complex has enhanced efficiency in the addition of heme a to Cox1. Coa2 appears to impart stability to the oligomeric wild-type Cox10 complex involved in Cox1 hemylation. PMID:19841065

  19. Acylation of the Type 3 Secretion System Translocon Using a Dedicated Acyl Carrier Protein

    PubMed Central

    Agrebi, Rym; Canestrari, Mickaël J.; Mignot, Tâm; Lebrun, Régine; Bouveret, Emmanuelle

    2017-01-01

    Bacterial pathogens often deliver effectors into host cells using type 3 secretion systems (T3SS), the extremity of which forms a translocon that perforates the host plasma membrane. The T3SS encoded by Salmonella pathogenicity island 1 (SPI-1) is genetically associated with an acyl carrier protein, IacP, whose role has remained enigmatic. In this study, using tandem affinity purification, we identify a direct protein-protein interaction between IacP and the translocon protein SipB. We show, by mass spectrometry and radiolabelling, that SipB is acylated, which provides evidence for a modification of the translocon that has not been described before. A unique and conserved cysteine residue of SipB is identified as crucial for this modification. Although acylation of SipB was not essential to virulence, we show that this posttranslational modification promoted SipB insertion into host-cell membranes and pore-forming activity linked to the SPI-1 T3SS. Cooccurrence of acyl carrier and translocon proteins in several γ- and β-proteobacteria suggests that acylation of the translocon is conserved in these other pathogenic bacteria. These results also indicate that acyl carrier proteins, known for their involvement in metabolic pathways, have also evolved as cofactors of new bacterial protein lipidation pathways. PMID:28085879

  20. Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins.

    PubMed

    Giusti, M M; Rodríguez-Saona, L E; Wrolstad, R E

    1999-11-01

    The effects of glycosylation and acylation on the spectral characteristics, molar absorptivity, and color attributes of purified acylated and non-acylated pelargonidin derivatives were compared. Pigments were obtained from strawberries, radishes, red-fleshed potatoes, and partially hydrolyzed radish pigments. Individual pigments were isolated by using semipreparative HPLC. Spectral and color (CIELch) attributes of purified pigments were measured. Molar absorptivity ranged from 15 600 to 39 590 for pelargonidin-3-glucoside (pg-3-glu) and pg-3-rutinoside-5-glucoside acylated with p-coumaric acid, respectively. The presence of cinnamic acid acylation had a considerable impact on spectral and color characteristics, causing a bathochromic shift of lambda(max). Sugar substitution also played an important role, with a hypsochromic shift caused by the presence of glycosylation. Pg-3, 5-diglu and pg-3,5-triglu possessed a higher hue angle (>40 degrees ) than the other pg derivatives at pH 1.0, corresponding to the yellow-orange region of the color solid. Acylation with malonic acid did not affect lambda(max) and showed little effect on color characteristics. The solvent system had an effect not only on the molar absorptivity, but also on the visual color characteristic of the pigments.

  1. Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6.

    PubMed

    Van Horn, Cynthia G; Caviglia, Jorge M; Li, Lei O; Wang, Shuli; Granger, Deborah A; Coleman, Rosalind A

    2005-02-08

    The metabolism of long-chain fatty acids in brain and their incorporation into signaling molecules such as diacylglycerol and LPA and into structural components of membranes, including myelin, requires activation by long-chain acyl-CoA synthetase (ACSL). Because ACSL3 and ACSL6 are the predominant ACSL isoforms in brain, we cloned and characterized these isoforms from rat brain and identified a novel ACSL6 clone (ACSL6_v2). ACSL6_v2 and the previously reported ACSL6_v1 represent splice variants that include exon 13 or 14, respectively. Homologue sequences of both of these variants are present in the human and mouse databases. ACSL3, ACSL6_v1, and ACSL6_v2 with Flag-epitopes at the C-termini were expressed in Escherichia coli and purified on Flag-affinity columns. The three recombinant proteins were characterized. Compared to ACSL4, another brain isoform, ACSL3, ACSL6_v1, and ACSL6_v2 showed similarities in kinetic values for CoA, palmitate, and arachidonate, but their apparent Km values for oleate were 4- to 6-fold lower than for ACSL4. In a direct competition assay with palmitate, all the polyunsaturated fatty acids tested were strong competitors only for ACSL4 with IC50 values of 0.5 to 5 microM. DHA was also strongly preferred by ACSL6_v2. The apparent Km value for ATP of ACSL6_v1 was 8-fold higher than that of ACSL6_v2. ACSL3 and the two variants of ACSL6 were more resistant than ACSL4 to heat inactivation. Despite the high amino acid identity between ACSL3 and ACSL4, rosiglitazone inhibited only ACSL4. Triacsin C, an inhibitor of ACSL1 and ACSL4, also inhibited ACSL3, but did not inhibit the ACSL6 variants. These data further document important differences in the closely related ACSL isoforms and show that amino acid changes near the consensus nucleotide binding site alter function in the two splice variants of ACSL6.

  2. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Schnable, Patrick S.; Wen, Tsui-Jung

    2009-04-28

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.

  3. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung

    2005-09-13

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.

  4. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung

    2004-07-20

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.sub..alpha. subunit of pPDH, the E1.sub..beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyurvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.sub..alpha. pPDH, E1.sub..beta. pPDH, E2 pPDH, mtPDH or ALDH.

  5. Adaptive changes in individual acyl-CoA esters from hamster BAT during cold acclimation.

    PubMed

    Donatello, S; Spennetta, T; Strieleman, P; Woldegiorgis, G; Shrago, E

    1988-02-01

    Long-chain fatty acyl-CoA esters (LCFACoAE) were extracted from freeze-clamped powdered brown adipose tissue (BAT) obtained from thermoneutral control and cold-acclimated hamsters and the CoA esters individually separated by high-performance liquid chromatography. LCFACoAE of carbon chain length C12 to C20 were identified by increasing column retention time in the following order: C12:0, C14:1, C14:0, C16:1, C18:2, C16:0, C18:1, C18:0, and C20:4. The mean total LCFACoAE concentrations were 235 +/- 40 nmol/g protein for the control hamsters and 648 +/- 105 nmol/g protein for the 22-day cold-acclimated hamsters. A rapid fourfold increase in the levels of C16:0, C18:0, and C18:1 occurred within hours after initiation of the cold temperature, whereas the concentrations of the other six LCFACoAE either increased only slightly or remained unchanged. Almost 50% of the total LCFACoAE in the BAT of cold-acclimated hamsters was made up of C16:0, C18:0, and C18:1. These results, which demonstrate some dynamic changes in adipose tissue LCFACoAE, are consistent with their proposed role in the initiation and maintenance of BAT thermogenesis.

  6. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    SciTech Connect

    Hayashi, H.; Miwa, A. )

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  7. Structural basis for recruitment of tandem hotdog domains in acyl-CoA thioesterase 7 and its role in inflammation.

    PubMed

    Forwood, Jade K; Thakur, Anil S; Guncar, Gregor; Marfori, Mary; Mouradov, Dmitri; Meng, Weining; Robinson, Jodie; Huber, Thomas; Kellie, Stuart; Martin, Jennifer L; Hume, David A; Kobe, Bostjan

    2007-06-19

    Acyl-CoA thioesterases (Acots) catalyze the hydrolysis of fatty acyl-CoA to free fatty acid and CoA and thereby regulate lipid metabolism and cellular signaling. We present a comprehensive structural and functional characterization of mouse acyl-CoA thioesterase 7 (Acot7). Whereas prokaryotic homologues possess a single thioesterase domain, mammalian Acot7 contains a pair of domains in tandem. We determined the crystal structures of both the N- and C-terminal domains of the mouse enzyme, and inferred the structure of the full-length enzyme using a combination of chemical cross-linking, mass spectrometry, and molecular modeling. The quaternary arrangement in Acot7 features a trimer of hotdog fold dimers. Both domains of Acot7 are required for activity, but only one of two possible active sites in the dimer is functional. Asn-24 and Asp-213 (from N- and C-domains, respectively) were identified as the catalytic residues through site-directed mutagenesis. An enzyme with higher activity than wild-type Acot7 was obtained by mutating the residues in the nonfunctional active site. Recombinant Acot7 was shown to have the highest activity toward arachidonoyl-CoA, suggesting a function in eicosanoid metabolism. In line with the proposal, Acot7 was shown to be highly expressed in macrophages and up-regulated by lipopolysaccharide. Overexpression of Acot7 in a macrophage cell line modified the production of prostaglandins D2 and E2. Together, the results link the molecular and cellular functions of Acot7 and identify the enzyme as a candidate drug target in inflammatory disease.

  8. Structural basis for recruitment of tandem hotdog domains in acyl-CoA thioesterase 7 and its role in inflammation

    PubMed Central

    Forwood, Jade K.; Thakur, Anil S.; Guncar, Gregor; Marfori, Mary; Mouradov, Dmitri; Meng, Weining; Robinson, Jodie; Huber, Thomas; Kellie, Stuart; Martin, Jennifer L.; Hume, David A.; Kobe, Bostjan

    2007-01-01

    Acyl-CoA thioesterases (Acots) catalyze the hydrolysis of fatty acyl-CoA to free fatty acid and CoA and thereby regulate lipid metabolism and cellular signaling. We present a comprehensive structural and functional characterization of mouse acyl-CoA thioesterase 7 (Acot7). Whereas prokaryotic homologues possess a single thioesterase domain, mammalian Acot7 contains a pair of domains in tandem. We determined the crystal structures of both the N- and C-terminal domains of the mouse enzyme, and inferred the structure of the full-length enzyme using a combination of chemical cross-linking, mass spectrometry, and molecular modeling. The quaternary arrangement in Acot7 features a trimer of hotdog fold dimers. Both domains of Acot7 are required for activity, but only one of two possible active sites in the dimer is functional. Asn-24 and Asp-213 (from N- and C-domains, respectively) were identified as the catalytic residues through site-directed mutagenesis. An enzyme with higher activity than wild-type Acot7 was obtained by mutating the residues in the nonfunctional active site. Recombinant Acot7 was shown to have the highest activity toward arachidonoyl-CoA, suggesting a function in eicosanoid metabolism. In line with the proposal, Acot7 was shown to be highly expressed in macrophages and up-regulated by lipopolysaccharide. Overexpression of Acot7 in a macrophage cell line modified the production of prostaglandins D2 and E2. Together, the results link the molecular and cellular functions of Acot7 and identify the enzyme as a candidate drug target in inflammatory disease. PMID:17563367

  9. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress.

    PubMed

    Vu, Hieu Sy; Roth, Mary R; Tamura, Pamela; Samarakoon, Thilani; Shiva, Sunitha; Honey, Samuel; Lowe, Kaleb; Schmelz, Eric A; Williams, Todd D; Welti, Ruth

    2014-04-01

    Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG (galactose-acylated monogalactosyldiacylglycerol) depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses.

  10. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis

    PubMed Central

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  11. A key role of PGC-1α transcriptional coactivator in production of VEGF by a novel angiogenic agent COA-Cl in cultured human fibroblasts.

    PubMed

    Igarashi, Junsuke; Okamoto, Ryuji; Yamashita, Tetsuo; Hashimoto, Takeshi; Karita, Sakiko; Nakai, Kozo; Kubota, Yasuo; Takata, Maki; Yamaguchi, Fuminori; Tokuda, Masaaki; Sakakibara, Norikazu; Tsukamoto, Ikuko; Konishi, Ryoji; Hirano, Katsuya

    2016-03-01

    We previously demonstrated a potent angiogenic effect of a newly developed adenosine-like agent namedCOA-Cl.COA-Cl exerted tube forming activity in human umbilical vein endothelial cells in the presence of normal human dermal fibroblasts (NHDF). We therefore explored whether and howCOA-Cl modulates gene expression and protein secretion ofVEGF, a master regulator of angiogenesis, inNHDFRT-PCRandELISArevealed thatCOA-Cl upregulatedVEGF mRNAexpression and protein secretion inNHDFHIF1α(hypoxia-inducible factor 1α), a transcription factor, andPGC-1α(peroxisome proliferator-activated receptor-γcoactivator-1α), a transcriptional coactivator, are known to positively regulate theVEGFgene. Immunoblot andRT-PCRanalyses revealed thatCOA-Cl markedly upregulated the expression ofPGC-1αprotein andmRNACOA-Cl had no effect on the expression ofHIF1αprotein andmRNAin both hypoxia and normoxia. SilencingPGC-1αgene, but notHIF1αgene, by small interferingRNAattenuated the ability ofCOA-Cl to promoteVEGFsecretion. When an N-terminal fragment ofPGC-1αwas cotransfected with its partner transcription factorERRα(estrogen-related receptor-α) inCOS-7 cells,COA-Cl upregulated the expression of the endogenousVEGF mRNA However,COA-Cl had no effect on the expression ofVEGF, whenHIF1αwas transfected.COA-Cl inducesVEGFgene expression and protein secretion in fibroblasts. The transcriptional coactivatorPGC-1α, in concert withERRα, plays a key role in theCOA-Cl-inducedVEGFproduction.COA-Cl-induced activation ofPGC-1α-ERRα-VEGFpathway has a potential as a novel means for therapeutic angiogenesis.

  12. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio.

    PubMed

    Liu, Qingqing; Gauthier, Marie-Soleil; Sun, Lei; Ruderman, Neil; Lodish, Harvey

    2010-11-01

    Adiponectin activates AMP-activated protein kinase (AMPK) in adipocytes, but the underlying mechanism remains unclear. Here we tested the hypothesis that AMP, generated in activating fatty acids to their CoA derivatives, catalyzed by acyl-CoA synthetases, is involved in AMPK activation by adiponectin. Moreover, in adipocytes, insulin affects the subcellular localization of acyl-CoA synthetase FATP1. Thus, we also tested whether insulin activates AMPK in these cells and, if so, whether it activates through a similar mechanism. We examined these hypotheses by measuring the AMP/ATP ratio and AMPK activation on adiponectin and insulin stimulation and after knocking down acyl-CoA synthetases in adipocytes. We show that adiponectin activation of AMPK is accompanied by an ∼2-fold increase in the cellular AMP/ATP ratio. Moreover, FATP1 and Acsl1, the 2 major acyl-CoA synthetase isoforms in adipocytes, are essential for AMPK activation by adiponectin. We also show that after 40 min. insulin activated AMPK in adipocytes, which was coupled with a 5-fold increase in the cellular AMP/ATP ratio. Knockdown studies show that FATP1 and Acsl1 are required for these processes, as well as for stimulation of long-chain fatty acid uptake by adiponection and insulin. These studies demonstrate that a change in cellular energy state is associated with AMPK activation by both adiponectin and insulin, which requires the activity of FATP1 and Acsl1.

  13. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.

    PubMed

    Feldman, Jessica L; Dittenhafer-Reed, Kristin E; Kudo, Norio; Thelen, Julie N; Ito, Akihiro; Yoshida, Minoru; Denu, John M

    2015-05-19

    Acylation of lysine is an important protein modification regulating diverse biological processes. It was recently demonstrated that members of the human Sirtuin family are capable of catalyzing long chain deacylation, in addition to the well-known NAD(+)-dependent deacetylation activity [Feldman, J. L., Baeza, J., and Denu, J. M. (2013) J. Biol. Chem. 288, 31350-31356]. Here we provide a detailed kinetic and structural analysis that describes the interdependence of NAD(+)-binding and acyl-group selectivity for a diverse series of human Sirtuins, SIRT1-SIRT3 and SIRT6. Steady-state and rapid-quench kinetic analyses indicated that differences in NAD(+) saturation and susceptibility to nicotinamide inhibition reflect unique kinetic behavior displayed by each Sirtuin and depend on acyl substrate chain length. Though the rate of nucleophilic attack of the 2'-hydroxyl on the C1'-O-alkylimidate intermediate varies with acyl substrate chain length, this step remains rate-determining for SIRT2 and SIRT3; however, for SIRT6, this step is no longer rate-limiting for long chain substrates. Cocrystallization of SIRT2 with myristoylated peptide and NAD(+) yielded a co-complex structure with reaction product 2'-O-myristoyl-ADP-ribose, revealing a latent hydrophobic cavity to accommodate the long chain acyl group, and suggesting a general mechanism for long chain deacylation. Comparing two separately determined co-complex structures containing either a myristoylated peptide or 2'-O-myristoyl-ADP-ribose indicates there are conformational changes at the myristoyl-ribose linkage with minimal structural differences in the enzyme active site. During the deacylation reaction, the fatty acyl group is held in a relatively fixed position. We describe a kinetic and structural model to explain how various Sirtuins display unique acyl substrate preferences and how different reaction kinetics influence NAD(+) dependence. The biological implications are discussed.

  14. Modification of the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering.

    PubMed

    Yuan, L; Voelker, T A; Hawkins, D J

    1995-11-07

    The plant acyl-acyl carrier protein (ACP) thioesterases (TEs) are of biochemical interest because of their roles in fatty acid synthesis and their utilities in the bioengineering of plant seed oils. When the FatB1 cDNA encoding a 12:0-ACP TE (Uc FatB1) from California bay, Umbellularia californica (Uc) was expressed in Escherichia coli and in developing oilseeds of the plants Arabidopsis thaliana and Brassica napus, large amounts of laurate (12:0) and small amounts of myristate (14:0) were accumulated. We have isolated a TE cDNA from camphor (Cinnamomum camphorum) (Cc) seeds that shares 92% amino acid identity with Uc FatB1. This TE, Cc FatB1, mainly hydrolyzes 14:0-ACP as shown by E. coli expression. We have investigated the roles of the N- and C-terminal regions in determining substrate specificity by constructing two chimeric enzymes, in which the N-terminal portion of one protein is fused to the C-terminal portion of the other. Our results show that the C-terminal two-thirds of the protein is critical for the specificity. By site-directed mutagenesis, we have replaced several amino acids in Uc FatB1 by using the Cc FatB1 sequence as a guide. A double mutant, which changes Met-197 to an Arg and Arg-199 to a His (M197R/R199H), turns Uc FatB1 into a 12:0/14:0 TE with equal preference for both substrates. Another mutation, T231K, by itself does not effect the specificity. However, when it is combined with the double mutant to generate a triple mutant (M197R/R199H/T231K), Uc FatB1 is converted to a 14:0-ACP TE. Expression of the double-mutant cDNA in E. coli K27, a strain deficient in fatty acid degradation, results in accumulation of similar amounts of 12:0 and 14:0. Meanwhile the E. coli expressing the triple-mutant cDNA produces predominantly 14:0 with very small amounts of 12:0. Kinetic studies indicate that both wild-type Uc FatB1 and the triple mutant have similar values of Km,app with respect to 14:0-ACP. Inhibitory studies also show that 12:0-ACP is a good

  15. Multiple acyl-CoA dehydrogenation deficiency as decreased acyl-carnitine profile in serum.

    PubMed

    Wen, Bing; Li, Duoling; Li, Wei; Zhao, Yuying; Yan, Chuanzhu

    2015-06-01

    We report a case with late onset riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency (MADD) characterized by decreased acyl-carnitine profile in serum which is consistent with primary systemic carnitine deficiency (CDSP) while just the contrary to a typical MADD. This patient complained with muscle weakness, muscle pain and intermittent vomiting, and was diagnosed as polymyositis, received prednisone therapy before consulted with us. Muscle biopsy revealed mild lipid storage. The findings of serum acyl-carnitines were consistent with CDSP manifesting as decreased free and total carnitines in serum. But oral L-carnitine supplementation was not very effective to this patient and mutation analysis of the SLC22A5 gene for CDSP was normal. Later, another acyl-carnitine analysis revealed a typical MADD profile in serum, which was characterized by increased multiple acyl-carnitines. Compound heterozygous mutations were identified in electron transferring-flavoprotein dehydrogenase (ETFDH) gene which confirmed the diagnosis of MADD. After administration of riboflavin, he improved dramatically, both clinically and biochemically. Thus, late onset riboflavin-responsive MADD should be included in the differential diagnosis for adult carnitine deficiency.

  16. Fatty Acyl Chains of Mycobacterium marinum Lipooligosaccharides

    PubMed Central

    Rombouts, Yoann; Alibaud, Laeticia; Carrère-Kremer, Séverine; Maes, Emmanuel; Tokarski, Caroline; Elass, Elisabeth; Kremer, Laurent; Guérardel, Yann

    2011-01-01

    We have recently established the fine structure of the glycan backbone of lipooligosaccharides (LOS-I to LOS-IV) isolated from Mycobacterium marinum, a close relative of Mycobacterium tuberculosis. These studies culminated with the description of an unusual terminal N-acylated monosaccharide that confers important biological functions to LOS-IV, such as macrophage activation, that may be relevant to granuloma formation. It was, however, also suggested that the lipid moiety was required for LOSs to exert their immunomodulatory activity. Herein, using highly purified LOSs from M. marinum, we have determined through a combination of mass spectrometric and NMR techniques, the structure and localization of the fatty acids composing the lipid moiety. The occurrence of two distinct polymethyl-branched fatty acids presenting specific localizations is consistent with the presence of two highly related polyketide synthases (Pks5 and Pks5.1) in M. marinum and presumably involved in the synthesis of these fatty acyl chains. In addition, a bioinformatic search permitted us to identify a set of enzymes potentially involved in the biosynthesis or transfer of these lipids to the LOS trehalose unit. These include MMAR_2343, a member of the Pap (polyketide-associated protein) family, that acylates trehalose-based glycolipids in M. marinum. The participation of MMAR_2343 to LOS assembly was demonstrated using a M. marinum mutant carrying a transposon insertion in the MMAR_2343 gene. Disruption of MMAR_2343 resulted in a severe LOS breakdown, indicating that MMAR_2343, hereafter designated PapA4, fulfills the requirements for LOS acylation and assembly. PMID:21803773

  17. Succinyl CoA: 3-oxoacid CoA transferase (SCOT): human cDNA cloning, human chromosomal mapping to 5p13, and mutation detection in a SCOT-deficient patient.

    PubMed Central

    Kassovska-Bratinova, S.; Fukao, T.; Song, X. Q.; Duncan, A. M.; Chen, H. S.; Robert, M. F.; Pérez-Cerdá, C.; Ugarte, M.; Chartrand, C.; Vobecky, S.; Kondo, N.; Mitchell, G. A.

    1996-01-01

    Succinyl CoA: 3-oxoacid CoA transferase (SCOT; E.C.2.8.3.5) mediates the rate-determining step of ketolysis in extrahepatic tissues, the esterification of acetoacetate to CoA for use in energy production. Hereditary SCOT deficiency in humans causes episodes of severe ketoacidosis. We obtained human-heart SCOT cDNA clones spanning the entire 1,560-nt coding sequence. Sequence alignment of the human SCOT peptides with other known CoA transferases revealed several conserved regions of potential functional importance. A single approximately 3.2-kb SCOT mRNA is present in human tissues (heart > leukocytes >> fibroblasts), but no signal is detectable in the human hepatoma cell line HepG2. We mapped the human SCOT locus (OXCT) to the cytogenetic band 5p13 by in situ hybridization. From fibroblasts of a patient with hereditary SCOT deficiency, we amplified and cloned cDNA fragments containing the entire SCOT coding sequence. We found a homozygous C-to-G transversion at nt 848, which changes the Ser 283 codon to a stop codon. This mutation (S283X) is incompatible with normal enzyme function and represents the first documentation of a pathogenic mutation in SCOT deficiency. Images Figure 2 Figure 6 PMID:8751852

  18. Discovery of Tumor-Specific Irreversible Inhibitors of Stearoyl CoA Desaturase

    PubMed Central

    Theodoropoulos, Panayotis C.; Gonzales, Stephen S.; Winterton, Sarah E.; Rodriguez-Navas, Carlos; McKnight, John S.; Morlock, Lorraine K.; Hanson, Jordan M.; Cross, Bethany; Owen, Amy E.; Duan, Yingli; Moreno, Jose R.; Lemoff, Andrew; Mirzaei, Hamid; Posner, Bruce A.; Williams, Noelle S.

    2016-01-01

    A hallmark of targeted cancer therapies is selective toxicity among cancer cell lines. We evaluated results from a viability screen of over 200,000 small molecules to identify two chemical series, oxalamides and benzothiazoles, that were selectively toxic to the same four of 12 human lung cancer cell lines at low nanomolar concentrations. Sensitive cell lines expressed cytochrome P450 (CYP) 4F11, which metabolized the compounds into irreversible stearoyl CoA desaturase (SCD) inhibitors. SCD is recognized as a promising biological target in cancer and metabolic disease. However, SCD is essential to sebocytes, and accordingly SCD inhibitors cause skin toxicity. Mouse sebocytes were unable to activate the benzothiazoles or oxalamides into SCD inhibitors, providing a therapeutic window for inhibiting SCD in vivo. We thus offer a strategy to target SCD in cancer by taking advantage of high CYP expression in a subset of tumors. PMID:26829472

  19. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans.

    PubMed

    Zhang, Xinxing; Li, Kunhua; Jones, Rachel A; Bruner, Steven D; Butcher, Rebecca A

    2016-09-06

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state.

  20. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans

    PubMed Central

    Zhang, Xinxing; Jones, Rachel A.; Bruner, Steven D.; Butcher, Rebecca A.

    2016-01-01

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state. PMID:27551084

  1. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    SciTech Connect

    Wubben, T.; Mesecar, A.D.

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  2. Metabolism of ricinoleic acid into gamma-decalactone: beta-oxidation and long chain acyl intermediates of ricinoleic acid in the genus Sporidiobolus sp.

    PubMed

    Blin-Perrin, C; Molle, D; Dufosse, L; Le-Quere, J L; Viel, C; Mauvais, G; Feron, G

    2000-07-01

    In order to study differences in gamma-decalactone production in yeast, four species of Sporidiobolus were cultivated with 5% of methyl ricinoleate as the lactone substrate. In vivo studies showed different time courses of intermediates of ricinoleic acid breakdown between the four species. In vitro studies of the beta-oxidation system were conducted with crude cell extracts of Sporidiobolus spp. and with ricinoleyl-CoA (RCoA) as substrate. The beta-oxidation was detected by measuring acyl-CoA oxidase, 3-hydroxyacyl-CoA dehydrogenase activities, and acetyl-CoA production. The time courses of the CoA esters resulting from RCoA breakdown by crude extract of Sporidiobolus spp. permit the proposal of different metabolic models in the yeast. These models explained the differences observed during in vivo studies.

  3. Spectroscopic Classification of ASASSN-16fn/AT2016coa and MASTER J202606.27-200732.6

    NASA Astrophysics Data System (ADS)

    Falco, E.; Calkins, M.; Challis, P.; Kirshner, R.; Prieto, J. L.; Stanek, K. Z.

    2016-06-01

    Optical spectra (range 350-760nm) of the supernova candidates ASASSN-16fn/AT2016coa (ATel #9081) and MASTER J202606.27-200732.6 (ATel #9056) were obtained on UT 2016 June 3 with the F. L. Whipple Observatory 1.5-m telescope (+ FAST).

  4. Geranylgeraniol suppresses the viability of human DU145 prostate carcinoma cells and the level of HMG CoA reductase

    PubMed Central

    Fernandes, Nicolle V.; Yeganehjoo, Hoda; Katuru, Rajasekhar; DeBose-Boyd, Russell A.; Morris, Lindsey L.; Michon, Renee; Yu, Zhi-Ling; Mo, Huanbiao

    2014-01-01

    The rate-limiting enzyme of the mevalonate pathway, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, provides essential intermediates for the prenylation of nuclear lamins and Ras and dolichol-mediated glycosylation of growth factor receptors. The diterpene geranylgeraniol downregulates the level of HMG CoA reductase and suppresses the growth of human liver, lung, ovary, pancreas, colon, stomach, and blood tumors. We evaluated the growth-suppressive activity of geranylgeraniol in human prostate carcinoma cells. Geranylgeraniol induced dose-dependent suppression of the viability of human DU145 prostate carcinoma cells (IC50 = 80 ±18 μmol/L, n =5) following 72-h incubations in 96-well plates. Cell cycle was arrested at the G1 phase with a concomitant decrease in cyclin D1 protein. Geranylgeraniol-induced apoptosis was detected by flow cytometric analysis, fluorescence microscopy following acridine orange and ethidium bromide dual staining, and caspase-3 activation. Geranylgeraniol-induced viability suppression was accompanied by concentration-dependent decrease in the level of HMG CoA reductase protein. As a nonsterol molecule that downregulates HMG CoA reductase in the presence of sterols, geranylgeraniol may have potential in the chemoprevention and/or therapy of human prostate cancer. PMID:24006306

  5. Carnitine palmitoyl transferase activity in Morris Hepatoma 7777 mitochondria and its sensitivity to malonyl CoA inhibition

    SciTech Connect

    Woldegiorgis, G.; Shrago, E.

    1986-05-01

    Earlier reports in the literature have indicated no detectable Carnitine Palymitoyl Transferase (CPT) activity in homogenates prepared from Morris Hepatoma 7777. In its study CPT activity in isolated mitochondria (mito) was measured by butanol extraction of the (/sup 3/H)palmitoyl carnitine formed as outlined by Bremer et al. Contrary to the earlier work where no appreciable activity of CPT was observed the authors find significant levels of CPT (2.6 nMol/min/mg protein) in isolated mito from Morris Hepatoma 7777 (MH 7777). The level of CPT activity observed in MH 7777 mito was, however, 36% lower compared to the host liver CPT activity (4.1 nMol/min/mg protein). The enzyme in MH 7777 mito showed 83% inhibition in the presence of 10 ..mu..M malonyl CoA, in agreement with the degree of sensitivity observed with the host liver isolated mito. On freeze thawing host mito, total CPT activity increased and the sensitivity of the enzyme to malonyl CoA decreased. Frozen thawed MH 7777 mito showed a similar response to malonyl CoA but no change in the total CPT level was observed. The authors results establish for the first time the presence of a malonyl CoA sensitive CPT in MH 7777 mito, which may have slightly different properties from normal due to the membrane environment of the enzyme.

  6. Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids.

    PubMed

    Ensenauer, Regina; He, Miao; Willard, Jan-Marie; Goetzman, Eric S; Corydon, Thomas J; Vandahl, Brian B; Mohsen, Al-Walid; Isaya, Grazia; Vockley, Jerry

    2005-09-16

    Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. However, their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) that catalyze the first step of each cycle of mitochondrial fatty acid beta-oxidation is not entirely understood. Recently, a novel ACAD (ACAD-9) of unknown function that is highly homologous to human very-long-chain acyl-CoA dehydrogenase was identified by large-scale random sequencing. To characterize its enzymatic role, we have expressed ACAD-9 in Escherichia coli, purified it, and determined its pattern of substrate utilization. The N terminus of the mature form of the enzyme was identified by in vitro mitochondrial import studies of precursor protein. A 37-amino acid leader peptide was cleaved sequentially by two mitochondrial peptidases to yield a predicted molecular mass of 65 kDa for the mature subunit. Submitochondrial fractionation studies found native ACAD-9 to be associated with the mitochondrial membrane. Gel filtration analysis indicated that, like very-long-chain acyl-CoA dehydrogenase, ACAD-9 is a dimer, in contrast to the other known ACADs, which are tetramers. Purified mature ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates (C16:1-, C18:1-, C18:2-, C22:6-CoA). These results suggest a previously unrecognized role for ACAD-9 in the mitochondrial beta-oxidation of long-chain unsaturated fatty acids. Because of the substrate specificity and abundance of ACAD-9 in brain, we speculate that it may play a role in the turnover of lipid membrane unsaturated fatty acids that are essential for membrane integrity and structure.

  7. Physiological Consequences of Compartmentalized Acyl-CoA Metabolism*

    PubMed Central

    Cooper, Daniel E.; Young, Pamela A.; Klett, Eric L.; Coleman, Rosalind A.

    2015-01-01

    Meeting the complex physiological demands of mammalian life requires strict control of the metabolism of long-chain fatty acyl-CoAs because of the multiplicity of their cellular functions. Acyl-CoAs are substrates for energy production; stored within lipid droplets as triacylglycerol, cholesterol esters, and retinol esters; esterified to form membrane phospholipids; or used to activate transcriptional and signaling pathways. Indirect evidence suggests that acyl-CoAs do not wander freely within cells, but instead, are channeled into specific pathways. In this review, we will discuss the evidence for acyl-CoA compartmentalization, highlight the key modes of acyl-CoA regulation, and diagram potential mechanisms for controlling acyl-CoA partitioning. PMID:26124277

  8. OUTCROP-BASED HIGH RESOLUTION GAMMA-RAY CHARACTERIZATION OF ARSENIC-BEARING LITHOFACIES IN THE PERMIAN GARBER SANDSTONE AND WELLINGTON FORMATION, CENTRAL OKLAHOMA AQUIFER (COA). CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    The COA supplies drinking water to a number of municipalities in central Oklahoma. Two major stratigraphic units in the COA, the Garber Sandstone and Wellington Formation, contain naturally occurring arsenic that exceeds government mandated drinking-water standards (EPA, 2001). ...

  9. Effects of hypo- and hyperthyroidism on rat liver microsomal long-chain fatty acyl-CoA synthetase and hydrolase

    SciTech Connect

    Dang, A.Q.; Faas, F.H.; Carter, W.J.

    1986-05-01

    The effects of hyperthyroidism (hyperT/sub 3/), (tri-iodothryonine (T/sub 3/) injected rats), and hypothyroidism (hypoT/sub 3/) (thyroidectomized rats) on the activation of fatty acids by a microsomal long-chain fatty acyl-CoA (LCA-CoA) synthetase and the degradation of LCA-CoA by a microsomal LCA-CoA hydrolase was determined. MAS was assayed by measuring the (1-/sup 14/C)-palmitate or -1-/sup 14/C) oleate incorporated into its water soluble CoA ester. MAH was assayed spectrophotomerically by following the reduction of 5',5'-dithiobis-(2-nitrobenzoic acid) by the CoA released from palmitoyl-CoA or oleoyl-CoA. Enzyme activities are given as mean (nmoles/mg/min) +/- SEM. MAS activities were decreased 36-44% (p < 0.01) in both hypoT/sub 3/ and hyperT/sub 3/ (controls = 101 +/- 4 (n = 11, (1-/sup 14/C)-palmitate) of 72 +/- 2 (n = 5,(1-/sup 14/C)oleate)). These decreases may contribute to the decreased triacelyglycerol (TG) and phospholipid contents in the hyperT/sub 3/ liver and the decreased clearance rate of plasma TG in the hypoT/sub 3/. MAH was decreased 27-42% (p<0.01) only in hypoT/sub 3/ (controls = 77 +/- 3 (n = 11, palmitoyl-CoA) or 45 +/- 1 (n = 5, oleoyl-CoA)). This decrease was corrected by T/sub 3/ treatment. Since the decreased MAH would increase the availability of LCA-CoA, it may contribute to the increased TG synthesis in hypoT/sub 3/.

  10. Probing the Mechanism of the Mycobacterium tuberculosis [beta]-Ketoacyl-Acyl Carrier Protein Synthase III mtFabH: Factors Influencing Catalysis and Substrate Specificity

    SciTech Connect

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent; Lindenberg, Sandra; Dover, Lynn G.; Sacchettini, James C.; Besra, Gurdyal S.

    2010-11-30

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH was assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.

  11. Acyl Coenzyme A Synthetase from Pseudomonas fragi Catalyzes the Synthesis of Adenosine 5′-Polyphosphates and Dinucleoside Polyphosphates†

    PubMed Central

    Fontes, Rui; Günther Sillero, Maria A.; Sillero, Antonio

    1998-01-01

    Acyl coenzyme A (CoA) synthetase (EC 6.2.1.8) from Pseudomonas fragi catalyzes the synthesis of adenosine 5′-tetraphosphate (p4A) and adenosine 5′-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate, respectively. dATP, adenosine-5′-O-[γ-thiotriphosphate] (ATPγS), adenosine(5′)tetraphospho(5′)adenosine (Ap4A), and adenosine(5′)pentaphospho(5′)adenosine (Ap5A) are also substrates of the reaction yielding p4(d)A in the presence of tripolyphosphate (P3). UTP, CTP, and AMP are not substrates of the reaction. The Km values for ATP and P3 are 0.015 and 1.3 mM, respectively. Maximum velocity was obtained in the presence of MgCl2 or CoCl2 equimolecular with the sum of ATP and P3. The relative rates of synthesis of p4A with divalent cations were Mg = Co > Mn = Zn >> Ca. In the pH range used, maximum and minimum activities were measured at pH values of 5.5 and 8.2, respectively; the opposite was observed for the synthesis of palmitoyl-CoA, with maximum activity in the alkaline range. The relative rates of synthesis of palmitoyl-CoA and p4A are around 10 (at pH 5.5) and around 200 (at pH 8.2). The synthesis of p4A is inhibited by CoA, and the inhibitory effect of CoA can be counteracted by fatty acids. To a lesser extent, the enzyme catalyzes the synthesis also of Ap4A (from ATP), Ap5A (from p4A), and adenosine(5′)tetraphospho(5′)nucleoside (Ap4N) from adequate adenylyl donors (ATP, ATPγS, or octanoyl-AMP) and adequate adenylyl acceptors (nucleoside triphosphates). PMID:9620965

  12. Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed.

    PubMed

    Cahoon, E B; Coughlan, S J; Shanklin, J

    1997-04-01

    A cDNA for a structurally variant acyl-acyl carrier protein (ACP) desaturase was isolated from milkweed (Asclepias syriaca) seed, a tissue enriched in palmitoleic (16:1delta9)* and cis-vaccenic (18:1delta11) acids. Extracts of Escherichia coli that express the milkweed cDNA catalyzed delta9 desaturation of acyl-ACP substrates, and the recombinant enzyme exhibited seven- to ten-fold greater specificity for palmitoyl (16:0)-ACP and 30-fold greater specificity for myristoyl (14:0)-ACP than did known delta9-stearoyl (18:0)-ACP desaturases. Like other variant acyl-ACP desaturases reported to date, the milkweed enzyme contains fewer amino acids near its N-terminus compared to previously characterized delta9-18:0-ACP desaturases. Based on the activity of an N-terminal deletion mutant of a delta9-18:0-ACP desaturase, this structural feature likely does not account for differences in substrate specificities.

  13. Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence

    SciTech Connect

    Byers, D.M.; Meighen, E.A.

    1985-09-01

    Pulse-chase experiments with (/sup 3/H)tetradecanoic acid and ATP showed that the bioluminescence-related 32-kDa acyltransferase from Vibrio harveyi can specifically catalyze the deacylation of a /sup 3/H-labeled 18-kDa protein observed in extracts of this bacterium. The 18-kDa protein has been partially purified and its physical and chemical properties strongly indicate that it is fatty acyl-acyl carrier protein (acyl-ACP). Both this V. harveyi (/sup 3/H)acylprotein and (/sup 3/H)palmitoyl-ACP from Escherichia coli were substrates in vitro for either the V. harveyi 32-kDa acyltransferase or the analogous enzyme (34K) from Photobacterium phosphoreum. TLC analysis indicated that the hexane-soluble product of the reaction is fatty acid. No significant cleavage of either E. coli or V. harveyi tetradecanoyl-ACP was observed in extracts of these bacteria unless the 32-kDa or 34K acyltransferase was present. Since these enzymes are believed to be responsible for the supply of fatty acids for reduction to form the aldehyde substrate of luciferase, the above results suggest that long-chain acyl-ACP is the source of fatty acids for bioluminescence.

