Science.gov

Sample records for acyl coa synthetase

  1. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ...

  2. Enzymatic synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with CoA recycling using polyhydroxyalkanoate synthase and acyl-CoA synthetase.

    PubMed

    Satoh, Yasuharu; Murakami, Fumikazu; Tajima, Kenji; Munekata, Masanobu

    2005-05-01

    We succeeded in developing a novel method for in vitro poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3 HB-co-4 HB)] synthesis with CoA recycling using polyhydroxyalkanoate synthase and an acyl-CoA synthetase. Using this method, the monomer compositions in P(3 HB-co-4 HB)s could be controlled strictly by the ratios of the monomers in the reaction mixtures. PMID:16233824

  3. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    PubMed Central

    Bowman, Thomas A.; O'Keeffe, Kayleigh R.; D'Aquila, Theresa; Yan, Qing Wu; Griffin, John D.; Killion, Elizabeth A.; Salter, Deanna M.; Mashek, Douglas G.; Buhman, Kimberly K.; Greenberg, Andrew S.

    2016-01-01

    Objective The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ACSL isoforms. In vitro studies have suggested a role for ACSL5 in triglyceride synthesis; however, we have limited understanding of the in vivo actions of this ACSL isoform. Methods To elucidate the in vivo actions of ACSL5 we generated a line of mice in which ACSL5 expression was ablated in all tissues (ACSL5−/−). Results Ablation of ACSL5 reduced ACSL activity by ∼80% in jejunal mucosa, ∼50% in liver, and ∼37% in brown adipose tissue lysates. Body composition studies revealed that ACSL5−/−, as compared to control ACSL5loxP/loxP, mice had significantly reduced fat mass and adipose fat pad weights. Indirect calorimetry studies demonstrated that ACSL5−/− had increased metabolic rates, and in the dark phase, increased respiratory quotient. In ACSL5−/− mice, fasting glucose and serum triglyceride were reduced; and insulin sensitivity was improved during an insulin tolerance test. Both hepatic mRNA (∼16-fold) and serum levels of fibroblast growth factor 21 (FGF21) (∼13-fold) were increased in ACSL5−/− as compared to ACSL5loxP/loxP. Consistent with increased FGF21 serum levels, uncoupling protein-1 gene (Ucp1) and PPAR-gamma coactivator 1-alpha gene (Pgc1α) transcript levels were increased in gonadal adipose tissue. To further evaluate ACSL5 function in intestine, mice were gavaged with an olive oil bolus; and the rate of triglyceride appearance in serum was found to be delayed in ACSL5−/− mice as compared to control mice. Conclusions In summary, ACSL5−/− mice have increased hepatic and serum FGF21 levels, reduced adiposity, improved insulin sensitivity, increased energy expenditure and delayed triglyceride absorption. These studies

  4. Purification, gene cloning, and characterization of γ-butyrobetainyl CoA synthetase from Agrobacterium sp. 525a.

    PubMed

    Fujimitsu, Hiroshi; Matsumoto, Akira; Takubo, Sayaka; Fukui, Akiko; Okada, Kazuma; Mohamed Ahmed, Isam A; Arima, Jiro; Mori, Nobuhiro

    2016-08-01

    The report is the first of purification, overproduction, and characterization of a unique γ-butyrobetainyl CoA synthetase from soil-isolated Agrobacterium sp. 525a. The primary structure of the enzyme shares 70-95% identity with those of ATP-dependent microbial acyl-CoA synthetases of the Rhizobiaceae family. As distinctive characteristics of the enzyme of this study, ADP was released in the catalytic reaction process, whereas many acyl CoA synthetases are annotated as an AMP-forming enzyme. The apparent Km values for γ-butyrobetaine, CoA, and ATP were, respectively, 0.69, 0.02, and 0.24 mM. PMID:27125317

  5. Mammalian long-chain acyl-CoA synthetases.

    PubMed

    Soupene, Eric; Kuypers, Frans A

    2008-05-01

    Acyl-CoA synthetase enzymes are essential for de novo lipid synthesis, fatty acid catabolism, and remodeling of membranes. Activation of fatty acids requires a two-step reaction catalyzed by these enzymes. In the first step, an acyl-AMP intermediate is formed from ATP. AMP is then exchanged with CoA to produce the activated acyl-CoA. The release of AMP in this reaction defines the superfamily of AMP-forming enzymes. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different acyl-CoA synthetases (ACS). On this basis, five sub-families of ACS have been characterized. The purpose of this review is to report on the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12 to 20 carbon atoms. Five genes and several isoforms generated by alternative splicing have been identified and limited information is available on their localization. The structure of these membrane proteins has not been solved for the mammalian ACSLs but homology to a bacterial form, whose structure has been determined, points at specific structural features that are important for these enzymes across species. The bacterial form acts as a dimer and has a conserved short motif, called the fatty acid Gate domain, that seems to determine substrate specificity. We will discuss the characterization and identification of the different spliced isoforms, draw attention to the inconsistencies and errors in their annotations, and their cellular localizations. These membrane proteins act on membrane-bound substrates probably as homo- and as heterodimer complexes but have often been expressed as single recombinant isoforms, apparently purified as monomers and tested in Triton X-100 micelles. We will argue that such studies have failed to provide an accurate assessment of the activity and of the distinct function of these enzymes in mammalian cells.

  6. Discovery of amide (peptide) bond synthetic activity in Acyl-CoA synthetase.

    PubMed

    Abe, Tomoko; Hashimoto, Yoshiteru; Hosaka, Hideaki; Tomita-Yokotani, Kaori; Kobayashi, Michihiko

    2008-04-25

    Acyl-CoA synthetase, which is one of the acid-thiol ligases (EC 6.2.1), plays key roles in metabolic and regulatory processes. This enzyme forms a carbon-sulfur bond in the presence of ATP and Mg(2+), yielding acyl-CoA thioesters from the corresponding free acids and CoA. This enzyme belongs to the superfamily of adenylate-forming enzymes, whose three-dimensional structures are analogous to one another. We here discovered a new reaction while studying the short-chain acyl-CoA synthetase that we recently reported (Hashimoto, Y., Hosaka, H., Oinuma, K., Goda, M., Higashibata, H., and Kobayashi, M. (2005) J. Biol. Chem. 280, 8660-8667). When l-cysteine was used as a substrate instead of CoA, N-acyl-l-cysteine was surprisingly detected as a reaction product. This finding demonstrated that the enzyme formed a carbon-nitrogen bond (EC 6.3.1 acid-ammonia (or amide) ligase (amide synthase); EC 6.3.2 acid-amino acid ligase (peptide synthase)) comprising the amino group of the cysteine and the carboxyl group of the acid. N-Acyl-d-cysteine, N-acyl-dl-homocysteine, and N-acyl-l-cysteine methyl ester were also synthesized from the corresponding cysteine analog substrates by the enzyme. Furthermore, this unexpected enzyme activity was also observed for acetyl-CoA synthetase and firefly luciferase, indicating the generality of the new reaction in the superfamily of adenylate-forming enzymes.

  7. Versatility of acyl-acyl carrier protein synthetases.

    PubMed

    Beld, Joris; Finzel, Kara; Burkart, Michael D

    2014-10-23

    The acyl carrier protein (ACP) requires posttranslational modification with a 4'-phosphopantetheine arm for activity, and this thiol-terminated modification carries cargo between enzymes in ACP-dependent metabolic pathways. We show that acyl-ACP synthetases (AasSs) from different organisms are able to load even, odd, and unnatural fatty acids onto E. coli ACP in vitro. Vibrio harveyi AasS not only shows promiscuity for the acid substrate, but also is active upon various alternate carrier proteins. AasS activity also extends to functional activation in living organisms. We show that exogenously supplied carboxylic acids are loaded onto ACP and extended by the E. coli fatty acid synthase, including unnatural fatty acid analogs. These analogs are further integrated into cellular lipids. In vitro characterization of four different adenylate-forming enzymes allowed us to disambiguate CoA-ligases and AasSs, and further in vivo studies show the potential for functional application in other organisms. PMID:25308274

  8. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  9. Toxicity of Carboxylic Acid-Containing Drugs: The Role of Acyl Migration and CoA Conjugation Investigated.

    PubMed

    Lassila, Toni; Hokkanen, Juho; Aatsinki, Sanna-Mari; Mattila, Sampo; Turpeinen, Miia; Tolonen, Ari

    2015-12-21

    Many carboxylic acid-containing drugs are associated with idiosyncratic drug toxicity (IDT), which may be caused by reactive acyl glucuronide metabolites. The rate of acyl migration has been earlier suggested as a predictor of acyl glucuronide reactivity. Additionally, acyl Coenzyme A (CoA) conjugates are known to be reactive. Here, 13 drugs with a carboxylic acid moiety were incubated with human liver microsomes to produce acyl glucuronide conjugates for the determination of acyl glucuronide half-lives by acyl migration and with HepaRG cells to monitor the formation of acyl CoA conjugates, their further conjugate metabolites, and trans-acylation products with glutathione. Additionally, in vitro cytotoxicity and mitochondrial toxicity experiments were performed with HepaRG cells to compare the predictability of toxicity. Clearly, longer acyl glucuronide half-lives were observed for safe drugs compared to drugs that can cause IDT. Correlation between half-lives and toxicity classification increased when "relative half-lives," taking into account the formation of isomeric AG-forms due to acyl migration and eliminating the effect of hydrolysis, were used instead of plain disappearance of the initial 1-O-β-AG-form. Correlation was improved further when a daily dose of the drug was taken into account. CoA and related conjugates were detected primarily for the drugs that have the capability to cause IDT, although some exceptions to this were observed. Cytotoxicity and mitochondrial toxicity did not correlate to drug safety. On the basis of the results, the short relative half-life of the acyl glucuronide (high acyl migration rate), high daily dose and detection of acyl CoA conjugates, or further metabolites derived from acyl CoA together seem to indicate that carboxylic acid-containing drugs have a higher probability to cause drug-induced liver injury (DILI). PMID:26558897

  10. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide.