  14. Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London

    NASA Astrophysics Data System (ADS)

    Ots, Riinu; Vieno, Massimo; Allan, James D.; Reis, Stefan; Nemitz, Eiko; Young, Dominique E.; Coe, Hugh; Di Marco, Chiara; Detournay, Anais; Mackenzie, Ian A.; Green, David C.; Heal, Mathew R.

    2016-11-01

    Cooking organic aerosol (COA) is currently not included in European emission inventories. However, recent positive matrix factorization (PMF) analyses of aerosol mass spectrometer (AMS) measurements have suggested important contributions of COA in several European cities. In this study, emissions of COA were estimated for the UK, based on hourly AMS measurements of COA made at two sites in London (a kerbside site in central London and an urban background site in a residential area close to central London) for the full calendar year of 2012 during the Clean Air for London (ClearfLo) campaign. Iteration of COA emissions estimates and subsequent evaluation and sensitivity experiments were conducted with the EMEP4UK atmospheric chemistry transport modelling system with a horizontal resolution of 5 km × 5 km. The spatial distribution of these emissions was based on workday population density derived from the 2011 census data. The estimated UK annual COA emission was 7.4 Gg per year, which is an almost 10 % addition to the officially reported UK national total anthropogenic emissions of PM2.5 (82 Gg in 2012), corresponding to 320 mg person-1 day-1 on average. Weekday and weekend diurnal variation in COA emissions were also based on the AMS measurements. Modelled concentrations of COA were then independently evaluated against AMS-derived COA measurements from another city and time period (Manchester, January-February 2007), as well as with COA estimated by a chemical mass balance model of measurements for a 2-week period at the Harwell rural site (˜ 80 km west of central London). The modelled annual average contribution of COA to ambient particulate matter (PM) in central London was between 1 and 2 µg m-3 (˜ 20 % of total measured OA1) and between 0.5 and 0.7 µg m-3 in other major cities in England (Manchester, Birmingham, Leeds). It was also shown that cities smaller than London can have a central hotspot of population density of smaller

  15. Acylated flavonol glycoside from Platanus orientalis.

    PubMed

    Tantry, Mudasir A; Akbar, Seema; Dar, Javid A; Irtiza, Syed; Galal, Ahmed; Khuroo, Mohammad A; Ghazanfar, Khalid

    2012-03-01

    The ethylacetate and n-butanol fractions of ethanolic extract of Platanus orientalis leaves led to the isolation of new acylated flavonol glycoside as 3',5,7-trihydroxy-4'-methoxyflavonol 3-[O-2-O-(2,4-Dihydroxy)-E-cinnamoyl-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl (1→2)]-β-D-glucopyranoside, along with seven known compounds. All the compounds were characterized by NMR including 2D NMR techniques. The isolates were evaluated for NF-κB, nitric oxide (NO), aromatase and QR2 chemoprevention activities and some of them appeared to be modestly active.

  16. Progress toward Understanding Protein S-acylation: Prospective in Plants.

    PubMed

    Li, Yaxiao; Qi, Baoxiu

    2017-01-01

    S-acylation, also known as S-palmitoylation or palmitoylation, is a reversible post-translational lipid modification in which long chain fatty acid, usually the 16-carbon palmitate, covalently attaches to a cysteine residue(s) throughout the protein via a thioester bond. It is involved in an array of important biological processes during growth and development, reproduction and stress responses in plant. S-acylation is a ubiquitous mechanism in eukaryotes catalyzed by a family of enzymes called Protein S-Acyl Transferases (PATs). Since the discovery of the first PAT in yeast in 2002 research in S-acylation has accelerated in the mammalian system and followed by in plant. However, it is still a difficult field to study due to the large number of PATs and even larger number of putative S-acylated substrate proteins they modify in each genome. This is coupled with drawbacks in the techniques used to study S-acylation, leading to the slower progress in this field compared to protein phosphorylation, for example. In this review we will summarize the discoveries made so far based on knowledge learnt from the characterization of protein S-acyltransferases and the S-acylated proteins, the interaction mechanisms between PAT and its specific substrate protein(s) in yeast and mammals. Research in protein S-acylation and PATs in plants will also be covered although this area is currently less well studied in yeast and mammalian systems.

  17. Progress toward Understanding Protein S-acylation: Prospective in Plants

    PubMed Central

    Li, Yaxiao; Qi, Baoxiu

    2017-01-01

    S-acylation, also known as S-palmitoylation or palmitoylation, is a reversible post-translational lipid modification in which long chain fatty acid, usually the 16-carbon palmitate, covalently attaches to a cysteine residue(s) throughout the protein via a thioester bond. It is involved in an array of important biological processes during growth and development, reproduction and stress responses in plant. S-acylation is a ubiquitous mechanism in eukaryotes catalyzed by a family of enzymes called Protein S-Acyl Transferases (PATs). Since the discovery of the first PAT in yeast in 2002 research in S-acylation has accelerated in the mammalian system and followed by in plant. However, it is still a difficult field to study due to the large number of PATs and even larger number of putative S-acylated substrate proteins they modify in each genome. This is coupled with drawbacks in the techniques used to study S-acylation, leading to the slower progress in this field compared to protein phosphorylation, for example. In this review we will summarize the discoveries made so far based on knowledge learnt from the characterization of protein S-acyltransferases and the S-acylated proteins, the interaction mechanisms between PAT and its specific substrate protein(s) in yeast and mammals. Research in protein S-acylation and PATs in plants will also be covered although this area is currently less well studied in yeast and mammalian systems. PMID:28392791

  18. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    SciTech Connect

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  19. Xanthomonas campestris RpfB is a fatty Acyl-CoA ligase required to counteract the thioesterase activity of the RpfF diffusible signal factor (DSF) synthase.

    PubMed

    Bi, Hongkai; Yu, Yonghong; Dong, Huijuan; Wang, Haihong; Cronan, John E

    2014-07-01

    In Xanthomonas campestris pv. campestris (Xcc), the proteins encoded by the rpf (regulator of pathogenicity factor) gene cluster produce and sense a fatty acid signal molecule called diffusible signalling factor (DSF, 2(Z)-11-methyldodecenoic acid). RpfB was reported to be involved in DSF processing and was predicted to encode an acyl-CoA ligase. We report that RpfB activates a wide range of fatty acids to their CoA esters in vitro. Moreover, RpfB can functionally replace the paradigm bacterial acyl-CoA ligase, Escherichia coli FadD, in the E. coli ß-oxidation pathway and deletion of RpfB from the Xcc genome results in a strain unable to utilize fatty acids as carbon sources. An essential RpfB function in the pathogenicity factor pathway was demonstrated by the properties of a strain deleted for both the rpfB and rpfC genes. The ΔrpfB ΔrpfC strain grew poorly and lysed upon entering stationary phase. Deletion of rpfF, the gene encoding the DSF synthetic enzyme, restored normal growth to this strain. RpfF is a dual function enzyme that synthesizes DSF by dehydration of a 3-hydroxyacyl-acyl carrier protein (ACP) fatty acid synthetic intermediate and also cleaves the thioester bond linking DSF to ACP. However, the RpfF thioesterase activity is of broad specificity and upon elimination of its RpfC inhibitor RpfF attains maximal activity and its thioesterase activity proceeds to block membrane lipid synthesis by cleavage of acyl-ACP intermediates. This resulted in release of the nascent acyl chains to the medium as free fatty acids. This lack of acyl chains for phospholipid synthesis results in cell lysis unless RpfB is present to counteract the RpfF thioesterase activity by catalysing uptake and activation of the free fatty acids to give acyl-CoAs that can be utilized to restore membrane lipid synthesis. Heterologous expression of a different fatty acid activating enzyme, the Vibrio harveyi acyl-ACP synthetase, replaced RpfB in counteracting the effects of high

  20. Conformational transitions of cinnamoyl CoA reductase 1 from Leucaena leucocephala.

    PubMed

    Sonawane, Prashant D; Khan, Bashir M; Gaikwad, Sushama M

    2014-03-01

    Conformational transitions of cinnamoyl CoA reductase, a key regulatory enzyme in lignin biosynthesis, from Leucaena leucocephala (Ll-CCRH1) were studied using fluorescence and circular dichroism spectroscopy. The native protein possesses four trp residues exposed on the surface and 66% of helical structure, undergoes rapid structural transitions at and above 45 °C and starts forming aggregates at 55 °C. Ll-CCRH1 was transformed into acid induced (pH 2.0) molten globule like structure, exhibiting altered secondary structure, diminished tertiary structure and exposed hydrophobic residues. The molten globule like structure was examined for the thermal and chemical stability. The altered secondary structure of L1-CCRH1 at pH 2.0 was stable up to 90 °C. Also, in presence of 0.25 M guanidine hydrochloride (GdnHCl), it got transformed into different structure which was stable in the vicinity of 2M GdnHCl (as compared to drastic loss of native structure in 2M GdnHCl) as seen in far UV-CD spectra. The structural transition of Ll-CCRH1 at pH 2.0 followed another transition after readjusting the pH to 8.0, forming a structure with hardly any similarity to that of native protein.

  1. Cysteine-286 as the site of acylation of the Lux-specific fatty acyl-CoA reductase.

    PubMed

    Lee, C Y; Meighen, E A

    1997-04-04

    The channelling of fatty acids into the fatty aldehyde substrate for the bacterial bioluminescence reaction is catalyzed by a fatty acid reductase multienzyme complex, which channels fatty acids through the thioesterase (LuxD), synthetase (LuxE) and reductase (LuxC) components. Although all three components can be readily acylated in extracts of different luminescent bacteria, this complex has been successfully purified only from Photobacterium phosphoreum and the sites of acylation identified on LuxD and LuxE. To identify the acylation site on LuxC, the nucleotide sequence of P. phosphoreum luxC has been determined and the gene expressed in a mutant Escherichia coli strain. Even in crude extracts, the acylated reductase intermediate as well as acyl-CoA reductase activity could be readily detected, providing the basis for analysis of mutant reductases. Comparison of the amino-acid sequences of LuxC from P. phosphoreum, P. leiognathi and other luminescent bacteria, showed that only three cysteine residues (C171, C279, and C286) were conserved. As a cysteine residue on LuxC has been implicated in fatty acyl transfer, each of the conserved cysteine residues of the P. phosphoreum and P. leiognathi reductases was converted to a serine residue, and the properties of the mutant proteins examined. Only mutation of C286-blocked reductase activity and prevented formation of the acylated reductase intermediate, showing that C286 is the site of acylation on LuxC.

  2. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake.

    PubMed

    Poppelreuther, Margarete; Rudolph, Berenice; Du, Chen; Großmann, Regina; Becker, Melanie; Thiele, Christoph; Ehehalt, Robert; Füllekrug, Joachim

    2012-05-01

    Cytosolic lipid droplets (LDs) are storage organelles for neutral lipids derived from endogenous metabolism. Acyl-CoA synthetase family proteins are essential enzymes in this biosynthetic pathway, contributing activated fatty acids. Fluorescence microscopy showed that ACSL3 is localized to the endoplasmic reticulum (ER) and LDs, with the distribution dependent on the cell type and the supply of fatty acids. The N-terminus of ACSL3 was necessary and sufficient for targeting reporter proteins correctly, as demonstrated by subcellular fractionation and confocal microscopy. The N-terminal region of ACSL3 was also found to be functionally required for the enzyme activity. Selective permeabilization and in silico analysis suggest that ACSL3 assumes a hairpin membrane topology, with the N-terminal hydrophobic amino acids forming an amphipathic helix restricted to the cytosolic leaflet of the ER membrane. ACSL3 was effectively translocated from the ER to nascent LDs when neutral lipid synthesis was stimulated by the external addition of fatty acids. Cellular fatty acid uptake was increased by overexpression and reduced by RNA interference of ACSL3. In conclusion, the structural organization of ACSL3 allows the fast and efficient movement from the ER to emerging LDs. ACSL3 not only esterifies fatty acids with CoA but is also involved in the cellular uptake of fatty acids, presumably indirectly by metabolic trapping. The unique localization of the acyl-CoA synthetase ACSL3 on LDs suggests a function in the local synthesis of lipids.

  3. Real-Time Decision Support for Course of Action/Enemy Course of Action (COA/ECOA) Analysis

    DTIC Science & Technology

    2005-10-01

    used. 3. A domain ontology must be given. Based on these assumptions, we propose the CAFSIN solution, standing for COA Analysis based on Fuzzified...the Pentagon” and “DoD” are wired together as the same word and are represented as a single node). 2. Polysemy : words with different meanings in the...Given an ontology with these requirements satisfied, a standard hashing function may be used to directly identify a specific node in the ontology

  4. First identification of xanthone sulfonamides as potent acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors.

    PubMed

    Hu, Honggang; Liao, Hongli; Zhang, Jun; Wu, Weifeng; Yan, Jufang; Yan, Yonghong; Zhao, Qingjie; Zou, Yan; Chai, Xiaoyun; Yu, Shichong; Wu, Qiuye

    2010-05-15

    Inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT) would be useful anti-atherogenic agents, since an absence of ACAT affects the absorption and transformation of cholesterol, indirectly resulting in the reduction of cholesteryl ester accumulation in blood vessels. This report discloses xanthone sulfonamides as novel class small molecule inhibitors of ACAT. A series of xanthone sulfonamides were synthesized and evaluated to result in the identification of several potent ACAT inhibitors, among which 2n proved to be more potent than the positive control Sandoz58-35. Moreover, a molecular model for the binding between 2n and the active site of ACAT-2 was provided based computational docking results.

  5. Accumulation of acyl-enzyme in DD-peptidase-catalysed reactions with analogues of peptide substrates.

    PubMed Central

    Jamin, M; Adam, M; Damblon, C; Christiaens, L; Frère, J M

    1991-01-01

    Thioester substrates can be used to study the hydrolysis and transfer reactions catalysed by beta-lactamases and DD-peptidases. With the latter enzymes, accumulation of the acyl-enzyme can be detected directly. The efficiency of various amines as acceptor substrates was in excellent agreement with previous results obtained with peptide substrates of the DD-peptidases. The results indicated the presence of a specific binding site for the acceptor substrates. Although most of the results agreed well with a simple partition model, more elaborate hypotheses will be needed to account for all the data presented. PMID:1747125

  6. Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    PubMed

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Khan, Bashir M

    2013-07-01

    Recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) protein from Leucaena leucocephala was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Optimum pH for forward and reverse reaction was found to be 6.5 and 7.8 respectively. The enzyme was most stable around pH 6.5 at 25°C for 90 min. The enzyme showed Kcat/Km for feruloyl, caffeoyl, sinapoyl, coumaroyl CoA, coniferaldehyde and sinapaldehyde as 4.6, 2.4, 2.3, 1.7, 1.9 and 1.2 (×10(6) M(-1) s(-1)), respectively, indicating affinity of enzyme for feruloyl CoA over other substrates and preference of reduction reaction over oxidation. Activation energy, Ea for various substrates was found to be in the range of 20-50 kJ/mol. Involvement of probable carboxylate ion, histidine, lysine or tyrosine at the active site of enzyme was predicted by pH activity profile. SAXS studies of protein showed radius 3.04 nm and volume 49.25 nm(3) with oblate ellipsoid shape. Finally, metal ion inhibition studies revealed that Ll-CCRH1 is a metal independent enzyme.

  7. Correlation of ATP citrate lyase and acetyl CoA levels with trichothecene production in Fusarium graminearum.

    PubMed

    Sakamoto, Naoko; Tsuyuki, Rie; Yoshinari, Tomoya; Usuma, Jermnak; Furukawa, Tomohiro; Nagasawa, Hiromichi; Sakuda, Shohei

    2013-11-21

    The correlation of ATP citrate lyase (ACL) and acetyl CoA levels with trichothecene production in Fusarium graminearum was investigated using an inhibitor (precocene II) and an enhancer (cobalt chloride) of trichothecene production by changing carbon sources in liquid medium. When precocene II (30 µM) was added to inhibit trichothecene production in a trichothecene high-production medium containing sucrose, ACL expression was reduced and ACL mRNA level as well as acetyl CoA amount in the fungal cells were reduced to the levels observed in a trichothecene trace-production medium containing glucose or fructose. The ACL mRNA level was greatly increased by addition of cobalt chloride in the trichothecene high-production medium, but not in the trichothecene trace-production medium. Levels were reduced to those level in the trichothecene trace-production medium by addition of precocene II (300 µM) together with cobalt chloride. These results suggest that ACL expression is activated in the presence of sucrose and that acetyl CoA produced by the increased ALC level may be used for trichothecene production in the fungus. These findings also suggest that sucrose is important for the action of cobalt chloride in activating trichothecene production and that precocene II may affect a step down-stream of the target of cobalt chloride.

  8. SUBSURFACE WELL-LOG CORRELATION OF ARSENIC-BEARING LITHOFACIES IN THE PERMIAN GARBER SANDSTONE AND WELLINGTON FORMATION, CENTRAL OKLAHOMA AQUIFER (COA), CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    The fluvial Garber Sandstone and the underlying Wellington Formation are important sources of drinking water in central Oklahoma. These formations, which make up much of the COA, consist of amalgamated sandstones with some interbedded mudstones, siltstones, and local mudstone- a...

  9. The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis.

    PubMed

    Ho, Ngoc Anh Thu; Dawes, Stephanie S; Crowe, Adam M; Casabon, Israël; Gao, Chen; Kendall, Sharon L; Baker, Edward N; Eltis, Lindsay D; Lott, J Shaun

    2016-04-01

    Cholesterol can be a major carbon source forMycobacterium tuberculosisduring infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, includingkstR, are either induced during infection or are essential for survival ofM. tuberculosis in vivo In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release.

  10. Peroxisomal Delta(3),Delta(2)-enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes.

    PubMed

    Goepfert, Simon; Vidoudez, Charles; Tellgren-Roth, Christian; Delessert, Syndie; Hiltunen, J Kalervo; Poirier, Yves

    2008-12-01

    Delta(3),Delta(2)-enoyl CoA isomerase (ECI) is an enzyme that participates in the degradation of unsaturated fatty acids through the beta-oxidation cycle. Three genes encoding Delta(3),Delta(2)-enoyl CoA isomerases and named AtECI1, AtECI2 and AtECI3 have been identified in Arabidopsis thaliana. When expressed heterologously in Saccharomyces cerevisiae, all three ECI proteins were targeted to the peroxisomes and enabled the yeast Deltaeci1 mutant to degrade 10Z-heptadecenoic acid, demonstrating Delta(3),Delta(2)-enoyl CoA isomerase activity in vivo. Fusion proteins between yellow fluorescent protein and AtECI1 or AtECI2 were targeted to the peroxisomes in onion epidermal cells and Arabidopsis root cells, but a similar fusion protein with AtECI3 remained in the cytosol for both tissues. AtECI3 targeting to peroxisomes in S. cerevisiae was dependent on yeast PEX5, while expression of Arabidopsis PEX5 in yeast failed to target AtECI3 to peroxisomes. AtECI2 and AtECI3 are tandem duplicated genes and show a high level of amino acid conservation, except at the C-terminus; AtECI2 ends with the well conserved peroxisome targeting signal 1 (PTS1) terminal tripeptide PKL, while AtECI3 possesses a divergent HNL terminal tripeptide. Evolutionary analysis of ECI genes in plants revealed several independent duplication events, with duplications occurring in rice and Medicago truncatula, generating homologues with divergent C-termini and no recognizable PTS1. All plant ECI genes analyzed, including AtECI3, are under negative purifying selection, implying functionality of the cytosolic AtECI3. Analysis of the mammalian and fungal genomes failed to identify cytosolic variants of the Delta(3),Delta(2)-enoyl CoA isomerase, indicating that evolution of cytosolic Delta(3),Delta(2)-enoyl CoA isomerases is restricted to the plant kingdom.

  11. Antitumor/Antifungal Celecoxib Derivative AR-12 is a Non-Nucleoside Inhibitor of the ANL-Family Adenylating Enzyme Acetyl CoA Synthetase

    PubMed Central

    2016-01-01

    AR-12/OSU-03012 is an antitumor celecoxib-derivative that has progressed to Phase I clinical trial as an anticancer agent and has activity against a number of infectious agents including fungi, bacteria and viruses. However, the mechanism of these activities has remained unclear. Based on a chemical-genetic profiling approach in yeast, we have found that AR-12 is an ATP-competitive, time-dependent inhibitor of yeast acetyl coenzyme A synthetase. AR-12-treated fungal cells show phenotypes consistent with the genetic reduction of acetyl CoA synthetase activity, including induction of autophagy, decreased histone acetylation, and loss of cellular integrity. In addition, AR-12 is a weak inhibitor of human acetyl CoA synthetase ACCS2. Acetyl CoA synthetase activity is essential in many fungi and parasites. In contrast, acetyl CoA is primarily synthesized by an alternate enzyme, ATP-citrate lyase, in mammalian cells. Taken together, our results indicate that AR-12 is a non-nucleoside acetyl CoA synthetase inhibitor and that acetyl CoA synthetase may be a feasible antifungal drug target. PMID:27088128

  12. Liver fatty acid binding protein gene-ablation exacerbates weight gain in high-fat fed female mice.

    PubMed

    McIntosh, Avery L; Atshaves, Barbara P; Landrock, Danilo; Landrock, Kerstin K; Martin, Gregory G; Storey, Stephen M; Kier, Ann B; Schroeder, Friedhelm

    2013-05-01

    Loss of liver fatty acid binding protein (L-FABP) decreases long chain fatty acid uptake and oxidation in primary hepatocytes and in vivo. On this basis, L-FABP gene ablation would potentiate high-fat diet-induced weight gain and weight gain/energy intake. While this was indeed the case when L-FABP null (-/-) mice on the C57BL/6NCr background were pair-fed a high-fat diet, whether this would also be observed under high-fat diet fed ad libitum was not known. Therefore, this possibility was examined in female L-FABP (-/-) mice on the same background. L-FABP (-/-) mice consumed equal amounts of defined high-fat or isocaloric control diets fed ad libitum. However, on the ad libitum-fed high-fat diet the L-FABP (-/-) mice exhibited: (1) decreased hepatic long chain fatty acid (LCFA) β-oxidation as indicated by lower serum β-hydroxybutyrate level; (2) decreased hepatic protein levels of key enzymes mitochondrial (rate limiting carnitine palmitoyl acyltransferase A1, CPT1A; HMG-CoA synthase) and peroxisomal (acyl CoA oxidase 1, ACOX1) LCFA β-oxidation; (3) increased fat tissue mass (FTM) and FTM/energy intake to the greatest extent; and (4) exacerbated body weight gain, weight gain/energy intake, liver weight, and liver weight/body weight to the greatest extent. Taken together, these findings showed that L-FABP gene-ablation exacerbated diet-induced weight gain and fat tissue mass gain in mice fed high-fat diet ad libitum--consistent with the known biochemistry and cell biology of L-FABP.

  13. Differential turnover of phospholipid acyl groups in mouse peritoneal macrophages

    SciTech Connect

    Kuwae, T.; Schmid, P.C.; Johnson, S.B.; Schmid, H.H. )

    1990-03-25

    Phospholipid acyl turnover was assessed in mouse peritoneal exudate cells which consisted primarily of macrophages. The cells were incubated for up to 5 h in media containing 40% H218O, and uptake of 18O into ester carbonyls of phospholipids was determined by gas chromatography-mass spectrometry of hydrogenated methyl esters. The uptake was highest in choline phospholipids and phosphatidylinositol, less in ethanolamine phospholipids, and much less in phosphatidylserine. Acyl groups at the sn-1 and sn-2 positions of diacyl glycerophospholipids, including arachidonic and other long-chain polyunsaturated fatty acids, acquired 18O at about the same rate. Acyl groups of alkylacyl glycerophosphocholine exhibited lower rates of 18O uptake, and acyl groups of ethanolamine plasmalogens (alkenylacyl glycerophosphoethanolamines) acquired only minimal amounts of 18O within 5 h, indicating a low average acyl turnover via free fatty acids. Pulse experiments with exogenous 3H-labeled arachidonic acid supported the concept that acylation of alkenyl glycerophosphoethanolamine occurs by acyl transfer from other phospholipids rather than via free fatty acids and acyl-CoA. The 18O content of intracellular free fatty acids increased gradually over a 5-h period, whereas in extracellular free fatty acids it reached maximal 18O levels within the first hour. Arachidonate and other long-chain polyunsaturated fatty acids were found to participate readily in deacylation-reacylation reactions but were present only in trace amounts in the free fatty acid pools inside and outside the cells. We conclude that acyl turnover of macrophage phospholipids through hydrolysis and reacylation is rapid but tightly controlled so that appreciable concentrations of free arachidonic acid do not occur.

  14. Phosphatidylglycerol of rat lung. Intracellular sites of formation de novo and acyl species pattern in mitochondria, microsomes and surfactant.

    PubMed Central

    Schlame, M; Rüstow, B; Kunze, D; Rabe, H; Reichmann, G

    1986-01-01

    The subcellular site of phosphatidylglycerol (PG) formation for lung surfactant has not been convincingly clarified. To approach this problem we analysed the acyl species pattern of lung PG in mitochondria, microsomes and surfactant by h.p.l.c. separation of its 1,2-diacyl-3-naphthylurethane derivatives. Both mitochondrial and microsomal PG proved identical with surfactant PG, containing the major species 1-palmitoyl-2-oleoyl-PG and 1,2-dipalmitoyl-PG. The fatty acid composition of mitochondrial PG differs markedly from that of diphosphatidylglycerol. This may be taken as an indication that mitochondrial PG is synthesized on purpose to form surfactant, rather than being only the precursor of diphosphatidylglycerol. In vitro, sn-[U-14C]glycerol 3-phosphate incorporation into PG of mitochondria or microsomes occurs in the presence of CTP, ATP and CoA but independently of the supply of exogenous lipoidic precursors. Although the rate in vitro of autonomous PG synthesis, and the endogenous PG content, are higher in mitochondria than in microsomes, it is assumed that both subcellular fractions are involved in PG formation for surfactant. PMID:3827844

  15. Defective Pollen Wall is Required for Anther and Microspore Development in Rice and Encodes a Fatty Acyl Carrier Protein Reductase

    SciTech Connect

    Shi, J.; Shanklin, J.; Tan, H.; Yu, X.-H.; Liu, Y.; Liang, W.; Ranathunge, K.; Franke, R. B.; Schreiber, L.; Wang, Y.; Kai, G.; Ma, H.; Zhang, D.

    2011-06-01

    Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.

  16. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase.

    PubMed

    Shi, Jing; Tan, Hexin; Yu, Xiao-Hong; Liu, Yuanyun; Liang, Wanqi; Ranathunge, Kosala; Franke, Rochus Benni; Schreiber, Lukas; Wang, Yujiong; Kai, Guoying; Shanklin, John; Ma, Hong; Zhang, Dabing

    2011-06-01

    Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.

  17. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis.

    PubMed

    Rastogi, Shubhra; Kumar, Ritesh; Chanotiya, Chandan S; Shanker, Karuna; Gupta, Madan M; Nagegowda, Dinesh A; Shasany, Ajit K

    2013-08-01

    Biosynthesis of eugenol shares its initial steps with that of lignin, involving conversion of hydroxycinnamic acids to their corresponding coenzyme A (CoA) esters by 4-coumarate:CoA ligases (4CLs). In this investigation, a 4CL (OS4CL) was identified from glandular trichome-rich tissue of Ocimum sanctum with high sequence similarity to an isoform (OB4CL_ctg4) from Ocimum basilicum. The levels of OS4CL and OB4CL_ctg4-like transcripts were highest in O. sanctum trichome, followed by leaf, stem and root. The eugenol content in leaf essential oil was positively correlated with the expression of OS4CL in the leaf at different developmental stages. Recombinant OS4CL showed the highest activity with p-coumaric acid, followed by ferulic, caffeic and trans-cinnamic acids. Transient RNA interference (RNAi) suppression of OS4CL in O. sanctum leaves caused a reduction in leaf eugenol content and trichome transcript level, with a considerable increase in endogenous p-coumaric, ferulic, trans-cinnamic and caffeic acids. A significant reduction in the expression levels was observed for OB4CL_ctg4-related transcripts in suppressed trichome compared with transcripts similar to the other four isoforms (OB4CL_ctg1, 2, 3 and 5). Sinapic acid and lignin content were also unaffected in RNAi suppressed leaf samples. Transient expression of OS4CL-green fluorescent protein fusion protein in Arabidopsis protoplasts was associated with the cytosol. These results indicate metabolite channeling of intermediates towards eugenol by a specific 4CL and is the first report demonstrating the involvement of 4CL in creation of virtual compartments through substrate utilization and committing metabolites for eugenol biosynthesis at an early stage of the pathway.

  18. Role of acyl carrier protein isoforms in plant lipid metabolism

    SciTech Connect

    Not Available

    1990-01-01

    Although acyl carrier protein (ACP) is the best studied protein in plant fatty acid biosynthesis, the in vivo forms of ACPs and their steady state pools have not been examined previously in either seed or leaf. Information about the relative pool sizes of free ACP and its acyl-ACP intermediates is essential for understanding regulation of de novo fatty acid biosynthesis in plants. In this study we utilized antibodies directed against spinach ACP as a sensitive assay to analyze the acyl groups while they were still covalently attached to ACPs. 4 refs., 4 figs.

  19. Multiple Ligands of von Willebrand Factor-binding Protein (vWbp) Promote Staphylococcus aureus Clot Formation in Human Plasma*

    PubMed Central

    Thomer, Lena; Schneewind, Olaf; Missiakas, Dominique

    2013-01-01

    Staphylococcus aureus secretes coagulase (Coa) and von Willebrand factor-binding protein (vWbp) to activate host prothrombin and form fibrin cables, thereby promoting the establishment of infectious lesions. The D1-D2 domains of Coa and vWbp associate with, and non-proteolytically activate prothrombin. Moreover, Coa encompasses C-terminal tandem repeats for binding to fibrinogen, whereas vWbp has been reported to associate with von Willebrand factor and fibrinogen. Here we used affinity chromatography with non-catalytic Coa and vWbp to identify the ligands for these virulence factors in human plasma. vWbp bound to prothrombin, fibrinogen, fibronectin, and factor XIII, whereas Coa co-purified with prothrombin and fibrinogen. vWbp association with fibrinogen and factor XIII, but not fibronectin, required prothrombin and triggered the non-proteolytic activation of FXIII in vitro. Staphylococcus aureus coagulation of human plasma was associated with the recruitment of prothrombin, FXIII, and fibronectin as well as the formation of cross-linked fibrin. FXIII activity in staphylococcal clots could be attributed to thrombin-dependent proteolytic activation as well as vWbp-mediated non-proteolytic activation of FXIII zymogen. PMID:23960083

  20. Interactions of acylated methylglucoside derivatives with CO2: simulation and calculations.

    PubMed

    Chang, H H; Cao, R X; Yang, C C; Wei, W L; Pang, X Y; Qiao, Y

    2016-01-01

    Carbohydrates have drawn considerable interest from researchers recently due to their affinity for CO2. However, most of the research in this field has focused on peracetylated derivatives. Compared with acetylated carbohydrates, which have already been studied in depth, methyl D-glucopyranoside derivatives are more stable and could have additional applications. Thus, in the present work, ab initio calculations were performed to elucidate the characteristics of the interactions of methylglucoside derivatives with CO2, and to investigate how the binding energy (ΔE) is affected by isomerization or the introduction of various acyl groups. Four methyl D-glucopyranosides (each with two anomers) bearing acetyl, propionyl, butyryl, and isobutyryl moieties, respectively, were designed as substrates, and the 1:1 complexes of a CO2 molecule with each of these sugar substrates were modeled. The results indicate that ΔE is mainly influenced by interaction distance and the number of negatively charged donors or interacting pairs in the complex; the structure of the acyl group present in the substrate is a secondary influence. Except in the case of methyl 2-O-acetyl-D-glucopyranose, the ΔE values of the α- and β-anomers of each methylglucoside were found to be almost the same. Therefore, we would expect the CO2 affinities of the four derivatives studied here to be as strong as or even stronger than that of peracetylated D-glucopyranose. Graphical Abstract The binding energy between methyl D-glucopyranoside derivatives with various substituted acyl groups and CO2 are evaluated by ab initio calculations. The strong interaction between these methyl dglucopyranoside derivatives and CO2 showed the potential of their application for CO2 capture.

  1. The activity of Rhizomuchor miehei lipase as a biocatalyst in enzymatic acylation of cyclic alcohol

    NASA Astrophysics Data System (ADS)

    Iftitah, Elvina Dhiaul; Srihardyastuti, Arie; Ariefin, Mokhamat

    2017-03-01

    We report the activity of Rhizomuchor miehei lipase (RML) as a biocatalyst, in particular the investigations concerning the effort of substrate-structure reactivity on the enzymatic acylation. The acylation was studied using acetic anhydride as an acyl donor and performed in n-hexane as a solvent. The selectivity of the enzymatic acylation was revealed by Gas Chromatography-Mass Spectra. We observed that, RML has shown different behavior when catalyzing the acylation of isopulegol and mixture of isopulegol and citronellal (ratio 1:1). The chemoselectivity for the O-acylation was improved when the acyl acceptor included mixture of isopulegol and citronellal

  2. Acylated cyanidin 3-sambubioside-5-glucosides in Matthiola incana.

    PubMed

    Saito, N; Tatsuzawa, F; Nishiyama, A; Yokoi, M; Shigihara, A; Honda, T

    1995-03-01

    Four acylated cyanidin 3-sambubioside-5-glucosides were isolated from purple-violet flowers of Matthiola incana and their structures were determined by chemical and spectroscopic methods. Three acylated anthocyanins were cyanidin 3-O-(6-O-acyl-2-O-(2-O-sinapyl-beta-D-xylopyranosyl)-beta-D- glucopyranosides)-5-O-(6-O-malonyl-beta-D-glucopyranosides), in which the acyl group is p-coumaryl, caffeyl or ferulyl, respectively. The remaining pigment is free from malonic acid and was identified as cyanidin 3-O-(6-O-trans-ferulyl-2-O-(2- O-trans-sinapyl-beta-D-xylopyranosyl)-beta-D-glucopyranoside)-5-O- (beta-D-glucopyranoside). Analysis of the anthocyanin constituents in 16 purple-violet cultivars revealed that they contained the above triacylated anthocyanins in variable amounts as main pigments. An aromatic pair of pigments containing sinapic and ferulic acids are considered to produce an important intramolecular effect, making bluish colours in these flowers.

  3. Acyl Meldrum's acid derivatives: application in organic synthesis

    NASA Astrophysics Data System (ADS)

    Janikowska, K.; Rachoń, J.; Makowiec, S.

    2014-07-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references.

  4. Oxidative activation of dihydropyridine amides to reactive acyl donors.

    PubMed

    Funder, Erik Daa; Trads, Julie B; Gothelf, Kurt V

    2015-01-07

    Amides of 1,4-dihydropyridine (DHP) are activated by oxidation for acyl transfer to amines, alcohols and thiols. In the reduced form the DHP amide is stable towards reaction with amines at room temperature. However, upon oxidation with DDQ the acyl donor is activated via a proposed pyridinium intermediate. The activated intermediate reacts with various nucleophiles to give amides, esters, and thio-esters in moderate to high yields.

  5. Acylated pregnane glycosides from Caralluma quadrangula.

    PubMed

    Abdallah, Hossam M; Osman, Abdel-Moneim M; Almehdar, Hussein; Abdel-Sattar, Essam

    2013-04-01

    In a previous study, the methanolic extract as well as the chloroform fraction of the aerial parts of Caralluma quadrangula (Forssk.) N.E.Br. indigenous to Saudi Arabia showed significant in vitro cytotoxic activity against breast cancer (MCF7) cell line. In a biologically-guided fractionation approach, four acylated pregnane glycosides were isolated from the chloroform fraction of C. quadrangula. The structures of the isolated compounds were elucidated by the analysis of their MS and NMR data. The compounds were identified as 12,20-di-O-benzoylboucerin 3-O-β-D-digitoxopyranosyl-(1→4)-β-D-canaropyranosyl-(1→4)-β-D-cymaropyranoside (1), 12,20-di-O-benzoylboucerin 3-O-β-D-cymaropyranosyl-(1→4)-β-D-canaropyranosyl-(1→4)-β-D-cymaropyranoside (2), 12,20-di-O-benzoylboucerin 3-O-β-D-glucopyranosyl-(1→4)-β-D-digitoxopyranosyl-(1→4)-β-D-canaropyranosyl-(1→4)-β-D-cymaropyranoside (3) and 12,20-di-O-benzoyl-3β,5α,12β,14β,20-pentahydroxy-(20R)-pregn-6-ene 3-O-β-D-glucopyranosyl-(1→4)-β-D-digitoxopyranosyl-(1→4)-β-D-canaropyranosyl-(1→4)-β-D-cymaropyranoside (4). The isolated compounds were tested for their cytotoxic activity against breast cancer (MCF7) cell line.

  6. Discovery of tumor-specific irreversible inhibitors of stearoyl CoA desaturase | Office of Cancer Genomics

    Cancer.gov

    A hallmark of targeted cancer therapies is selective toxicity among cancer cell lines. We evaluated results from a viability screen of over 200,000 small molecules to identify two chemical series, oxalamides and benzothiazoles, that were selectively toxic at low nanomolar concentrations to the same 4 of 12 human lung cancer cell lines. Sensitive cell lines expressed cytochrome P450 (CYP) 4F11, which metabolized the compounds into irreversible inhibitors of stearoyl CoA desaturase (SCD). SCD is recognized as a promising biological target in cancer and metabolic disease.