    PubMed

    Eminoglu, Tuba F; Tumer, Leyla; Okur, Ilyas; Ezgu, Fatih S; Biberoglu, Gursel; Hasanoglu, Alev

    2011-07-15

    Very-long-chain acyl-coenzyme A (CoA) dehydrogenase deficiency (VLCADD) (OMIM #201475) is an autosomal recessive disorder of fatty acid oxidation. Major phenotypic expressions are hypoketotic hypoglycemia, hepatomegaly, cardiomyopathy, myopathy, rhabdomyolysis, elevated creatinine kinase, and lipid infiltration of liver and muscle. At the same time, it is a rare cause of Sudden Infant Death Syndrome (SIDS) or unexplained death in the neonatal period [1-4]. We report a patient with VLCADD whose parents were investigated for infanticide because her three previous siblings had suddenly died after normal deliveries.

  11. Role of intramitochondrial arachidonic acid and acyl-CoA synthetase 4 in angiotensin II-regulated aldosterone synthesis in NCI-H295R adrenocortical cell line.

    PubMed

    Mele, Pablo G; Duarte, Alejandra; Paz, Cristina; Capponi, Alessandro; Podestá, Ernesto J

    2012-07-01

    Although the role of arachidonic acid (AA) in angiotensin II (ANG II)- and potassium-stimulated steroid production in zona glomerulosa cells is well documented, the mechanism responsible for AA release is not fully described. In this study we evaluated the mechanism involved in the release of intramitochondrial AA and its role in the regulation of aldosterone synthesis by ANG II in glomerulosa cells. We show that ANG II and potassium induce the expression of acyl-coenzyme A (CoA) thioesterase 2 and acyl-CoA synthetase 4, two enzymes involved in intramitochondrial AA generation/export system well characterized in other steroidogenic systems. We demonstrate that mitochondrial ATP is required for AA generation/export system, steroid production, and steroidogenic acute regulatory protein induction. We also demonstrate the role of protein tyrosine phosphatases regulating acyl-CoA synthetase 4 and steroidogenic acute regulatory protein induction, and hence ANG II-stimulated aldosterone synthesis.

  12. Antitumor/Antifungal Celecoxib Derivative AR-12 is a Non-Nucleoside Inhibitor of the ANL-Family Adenylating Enzyme Acetyl CoA Synthetase

    PubMed Central

    2016-01-01

    AR-12/OSU-03012 is an antitumor celecoxib-derivative that has progressed to Phase I clinical trial as an anticancer agent and has activity against a number of infectious agents including fungi, bacteria and viruses. However, the mechanism of these activities has remained unclear. Based on a chemical-genetic profiling approach in yeast, we have found that AR-12 is an ATP-competitive, time-dependent inhibitor of yeast acetyl coenzyme A synthetase. AR-12-treated fungal cells show phenotypes consistent with the genetic reduction of acetyl CoA synthetase activity, including induction of autophagy, decreased histone acetylation, and loss of cellular integrity. In addition, AR-12 is a weak inhibitor of human acetyl CoA synthetase ACCS2. Acetyl CoA synthetase activity is essential in many fungi and parasites. In contrast, acetyl CoA is primarily synthesized by an alternate enzyme, ATP-citrate lyase, in mammalian cells. Taken together, our results indicate that AR-12 is a non-nucleoside acetyl CoA synthetase inhibitor and that acetyl CoA synthetase may be a feasible antifungal drug target. PMID:27088128

  13. Inhibition of Long Chain Acyl Coenzyme A Synthetases during Fatty Acid Loading Induces Lipotoxicity in Macrophages

    PubMed Central

    Saraswathi, Viswanathan; Hasty, Alyssa H.

    2009-01-01

    OBJECTIVES Obesity is often associated with hypertriglyceridemia and elevated free fatty acids (FFAs) which are independent risk factors for cardiovascular disease and diabetes. While impairment of cholesterol homeostasis is known to induce toxicity in macrophages, the consequence of altered fatty acid homeostasis is not clear. METHODS AND RESULTS Long chain acyl CoA synthetases (ACSLs) play a critical role in fatty acid homeostasis by channeling fatty acids to diverse metabolic pools. We treated mouse peritoneal macrophages (MPMs) with VLDL or FFAs in the presence of triacsin C, an inhibitor of the three ACSL isoforms present in macrophages. Treatment of macrophages with VLDL and triacsin C resulted in reduced TG accumulation but increased intracellular FFA levels which induced lipotoxicity characterized by induction of apoptosis. Treatment of MPMs with the saturated fatty acid stearic acid in the presence of triacsin C increased intracellular stearic acid and induced apoptosis. Stromal vascular cells collected from high fat diet-fed mice displayed foam cell morphology and exhibited increased mRNA levels of macrophage markers and ACSL1. Importantly, all of these changes were associated with increased FFA level in AT. CONCLUSIONS Inhibition of ACSLs during fatty acid loading results in apoptosis via accumulation of FFAs. Our data have implications in understanding the consequences of dysregulated fatty acid metabolism in macrophages. PMID:19679826

  14. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    SciTech Connect

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  15. Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21.

    PubMed

    Barrientos, Álvaro; Merino, Estefanía; Casabon, Israël; Rodríguez, Joaquín; Crowe, Adam M; Holert, Johannes; Philipp, Bodo; Eltis, Lindsay D; Olivera, Elías R; Luengo, José M

    2015-01-01

    Pseudomonas putida DOC21, a soil-dwelling proteobacterium, catabolizes a variety of steroids and bile acids. Transposon mutagenesis and bioinformatics analyses identified four clusters of steroid degradation (std) genes encoding a single catabolic pathway. The latter includes three predicted acyl-CoA synthetases encoded by stdA1, stdA2 and stdA3 respectively. The ΔstdA1 and ΔstdA2 deletion mutants were unable to assimilate cholate or other bile acids but grew well on testosterone or 4-androstene-3,17-dione (AD). In contrast, a ΔstdA3 mutant grew poorly in media containing either testosterone or AD. When cells were grown with succinate in the presence of cholate, ΔstdA1 accumulated Δ(1/4) -3-ketocholate and Δ(1,4) -3-ketocholate, whereas ΔstdA2 only accumulated 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC). When incubated with testosterone or bile acids, ΔstdA3 accumulated 3aα-H-4α(3'propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP) or the corresponding hydroxylated derivative. Biochemical analyses revealed that StdA1 converted cholate, 3-ketocholate, Δ(1/4) -3-ketocholate, and Δ(1,4) -3-ketocholate to their CoA thioesters, while StdA2 transformed DHOPDC to DHOPDC-CoA. In contrast, purified StdA3 catalysed the CoA thioesterification of HIP and its hydroxylated derivatives. Overall, StdA1, StdA2 and StdA3 are acyl-CoA synthetases required for the complete degradation of bile acids: StdA1 and StdA2 are involved in degrading the C-17 acyl chain, whereas StdA3 initiates degradation of the last two steroid rings. The study highlights differences in steroid catabolism between Proteobacteria and Actinobacteria.

  16. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase*

    PubMed Central

    Yao, Jiangwei; Dodson, V. Joshua; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  17. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.

    PubMed

    Yao, Jiangwei; Dodson, V Joshua; Frank, Matthew W; Rock, Charles O

    2015-09-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  18. Fatty Acid Oxidation Mediated by Acyl-CoA Synthetase Long Chain 3 Is Required for Mutant KRAS Lung Tumorigenesis.