  7. 3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis DPN7T: crystal structure and function of a desulfinase with an acyl-CoA dehydrogenase fold

    PubMed Central

    Schürmann, Marc; Meijers, Rob; Schneider, Thomas R.; Steinbüchel, Alexander; Cianci, Michele

    2015-01-01

    3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase (AcdDPN7; EC 3.13.1.4) was identified during investigation of the 3,3′-dithiodipropionic acid (DTDP) catabolic pathway in the betaproteobacterium Advenella mimigardefordensis strain DPN7T. DTDP is an organic disulfide and a precursor for the synthesis of polythioesters (PTEs) in bacteria, and is of interest for biotechnological PTE production. AcdDPN7 catalyzes sulfur abstraction from 3SP-CoA, a key step during the catabolism of DTDP. Here, the crystal structures of apo AcdDPN7 at 1.89 Å resolution and of its complex with the CoA moiety from the substrate analogue succinyl-CoA at 2.30 Å resolution are presented. The apo structure shows that AcdDPN7 belongs to the acyl-CoA dehydrogenase superfamily fold and that it is a tetramer, with each subunit containing one flavin adenine dinucleotide (FAD) molecule. The enzyme does not show any dehydrogenase activity. Dehydrogenase activity would require a catalytic base (Glu or Asp residue) at either position 246 or position 366, where a glutamine and a glycine are instead found, respectively, in this desulfinase. The positioning of CoA in the crystal complex enabled the modelling of a substrate complex containing 3SP-CoA. This indicates that Arg84 is a key residue in the desulfination reaction. An Arg84Lys mutant showed a complete loss of enzymatic activity, suggesting that the guanidinium group of the arginine is essential for desulfination. AcdDPN7 is the first desulfinase with an acyl-CoA dehydrogenase fold to be reported, which underlines the versatility of this enzyme scaffold. PMID:26057676

  8. Structure of 3-oxoacyl-(acyl-carrier protein) synthase II from Thermus thermophilus HB8

    SciTech Connect

    Bagautdinov, Bagautdin Ukita, Yoko; Miyano, Masashi; Kunishima, Naoki

    2008-05-01

    The crystal structure of 3-oxoacyl-(acyl-carrier protein) synthase II from T. thermophilus HB8 has been determined at 2.0 Å resolution and compared with the structures of β-keto-ACP synthases from other sources. The β-ketoacyl-(acyl carrier protein) synthases (β-keto-ACP synthases; KAS) catalyse the addition of two-carbon units to the growing acyl chain during the elongation phase of fatty-acid synthesis. As key regulators of bacterial fatty-acid synthesis, they are promising targets for the development of new antibacterial agents. The crystal structure of 3-oxoacyl-ACP synthase II from Thermus thermophilus HB8 (TtKAS II) has been solved by molecular replacement and refined at 2.0 Å resolution. The crystal is orthorhombic, space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 72.07, b = 185.57, c = 62.52 Å, and contains one homodimer in the asymmetric unit. The subunits adopt the well known α-β-α-β-α thiolase fold that is common to ACP synthases. The structural and sequence similarities of TtKAS II to KAS I and KAS II enzymes of known structure from other sources support the hypothesis of comparable enzymatic activity. The dimeric state of TtKAS II is important to create each fatty-acid-binding pocket. Closer examination of KAS structures reveals that compared with other KAS structures in the apo form, the active site of TtKAS II is more accessible because of the ‘open’ conformation of the Phe396 side chain.

  9. Screening, identification, and characterization of mechanistically diverse inhibitors of the Mycobacterium tuberculosis enzyme, pantothenate kinase (CoaA).

    PubMed

    Venkatraman, Janani; Bhat, Jyothi; Solapure, Suresh M; Sandesh, Jatheendranath; Sarkar, Debasmita; Aishwarya, Sundaram; Mukherjee, Kakoli; Datta, Santanu; Malolanarasimhan, Krishnan; Bandodkar, Balachandra; Das, Kaveri S

    2012-03-01

    The authors describe the discovery of anti-mycobacterial compounds through identifying mechanistically diverse inhibitors of the essential Mycobacterium tuberculosis (Mtb) enzyme, pantothenate kinase (CoaA). Target-driven drug discovery technologies often work with purified enzymes, and inhibitors thus discovered may not optimally inhibit the form of the target enzyme predominant in the bacterial cell or may not be available at the desired concentration. Therefore, in addition to addressing entry or efflux issues, inhibitors with diverse mechanisms of inhibition (MoI) could be prioritized before hit-to-lead optimization. The authors describe a high-throughput assay based on protein thermal melting to screen large numbers of compounds for hits with diverse MoI. Following high-throughput screening for Mtb CoaA enzyme inhibitors, a concentration-dependent increase in protein thermal stability was used to identify true binders, and the degree of enhancement or reduction in thermal stability in the presence of substrate was used to classify inhibitors as competitive or non/uncompetitive. The thermal shift-based MoI assay could be adapted to screen hundreds of compounds in a single experiment as compared to traditional biochemical approaches for MoI determination. This MoI was confirmed through mechanistic studies that estimated K(ie) and K(ies) for representative compounds and through nuclear magnetic resonance-based ligand displacement assays.

  10. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, but the acyl-galactose acyl composition varies with the plant species and applied stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Head group acylation of monogalactosyldiacylglycerol is a plant lipid modification occurring during bacterial infection. Little is known about the range of stresses that induce this lipid modification, the molecular species induced, and the function of the modification. Lipidomic analysis using trip...

  11. C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight.

    PubMed

    Mera, Paula; Bentebibel, Assia; López-Viñas, Eduardo; Cordente, Antonio G; Gurunathan, Chandrashekaran; Sebastián, David; Vázquez, Irene; Herrero, Laura; Ariza, Xavier; Gómez-Puertas, Paulino; Asins, Guillermina; Serra, Dolors; García, Jordi; Hegardt, Fausto G

    2009-03-15

    Central nervous system administration of C75 produces hypophagia and weight loss in rodents identifying C75 as a potential drug against obesity and type 2 diabetes. However, the mechanism underlying this effect is unknown. Here we show that C75-CoA is generated chemically, in vitro and in vivo from C75 and that it is a potent inhibitor of carnitine palmitoyltranferase 1 (CPT1), the rate-limiting step of fatty-acid oxidation. Three-D docking and kinetic analysis support the inhibitory effect of C75-CoA on CPT1. Central nervous system administration of C75 in rats led to C75-CoA production, inhibition of CPT1 and lower body weight and food intake. Our results suggest that inhibition of CPT1, and thus increased availability of fatty acids in the hypothalamus, contribute to the pharmacological mechanism of C75 to decrease food intake.

  12. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  13. Regioselective self-acylating cyclodextrins in organic solvent

    PubMed Central

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-01-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods. PMID:27020946

  14. An annotated database of Arabidopsis mutants of acyl lipid metabolism

    SciTech Connect

    McGlew, Kathleen; Shaw, Vincent; Zhang, Meng; Kim, Ryeo Jin; Yang, Weili; Shorrosh, Basil; Suh, Mi Chung; Ohlrogge, John

    2014-12-10

    Mutants have played a fundamental role in gene discovery and in understanding the function of genes involved in plant acyl lipid metabolism. The first mutant in Arabidopsis lipid metabolism (fad4) was described in 1985. Since that time, characterization of mutants in more than 280 genes associated with acyl lipid metabolism has been reported. This review provides a brief background and history on identification of mutants in acyl lipid metabolism, an analysis of the distribution of mutants in different areas of acyl lipid metabolism and presents an annotated database (ARALIPmutantDB) of these mutants. The database provides information on the phenotypes of mutants, pathways and enzymes/proteins associated with the mutants, and allows rapid access via hyperlinks to summaries of information about each mutant and to literature that provides information on the lipid composition of the mutants. Mutants for at least 30 % of the genes in the database have multiple names, which have been compiled here to reduce ambiguities in searches for information. Furthermore, the database should also provide a tool for exploring the relationships between mutants in acyl lipid-related genes and their lipid phenotypes and point to opportunities for further research.

  15. An annotated database of Arabidopsis mutants of acyl lipid metabolism

    DOE PAGES

    McGlew, Kathleen; Shaw, Vincent; Zhang, Meng; ...

    2014-12-10

    Mutants have played a fundamental role in gene discovery and in understanding the function of genes involved in plant acyl lipid metabolism. The first mutant in Arabidopsis lipid metabolism (fad4) was described in 1985. Since that time, characterization of mutants in more than 280 genes associated with acyl lipid metabolism has been reported. This review provides a brief background and history on identification of mutants in acyl lipid metabolism, an analysis of the distribution of mutants in different areas of acyl lipid metabolism and presents an annotated database (ARALIPmutantDB) of these mutants. The database provides information on the phenotypes ofmore » mutants, pathways and enzymes/proteins associated with the mutants, and allows rapid access via hyperlinks to summaries of information about each mutant and to literature that provides information on the lipid composition of the mutants. Mutants for at least 30 % of the genes in the database have multiple names, which have been compiled here to reduce ambiguities in searches for information. Furthermore, the database should also provide a tool for exploring the relationships between mutants in acyl lipid-related genes and their lipid phenotypes and point to opportunities for further research.« less

  16. Regioselective self-acylating cyclodextrins in organic solvent

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-03-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods.

  17. CoaTx-II, a new dimeric Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom with bactericidal potential: Insights into its structure and biological roles.

    PubMed

    Almeida, J R; Lancellotti, M; Soares, A M; Calderon, L A; Ramírez, D; González, W; Marangoni, S; Da Silva, S L

    2016-09-15

    Snake venoms are rich and intriguing sources of biologically-active molecules that act on target cells, modulating a diversity of physiological functions and presenting promising pharmacological applications. Lys49 phospholipase A2 is one of the multifunctional proteins present in these complex secretions and, although catalytically inactive, has a variety of biological activities, including cytotoxic, antibacterial, inflammatory, antifungal activities. Herein, a Lys49 phospholipase A2, denominated CoaTx-II from Crotalus oreganus abyssus, was purified and structurally and pharmacologically characterized. CoaTx-II was isolated with a high degree of purity by a combination of two chromatographic steps; molecular exclusion and reversed-phase high performance liquid chromatography. This toxin is dimeric with a mass of 13868.2 Da (monomeric form), as determined by mass spectrometry. CoaTx-II is rich in Arg and Lys residues and displays high identity with other Lys49 PLA2 homologues, which have high isoelectric points. The structural model of dimeric CoaTx-II shows that the toxin is non-covalently stabilized. Despite its enzymatic inactivity, in vivo CoaTx-II caused local muscular damage, characterized by increased plasma creatine kinase and confirmed by histological alterations, in addition to an inflammatory activity, as demonstrated by mice paw edema induction and pro-inflammatory cytokine IL-6 elevation. CoaTx-II also presents antibacterial activity against gram negative (Pseudomonas aeruginosa 31NM, Escherichia coli ATCC 25922) and positive (Staphyloccocus aureus BEC9393 and Rib1) bacteria. Therefore, data show that this newly purified toxin plays a central role in mediating the degenerative events associated with envenomation, in addition to demonstrating antibacterial properties, with potential for use in the development of strategies for antivenom therapy and combating antibiotic-resistant bacteria.

  18. Cross sections for production of the CO(A 1 Pi)-(X 1 Sigma) fourth positive band system and O(3 S) by photodissociation of CO2

    NASA Technical Reports Server (NTRS)

    Gentieu, E. P.; Mentall, J. E.

    1972-01-01

    The CO(A 1 Pi) cross sections reported here, along with previously determined electron impact results, establish the basis for calculating CO fourth positive system volume emission rates in the Martian dayglow. Calculated volume emission rates in turn determine relative distribution of photon vs. electron impact as mechanisms for producing CO(A 1 Pi) in the Mars atmosphere. The smallness of the O(1304) cross section confirms previous indirect evidence that photodissociative excitation of CO2 is not an important source of O(3 S) in the upper atmosphere of Mars.

  19. A Comparative Analysis of Acyl-Homoserine Lactone Synthase Assays.

    PubMed

    Shin, Daniel; Frane, Nicole D; Brecht, Ryan M; Keeler, Jesse; Nagarajan, Rajesh

    2015-12-01

    Quorum sensing is cell-to-cell communication that allows bacteria to coordinate attacks on their hosts by inducing virulent gene expression, biofilm production, and other cellular functions, including antibiotic resistance. AHL synthase enzymes synthesize N-acyl-l-homoserine lactones, commonly referred to as autoinducers, to facilitate quorum sensing in Gram-negative bacteria. Studying the synthases, however, has proven to be a difficult road. Two assays, including a radiolabeled assay and a colorimetric (DCPIP) assay are well-documented in literature to study AHL synthases. In this paper, we describe additional methods that include an HPLC-based, C-S bond cleavage and coupled assays to investigate this class of enzymes. In addition, we compare and contrast each assay for both acyl-CoA- and acyl-ACP-utilizing synthases. The expanded toolkit described in this study should facilitate mechanistic studies on quorum sensing signal synthases and expedite discovery of antivirulent compounds.

  20. Asymmetric Allylboration of Acyl Imines Catalyzed by Chiral Diols

    PubMed Central

    Lou, Sha; Moquist, Philip N.; Schaus, Scott E.

    2008-01-01

    Chiral BINOL-derived diols catalyze the enantioselective asymmetric allylboration of acyl imines. The reaction requires 15 mol% of (S)-3,3′-Ph2-BINOL as the catalyst and allyldiisopropoxyborane as the nucleophile. The reaction products are obtained in good yields (75 – 94%) and high enantiomeric ratios (95:5 – 99.5:0.5) for aromatic and aliphatic imines. High diastereoselectivities (dr > 98:2) and enantioselectivities (er > 98:2) are obtained in the reactions of acyl imines with crotyldiisopropoxyboranes. This asymmetric transformation is directly applied to the synthesis of maraviroc, the selective CCR5 antagonist with potent activity against HIV-1 infection. Mechanistic investigations of the allylboration reaction including IR, NMR, and mass spectrometry study indicate that acyclic boronates are activated by chiral diols via exchange of one of the boronate alkoxy groups with activation of the acyl imine via hydrogen bonding. PMID:18020334

  1. Identification of Unusual Phospholipid Fatty Acyl Compositions of Acanthamoeba castellanii

    PubMed Central

    Palusinska-Szysz, Marta; Kania, Magdalena; Turska-Szewczuk, Anna; Danikiewicz, Witold; Russa, Ryszard; Fuchs, Beate

    2014-01-01

    Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL). The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0), octadecenoyl (18∶1 Δ9) and hexadecanoyl (16∶0). However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE), phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24) and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of these

  2. Sphingomyelin interfacial behavior: the impact of changing acyl chain composition.

    PubMed Central

    Li, X M; Smaby, J M; Momsen, M M; Brockman, H L; Brown, R E

    2000-01-01

    Sphingomyelins (SMs) containing homogeneous acyl chains with 12, 14, 16, 18, 24, or 26 carbons were synthesized and characterized using an automated Langmuir-type film balance. Surface pressure was monitored as a function of lipid molecular area at constant temperatures between 10 degrees C and 30 degrees C. SM containing lauroyl (12:0) acyl chains displayed only liquid-expanded behavior. Increasing the length of the saturated acyl chain (e.g., 14:0, 16:0, or 18:0) resulted in liquid-expanded to condensed two-dimensional phase transitions at many temperatures in the 10-30 degrees C range. Similar behavior was observed for SMs with lignoceroyl (24:0) or (cerotoyl) 26:0 acyl chains, but isotherms showed only condensed behavior at 10 and 15 degrees C. Insights into the physico-mechanical in-plane interactions occurring within the different SM phases and accompanying changes in SM phase state were provided by analyzing the interfacial area compressibility moduli. At similar surface pressures, SM fluid phases were less compressible than those of phosphatidylcholines with similar chain structures. The area per molecule and compressibility of SM condensed phases depended upon the length of the saturated acyl chain and upon spreading temperature. Spreading of SMs with very long saturated acyl chains at temperatures 30-35 degrees below T(m) resulted in condensed films with lower in-plane compressibilities, but consistently larger cross-sectional molecular areas than the condensed phases achieved by spreading at temperatures only 10-20 degrees below T(m). This behavior is discussed in terms of the enhancement of SM lateral aggregation by temperature reduction, a common approach used during domain isolation from biomembranes. PMID:10733971

  3. Quantum chemical study of penicillin: Reactions after acylation

    NASA Astrophysics Data System (ADS)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  4. Novel approach in LC-MS/MS using MRM to generate a full profile of acyl-CoAs: discovery of acyl-dephospho-CoAs[S

    PubMed Central

    Li, Qingling; Zhang, Shenghui; Berthiaume, Jessica M.; Simons, Brigitte; Zhang, Guo-Fang

    2014-01-01

    A metabolomic approach to selectively profile all acyl-CoAs was developed using a programmed multiple reaction monitoring (MRM) method in LC-MS/MS and was employed in the analysis of various rat organs. The programmed MRM method possessed 300 mass ion transitions with the mass difference of 507 between precursor ion (Q1) and product ion (Q3), and the precursor ion started from m/z 768 and progressively increased one mass unit at each step. Acyl-dephospho-CoAs resulting from the dephosphorylation of acyl-CoAs were identified by accurate MS and fragmentation. Acyl-dephospho-CoAs were also quantitatively scanned by the MRM method with the mass difference of 427 between Q1 and Q3 mass ions. Acyl-CoAs and dephospho-CoAs were assayed with limits of detection ranging from 2 to 133 nM. The accuracy of the method was demonstrated by assaying a range of concentrations of spiked acyl-CoAs with the results of 80–114%. The distribution of acyl-CoAs reflects the metabolic status of each organ. The physiological role of dephosphorylation of acyl-CoAs remains to be further characterized. The methodology described herein provides a novel strategy in metabolomic studies to quantitatively and qualitatively profile all potential acyl-CoAs and acyl-dephospho-CoAs. PMID:24367045

  5. Copper(II)/amine synergistically catalyzed enantioselective alkylation of cyclic N-acyl hemiaminals with aldehydes.

    PubMed

    Sun, Shutao; Mao, Ying; Lou, Hongxiang; Liu, Lei

    2015-07-07

    The first catalytic asymmetric alkylation of N-acyl quinoliniums with aldehydes has been described. A copper/amine synergistic catalytic system has been developed, allowing the addition of functionalized aldehydes to a wide range of electronically varied N-acyl quinoliniums in good yields with excellent enantiocontrol. The synergistic catalytic system was also effective for N-acyl dihydroisoquinoliniums and β-caboliniums, demonstrating the general applicability of the protocol in the enantioselective alkylation of diverse cyclic N-acyl hemiaminals.

  6. The Level of Circulating Octanoate Does Not Predict Ghrelin O-Acyl Transferase (GOAT)-Mediated Acylation of Ghrelin During Fasting

    PubMed Central

    Nikolayev, Alexander; Liu, Jianhua; Pezzoli, Suzan S.; Farhy, Leon S.; Patrie, James; Gaylinn, Bruce D.; Heiman, Mark; Thorner, Michael O.

    2015-01-01

    Background: Acyl-ghrelin is a 28-amino acid peptide released from the stomach. Ghrelin O-acyl transferase (GOAT) attaches an 8-carbon medium-chain fatty acid (MCFA) (octanoate) to serine 3 of ghrelin. This acylation is necessary for the activity of ghrelin. Animal data suggest that MCFAs provide substrate for GOAT and an increase in nutritional octanoate increases acyl-ghrelin. Objectives: To address the question of the source of substrate for acylation, we studied whether the decline in ghrelin acylation during fasting is associated with a decline in circulating MCFAs. Methods: Eight healthy young men (aged 18–28 years, body mass index range, 20.6–26.2 kg/m2) had blood drawn every 10 minutes for acyl- and desacyl-ghrelin and every hour for free fatty acids (FFAs) during the last 24 hours of a 61.5-hour fast and during a fed day. FFAs were measured by a highly sensitive liquid chromatography-mass spectroscopy method. Acyl- and desacyl-ghrelin were measured in an in-house assay; the results were published previously. Ghrelin acylation was assessed by the ratio of acyl-ghrelin to total ghrelin. Results: With the exception of MCFAs C8 and C10, all other FFAs, the MCFAs (C6 and C12), and the long-chain fatty acids (C14–C18) significantly increased with fasting (P < .05). There was no significant association between the fold change in ghrelin acylation and circulating FFAs. Conclusions: These results suggest that changes in circulating MCFAs are not linked to the decline in ghrelin acylation during fasting and support the hypothesis that acylation of ghrelin depends at least partially on the availability of gastroluminal MCFAs or the regulation of GOAT activity. PMID:25337923

  7. How a Plant Lectin Recognizes High Mannose Oligosaccharides1[C][OA

    PubMed Central

    Garcia-Pino, Abel; Buts, Lieven; Wyns, Lode; Imberty, Anne; Loris, Remy

    2007-01-01

    The crystal structure of Pterocarpus angolensis seed lectin is presented in complex with a series of high mannose (Man) oligosaccharides ranging from Man-5 to Man-9. Despite that several of the nine Man residues of Man-9 have the potential to bind in the monosaccharide-binding site, all oligomannoses are bound in the same unique way, employing the tetrasaccharide sequence Manα(1–2)Manα(1–6)[Manα(1–3)]Manα(1–. Isothermal titration calorimetry titration experiments using Man-5, Man-9, and the Man-9-containing glycoprotein soybean (Glycine max) agglutinin as ligands confirm the monovalence of Man-9 and show a 4-times higher affinity for Man-9 when it is presented to P. angolensis seed lectin in a glycoprotein context. PMID:17556509

  8. A Cerulenin Insensitive Short Chain 3-Ketoacyl-Acyl Carrier Protein Synthase in Spinacia oleracea Leaves

    PubMed Central

    Jaworski, Jan G.; Clough, Richard C.; Barnum, Susan R.

    1989-01-01

    A cerulenin insensitive 3-ketoacyl-acyl carrier protein synthase has been assayed in extracts of spinach (Spinacia oleracea) leaf. The enzyme was active in the 40 to 80% ammonium sulfate precipitate of whole leaf homogenates and catalyzed the synthesis of acetoacetyl-acyl carrier protein. This condensation reaction was five-fold faster than acetyl-CoA:acyl carrier protein transacylase, and the initial rates of acyl-acyl carrier protein synthesis were independent of the presence of cerulenin. In the presence of fatty acid synthase cofactors and 100 micromolar cerulenin, the principal fatty acid product of de novo synthesis was butyric and hexanoic acids. Using conformationally sensitive native polyacrylamide gel electrophoresis for separation, malonyl-, acetyl-, butyryl-, hexanoyl, and long chain acyl-acyl carrier proteins could be detected by immunoblotting and autoradiography. In the presence of 100 micromolar cerulenin, the accumulation of butyryl- and hexanoyl-acyl carrier protein was observed, with no detectable long chain acyl-acyl carrier proteins or fatty acids being produced. In the absence of cerulenin, the long chain acyl-acyl carrier proteins also accumulated. Images Figure 2 Figure 3 PMID:16666765

  9. Functionalized chitosan derivatives as nonviral vectors: physicochemical properties of acylated N,N,N-trimethyl chitosan/oligonucleotide nanopolyplexes.

    PubMed

    Santos, Joyce C C; Moreno, Pedro M D; Mansur, Alexandra A P; Leiro, Victoria; Mansur, Herman S; Pêgo, Ana Paula

    2015-11-07

    Cationic polymers have recently attracted attention due to their proven potential for nonviral gene delivery. In this study, we report novel biocompatible nanocomplexes produced using chemically functionalized N,N,N-trimethyl chitosan (TMC) with different N-acyl chain lengths (C5-C18) associated with single-stranded oligonucleotides. The TMC derivatives were synthesized by covalent coupling reactions of quaternized chitosan with n-pentanoic (C5), n-decanoic (C10), and n-octadecanoic (C18) fatty acids, which were extensively characterized by Fourier transform-infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance ((1)H NMR). These N-acylated TMC derivatives (TMCn) were used as cationic polymeric matrices for encapsulating anionic 18-base single-stranded thiophosphorylated oligonucleotides (ssONs), leading to the formation of polyplexes further characterized by zeta potential (ZP), dynamic light scattering (DLS), binding affinity, transfection efficiency and in vitro cytotoxicity assays. The results demonstrated that the length of the grafted hydrophobic N-acyl chain and the relative amino:phosphate groups ratio (N/P ratio) between the TMC derivatives and ssON played crucial roles in determining the physicochemical properties of the obtained nanocomplexes. While none of the tested derivatives showed appreciable cytotoxicity, the type of acyl chain had a remarkable influence on the cell transfection capacity of TMC-ssON nanocomplexes with the derivatives based on stearic acid showing the best performance based on the results of in vitro assays using a model cell line expressing luciferase (HeLa/Luc705).

  10. Characterization of the JWST Pathfinder mirror dynamics using the center of curvature optical assembly (CoCOA)

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, 18 segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  11. Characterization of the JWST Pathfinder Mirror Dynamics Using the Center of Curvature Optical Assembly (CoCOA)

    NASA Technical Reports Server (NTRS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-01-01

    The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  12. Suppression of long chain acyl-CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity.

    PubMed

    Bu, So Young; Mashek, Mara T; Mashek, Douglas G

    2009-10-30

    Long chain acyl-CoA synthetases (ACSL) and fatty acid transport proteins (FATP) activate fatty acids to acyl-CoAs in the initial step of fatty acid metabolism. Numerous isoforms of ACSL and FATP exist with different tissue distribution patterns, intracellular locations, and substrate preferences, suggesting that each isoform has distinct functions in channeling fatty acids into different metabolic pathways. Because fatty acids, acyl-CoAs, and downstream lipid metabolites regulate various transcription factors that control hepatic energy metabolism, we hypothesized that ACSL or FATP isoforms differentially regulate hepatic gene expression. Using small interference RNA (siRNA), we knocked down each liver-specific ACSL and FATP isoform in rat primary hepatocyte cultures and subsequently analyzed reporter gene activity of numerous transcription factors and performed quantitative mRNA analysis of their target genes. Compared with control cells, which were transfected with control siRNA, knockdown of acyl-CoA synthetase 3 (ACSL3) significantly decreased reporter gene activity of several lipogenic transcription factors such as peroxisome proliferator activation receptor-gamma, carbohydrate-responsive element-binding protein, sterol regulatory element-binding protein-1c, and liver X receptor-alpha and the expression of their target genes. These findings were further supported by metabolic labeling studies that showed [1-(14)C]acetate incorporation into lipid extracts was decreased in cells treated with ACSL3 siRNAs and that ACSL3 expression is up-regulated in ob/ob mice and mice fed a high sucrose diet. ACSL3 knockdown decreased total acyl-CoA synthetase activity without substantially altering the expression of other ACSL isoforms. In summary, these results identify a novel role for ACSL3 in mediating transcriptional control of hepatic lipogenesis.

  13. Structural Basis for Substrate Binding and the Catalytic Mechanism of Type III Pantothenate Kinase

    SciTech Connect

    Yang, Kun; Strauss, Erick; Huerta, Carlos; Zhang, Hong

    2008-07-15

    Pantothenate kinase (PanK) catalyzes the first step of the universal five-step coenzyme A (CoA) biosynthetic pathway. The recently characterized type III PanK (PanK-III, encoded by the coaX gene) is distinct in sequence, structure and enzymatic properties from both the long-known bacterial type I PanK (PanK-I, exemplified by the Escherichia coli CoaA protein) and the predominantly eukaryotic type II PanK (PanK-II). PanK-III enzymes have an unusually high K{sub m} for ATP, are resistant to feedback inhibition by CoA, and are unable to utilize the N-alkylpantothenamide family of pantothenate analogues as alternative substrates, thus making type III PanK ineffective in generating CoA analogues as antimetabolites in vivo. Previously, we reported the crystal structure of the PanK-III from Thermotoga maritima and identified it as a member of the 'acetate and sugar kinase/heat shock protein 70/actin' (ASKHA) superfamily. Here we report the crystal structures of the same PanK-III in complex with one of its substrates (pantothenate), its product (phosphopantothenate) as well as a ternary complex structure of PanK-III with pantothenate and ADP. These results are combined with isothermal titration calorimetry experiments to present a detailed structural and thermodynamic characterization of the interactions between PanK-III and its substrates ATP and pantothenate. Comparison of substrate binding and catalytic sites of PanK-III with that of eukaryotic PanK-II revealed drastic differences in the binding modes for both ATP and pantothenate substrates, and suggests that these differences may be exploited in the development of new inhibitors specifically targeting PanK-III.

  14. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes.

    PubMed

    Stout, Jake M; Boubakir, Zakia; Ambrose, Stephen J; Purves, Randy W; Page, Jonathan E

    2012-08-01

    The psychoactive and analgesic cannabinoids (e.g. Δ(9) -tetrahydrocannabinol (THC)) in Cannabis sativa are formed from the short-chain fatty acyl-coenzyme A (CoA) precursor hexanoyl-CoA. Cannabinoids are synthesized in glandular trichomes present mainly on female flowers. We quantified hexanoyl-CoA using LC-MS/MS and found levels of 15.5 pmol g(-1) fresh weight in female hemp flowers with lower amounts in leaves, stems and roots. This pattern parallels the accumulation of the end-product cannabinoid, cannabidiolic acid (CBDA). To search for the acyl-activating enzyme (AAE) that synthesizes hexanoyl-CoA from hexanoate, we analyzed the transcriptome of isolated glandular trichomes. We identified 11 unigenes that encoded putative AAEs including CsAAE1, which shows high transcript abundance in glandular trichomes. In vitro assays showed that recombinant CsAAE1 activates hexanoate and other short- and medium-chained fatty acids. This activity and the trichome-specific expression of CsAAE1 suggest that it is the hexanoyl-CoA synthetase that supplies the cannabinoid pathway. CsAAE3 encodes a peroxisomal enzyme that activates a variety of fatty acid substrates including hexanoate. Although phylogenetic analysis showed that CsAAE1 groups with peroxisomal AAEs, it lacked a peroxisome targeting sequence 1 (PTS1) and localized to the cytoplasm. We suggest that CsAAE1 may have been recruited to the cannabinoid pathway through the loss of its PTS1, thereby redirecting it to the cytoplasm. To probe the origin of hexanoate, we analyzed the trichome expressed sequence tag (EST) dataset for enzymes of fatty acid metabolism. The high abundance of transcripts that encode desaturases and a lipoxygenase suggests that hexanoate may be formed through a pathway that involves the oxygenation and breakdown of unsaturated fatty acids.

  15. Substrate specificity, substrate channeling, and allostery in BphJ: an acylating aldehyde dehydrogenase associated with the pyruvate aldolase BphI.

    PubMed

    Baker, Perrin; Carere, Jason; Seah, Stephen Y K

    2012-06-05

    BphJ, a nonphosphorylating acylating aldehyde dehydrogenase, catalyzes the conversion of aldehydes to form acyl-coenzyme A in the presence of NAD(+) and coenzyme A (CoA). The enzyme is structurally related to the nonacylating aldehyde dehydrogenases, aspartate-β-semialdehyde dehydrogenase and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Cys-131 was identified as the catalytic thiol in BphJ, and pH profiles together with site-specific mutagenesis data demonstrated that the catalytic thiol is not activated by an aspartate residue, as previously proposed. In contrast to the wild-type enzyme that had similar specificities for two- or three-carbon aldehydes, an I195A variant was observed to have a 20-fold higher catalytic efficiency for butyraldehyde and pentaldehyde compared to the catalytic efficiency of the wild type toward its natural substrate, acetaldehyde. BphJ forms a heterotetrameric complex with the class II aldolase BphI that channels aldehydes produced in the aldol cleavage reaction to the dehydrogenase via a molecular tunnel. Replacement of Ile-171 and Ile-195 with bulkier amino acid residues resulted in no more than a 35% reduction in acetaldehyde channeling efficiency, showing that these residues are not critical in gating the exit of the channel. Likewise, the replacement of Asn-170 in BphJ with alanine and aspartate did not substantially alter aldehyde channeling efficiencies. Levels of activation of BphI by BphJ N170A, N170D, and I171A were reduced by ≥3-fold in the presence of NADH and ≥4.5-fold when BphJ was undergoing turnover, indicating that allosteric activation of the aldolase has been compromised in these variants. The results demonstrate that the dehydrogenase coordinates the catalytic activity of BphI through allostery rather than through aldehyde channeling.

  16. Escherichia coli Enoyl-Acyl Carrier Protein Reductase (FabI) Supports Efficient Operation of a Functional Reversal of the β-Oxidation Cycle

    PubMed Central

    Vick, Jacob E.; Clomburg, James M.; Blankschien, Matthew D.; Chou, Alexander; Kim, Seohyoung

    2014-01-01

    We recently used a synthetic/bottom-up approach to establish the identity of the four enzymes composing an engineered functional reversal of the β-oxidation cycle for fuel and chemical production in Escherichia coli (J. M. Clomburg, J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya, and R. Gonzalez, ACS Synth Biol 1:541–554, 2012, http://dx.doi.org/10.1021/sb3000782). While native enzymes that catalyze the first three steps of the pathway were identified, the identity of the native enzyme(s) acting as the trans-enoyl coenzyme A (CoA) reductase(s) remained unknown, limiting the amount of product that could be synthesized (e.g., 0.34 g/liter butyrate) and requiring the overexpression of a foreign enzyme (the Euglena gracilis trans-enoyl-CoA reductase [EgTER]) to achieve high titers (e.g., 3.4 g/liter butyrate). Here, we examine several native E. coli enzymes hypothesized to catalyze the reduction of enoyl-CoAs to acyl-CoAs. Our results indicate that FabI, the native enoyl-acyl carrier protein (enoyl-ACP) reductase (ENR) from type II fatty acid biosynthesis, possesses sufficient NADH-dependent TER activity to support the efficient operation of a β-oxidation reversal. Overexpression of FabI proved as effective as EgTER for the production of butyrate and longer-chain carboxylic acids. Given the essential nature of fabI, we investigated whether bacterial ENRs from other families were able to complement a fabI deletion without promiscuous reduction of crotonyl-CoA. These characteristics from Bacillus subtilis FabL enabled ΔfabI complementation experiments that conclusively established that FabI encodes a native enoyl-CoA reductase activity that supports the β-oxidation reversal in E. coli. PMID:25527535

  17. Pre-exercise medium-chain triglyceride application prevents acylcarnitine accumulation in skeletal muscle from very-long-chain acyl-CoA-dehydrogenase-deficient mice.

    PubMed

    Primassin, Sonja; Tucci, Sara; Herebian, Diran; Seibt, Annette; Hoffmann, Lars; ter Veld, Frank; Spiekerkoetter, Ute

    2010-06-01

    Dietary modification with medium-chain triglyceride (MCT) supplementation is one crucial way of treating children with long-chain fatty acid oxidation disorders. Recently, supplementation prior to exercise has been reported to prevent muscular pain and rhabdomyolysis. Systematic studies to determine when MCT supplementation is most beneficial have not yet been undertaken. We studied the effects of an MCT-based diet compared with MCT administration only prior to exercise in very-long-chain acyl-CoA dehydrogenase (VLCAD) knockout (KO) mice. VLCAD KO mice were fed an MCT-based diet in same amounts as normal mouse diet containing long-chain triglycerides (LCT) and were exercised on a treadmill. Mice fed a normal LCT diet received MCT only prior to exercise. Acylcarnitine concentration, free carnitine concentration, and acyl-coenzyme A (CoA) oxidation capacity in skeletal muscle as well as hepatic lipid accumulation were determined. Long-chain acylcarnitines significantly increased in VLCAD-deficient skeletal muscle with an MCT diet compared with an LCT diet with MCT bolus prior to exercise, whereas an MCT bolus treatment significantly decreased long-chain acylcarnitines after exercise compared with an LCT diet. C8-carnitine was significantly increased in skeletal muscle after MCT bolus treatment and exercise compared with LCT and long-term MCT treatment. Increased hepatic lipid accumulation was observed in long-term MCT-treated KO mice. MCT seems most beneficial when given in a single dose directly prior to exercise to prevent acylcarnitine accumulation. In contrast, continuous MCT treatment produces a higher skeletal muscle content of long-chain acylcarnitines after exercise and increases hepatic lipid storage in VLCAD KO mice.

  18. Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions

    SciTech Connect

    Qiu, Xiayang; Janson, Cheryl A.

    2010-11-16

    A topic of current interest is engineering surface mutations in order to improve the success rate of protein crystallization. This report explores the possibility of using metal-ion-mediated crystal-packing interactions to facilitate rational design. Escherichia coli apo acyl carrier protein was chosen as a test case because of its high content of negatively charged carboxylates suitable for metal binding with moderate affinity. The protein was successfully crystallized in the presence of zinc ions. The crystal structure was determined to 1.1 {angstrom} resolution with MAD phasing using anomalous signals from the co-crystallized Zn{sup 2+} ions. The case study suggested an integrated strategy for crystallization and structure solution of proteins via engineering surface Asp and Glu mutants, crystallizing them in the presence of metal ions such as Zn{sup 2+} and solving the structures using anomalous signals.

  19. Linear magnetoelectric effect as a signature of long-range collinear antiferromagnetic ordering in the frustrated spinel CoA l2O4

    NASA Astrophysics Data System (ADS)

    Ghara, Somnath; Ter-Oganessian, N. V.; Sundaresan, A.

    2017-03-01

    The ground state of the frustrated A -site magnetic spinel CoA l2O4 has been a controversial issue whether it is a collinear antiferromagnetic ordering or a spiral spin-liquid state, as the ratio of the two competing interactions J2/J1 lies close to the boundary between these two ground states. Here we address the magnetic ground state in CoA l2O4 with different amounts of C o2 +/A l3 + site disorder from the study of magnetoelectric effect and Monte Carlo simulations. CoA l2O4 with low site disorder exhibits a linear magnetoelectric effect below the magnetic ordering temperature. With increasing disorder, the magnetoelectric effect is suppressed and the sample with 14 % disorder exhibits a spin glass behavior without the magnetoelectric effect. Monte Carlo simulations support the experimental findings and suggest that the site disorder suppresses long-range antiferromagnetic order and induces a spin glass state. Since the linear magnetoelectric effect requires a long-range magnetic ordering, we suggest that the ground state of CoA l2O4 with low site disorder is a collinear antiferromagnet.

  20. RND type efflux pump system MexAB-OprM of pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication

    PubMed Central

    2012-01-01

    Background Bacteria release a wide variety of small molecules including cell-to-cell signaling compounds. Gram-negative bacteria use a variety of self-produced autoinducers such as acylated homoserine lactones (acyl-HSLs) as signal compounds for quorum sensing (QS) within and between bacterial species. QS plays a significant role in the pathogenesis of infectious diseases and in beneficial symbiosis by responding to acyl-HSLs in Pseudomonas aeruginosa. It is considered that the selection of bacterial languages is necessary to regulate gene expression and thus it leads to the regulation of virulence and provides a growth advantage in several environments. In this study, we hypothesized that RND-type efflux pump system MexAB-OprM of P. aeruginosa might function in the selection of acyl-HSLs, and we provide evidence to support this hypothesis. Results Loss of MexAB-OprM due to deletion of mexB caused increases in QS responses, as shown by the expression of gfp located downstream of the lasB promoter and LasB elastase activity, which is regulated by a LasR-3-oxo-C12-HSL complex. Either complementation with a plasmid containing wild-type mexB or the addition of a LasR-specific inhibitor, patulin, repressed these high responses to 3-oxo-acyl-HSLs. Furthermore, it was shown that the acyl-HSLs-dependent response of P. aeruginosa was affected by the inhibition of MexB transport activity and the mexB mutant. The P. aeruginosa MexAB-OprM deletion mutant showed a strong QS response to 3-oxo-C10-HSL produced by Vibrio anguillarum in a bacterial cross-talk experiment. Conclusion This work demonstrated that MexAB-OprM does not control the binding of LasR to 3-oxo-Cn-HSLs but rather accessibility of non-cognate acyl-HSLs to LasR in P. aeruginosa. MexAB-OprM not only influences multidrug resistance, but also selects acyl-HSLs and regulates QS in P. aeruginosa. The results demonstrate a new QS regulation mechanism via the efflux system MexAB-OprM in P. aeruginosa. PMID:22574700

  1. Acyl migration kinetics of vegetable oil 1,2-diacylglycerols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acyl migration kinetics of long-chain 1,2-diacylglycerol (1,2-DAG) to form 1,3-diacylglycerol (1,3-DAG) over the temperature range of 25 to 80 degrees Celsius were examined using proton NMR spectroscopy. The 1,2-DAG mole fraction of 0.32 at equilibrium was found to be insensitive to temperature...

  2. One-Step Conversion of Methyl Ketones to Acyl Chlorides.

    PubMed

    Zaragoza, Florencio

    2015-10-16

    Treatment of aromatic and heteroaromatic methyl ketones with sulfur monochloride and catalytic amounts of pyridine in refluxing chlorobenzene leads to the formation of acyl chlorides. Both electron-rich and electron-poor aryl methyl ketones can be used as starting materials. The resulting C1-byproduct depends on the precise reaction conditions chosen.

  3. Lubricity characteristics of seed oils modified by acylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemically modified seed oils via acylation of epoxidized and polyhydroxylated derivatives were investigated for their potential as candidates for lubrication. The native oil was preliminarily epoxidized and ring-opened in a one-pot reaction using formic acid-H2O2 followed by aqueous HCl treatment t...

  4. Mechanistic studies of malonic acid-mediated in situ acylation.

    PubMed

    Chandra, Koushik; Naoum, Johnny N; Roy, Tapta Kanchan; Gilon, Chaim; Gerber, R Benny; Friedler, Assaf

    2015-09-01

    We have previously introduced an easy to perform, cost-effective and highly efficient acetylation technique for solid phase synthesis (SPPS). Malonic acid is used as a precursor and the reaction proceeds via a reactive ketene that acetylates the target amine. Here we present a detailed mechanistic study of the malonic acid-mediated acylation. The influence of reaction conditions, peptide sequence and reagents was systematically studied. Our results show that the methodology can be successfully applied to different types of peptides and nonpeptidic molecules irrespective of their structure, sequence, or conformation. Using alkyl, phenyl, and benzyl malonic acid, we synthesized various acyl peptides with almost quantitative yields. The ketenes obtained from the different malonic acid derived precursors were characterized by in situ (1) H-NMR. The reaction proceeded in short reaction times and resulted in excellent yields when using uronium-based coupling agents, DIPEA as a base, DMF/DMSO/NMP as solvents, Rink amide/Wang/Merrifield resins, temperature of 20°C, pH 8-12 and 5 min preactivation at inert atmosphere. The reaction was unaffected by Lewis acids, transition metal ions, surfactants, or salt. DFT studies support the kinetically favorable concerted mechanism for CO2 and ketene formation that leads to the thermodynamically stable acylated products. We conclude that the malonic acid-mediated acylation is a general method applicable to various target molecules.

  5. Ethanol Metabolism Modifies Hepatic Protein Acylation in Mice

    PubMed Central

    Fritz, Kristofer S.; Green, Michelle F.; Petersen, Dennis R.; Hirschey, Matthew D.

    2013-01-01

    Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated metabolism, induce specific

  6. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    PubMed Central

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  7. Rates of thrombin acylation and deacylation upon reaction with low molecular weight acylating agents, carbamylating agents and carbonylating agents.

    PubMed

    Brown, A D; Powers, J C

    1995-08-01

    Acylated derivatives of thrombin have been made using low molecular weight acylating agents, carbamylating agents and carbonylating agents. The compounds used to acylate the active site serine include isatoic anhydrides, benzoxazinones, benzylisocyanate, N-(benzylcarbonyloxy)succinimide and p-(dimethylamino)benzoylimidazolide. The rates of acylation and deacylation were determined. The best overall inhibitors of thrombin are 2-ethoxy-4H-3,1-benzoxazin-4-one, isatoic anhydride and tert-butyl-2,4-dioxo-2H-3,1-benzoxazine-1(4H)-acetate, which have k2/Ki values of 52,700 M-1s-1, 48,900 M-1s-1 and 5400 M-1s-1, respectively. The carbamyl derivative of thrombin formed with benzylisocyanate had the slowest rate of deacylation (2.3 x 10(-7) s-1), while the ester derivative formed with 2-(N,N-dimethylamino)methylimino-4H-3,1-benzoxazin-4-one had the fastest rate of deacylation (1.9 x 10(-4) s-1).

  8. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed Central

    Jones, A; Davies, H M; Voelker, T A

    1995-01-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase. PMID:7734968

  9. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile

    PubMed Central

    Gu, Lei; Zhang, Guo-Fang; Kombu, Rajan S.; Allen, Frederick; Kutz, Gerd; Brewer, Wolf-Ulrich; Roe, Charles R.

    2010-01-01

    The anaplerotic odd-medium-chain triglyceride triheptanoin is used in clinical trials for the chronic dietary treatment of patients with long-chain fatty acid oxidation disorders. We previously showed (Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, Kutz G, Brewer WU, Roe CR, Brunengraber H. Am J Physiol Endocrinol Metab 291: E860–E866, 2006) that the intravenous infusion of triheptanoin increases lipolysis traced by the turnover of glycerol. In this study, we tested whether lipolysis induced by triheptanoin infusion is accompanied by the potentially harmful release of long-chain fatty acids. Rats were infused with heptanoate ± glycerol or triheptanoin. Intravenous infusion of triheptanoin at 40% of caloric requirement markedly increased glycerol endogenous Ra but not oleate endogenous Ra. Thus, the activation of lipolysis was balanced by fatty acid reesterification in the same cells. The liver acyl-CoA profile showed the accumulation of intermediates of heptanoate β-oxidation and C5-ketogenesis and a decrease in free CoA but no evidence of metabolic perturbation of liver metabolism such as propionyl overload. Our data suggest that triheptanoin, administered either intravenously or intraduodenally, could be used for intensive care and nutritional support of metabolically decompensated long-chain fatty acid oxidation disorders. PMID:19903863

  10. Biochemical characteristics of AtFAR2, a fatty acid reductase from Arabidopsis thaliana that reduces fatty acyl-CoA and -ACP substrates into fatty alcohols.

    PubMed

    Doan, Thuy T P; Carlsson, Anders S; Stymne, Sten; Hofvander, Per

    2016-01-01

    Fatty alcohols and derivatives are important for proper deposition of a functional pollen wall. Mutations in specific genes encoding fatty acid reductases (FAR) responsible for fatty alcohol production cause abnormal development of pollen. A disrupted AtFAR2 (MS2) gene in Arabidopsis thaliana results in pollen developing an abnormal exine layer and a reduced fertility phenotype. AtFAR2 has been shown to be targeted to chloroplasts and in a purified form to be specific for acyl-ACP substrates. Here, we present data on the in vitro and in planta characterizations of AtFAR2 from A. thaliana and show that this enzyme has the ability to use both, C16:0-ACP and C16:0-CoA, as substrates to produce C16:0-alcohol. Our results further show that AtFAR2 is highly similar in properties and substrate specificity to AtFAR6 for which in vitro data has been published, and which is also a chloroplast localized enzyme. This suggests that although AtFAR2 is the major enzyme responsible for exine layer functionality, AtFAR6 might provide functional redundancy to AtFAR2.

  11. Defective Pollen Wall Is Required for Anther and Microspore Development in Rice and Encodes a Fatty Acyl Carrier Protein Reductase[C][W][OA

    PubMed Central

    Shi, Jing; Tan, Hexin; Yu, Xiao-Hong; Liu, Yuanyun; Liang, Wanqi; Ranathunge, Kosala; Franke, Rochus Benni; Schreiber, Lukas; Wang, Yujiong; Kai, Guoying; Shanklin, John; Ma, Hong; Zhang, Dabing

    2011-01-01

    Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots. PMID:21705642

  12. The Length of the Bound Fatty Acid Influences the Dynamics of the Acyl Carrier Protein and the Stability of the Thioester Bond†

    PubMed Central

    2009-01-01

    Acyl carrier proteins involved in fatty acid biosynthesis have been shown to exhibit a high degree of conformational flexibility, in that they are able to sequester fatty acid intermediates between 4 and 18 carbons in length. This flexibility has been observed in X-ray and NMR structures of acyl carrier proteins attached to different fatty acids. NMR studies comparing decanoyl-ACP and stearoyl-ACP indicated that ACP exhibits more dynamic motions when bound to longer fatty acids. We have used complementary chemical and NMR methods as an approach to improving our understanding of the effect of fatty acid length on the dynamics of acyl carrier protein. A chemical assay of the accessibility of the acyl thioester to solvent revealed a positive correlation between chain length and rate of hydrolysis. Surprisingly, this linear correlation was biphasic, with accelerated hydrolysis observed for fatty acids longer than 15 carbons. To further understand the motions associated with this acceleration, we collected 15N relaxation dispersion data for 14:0-, 15:0-, and 16:0-ACP. The greatest dispersions were exhibited by residues that form the entrance to the fatty acid binding pocket. In addition, these dispersions were observed to increase with the length of the fatty acid. Because the exchange rates derived from fitting the data to a two-state model varied from residue to residue, a more complex motional model appears to be required to adequately explain the dynamics. Thus, acyl-ACP offers an interesting system for future investigations of complex protein motions on the micro- and millisecond time scales. PMID:20014832

  13. [S-Acyl derivatives of thiosalicylamides having antifungal activity. II].

    PubMed

    Mazza, M; Modena, T; Montanari, L; Pavanetto, F

    1978-07-01

    Some S-acyl derivatives of N-alkylthiosalicylamides [Table I: substances (I leads to XXXI)] were prepared and tested for antifungal activity. The substances, most of which had not been previously reported, were prepared by condensation of 2-mercapto-N-alkylbenzamides with suitable acylating agents. The antifungal activity of the compounds was tested in vitro against Candida albicans and Trichophyton mentagrophytes. For some compounds the was tested activity against the above strains fungicidal, Candida tropicalis and Saccharomyces cerevisiae. Many of the compounds proved to have high antifungal activity comparable with that of Clotrimazol. The results extended knowledge on the structure-antifungal activity relationships of this class of compounds. The compounds with the highest antifungal activity were: 2-acetylmercapto-N,n-heptylbenzamide (XXVIII); 2-acetylmercapto-5-Cl-N,n-propylbenzamide (XIV); 2-acetylmercapto-N,n-octylbenzamide (XXXI); 2-acetylmercapto-N,n-pentylbenzamide (XXV); 2-acetylmercapto-N,n-hexylbenzamide (XXVII).

  14. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines.

    PubMed

    Wratil, Paul R; Horstkorte, Rüdiger; Reutter, Werner

    2016-08-08

    In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).

  15. Thiourea-Catalyzed Aminolysis of N-acyl Homoserine Lactones

    DTIC Science & Technology

    2013-01-01

    of N-acyl homoserine lactones (AHLs), molecules integral to bacterial quorum sensing . The catalysts afford rate enhancement of up to 10 times the...SUBJECT TERMS quorum sensing Michael A. Bertucci, Stephen J. Lee, Michel R. Gagné University of North Carolina - Chapel Hill Office of Sponsored... quorum sensing . The catalysts afford rate enhancement of up to 10 times the control in CD3CN. Mild catalysis in other polar aprotic solvents is

  16. Antinociceptive property of new 4-acyl-arylhydrazone pyrazole compounds.

    PubMed

    Matheus, M E; Oliveira, L F; Freitas, A C; Carvalho, A M; Barreiro, E J

    1991-01-01

    A series of new 4-acyl-arylhydrazone pyrazole compounds were tested for antinociceptive activity using the inhibition of abdominal contortions induced by acetylcholine (4 mg/kg, ip) in the mouse. Dipyrone was used for comparison of the antinociceptive potency of the compounds being tested. All drugs were administered po in saline (dipyrone) or in propylene glycol (4-acyl-arylhydrazones). The maximum response induced by dipyrone (86% inhibition) was assigned an efficacy index of 1.0. Although none of the compounds had an efficacy index greater than 1.0, all three reached 1.0. The two most potent compounds, W1d and W1g, which also had an efficacy similar to that of dipyrone, contain a p-N(CH3)2 and m-OH,p-OCH3 group in the aromatic ring of the acyl-hydrazone, respectively. W1d presented the lowest antinociceptive ED50 in the series (1.41 mg/kg) and was eleven times more potent than dipyrone (ED50 = 15.80 mg/kg). Other substitutions at the para position had lower potency than W1d. The present results indicate that the introduction of a group at the para position of the acyl-arylhydrazone ring increases the antinociceptive activity of these compounds to provide compounds of the same efficacy but greater potency than dipyrone to which these new compounds are structurally related. Other assays of nociceptive activity are being used to characterize the mechanism of action of the potential new drugs.

  17. Acylation type determines ghrelin's effects on energy homeostasis in rodents.

    PubMed

    Heppner, Kristy M; Chaudhary, Nilika; Müller, Timo D; Kirchner, Henriette; Habegger, Kirk M; Ottaway, Nickki; Smiley, David L; Dimarchi, Richard; Hofmann, Susanna M; Woods, Stephen C; Sivertsen, Bjørn; Holst, Birgitte; Pfluger, Paul T; Perez-Tilve, Diego; Tschöp, Matthias H

    2012-10-01

    Ghrelin is a gastrointestinal polypeptide that acts through the ghrelin receptor (GHSR) to promote food intake and increase adiposity. Activation of GHSR requires the presence of a fatty-acid (FA) side chain on amino acid residue serine 3 of the ghrelin molecule. However, little is known about the role that the type of FA used for acylation plays in the biological action of ghrelin. We therefore evaluated a series of differentially acylated peptides to determine whether alterations in length or stability of the FA side chain have an impact on the ability of ghrelin to activate GHSR in vitro or to differentially alter food intake, body weight, and body composition in vivo. Fatty acids principally available in the diet (such as palmitate C16) and therefore representing potential substrates for the ghrelin-activating enzyme ghrelin O-acyltransferase (GOAT) were used for dose-, time-, and administration/route-dependent effects of ghrelin on food intake, body weight, and body composition in rats and mice. Our data demonstrate that altering the length of the FA side chain of ghrelin results in the differential activation of GHSR. Additionally, we found that acylation of ghrelin with a long-chain FA (C16) delays the acute central stimulation of food intake. Lastly, we found that, depending on acylation length, systemic and central chronic actions of ghrelin on adiposity can be enhanced or reduced. Together our data suggest that modification of the FA side-chain length can be a novel approach to modulate the efficacy of pharmacologically administered ghrelin.

  18. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins.

    PubMed

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T; Goss, Rebecca J M; Field, Robert A; Osbourn, Anne

    2013-02-08

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.

  19. Six new acylated anthocyanins from red radish (Raphanus sativus).

    PubMed

    Tamura, Satoru; Tsuji, Kouji; Yongzhen, Piao; Ohnishi-Kameyama, Mayumi; Murakami, Nobutoshi

    2010-09-01

    Six new acylated anthocyanins (1-6) were isolated along with the three known congeners (7-9) from the fresh roots of red radishes (Raphanus sativus L.) cultivated by our group. Their chemical structures were elucidated by spectroscopic properties. Among the six new anthocyanins, the five constituents (1, 2, 4-6) were shown to contain the malonyl function at 6-OH in the glucopyranosyl residue linked to C-5 in the pelargonidin nucleus.

  20. A new cytotoxic acylated apigenin glucoside from Phyllanthus emblica L.

    PubMed

    El-Desouky, S K; Ryu, Shi Young; Kim, Young-Kyoon

    2008-01-10

    A new acylated apigenin glucoside (apigenin-7-O-(6''-butyryl-beta-glucopyranoside) (1) was isolated from the methanolic extract of the leaves of Phyllanthus emblica L. (Euphorbiaceae) together with the known compounds; gallic acid (2), methyl gallate (3), 1,2,3,4,6-penta-O-galloylglucose (4) and luteolin-4'-O-neohesperiodoside (5). Their chemical structures were elucidated on the basis of spectroscopic studies ((1)H NMR, (13)C NMR, DEPT, HSQC, HMBC).

  1. Novel B12-dependent Acyl-CoA Mutases and their Biotechnological Potential†

    PubMed Central

    Valentin, Cracan; Banerjee, Ruma

    2012-01-01

    The recent spate of discoveries of novel acyl-CoA mutases has engendered a growing appreciation for the diversity of 5′-deoxyadenosylcobalamin-dependent rearrangement reactions. The prototype of the reaction catalyzed by these enzymes is the 1,2 interchange of a hydrogen atom with a thioester group leading to a change in the degree of carbon skeleton branching. These enzymes are predicted to share common architectural elements: a Rossman fold and a TIM barrel domain for binding cofactor and substrate, respectively. Within this family, methylmalonyl-CoA mutase (MCM) is the best studied and is the only member found in organisms ranging from bacteria to man. MCM interconverts (2R)-methylmalonyl-CoA and succinyl-CoA. The more recently discovered family members include isobutyryl-CoA mutase (ICM), which interconverts isobutyryl-CoA and n-butyryl-CoA; ethylmalonyl-CoA mutase, which interconverts (2R)-ethylmalonyl-CoA and (2S)-methylsuccinyl-CoA, and 2-hydroxyisobutyryl-CoA mutase, which interconverts 2-hydroxyisobutyryl-CoA and (3S)-hydroxybutyryl-CoA. A variant in which the two subunits of ICM are fused to a G-protein chaperone, IcmF, has been described recently. In addition to its ICM activity, IcmF also catalyzes the interconversion of isovaleryl-CoA and pivalyl-CoA. This review focuses on the involvement of acyl-CoA mutases in central carbon and secondary bacterial metabolism and on their biotechnological potential for applications ranging from bioremediation to stereospecific synthesis of C2-C5 carboxylic acids and alcohols, and for production of potential commodity and specialty chemicals. PMID:22803641

  2. Metabolism of acyl-lipids in Chlamydomonas reinhardtii.

    PubMed

    Li-Beisson, Yonghua; Beisson, Fred; Riekhof, Wayne

    2015-05-01

    Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.

  3. Downregulation of Caffeic Acid 3-O-Methyltransferase and Caffeoyl CoA 3-O-Methyltransferase in Transgenic Alfalfa

    PubMed Central

    Guo, Dianjing; Chen, Fang; Inoue, Kentaro; Blount, Jack W.; Dixon, Richard A.

    2001-01-01

    Transgenic alfalfa plants were generated harboring caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) cDNA sequences under control of the bean phenylalanine ammonia-lyase PAL2 promoter. Strong downregulation of COMT resulted in decreased lignin content, a reduction in total guaiacyl (G) lignin units, a near total loss of syringyl (S) units in monomeric and dimeric lignin degradation products, and appearance of low levels of 5-hydroxy guaiacyl units and a novel dimer. No soluble monolignol precursors accumulated. In contrast, strong downregulation of CCOMT led to reduced lignin levels, a reduction in G units without reduction in S units, and increases in β-5 linked dimers of G units. Accumulation of soluble caffeic acid β-d-glucoside occurred only in CCOMT downregulated plants. The results suggest that CCOMT does not significantly contribute to the 3-O-methylation step in S lignin biosynthesis in alfalfa and that there is redundancy with respect to the 3-O-methylation reaction of G lignin biosynthesis. COMT is unlikely to catalyze the in vivo methylation of caffeic acid during lignin biosynthesis. PMID:11158530

  4. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity

    PubMed Central

    2011-01-01

    Background Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. Results To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. Conclusion These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids. PMID:21831316

  5. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development.

    PubMed

    Jin, Huanan; Song, Zhihong; Nikolau, Basil J

    2012-06-01

    Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT-encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T-DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol-localized, mevalonate-derived isoprenoid biosynthetic pathway.

  6. A pathogenic fungi diphenyl ether phytotoxin targets plant enoyl (acyl carrier protein) reductase.

    PubMed

    Dayan, Franck E; Ferreira, Daneel; Wang, Yan-Hong; Khan, Ikhlas A; McInroy, John A; Pan, Zhiqiang

    2008-07-01

    Cyperin is a natural diphenyl ether phytotoxin produced by several fungal plant pathogens. At high concentrations, this metabolite inhibits protoporphyrinogen oxidase, a key enzyme in porphyrin synthesis. However, unlike its herbicide structural analogs, the mode of action of cyperin is not light dependent, causing loss of membrane integrity in the dark. We report that this natural diphenyl ether inhibits Arabidopsis (Arabidopsis thaliana) enoyl (acyl carrier protein) reductase (ENR). This enzyme is also sensitive to triclosan, a synthetic antimicrobial diphenyl ether. Whereas cyperin was much less potent than triclosan on this target site, their ability to cause light-independent disruption of membrane integrity and inhibition of ENR is similar at their respective phytotoxic concentrations. The sequence of ENR is highly conserved within higher plants and a homology model of Arabidopsis ENR was derived from the crystal structure of the protein from Brassica napus. Cyperin mimicked the binding of triclosan in the binding pocket of ENR. Both molecules were stabilized by the pi-pi stacking interaction between one of their phenyl rings and the nicotinamide ring of the NAD(+). Furthermore, the side chain of tyrosine is involved in hydrogen bonding with a phenolic hydroxy group of cyperin. Therefore, cyperin may contribute to the virulence of the pathogens by inhibiting ENR and destabilizing the membrane integrity of the cells surrounding the point of infection.

  7. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed Central

    Stahl, U.; Banas, A.; Stymne, S.

    1995-01-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization. PMID:12228415

  8. Direct nonchromatographic assay for 1-acyl-sn-glycerol-3-phosphate acyltransferase

    SciTech Connect

    Rajasekharan, R.; Ray, T.K.; Cronan, J.E. Jr.

    1988-09-01

    1-Acyl-sn-glycerol-3-phosphate acyltransferase (also called lysophosphatidic acid acyltransferase) which catalyzes the acylation of 1-acyl-sn-glycerol-3-phosphate to phosphatidic acid is generally assayed by the use of a radioactive substrate followed by a time-consuming chromatographic separation of substrate and product. We report a direct and highly sensitive nonchromatographic assay for this enzyme based on the ability of Escherichia coli alkaline phosphatase to dephosphorylate 1-acyl-sn-glycerol-3-phosphate but not phosphatidic acid. This selective hydrolysis coupled with the use of /sup 32/P-labeled 1-acyl-sn-glycerol-3-phosphate as substrate permits measurement of the product, /sup 32/P-labeled phosphatidic acid by solvent extraction or precipitation. We also report a series of enzymatic reactions for the efficient conversion of /sup 32/Pi to /sup 32/P-labeled 1-acyl-sn-glycerol-3-phosphate.

  9. Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains

    NASA Astrophysics Data System (ADS)

    Crittenden, Christopher M.; Akin, Lucas D.; Morrison, Lindsay J.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2016-12-01

    Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages.

  10. Glycogen phosphorylase as a target for type 2 diabetes: synthetic, biochemical, structural and computational evaluation of novel N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors.

    PubMed

    Kantsadi, Anastassia L; Parmenopoulou, Vanessa; Bakalov, Dimitar N; Snelgrove, Laura; Stravodimos, George A; Chatzileontiadou, Demetra S M; Manta, Stella; Panagiotopoulou, Angeliki; Hayes, Joseph M; Komiotis, Dimitri; Leonidas, Demetres D

    2015-01-01

    Glycogen phosphorylase (GP), a validated target for the development of anti-hyperglycaemic agents, has been targeted for the design of novel glycopyranosylamine inhibitors. Exploiting the two most potent inhibitors from our previous study of N-acyl-β-D-glucopyranosylamines (Parmenopoulou et al., Bioorg. Med. Chem. 2014, 22, 4810), we have extended the linking group to -NHCONHCO- between the glucose moiety and the aliphatic/aromatic substituent in the GP catalytic site β-cavity. The N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors were synthesized and their efficiency assessed by biochemical methods, revealing inhibition constant values of 4.95 µM and 2.53 µM. Crystal structures of GP in complex with these inhibitors were determined and analyzed, providing data for further structure based design efforts. A novel Linear Response - Molecular Mechanics Coulomb Surface Area (LR-MM-CBSA) method has been developed which relates predicted and experimental binding free energies for a training set of N-acyl-N´-(β-D-glucopyranosyl) urea ligands with a correlation coefficient R(2) of 0.89 and leave-one-out cross-validation (LOO-cv) Q(2) statistic of 0.79. The method has significant applications to direct future lead optimization studies, where ligand entropy loss on binding is revealed as a key factor to be considered. ADMET property predictions revealed that apart from potential permeability issues, the synthesized N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors have drug-like potential without any toxicity warnings.

  11. ZrCl4-mediated regio- and chemoselective Friedel-Crafts acylation of indole.

    PubMed

    Guchhait, Sankar K; Kashyap, Maneesh; Kamble, Harshad

    2011-06-03

    An efficient method for regio- and chemoselective Friedel-Crafts acylation of indole using acyl chlorides in the presence of ZrCl(4) has been discovered. It minimizes/eliminates common competing reactions that occur due to high and multiatom-nucleophilic character of indole. In this method, a wide range of aroyl, heteroaroyl alkenoyl, and alkanoyl chlorides undergo smooth acylation with various indoles without NH protection and afford 3-acylindoles in good to high yields.

  12. Acute ethanol treatment induces a bimodal response of phospholipid acylation rates in rat red blood cells

    SciTech Connect

    Verine, A.; Valette, A.; Richard, D.; Boyer, J. )

    1991-01-01

    A single intraperitoneal injection of ethanol in rats elicited a bimodal response of acylation rates in phosphatidylcholine and phosphatidylethanolamine of intact red blood cells. Within an initial period, ethanol inhibited acylation rates. The inhibition then reversed, leading to increased values which persisted as long as ethanol was present in plasma. Acylation rates were not correlated to ethanol concentrations in plasma. The authors suggest that red cells first desensitize to, then overcompensate for the inhibitory effect of ethanol on acylation reactions. These adaptive changes may be one of the events mediating membrane tolerance to ethanol.

  13. A novel plasmid for detection of N-acyl homoserine lactones.

    PubMed

    Ling, Elizabeth A; Ellison, Matthew L; Pesci, Everett C

    2009-07-01

    Many bacteria utilize acyl-homoserine lactones as cell to cell signals that can regulate the expression of numerous genes. Structural differences in acyl-homoserine lactones produced by different bacteria, such as acyl side chain length and the presence or absence of an oxy group, make many of the commonly used detection bioassays impractical for broad range detection. Here we present a simple, broad range acyl-homoserine lactone detection bioassay that can be used to detect a wide range of these chemical signals. A plasmid (pEAL01) was constructed and transformed into Pseudomonas aeruginosa strain QSC105 to allow for detection of a broad range of acyl-homoserine lactones through induction of a lasB'-lacZ transcriptional fusion. Monitoring beta-galactosidase activity from this bioassay showed that P. aeruginosa strain QSC105 (pEAL01) could detect the presence of eight acyl-homoserine lactones tested at physiological concentrations. This novel strain could also detect acyl-homoserine lactones from the extracts of four different bacteria that produce different acyl-homoserine lactones signals. These data indicate that strain QSC105 (pEAL01) can be used to detect a wide variety of acyl-homoserine lactones by a simple beta-galactosidase assay and this bioassay could be a useful and inexpensive tool to quickly identify the presence of these signal molecules.

  14. Substrate specificity of THCA-CoA oxidases from rat liver light mitochondrial fractions on dehydrogenation of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid CoA thioester.

    PubMed

    Ikegawa, S; Goto, T; Mano, N; Goto, J

    1998-11-01

    The substrate specificity of rat liver peroxisomal 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoyl-CoA (THCA-CoA) oxidases, which catalyze the dehydrogenation of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) CoA thioester, having an asymmetric center at C-25, to form (24E)-3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholest-24-enoic acid (delta 24-THCA) CoA thioester, was studied. The stable isotope labeled substrates, [3,7,12-18O3]-(25R)- and (25S)-THCA CoA thioesters were synthesized by an exchange reaction of carbonyl oxygens on a steroid nucleus of 3,7,12-trioxo-5 beta-cholestanoic acid, followed by metal hydride reduction and condensation reaction with CoA. After incubation of a mixture of unlabeled (25R)- and 18O-labeled (25S)-THCA CoA thioester, or vice versa, with hepatic peroxisomal THCA-CoA oxidases, biotransformed delta 24-THCA was determined by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. The delta 24-THCA was derived only from (25S)-THCA CoA thioester, indicating that the 25S epimer of THCA is a preferential substrate on dehydrogenation by THCA-CoA oxidases.

  15. Unequal synthesis and differential degradation of propionyl CoA carboxylase subunits in cells from normal and propionic acidemia patients.

    PubMed Central

    Ohura, T; Kraus, J P; Rosenberg, L E

    1989-01-01

    We have characterized further the molecular basis of human inherited propionyl CoA carboxylase deficiency by measuring steady state levels of the mRNAs coding for the enzyme's two protein subunits (alpha and beta) and by estimating initial synthesis and steady state levels of the protein subunits in skin fibroblasts from controls and affected patients. We studied cell lines from both major complementation groups (pccA and pccBC) corresponding, respectively, to defects in the carboxylase's alpha and beta subunits. Analysis of pccA lines revealed the absence of alpha chain mRNA in three and an abnormally small alpha-mRNA in a fourth. Despite the presence of normal beta-mRNA in each of these pccA lines, there was complete absence of both alpha and beta protein subunits under steady state conditions, even though new synthesis and mitochondrial import of beta precursors was normal. Results in nine pccBC lines revealed normal alpha mRNA in each, while the amounts of beta-mRNA were distinctly reduced in every case. Correspondingly, alpha protein subunits were present in normal amounts at steady-state, but beta subunits were uniformly decreased. In addition, in six of the nine beta deficient cell lines, partially degraded beta-subunits were observed. To help interpret these results, synthesis and stability of carboxylase subunits were studied in intact HeLa cells using a pulse-chase protocol. Whereas alpha chains were stable over the four hour interval studied, beta chains--initially synthesized in large excess over alpha chains--were degraded rapidly reaching equivalence with alpha chains after two hours.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2741949

  16. Acylated flavonol glycosides from the flower of Elaeagnus angustifolia L.

    PubMed

    Bendaikha, Sarah; Gadaut, Méredith; Harakat, Dominique; Magid, Alabdul

    2014-07-01

    Seven acylated flavonol glycosides named elaeagnosides A-G, in addition to seven known flavonoids were isolated from the flowers of Elaeagnus angustifolia. Their structures were elucidated by different spectroscopic methods including 1D, 2D NMR experiments and HR-ESI-MS analysis. In order to identify natural antioxidant and tyrosinase inhibitor agents, the abilities of these flavonoids to scavenge the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and to inhibit tyrosinase activity were evaluated. Results revealed that two of these compounds had significant anti-oxidant effect and one compound showed weak tyrosinase-inhibitory activity compared with kojic acid, quercetin, or ascorbic acid, which were used as positive control.

  17. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives’ Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps

    PubMed Central

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  18. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    PubMed

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively.

  19. Acyl-CoA Synthetase Is Located in the Outer Membrane and Acyl-CoA Thioesterase in the Inner Membrane of Pea Chloroplast Envelopes 1

    PubMed Central

    Andrews, Jaen; Keegstra, Kenneth

    1983-01-01

    Both acyl-CoA synthetase and acyl-CoA thioesterase activities are present in chloroplast envelope membranes. The functions of these enzymes in lipid metabolism remains unresolved, although the synthetase has been proposed to be involved in either plastid galactolipid synthesis or the export of plastid-synthesized fatty acids to the cytoplasm. We have examined the locations of both enzymes within the two envelope membranes of pea (Pisum sativum var Laxton's Progress No. 9) chloroplasts. Inner and outer envelope membranes were purified from unfractionated envelope preparations by linear density sucrose gradient centrifugation. Acyl-CoA synthetase was located in the outer envelope membrane while acyl-CoA thioesterase was located in the inner envelope membrane. Thus, it seems unlikely that the synthetase is directly involved in galactolipid assembly. Instead, its localization supports the hypothesis that it functions in the transport of plastid-synthesized fatty acids to the endoplasmic reticulum. PMID:16663076

  20. Lipid binding proteins from parasitic platyhelminthes.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  1. Stereoelectronic basis for the kinetic resolution of N-heterocycles with chiral acylating reagents.

    PubMed

    Hsieh, Sheng-Ying; Wanner, Benedikt; Wheeler, Philip; Beauchemin, André M; Rovis, Tomislav; Bode, Jeffrey W

    2014-06-10

    The kinetic resolution of N-heterocycles with chiral acylating agents reveals a previously unrecognized stereoelectronic effect in amine acylation. Combined with a new achiral hydroxamate, this effect makes possible the resolution of various N-heterocycles by using easily prepared reagents. A transition-state model to rationalize the stereochemical outcome of this kinetic resolution is also proposed.

  2. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride.

    PubMed

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen.

  3. Ortho C-H Acylation of Aryl Iodides by Palladium/Norbornene Catalysis.

    PubMed

    Dong, Zhe; Wang, Jianchun; Ren, Zhi; Dong, Guangbin

    2015-10-19

    Reported herein is a palladium/norbornene-catalyzed ortho-arene acylation of aryl iodides by a Catellani-type C-H functionalization. This transformation is enabled by isopropyl carbonate anhydrides, which serve as both an acyl cation equivalent and a hydride source.

  4. The Role of Mitochondrial Non-Enzymatic Protein Acylation in Ageing

    PubMed Central

    Hong, Shin Yee; Ng, Li Theng; Ng, Li Fang; Inoue, Takao; Tolwinski, Nicholas S.; Hagen, Thilo; Gruber, Jan

    2016-01-01

    In recent years, various large-scale proteomic studies have demonstrated that mitochondrial proteins are highly acylated, most commonly by addition of acetyl and succinyl groups. These acyl modifications may be enzyme catalysed but can also be driven non-enzymatically. The latter mechanism is promoted in mitochondria due to the nature of the mitochondrial microenvironment, which is alkaline and contains high concentrations of acyl-CoA species. Protein acylation may modify enzyme activity, typically inhibiting it. We posited that organismal ageing might be accompanied by an accumulation of acylated proteins, especially in mitochondria, and that this might compromise mitochondrial function and contribute to ageing. In this study, we used R. norvegicus, C. elegans and D. melanogaster to compare the acylation status of mitochondrial proteins between young and old animals. We observed a specific age-dependent increase in protein succinylation in worms and flies but not in rat. Rats have two substrate-specific mitochondrial deacylases, SIRT3 and SIRT5 while both flies and worms lack these enzymes. We propose that accumulation of mitochondrial protein acylation contributes to age-dependent mitochondrial functional decline and that SIRT3 and SIRT5 enzymes may promote longevity through regulation of mitochondrial protein acylation during ageing. PMID:28033361

  5. Selective acylation of plasma membrane proteins of Mycoplasma agalactiae: the causal agent of agalactia.

    PubMed

    Le Hénaff, M; Guéguen, M M; Fontenelle, C

    2000-01-01

    Revealed by in vivo labeling with (14)C-palmitic acid, about 15 acylated proteins were identified in the plasma membrane of Mycoplasma agalactiae (type strain PG2), including the major component p40. Triton X-114 phase partitioning and Western blotting demonstrated the amphiphilic properties of the acyl proteins and showed that they were also antigenic components. Chemical analyses of fatty acids bound to proteins revealed the following selectivity order within acylation: stearic acid (18:0) > linoleic acid (18:2c) approximately palmitic acid (16:0) > oleic acid (18:1c) > myristic acid (14:0), with 16:0 and 18:1c preferred for the O-acylation and 18:0 for the N-acylation. The ratio [O-ester- + amide-bound acyl chains]/O-ester-linked chains being close to 1.4 as well as the presence of S-glycerylcysteine suggest that acyl proteins in M. agalactiae are true lipoproteins containing N-acyl diacyl glycerylcysteine, probably processed by a mechanism analogous to that described for Gram-negative eubacteria.

  6. Influence of BH3 and alkaline cation released from the reduction agent on a tandem reduction/acylation reaction-A computational study

    NASA Astrophysics Data System (ADS)

    Petkova, Nevena I.; Nikolova, Rositca D.; Bojilova, Anka G.; Vayssilov, Georgi N.

    When an alkaline boron hydride is used as reduction reagent two byproducts are released, BH3 and alkaline cation, and both of them could influence the following reaction steps if a multi-step reaction is performed in tandem one-pot fashion. We report a theoretical study on the stability of possible complexes of the Lewis acids, BH3 and alkaline cations, with reaction intermediate, solvent molecules and basic additives in a tandem hydride reduction/acylation reaction of 3-diethylphosphonocoumarin. Both chelate complexes of the intermediate anion with the alkali cations (Li+, Na+, or K+) and complexes of BH3 bound to C or O center of the ambident anionic intermediate have been investigated. Since the formation of the latter complexes blocks the intermediate for further acylation, the reaction could take place only if BH3 is bound in a complex with a strong base as DMAP. The binding energy of BH3 to DMAP was found higher than to the intermediate for Li+ and Na+ as counter cations, while for K+ BH3 is bound to the intermediate stronger than to DMAP. Formation of the intermediate is facilitated in presence of Li+ cations, but the alteration of the alkali cation does not influence the selectivity of the reaction-C-acylations is preferred in all cases.

  7. COA User's Guide

    SciTech Connect

    Fox, B.; Pautz, J.; Sellers, C.

    1999-01-28

    The Department of Energy (DOE) has one of the largest and most complete collections of information on crude oil composition that is available to the public. The computer program that manages this database of crude oil analyses has recently been rewritten to allow easier access to this information. This report describes how the new system can be accessed and how the information contained in the Crude Oil Analysis Data Bank can be obtained.

  8. Impact of intracerebroventricular obestatin on plasma acyl ghrelin, des-acyl ghrelin and nesfatin-1 levels, and on gastric emptying in rats.