    PubMed

    Padanad, Mahesh S; Konstantinidou, Georgia; Venkateswaran, Niranjan; Melegari, Margherita; Rindhe, Smita; Mitsche, Matthew; Yang, Chendong; Batten, Kimberly; Huffman, Kenneth E; Liu, Jingwen; Tang, Ximing; Rodriguez-Canales, Jaime; Kalhor, Neda; Shay, Jerry W; Minna, John D; McDonald, Jeffrey; Wistuba, Ignacio I; DeBerardinis, Ralph J; Scaglioni, Pier Paolo

    2016-08-01

    KRAS is one of the most commonly mutated oncogenes in human cancer. Mutant KRAS aberrantly regulates metabolic networks. However, the contribution of cellular metabolism to mutant KRAS tumorigenesis is not completely understood. We report that mutant KRAS regulates intracellular fatty acid metabolism through Acyl-coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3), which converts fatty acids into fatty Acyl-CoA esters, the substrates for lipid synthesis and β-oxidation. ACSL3 suppression is associated with depletion of cellular ATP and causes the death of lung cancer cells. Furthermore, mutant KRAS promotes the cellular uptake, retention, accumulation, and β-oxidation of fatty acids in lung cancer cells in an ACSL3-dependent manner. Finally, ACSL3 is essential for mutant KRAS lung cancer tumorigenesis in vivo and is highly expressed in human lung cancer. Our data demonstrate that mutant KRAS reprograms lipid homeostasis, establishing a metabolic requirement that could be exploited for therapeutic gain. PMID:27477280

  19. Characterization of Ten Heterotetrameric NDP-Dependent Acyl-CoA Synthetases of the Hyperthermophilic Archaeon Pyrococcus furiosus

    DOE PAGES

    Scott, Joseph W.; Poole, Farris L.; Adams, Michael W. W.

    2014-01-01

    Tmore » he hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of ATP. ACS1 and ACS2 were previously purified from P. furiosus and have α 2 β 2 structures but the genome contains genes encoding three additional α -subunits.he ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α 2 β 2 isoenzymes.he α -subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids.he β -subunit determined preference for adenine or guanine nucleotides.he GTP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GTP for GTP-dependent phosphoenolpyruvate carboxykinase and for other GTP-dependent processes.ranscriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both ATP and GTP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of thehermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.« less

  20. Enhanced activity of acetyl CoA synthetase adsorbed on smart microgel: an implication for precursor biosynthesis.

    PubMed

    Dubey, Nidhi Chandrama; Tripathi, Bijay Prakash; Müller, Martin; Stamm, Manfred; Ionov, Leonid

    2015-01-28

    Acetyl coenzyme A (acetyl CoA) is an essential precursor molecule for synthesis of metabolites such as the polyketide-based drugs (tetracycline, mitharamycin, Zocor, etc.) fats, lipids, and cholesterol. Acetyl CoA synthetase (Acs) is one of the enzymes that catalyzes acetyl CoA synthesis, and this enzyme is essentially employed for continuous supply of the acetyl CoA for the production of these metabolites. To achieve reusable and a more robust entity of the enzyme, we carried out the immobilization of Acs on poly(N-isopropylacrylamide)-poly(ethylenimine) (PNIPAm-PEI) microgels via adsorption. Cationic PNIPAm-PEI microgel was synthesized by one-step graft copolymerization of NIPAm and N,N-methylene bis-acrylamide (MBA) from PEI. Adsorption studies of Acs on microgel indicated high binding of enzymes, with a maximum binding capacity of 286 μg/mg of microgel for Acs was achieved. The immobilized enzymes showed improved biocatalytic efficiency over free enzymes, beside this, the reaction parameters and circular dichroism (CD) spectroscopy studies indicated no significant changes in the enzyme structure after immobilization. This thoroughly characterized enzyme bioconjugate was further immobilized on an ultrathin membrane to assess the same reaction in flow through condition. Bioconjugate was covalently immobilized on a thin layer of preformed microgel support upon polyethylene terephthalate (PET) track etched membrane. The prepared membrane was used in a dead end filtration device to monitor the bioconversion efficiency and operational stability of cross-linked bioconjugate. The membrane reactor showed consistent operational stability and maintained >70% of initial activity after 7 consecutive operation cycles. PMID:25561344

  1. Identification and molecular characterization of acyl-CoA synthetase in human erythrocytes and erythroid precursors.

    PubMed

    Malhotra, K T; Malhotra, K; Lubin, B H; Kuypers, F A

    1999-11-15

    Full-length cDNA species encoding two forms of acyl-CoA synthetase from a K-562 human erythroleukaemic cell line were cloned, sequenced and expressed. The first form, named long-chain acyl-CoA synthetase 5 (LACS5), was found to be a novel, unreported, human acyl-CoA synthetase with high similarity to rat brain ACS2 (91% identical). The second form (66% identical with LACS5) was 97% identical with human liver LACS1. The LACS5 gene encodes a highly expressed 2.9 kb mRNA transcript in human haemopoietic stem cells from cord blood, bone marrow, reticulocytes and fetal blood cells derived from fetal liver. An additional 6.3 kb transcript is also found in these erythrocyte precursors; 2.9 and 9.6 kb transcripts of LACS5 are found in human brain, but transcripts are virtually absent from human heart, kidney, liver, lung, pancreas, spleen and skeletal muscle. The 78 kDa expressed LACS5 protein used the long-chain fatty acids palmitic acid, oleic acid and arachidonic acid as substrates. Antibodies directed against LACS5 cross-reacted with erythrocyte membranes. We conclude that early erythrocyte precursors express at least two different forms of acyl-CoA synthetase and that LACS5 is present in mature erythrocyte plasma membranes.

  2. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio.

    PubMed

    Liu, Qingqing; Gauthier, Marie-Soleil; Sun, Lei; Ruderman, Neil; Lodish, Harvey

    2010-11-01

    Adiponectin activates AMP-activated protein kinase (AMPK) in adipocytes, but the underlying mechanism remains unclear. Here we tested the hypothesis that AMP, generated in activating fatty acids to their CoA derivatives, catalyzed by acyl-CoA synthetases, is involved in AMPK activation by adiponectin. Moreover, in adipocytes, insulin affects the subcellular localization of acyl-CoA synthetase FATP1. Thus, we also tested whether insulin activates AMPK in these cells and, if so, whether it activates through a similar mechanism. We examined these hypotheses by measuring the AMP/ATP ratio and AMPK activation on adiponectin and insulin stimulation and after knocking down acyl-CoA synthetases in adipocytes. We show that adiponectin activation of AMPK is accompanied by an ∼2-fold increase in the cellular AMP/ATP ratio. Moreover, FATP1 and Acsl1, the 2 major acyl-CoA synthetase isoforms in adipocytes, are essential for AMPK activation by adiponectin. We also show that after 40 min. insulin activated AMPK in adipocytes, which was coupled with a 5-fold increase in the cellular AMP/ATP ratio. Knockdown studies show that FATP1 and Acsl1 are required for these processes, as well as for stimulation of long-chain fatty acid uptake by adiponection and insulin. These studies demonstrate that a change in cellular energy state is associated with AMPK activation by both adiponectin and insulin, which requires the activity of FATP1 and Acsl1.

  3. Effects of hypo- and hyperthyroidism on rat liver microsomal long-chain fatty acyl-CoA synthetase and hydrolase

    SciTech Connect

    Dang, A.Q.; Faas, F.H.; Carter, W.J.

    1986-05-01

    The effects of hyperthyroidism (hyperT/sub 3/), (tri-iodothryonine (T/sub 3/) injected rats), and hypothyroidism (hypoT/sub 3/) (thyroidectomized rats) on the activation of fatty acids by a microsomal long-chain fatty acyl-CoA (LCA-CoA) synthetase and the degradation of LCA-CoA by a microsomal LCA-CoA hydrolase was determined. MAS was assayed by measuring the (1-/sup 14/C)-palmitate or -1-/sup 14/C) oleate incorporated into its water soluble CoA ester. MAH was assayed spectrophotomerically by following the reduction of 5',5'-dithiobis-(2-nitrobenzoic acid) by the CoA released from palmitoyl-CoA or oleoyl-CoA. Enzyme activities are given as mean (nmoles/mg/min) +/- SEM. MAS activities were decreased 36-44% (p < 0.01) in both hypoT/sub 3/ and hyperT/sub 3/ (controls = 101 +/- 4 (n = 11, (1-/sup 14/C)-palmitate) of 72 +/- 2 (n = 5,(1-/sup 14/C)oleate)). These decreases may contribute to the decreased triacelyglycerol (TG) and phospholipid contents in the hyperT/sub 3/ liver and the decreased clearance rate of plasma TG in the hypoT/sub 3/. MAH was decreased 27-42% (p<0.01) only in hypoT/sub 3/ (controls = 77 +/- 3 (n = 11, palmitoyl-CoA) or 45 +/- 1 (n = 5, oleoyl-CoA)). This decrease was corrected by T/sub 3/ treatment. Since the decreased MAH would increase the availability of LCA-CoA, it may contribute to the increased TG synthesis in hypoT/sub 3/.

  4. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    SciTech Connect

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  5. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    PubMed

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  6. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds.

    PubMed

    Larson, Tony R; Edgell, Teresa; Byrne, James; Dehesh, Katayoon; Graham, Ian A

    2002-11-01

    Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.

  7. Leucine-684: A conserved residue of an AMP-acetyl CoA synthetase (AceCS) from Leishmania donovani is involved in substrate recognition, catalysis and acetylation.