    PubMed

    Chen, Chih-Yen; Lee, Wei-Jei; Chong, Keong; Lee, Shou-Dong; Liao, You-Di

    2012-07-01

    Obestatin, which is a putative 23-amino-acid peptide, is derived from the C-terminal part of the mammalian preproghrelin gene. Nesfatin-1 mRNA is co-expressed with ghrelin in gastric endocrine X/A-like cells; therefore, nesfatin-1 may also interact with preproghrelin gene products in the stomach. In this study, we investigated the impact of obestatin on the plasma levels of acyl ghrelin, des-acyl ghrelin and nesfatin-1, and on the gastric emptying of a solid nutrient meal 2 h after an intracerebroventricular (ICV) injection in conscious, fasted rats. The rats were implanted with ICV catheters. Plasma levels of acyl ghrelin, des-acyl ghrelin and nesfatin-1, expected to be co-expressed with obestatin, were measured, whereas the human/rat corticotropin-releasing factor (h/rCRF) was applied as an inhibitor of gastric emptying. The ICV administration of obestatin (0.1, 0.3 and 1.0 nmol/rat) did not modify the plasma acyl ghrelin and des-acyl ghrelin levels, the acyl ghrelin/des-acyl ghrelin ratio and nesfatin-1 concentrations. The ICV acute administration of obestatin had no influence on the 2-h rate of gastric emptying of a solid nutrient meal, but the ICV h/rCRF injection delayed it. The weight of food ingested 1 h before ICV injection significantly, but negatively correlated with the gastric emptying of a solid nutrient meal. Our study indicates that the ICV injection of obestatin does not change the 2-h rate of gastric emptying of a solid nutrient meal and the relatively weak interrelationships between ghrelin gene products and nesfatin-1. However, the weight of the ingested food negatively affects the gastric emptying of a solid nutrient meal in conscious, fasted rats.

  9. Non-enzymatic protein acylation as a carbon stress regulated by sirtuin deacylases

    PubMed Central

    Wagner, Gregory R.; Hirschey, Matthew D.

    2014-01-01

    Cellular proteins are decorated with a wide range of acetyl and other acyl modifications. Many studies have demonstrated regulation of site-specific acetylation by acetyltransferases and deacetylases. Acylation is emerging as a new type of lysine modification, but less is known about its overall regulatory role. Furthermore, the mechanisms of lysine acylation, its overlap with protein acetylation, and how it influences cellular function are major unanswered questions in the field. In this review, we discuss the known roles of acetyltransferases and deacetylases, and the sirtuins as a conserved family of NAD+-dependent protein deacylases that are important for response to cellular stress and homeostasis. We also consider the evidence for an emerging idea of non-enzymatic protein acylation. Finally, we put forward the hypothesis that protein acylation is a form of protein “carbon stress”, that the deacylases evolved to remove as a part of a global protein quality control network. PMID:24725594

  10. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs.

    PubMed

    Mathew, Basil; Nagaraj, Ramakrishnan

    2015-09-01

    Human α-defensin 5 (HD5) exhibits broad spectrum antimicrobial activity and plays an important role in mucosal immunity of the small intestine. Although there have been several studies, the structural requirements for activity and mechanism of bacterial killing is yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD5 and linear analogs. Cysteine deletions attenuated the antibacterial activity considerably. Candidacidal activity was affected to a lesser extent. Fatty acid conjugated linear analogs showed antimicrobial activity comparable activity to HD5. Effective surface charge neutralization of bacteria was observed for HD5 as compared to the non-fatty acylated linear analogs. Our results show that HD5 and non-fatty acylated linear analogs enter the bacterial cytoplasm without causing damage to the bacterial inner membrane. Although fatty acylated peptides exhibited antimicrobial activity comparable to HD5, their mechanism of action involved permeabilization of the Escherichia coli inner membrane. HD5 and analogs had the ability to bind plasmid DNA. HD5 had greater binding affinity to plasmid DNA as compared to the analogs. The three dimensional structure of HD5 favors greater interaction with the bacterial cell surface and also with DNA. Antibacterial activity of HD5 involves entry into bacterial cytoplasm and binding to DNA which would result in shut down of the bacterial metabolism leading to cell death. We show how a moderately active linear peptide derived from the α-defensin HD5 can be engineered to enhance antimicrobial activity almost comparable to the native peptide.

  11. Neutralization of acidic residues in helix II stabilizes the folded conformation of acyl carrier protein and variably alters its function with different enzymes.

    PubMed

    Gong, Huansheng; Murphy, Anne; McMaster, Christopher R; Byers, David M

    2007-02-16

    Acyl carrier protein (ACP), a small protein essential for bacterial growth and pathogenesis, interacts with diverse enzymes during the biosynthesis of fatty acids, phospholipids, and other specialized products such as lipid A. NMR and hydrodynamic studies have previously shown that divalent cations stabilize native helical ACP conformation by binding to conserved acidic residues at two sites (A and B) at either end of the "recognition" helix II. To examine the roles of these amino acids in ACP structure and function, site-directed mutagenesis was used to replace individual site A (Asp-30, Asp-35, Asp-38) and site B (Glu-47, Glu-53, Asp-56) residues in recombinant Vibrio harveyi ACP with the corresponding amides, along with combined mutations at each site (SA, SB) or both sites (SA/SB). Like native V. harveyi ACP, all individual mutants were unfolded at neutral pH but adopted a helical conformation in the presence of millimolar Mg(2+) or upon fatty acylation. Mg(2+) binding to sites A or B independently stabilized native ACP conformation, whereas mutant SA/SB was folded in the absence of Mg(2+), suggesting that charge neutralization is largely responsible for ACP stabilization by divalent cations. Asp-35 in site A was critical for holo-ACP synthase activity, while acyl-ACP synthetase and UDP-N-acetylglucosamine acyltransferase (LpxA) activities were more affected by mutations in site B. Both sites were required for fatty acid synthase activity. Overall, our results indicate that divalent cation binding site mutations have predicted effects on ACP conformation but unpredicted and variable consequences on ACP function with different enzymes.

  12. Steady state fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1) and its active site mutants.

    PubMed

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Singh, Somesh; Gaikwad, Sushama; Khan, Bashir M

    2014-05-01

    Fluorescence quenching and time resolved fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1), a multitryptophan protein from Leucaena leucocephala and 10 different active site mutants were carried out to investigate tryptophan environment. The enzyme showed highest affinity for feruloyl CoA (K(a)  = 3.72 × 10(5) M(-1)) over other CoA esters and cinnamaldehydes, as determined by fluorescence spectroscopy. Quenching of the fluorescence by acrylamide for wild type and active site mutants was collisional with almost 100% of the tryptophan fluorescence accessible under native condition and remained same after denaturation of protein with 6 M GdnHCl. In wild type Ll-CCRH1, the extent of quenching achieved with iodide (f(a) = 1.0) was significantly higher than cesium ions (f(a) = 0.33) suggesting more density of positive charge around surface of trp conformers under native conditions. Denaturation of wild type protein with 6 M GdnHCl led to significant increase in the quenching with cesium (f(a) = 0.54), whereas quenching with iodide ion was decreased (f(a) = 0.78), indicating reorientation of charge density around trp from positive to negative and heterogeneity in trp environment. The Stern-Volmer plots for wild type and mutants Ll-CCRH1 under native and denatured conditions, with cesium ion yielded biphasic quenching profiles. The extent of quenching for cesium and iodide ions under native and denatured conditions observed in active site mutants was significantly different from wild type Ll-CCRH1 under the same conditions. Thus, single substitution type mutations of active site residues showed heterogeneity in tryptophan microenvironment and differential degree of conformation of protein under native or denatured conditions.

  13. Effect of Genistein and L-Carnitine and Their Combination on Gene Expression of Hepatocyte HMG-COA Reductase and LDL Receptor in Experimental Nephrotic Syndrome

    PubMed Central

    YOUSEFINEJAD, Abbas; SIASSI, Fereydoon; MIRSHAFIEY, Abbas; ESHRAGHIAN, Mohammad-Reza; KOOHDANI, Fariba; JAVANBAKHT, Mohammad Hassan; SEDAGHAT, Reza; RAMEZANI, Atena; ZAREI, Mahnaz; DJALALI, Mahmoud

    2015-01-01

    Background: Nephrotic syndrome is a disorder that leads to hyperlipidemia. L-carnitine and genistein can effect on lipid metabolism and the syndrome. In the present study, we have delved into the separate and the twin-effects of L-carnitine and genistein on the gene expressions of HMG-COA reductase and LDL receptor in experimental nephrotic syndrome. Methods: In this controlled experimental study, 50 male Sprague–Dawley rats were randomly divided into five groups: NC (normal-control), PC (patient-control), LC (L-carnitine), G (genistein), LCG (L-carnitine-genistein). Adriamycin was used for inducing nephrotic syndrome and the spot urine samples and urine protein-to-creatinine ratio were measured. Hepatocytic RNA was extracted and real-time PCR was used for HMG-COA Reductase and LDL receptor gene Expression measurement. Results: The final weight of the patients groups were lower than the NC group (P=0.001), and weight gain of the NC group was higher than the other groups (P<0.001). The proteinuria and urine protein-to-creatinine ratio showed significant differences between PC group and LC, G and LCG groups at week 7 (P<0.001). The expression of HMGCOA Reductase mRNA down regulated in LC, G and LCG groups in comparison with PC group (P<0.001). ΔCT of LDLr mRNA showed significant differences between the PC group and the other patient groups (P<0.001). Conclusion: This study shows a significant decreasing (P<0.001) and non-significant increasing trend in HMG-COA Reductase and LDLr gene expression, respectively, and synergistic effect of L-carnitine and genistein on these genes in experimental nephrotic syndrome. PMID:26576346

  14. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.

    PubMed

    Liu, Shi; Zainuddin, Ima M; Vanderschuren, Herve; Doughty, James; Beeching, John R

    2017-03-18

    Cassava (Manihot esculenta Crantz) is a major world crop, whose storage roots provide food for over 800 million throughout the humid tropics. Despite many advantages as a crop, the development of cassava is seriously constrained by the rapid post-harvest physiological deterioration (PPD) of its roots that occurs within 24-72 h of harvest, rendering the roots unpalatable and unmarketable. PPD limits cassava's marketing possibilities in countries that are undergoing increased development and urbanisation due to growing distances between farms and consumers. The inevitable wounding of the roots caused by harvesting triggers an oxidative burst that spreads throughout the cassava root, together with the accumulation of secondary metabolites including phenolic compounds, of which the coumarin scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one) is the most abundant. Scopoletin oxidation yields a blue-black colour, which suggests its involvement in the discoloration observed during PPD. Feruloyl CoA 6'-hydroxylase is a controlling enzyme in the biosynthesis of scopoletin. The cassava genome contains a seven membered family of feruloyl CoA 6'-hydroxylase genes, four of which are expressed in the storage root and, of these, three were capable of functionally complementing Arabidopsis T-DNA insertion mutants in this gene. A RNA interference construct, designed to a highly conserved region of these genes, was used to transform cassava, where it significantly reduced feruloyl CoA 6'-hydroxylase gene expression, scopoletin accumulation and PPD symptom development. Collectively, our results provide evidence that scopoletin plays a major functional role in the development of PPD symptoms, rather than merely paralleling symptom development in the cassava storage root.

  15. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl...

  16. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl...

  17. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting...

  18. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting...

  19. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting...

  20. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting...

  1. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting...

  2. Impact of self-assembly properties on antibacterial activity of short acyl-lysine oligomers.

    PubMed

    Sarig, Hadar; Rotem, Shahar; Ziserman, Lior; Danino, Dganit; Mor, Amram

    2008-12-01

    We investigated both the structural and functional consequences of modifying the hydrophobic, lipopeptide-mimetic oligo-acyl-lysine (OAK) N(alpha)-hexadecanoyl-l-lysyl-l-lysyl-aminododecanoyl-l-lysyl-amide (c(16)KKc(12)K) to its unsaturated analog hexadecenoyl-KKc(12)K [c(16(omega7))KKc(12)K]. Despite similar tendencies for self-assembly in solution (critical aggregation concentrations, approximately 10 muM), the analogous OAKs displayed dissimilar antibacterial properties (e.g., bactericidal kinetics taking minutes versus hours). Diverse experimental evidence provided insight into these discrepancies: whereas c(16(omega7))KKc(12)K created wiry interconnected nanofiber networks, c(16)KKc(12)K formed both wider and stiffer fibers which displayed distinct binding properties to phospholipid membranes. Unsaturation also shifted their gel-to-liquid transition temperatures and altered their light-scattering properties, suggesting the disassembly of c(16(omega7))KKc(12)K in the presence of bacteria. Collectively, the data indicated that the higher efficiency in interfering with bacterial viability emanated from a wobbly packing imposed by a single double bond. This suggests that similar strategies might improve hydrophobic OAKs and related lipopeptide antibiotics.

  3. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea.

    PubMed Central

    Ohlrogge, J B; Kuhn, D N; Stumpf, P K

    1979-01-01

    This communication demonstrates that all de novo fatty acid biosynthesis in spinach leaf cells requires acyl carrier protein (ACP) and occurs specifically in the chloroplasts. Antibodies raised to purified spinach ACP inhibited at least 98% of malonyl CoA-dependent fatty acid synthesis by spinach leaf homogenates. Therefore, the presence of ACP in a compartment of the spinach leaf cell would serve as a marker for de novo fatty acid biosynthesis. A radioimmunoassay capable of detecting 10(15) mol (10(-11) g) of spinach ACP was developed to measure the levels of ACP in leaf cell components isolated by sucrose gradient centrifugation of a gentle lysate of spinach leaf protoplasts. All of the ACP of the leaf cell could be attributed to the chloroplast. Less than 1% of the ACP associated with chloroplasts resulted from binding of free ACP to chloroplasts. Of interest, ACP from Escherichia coli, soybean, and sunflower showed only partial crossreactivity with spinach ACP by the radioimmunoassay. These results strongly suggest that, in the leaf cell, chloroplasts are the sole site for the de novo synthesis of C16 and C18 fatty acids. These fatty acids are then transported into the cytoplasm for further modification and are either inserted into extrachloroplastic membrane lipids or returned to the chloroplast for insertion into lamellar membrane lipids. PMID:286305

  4. A rational approach to identify inhibitors of Mycobacterium tuberculosis enoyl acyl carrier protein reductase.

    PubMed

    Chhabria, Mahesh T; Parmar, Kailash B; Brahmkshatriya, Pathik S

    2013-01-01

    Mycobacterial enoyl acyl carrier protein (ACP) reductase is an attractive target for focused design of novel antitubercular agents. Structural information available on enoyl-ACP reductase in complex with different ligands was used to generate receptor-based pharmacophore model in Discovery Studio (DS). In parallel, pharmacophore models were also generated using ligand-based approach (HypoGen module in DS). Statistically significant models were generated (r(2) = 0.85) which were found to be predictive as indicated from internal and external cross-validations. The model was used as a query tool to search Zinc and Maybridge databases to identify lead compounds and predict their activity in silico. Database searching retrieved many potential lead compounds having better estimated IC50 values than the training set compounds. These compounds were then evaluated for their drug-likeliness and pharmacokinetic properties using DS. Few selected compounds were then docked into the crystal structure of enoyl-ACP reductase using Dock 6.5. Most compounds were found to have high score values, which was found to be consistent with the results from pharmacophore mapping. Additionally, molecular docking provided useful insights into the nature of binding of the identified hit molecules. In summary, we show a useful strategy employing ligand- and structure-based approaches (pharmacophore modeling coupled with molecular docking) to identify new enoyl- ACP reductase inhibitors for antimycobacterial chemotherapy.

  5. Antibacterial Properties of an Oligo-Acyl-Lysyl Hexamer Targeting Gram-Negative Species

    PubMed Central

    Zaknoon, Fadia; Goldberg, Keren; Sarig, Hadar; Epand, Raquel F.; Epand, Richard M.

    2012-01-01

    Toward developing new tools for fighting resistance to antibiotics, we investigated the antibacterial properties of a new decanoyl-based oligo-acyl-lysyl (OAK) hexamer, aminododecanoyl-lysyl-[aminodecanoyl-lysyl]5 (α12-5α10). The OAK exhibited preferential activity against Gram-negative bacteria (GNB), as determined using 36 strains, including diverse species, with an MIC90 of 6.2 μM. The OAK's bactericidal mode of action was associated with rapid membrane depolarization and cell permeabilization, suggesting that the inner membrane was the primary target, whereas the observed binding affinity to lipoteichoic acid suggested that inefficacy against Gram-positive species resulted from a cell wall interaction preventing α12-5α10 from reaching internal targets. Interestingly, perturbation of the inner membrane structure and function was preserved at sub-MIC values. This prompted us to assess the OAK's effect on the proton motive force-dependent efflux pump AcrAB-TolC, implicated in the low sensitivity of GNB to various antibiotics, including erythromycin. We found that under sub-MIC conditions, wild-type Escherichia coli was significantly more sensitive to erythromycin (the MIC dropped by >10-fold), unlike its acr-deletion mutant. Collectively, the data suggest a useful approach for treating GNB infections through overcoming antibiotic efflux. PMID:22751534

  6. Membrane anchoring of diacylglycerol lactones substituted with rigid hydrophobic acyl domains correlates with biological activities.

    PubMed

    Raifman, Or; Kolusheva, Sofiya; Comin, Maria J; Kedei, Noemi; Lewin, Nancy E; Blumberg, Peter M; Marquez, Victor E; Jelinek, Raz

    2010-01-01

    Synthetic diacylglycerol lactones (DAG lactones) are effective modulators of critical cellular signaling pathways downstream of the lipophilic second messenger diacylglycerol that activate a host of protein kinase C (PKC) isozymes as well as other non-kinase proteins that share with PKC similar C1 membrane-targeting domains. A fundamental determinant of the biological activity of these amphiphilic molecules is the nature of their interactions with cellular membranes. This study characterizes the membrane interactions and bilayer anchoring of a series of DAG lactones in which the hydrophobic moiety is a 'molecular rod', namely a rigid 4-[2-(R-phenyl)ethynyl]benzoate moiety in the acyl position. Use of assays employing chromatic biomimetic vesicles and biophysical techniques revealed that the mode of membrane anchoring of the DAG lactone derivatives was markedly affected by the presence of the hydrophobic diphenyl rod and by the size of the functional unit at the terminus of the rod. Two primary mechanisms of interaction were observed: surface binding of the DAG lactones at the lipid/water interface and deep insertion of the ligands into the alkyl core of the lipid bilayer. These membrane-insertion properties could explain the different patterns of the PKC translocation from the cytosol to membranes that is induced by the molecular-rod DAG lactones. This investigation emphasizes that the side residues of DAG lactones, rather than simply conferring hydrophobicity, profoundly influence membrane interactions, and thus may further contribute to the diversity of biological actions of these synthetic biomimetic ligands.

  7. Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission.

    PubMed

    Gallop, Jennifer L; Butler, P Jonathan G; McMahon, Harvey T

    2005-12-01

    Endophilins have been proposed to have an enzymatic activity (a lysophosphatidic acid acyl transferase or LPAAT activity) that can make phosphatidic acid in membranes. This activity is thought to change the bilayer asymmetry in such a way that negative membrane curvature at the neck of a budding vesicle will be stabilized. An LPAAT activity has also been proposed for CtBP/BARS (carboxy-terminal binding protein/brefeldin A-ribosylated substrate), a transcription co-repressor that is implicated in dynamin-independent endocytosis and fission of the Golgi in mitosis. Here we show that the LPAAT activity associated with endophilin is a contaminant of the purification procedure and can be also found associated with the pleckstrin homology domain of dynamin. Likewise, the LPAAT activity associated with CtBP/BARS is also a co-purification artefact. The proposed locus of activity in endophilins includes the BAR domain, which has no catalytic site but instead senses positive membrane curvature. These data will prompt a re-evaluation of the molecular details of membrane budding.

  8. 248-nm laser photolysis of CHBr3/O-atom mixtures: kinetic evidence for UV CO(A) chemiluminescence in the reaction of methylidyne radicals with atomic oxygen.

    PubMed

    Vaghjiani, Ghanshyam L

    2005-03-17

    The 4th positive and Cameron band emissions from electronically excited CO have been observed for the first time in 248-nm pulsed laser photolysis of a trace amount of CHBr(3) vapor in an excess of O atoms. O atoms were produced by dissociation of N(2)O (or O(2)) in a cw-microwave discharge cavity in 2.0 Torr of He at 298 K. The CO emission intensity in these bands showed a quadratic dependence on the laser fluence employed. Temporal profiles of the CO(A) and other excited-state products that formed in the photoproduced precursor + O-atom reactions were measured by recording their time-resolved chemiluminescence in discrete vibronic bands. The CO 4th positive transition (A(1)Pi, v' = 0 --> X(1)Sigma(+), v' ' = 2) near 165.7 nm was monitored in this work to deduce the pseudo-first-order decay kinetics of the CO(A) chemiluminescence in the presence of various added substrates (CH(4), NO, N(2)O, H(2), and O(2)). From this, the second-order rate coefficient values were determined for reactions of these substrates with the photoproduced precursors. The measured reactivity trends suggest that the prominent precursors responsible for the CO(A) chemiluminescence are the methylidyne radicals, CH(X(2)Pi) and CH(a(4)Sigma(-)), whose production requires the absorption of at least 2 laser photons by the photolysis mixture. The O-atom reactions with brominated precursors (CBr, CHBr, and CBr(2)), which also form in the photolysis, are shown to play a minor role in the production of the CO(A or a) chemiluminescence. However, the CBr(2) + O-atom reaction was identified as a significant source for the 289.9-nm Br(2) chemiluminescence that was also observed in this work. The 282.2-nm OH and the 336.2-nm NH chemiluminescences were also monitored to deduce the kinetics of CH(X(2)Pi) and CH(a(4)Sigma(-)) reactions when excess O(2) and NO were present.

  9. Epoxomicin and Eponemycin Biosynthesis Involves gem-Dimethylation and an Acyl-CoA Dehydrogenase-Like Enzyme.

    PubMed

    Zettler, Judith; Zubeil, Florian; Kulik, Andreas; Grond, Stephanie; Kaysser, Leonard

    2016-05-03

    The α',β'-epoxyketone moiety of proteasome inhibitors confers high binding specificity to the N-terminal threonine in catalytic proteasome β-subunits. We recently identified the epoxomicin and eponemycin biosynthetic gene clusters and have now conducted isotope-enriched precursor feeding studies and comprehensive gene deletion experiments to shed further light on their biosynthetic pathways. Leucine and two methyl groups from S-adenosylmethionine were readily incorporated into the epoxyketone warhead, suggesting decarboxylation of the thioester intermediate. Formation of the α',β'-epoxyketone is likely mediated by conserved acyl-CoA dehydrogenase-like enzymes, as indicated by complete loss of epoxomicin and eponemycin production in the respective knockout mutants. Our results clarify crucial questions in the formation of epoxyketone compounds and lay the foundation for in vitro biochemical studies on the biosynthesis of this pharmaceutically important class of proteasome inhibitors.

  10. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2016-01-01

    Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single base pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed, pathogen-specific antibiotics have the potential to overcome this liability. PMID:26931811

  11. Production of acylated homoserine lactone by a novel marine strain of Proteus vulgaris and inhibition of its swarming by phytochemicals.

    PubMed

    Biswa, Pramal; Doble, Mukesh

    2014-10-01

    A marine strain of Proteus vulgaris capable of activating multiple acylated homoserine lactone (AHL)-based reporter cultures was isolated. The cognate signal molecule was characterized as octanoyl homoserine lactone (OHL) and its production was observed to be growth dependent, with maximum production (5.675 µg l(-1)) at 24 h growth. The strain exhibited swarming, but its motility was not affected upon addition of pure OHL or culture supernatant. Phytochemicals such as quercitin and berberine chloride inhibited OHL production and reduced swarming. FliA, the predominantly upregulated protein during swarming, was considered as a possible target for these inhibitors, and docking of the two most active and two least active inhibitors to this protein suggested preferential binding of the former set of compounds. Apart from adding new evidence to AHL production in Proteus vulgaris, active inhibitors shortlisted from this study could help in identifying lead compounds to act against this opportunistic pathogen of the respiratory and gastrointestinal tract.

  12. A simple method for isolation and construction of markerless cyanobacterial mutants defective in acyl-acyl carrier protein synthetase.

    PubMed

    Kojima, Kouji; Keta, Sumie; Uesaka, Kazuma; Kato, Akihiro; Takatani, Nobuyuki; Ihara, Kunio; Omata, Tatsuo; Aichi, Makiko

    2016-12-01

    Cyanobacterial mutants defective in acyl-acyl carrier protein synthetase (Aas) secrete free fatty acids (FFAs) into the external medium and hence have been used for the studies aimed at photosynthetic production of biofuels. While the wild-type strain of Synechocystis sp. PCC 6803 is highly sensitive to exogenously added linolenic acid, mutants defective in the aas gene are known to be resistant to the externally provided fatty acid. In this study, the wild-type Synechocystis cells were shown to be sensitive to lauric, oleic, and linoleic acids as well, and the resistance to these fatty acids was shown to be enhanced by inactivation of the aas gene. On the basis of these observations, we developed an efficient method to isolate aas-deficient mutants from cultures of Synechocystis cells by counter selection using linoleic acid or linolenic acid as the selective agent. A variety of aas mutations were found in about 70 % of the FFA-resistant mutants thus selected. Various aas mutants were isolated also from Synechococcus sp. PCC 7002, using lauric acid as a selective agent. Selection using FFAs was useful also for construction of markerless aas knockout mutants from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002. Thus, genetic engineering of FFA-producing cyanobacterial strains would be greatly facilitated by the use of the FFAs for counter selection.

  13. Thyroid receptor ligands. Part 8: Thyromimetics derived from N-acylated-alpha-amino acid derivatives displaying modulated pharmacological selectivity compared with KB-141.

    PubMed

    Garg, Neeraj; Li, Yi-Lin; Garcia Collazo, Ana Maria; Litten, Chris; Ryono, Denis E; Zhang, Minsheng; Caringal, Yolanda; Brigance, Robert P; Meng, Wei; Washburn, William N; Agback, Peter; Mellström, Karin; Rehnmark, Stefan; Rahimi-Ghadim, Mahmoud; Norin, Thomas; Grynfarb, Marlena; Sandberg, Johnny; Grover, Gary; Malm, Johan

    2007-08-01

    Based on the scaffold of the pharmacologically selective thyromimetic 2b, structurally a close analog to KB-141 (2a), a number of novel N-acylated-alpha-amino acid derivatives were synthesized and tested in a TR radioligand binding assay as well as in a reporter cell assay. On the basis of TRbeta(1)-isoform selectivity and affinity, as well as affinity to the reporter cell assay, 3d was selected for further studies in the cholesterol-fed rat model. In this model 3d revealed an improved therapeutic window between cholesterol and TSH lowering but decreased margins versus tachycardia compared with 2a.

  14. Synthesis of 3-tetrazolylmethyl-azepino[4,5-b]indol-4-ones in two reaction steps: (Ugi-azide/N-acylation/SN2)/free radical cyclization and docking studies to a 5-Ht(6) model.

    PubMed

    Gordillo-Cruz, Raul E; Rentería-Gómez, Angel; Islas-Jácome, Alejandro; Cortes-García, Carlos J; Díaz-Cervantes, Erik; Robles, Juvencio; Gámez-Montaño, Rocío

    2013-10-14

    A series of nine novel 3-tetrazolylmethyl-azepino[4,5-b]indol-4-ones were prepared in moderate to good overall yields in only two reaction steps. The first step consisted of a one-pot sequential process of an Ugi-azide multicomponent reaction, N-acylation and SN2 to give the xanthates. The second step was an intramolecular cyclization under free radical conditions. Also, their binding modes have been modelled using docking techniques.

  15. Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA.

    PubMed

    Uchino, Keiichi; Saito, Terumi; Gebauer, Birgit; Jendrossek, Dieter

    2007-11-01

    Poly(3-hydroxybutyrate) (PHB) granules isolated in native form (nPHB granules) from Ralstonia eutropha catalyzed formation of PHB from (14)C-labeled acetyl coenzyme A (CoA) in the presence of NADPH and concomitantly released CoA, revealing that PHB biosynthetic proteins (acetoacetyl-CoA thiolase, acetoacetyl-CoA reductase, and PHB synthase) are present and active in isolated nPHB granules in vitro. nPHB granules also catalyzed thiolytic cleavage of PHB in the presence of added CoA, resulting in synthesis of 3-hydroxybutyryl-CoA (3HB-CoA) from PHB. Synthesis of 3HB-CoA was also shown by incubation of artificial (protein-free) PHB with CoA and PhaZa1, confirming that PhaZa1 is a PHB depolymerase catalyzing the thiolysis reaction. Acetyl-CoA was the major product detectable after incubation of nPHB granules in the presence of NAD(+), indicating that downstream mobilizing enzyme activities were also present and active in isolated nPHB granules. We propose that intracellular concentrations of key metabolites (CoA, acetyl-CoA, 3HB-CoA, NAD(+)/NADH) determine whether a cell accumulates or degrades PHB. Since the degradation product of PHB is 3HB-CoA, the cells do not waste energy by synthesis and degradation of PHB. Thus, our results explain the frequent finding of simultaneous synthesis and breakdown of PHB.

  16. Unusual Heme Iron-Lipid Acyl Chain Coordination in Escherichia coli Flavohemoglobin

    PubMed Central

    D'Angelo, Paola; Lucarelli, Debora; della Longa, Stefano; Benfatto, Maurizio; Hazemann, Jean Louis; Feis, Alessandro; Smulevich, Giulietta; Ilari, Andrea; Bonamore, Alessandra; Boffi, Alberto

    2004-01-01

    Escherichia coli flavohemoglobin is endowed with the notable property of binding specifically unsaturated and/or cyclopropanated fatty acids both as free acids or incorporated into a phospholipid molecule. Unsaturated or cyclopropanated fatty acid binding to the ferric heme results in a spectral change observed in the visible absorption, resonance Raman, extended x-ray absorption fine spectroscopy (EXAFS), and x-ray absorption near edge spectroscopy (XANES) spectra. Resonance Raman spectra, measured on the flavohemoglobin heme domain, demonstrate that the lipid (linoleic acid or total lipid extracts)-induced spectral signals correspond to a transition from a five-coordinated (typical of the ligand-free protein) to a hexacoordinated, high spin heme iron. EXAFS and XANES measurements have been carried out both on the lipid-free and on the lipid-bound protein to assign the nature of ligand in the sixth coordination position of the ferric heme iron. EXAFS data analysis is consistent with the presence of a couple of atoms in the sixth coordination position at 2.7 Å in the lipid-bound derivative (bonding interaction), whereas a contribution at 3.54 Å (nonbonding interaction) can be singled out in the lipid-free protein. This last contribution is assigned to the CD1 carbon atoms of the distal LeuE11, in full agreement with crystallographic data on the lipid-free protein at 1.6 Å resolution obtained in the present work. Thus, the contributions at 2.7 Å distance from the heme iron are assigned to a couple of carbon atoms of the lipid acyl chain, possibly corresponding to the unsaturated carbons of the linoleic acid. PMID:15189885

  17. Synthesis, crystal structure and biological activity of two Mn complexes with 4-acyl pyrazolone derivatives.

    PubMed

    Li, Yue; Zhao, Jing; He, Chuan-Chuan; Zhang, Li; Sun, Su-Rong; Xu, Guan-Cheng

    2015-09-01

    In order to study the biological activities of transitional metal complexes based on 4-acyl pyrazolone derivatives, two Mn complexes [Mn(HLa)(La)]·(CH3CN)1.5·H2O (1) and [Mn2(Lb)2(μ-EtO)2(EtOH)2] (2) (H2La = N-(1-phenyl-3-methyl-4-benzoyl-5-pyrazolone)-2-thiophenecarboxylic acid hydrazide, H2Lb = N-(1-phenyl-3-methyl-4-propenylidene-5-pyrazolone)-2-thiophenecarboxylic acid hydrazide) have been synthesized and characterized. Single crystal X-ray diffraction analysis indicated that 1 is a mononuclear complex and 2 exhibits a dinuclear centrosymmetric structure. Binding of the complexes with Herring Sperm DNA (HS-DNA) showed that complexes 1 and 2 could intercalate to DNA with quenching constant of 5.3×10(4) M(-1) and 4.9×10(4) M(-1), respectively. The interactions of the complexes with bovine serum albumin (BSA) indicated that complexes 1 and 2 could quench the intrinsic fluorescence of BSA in a static quenching process. Further, the inhibitory effects of the complexes on the cell population growth of the human esophageal cancer Eca-109 cells and the cervical cancer HeLa cells were determined by MTT assay, which indicated that both 1 and 2 significantly inhibited the growth of Eca-109 and HeLa cells, the inhibitory activity of complex 1 is stronger than that of 2. We further observed that complex 1 inhibited the growth of HeLa cells through inducing the apoptosis and arresting cell cycle at S phase. Our results suggested that both complexes 1 and 2 have DNA- and protein-binding capacity and antitumor activity.

  18. Acyl-homoserine lactone quorum sensing: from evolution to application.

    PubMed

    Schuster, Martin; Sexton, D Joseph; Diggle, Stephen P; Greenberg, E Peter

    2013-01-01

    Quorum sensing (QS) is a widespread process in bacteria that employs autoinducing chemical signals to coordinate diverse, often cooperative activities such as bioluminescence, biofilm formation, and exoenzyme secretion. Signaling via acyl-homoserine lactones is the paradigm for QS in Proteobacteria and is particularly well understood in the opportunistic pathogen Pseudomonas aeruginosa. Despite thirty years of mechanistic research, empirical studies have only recently addressed the benefits of QS and provided support for the traditional assumptions regarding its social nature and its role in optimizing cell-density-dependent group behaviors. QS-controlled public-goods production has served to investigate principles that explain the evolution and stability of cooperation, including kin selection, pleiotropic constraints, and metabolic prudence. With respect to medical application, appreciating social dynamics is pertinent to understanding the efficacy of QS-inhibiting drugs and the evolution of resistance. Future work will provide additional insight into the foundational assumptions of QS and relate laboratory discoveries to natural ecosystems.

  19. Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade

    PubMed Central

    Zan, Jindong; Liu, Yue; Fuqua, Clay; Hill, Russell T.

    2014-01-01

    Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS) may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments. PMID:24402124

  20. Acylation in trypanosomatids: an essential process and potential drug target

    PubMed Central

    Goldston, Amanda M.; Sharma, Aabha I.; Paul, Kimberly S.; Engman, David M.

    2014-01-01

    Fatty acylation—the addition of fatty acid moieties such as myristate and palmitate to proteins—is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their cellular targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of trypanocidal drugs. PMID:24954795

  1. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    PubMed Central

    2016-01-01

    An important advance in fluid surface control was the amphiphilic surfactant composed of coupled molecular structures (i.e., hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e., hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel–Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water while simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water. PMID:27924310

  2. Acylated quercetagetin glycosides with antioxidant activity from Tagetes maxima.

    PubMed

    Parejo, Irene; Bastida, Jaume; Viladomat, Francesc; Codina, Carles

    2005-10-01

    The fractionation of a methanolic extract of Tagetes maxima guided for antioxidant activity resulted in the isolation of three acylated quercetagetin glycosides, quercetagetin-7-O-(6-O-caffeoyl-beta-D-glucopyranoside), quercetagetin-7-O-(6-O-p-coumaroyl-beta-D-glucopyranoside) and quercetagetin-7-O-(6-O-galloyl-beta-D-glucopyranoside), as well as four known flavonoid glycosides. The structural elucidation was accomplished by spectroscopic methods (ESI-MS/MS and NMR). The antioxidant activity of fractions and isolated compounds was determined by checking the scavenging activity against three different radicals: 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH*), hydroxyl (*OH), and superoxide (O2*-). The three isolated compounds exhibited a high radical scavenging activity in comparison with reference compounds.

  3. Synthesis and evaluation of novel acyl derivatives from jatropha oil as potential lubricant basestocks.

    PubMed

    Sammaiah, Arukali; Padmaja, Korlipara V; Prasad, Rachapudi B N

    2014-05-21

    A novel class of jatropha oil-based acylated derivatives from hydroxy alkyl esters of jatropha fatty acids (C1, C3, C4, and C8) and various anhydrides (C2, C3, C4, and C6) were synthesized and their physicochemical and lubricant properties reported. Jatropha fatty acid alkyl esters were dihydroxylated using the in situ performic acid method and further acylated with different anhydrides to produce acylated derivatives. Acylated derivatives of dihydroxy jatropha fatty acid alkyl esters were charaterized by NMR, FTIR, GC, and GC-MS analysis and were evaluated for their viscosity, viscosity index, pour and flash points, and oxidation stability. Most of the derivatives are either in ISO VG 22 or 32 viscosity grade with good viscosity index. It was observed that increase in acyl chain length and branching in the end-chain ester improved the pour point of the diacyl derivatives. All of the hexanoylated esters exhibited better oxidation stability compared to other acylated products, and their pour points are comparable to those of synthetic esters such as TMP trioleates. In general, isoalcohol esters with longer acyl chains showed promise as potential candidates for hydraulic fluids and metal-working fluids in ISO VG 22 and 32 viscosity range.

  4. N-Acylation During Glidobactin Biosynthesis by the Tridomain Nonribosomal Peptide Synthetase Module GlbF

    PubMed Central

    Imker, Heidi J.; Krahn, Daniel; Clerc, Jérôme; Kaiser, Markus; Walsh, Christopher T.

    2011-01-01

    Summary Glidobactins are hybrid NRPS-PKS natural products that function as irreversible proteasome inhibitors. A variety of medium chain 2(E),4(E)-diene fatty acids N-acylate the peptidolactam core and contribute significantly to the potency of proteasome inhibition. We have expressed the initiation NRPS module GlbF (C-A-T) in Escherichia coli and observe soluble active protein only on co-expression with the 8 kDa MbtH-like protein, GlbE. Following adenylation and installation of Thr as a T-domain thioester, the starter condensation domain utilizes fatty acyl-CoA donors to acylate the Thr1 amino group and generate the fatty acyl-Thr1-S-pantetheinyl-GlbF intermediate to be used in subsequent chain elongation. Previously proposed to be mediated via acyl carrier protein fatty acid donors, direct utilization of fatty acyl-CoA donors for N-acylation of T-domain tethered amino acids is likely a common strategy for chain initiation in NRPS-mediated lipopeptide biosynthesis. PMID:21035730

  5. Acyl spermidines in inflorescence extracts of elder (Sambucus nigra L., Adoxaceae) and elderflower drinks.

    PubMed

    Kite, Geoffrey C; Larsson, Sonny; Veitch, Nigel C; Porter, Elaine A; Ding, Ning; Simmonds, Monique S J

    2013-04-10

    LC-UV-MS analyses of inflorescence extracts of Sambucus nigra L. (elder, Adoxaceae) revealed the presence of numerous acyl spermidines, with isomers of N,N-diferuloylspermidine and N-acetyl-N,N-diferuloylspermidine being most abundant. Pollen was the main source of the acyl spermidines in the inflorescence. Three of the major acyl spermidines were isolated and their structures determined by NMR spectroscopy as N⁵,N¹⁰-di-(E,E)-feruloylspermidine and the new compounds N¹-acetyl-N⁵,N¹⁰-di-(Z,E)-feruloylspermidine and N¹-acetyl-N⁵,N¹⁰-di-(E,E)-feruloylspermidine. An isomer of N,N,N-triferuloylspermidine was also obtained and identified as N¹,N⁵,N¹⁰-tri-(E,E,E)-feruloylspermidine. In addition to stereoisomers of the isolated acyl spermidines, other acyl spermidines detected by the positive ion LC-UV-MS were isomers of N-caffeoyl-N,N-diferuloylspermidine, N-coumaroyl-N,N-diferuloylspermidine, N-caffeoyl-N-feruloylspermidine, N-coumaroyl-N-feruloylspermidine, N-acetyl-N-caffeoyl-N-feruloylspermidine, and N-acetyl-N-coumaroyl-N-feruloylspermidine. Analysis of commercial elderflower drinks showed that acyl spermidines were persistent in these processed elderflower products. Examination of inflorescence extracts from Sambucus canadensis L. (American elder) revealed the presence of acyl spermidines that were different from those of S. nigra.