    PubMed

    Soumya, Neelagiri; Tandan, Hitendra; Damre, Mangesh V; Gangwal, Rahul P; Sangamwar, Abhay T; Singh, Sushma

    2016-04-15

    AMP-acetyl CoA synthetase (AMP-AceCS) is a key enzyme which catalyzes the activation of acetate to acetyl CoA, an important intermediate at the cross roads of various anabolic and catabolic pathways. Multiple sequence alignment of Leishmania donovani AceCS with other organisms revealed the presence of a highly conserved leucine residue at 684 position which is known to be crucial for acetylation by protein acetyl transferases in other organisms. In an attempt to understand the role of leucine residue at 684 position in L. donovani acetyl CoA synthetase (LdAceCS), it was mutated to proline (P) by site directed mutagenesis. Kinetic analysis of the L684P-LdAceCS mutant revealed approximately two fold increased binding affinity with acetate, whereas fivefold decreased affinity was observed with ATP. There was insignificant change in secondary structure as revealed by CD however, two fold decreased fluorescence intensity was observed at an emission maxima of 340 nm. Interestingly, L684P mutation abolished the acetylation of the mutant enzyme indicating the importance of L684 in acetylation of the enzyme. Changes in biochemical parameters of the mutant protein were validated by homology modeling of the wild type and mutant LdAceCS enzyme using Salmonella enterica AceCS crystal structure as template. Our data provides evidence for the role of leucine 684 residue in substrate recognition, catalysis and acetylation of the AceCS enzyme.

  8. Thioesterification of 2-arylpropionic acids by recombinant acyl-coenzyme A synthetases (ACS1 and ACS2).

    PubMed

    Sevoz, C; Benoit, E; Buronfosse, T

    2000-04-01

    2-Arylpropionic acids are a class of frequently used nonsteroidal anti-inflammatory drugs exhibiting a potent inhibition of cyclooxygenase isoforms supported by the (+)S-enantiomer alone. Nevertheless, some of these compounds in the (-)R configuration may undergo extensive inversion of configuration to their antipode. The key molecular basis for this mechanism invokes the stereoselective formation of the coenzyme A (CoA) thioester of the 2-arylpropionic acid by long-chain acyl-CoA synthetases (ACSs). In this report, rat recombinant ACS1 and ACS2 enzymes, constitutively highly expressed in adult rat liver and brain, respectively, have been overproduced in Escherichia coli strains and purified to homogeneity to investigate the involvement of these enzymes in the thioesterification of fenoprofen and ibuprofen. Recombinant ACS1 efficiently catalyzed both nonsteroidal anti-inflammatory drugs with Michaelis-Menten parameters of K(M) = 1686 +/- 93 microM, V(max) = 353 +/- 45 nmol/min/mg protein for (-)R-ibuprofen and K(M) = 103 +/- 12 microM, V(max) = 267 +/- 10 nmol/min/mg protein for (-)R-fenoprofen, and exhibited a marked stereoselectivity in favor of the (-)R-enantiomer. Recombinant ACS2, a closely related sequence with ACS1, exhibited a lower enzymatic efficacy from 7- to 130-fold for (-)R-ibuprofen and (-)R-fenoprofen, respectively. On the basis of these findings and considering the level of tissue expression of the different long-chain ACSs, ACS1 appears to be the major enzyme involved in the first step of the chiral inversion of 2-arylpropionic acids. Nevertheless, the participation of other ACS isoforms of minor quantitative importance could not be excluded in the thioesterification of xenobiotics.

  9. Codon usage, amino acid usage, transfer RNA and amino-acyl-tRNA synthetases in Mimiviruses.

    PubMed

    Colson, Philippe; Fournous, Ghislain; Diene, Seydina M; Raoult, Didier

    2013-01-01

    Mimiviruses are giant viruses that infect phagocytic protists, including Acanthamoebae spp., which were discovered during the past decade. They are the current record holder among viruses for their large particle and genome sizes. One group is composed of three lineages, referred to as A, B and C, which include the vast majority of the Mimiviridae members. Cafeteria roenbergensis virus represents a second group, though the Mimiviridae family is still expanding. We analyzed the codon and amino acid usages in mimiviruses, as well as both the transfer RNA (tRNA) and amino acyl-tRNA synthetases. We confirmed that the codon and amino acid usages of these giant viruses are highly dissimilar to those in their amoebal host Acanthamoeba castellanii and are instead correlated with the high adenine and thymine (AT) content of Mimivirus genomes. We further describe that the set of tRNAs and amino acyl-tRNA synthetases in mimiviruses is globally not adapted to the codon and amino acid usages of these viruses. Notwithstanding, Leu(TAA)tRNA, present in several Mimivirus genomes and in multiple copies in some viral genomes, may complement the amoebal tRNA pool and may contribute to accommodate the viral AT-rich codons. In addition, we found that the genes most highly expressed at the beginning of the Mimivirus replicative cycle have a nucleotide content more adapted to the codon usage in A.castellanii.

  10. Inhibition of Long Chain Fatty Acyl-CoA Synthetase (ACSL) and Ischemia Reperfusion Injury

    PubMed Central

    Prior, Allan M.; Zhang, Man; Blakeman, Nina; Datta, Palika; Pham, Hung; Young, Lindon H.; Weis, Margaret T.; Hua, Duy H.

    2014-01-01

    Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [14C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion. PMID:24480468

  11. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase.

    PubMed Central

    Fraisl, Peter; Forss-Petter, Sonja; Zigman, Mihaela; Berger, Johannes

    2004-01-01

    It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely. PMID:14516277

  12. Effects of experimental hypo- and hyperthyroidism on hepatic long-chain fatty acyl-CoA synthetase and hydrolase.

    PubMed

    Dang, A Q; Faas, F H; Carter, W J

    1989-07-01

    The effects of T3 treatment and thyroidectomy on rat liver microsomal long-chain fatty acyl-CoA (LCFA-CoA) synthetase and LCFA-CoA hydrolase activities were determined. Hyperthyroid rats had a 36-42% decrease in LCFA-CoA synthetase with no change in hydrolase activity. This may contribute to the redirection of fatty acids from esterification to oxidation reactions in hyperthyroidism. Thyroidectomized rats had a 40-44% decrease in synthetase and a 27-42% decrease in LCFA-CoA hydrolase activity. The decrease in both LCFA-CoA synthetase and hydrolase activities in hypothyroidism may indicate that the LCFA-CoA turnover in this futile cycle is decreased in the liver.

  13. Acyl-CoA synthetase 1 deficiency alters cardiolipin species and impairs mitochondrial function

    PubMed Central

    Grevengoed, Trisha J.; Martin, Sarah A.; Katunga, Lalage; Cooper, Daniel E.; Anderson, Ethan J.; Murphy, Robert C.; Coleman, Rosalind A.

    2015-01-01

    Long-chain acyl-CoA synthetase 1 (ACSL1) contributes more than 90% of total cardiac ACSL activity, but its role in phospholipid synthesis has not been determined. Mice with an inducible knockout of ACSL1 (Acsl1T−/−) have impaired cardiac fatty acid oxidation and rely on glucose for ATP production. Because ACSL1 exhibited a strong substrate preference for linoleate, we investigated the composition of heart phospholipids. Acsl1T−/− hearts contained 83% less tetralinoleoyl-cardiolipin (CL), the major form present in control hearts. A stable knockdown of ACSL1 in H9c2 rat cardiomyocytes resulted in low incorporation of linoleate into CL and in diminished incorporation of palmitate and oleate into other phospholipids. Overexpression of ACSL1 in H9c2 and HEK-293 cells increased incorporation of linoleate into CL and other phospholipids. To determine whether increasing the content of linoleate in CL would improve mitochondrial respiratory function in Acsl1T−/− hearts, control and Acsl1T−/− mice were fed a high-linoleate diet; this diet normalized the amount of tetralinoleoyl-CL but did not improve respiratory function. Thus, ACSL1 is required for the normal composition of several phospholipid species in heart. Although ACSL1 determines the acyl-chain composition of heart CL, a high tetralinoleoyl-CL content may not be required for normal function. PMID:26136511

  14. Vertebrate Acyl CoA synthetase family member 4 (ACSF4-U26) is a β-alanine-activating enzyme homologous to bacterial non-ribosomal peptide synthetase.

    PubMed

    Drozak, Jakub; Veiga-da-Cunha, Maria; Kadziolka, Beata; Van Schaftingen, Emile

    2014-03-01

    Mammalian ACSF4-U26 (Acyl CoA synthetase family member 4), a protein of unknown function, comprises a putative adenylation domain (AMP-binding domain) similar to those of bacterial non-ribosomal peptide synthetases, a putative phosphopantetheine attachment site, and a C-terminal PQQDH (pyrroloquinoline quinone dehydrogenase)-related domain. Orthologues comprising these three domains are present in many eukaryotes including plants. Remarkably, the adenylation domain of plant ACSF4-U26 show greater identity with Ebony, the insect enzyme that ligates β-alanine to several amines, than with vertebrate or insect ACSF4-U26, and prediction of its specificity suggests that it activates β-alanine. In the presence of ATP, purified mouse recombinant ACSF4-U26 progressively formed a covalent bond with radiolabelled β-alanine. The bond was not formed in a point mutant lacking the phosphopantetheine attachment site. Competition experiments with various amino acids indicated that the reaction was almost specific for β-alanine, and a KM of ~ 5 μm was calculated for this reaction. The loaded enzyme was used to study the formation of a potential end product. Among the 20 standard amino acids, only cysteine stimulated unloading of the enzyme. This effect was mimicked by cysteamine and dithiothreitol, and was unaffected by absence of the PQQDH-related domain, suggesting that β-alanine transfer onto thiols is catalysed by the ACSF4-U26 adenylation domain, but is physiologically irrelevant. We conclude that ACSF4-U26 is a β-alanine-activating enzyme, and hypothesize that it is involved in a rare intracellular reaction, possibly an infrequent post-translational or post-transcriptional modification.

  15. Intestinal acyl-CoA synthetase 5: activation of long chain fatty acids and behind.

    PubMed

    Klaus, Christina; Jeon, Min Kyung; Kaemmerer, Elke; Gassler, Nikolaus

    2013-11-14

    The intestinal mucosa is characterized by a high complexity in terms of structure and functions and allows for a controlled demarcation towards the gut lumen. On the one hand it is responsible for pulping and selective absorption of alimentary substances ensuring the immunological tolerance, on the other hand it prevents the penetration of micro-organisms as well as bacterial outgrowth. The continuous regeneration of surface epithelia along the crypt-villus-axis in the small intestine is crucial to assuring these various functions. The core phenomena of intestinal epithelia regeneration comprise cell proliferation, migration, differentiation, and apoptosis. These partly contrarily oriented processes are molecularly balanced through numerous interacting signaling pathways like Wnt/β-catenin, Notch and Hedgehog, and regulated by various modifying factors. One of these modifiers is acyl-CoA synthetase 5 (ACSL5). It plays a key role in de novo lipid synthesis, fatty acid degradation and membrane modifications, and regulates several intestinal processes, primarily through different variants of protein lipidation, e.g., palmitoylation. ACSL5 was shown to interact with proapoptotic molecules, and besides seems to inhibit proliferation along the crypt-villus-axis. Because of its proapoptotic and antiproliferative characteristics it could be of significant relevance for intestinal homeostasis, cellular disorder and tumor development. PMID:24259967

  16. Identification of 3-sulfinopropionyl coenzyme A (CoA) desulfinases within the Acyl-CoA dehydrogenase superfamily.

    PubMed

    Schürmann, Marc; Demming, Rebecca Michaela; Krewing, Marco; Rose, Judith; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2014-02-01

    In a previous study, the essential role of 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase acyl-CoA dehydrogenase (Acd) in Advenella mimigardefordensis strain DPN7(T) (AcdDPN7) during degradation of 3,3'-dithiodipropionic acid (DTDP) was elucidated. DTDP is a sulfur-containing precursor substrate for biosynthesis of polythioesters (PTEs). AcdDPN7 showed high amino acid sequence similarity to acyl-CoA dehydrogenases but was unable to catalyze a dehydrogenation reaction. Hence, it was investigated in the present study whether 3SP-CoA desulfinase activity is an uncommon or a widespread property within the acyl-CoA dehydrogenase superfamily. Therefore, proteins of the acyl-CoA dehydrogenase superfamily from Advenella kashmirensis WT001, Bacillus cereus DSM31, Cupriavidus necator N-1, Escherichia coli BL21, Pseudomonas putida KT2440, Burkholderia xenovorans LB400, Ralstonia eutropha H16, Variovorax paradoxus B4, Variovorax paradoxus S110, and Variovorax paradoxus TBEA6 were expressed in E. coli strains. All purified acyl-CoA dehydrogenases appeared as homotetramers, as revealed by size exclusion chromatography. AcdS110, AcdB4, AcdH16, and AcdKT2440 were able to dehydrogenate isobutyryl-CoA. AcdKT2440 additionally dehydrogenated butyryl-CoA and valeryl-CoA, whereas AcdDSM31 dehydrogenated only butyryl-CoA and valeryl-CoA. No dehydrogenation reactions were observed with propionyl-CoA, isovaleryl-CoA, succinyl-CoA, and glutaryl-CoA for any of the investigated acyl-CoA dehydrogenases. Only AcdTBEA6, AcdN-1, and AcdLB400 desulfinated 3SP-CoA and were thus identified as 3SP-CoA desulfinases within the acyl-CoA dehydrogenase family, although none of these three Acds dehydrogenated any of the tested acyl-CoA thioesters. No appropriate substrates were identified for AcdBL21 and AcdWT001. Spectrophotometric assays provided apparent Km and Vmax values for active substrates and indicated the applicability of phylogenetic analyses to predict the substrate range of

  17. Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis.

    PubMed

    Maloberti, Paula; Castilla, Rocío; Castillo, Fernanda; Cornejo Maciel, Fabiana; Mendez, Carlos F; Paz, Cristina; Podestá, Ernesto J

    2005-04-01

    Arachidonic acid and its lypoxygenated metabolites play a fundamental role in the hormonal regulation of steroidogenesis. Reduction in the expression of the mitochondrial acyl-CoA thioesterase (MTE-I) by antisense or small interfering RNA (siRNA) and of the arachidonic acid-preferring acyl-CoA synthetase (ACS4) by siRNA produced a marked reduction in steroid output of cAMP-stimulated Leydig cells. This effect was blunted by a permeable analog of cholesterol that bypasses the rate-limiting step in steroidogenesis, the transport of cholesterol from the outer to the inner mitochondrial membrane. The inhibition of steroidogenesis was overcome by addition of exogenous arachidonic acid, indicating that the enzymes are part of the mechanism responsible for arachidonic acid release involved in steroidogenesis. Knocking down the expression of MTE-I leads to a significant reduction in the expression of steroidogenic acute regulatory protein. This protein is induced by arachidonic acid and controls the rate-limiting step. Overexpression of MTE-I resulted in an increase in cAMP-induced steroidogenesis. In summary, our results demonstrate a critical role for ACS4 and MTE-I in the hormonal regulation of steroidogenesis as a new pathway of arachidonic acid release different from the classical phospholipase A2 cascade.

  18. N-Acylation During Glidobactin Biosynthesis by the Tridomain Nonribosomal Peptide Synthetase Module GlbF

    PubMed Central

    Imker, Heidi J.; Krahn, Daniel; Clerc, Jérôme; Kaiser, Markus; Walsh, Christopher T.

    2011-01-01

    Summary Glidobactins are hybrid NRPS-PKS natural products that function as irreversible proteasome inhibitors. A variety of medium chain 2(E),4(E)-diene fatty acids N-acylate the peptidolactam core and contribute significantly to the potency of proteasome inhibition. We have expressed the initiation NRPS module GlbF (C-A-T) in Escherichia coli and observe soluble active protein only on co-expression with the 8 kDa MbtH-like protein, GlbE. Following adenylation and installation of Thr as a T-domain thioester, the starter condensation domain utilizes fatty acyl-CoA donors to acylate the Thr1 amino group and generate the fatty acyl-Thr1-S-pantetheinyl-GlbF intermediate to be used in subsequent chain elongation. Previously proposed to be mediated via acyl carrier protein fatty acid donors, direct utilization of fatty acyl-CoA donors for N-acylation of T-domain tethered amino acids is likely a common strategy for chain initiation in NRPS-mediated lipopeptide biosynthesis. PMID:21035730

  19. N-acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF.

    PubMed

    Imker, Heidi J; Krahn, Daniel; Clerc, Jérôme; Kaiser, Markus; Walsh, Christopher T

    2010-10-29

    Glidobactins are hybrid NRPS-PKS natural products that function as irreversible proteasome inhibitors. A variety of medium chain 2(E),4(E)-diene fatty acids N-acylate the peptidolactam core and contribute significantly to the potency of proteasome inhibition. We have expressed the initiation NRPS module GlbF (C-A-T) in Escherichia coli and observe soluble active protein only on coexpression with the 8 kDa MbtH-like protein, GlbE. Following adenylation and installation of Thr as a T-domain thioester, the starter condensation domain utilizes fatty acyl-CoA donors to acylate the Thr(1) amino group and generate the fatty acyl-Thr(1)-S-pantetheinyl-GlbF intermediate to be used in subsequent chain elongation. Previously proposed to be mediated via acyl carrier protein fatty acid donors, direct utilization of fatty acyl-CoA donors for N-acylation of T-domain tethered amino acids is likely a common strategy for chain initiation in NRPS-mediated lipopeptide biosynthesis.

  20. Adult-onset multiple acyl CoA dehydrogenation deficiency associated with an abnormal isoenzyme pattern of serum lactate dehydrogenase.

    PubMed

    Sugai, Fuminobu; Baba, Kousuke; Toyooka, Keiko; Liang, Wen-Chen; Nishino, Ichizo; Yamadera, Misaki; Sumi, Hisae; Fujimura, Harutoshi; Nishikawa, Yoshiro

    2012-02-01

    We report a case of a 37 year-old male with multiple acyl-CoA dehydrogenation deficiency (MADD). The patient had suffered from exercise intolerance in his hip and thigh muscles for one year. Then, restriction of carbohydrates for a diet made his symptoms rapidly deteriorate. Blood test revealed compound heterozygosity for two novel missense mutations in the electron transfer flavoprotein dehydrogenase gene (ETFDH), and an abnormal LDH isoenzyme pattern: LDH-1 (60.0%) and LDH-2 (26.0%) predominated with abnormally elevated LDH-1/LDH-2 ratio (2.3), compared with muscle-derived LDH-5 (4.0%). Oral riboflavin treatment significantly improved his exercise intolerance and the LDH profile: LDH-1 (34.4%), LDH-2 (34.9%), LDH-5 (6.9%) and LDH-1/LDH-2 ratio (1.0). The abnormal LDH isoenzyme pattern may be one feature of adult-onset MADD selectively affecting type I muscle fibers with relatively high LDH-1 content. PMID:21907580

  1. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  2. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-03-18

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs.