  6. Metabolism of Acyl-Homoserine Lactone Quorum-Sensing Signals by Variovorax paradoxus

    PubMed Central

    Leadbetter, Jared R.; Greenberg, E. P.

    2000-01-01

    Acyl-homoserine lactones (acyl-HSLs) serve as dedicated cell-to-cell signaling molecules in many species of the class Proteobacteria. We have addressed the question of whether these compounds can be degraded biologically. A motile, rod-shaped bacterium was isolated from soil based upon its ability to utilize N-(3-oxohexanoyl)-l-homoserine lactone as the sole source of energy and nitrogen. The bacterium was classified as a strain of Variovorax paradoxus. The V. paradoxus isolate was capable of growth on all of the acyl-HSLs tested. The molar growth yields correlated with the length of the acyl group. HSL, a product of acyl-HSL metabolism, was used as a nitrogen source, but not as an energy source. Cleavage and partial mineralization of the HSL ring were demonstrated by using radiolabeled substrate. This study indicates that some strains of V. paradoxus degrade and grow on acyl-HSL signals as the sole energy and nitrogen sources. This study provides clues about the metabolic pathway of acyl-HSL degradation by V. paradoxus. PMID:11092851

  7. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus.

    PubMed

    Leadbetter, J R; Greenberg, E P

    2000-12-01

    Acyl-homoserine lactones (acyl-HSLs) serve as dedicated cell-to-cell signaling molecules in many species of the class Proteobacteria. We have addressed the question of whether these compounds can be degraded biologically. A motile, rod-shaped bacterium was isolated from soil based upon its ability to utilize N-(3-oxohexanoyl)-L-homoserine lactone as the sole source of energy and nitrogen. The bacterium was classified as a strain of Variovorax paradoxus. The V. paradoxus isolate was capable of growth on all of the acyl-HSLs tested. The molar growth yields correlated with the length of the acyl group. HSL, a product of acyl-HSL metabolism, was used as a nitrogen source, but not as an energy source. Cleavage and partial mineralization of the HSL ring were demonstrated by using radiolabeled substrate. This study indicates that some strains of V. paradoxus degrade and grow on acyl-HSL signals as the sole energy and nitrogen sources. This study provides clues about the metabolic pathway of acyl-HSL degradation by V. paradoxus.

  8. Preparation and characterization of O-acylated fucosylated chondroitin sulfate from sea cucumber.

    PubMed

    Gao, Na; Wu, Mingyi; Liu, Shao; Lian, Wu; Li, Zi; Zhao, Jinhua

    2012-08-01

    Fucosylated chondroitin sulfate (FuCS), a kind of complex glycosaminoglycan from sea cucumber, has potent anticoagulant activity. In order to understand the relationship between structures and activity, the depolymerized FuCS (dFuCS) was chosen to prepare its derivates by selective substitution at OH groups. Its O-acylation was carried out in a homogeneous way using carboxylic acid anhydrides. The structures of O-acylated derivatives were characterized by NMR. The results indicated that the 4-O-sulfated fucose residues may be easier to be acylated than the other ones in the sulfated fucose branches. But the O-acylation was always accompanied by the β-elimination, and the degree of elimination was higher as that of acylation was higher. The results of clotting assay indicated that the effect of partial O-acylation of the dFuCS on their anticoagulant potency was not significant and the O-acylation of 2-OH groups of 4-O-sulfated fucose units did not affect the anticoagulant activity.

  9. Cytokinin Receptors Are Involved in Alkamide Regulation of Root and Shoot Development in Arabidopsis1[C][OA

    PubMed Central

    López-Bucio, José; Millán-Godínez, Mayra; Méndez-Bravo, Alfonso; Morquecho-Contreras, Alina; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Pérez-Torres, Anahí; Higuchi, Masayuki; Kakimoto, Tatsuo; Herrera-Estrella, Luis

    2007-01-01

    Alkamides and N-acilethanolamides are a class of lipid compounds related to animal endocannabinoids of wide distribution in plants. We investigated the structural features required for alkamides to regulate plant development by comparing the root responses of Arabidopsis (Arabidopsis thaliana) seedlings to a range of natural and synthetic compounds. The length of the acyl chain and the amide moiety were found to play a crucial role in their biological activity. From the different compounds tested, N-isobutyl decanamide, a small saturated alkamide, was found to be the most active in regulating primary root growth and lateral root formation. Proliferative-promoting activity of alkamide treatment was evidenced by formation of callus-like structures in primary roots, ectopic blades along petioles of rosette leaves, and disorganized tumorous tissue originating from the leaf lamina. Ectopic organ formation by N-isobutyl decanamide treatment was related to altered expression of the cell division marker CycB1:uidA and an enhanced expression of the cytokinin-inducible marker ARR5:uidA both in roots and in shoots. The involvement of cytokinins in mediating the observed activity of alkamides was tested using Arabidopsis mutants lacking one, two, or three of the putative cytokinin receptors CRE1, AHK2, and AHK3. The triple cytokinin receptor mutant was insensitive to N-isobutyl decanamide treatment, showing absence of callus-like structures in roots, the lack of lateral root proliferation, and absence of ectopic outgrowths in leaves under elevated levels of this alkamide. Taken together our results suggest that alkamides and N-acylethanolamides may belong to a class of endogenous signaling compounds that interact with a cytokinin-signaling pathway to control meristematic activity and differentiation processes during plant development. PMID:17965178

  10. Can HMG Co-A reductase inhibitors (“statins”) slow the progression of age-related macular degeneration? The Age-Related Maculopathy Statin Study (ARMSS)

    PubMed Central

    Guymer, Robyn H; Dimitrov, Peter N; Varsamidis, Mary; Lim, Lyndell L; Baird, Paul N; Vingrys, Algis J; Robman, Luba

    2008-01-01

    Age-related macular degeneration (AMD) is responsible for the majority of visual impairment in the Western world. The role of cholesterol-lowering medications, HMG Co-A reductase inhibitors or statins, in reducing the risk of AMD or of delaying its progression has not been fully investigated. A 3-year prospective randomized controlled trial of 40 mg simvastatin per day compared to placebo in subjects at high risk of AMD progression is described. This paper outlines the primary aims of the Age-Related Maculopathy Statin Study (ARMSS), and the methodology involved. Standardized clinical grading of macular photographs and comparison of serial macular digital photographs, using the International grading scheme, form the basis for assessment of primary study outcomes. In addition, macular function is assessed at each visit with detailed psychophysical measurements of rod and cone function. Information collected in this study will assist in the assessment of the potential value of HMG Co-A reductase inhibitors (statins) in reducing the risk of AMD progression. PMID:18982929

  11. Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study.

    PubMed

    Martínez, Angel T; Rencoret, Jorge; Marques, Gisela; Gutiérrez, Ana; Ibarra, David; Jiménez-Barbero, Jesús; del Río, José C

    2008-11-01

    Lignins from three nonwoody angiosperms were analyzed by 2D NMR revealing important differences in their molecular structures. The Musa textilis milled-wood-lignin (MWL), with a syringyl-to-guaiacyl (S/G) ratio of 9, was strongly acylated (near 85% of side-chains) at the gamma-carbon by both acetates and p-coumarates, as estimated from (1)H-(13)C correlations in C(gamma)-esterified and C(gamma)-OH units. The p-coumarate H(3,5)-C(3,5) correlation signal was completely displaced by acetylation, and disappeared after alkali treatment, indicating that p-coumaric acid was esterified maintaining its free phenolic group. By contrast, the Cannabis sativa MWL (S/G approximately 0.8) was free of acylating groups, and the Agave sisalana MWL (S/G approximately 4) showed high acylation degree (near 80%) but exclusively with acetates. Extensive C(gamma)-acylation results in the absence (in M. textilis lignin) or low abundance (4% in A. sisalana lignin) of beta-beta' resinol linkages, which require free C(gamma)-OH to form the double tetrahydrofuran ring. However, minor signals revealed unusual acylated beta-beta' structures confirming that acylation is produced at the monolignol level, in agreement with chromatographic identification of gamma-acetylated sinapyl alcohol among the plant extractives. In contrast, resinol substructures involved 22% side-chains in the C.sativa MWL. The ratio between beta-beta' and beta-O-4' side-chains in these and other MWL varied from 0.32 in C.sativa MWL to 0.02 in M. textilis MWL, and was inversely correlated with the degree of acylation. The opposite was observed for the S/G ratio that was directly correlated with the acylation degree. Monolignol acylation is discussed as a mechanism potentially involved in the control of lignin structure.

  12. Plant Acyl-CoA:Lysophosphatidylcholine Acyltransferases (LPCATs) Have Different Specificities in Their Forward and Reverse Reactions*

    PubMed Central

    Lager, Ida; Yilmaz, Jenny Lindberg; Zhou, Xue-Rong; Jasieniecka, Katarzyna; Kazachkov, Michael; Wang, Peng; Zou, Jitao; Weselake, Randall; Smith, Mark A.; Bayon, Shen; Dyer, John M.; Shockey, Jay M.; Heinz, Ernst; Green, Allan; Banas, Antoni; Stymne, Sten

    2013-01-01

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for seven LPCATs from five different species, including species accumulating hydroxylated acyl groups in their seed oil, with a preference for C18-unsaturated acyl-CoA and low activity with palmitoyl-CoA and ricinoleoyl (12-hydroxyoctadec-9-enoyl)-CoA. We showed that Arabidopsis LPCAT1 and LPCAT2 enzymes catalyzed the acylation and de-acylation of both sn positions of PC, with a preference for the sn-2 position. When acyl specificities of the Arabidopsis LPCATs were measured in the reverse reaction, sn-2-bound oleoyl, linoleoyl, and linolenoyl groups from PC were transferred to acyl-CoA to a similar extent. However, a ricinoleoyl group at the sn-2-position of PC was removed 4–6-fold faster than an oleoyl group in the reverse reaction, despite poor utilization in the forward reaction. The data presented, taken together with earlier published reports on in vivo lipid metabolism, support the hypothesis that plant LPCAT enzymes play an important role in regulating the acyl-CoA composition in plant cells by transferring polyunsaturated and hydroxy fatty acids produced on PC directly to the acyl-CoA pool for further metabolism or catabolism. PMID:24189065

  13. Sialomucins are characteristically O-acylated in poorly differentiated and colloid prostatic adenocarcinomas.

    PubMed

    Sáez, C; Japón, M A; Conde, A F; Poveda, M A; Luna-Moré, S; Segura, D I

    1998-12-01

    Mucinous glycoproteins are secreted by prostatic adenocarcinomas and might play important roles in tumor invasion and metastasis. Their histochemical properties on routine biopsy specimens have not been fully characterized. We present a histochemical study of mucin in 21 prostatic adenocarcinomas, with particular focus on the demonstration of different types of sialomucins. We applied the following histochemical techniques to routinely processed, formalin-fixed, paraffin-embedded tissue sections: Alcian blue (pH 2.5) and periodic acid-Schiff to reveal both acidic and neutral mucins; high iron diamine and Alcian blue (pH 2.5) to show sulfated and acidic nonsulfated mucosubstances simultaneously; periodic acid borohydride, potassium hydroxide, and periodic acid-Schiff to demonstrate O-acylated sialic acids; periodic acid thionine-Schiff, potassium hydroxide, and periodic acid-Schiff to differentiate pre-existing glycols from those revealed after saponification procedures; and periodic acid borohydride and periodic acid-Schiff to show C9-O-acylated sialic acid. These techniques are useful tools for demonstrating neutral and acidic (sialo- and sulfo-) mucins and di(C8,C9- or C7,C9-)-O-acylated, tri(C7,C8,C9-)-O-acylated and mono(C9)-O-acylated sialomucins. Most prostatic adenocarcinomas showed acidic mucins, with sialomucins predominating over sulfomucins. Well-differentiated and moderately differentiated noncolloid tumors had non-O-acylated sialomucins. Poorly differentiated tumors contained mono-O-acylated (C9) sialomucins, and colloid-type tumors secreted mono-, di-, and tri-O-acylated sialoglycoproteins. Acidic mucins, mainly sialomucins, constitute the major secretory component in prostatic adenocarcinomas, and our results show that the O-acylation of these sialoglycoproteins inversely correlates with tumor differentiation. Well-differentiated and moderately differentiated tumors are not O-acylated, whereas the poorly differentiated ones characteristically have O-acylated

  14. Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family.

    PubMed

    Mashek, Douglas G; Bornfeldt, Karin E; Coleman, Rosalind A; Berger, Johannes; Bernlohr, David A; Black, Paul; DiRusso, Concetta C; Farber, Steven A; Guo, Wen; Hashimoto, Naohiro; Khodiyar, Varsha; Kuypers, Frans A; Maltais, Lois J; Nebert, Daniel W; Renieri, Alessandra; Schaffer, Jean E; Stahl, Andreas; Watkins, Paul A; Vasiliou, Vasilis; Yamamoto, Tokuo T

    2004-10-01

    By consensus, the acyl-CoA synthetase (ACS) community, with the advice of the human and mouse genome nomenclature committees, has revised the nomenclature for the mammalian long-chain acyl-CoA synthetases. ACS is the family root name, and the human and mouse genes for the long-chain ACSs are termed ACSL1,3-6 and Acsl1,3-6, respectively. Splice variants of ACSL3, -4, -5, and -6 are cataloged. Suggestions for naming other family members and for the nonmammalian acyl-CoA synthetases are made.

  15. Decarboxylation of malonyl-(acyl carrier protein) by 3-oxoacyl-(acyl carrier protein) synthases in plant fatty acid biosynthesis.

    PubMed Central

    Winter, E; Brummel, M; Schuch, R; Spener, F

    1997-01-01

    In order to identify regulatory steps in fatty acid biosynthesis, the influence of intermediate 3-oxoacyl-(acyl carrier proteins) (3-oxoacyl-ACPs) and end-product acyl-ACPs of the fatty acid synthase reaction on the condensation reaction was investigated in vitro, using total fatty acid synthase preparations and purified 3-oxoacyl-ACP synthases (KASs; EC 2.3.1.41) from Cuphea lanceolata seeds. KAS I and II in the fatty acid synthase preparations were assayed for the elongation of octanoyl- and hexadecanoyl-ACP respectively, and the accumulation of the corresponding condensation product 3-oxoacyl-ACP was studied by modulating the content of the reducing equivalentS NADH and NADPH. Complete omission of reducing equivalents resulted with either KAS in the abnormal synthesis of acetyl-ACP from malonyl-ACP by a decarboxylation reaction. Supplementation with NADPH or NADH, separately or in combination with recombinant 3-oxoacyl-ACP reductase (EC 1.1.1.100), led to a decrease in the amount of acetyl-ACP and a simultaneous increase in elongation products. This demonstrates that the accumulation of 3-oxoacyl-ACP inhibits the condensation reaction on the one hand, and induces the decarboxylation of malonyl-ACP on the other. By carrying out similar experiments with purified enzymes, this decarboxylation was attributed to the action of KAS. Our data point to a regulatory mechanism for the degradation of malonyl-ACP in plants which is activated by the accumulation of the fatty acid synthase intermediate 3-oxoacyl-ACP. PMID:9020860

  16. Structures of the acyl-enzyme complexes of the Staphylococcus aureus beta-lactamase mutant Glu166Asp:Asn170Gln with benzylpenicillin and cephaloridine.

    PubMed

    Chen, C C; Herzberg, O

    2001-02-27

    The serine-beta-lactamases hydrolyze beta-lactam antibiotics in a reaction that proceeds via an acyl-enzyme intermediate. The double mutation, E166D:N170Q, of the class A enzyme from Staphylococcus aureus results in a protein incapable of deacylation. The crystal structure of this beta-lactamase, determined at 2.3 A resolution, shows that except for the mutation sites, the structure is very similar to that of the native protein. The crystal structures of two acyl-enzyme adducts, one with benzylpenicillin and the other with cephaloridine, have been determined at 1.76 and 1.86 A resolution, respectively. Both acyl-enzymes show similar key features, with the carbonyl carbon atom of the cleaved beta-lactam bond covalently bound to the side chain of the active site Ser70, and the carbonyl oxygen atom in an oxyanion hole. The thiadolizine ring of the cleaved penicillin is located in a slightly different position than the dihydrothiazine ring of cephaloridine. Consequently, the carboxylate moieties attached to the rings form different sets of interactions. The carboxylate group of benzylpenicillin interacts with the side chain of Gln237. The carboxylate group of cephaloridine is located between Arg244 and Lys234 side chains and also interacts with Ser235 hydroxyl group. The interactions of the cephaloridine resemble those seen in the structure of the acyl-enzyme of beta-lactamase from Escherichia coli with benzylpenicillin. The side chains attached to the cleaved beta-lactam rings of benzylpenicillin and cephaloridine are located in a similar position, which is different than the position observed in the E. coli benzylpenicillin acyl-enzyme complex. The three modes of binding do not show a trend that explains the preference for benzylpenicillin over cephaloridine in the class A beta-lactamases. Rather, the conformational variation arises because cleavage of the beta-lactam bond provides additional flexibility not available when the fused rings are intact. The structural

  17. Acyl tunichlorins: a new class of nickel chlorins isolated from the Caribbean tunicate Trididemnum solidum.

    PubMed Central

    Sings, H L; Bible, K C; Rinehart, K L

    1996-01-01

    A new class of nickel-containing chlorins (acyl tunichlorins) has been isolated from the Caribbean tunicate Trididemnum solidum. The structures of 28 of these nickel (II) hydroporphyrins were elucidated using mass spectrometry, one- and two-dimensional NMR spectroscopy, and chemical degradation/derivatization. Unique structural features of these compounds include the diversity of aliphatic side chains, which are derived from C14:0 to C22:6 fatty acids, and their location at an unprecedented position at C-2a on the hydroporphyrin nucleus. No chlorins with ester-linked acyl side chains at C-2a have been reported previously. Although the exact biological role that these compounds play in T. solidum remains unknown, acyl tunichlorins represent the only nickel-containing chlorins to be isolated from a living system and are the C-2a acyl derivatives of tunichlorin, a nickel chlorin reported by this laboratory in 1988. PMID:8855217

  18. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity.

  19. Binding Procurement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  20. New N-acyl taurine from the sea urchin Glyptocidaris crenularis.

    PubMed

    Zhou, Xuefeng; Xu, Tunhai; Wen, Kewei; Yang, Xian-Wen; Xu, Shi-Hai; Liu, Yonghong

    2010-01-01

    A new N-acyl taurine (1), together with a new natural product, l-(beta-D-ribofuranosyl)-1,2,4-triazole (4), and two known compounds (2 and 3), were isolated from the sea urchin, Glyptocidaris crenularis. The new N-acyl taurine was elucidated as 2-(5R,15S-dihydroxyeicosanoylamino) ethanesulfonic acid on the basis of spectroscopic (NMR, MS) analyses and the modified Mosher ester method. Compound 2 showed significant toxicity against brine shrimp larvae.

  1. Male Sterile2 Encodes a Plastid-Localized Fatty Acyl Carrier Protein Reductase Required for Pollen Exine Development in Arabidopsis

    SciTech Connect

    Chen, W.; Shanklin, J.; Yu, X.-H.; Zhang, K.; Shi, J.; De Oliveira, S.; Schreiber, L.; Zhang, D.

    2011-10-01

    Male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana). Transient expression of MS2 in tobacco (Nicotiana benthamiana) leaves resulted in the accumulation of significant levels of C16 and C18 fatty alcohols. Expression of MS2 fused with green fluorescent protein revealed that an amino-terminal transit peptide targets the MS2 to plastids. The plastidial localization of MS2 is biologically important because genetic complementation of MS2 in ms2 homozygous plants was dependent on the presence of its amino-terminal transit peptide or that of the Rubisco small subunit protein amino-terminal transit peptide. In addition, two domains, NAD(P)H-binding domain and sterile domain, conserved in MS2 and its homologs were also shown to be essential for MS2 function in pollen exine development by genetic complementation testing. Direct biochemical analysis revealed that purified recombinant MS2 enzyme is able to convert palmitoyl-Acyl Carrier Protein to the corresponding C16:0 alcohol with NAD(P)H as the preferred electron donor. Using optimized reaction conditions (i.e. at pH 6.0 and 30 C), MS2 exhibits a K{sub m} for 16:0-Acyl Carrier Protein of 23.3 {+-} 4.0 {mu}m, a V{sub max} of 38.3 {+-} 4.5 nmol mg{sup -1} min{sup -1}, and a catalytic efficiency/K{sub m} of 1,873 m{sup -1} s{sup -1}. Based on the high homology of MS2 to other characterized fatty acid reductases, it was surprising that MS2 showed no activity against palmitoyl- or other acyl-coenzyme A; however, this is consistent with its plastidial localization. In summary, genetic and biochemical evidence demonstrate an MS2-mediated conserved plastidial pathway for the production of fatty alcohols that are essential for pollen wall biosynthesis in Arabidopsis.

  2. Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications.

    PubMed

    Rowland, Owen; Domergue, Frédéric

    2012-09-01

    Primary fatty alcohols are found throughout the biological world, either in free form or in a combined state. They are common components of plant surface lipids (i.e. cutin, suberin, sporopollenin, and associated waxes) and their absence can significantly perturb these essential barriers. Fatty alcohols and/or derived compounds are also likely to have direct functions in plant biotic and abiotic interactions. An evolutionarily related set of alcohol-forming fatty acyl reductases (FARs) is present in all kingdoms of life. Plant microsomal and plastid-associated FAR enzymes have been characterized, acting on acyl-coenzymeA (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) substrates, respectively. FARs have distinct substrate specificities both with regard to chain length and chain saturation. Fatty alcohols and wax esters, which are a combination of fatty alcohol and fatty acid, have a variety of commercial applications. The expression of FARs with desired specificities in transgenic microbes or oilseed crops would provide a novel means of obtaining these valuable compounds. In the present review, we report on recent progress in characterizing plant FAR enzymes and in understanding the biological roles of primary fatty alcohols, as well as describe the biotechnological production and industrial uses of fatty alcohols.

  3. Structural basis for acyl-group discrimination by human Gcn5L2

    PubMed Central

    Ringel, Alison E.; Wolberger, Cynthia

    2016-01-01

    Gcn5 is a conserved acetyltransferase that regulates transcription by acetylating the N-terminal tails of histones. Motivated by recent studies identifying a chemically diverse array of lysine acyl modifications in vivo, the acyl-chain specificity of the acetyltransferase human Gcn5 (Gcn5L2) was examined. Whereas Gcn5L2 robustly catalyzes lysine acetylation, the acyltransferase activity of Gcn5L2 becomes progressively weaker with increasing acyl-chain length. To understand how Gcn5 discriminates between different acyl-CoA molecules, structures of the catalytic domain of human Gcn5L2 bound to propionyl-CoA and butyryl-CoA were determined. Although the active site of Gcn5L2 can accommodate propionyl-CoA and butyryl-CoA without major structural rearrangements, butyryl-CoA adopts a conformation incompatible with catalysis that obstructs the path of the incoming lysine residue and acts as a competitive inhibitor of Gcn5L2 versus acetyl-CoA. These structures demonstrate how Gcn5L2 discriminates between acyl-chain donors and explain why Gcn5L2 has weak activity for acyl moieties that are larger than an acetyl group. PMID:27377381

  4. Bacillus subtilis acyl carrier protein is encoded in a cluster of lipid biosynthesis genes.

    PubMed Central

    Morbidoni, H R; de Mendoza, D; Cronan, J E

    1996-01-01

    A cluster of Bacillus subtilis fatty acid synthetic genes was isolated by complementation of an Escherichia coli fabD mutant encoding a thermosensitive malonyl coenzyme A-acyl carrier protein transacylase. The B. subtilis genomic segment contains genes that encode three fatty acid synthetic proteins, malonyl coenzyme A-acyl carrier protein transacylase (fabD), 3-ketoacyl-acyl carrier protein reductase (fabG), and the N-terminal 14 amino acid residues of acyl carrier protein (acpP). Also present is a sequence that encodes a homolog of E. coli plsX, a gene that plays a poorly understood role in phospholipid synthesis. The B. subtilis plsX gene weakly complemented an E. coli plsX mutant. The order of genes in the cluster is plsX fabD fabG acpP, the same order found in E. coli, except that in E. coli the fabH gene lies between plsX and fabD. The absence of fabH in the B. subtilis cluster is consistent with the different fatty acid compositions of the two organisms. The amino acid sequence of B. subtilis acyl carrier protein was obtained by sequencing the purified protein, and the sequence obtained strongly resembled that of E. coli acyl carrier protein, except that most of the protein retained the initiating methionine residue. The B. subtilis fab cluster was mapped to the 135 to 145 degrees region of the chromosome. PMID:8759840

  5. Rheological behavior of acylated pepsin-solubilized collagen solutions: Effects of concentration

    NASA Astrophysics Data System (ADS)

    Li, Conghu; Duan, Lian; Tian, Zhenhua; Liu, Wentao; Li, Guoying; Huang, Xiaoping

    2015-11-01

    Effects of concentration on the rheological behavior of acylated pepsin-solubilized collagen solutions were investigated by steady shear tests, dynamic frequency sweep, creep tests and thixotropic loop measurements in this paper. The results showed that both acylated collagen and native collagen solutions exhibited the typical pseudoplastic behavior and displayed shear thinned behavior with the increase of shear rate. With the increase of acylated collagen concentrations from 5 to 10 mg/mL, shear viscosity, elasticity modulus ( G'), viscous modulus ( G″), complex viscosity ( η*), and the ability to resist deformation increased due to the physical entanglement, whilst loss tangent (tan δ) decreased. Additionally, with the increase of acylated collagen concentrations, the area of thixotropic loop increased from 6.94 to 44.40 watts/m3, indicating that the thixotropy of acylated collagen increased. Compared with native collagen solution, acylated collagen solution had stronger shear viscosity, η*, thixotropy, and ability to resist deformation. Furthermore, Power law model, Carreau model, Cross model, Leonov model and Burger model, were suitable for the fitting of the experimental data.

  6. Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses.

    PubMed

    Martirosyan, Anna; Ohne, Yoichiro; Degos, Clara; Gorvel, Laurent; Moriyón, Ignacio; Oh, Sangkon; Gorvel, Jean-Pierre

    2013-01-01

    Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+) T and CD8(+) T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.

  7. Crystal structure of FAS thioesterase domain with polyunsaturated fatty acyl adduct and inhibition by dihomo-[gamma]-linolenic acid

    SciTech Connect

    Zhang, Wei; Chakravarty, Bornali; Zheng, Fei; Gu, Ziwei; Wu, Hongmei; Mao, Jianqiang; Wakil, Salih J.; Quiocho, Florante A.

    2012-05-29

    Human fatty acid synthase (hFAS) is a homodimeric multidomain enzyme that catalyzes a series of reactions leading to the de novo biosynthesis of long-chain fatty acids, mainly palmitate. The carboxy-terminal thioesterase (TE) domain determines the length of the fatty acyl chain and its ultimate release by hydrolysis. Because of the upregulation of hFAS in a variety of cancers, it is a target for antiproliferative agent development. Dietary long-chain polyunsaturated fatty acids (PUFAs) have been known to confer beneficial effects on many diseases and health conditions, including cancers, inflammations, diabetes, and heart diseases, but the precise molecular mechanisms involved have not been elucidated. We report the crystal structure of the hFAS TE domain covalently modified and inactivated by methyl {gamma}-linolenylfluorophosphonate. Whereas the structure confirmed the phosphorylation by the phosphonate head group of the active site serine, it also unexpectedly revealed the binding of the 18-carbon polyunsaturated {gamma}-linolenyl tail in a long groove-tunnel site, which itself is formed mainly by the emergence of an {alpha} helix (the 'helix flap'). We then found inhibition of the TE domain activity by the PUFA dihomo-{gamma}-linolenic acid; {gamma}- and {alpha}-linolenic acids, two popular dietary PUFAs, were less effective. Dihomo-{gamma}-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and selective human breast cancer cell lines, including SKBR3 and MDAMB231. In addition to revealing a novel mechanism for the molecular recognition of a polyunsaturated fatty acyl chain, our results offer a new framework for developing potent FAS inhibitors as therapeutics against cancers and other diseases.

  8. Unraveling the degradation of artificial amide bonds in nylon oligomer hydrolase: from induced-fit to acylation processes.

    PubMed

    Baba, Takeshi; Boero, Mauro; Kamiya, Katsumasa; Ando, Hiroyuki; Negoro, Seiji; Nakano, Masayoshi; Shigeta, Yasuteru

    2015-02-14

    To elucidate how the nylon oligomer hydrolase (NylB) acquires its peculiar degradation activity towards non-biological amide bonds, we inspected the underlying enzymatic processes going from the induced-fit upon substrate binding to acylation. Specifically we investigated the mutational effects of two mutants, Y170F and D181G, indicated in former experiments as crucial systems because of their specific amino acid residues. Therefore, by adopting first-principles molecular dynamics complemented with metadynamics we provide a detailed insight into the underlying acylation mechanism. Our results show that while in the wild type (WT) the Tyr170 residue points the NH group towards the proton-acceptor site of an artificial amide bond, hence ready to react, in the Y170F this does not occur. The reason is ascribed to the absence of Tyr170 in the mutant, which is replaced by phenylalanine, which is unable to form hydrogen bond with the amide bond; thus, resulting in an increase in the activation barrier of more than 10 kcal mol(-1). Nonetheless, despite the lack of hydrogen bonding between the Y170F and the substrate, the highest free energy barrier for the induced-fit is similar to that of WT. This seems to suggest that in the induced-fit process, kinetics is little affected by the mutation. On the basis of additional structural homology analyses on the enzymes of the same family, we suggest that natural selection is responsible for the development of the peculiar hydrolytic activity of Arthrobacter sp. KI72.

  9. Virtually Designed Triclosan-Based Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis and of Plasmodium falciparum.

    PubMed

    Owono Owono, Luc C; Ntie-Kang, Fidele; Keita, Melalie; Megnassan, Eugene; Frecer, Vladimir; Miertus, Stanislav

    2015-05-01

    We report here new chemical structures of predicted nanomolar triclosan-based inhibitors (TCLs) of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) virtually proposed by computer-assisted molecular design. 3D models of InhA-TCL complexes were prepared by in situ modifications of the reference crystal structure (PDB entry 1P45) for a training set of 15 TCLs with known InhA inhibitory activities. A QSAR model was built leading to linear correlation between the calculated free energies of complexation (ΔΔGcom ) and experimental values IC50 (exp) : pIC50 =-0.0657×ΔΔGcom +3.0502, R(2) =0.96. In addition, ligand-based quantitative pharmacophore model (PH4) was built from bound conformations of the training set compounds and confirmed the correlation between molecular models and observed activities: pIC50 (exp=) 0.8929×pIC50 (pre) -0.441, R(2) =0.95. Structural information from both models helped us to propose new TCL analogues. A virtual library of TCLs with known predicted activities against enoyl-acyl carrier protein reductase of Plasmodium falciparum (PfENR) was evaluated, revealing dual target TCLs. Moreover, analysis of binding site interactions suggested enriching substitutions, which led to more potent TCLs with predicted pIC50 (pre) as low as 7 nM. The computational approach, which used both free energy estimated from molecular modeling and 3D-QSAR pharmacophore model, was helpful in virtually proposing the dual-targeted drugs and provided valuable information for the design of novel potential antituberculotic agents.

  10. N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria.

    PubMed

    Eberl, L

    1999-12-01

    The view of bacteria as unicellular organisms has strong roots in the tradition of culturing bacteria in liquid media. However, in nature microbial activity is mainly associated with surfaces where bacteria form highly structured and cooperative consortia which are commonly referred to as biofilms. The ability of bacteria to organize structurally and to distribute metabolic activities between the different members of the consortium demands a high degree of coordinated cell-cell interaction. Recent work has established that many bacteria employ sophisticated intercellular communication systems that rely on small signal molecules to control the expression of multiple target genes. In Gram-negative bacteria, the most intensively investigated signal molecules are N-acyl-L-homoserine lactones (AHLs), which are utilized by the bacteria to monitor their own population densities in a process known as 'quorum sensing'. These density-dependent regulatory systems rely on two proteins, an AHL synthase, usually a member of the LuxI family of proteins, and an AHL receptor protein belonging to the LuxR family of transcriptional regulators. At low population densities cells produce a basal level of AHL via the activity of an AHL synthase. As the cell density increases, AHL accumulates in the growth medium. On reaching a critical threshold concentration, the AHL molecule binds to its cognate receptor which in turn leads to the induction/repression of AHL-regulated genes. To date, AHL-dependent quorum sensing circuits have been identified in a wide range of gram-negative bacteria where they regulate various functions including bioluminescence, plasmid conjugal transfer, biofilm formation, motility, antibiotic biosynthesis, and the production of virulence factors in plant and animal pathogens. Moreover, AHL signal molecules appear to play important roles in the ecology of complex consortia as they allow bacterial populations to interact with each other as well as with their

  11. MomL, a Novel Marine-Derived N-Acyl Homoserine Lactonase from Muricauda olearia

    PubMed Central

    Tang, Kaihao; Su, Ying; Brackman, Gilles; Cui, Fangyuan; Zhang, Yunhui; Shi, Xiaochong; Coenye, Tom

    2014-01-01

    Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 105 s−1 M−1. Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the “HXHXDH” motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent. PMID:25398866

  12. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia.

    PubMed

    Tang, Kaihao; Su, Ying; Brackman, Gilles; Cui, Fangyuan; Zhang, Yunhui; Shi, Xiaochong; Coenye, Tom; Zhang, Xiao-Hua

    2015-01-01

    Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 10(5) s(-1) M(-1). Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the "HXHXDH" motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent.

  13. Enhancement of cardenolide and phytosterol levels by expression of an N-terminally truncated 3-hydroxy-3-methylglutaryl CoA reductase in Transgenic digitalis minor.

    PubMed

    Sales, Ester; Muñoz-Bertomeu, Jesús; Arrillaga, Isabel; Segura, Juan

    2007-06-01

    Pathway engineering in medicinal plants attains a special significance in Digitalis species, the main industrial source of cardiac glycosides, steroidal metabolites derived from mevalonic acid via the triterpenoid pathway. In this work, the Arabidopsis thaliana HMG1 cDNA, coding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the MVA pathway, was expressed in the cardenolide-producing plant Digitalis minor. Transgenic plants were morphologically indistinguishable from control wild plants and displayed the same developmental pattern. Constitutive expression of HMG1 resulted in an increased sterol and cardenolide production in both in vitro- and greenhouse-grown plants. This work demonstrates that transgenic D. minor plants are a valuable system to study and achieve metabolic engineering of the cardenolide pathway and in consequence for the genetic improvement of Digitalis species.

  14. Cloning and characterization of a cDNA coding 3-hydroxy-3-methylglutary CoA reductase involved in glycyrrhizic acid biosynthesis in Glycyrrhiza uralensis.

    PubMed

    Liu, Ying; Xu, Qiao-Xian; Xi, Pei-Yu; Chen, Hong-Hao; Liu, Chun-Sheng

    2013-05-01

    The roots of Glycyrrhiza uralensis are widely used in Chinese medicine for their action of clearing heat, detoxicating, relieving cough, dispelling sputum and tonifying spleen and stomach. The reason why Glycyrrhiza uralensis has potent and significant actions is that it contains various active secondary metabolites, especially glycyrrhizic acid. In the present study, we cloned the cDNA coding 3-hydroxy-3-methylglutary CoA reductase (HMGR) involved in glycyrrhizic acid biosynthesis in Glycyrrhiza uralensis. The corresponding cDNA was expressed in Escherichia coli as fusion proteins. Recombinant HMGR exhibited catalysis activity in reduction of HMG-CoA to mevalonic acid (MVA) just as HMGR isolated from other species. Because HMGR gene is very important in the biosynthesis of glycyrrhizic acid in Glycyrrhiza uralensis, this work is significant for further studies concerned with strengthening the efficacy of Glycyrrhiza uralensis by means of increasing glycyrrhizic acid content and exploring the biosynthesis of glycyrrhizic acid in vitro.

  15. The thermodynamic characteristics of ferrocene alkyl and acyl derivatives

    NASA Astrophysics Data System (ADS)

    Emel'Yanenko, V. N.; Krol', O. V.; Varushchenko, R. M.; Druzhinina, A. I.; Verevkin, S. P.

    2010-07-01

    The heat capacity of iso-butylferrocene C5H5FeC5H4-C4H9- i was measured over the temperature range 7-372 K in an adiabatic vacuum calorimeter. Substance purity and the thermodynamic characteristics of fusion (temperature, enthalpy, and entropy) were determined. Saturated vapor pressures and the enthalpies of vaporization of n-propylferrocene C5H5FeC5H4-C3H7- n, propionylferrocene C5H5FeC5H4-COC2H5, and iso-butylferrocene were measured by the dynamic method of substance transfer in an inert gas flow. The entropy, enthalpy, and Gibbs energy of the substances in the ideal gas state at 298.15 K were calculated. The thermodynamic values obtained in this work and reported in the literature for ferrocene alkyl and acyl derivatives were critically analyzed. The mutual consistency of the data on both homologous series was checked.

  16. The solution structure of acyl carrier protein from Mycobacterium tuberculosis.

    PubMed

    Wong, Hing C; Liu, Gaohua; Zhang, Yong-Mei; Rock, Charles O; Zheng, Jie

    2002-05-03

    Acyl carrier protein (ACP) performs the essential function of shuttling the intermediates between the enzymes that constitute the type II fatty acid synthase system. Mycobacterium tuberculosis is unique in producing extremely long mycolic acids, and tubercular ACP, AcpM, is also unique in possessing a longer carboxyl terminus than other ACPs. We determined the solution structure of AcpM using protein NMR spectroscopy to define the similarities and differences between AcpM and the typical structures. The amino-terminal region of the structure is well defined and consists of four helices arranged in a right-handed bundle held together by interhelical hydrophobic interactions similar to the structures of other bacterial ACPs. The unique carboxyl-terminal extension from helix IV has a "melted down" feature, and the end of the molecule is a random coil. A comparison of the apo- and holo-forms of AcpM revealed that the 4'-phosphopantetheine group oscillates between two states; in one it is bound to a hydrophobic groove on the surface of AcpM, and in another it is solvent-exposed. The similarity between AcpM and other ACPs reveals the conserved structural motif that is recognized by all type II enzymes. However, the function of the coil domain extending from helix IV to the carboxyl terminus remains enigmatic, but its structural characteristics suggest that it may interact with the very long chain intermediates in mycolic acid biosynthesis or control specific protein-protein interactions.