  3. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs)

    PubMed Central

    Recuero-Checa, Maria A.; Sharma, Manu; Lau, Constance; Watkins, Paul A.; Gaydos, Charlotte A.; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3–6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  4. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells

    PubMed Central

    Golej, Deidre L.; Askari, Bardia; Kramer, Farah; Barnhart, Shelley; Vivekanandan-Giri, Anuradha; Pennathur, Subramaniam; Bornfeldt, Karin E.

    2011-01-01

    Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids play important roles in vascular homeostasis and disease, yet the role of ACSL4 in vascular cells is largely unknown. In the present study, the ACSL4 splice variant expressed in human arterial smooth muscle cells (SMCs) was identified as variant 1. To investigate the function of ACSL4 in SMCs, ACSL4 variant 1 was overexpressed, knocked-down by small interfering RNA, or its enzymatic activity acutely inhibited in these cells. Overexpression of ACSL4 resulted in a markedly increased synthesis of arachidonoyl-CoA, increased 20:4 incorporation into phosphatidylethanolamine, phosphatidylinositol, and triacylglycerol, and reduced cellular levels of unesterified 20:4. Accordingly, secretion of prostaglandin E2 (PGE2) was blunted in ACSL4-overexpressing SMCs compared with controls. Conversely, acute pharmacological inhibition of ACSL4 activity resulted in increased release of PGE2. However, long-term downregulation of ACSL4 resulted in markedly reduced PGE2 secretion. Thus, ACSL4 modulates PGE2 release from human SMCs. ACSL4 may regulate a number of processes dependent on the release of arachidonic acid-derived lipid mediators in the arterial wall. PMID:21242590

  5. The Maize High-Lysine Mutant opaque7 Is Defective in an Acyl-CoA Synthetase-Like Protein

    PubMed Central

    Miclaus, Mihai; Wu, Yongrui; Xu, Jian-Hong; Dooner, Hugo K.; Messing, Joachim

    2011-01-01

    Maize (Zea mays) has a large class of seed mutants with opaque or nonvitreous endosperms that could improve the nutritional quality of our food supply. The phenotype of some of them appears to be linked to the improper formation of protein bodies (PBs) where zein storage proteins are deposited. Although a number of genes affecting endosperm vitreousness have been isolated, it has been difficult to clone opaque7 (o7), mainly because of its low penetrance in many genetic backgrounds. The o7-reference (o7-ref) mutant arose spontaneously in a W22 inbred, but is poorly expressed in other lines. We report here the isolation of o7 with a combination of map-based cloning and transposon tagging. We first identified an o7 candidate gene by map-based cloning. The putative o7-ref allele has a 12-bp in-frame deletion of codons 350–353 in a 528-codon-long acyl-CoA synthetase-like gene (ACS). We then confirmed this candidate gene by generating another mutant allele from a transposon-tagging experiment using the Activator/Dissociation (Ac/Ds) system in a W22 background. The second allele, isolated from ∼1 million gametes, presented a 2-kb Ds insertion that resembles the single Ds component of double-Ds, McClintock’s original Dissociation element, at codon 496 of the ACS gene. PBs exhibited striking membrane invaginations in the o7-ref allele and a severe number reduction in the Ds-insertion mutant, respectively. We propose a model in which the ACS enzyme plays a key role in membrane biogenesis, by taking part in protein acylation, and that altered PBs render the seed nonvitreous. PMID:21926304

  6. A Peroxisomal Long-Chain Acyl-CoA Synthetase from Glycine max Involved in Lipid Degradation

    PubMed Central

    Jiang, Bingjun; Sun, Xuegang; Gu, Shoulai; Han, Tianfu; Hou, Wensheng

    2014-01-01

    Seed storage oil, in the form of triacylglycerol (TAG), is degraded to provide carbon and energy during germination and early seedling growth by the fatty acid β-oxidation in the peroxisome. Although the pathways for lipid degradation have been uncovered, understanding of the exact involved enzymes in soybean is still limited. Long-chain acyl-CoA synthetase (ACSL) is a critical enzyme that activates free fatty acid released from TAG to form the fatty acyl-CoA. Recent studies have shown the importance of ACSL in lipid degradation and synthesis, but few studies were focused on soybean. In this work, we cloned a ACSL gene from soybean and designated it as GmACSL2. Sequence analysis revealed that GmACSL2 encodes a protein of 733 amino acid residues, which is highly homologous to the ones in other higher plants. Complementation test showed that GmACSL2 could restore the growth of an ACS-deficient yeast strain (YB525). Co-expression assay in Nicotiana benthamiana indicated that GmACSL2 is located at peroxisome. Expression pattern analysis showed that GmACSL2 is highly expressed in germinating seedling and strongly induced 1 day after imbibition, which indicate that GmACSL2 may take part in the seed germination. GmACSL2 overexpression in yeast and soybean hairy root severely reduces the contents of the lipids and fatty acids, compared with controls in both cells, and enhances the β-oxidation efficiency in yeast. All these results suggest that GmACSL2 may take part in fatty acid and lipid degradation. In conclusion, peroxisomal GmACSL2 from Glycine max probably be involved in the lipid degradation during seed germination. PMID:24992019

  7. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases.

    PubMed

    Narita, Tomomi; Naganuma, Tatsuro; Sase, Yurie; Kihara, Akio

    2016-01-01

    Transport of dietary lipids into small-intestinal epithelial cells is pathologically and nutritionally important. However, lipid uptake remains an almost unexplored research area. Although we know that long-chain bases (LCBs), constituents of sphingolipids, can enter into cells efficiently, the molecular mechanism of LCB uptake is completely unclear. Here, we found that the yeast acyl-CoA synthetases (ACSs) Faa1 and Faa4 are redundantly involved in LCB uptake. In addition to fatty acid-activating activity, transporter activity toward long-chain fatty acids (LCFAs) has been suggested for ACSs. Both LCB and LCFA transports were largely impaired in faa1Δ faa4Δ cells. Furthermore, LCB and LCFA uptakes were mutually competitive. However, the energy dependency was different for their transports. Sodium azide/2-deoxy-D-glucose treatment inhibited import of LCFA but not that of LCB. Furthermore, the ATP-AMP motif mutation FAA1 S271A largely impaired the metabolic activity and LCFA uptake, while leaving LCB import unaffected. These results indicate that only LCFA transport requires ATP. Since ACSs do not metabolize LCBs as substrates, Faa1 and Faa4 are likely directly involved in LCB transport. Furthermore, we revealed that ACSs are also involved in LCB transport in mammalian cells. Thus, our findings provide strong support for the hypothesis that ACSs directly transport LCFAs. PMID:27136724

  8. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds.

    PubMed

    Aznar-Moreno, Jose A; Venegas Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Mullen, Robert; Gidda, Satinder K; Salas, Joaquín J

    2014-03-01

    Long chain fatty acid synthetases (LACSs) activate the fatty acid chains produced by plastidial de novo biosynthesis to generate acyl-CoA derivatives, important intermediates in lipid metabolism. Oilseeds, like sunflower, accumulate high levels of triacylglycerols (TAGs) in their seeds to nourish the embryo during germination. This requires that sunflower seed endosperm supports very active glycerolipid synthesis during development. Sunflower seed plastids produce large amounts of fatty acids, which must be activated through the action of LACSs, in order to be incorporated into TAGs. We cloned two different LACS genes from developing sunflower endosperm, HaLACS1 and HaLACS2, which displayed sequence homology with Arabidopsis LACS9 and LACS8 genes, respectively. These genes were expressed at high levels in developing seeds and exhibited distinct subcellular distributions. We generated constructs in which these proteins were fused to green fluorescent protein and performed transient expression experiments in tobacco cells. The HaLACS1 protein associated with the external envelope of tobacco chloroplasts, whereas HaLACS2 was strongly bound to the endoplasmic reticulum. Finally, both proteins were overexpressed in Escherichia coli and recovered as active enzymes in the bacterial membranes. Both enzymes displayed similar substrate specificities, with a very high preference for oleic acid and weaker activity toward stearic acid. On the basis of our findings, we discuss the role of these enzymes in sunflower oil synthesis.