  17. Endogenous N-acyl taurines regulate skin wound healing

    PubMed Central

    Sasso, Oscar; Pontis, Silvia; Armirotti, Andrea; Cardinali, Giorgia; Kovacs, Daniela; Migliore, Marco; Summa, Maria; Moreno-Sanz, Guillermo; Picardo, Mauro; Piomelli, Daniele

    2016-01-01

    The intracellular serine amidase, fatty acid amide hydrolase (FAAH), degrades a heterogeneous family of lipid-derived bioactive molecules that include amides of long-chain fatty acids with taurine [N-acyl-taurines (NATs)]. The physiological functions of the NATs are unknown. Here we show that genetic or pharmacological disruption of FAAH activity accelerates skin wound healing in mice and stimulates motogenesis of human keratinocytes and differentiation of human fibroblasts in primary cultures. Using untargeted and targeted lipidomics strategies, we identify two long-chain saturated NATs—N-tetracosanoyl-taurine [NAT(24:0)] and N-eicosanoyl-taurine [NAT(20:0)]—as primary substrates for FAAH in mouse skin, and show that the levels of these substances sharply decrease at the margins of a freshly inflicted wound to increase again as healing begins. Additionally, we demonstrate that local administration of synthetic NATs accelerates wound closure in mice and stimulates repair-associated responses in primary cultures of human keratinocytes and fibroblasts, through a mechanism that involves tyrosine phosphorylation of the epidermal growth factor receptor and an increase in intracellular calcium levels, under the permissive control of transient receptor potential vanilloid-1 receptors. The results point to FAAH-regulated NAT signaling as an unprecedented lipid-based mechanism of wound-healing control in mammalian skin, which might be targeted for chronic wound therapy. PMID:27412859

  18. Defluoridation potential of jute fibers grafted with fatty acyl chain

    NASA Astrophysics Data System (ADS)

    Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Sen, Ramkrishna; Adhikari, Basudam

    2015-11-01

    Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C-F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.

  19. Acylation and metabolism of (n-6) fatty acids in hepatocytes

    SciTech Connect

    Voss, A.C.; Sprecher, H.

    1986-05-01

    Isolated hepatocytes (5 x 10/sup 6/ in 2ml) from chow fed rats were incubated from 20 to 60 min. with increasing concentrations of (1-/sup 14/C) labeled 18:2 (n-6), 18:3 (n-6) or 20:3 (n-6) to define optimum conditions for measuring acylation and metabolism to other (n-6) acids with subsequent incorporation into lipids. The triglycerides (TG) and phospholipids (PL) contained 157 and 80 nmols of 18:2 (n-6) and 6.0 and 6.1 nmols of other (n-6) acids, respectively, when cells were incubated with 0.3mM (1-/sup 14/C) 18:2 (n-6) for 40 min. When cells were incubated with 0.3mM (1-/sup 14/C) 18:2 (n-6) plus 0.15 to 0.45mM 18:3 (n-6) or 20:3 (n-6), the metabolism of 18:2 (n-6) to other (n-6) acids was inhibited but not totally abolished. These results may suggest that (n-6) acid made from linoleate do not totally equilibrate with exogenous 18:3 (n-6) or 20:3 (n-6).

  20. Total and acylated ghrelin levels in children with poor growth.

    PubMed

    Pinsker, Jordan E; Ondrasik, Deborah; Chan, Debora; Fredericks, Gregory J; Tabisola-Nuesca, Eludrizza; Fernandez-Aponte, Minela; Focht, Dean R; Poth, Merrily

    2011-06-01

    Ghrelin, an enteric hormone with potent appetite stimulating effects, also stimulates growth hormone release. We hypothesized that altered levels of total ghrelin (TG) or acylated ghrelin (AG) could affect growth by altering growth hormone secretion, subsequently affecting insulin-like growth factor-1 (IGF-1) generation or by altering appetite and food intake. After institutional review board approval, 52 children presenting for evaluation of chronic gastrointestinal symptoms (group 1), poor weight gain (group 2), or poor linear growth (group 3) were evaluated for fasting TG and AG levels in addition to their regular evaluation. Serum ghrelin, IGF-1, and prealbumin were compared between groups. No difference was observed for mean fasting TG between groups. However, mean fasting AG was highest in patients in group 2 (465 ± 128 pg/mL) versus group 1 (176 ± 37 pg/mL) and group 3 (190 ± 34 pg/mL). IGF-1 was lowest in patients in group 2 despite similar prealbumin levels among the three groups. We conclude that serum AG levels are highest in children with isolated poor weight gain compared with children with short stature or chronic gastrointestinal symptoms, suggesting the possibility of resistance to AG in underweight children. Additional studies are needed to further clarify ghrelin's role in growth and appetite.

  1. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    PubMed

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination.

  2. Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents

    SciTech Connect

    Muench, Stephen P.; Prigge, Sean T.; McLeod, Rima; Rafferty, John B.; Kirisits, Michael J.; Roberts, Craig W.; Mui, Ernest J.; Rice, David W.

    2007-03-01

    The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. Recent studies have demonstrated that submicromolar concentrations of the biocide triclosan arrest the growth of the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii and inhibit the activity of the apicomplexan enoyl acyl carrier protein reductase (ENR). The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. The structures of T. gondii ENR have revealed that, as in its bacterial and plant homologues, a loop region which flanks the active site becomes ordered upon inhibitor binding, resulting in the slow tight binding of triclosan. In addition, the T. gondii ENR–triclosan complex reveals the folding of a hydrophilic insert common to the apicomplexan family that flanks the substrate-binding domain and is disordered in all other reported apicomplexan ENR structures. Structural comparison of the apicomplexan ENR structures with their bacterial and plant counterparts has revealed that although the active sites of the parasite enzymes are broadly similar to those of their bacterial counterparts, there are a number of important differences within the drug-binding pocket that reduce the packing interactions formed with several inhibitors in the apicomplexan ENR enzymes. Together with other significant structural differences, this provides a possible explanation of the lower affinity of the parasite ENR enzyme family for aminopyridine-based inhibitors, suggesting that an effective antiparasitic agent may well be distinct from equivalent antimicrobials.

  3. Acylated flavonol tri- and tetraglycosides in the flavonoid metabolome of Cladrastis kentukea (Leguminosae).

    PubMed

    Kite, Geoffrey C; Rowe, Emily R; Lewis, Gwilym P; Veitch, Nigel C

    2011-04-01

    The foliar metabolome of Cladrastis kentukea (Leguminosae) contains a complex mixture of flavonoids including acylated derivatives of the 3-O-rhamnosyl(1→2)[rhamnosyl(1→6)]-galactosides of kaempferol and quercetin and their 7-O-rhamnosides, together with an array of non-acylated kaempferol and quercetin di-, tri- and tetraglycosides. Thirteen of the acylated flavonoids, 12 of which had not been reported previously, were characterised by spectroscopic and chemical methods. Eight of these were the four isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) and their 7-O-α-l-rhamnopyranosides, and three were isomers of quercetin 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) - the remaining 4Z isomer was identified by LC-UV-MS analysis of a crude extract. The final two acylated flavonoids characterised by NMR were the 3E and 4E isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E-feruloyl-β-d-galactopyranoside)-7-O-α-l-rhamnopyranoside while the 3Z and 4Z isomers were again detected by LC-UV-MS. Using the observed fragmentation behaviour of the isolated compounds following a variety of MS experiments, a further 18 acylated flavonoids were given tentative structures by LC-MS analysis of a crude extract. Acylated flavonoids were absent from the flowers of C. kentukea, which contained an array of non-acylated kaempferol and quercetin glycosides. Immature fruits contained kaempferol 3-O-α-rhamnopyranosyl(1→2)[α-rhamnopyranosyl(1→6)]-β-galactopyranoside and its 7-O-α-rhamnopyranoside as the major flavonoids with acylated flavonoids, different from those in the leaves, only present as minor constituents. The presence of acylated flavonoids distinguishes the foliar flavonoid metabolome of C. kentukea from that of a closely related legume, Styphnolobium japonicum, which contains a similar

  4. A special acyl carrier protein for transferring long hydroxylated fatty acids to lipid A in Rhizobium.

    PubMed

    Brozek, K A; Carlson, R W; Raetz, C R

    1996-12-13

    Lipid A, the hydrophobic anchor of lipopolysaccharides in the outer membranes of Gram-negative bacteria, varies in structure among different Rhizobiaceae. The Rhizobium meliloti lipid A backbone, like that of Escherichia coli, is a beta1'-6-linked glucosamine disaccharide that is phosphorylated at positions 1 and 4'. Rhizobium leguminosarum lipid A lacks both phosphates, but contains aminogluconate in place of the proximal glucosamine 1-phosphate, and galacturonic acid instead of the 4'-phosphate. A peculiar feature of the lipid As of all Rhizobiaceae is acylation with 27-hydroxyoctacosanoic acid, a long hydroxylated fatty acid not found in E. coli. We now describe an in vitro system, consisting of a membrane enzyme and a cytosolic acyl donor from R. leguminosarum, that transfers 27-hydroxyoctacosanoic acid to (Kdo)2-lipid IVA, a key lipid A precursor common to both E. coli and R. leguminosarum. The 27-hydroxyoctacosanoic acid moiety was detected in the lipid product by mass spectrometry. The membrane enzyme required the presence of Kdo residues in the acceptor substrate for activity. The cytosolic acyl donor was purified from wild-type R. leguminosarum using the acylation of (Kdo)2-[4'-32P]-lipid IVA as the assay. Amino-terminal sequencing of the purified acyl donor revealed an exact 19-amino acid match with a partially sequenced gene (orf*) of R. leguminosarum. Orf* contains the consensus sequence, DSLD, for attachment of 4'-phosphopantetheine. When the entire orf* gene was sequenced, it was found to encode a protein of 92 amino acids. Orf* is a new kind of acyl carrier protein because it is only approximately 25% identical both to the constitutive acyl carrier protein (AcpP) and to the inducible acyl carrier protein (NodF) of R. leguminosarum. Mass spectrometry of purified active Orf* confirmed the presence of 4'-phosphopantetheine and 27-hydroxyoctacosanoic acid in the major species. Smaller mass peaks indicative of Orf* acylation with hydroxylated 20, 22, 24

  5. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    PubMed

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition.

  6. Plasma Protein Binding Structure-Activity Relationships Related to the N-Terminus of Daptomycin.

    PubMed

    Schneider, Elena K; Huang, Johnny X; Carbone, Vincenzo; Han, Meiling; Zhu, Yan; Nang, Sue; Khoo, Keith K; Mak, Johnson; Cooper, Matthew A; Li, Jian; Velkov, Tony

    2017-03-10

    Daptomycin is a lipopeptide antibiotic that is highly bound to plasma proteins. To date, the plasma components and structure-activity relationships responsible for the plasma protein binding profile of daptomycin remain uncharacterized. In the present study we have employed a surface plasmon resonance assay together with molecular docking techniques to investigate the plasma protein binding structure-activity relationships related to the N-terminal fatty acyl of daptomycin. Three compounds were investigated: (1) native daptomycin, which displays an N-terminal n-decanoyl fatty acid side chain, and two analogues with modifications to the N-terminal fatty acyl chain; (2) des-acyl daptomycin; and (3) acetyl-daptomycin. The surface plasmon resonance (SPR) data showed that the binding profile of native daptomycin was in the rank order human serum albumin (HSA) ≫ α-1-antitrypsin > low-density lipoprotein ≥ hemoglobin > sex hormone binding globulin > α-1-acid-glycoprotein (AGP) > hemopexin > fibrinogen > α-2-macroglobulin > β2-microglobulin > high-density lipoprotein > fibronectin > haptoglobulin > transferrin > immunoglobulin G. Notably, binding to fatty acid free HSA was greater than binding to nondelipidated HSA. SPR and ultrafiltration studies also indicated that physiological concentrations of calcium increase binding of daptomycin and acetyl-daptomycin to HSA and AGP. A molecular model of the daptomycin-human serum albumin A complex is presented that illustrates the pivotal role of the N-terminal fatty acyl chain of daptomycin for binding to drug site 1 of HSA. In proof-of-concept, the capacity of physiological cocktails of the identified plasma proteins to inhibit the antibacterial activity of daptomycin was assessed with in vitro microbiological assays. We show that HSA, α-1-antitrypsin, low-density lipoprotein, sex hormone binding globulin, α-1-acid-glycoprotein, and hemopexin are responsible for the majority of the sequestering activity in human plasma

  7. 40 CFR 180.1207 - N-acyl sarcosines and sodium N-acyl sarcosinates; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (surfactants) at levels not to exceed 10% in pesticide formulations containing glyphosate: Name CAS Reg. No. N... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1207 N-acyl sarcosines and sodium...

  8. 40 CFR 180.1207 - N-acyl sarcosines and sodium N-acyl sarcosinates; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (surfactants) at levels not to exceed 10% in pesticide formulations containing glyphosate: Name CAS Reg. No. N... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1207 N-acyl sarcosines and sodium...

  9. Unacylated ghrelin promotes adipogenesis in rodent bone marrow via ghrelin O-acyl transferase and GHS-R1a activity: evidence for target cell-induced acylation

    PubMed Central

    Hopkins, Anna L.; Nelson, Timothy A. S.; Guschina, Irina A.; Parsons, Lydia C.; Lewis, Charlotte L.; Brown, Richard C.; Christian, Helen C.; Davies, Jeffrey S.; Wells, Timothy

    2017-01-01

    Despite being unable to activate the cognate ghrelin receptor (GHS-R), unacylated ghrelin (UAG) possesses a unique activity spectrum that includes promoting bone marrow adipogenesis. Since a receptor mediating this action has not been identified, we re-appraised the potential interaction of UAG with GHS-R in the regulation of bone marrow adiposity. Surprisingly, the adipogenic effects of intra-bone marrow (ibm)-infused acylated ghrelin (AG) and UAG were abolished in male GHS-R-null mice. Gas chromatography showed that isolated tibial marrow adipocytes contain the medium-chain fatty acids utilised in the acylation of UAG, including octanoic acid. Additionally, immunohistochemistry and immunogold electron microscopy revealed that tibial marrow adipocytes show prominent expression of the UAG-activating enzyme ghrelin O-acyl transferase (GOAT), which is located in the membranes of lipid trafficking vesicles and in the plasma membrane. Finally, the adipogenic effect of ibm-infused UAG was completely abolished in GOAT-KO mice. Thus, the adipogenic action of exogenous UAG in tibial marrow is dependent upon acylation by GOAT and activation of GHS-R. This suggests that UAG is subject to target cell-mediated activation – a novel mechanism for manipulating hormone activity. PMID:28361877

  10. 40 CFR 180.1207 - N-acyl sarcosines and sodium N-acyl sarcosinates; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sarcosinates; exemption from the requirement of a tolerance. 180.1207 Section 180.1207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1207 N-acyl sarcosines and sodium...

  11. 40 CFR 180.1207 - N-acyl sarcosines and sodium N-acyl sarcosinates; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sarcosinates; exemption from the requirement of a tolerance. 180.1207 Section 180.1207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1207 N-acyl sarcosines and sodium...

  12. 40 CFR 180.1207 - N-acyl sarcosines and sodium N-acyl sarcosinates; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sarcosinates; exemption from the requirement of a tolerance. 180.1207 Section 180.1207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1207 N-acyl sarcosines and sodium...

  13. Facile synthesis of N-acyl 2-aminobenzothiazoles by NHC-catalyzed direct oxidative amidation of aldehydes.

    PubMed

    Premaletha, Sethulekshmy; Ghosh, Arghya; Joseph, Sumi; Yetra, Santhivardhana Reddy; Biju, Akkattu T

    2017-01-26

    A mild, general, and high yielding synthesis of N-acyl 2-aminobenzothiazoles has been demonstrated by N-heterocyclic carbene (NHC)-organocatalyzed direct amidation of aldehydes with 2-aminobenzothiazoles proceeding via acyl azolium intermediates. The carbene generated from the triazolium salt under oxidative conditions was the key for the success of this reaction. The method was subsequently applied to the synthesis of various biologically important N-acyl 2-aminobenzothiazoles.

  14. Diametric Stereocontrol in Dynamic Catalytic Reduction of Racemic Acyl Phosphonates: Divergence from α-Keto Ester Congeners

    PubMed Central

    Corbett, Michael T.; Johnson, Jeffrey S.

    2013-01-01

    An unexpected dichotomy was observed in the Ru-catalyzed asymmetric transfer hydrogenation of acyl phosphonates: reduction proceeded from the opposite face relative to that observed in the analogous reduction of α-keto esters. The first highly selective catalytic hydrogenation of acyl phosphonates was utilized in the dynamic kinetic resolution of α-aryl acyl phosphonates providing β-stereogenic α-hydroxy phosphonic acid derivatives. PMID:23297694

  15. A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases.

    PubMed

    Christensen, Quin H; Grove, Tyler L; Booker, Squire J; Greenberg, E Peter

    2013-08-20

    Many Proteobacteria use N-acyl-homoserine lactone (acyl-HSL) quorum sensing to control specific genes. Acyl-HSL synthesis requires unique enzymes that use S-adenosyl methionine as an acyl acceptor and amino acid donor. We developed and executed an enzyme-coupled high-throughput cell-free screen to discover acyl-HSL synthase inhibitors. The three strongest inhibitors were equally active against two different acyl-HSL synthases: Burkholderia mallei BmaI1 and Yersinia pestis YspI. Two of these inhibitors showed activity in whole cells. The most potent compound behaves as a noncompetitive inhibitor with a Ki of 0.7 µM and showed activity in a cell-based assay. Quorum-sensing signal synthesis inhibitors will be useful in attempts to understand acyl-HSL synthase catalysis and as a tool in studies of quorum-sensing control of gene expression. Because acyl-HSL quorum-sensing controls virulence of some bacterial pathogens, anti-quorum-sensing chemicals have been sought as potential therapeutic agents. Our screen and identification of acyl-HSL synthase inhibitors serve as a basis for efforts to target quorum-sensing signal synthesis as an antivirulence approach.

  16. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase.

    PubMed

    Voelker, T A; Davies, H M

    1994-12-01

    The expression of a plant (Umbellularia californica) medium-chain acyl-acyl carrier protein (ACP) thioesterase (BTE) cDNA in Escherichia coli results in a very high level of extractable medium-chain-specific hydrolytic activity but causes only a minor accumulation of medium-chain fatty acids. BTE's full impact on the bacterial fatty acid synthase is apparent only after expression in a strain deficient in fatty acid degradation, in which BTE increases the total fatty acid output of the bacterial cultures fourfold. Laurate (12:0), normally a minor fatty acid component of E. coli, becomes predominant, is secreted into the medium, and can accumulate to a level comparable to the total dry weight of the bacteria. Also, large quantities of 12:1, 14:0, and 14:1 are made. At the end of exponential growth, the pathway of saturated fatty acids is almost 100% diverted by BTE to the production of free medium-chain fatty acids, starving the cells for saturated acyl-ACP substrates for lipid biosynthesis. This results in drastic changes in membrane lipid composition from predominantly 16:0 to 18:1. The continued hydrolysis of medium-chain ACPs by the BTE causes the bacterial fatty acid synthase to produce fatty acids even when membrane production has ceased in stationary phase, which shows that the fatty acid synthesis rate can be uncoupled from phospholipid biosynthesis and suggests that acyl-ACP intermediates might normally act as feedback inhibitors for fatty acid synthase. As the fatty acid synthesis is increasingly diverted to medium chains with the onset of stationary phase, the rate of C12 production increases relative to C14 production. This observation is consistent with activity of the BTE on free acyl-ACP pools, as opposed to its interaction with fatty acid synthase-bound substrates.

  17. Cloning, characterization, and expression analysis of acyl-acyl carrier protein (ACP)-thioesterase B from seeds of Chinese Spicehush (Lindera communis).

    PubMed

    Dong, Shubin; Huang, Jiacong; Li, Yannan; Zhang, Jing; Lin, Shanzhi; Zhang, Zhixiang

    2014-05-25

    Acyl-acyl carrier protein (ACP) thioesterases (TE EC 3.1.2.14) are fatty acid biosynthesis key enzymes that determine fatty acid carbon chain length in most plant tissues. A full-length cDNA corresponding to one of the fatty acyl-ACP thioesterase (Fat) genes, designated LcFatB, was isolated from developing Lindera communis seeds using PCR and RACE with degenerate primers based on conserved sequences of multiple TE gene sequences obtained from GenBank. The 1788 bp cDNA had an open reading frame (ORF) of 1260 bp encoding a protein of 419 amino acids. The deduced amino acid sequence showed 61-73% identity to proteins in the FatB class of plant thioesterases. Real-time quantitative PCR analysis revealed that LcFatB was expressed in all tissues of L. communis, with the highest expression in the developing seeds 75days after flowering. Recombinant pET-MLcFatB was constructed using the pET-30 a vector and transformed into Escherichia coli BL21(DE3)△FadE, a strain that deleted the acyl-CoA dehydrogenase (FadE). SDS-PAGE analysis of proteins isolated from pET-MLcFatB E. coli cells after induction with IPTG revealed a protein band at ~40.5kDa, corresponding to the predicted size of LcFatB mature protein. The decanoic acid and lauric acid contents of the pET-MLcFatB transformant were increased significantly. These findings suggest that an LcFatB gene from a non-traditional oil-seed tree could be used to function as a saturated acyl-ACP thioesterase and could potentially be used to modify the fatty acid composition of seed oil from L. communis or other species through transgenic approaches.

  18. Mouse Siglec-1 Mediates trans-Infection of Surface-bound Murine Leukemia Virus in a Sialic Acid N-Acyl Side Chain-dependent Manner.

    PubMed

    Erikson, Elina; Wratil, Paul R; Frank, Martin; Ambiel, Ina; Pahnke, Katharina; Pino, Maria; Azadi, Parastoo; Izquierdo-Useros, Nuria; Martinez-Picado, Javier; Meier, Chris; Schnaar, Ronald L; Crocker, Paul R; Reutter, Werner; Keppler, Oliver T

    2015-11-06

    Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction.

  19. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    SciTech Connect

    de Kroon, A.I.P.M.; Killian, J.A.; de Gier, J.; de Kruijff, B. )

    1991-01-29

    Deuterium nuclear magnetic resonance ({sup 2}H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the {beta}-position of the serine moiety ((2-{sup 2}H)DOPS) or at the 11-position of the acyl chains ((11,11-{sup 2}H{sub 2})DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both (2-{sup 2}H)DOPS and (11,11-{sup 2}H{sub 2})DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine){sub 100}, which were included for reasons of comparison, reveal increased {Delta}v{sub q} values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component {sup 2}H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. {sup 2}H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides.

  20. Characterization of a Pseudomonas aeruginosa Fatty Acid Biosynthetic Gene Cluster: Purification of Acyl Carrier Protein (ACP) and Malonyl-Coenzyme A:ACP Transacylase (FabD)

    PubMed Central

    Kutchma, Alecksandr J.; Hoang, Tung T.; Schweizer, Herbert P.

    1999-01-01

    A DNA fragment containing the Pseudomonas aeruginosa fabD (encoding malonyl-coenzyme A [CoA]:acyl carrier protein [ACP] transacylase), fabG (encoding β-ketoacyl-ACP reductase), acpP (encoding ACP), and fabF (encoding β-ketoacyl-ACP synthase II) genes was cloned and sequenced. This fab gene cluster is delimited by the plsX (encoding a poorly understood enzyme of phospholipid metabolism) and pabC (encoding 4-amino-4-deoxychorismate lyase) genes; the fabF and pabC genes seem to be translationally coupled. The fabH gene (encoding β-ketoacyl-ACP synthase III), which in most gram-negative bacteria is located between plsX and fabD, is absent from this gene cluster. A chromosomal temperature-sensitive fabD mutant was obtained by site-directed mutagenesis that resulted in a W258Q change. A chromosomal fabF insertion mutant was generated, and the resulting mutant strain contained substantially reduced levels of cis-vaccenic acid. Multiple attempts aimed at disruption of the chromosomal fabG gene were unsuccessful. We purified FabD as a hexahistidine fusion protein (H6-FabD) and ACP in its native form via an ACP-intein-chitin binding domain fusion protein, using a novel expression and purification scheme that should be applicable to ACP from other bacteria. Matrix-assisted laser desorption–ionization spectroscopy, native polyacrylamide electrophoresis, and amino-terminal sequencing revealed that (i) most of the purified ACP was properly modified with its 4′-phosphopantetheine functional group, (ii) it was not acylated, and (iii) the amino-terminal methionine was removed. In an in vitro system, purified ACP functioned as acyl acceptor and H6-FabD exhibited malonyl-CoA:ACP transacylase activity. PMID:10464226

  1. Mouse Siglec-1 Mediates trans-Infection of Surface-bound Murine Leukemia Virus in a Sialic Acid N-Acyl Side Chain-dependent Manner*

    PubMed Central

    Erikson, Elina; Wratil, Paul R.; Frank, Martin; Ambiel, Ina; Pahnke, Katharina; Pino, Maria; Azadi, Parastoo; Izquierdo-Useros, Nuria; Martinez-Picado, Javier; Meier, Chris; Schnaar, Ronald L.; Crocker, Paul R.; Reutter, Werner; Keppler, Oliver T.

    2015-01-01

    Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction. PMID:26370074

  2. Arabidopsis PIZZA Has the Capacity to Acylate Brassinosteroids

    PubMed Central

    Schneider, Katja; Breuer, Christian; Kawamura, Ayako; Jikumaru, Yusuke; Hanada, Atsushi; Fujioka, Shozo; Ichikawa, Takanari; Kondou, Youichi; Matsui, Minami; Kamiya, Yuji; Yamaguchi, Shinjiro; Sugimoto, Keiko

    2012-01-01

    Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ), was partly rescued by supplying exogenous brassinolide (BL) and castasterone (CS), indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY) and 6-deoxocastasterone (6-deoxoCS), suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis. PMID:23071642

  3. Action of N-acylated ambroxol derivatives on secretion of chloride ions in human airway epithelia.

    PubMed

    Yamada, Takahiro; Takemura, Yoshizumi; Niisato, Naomi; Mitsuyama, Etsuko; Iwasaki, Yoshinobu; Marunaka, Yoshinori

    2009-03-13

    We report the effects of new N-acylated ambroxol derivatives (TEI-588a, TEI-588b, TEI-589a, TEI-589b, TEI-602a and TEI-602b: a, aromatic amine-acylated derivative; b, aliphatic amine-acylated derivative) induced from ambroxol (a mucolytic agent to treat human lung diseases) on Cl(-) secretion in human submucosal serous Calu-3 cells under a Na(+)/K(+)/2Cl(-) cotransporter-1 (NKCC1)-mediated hyper-secreting condition. TEI-589a, TEI-589b and TEI-602a diminished hyper-secretion of Cl(-) by diminishing the activity of NKCC1 without blockade of apical Cl(-) channel (TEI-589a>TEI-602a>TEI-589b), while any other tested compounds including ambroxol had no effects on Cl(-) secretion. These indicate that the inhibitory action of an aromatic amine-acylated derivative on Cl(-) secretion is stronger that that of an aliphatic amine-acylated derivative, and that 3-(2,5-dimethyl)furoyl group has a strong action in inhibition of Cl(-) secretion than cyclopropanoyl group. We here indicate that TEI-589a, TEI-589b and TEI-602a reduce hyper-secretion to an appropriate level in the airway, providing a possibility that the compound can be an effective drug in airway obstructive diseases including COPD by reducing the airway resistance under a hyper-secreting condition.

  4. The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure[S

    PubMed Central

    Son, Mijin; London, Erwin

    2013-01-01

    Lipid asymmetry, the difference in inner and outer leaflet lipid composition, is an important feature of biomembranes. By utilizing our recently developed MβCD-catalyzed exchange method, the effect of lipid acyl chain structure upon the ability to form asymmetric membranes was investigated. Using this approach, SM was efficiently introduced into the outer leaflet of vesicles containing various phosphatidylcholines (PC), but whether the resulting vesicles were asymmetric (SM outside/PC inside) depended upon PC acyl chain structure. Vesicles exhibited asymmetry using PC with two monounsaturated chains of >14 carbons; PC with one saturated and one unsaturated chain; and PC with phytanoyl chains. Vesicles were most weakly asymmetric using PC with two 14 carbon monounsaturated chains or with two polyunsaturated chains. To define the origin of this behavior, transverse diffusion (flip-flop) of lipids in vesicles containing various PCs was compared. A correlation between asymmetry and transverse diffusion was observed, with slower transverse diffusion in vesicles containing PCs that supported lipid asymmetry. Thus, asymmetric vesicles can be prepared using a wide range of acyl chain structures, but fast transverse diffusion destroys lipid asymmetry. These properties may constrain acyl chain structure in asymmetric natural membranes to avoid short or overly polyunsaturated acyl chains. PMID:23093551

  5. Generation of fatty acids by an acyl esterase in the bioluminescent system of Photobacterium phosphoreum

    SciTech Connect

    Carey, L.M.; Rodriguez, A.; Meighen, E.

    1984-08-25

    The fatty acid reductase complex from Photobacterium phosphoreum has been discovered to have a long chain ester hydrolase activity associated with the 34K protein component of the complex. This protein has been resolved from the other components (50K and 58K) of the fatty acid reductase complex with a purity of > 95% and found to catalyze the transfer of acyl groups from acyl-CoA primarily to thiol acceptors with a low level of transfer to glycerol and water. Addition of the 50K protein of the complex caused a dramatic change in specificity increasing the transfer to oxygen acceptors. The acyl-CoA hydrolase activity increased almost 10-fold, and hence free fatty acids can be generated by the 34K protein when it is present in the fatty acid reductase complex. Hydrolysis of acyl-S-mercaptoethanol and acyl-1-glycerol and the ATP-dependent reduction of the released fatty acids to aldehyde for the luminescent reaction were also demonstrated for the reconstituted fatty acid reductase complex, raising the possibility that the immediate source of fatty acids for this reaction in vivo could be the membrane lipids and/or the fatty acid synthetase system.

  6. Altered hepatic retinyl ester concentration and acyl composition in response to alcohol consumption

    PubMed Central

    Clugston, Robin D.; Jiang, Hongfeng; Lee, Man Xia; Berk, Paul D.; Goldberg, Ira J.; Huang, Li-Shin; Blaner, William S.

    2013-01-01

    Retinoids (vitamin A and its metabolites) are essential micronutrients that regulate many cellular processes. Greater than 70% of the body’s retinoid reserves are stored in the liver as retinyl ester (RE). Chronic alcohol consumption induces depletion of hepatic retinoid stores, and the extent of this has been correlated with advancing stages of alcoholic liver disease. The goal of this study was to analyze the mechanisms responsible for depletion of hepatic RE stores by alcohol consumption. A change in the fatty-acyl composition of RE in alcohol-fed mice was observed within two weeks after the start of alcohol consumption. Specifically, alcohol-feeding was associated with a significant decline in hepatic retinyl palmitate levels; however, total RE levels were maintained by a compensatory increase in levels of usually minorRE species, particularly retinyl oleate. Our data suggests that alcohol feeding initially stimulates a futile cycle of RE hydrolysis and synthesis, and that the change in RE acyl composition is associated with a change in the acyl composition of hepatic phosphatidylcholine. The alcohol-induced change in RE acyl composition was specific to the liver, and was not seen in lung or white adipose tissue. This shift in hepatic RE fatty acyl composition is a sensitive indicator of alcohol consumption and may be an early biomarker for events associated with the development of alcoholic liver disease. PMID:23583843

  7. Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson’s disease.

    PubMed

    Abbott, Sarah K; Li, Hongyun; Muñoz, Sonia Sanz; Knoch, Bianca; Batterham, Marijka; Murphy, Karen E; Halliday, Glenda M; Garner, Brett

    2014-04-01

    Genetic studies have provided increasing evidence that ceramide homeostasis plays a role in neurodegenerative diseases including Parkinson’s disease (PD). It is known that the relative amounts of different ceramide molecular species, as defined by their fatty acyl chain length, regulate ceramide function in lipid membranes and in signaling pathways. In the present study we used a comprehensive sphingolipidomic case-control approach to determine the effects of PD on ceramide composition in postmortem brain tissue from the anterior cingulate cortex (a region with significant PD pathology) and the occipital cortex (spared in PD), also assessing mRNA expression of the major ceramide synthase genes that regulate ceramide acyl chain composition in the same tissue using quantitative PCR. In PD anterior cingulate cortex but not occipital cortex, total ceramide and sphingomyelin levels were reduced from control levels by 53% (P < 0.001) and 42% (P < 0.001), respectively. Of the 13 ceramide and 15 sphingomyelin molecular lipid species identified and quantified, there was a significant shift in the ceramide acyl chain composition toward shorter acyl chain length in the PD anterior cingulate cortex. This PD-associated change in ceramide acyl chain composition was accompanied by an upregulation of ceramide synthase-1 gene expression, which we consider may represent a response to reduced ceramide levels. These data suggest a significant shift in ceramide function in lipid membranes and signaling pathways occurs in regions with PD pathology. Identifying the regulatory mechanisms precipitating this change may provide novel targets for future therapeutics.

  8. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material

    NASA Astrophysics Data System (ADS)

    Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

    2014-03-01

    A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry.

  9. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis

    PubMed Central

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4’-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. DOI: http://dx.doi.org/10.7554/eLife.17828.001 PMID:27540631

  10. Synthesis of amino acyl adenylates using the tert-butoxycarbonyl protecting group

    NASA Technical Reports Server (NTRS)

    Armstrong, D. W.; Seguin, R.; Saburi, M.; Fendler, J. H.

    1979-01-01

    The synthesis of amino acyl adenylates using N-tert-butoxycarbonyl-protected amino acids is reported. Anhydrous solutions containing N-tert-butoxycarbonyl alanine, phenylalanine, and methionine were combined with the anhydrous mono (tri-n-octylammonium) salt of adenosine 5'-phosphate and the resultant amino acyl adenylates were characterized by means of elemental analysis, and infrared and proton NMR spectroscopy. Amino acyl adenylate yields of up to 60% were obtained with high purity at room temperatures. The reported synthesis is considered to represent a large improvement over previous methods due to the purity of the products, normal temperature requirements, and the stability of the starting compounds, which suggests its use in investigations of prebiotic oligo- and polypeptide synthesis.

  11. Synthesis, Surface Active Properties and Cytotoxicity of Sodium N-Acyl Prolines.

    PubMed

    Sreenu, Madhumanchi; Narayana Prasad, Rachapudi Badari; Sujitha, Pombala; Kumar, Chityal Ganesh

    2015-01-01

    Sodium N-acyl prolines (NaNAPro) were synthesized using mixture of fatty acids obtained from coconut, palm, karanja, Sterculia foetida and high oleic sunflower oils via Schotten-Baumann reaction in 58-75% yields to study the synergetic effect of mixture of hydrophobic fatty acyl functionalities like saturation, unsaturation and cyclopropene fatty acids with different chain lengths and aliphatic hetero cyclic proline head group on their surface and cytotoxicity activities. The products were characterized by chromatographic and spectral techniques. The synthesized products were evaluated for their surface active properties such as surface tension, wetting power, foaming characteristics, emulsion stability, calcium tolerance, critical micelle concentration (CMC) and thermodynamic properties. The results revealed that all the products exhibited superior surface active properties like CMC, calcium tolerance and emulsion stability as compared to the standard surfactant, sodium lauryl sulphate (SLS). In addition, palm, Sterculia foetida and high oleic sunflower fatty N-acyl prolines exhibited promising cytotoxicity against different tumor cell lines.

  12. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors

    PubMed Central

    Guasch, Laura; Nicklaus, Marc C.; Meier, Jordan L.

    2015-01-01

    SUMMARY The finding that chromatin modifications are sensitive to changes in cellular cofactor levels potentially links altered tumor cell metabolism and gene expression. However, the specific enzymes and metabolites that connect these two processes remain obscure. Characterizing these metabolic-epigenetic axes is critical to understanding how metabolism supports signaling in cancer, and developing therapeutic strategies to disrupt this process. Here, we describe a chemical approach to define the metabolic regulation of lysine acetyltransferase (KAT) enzymes. Using a novel chemoproteomic probe, we identify a previously unreported interaction between fatty acyl-CoAs and KAT enzymes. Further analysis reveals that palmitoyl-CoA is a potent inhibitor of KAT activity and that fatty acyl-CoA precursors reduce cellular acetylation levels. These studies implicate fatty acyl-CoAs as endogenous regulators of histone acetylation, and suggest novel strategies for the investigation and metabolic modulation of epigenetic signaling. PMID:26190825

  13. Ghrelin, des-acyl ghrelin and obestatin on the gastrointestinal motility.

    PubMed

    Fujimiya, Mineko; Ataka, Koji; Asakawa, Akihiro; Chen, Chih-Yen; Kato, Ikuo; Inui, Akio

    2011-11-01

    Ghrelin, des-acyl ghrelin and obestatin are derived from a common prohormone, preproghrelin by posttranslational processing, originating from endocrine cells in the stomach. Ghrelin exerts stimulatory effects on the motility of antrum and duodenum in both fed and fasted state of animals. On the other hand, des-acyl ghrelin exerts inhibitory effects on the motility of antrum but not on the motility of duodenum in the fasted state of animals. Obestatin exerts inhibitory effects on the motility of antrum and duodenum in the fed state but not in the fasted state of animals. NPY Y2 and Y4 receptors in the brain may mediate the action of ghrelin, CRF type 2 receptor in the brain may mediate the action of des-acyl ghrelin, whereas CRF type 1 and type 2 receptors in the brain may mediate the action of obestatin.

  14. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material.

    PubMed

    Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

    2014-03-21

    A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry.