  9. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases

    PubMed Central

    Narita, Tomomi; Naganuma, Tatsuro; Sase, Yurie; Kihara, Akio

    2016-01-01

    Transport of dietary lipids into small-intestinal epithelial cells is pathologically and nutritionally important. However, lipid uptake remains an almost unexplored research area. Although we know that long-chain bases (LCBs), constituents of sphingolipids, can enter into cells efficiently, the molecular mechanism of LCB uptake is completely unclear. Here, we found that the yeast acyl-CoA synthetases (ACSs) Faa1 and Faa4 are redundantly involved in LCB uptake. In addition to fatty acid-activating activity, transporter activity toward long-chain fatty acids (LCFAs) has been suggested for ACSs. Both LCB and LCFA transports were largely impaired in faa1Δ faa4Δ cells. Furthermore, LCB and LCFA uptakes were mutually competitive. However, the energy dependency was different for their transports. Sodium azide/2-deoxy-D-glucose treatment inhibited import of LCFA but not that of LCB. Furthermore, the ATP-AMP motif mutation FAA1 S271A largely impaired the metabolic activity and LCFA uptake, while leaving LCB import unaffected. These results indicate that only LCFA transport requires ATP. Since ACSs do not metabolize LCBs as substrates, Faa1 and Faa4 are likely directly involved in LCB transport. Furthermore, we revealed that ACSs are also involved in LCB transport in mammalian cells. Thus, our findings provide strong support for the hypothesis that ACSs directly transport LCFAs. PMID:27136724

  10. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases.

    PubMed

    Narita, Tomomi; Naganuma, Tatsuro; Sase, Yurie; Kihara, Akio

    2016-05-03

    Transport of dietary lipids into small-intestinal epithelial cells is pathologically and nutritionally important. However, lipid uptake remains an almost unexplored research area. Although we know that long-chain bases (LCBs), constituents of sphingolipids, can enter into cells efficiently, the molecular mechanism of LCB uptake is completely unclear. Here, we found that the yeast acyl-CoA synthetases (ACSs) Faa1 and Faa4 are redundantly involved in LCB uptake. In addition to fatty acid-activating activity, transporter activity toward long-chain fatty acids (LCFAs) has been suggested for ACSs. Both LCB and LCFA transports were largely impaired in faa1Δ faa4Δ cells. Furthermore, LCB and LCFA uptakes were mutually competitive. However, the energy dependency was different for their transports. Sodium azide/2-deoxy-D-glucose treatment inhibited import of LCFA but not that of LCB. Furthermore, the ATP-AMP motif mutation FAA1 S271A largely impaired the metabolic activity and LCFA uptake, while leaving LCB import unaffected. These results indicate that only LCFA transport requires ATP. Since ACSs do not metabolize LCBs as substrates, Faa1 and Faa4 are likely directly involved in LCB transport. Furthermore, we revealed that ACSs are also involved in LCB transport in mammalian cells. Thus, our findings provide strong support for the hypothesis that ACSs directly transport LCFAs.

  11. Broad substrate specificity of phosphotransbutyrylase from Listeria monocytogenes: A potential participant in an alternative pathway for provision of acyl CoA precursors for fatty acid biosynthesis.

    PubMed

    Sirobhushanam, Sirisha; Galva, Charitha; Sen, Suranjana; Wilkinson, Brian J; Gatto, Craig

    2016-09-01

    Listeria monocytogenes, the causative organism of the serious food-borne disease listeriosis, has a membrane abundant in branched-chain fatty acids (BCFAs). BCFAs are normally biosynthesized from branched-chain amino acids via the activity of branched chain α-keto acid dehydrogenase (Bkd), and disruption of this pathway results in reduced BCFA content in the membrane. Short branched-chain carboxylic acids (BCCAs) added as media supplements result in incorporation of BCFAs arising from the supplemented BCCAs in the membrane of L. monocytogenes bkd mutant MOR401. High concentrations of the supplements also effect similar changes in the membrane of the wild type organism with intact bkd. Such carboxylic acids clearly act as fatty acid precursors, and there must be an alternative pathway resulting in the formation of their CoA thioester derivatives. Candidates for this are the enzymes phosphotransbutyrylase (Ptb) and butyrate kinase (Buk), the products of the first two genes of the bkd operon. Ptb from L. monocytogenes exhibited broad substrate specificity, a strong preference for branched-chain substrates, a lack of activity with acetyl CoA and hexanoyl CoA, and strict chain length preference (C3-C5). Ptb catalysis involved ternary complex formation. Additionally, Ptb could utilize unnatural branched-chain substrates such as 2-ethylbutyryl CoA, albeit with lower efficiency, consistent with a potential involvement of this enzyme in the conversion of the carboxylic acid additives into CoA primers for BCFA biosynthesis. PMID:27320015

  12. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin.

    PubMed

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia; Ellis, Jessica M; Willis, Monte S; Coleman, Rosalind A

    2014-06-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1(H-/-) mice with rapamycin. Six to eight week old Acsl1(H-/-) mice and their littermate controls were given i.p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H-/-) mice. PMID:24631848

  13. Neurodegeneration in a Drosophila model of adrenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases

    PubMed Central

    Sivachenko, Anna; Gordon, Hannah B.; Kimball, Suzanne S.; Gavin, Erin J.; Bonkowsky, Joshua L.; Letsou, Anthea

    2016-01-01

    ABSTRACT Debilitating neurodegenerative conditions with metabolic origins affect millions of individuals worldwide. Still, for most of these neurometabolic disorders there are neither cures nor disease-modifying therapies, and novel animal models are needed for elucidation of disease pathology and identification of potential therapeutic agents. To date, metabolic neurodegenerative disease has been modeled in animals with only limited success, in part because existing models constitute analyses of single mutants and have thus overlooked potential redundancy within metabolic gene pathways associated with disease. Here, we present the first analysis of a very-long-chain acyl-CoA synthetase (ACS) double mutant. We show that the Drosophila bubblegum (bgm) and double bubble (dbb) genes have overlapping functions, and that the consequences of double knockout of both bubblegum and double bubble in the fly brain are profound, affecting behavior and brain morphology, and providing the best paradigm to date for an animal model of adrenoleukodystrophy (ALD), a fatal childhood neurodegenerative disease associated with the accumulation of very-long-chain fatty acids. Using this more fully penetrant model of disease to interrogate brain morphology at the level of electron microscopy, we show that dysregulation of fatty acid metabolism via disruption of ACS function in vivo is causal of neurodegenerative pathologies that are evident in both neuronal cells and their supporting cell populations, and leads ultimately to lytic cell death in affected areas of the brain. Finally, in an extension of our model system to the study of human disease, we describe our identification of an individual with leukodystrophy who harbors a rare mutation in SLC27a6 (encoding a very-long-chain ACS), a human homolog of bgm and dbb. PMID:26893370

  14. The structure of S. lividans acetoacetyl-CoA synthetase shows a novel interaction between the C-terminal extension and the N-terminal domain.

    PubMed

    Mitchell, Carter A; Tucker, Alex C; Escalante-Semerena, Jorge C; Gulick, Andrew M

    2015-03-01

    The adenosine monoposphate-forming acyl-CoA synthetase enzymes catalyze a two-step reaction that involves the initial formation of an acyl adenylate that reacts in a second partial reaction to form a thioester between the acyl substrate and CoA. These enzymes utilize a Domain Alternation catalytic mechanism, whereby a ∼ 110 residue C-terminal domain rotates by 140° to form distinct catalytic conformations for the two partial reactions. The structure of an acetoacetyl-CoA synthetase (AacS) is presented that illustrates a novel aspect of this C-terminal domain. Specifically, several acetyl- and acetoacetyl-CoA synthetases contain a 30-residue extension on the C-terminus compared to other members of this family. Whereas residues from this extension are disordered in prior structures, the AacS structure shows that residues from this extension may interact with key catalytic residues from the N-terminal domain.

  15. Identity between palmitoyl-CoA synthetase and arachidonoyl-CoA synthetase in human platelet?

    PubMed Central

    Bakken, A M; Farstad, M; Holmsen, H

    1991-01-01

    Apparent Km values have been determined for the substrates ATP, CoA and fatty acids for the long-chain acyl-CoA synthetase (EC 6.2.1.3) reaction in lysates of human blood platelets. The apparent Km for ATP was higher for saturated fatty acids (C12:0 to C18:0) than for unsaturated acids (C18:1 to C22:6). Other apparent Km values were very similar for all long-chain fatty acids tested. Palmitic acid inhibited the formation of [14C]arachidonoyl-CoA, and arachidonic acid inhibited the formation of [14C]palmitoyl-CoA, with [14C]arachidonate or [14C]palmitate respectively as substrate. After chromatography of Triton X-100-extracted platelet protein in several systems (hydroxyapatite, DEAE-Sepharose, Sephacryl S-200 HR, CoA-Sepharose, Sephadex G-100 and AcA 34), both arachidonoyl-CoA synthetase and palmitoyl-CoA synthetase activities were eluted together in the various protein peaks, and with approximately the same ratio of activities in all peaks. After some purification steps (DEAE-Sepharose and Sephacryl S-200 HR), the acyl-CoA synthetase activity was up to 37 nmol/min per mg of protein with [14C]palmitate as substrate, and up to 116 nmol/min per mg of protein with [14C]arachidonate as substrate. The purification was respectively about 8- and 10-fold. The results indicate that palmitoyl-CoA (or unspecific) synthetase and arachidonoyl-CoA (or specific) synthetase are in fact the same enzyme, in agreement with previously reported results from this laboratory. PMID:1848073