  15. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  16. Systems Analysis of Protein Fatty Acylation in Herpes Simplex Virus-Infected Cells Using Chemical Proteomics

    PubMed Central

    Serwa, Remigiusz A.; Abaitua, Fernando; Krause, Eberhard; Tate, Edward W.; O’Hare, Peter

    2015-01-01

    Summary Protein fatty acylation regulates diverse aspects of cellular function and organization and plays a key role in host immune responses to infection. Acylation also modulates the function and localization of virus-encoded proteins. Here, we employ chemical proteomics tools, bio-orthogonal probes, and capture reagents to study myristoylation and palmitoylation during infection with herpes simplex virus (HSV). Using in-gel fluorescence imaging and quantitative mass spectrometry, we demonstrate a generalized reduction in myristoylation of host proteins, whereas palmitoylation of host proteins, including regulators of interferon and tetraspanin family proteins, was selectively repressed. Furthermore, we found that a significant fraction of the viral proteome undergoes palmitoylation; we identified a number of virus membrane glycoproteins, structural proteins, and kinases. Taken together, our results provide broad oversight of protein acylation during HSV infection, a roadmap for similar analysis in other systems, and a resource with which to pursue specific analysis of systems and functions. PMID:26256475

  17. Natural variability in acyl moieties of sugar esters produced by certain tobacco and other Solanaceae species.

    PubMed

    Kroumova, Antoaneta B M; Zaitlin, Dave; Wagner, George J

    2016-10-01

    A unique feature of glandular trichomes of plants in the botanical family Solanaceae is that they produce sugar esters (SE), chemicals that have been shown to possess insecticidal, antifungal, and antibacterial properties. Sugar esters of tobacco (Nicotiana tabacum) provide pest resistance, and are important flavor precursors in oriental tobacco cultivars. Acyl moieties of SEs in Nicotiana spp., petunia, and tomato are shown to vary with respect to carbon length and isomer structure (2-12 carbon chain length; anteiso-, iso-, and straight-chain). Sugar esters and their acyl groups could serve as a model to explore the basis of phenotypic diversity and adaptation to natural and agricultural environments. However, information on the diversity of acyl composition among species, cultivars, and accessions is lacking. Herein, described is the analysis of SE acyl groups found in 21 accessions of Nicotiana obtusifolia (desert tobacco), six of Nicotiana occidentalis subsp. hesperis, three of Nicotiana alata, two of N. occidentalis, four modern tobacco cultivars, five petunia hybrids, and one accession each of a primitive potato (Solanum berthaultii) and tomato (Solanum pennellii). A total of 20 different acyl groups was observed that were represented differently among cultivars, species, and accessions. In Nicotiana species, acetate and iso- and anteiso-branched acids prevailed. Straight-chain groups (2-8 carbons) were prominent in petunias, while octanoic acid was prominent in N. alata and N. × sanderae. Two unexpected acyl groups, 8-methyl nonanoate and decanoate were found in N. occidentalis subsp. hesperis. Longer chain groups were found in the petunia, tomato, and potato species studied.

  18. The Effects of Exercise on Food Intake and Hunger: Relationship with Acylated Ghrelin and Leptin

    PubMed Central

    Vatansever-Ozen, Serife; Tiryaki-Sonmez, Gul; Bugdayci, Guler; Ozen, Guclu

    2011-01-01

    This study investigated the effects of a long bout of aerobic exercise on hunger and energy intake and circulating levels of leptin and acylated ghrelin. Ten healthy male subjects undertook two, 4 h trials in a randomized crossover design. In the exercise trial subjects ran for 105 min at 50% of maximal oxygen uptake and the last 15 min at 70% of maximal oxygen uptake followed by a 120 min rest period. In the control trial, subjects rested for 4 h. Subjects consumed a buffet test meal at 180 min during each trial. Hunger ratings, acylated ghrelin, leptin, glucose and insulin concentrations were measured at 0, 1, 2, 3 and 4 h. No differences were found at baseline values for hunger, acylated ghrelin, leptin, insulin and glucose for both trials (p > 0.05). The estimated energy expenditure of the exercise trial was 1550 ± 136 kcal. Exercise did not change subsequent absolute energy intake, but produced a significant decrease (p < 0.05) in relative energy intake. A two-way ANOVA revealed a significant (p < 0. 05) interaction effect for hunger and acylated ghrelin. In conclusion, this exercise regimen had a positive effect on reducing appetite which is related to reduced acylated ghrelin responses over time. This finding lends support for a role of exercise in weight management. Key points Physical exercise is a strategy used to counteract obesity, since it lowers the energetic balance by increasing energy expenditure. However, because any energy expended in exercise elevates the intensity of hunger and drives food consumption, it is pertinent to ask how effective exercise could be in helping people to lose weight or to prevent weight gain. The effects of exercise on hunger sensations and food intake are fairly controversial and depend on the intensity and duration of exercise. 120 min prolonged treadmill exercise with mix intensity, temporarily decreased hunger sensations, acylated ghrelin and relative energy intake. Variations in exercise intensity should

  19. Location and biosynthesis of monoterpenyl fatty acyl esters in rose petals.

    PubMed

    Dunphy, Patrick J

    2006-06-01

    The upper epidermal layer of cells and the epicuticular wax surface of Lady Seton rose petals are sites of biosynthesis and accumulation, respectively, of a family of terpenyl fatty acyl esters. These esters are based mainly on the acyclic monoterpene alcohol geraniol coupled primarily to fatty acids of chain lengths 16-20 and in mass terms represent from 14% to 64% of the total monoterpenes present in the petals. The lipophilic nature of these non-volatile esters of the monoterpene alcohols contrasts with that of the lipophilic volatile parent alcohols themselves and with the hydrophilic, non-volatile, glucoside derivative of the other principal petal fragrant compounds, the phenylpropanoids, beta-phenyl ethanol and benzyl alcohol. These latter compounds are also synthesised and are resident in the petal. Biosynthetic studies confirmed that the petal upper epidermal cell layer has the capacity to incorporate mevalonic acid into the monoterpene component of the fatty acyl ester. The biosynthesis of the monoterpene component of the fatty acyl ester occurs via the mevalonic acid pathway in Lady Seton as well as in the hybrid tea rose Fragrant Cloud. In the latter flower the biosynthesis of geraniol was biosynthetically trans as was the formation of nerol and citronellol. Both geraniol and nerol were shown to be precursors of citronellol via an NADPH dependent reductase reaction. Oleic acid is assimilated into the acyl moiety of the terpenyl ester in Lady Seton isolated petal discs. It is probable that the lipophilic non-volatile terpenyl fatty acyl esters represent a stable storage form of the corresponding alcohols from their residency within the epicuticular wax layer. These acyl esters may realise, on hydrolysis, additional aroma notes from the living flower and potentially commercially significant quantities of the fragrant terpenols during oil of rose essence production.

  20. Positive selection drives adaptive diversification of the 4-coumarate: CoA ligase (4CL) gene in angiosperms

    PubMed Central

    Sun, Haiyan; Guo, Kai; Feng, Shengqiu; Zou, Weihua; Li, Ying; Fan, Chunfen; Peng, Liangcai

    2015-01-01

    Lignin and flavonoids play a vital role in the adaption of plants to a terrestrial environment. 4-Coumarate: coenzyme A ligase (4CL) is a key enzyme of general phenylpropanoid metabolism which provides the precursors for both lignin and flavonoids biosynthesis. However, very little is known about how such essential enzymatic functions evolve and diversify. Here, we analyze 4CL sequence variation patterns in a phylogenetic framework to further identify the evolutionary forces that lead to functional divergence. The results reveal that lignin-biosynthetic 4CLs are under positive selection. The majority of the positively selected sites are located in the substrate-binding pocket and the catalytic center, indicating that nonsynonymous substitutions might contribute to the functional evolution of 4CLs for lignin biosynthesis. The evolution of 4CLs involved in flavonoid biosynthesis is constrained by purifying selection and maintains the ancestral role of the protein in response to biotic and abiotic factors. Overall, our results demonstrate that protein sequence evolution via positive selection is an important evolutionary force driving adaptive diversification in 4CL proteins in angiosperms. This diversification is associated with adaption to a terrestrial environment. PMID:26380674

  1. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1...., chloride (PMN P-01-646; CAS No. 391232-99-8) is subject to reporting under this section for the...

  2. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1...., chloride (PMN P-01-646; CAS No. 391232-99-8) is subject to reporting under this section for the...

  3. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1...., chloride (PMN P-01-646; CAS No. 391232-99-8) is subject to reporting under this section for the...

  4. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition.

    PubMed

    Moreno-Pérez, Antonio J; Sánchez-García, Alicia; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2011-01-01

    The mechanisms by which macadamia nuts accumulate the unusual palmitoleic and asclepic acyl moieties, which constitute up to 20% of the fatty acids in some varieties, are still unknown. Acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) are intraplastidial enzymes that terminate the synthesis of fatty acids in plants and that facilitate the export of the acyl moieties to the endoplasmic reticulum where they can be used in the production of glycerolipids. Here, we have investigated the possible role of acyl-ACP thioesterase activity in the composition of macadamia kernel oil. Accordingly, two acyl-ACP thioesterases were cloned from developing macadamia kernels, one of the FatA type and the other of the FatB type. These enzymes were heterologously expressed in Escherichia coli, and the recombinant thioesterases were purified, characterized kinetically and assayed with a variety of substrates, demonstrating the high specificity of macadamia FatA towards 16:1-ACP. Acyl-ACP thioesterase activity was also characterized in crude extracts from two different varieties of macadamia, Cate and Beaumont, which accumulate different amounts of n-7 fatty acids. The impact of acyl-ACP thioesterase activities on the oil composition of these kernels is discussed in the light of these results.

  5. Thermoregulation of N-acyl homoserine lactone-based quorum sensing in the soft rot bacterium Pectobacterium atrosepticum.

    PubMed

    Latour, Xavier; Diallo, Stéphanie; Chevalier, Sylvie; Morin, Danièle; Smadja, Bruno; Burini, Jean-François; Haras, Dominique; Orange, Nicole

    2007-06-01

    The psychrotolerant bacterium Pectobacterium atrosepticum produces four N-acyl homoserine lactones under a wide range of temperatures. Their thermoregulation differs from that of the exoenzyme production, described as being under quorum-sensing control. A mechanism involved in this thermoregulation consists of controlling N-acyl homoserine lactones synthase production at a transcriptional level.

  6. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  7. Acylation, Diastereoselective Alkylation, and Cleavage of an Oxazolidinone Chiral Auxiliary: A Multistep Asymmetric Synthesis Experiment for Advanced Undergraduates

    ERIC Educational Resources Information Center

    Smith, Thomas E.; Richardson, David P.; Truran, George A.; Belecki, Katherine; Onishi, Megumi

    2008-01-01

    An introduction to the concepts and experimental techniques of diastereoselective synthesis using a chiral auxiliary is described. The 4-benzyl-2-oxazolidinone chiral auxiliary developed by Evans is acylated with propionic anhydride under mild conditions using DMAP as an acyl transfer catalyst. Deprotonation with NaN(TMS)[subscript 2] at -78…

  8. Plant acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles inacyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for se...

  9. The cytotoxic effect of 2-acylated-1,4-naphthohydroquinones on leukemia/lymphoma cells.

    PubMed

    Pedroza, Diego A; De Leon, Fernando; Varela-Ramirez, Armando; Lema, Carolina; Aguilera, Renato J; Mito, Shizue

    2014-01-15

    Here, we tested seven 2-acylated-1,4-hydronaphthoquinones for their cytotoxic effects on a panel of cancer lymphoma/leukemia cells and compared to a non-cancer origin cell line. Several naphthohydroquinones exhibited selective cytotoxic effects on lymphoma/leukemia cells with lowest activity on non-cancer cells. The mode of cell death induced by an acylated naphthohydroquinone, which has a long alkyl chain, was found to be via apoptosis. Furthermore, the naphthohydroquinone provoked mitochondria depolarization and activation of its downstream effector, caspase-3, thus implicating the intrinsic apoptotic pathway as its mechanism to exert cell death.

  10. Localization of acyl coenzyme A:cholesterol acyltransferase gene to human chromosome 1q25

    SciTech Connect

    Chang, C.C.Y.; Chang, W.; Chang, T.Y. ); Noll, W.W.; Nutile-McMenemy, N. ); Lindsay, E.A.; Baldini, A. )

    1994-01-01

    Acyl coenzyme A:cholesterol acyltransferase (ACAT) is an intracellular enzyme that catalyzes the formation of cholesterol esters from cholesterol and long-chain fatty acyl-coenzyme A. It is believed that ACAT plays a key role in lipoprotein metabolism and atherogenesis. Recently the authors' laboratory succeeded in molecular cloning and functional expression of human macrophage ACAT cDNA. They have now mapped the ACAT gene to chromosome 1, band q25 by using fluorescence in situ hybridization to metaphase chromosomes, and by Southern blotting analysis of human-hamster somatic cell hybrid panels.

  11. Synthesis of multi ring-fused 2-pyridones via an acyl-ketene imine cyclocondensation.

    PubMed

    Pemberton, Nils; Jakobsson, Lotta; Almqvist, Fredrik

    2006-03-02

    Polycyclic ring-fused 2-pyridones (5a-e and 9a-e) have been prepared via a microwave-assisted acyl-ketene imine cyclocondensation. Starting from 3,4-dihydroisoquinolines (4a-b) or 3,4-dihydroharman (8), fused 2-pyridones could be prepared in a one-step procedure. By using either Meldrum's acid derivatives (1a-d) or 1,3-dioxine-4-ones (7a-b) as acyl-ketene sources, mono- or disubstitution of the fused 2-pyridone ring could be accomplished. As an application of the method, a formal synthesis of the indole alkaloid sempervilam was performed.

  12. Macrocyclic prolinyl acyl guanidines as inhibitors of β-secretase (BACE).

    PubMed

    Boy, Kenneth M; Guernon, Jason M; Wu, Yong-Jin; Zhang, Yunhui; Shi, Joe; Zhai, Weixu; Zhu, Shirong; Gerritz, Samuel W; Toyn, Jeremy H; Meredith, Jere E; Barten, Donna M; Burton, Catherine R; Albright, Charles F; Good, Andrew C; Grace, James E; Lentz, Kimberley A; Olson, Richard E; Macor, John E; Thompson, Lorin A

    2015-11-15

    The synthesis, evaluation, and structure-activity relationships of a class of acyl guanidines which inhibit the BACE-1 enzyme are presented. The prolinyl acyl guanidine chemotype (7c), unlike compounds of the parent isothiazole chemotype (1), yielded compounds with good agreement between their enzymatic and cellular potency as well as a reduced susceptibility to P-gp efflux. Further improvements in potency and P-gp ratio were realized via a macrocyclization strategy. The in vivo profile in wild-type mice and P-gp effects for the macrocyclic analog 21c is presented.

  13. The cytotoxic effect of 2-acylated-1,4-naphthohydroquinones on leukemia/lymphoma cells

    PubMed Central

    Pedroza, Diego A.; De Leon, Fernando; Varela-Ramirez, Armando; Lema, Carolina; Aguilera, Renato J.; Mito, Shizue

    2014-01-01

    Here, we tested seven 2-acylated-1,4-hydronaphthoquinones for their cytotoxic effects on a panel of cancer lymphoma/leukemia cells and compared to a non-cancer origin cell line. Several naphthohydroquinones exhibited selective cytotoxic effects on lymphoma/leukemia cells with lowest activity on non-cancer cells. The mode of cell death induced by an acylated naphthohydroquinone, which has a long alkyl chain, was found to be via apoptosis. Furthermore, the naphthohydroquinone provoked mitochondria depolarization and activation of its downstream effector, caspase-3, thus implicating the intrinsic apoptotic pathway as its mechanism to exert cell death. PMID:24368029

  14. Kinetic resolution of acids in acylation reactions in the presence of chiral tertiary amines

    SciTech Connect

    Potapov, V.M.; Dem'yanovich, V.M.; Khlebnikov, V.A.

    1988-07-10

    Asymmetric synthesis has now become an important method for the production of optically active compounds, and its most attractive form is asymmetric catalysis. This work was devoted to an investigation into asymmetric catalysis with chiral tertiary amines in acylation reactions. During the acylation of alcohols and amines by the action of racemic 2-phenylpropionic and 2-methyl-3-phenylpropionic acids in the presence of S-nicotine the initial acids are resolved kinetically. The (R)-2-phenylpropionic acid obtained in this way had an optical purity of 0.5-1.5%.

  15. A calcium-dependent acyltransferase that produces N-acyl phosphatidylethanolamines

    PubMed Central

    Ogura, Yuji; Parsons, William H.; Kamat, Siddhesh S.; Cravatt, Benjamin F.

    2016-01-01

    More than 30 years ago, a calcium-dependent enzyme activity was described that generates N-acyl phosphatidylethanolamines (NAPEs), which are precursors for N-acyl ethanolamine (NAE) lipid transmitters, including the endocannabinoid anandamide. The identity of this calcium-dependent N-acyltransferase (Ca-NAT) has remained mysterious. Here, we use activity-based protein profiling to identify the poorly characterized serine hydrolase PLA2G4E as a mouse brain Ca-NAT and show that this enzyme generates NAPEs and NAEs in mammalian cells. PMID:27399000

  16. Matrix-assisted ultraviolet laser desorption/ionization time-of-flight (UV-MALDI-TOF) mass spectra of N-acylated and N,O-acylated glycosylamines.

    PubMed

    Sato, Yasuto; Fukuyama, Yuko; Nonami, Hiroshi; Erra-Balsells, Rosa; Stortz, Carlos A; Cerezo, Alberto S; Matulewicz, María C

    2007-12-10

    Matrix-assisted ultraviolet laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOF-MS) has shown to be a very useful technique for the study of the non-volatile and thermally non-stable N-acylated glycopyranosyl- and glycofuranosyl-amines. Of the several matrices tested, 2,5-dihydroxybenzoic acid (DHB) was the most effective giving good spectra in the positive-ion mode. In the linear and reflectron modes, the [M+Na](+) ions appeared with high intensity. Their fragmentation patterns were investigated by post-source decay (PSD) UV-MALDI-TOF-MS showing mainly cross-ring cleavages. In addition, N,O-acylated glycopyranosyl- and glycofuranosyl-amines were also analyzed by this technique. PSD UV-MALDI-TOF-MS gave significant signals for several primary fragment ions, which were proposed but not detected, or observed with very low abundance, in electron ionization mass spectrometry (EI-MS) experiments.

  17. The Acyl-Acyl Carrier Protein Synthetase from Synechocystis sp. PCC 6803 Mediates Fatty Acid Import1[C][W][OA

    PubMed Central

    von Berlepsch, Simon; Kunz, Hans-Henning; Brodesser, Susanne; Fink, Patrick; Marin, Kay; Flügge, Ulf-Ingo; Gierth, Markus

    2012-01-01

    The transfer of fatty acids across biological membranes is a largely uncharacterized process, although it is essential at membranes of several higher plant organelles like chloroplasts, peroxisomes, or the endoplasmic reticulum. Here, we analyzed loss-of-function mutants of the unicellular cyanobacterium Synechocystis sp. PCC 6803 as a model system to circumvent redundancy problems encountered in eukaryotic organisms. Cells deficient in the only cytoplasmic Synechocystis acyl-acyl carrier protein synthetase (SynAas) were highly resistant to externally provided α-linolenic acid, whereas wild-type cells bleached upon this treatment. Bleaching of wild-type cells was accompanied by a continuous increase of α-linolenic acid in total lipids, whereas no such accumulation could be observed in SynAas-deficient cells (Δsynaas). When SynAas was disrupted in the tocopherol-deficient, α-linolenic acid-hypersensitive Synechocystis mutant Δslr1736, double mutant cells displayed the same resistance phenotype as Δsynaas. Moreover, heterologous expression of SynAas in yeast (Saccharomyces cerevisiae) mutants lacking the major yeast fatty acid import protein Fat1p (Δfat1) led to the restoration of wild-type sensitivity against exogenous α-linolenic acid of the otherwise resistant Δfat1 mutant, indicating that SynAas is functionally equivalent to Fat1p. In addition, liposome assays provided direct evidence for the ability of purified SynAas protein to mediate α-[14C]linolenic acid retrieval from preloaded liposome membranes via the synthesis of [14C]linolenoyl-acyl carrier protein. Taken together, our data show that an acyl-activating enzyme like SynAas is necessary and sufficient to mediate the transfer of fatty acids across a biological membrane. PMID:22535424

  18. Calf thymus DNA-binding ability study of anthocyanins from purple sweet potatoes ( Ipomoea batatas L.).

    PubMed

    Wang, Dan; Wang, Xirui; Zhang, Chao; Ma, Yue; Zhao, Xiaoyan

    2011-07-13

    A total of 10 anthocyanin compounds were identified from five purple sweet potato ( Ipomoea batatas L.) varieties, Qunzi, Zishu038, Ji18, Jingshu6, and Ziluolan, by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to assess their calf thymus DNA-binding ability in vitro. The interaction between anthocyanins and calf thymus DNA in Tris-HCl buffer solution (pH 6.9) was evaluated by fluorescence spectroscopy. Using ethidium bromide (EB) as a fluorescence probe, fluorescence quenching of the emission peak was seen in the DNA-EB system when anthocyanins were added, indicating that the anthocyanins bound with DNA. The acylated groups influenced the ability of the interaction with DNA. Anthocyanins from purple sweet potato with more acylated groups in sorphorose have a stronger binding ability with DNA.

  19. Heterologous expression of the acyl-acyl carrier protein thioesterase gene from the plant Umbellularia californica mediates polyhydroxyalkanoate biosynthesis in recombinant Escherichia coli.

    PubMed

    Rehm, B H; Steinbüchel, A

    2001-03-01

    The acyl-acyl carrier protein (ACP) thioesterase cDNA from the plant Umbellularia californica was functionally expressed in various recombinant Escherichia coli strains in order to establish a new metabolic route toward medium-chain-length polyhydroxyalkanoate (PHA(MCL)) biosynthesis from non-related carbon sources. Coexpression of the PHA synthase genes from Ralstonia eutropha and Pseudomonas aeruginosa, or only the PHA synthase gene from P. aeruginosa, respectively, showed PHA(MCL) accumulation when the type II PHA synthase from P. aeruginosa was produced. Both wild-type E. coli and various fad mutants were investigated; and only when the beta-oxidation pathway was impaired PHA(MCL) accumulation from gluconate was observed, contributing to about 6% of cellular dry weight. Thus coexpression of type II PHA synthase gene with cDNA encoding the medium-chain acyl-ACP thioesterase from U. californica established a new PHA(MCL) biosynthesis pathway, connecting fatty acid de novo biosynthesis with fatty acid beta-oxidation, using a non-related carbon source.

  20. Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases.

    PubMed

    Tong, Fumin; Black, Paul N; Coleman, Rosalind A; DiRusso, Concetta C

    2006-03-01

    Mammals express multiple isoforms of acyl-CoA synthetase (ACSL1 and ACSL3-6) in various tissues. These enzymes are essential for fatty acid metabolism providing activated intermediates for complex lipid synthesis, protein modification, and beta-oxidation. Yeast in contrast express four major ACSLs, which have well-defined functions. Two, Faa1p and Faa4p, are specifically required for fatty acid transport by vectorial acylation. Four ACSLs from the rat were expressed in a yeast faa1delta faa4delta strain and their roles in fatty acid transport and trafficking characterized. All four restored ACS activity yet varied in substrate preference. ACSL1, 4, and 6 were able to rescue fatty acid transport activity and triglyceride synthesis. ACSL5, however, was unable to facilitate fatty acid transport despite conferring robust oleoyl-CoA synthetase activity. This is the first study evaluating the role of the mammalian ACSLs in fatty acid transport and supports a role for ACSL1, 4, and 6 in transport by vectorial acylation.

  1. Abiotic stress induces change in Cinnamoyl CoA Reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala.

    PubMed

    Srivastava, Sameer; Vishwakarma, Rishi K; Arafat, Yasir Ali; Gupta, Sushim K; Khan, Bashir M

    2015-04-01

    Aboitic stress such as drought and salinity are class of major threats, which plants undergo through their lifetime. Lignin deposition is one of the responses to such abiotic stresses. The gene encoding Cinnamoyl CoA Reductase (CCR) is a key gene for lignin biosynthesis, which has been shown to be over-expressed under stress conditions. In the present study, developing seedlings of Leucaena leucocephala (Vernacular name: Subabul, White popinac) were treated with 1 % mannitol and 200 mM NaCl to mimic drought and salinity stress conditions, respectively. Enzyme linked immunosorbant assay (ELISA) based expression pattern of CCR protein was monitored coupled with Phlorogucinol/HCl activity staining of lignin in transverse sections of developing L. leucocephala seedlings under stress. Our result suggests a differential lignification pattern in developing root and stem under stress conditions. Increase in lignification was observed in mannitol treated stems and corresponding CCR protein accumulation was also higher than control and salt stress treated samples. On the contrary CCR protein was lower in NaCl treated stems and corresponding lignin deposition was also low. Developing root tissue showed a high level of CCR content and lignin deposition than stem samples under all conditions tested. Overall result suggested that lignin accumulation was not affected much in case of developing root however developing stems were significantly affected under drought and salinity stress condition.

  2. Engineering Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: effects of overexpressing propionyl-CoA:Succinate CoA transferase.

    PubMed

    Wang, Zhongqiang; Ammar, Ehab M; Zhang, An; Wang, Liqun; Lin, Meng; Yang, Shang-Tian

    2015-01-01

    Propionibacterium freudenreichii subsp. shermanii naturally forms propionic acid as the main fermentation product with acetate and succinate as two major by-products. In this study, overexpressing the native propionyl-CoA:succinate CoA transferase (CoAT) in P. shermanii was investigated to evaluate its effects on propionic acid fermentation with glucose, glycerol, and their mixtures as carbon source. In general, the mutant produced more propionic acid, with up to 10% increase in yield (0.62 vs. 0.56g/g) and 46% increase in productivity (0.41 vs. 0.28g/Lh), depending on the fermentation conditions. The mutant also produced less acetate and succinate, with the ratios of propionate to acetate (P/A) and succinate (P/S) in the final product increased 50% and 23%, respectively, in the co-fermentation of glucose/glycerol. Metabolic flux analysis elucidated that CoAT overexpression diverted more carbon fluxes toward propionic acid, resulting in higher propionic acid purity and a preference for glycerol over glucose as carbon source.

  3. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia.

    PubMed

    Muñoz-Bertomeu, Jesús; Sales, Ester; Ros, Roc; Arrillaga, Isabel; Segura, Juan

    2007-11-01

    Spike lavender (Lavandula latifolia) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, beta-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.

  4. Acute aerobic exercise differentially alters acylated ghrelin and perceived fullness in normal-weight and obese individuals.

    PubMed

    Heden, Timothy D; Liu, Ying; Park, Youngmin; Dellsperger, Kevin C; Kanaley, Jill A

    2013-09-01

    Adiposity alters acylated ghrelin concentrations, but it is unknown whether adiposity alters the effect of exercise and feeding on acylated ghrelin responses. Therefore, the purpose of this study was to determine whether adiposity [normal-weight (NW) vs. obese (Ob)] influences the effect of exercise and feeding on acylated ghrelin, hunger, and fullness. Fourteen NW and 14 Ob individuals completed two trials in a randomized counterbalanced fashion, including a prior exercise trial (EX) and a no exercise trial (NoEX). During the EX trial, the participants performed 1 h of treadmill walking (55-60% peak O2 uptake) during the evening, 12 h before a 4-h standardized mixed meal test. Frequent blood samples were taken and analyzed for acylated ghrelin, and a visual analog scale was used to assess perceived hunger and fullness. In NW individuals, EX, compared with NoEX, reduced fasting acylated ghrelin concentrations by 18% (P = 0.03), and, in response to feeding, the change in acylated ghrelin (P = 0.02) was attenuated by 39%, but perceived hunger and fullness were unaltered. In Ob individuals, despite no changes in fasting or postprandial acylated ghrelin concentrations with EX, postprandial fullness was attenuated by 46% compared with NoEX (P = 0.05). In summary, exercise performed the night before a meal suppresses acylated ghrelin concentrations in NW individuals without altering perceived hunger or fullness. In Ob individuals, despite no changes in acylated ghrelin concentrations, EX reduced the fullness response to the test meal. Acylated ghrelin and perceived fullness responses are differently altered by acute aerobic exercise in NW and Ob individuals.

  5. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. (a) Chemical substance and...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts (PMN P-03-46; CAS No. 136504-87-5) is subject...

  6. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. (a) Chemical substance and...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts (PMN P-03-46; CAS No. 136504-87-5) is subject...

  7. 40 CFR 721.10174 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. 721.10174 Section 721.10174 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. (a) Chemical substance...-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts (PMN...

  8. 40 CFR 721.10174 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. 721.10174 Section 721.10174 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. (a) Chemical substance...-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts (PMN...

  9. 40 CFR 721.10174 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. 721.10174 Section 721.10174 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. (a) Chemical substance...-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts (PMN...

  10. 40 CFR 721.10174 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. 721.10174 Section 721.10174 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. (a) Chemical substance...-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts (PMN...

  11. Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis

    PubMed Central

    Miyanaga, Akimasa; Iwasawa, Shohei; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2016-01-01

    Acyltransferases (ATs) are key determinants of building block specificity in polyketide biosynthesis. Despite the importance of protein–protein interactions between AT and acyl carrier protein (ACP) during the acyltransfer reaction, the mechanism of ACP recognition by AT is not understood in detail. Herein, we report the crystal structure of AT VinK, which transfers a dipeptide group between two ACPs, VinL and VinP1LdACP, in vicenistatin biosynthesis. The isolated VinK structure showed a unique substrate-binding pocket for the dipeptide group linked to ACP. To gain greater insight into the mechanism of ACP recognition, we attempted to crystallize the VinK–ACP complexes. Because transient enzyme–ACP complexes are difficult to crystallize, we developed a covalent cross-linking strategy using a bifunctional maleimide reagent to trap the VinK–ACP complexes, allowing the determination of the crystal structure of the VinK–VinL complex. In the complex structure, Arg-153, Met-206, and Arg-299 of VinK interact with the negatively charged helix II region of VinL. The VinK–VinL complex structure allows, to our knowledge, the first visualization of the interaction between AT and ACP and provides detailed mechanistic insights into ACP recognition by AT. PMID:26831085

  12. Inefficient translation renders the Enterococcus faecalis fabK enoyl-acyl carrier protein reductase phenotypically cryptic.

    PubMed

    Bi, Hongkai; Zhu, Lei; Wang, Haihong; Cronan, John E

    2014-01-01

    Enoyl-acyl carrier protein (ACP) reductase catalyzes the last step of the bacterial fatty acid elongation cycle. Enterococcus faecalis is unusual in that it encodes two unrelated enoyl-ACP reductases, FabI and FabK. We recently reported that deletion of the gene encoding FabI results in an unsaturated fatty acid (UFA) auxotroph despite the presence of fabK, a gene encoding a second fully functional enoyl-ACP reductase. By process of elimination, our prior report argued that poor expression was the reason that fabK failed to functionally replace FabI. We now report that FabK is indeed poorly expressed and that the expression defect is at the level of translation rather than transcription. We isolated four spontaneous mutants that allowed growth of the E. faecalis ΔfabI strain on fatty acid-free medium. Each mutational lesion (single base substitution or deletion) extended the fabK ribosome binding site. Inactivation of fabK blocked growth, indicating that the mutations acted only on fabK rather than a downstream gene. The mutations activated fabK translation to levels that supported fatty acid synthesis and hence cell growth. Furthermore, site-directed and random mutagenesis experiments showed that point mutations that resulted in increased complementarity to the 3' end of the 16S rRNA increased FabK translation to levels sufficient to support growth, whereas mutations that decreased complementarity blocked fabK translation.

  13. Age-associated mitochondrial oxidative decay: Improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-l- carnitine and/or R-α-lipoic acid

    PubMed Central

    Liu, Jiankang; Killilea, David W.; Ames, Bruce N.

    2002-01-01

    We test whether the dysfunction with age of carnitine acetyltransferase (CAT), a key mitochondrial enzyme for fuel utilization, is due to decreased binding affinity for substrate and whether this substrate, fed to old rats, restores CAT activity. The kinetics of CAT were analyzed by using the brains of young and old rats and of old rats supplemented for 7 weeks with the CAT substrate acetyl-l-carnitine (ALCAR) and/or the mitochondrial antioxidant precursor R-α-lipoic acid (LA). Old rats, compared with young rats, showed a decrease in CAT activity and in CAT-binding affinity for both substrates, ALCAR and CoA. Feeding ALCAR or ALCAR plus LA to old rats significantly restored CAT-binding affinity for ALCAR and CoA, and CAT activity. To explore the underlying mechanism, lipid peroxidation and total iron and copper levels were assayed; all increased in old rats. Feeding old rats LA or LA plus ALCAR inhibited lipid peroxidation but did not decrease iron and copper levels. Ex vivo oxidation of young-rat brain with Fe(II) caused loss of CAT activity and binding affinity. In vitro oxidation of purified CAT with Fe(II) inactivated the enzyme but did not alter binding affinity. However, in vitro treatment of CAT with the lipid peroxidation products malondialdehyde or 4-hydroxy-nonenal caused a decrease in CAT-binding affinity and activity, thus mimicking age-related change. Preincubation of CAT with ALCAR or CoA prevented malondialdehyde-induced dysfunction. Thus, feeding old rats high levels of key mitochondrial metabolites can ameliorate oxidative damage, enzyme activity, substrate-binding affinity, and mitochondrial dysfunction. PMID:11854488

  14. Inhibitory Effect on In Vitro LDL Oxidation and HMG Co-A Reductase Activity of the Liquid-Liquid Partitioned Fractions of Hericium erinaceus (Bull.) Persoon (Lion's Mane Mushroom)

    PubMed Central

    Aminudin, Norhaniza

    2014-01-01

    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases. PMID:24959591

  15. Genetics Home Reference: short-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... Download PDF Open All Close All Description Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is a condition that prevents the body from converting certain fats into energy, especially during periods without food (fasting). Signs and symptoms of SCAD deficiency may ...

  16. Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants.

    PubMed

    del Río, José C; Rencoret, Jorge; Marques, Gisela; Gutiérrez, Ana; Ibarra, David; Santos, J Ignacio; Jiménez-Barbero, Jesús; Zhang, Liming; Martínez, Angel T

    2008-10-22

    The structure of lignins isolated from the herbaceous plants sisal ( Agave sisalana), kenaf ( Hibiscus cannabinus), abaca ( Musa textilis) and curaua ( Ananas erectifolius) has been studied upon spectroscopic (2D-NMR) and chemical degradative (derivatization followed by reductive cleavage) methods. The analyses demonstrate that the structure of the lignins from these plants is highly remarkable, being extensively acylated at the gamma-carbon of the lignin side chain (up to 80% acylation) with acetate and/or p-coumarate groups and preferentially over syringyl units. Whereas the lignins from sisal and kenaf are gamma-acylated exclusively with acetate groups, the lignins from abaca and curaua are esterified with acetate and p-coumarate groups. The structures of all these highly acylated lignins are characterized by a very high syringyl/guaiacyl ratio, a large predominance of beta- O-4' linkages (up to 94% of all linkages), and a strikingly low proportion of traditional beta-beta' linkages, which indeed are completely absent in the lignins from abaca and curaua. The occurrence of beta-beta' homocoupling and cross-coupling products of sinapyl acetate in the lignins from sisal and kenaf indicates that sinapyl alcohol is acetylated at the monomer stage and that, therefore, sinapyl acetate should be considered as a real monolignol involved in the lignification reactions.

  17. Novel fatty acid acylation of lens integral membrane protein aquaporin-0.

    PubMed

    Schey, Kevin L; Gutierrez, Danielle B; Wang, Zhen; Wei, Junhua; Grey, Angus C

    2010-11-16

    Fatty acid acylation of proteins is a well-studied co- or posttranslational modification typically conferring membrane trafficking signals or membrane anchoring properties to proteins. Commonly observed examples of protein acylation include N-terminal myristoylation and palmitoylation of cysteine residues. In the present study, direct tissue profiling mass spectrometry of bovine and human lens sections revealed an abundant signal tentatively assigned as a lipid-modified form of aquaporin-0. LC/MS/MS proteomic analysis of hydrophobic tryptic peptides from lens membrane proteins revealed both N-terminal and C-terminal peptides modified by 238 and 264 Da which were subsequently assigned by accurate mass measurement as palmitoylation and oleoylation, respectively. Specific sites of modification were the N-terminal methionine residue and lysine 238 revealing, for the first time, an oleic acid modification via an amide linkage to a lysine residue. The specific fatty acids involved reflect their abundance in the lens fiber cell plasma membrane. Imaging mass spectrometry indicated abundant acylated AQP0 in the inner cortical region of both bovine and human lenses and acylated truncation products in the lens nucleus. Additional analyses revealed that the lipid-modified forms partitioned exclusively to a detergent-resistant membrane fraction, suggesting a role in membrane domain targeting.

  18. Neural correlates of plasma acylated ghrelin level in individuals with major depressive disorder.

    PubMed

    Matsuo, Koji; Nakano, Masayuki; Nakashima, Mami; Watanuki, Toshio; Egashira, Kazuteru; Matsubara, Toshio; Watanabe, Yoshifumi

    2012-09-14

    Anhedonic symptoms, which include loss of pleasure, appetite and motivation, are key symptoms of major depressive disorder (MDD) and are thought to depend on a neural circuit of the mesolimbic system. The neuropeptide ghrelin plays a crucial role in appetite and reward. Little is known, however, about the role of ghrelin in MDD. We examined the association between morphometric change and plasma ghrelin levels in patients with MDD. Twenty-four patients with MDD and 24 healthy control subjects were studied. Plasma concentration of acylated ghrelin was measured after a period of fasting. Using voxel-based morphometry, we found a main effect of ghrelin on the volume of several brain regions. We then compared these regional volumes in patients with MDD versus healthy subjects. We also compared brain volumes between the two groups, controlling for ghrelin level. There was no significant difference in plasma acylated ghrelin level between patients with MDD and healthy subjects. In the MDD group, ghrelin levels positively correlated with the severity of reduced appetite. Ghrelin levels negatively correlated with gray matter volume of the ventral tegmental area (VTA) in the total sample. The patients with MDD showed significantly smaller VTA gray matter volume compared to healthy subjects. Controlling for the plasma acylated ghrelin level, patients with MDD showed significantly smaller gray matter volume of right substantia nigra compared to healthy subjects. Our findings suggest that plasma acylated ghrelin is associated with neural abnormalities of the pleasure/reward system and may be involved in the pathophysiology of MDD.

  19. Effects of Starvation and Streptococcus Pneumoniae Infection on Carnitine Acylation States in the Rat.

    DTIC Science & Technology

    1977-06-08

    This study was performed to determine if alterations in carnitine and its acylation states could account for the decreased ketone body production...seen during Streptococcus pneumoniae infection in the rat. Despite a lower ketogenic capacity, the hepatic total and free carnitine increases to the same

  20. N-Acylbenzotriazoles: neutral acylating reagents for the preparation of primary, secondary, and tertiary amides

    PubMed

    Katritzky; He; Suzuki

    2000-12-01

    Readily available N-acylbenzotriazoles 2a-q efficiently acylate aqueous ammonia and primary and secondary amines to give primary, secondary, and tertiary amides in good to excellent yields. The wide applicability of the procedure is illustrated by the preparation of (i) alpha-hydroxyamides from alpha-hydroxy acids and of (ii) perfluoroalkylated amides.