  16. Unraveling Cholesterol Catabolism in Mycobacterium tuberculosis: ChsE4-ChsE5 α2β2 Acyl-CoA Dehydrogenase Initiates β-Oxidation of 3-Oxo-cholest-4-en-26-oyl CoA

    PubMed Central

    2016-01-01

    The metabolism of host cholesterol by Mycobacterium tuberculosis (Mtb) is an important factor for both its virulence and pathogenesis, although how and why cholesterol metabolism is required is not fully understood. Mtb uses a unique set of catabolic enzymes that are homologous to those required for classical β-oxidation of fatty acids but are specific for steroid-derived substrates. Here, we identify and assign the substrate specificities of two of these enzymes, ChsE4-ChsE5 (Rv3504-Rv3505) and ChsE3 (Rv3573c), that carry out cholesterol side chain oxidation in Mtb. Steady-state assays demonstrate that ChsE4-ChsE5 preferentially catalyzes the oxidation of 3-oxo-cholest-4-en-26-oyl CoA in the first cycle of cholesterol side chain β-oxidation that ultimately yields propionyl-CoA, whereas ChsE3 specifically catalyzes the oxidation of 3-oxo-chol-4-en-24-oyl CoA in the second cycle of β-oxidation that generates acetyl-CoA. However, ChsE4-ChsE5 can catalyze the oxidation of 3-oxo-chol-4-en-24-oyl CoA as well as 3-oxo-4-pregnene-20-carboxyl-CoA. The functional redundancy of ChsE4-ChsE5 explains the in vivo phenotype of the igr knockout strain of Mycobacterium tuberculosis; the loss of ChsE1-ChsE2 can be compensated for by ChsE4-ChsE5 during the chronic phase of infection. The X-ray crystallographic structure of ChsE4-ChsE5 was determined to a resolution of 2.0 Å and represents the first high-resolution structure of a heterotetrameric acyl-CoA dehydrogenase (ACAD). Unlike typical homotetrameric ACADs that bind four flavin adenine dinucleotide (FAD) cofactors, ChsE4-ChsE5 binds one FAD at each dimer interface, resulting in only two substrate-binding sites rather than the classical four active sites. A comparison of the ChsE4-ChsE5 substrate-binding site to those of known mammalian ACADs reveals an enlarged binding cavity that accommodates steroid substrates and highlights novel prospects for designing inhibitors against the committed β-oxidation step in the first

  17. Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus.

    PubMed

    Alves-Bezerra, Michele; Klett, Eric L; De Paula, Iron F; Ramos, Isabela B; Coleman, Rosalind A; Gondim, Katia C

    2016-07-01

    Long-chain acyl-CoA esters are important intermediates in lipid metabolism and are synthesized from fatty acids by long-chain acyl-CoA synthetases (ACSL). The hematophagous insect Rhodnius prolixus, a vector of Chagas' disease, produces glycerolipids in the midgut after a blood meal, which are stored as triacylglycerol in the fat body and eggs. We identified twenty acyl-CoA synthetase genes in R. prolixus, two encoding ACSL isoforms (RhoprAcsl1 and RhoprAcsl2). RhoprAcsl1 transcripts increased in posterior midgut on the second day after feeding, and RhoprAcsl2 was highly transcribed on the tenth day. Both enzymes were expressed in Escherichia coli. Recombinant RhoprACSL1 and RhoprACSL2 had broad pH optima (7.5-9.5 and 6.5-9.5, respectively), were inhibited by triacsin C, and were rosiglitazone-insensitive. Both showed similar apparent Km for palmitic and oleic acid (2-6 μM), but different Km for arachidonic acid (0.5 and 6 μM for RhoprACSL1-Flag and RhoprACSL2-Flag, respectively). The knockdown of RhoprAcsl1 did not result in noticeable phenotypes. However, RhoprACSL2 deficient insects exhibited a 2.5-fold increase in triacylglycerol content in the fat body, and 90% decrease in fatty acid β-oxidation. RhoprAcsl2 knockdown also resulted in 20% increase in lifespan, delayed digestion, 30% reduced oviposition, and 50% reduction in egg hatching. Laid eggs and hatched nymphs showed remarkable alterations in morphology. In summary, R. prolixus ACSL isoforms have distinct roles on lipid metabolism. Although RhoprACSL1 functions remain unclear, we propose that RhoprACSL2 is the main contributor for the formation of the intracellular acyl-CoA pool channeled for β-oxidation in the fat body, and is also required for normal reproduction. PMID:27091636

  18. Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation.

    PubMed

    Grevengoed, Trisha J; Cooper, Daniel E; Young, Pamela A; Ellis, Jessica M; Coleman, Rosalind A

    2015-11-01

    Because hearts with a temporally induced knockout of acyl-CoA synthetase 1 (Acsl1(T-/-)) are virtually unable to oxidize fatty acids, glucose use increases 8-fold to compensate. This metabolic switch activates mechanistic target of rapamycin complex 1 (mTORC1), which initiates growth by increasing protein and RNA synthesis and fatty acid metabolism, while decreasing autophagy. Compared with controls, Acsl1(T-/-) hearts contained 3 times more mitochondria with abnormal structure and displayed a 35-43% lower respiratory function. To study the effects of mTORC1 activation on mitochondrial structure and function, mTORC1 was inhibited by treating Acsl1(T-/-) and littermate control mice with rapamycin or vehicle alone for 2 wk. Rapamycin treatment normalized mitochondrial structure, number, and the maximal respiration rate in Acsl1(T-/-) hearts, but did not improve ADP-stimulated oxygen consumption, which was likely caused by the 33-51% lower ATP synthase activity present in both vehicle- and rapamycin-treated Acsl1(T-/-) hearts. The turnover of microtubule associated protein light chain 3b in Acsl1(T-/-) hearts was 88% lower than controls, indicating a diminished rate of autophagy. Rapamycin treatment increased autophagy to a rate that was 3.1-fold higher than in controls, allowing the formation of autophagolysosomes and the clearance of damaged mitochondria. Thus, long-chain acyl-CoA synthetase isoform 1 (ACSL1) deficiency in the heart activated mTORC1, thereby inhibiting autophagy and increasing the number of damaged mitochondria. PMID:26220174

  19. Molecular cloning and sequence analysis of complementary DNA encoding rat mammary gland medium-chain S-acyl fatty acid synthetase thio ester hydrolase

    SciTech Connect

    Safford, R.; de Silva, J.; Lucas, C.; Windust, J.H.C.; Shedden, J.; James, C.M.; Sidebottom, C.M.; Slabas, A.R.; Tombs, M.P.; Hughes, S.G.

    1987-03-10

    Poly(A) + RNA from pregnant rat mammary glands was size-fractionated by sucrose gradient centrifugation, and fractions enriched in medium-chain S-acyl fatty acid synthetase thio ester hydrolase (MCH) were identified by in vitro translation and immunoprecipitation. A cDNA library was constructed, in pBR322, from enriched poly(A) + RNA and screened with two oligonucleotide probes deduced from rat MCH amino acid sequence data. Cross-hybridizing clones were isolated and found to contain cDNA inserts ranging from approx. 1100 to 1550 base pairs (bp). A 1550-bp cDNA insert, from clone 43H09, was confirmed to encode MCH by hybrid-select translation/immunoprecipitation studies and by comparison of the amino acid sequence deduced from the DNA sequence of the clone to the amino acid sequence of the MCH peptides. Northern blot analysis revealed the size of the MCH mRNA to be 1500 nucleotides, and it is therefore concluded that the 1550-bp insert (including G x C tails) of clone 43H09 represents a full- or near-full-length copy of the MCH gene. The rat MCH sequence is the first reported sequence of a thioesterase from a mammalian source, but comparison of the deduced amino acid sequences of MCH and the recently published mallard duck medium-chain S-acyl fatty acid synthetase thioesterase reveals significant homology. In particular, a seven amino acid sequence containing the proposed active serine of the duck thioesterase is found to be perfectly conserved in rat MCH.

  20. Identification of 9α-Hydroxy-17-Oxo-1,2,3,4,10,19-Hexanorandrostan-5-Oic Acid in Steroid Degradation by Comamonas testosteroni TA441 and Its Conversion to the Corresponding 6-En-5-Oyl Coenzyme A (CoA) Involving Open Reading Frame 28 (ORF28)- and ORF30-Encoded Acyl-CoA Dehydrogenases

    PubMed Central

    Hayashi, Toshiaki; Koshino, Hiroyuki; Malon, Michal; Hirota, Hiroshi; Kudo, Toshiaki

    2014-01-01

    Comamonas testosteroni TA441 degrades steroids via aromatization and meta-cleavage of the A ring, followed by hydrolysis, and produces 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid as an intermediate compound. Herein, we identify a new intermediate compound, 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. Open reading frame 28 (ORF28)- and ORF30-encoded acyl coenzyme A (acyl-CoA) dehydrogenase was shown to convert the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid to the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid. A homology search of the deduced amino acid sequences suggested that the ORF30-encoded protein is a member of the acyl-CoA dehydrogenase_fadE6_17_26 family, whereas the deduced amino acid sequence of ORF28 showed no significant similarity to specific acyl-CoA dehydrogenase family proteins. Possible steroid degradation gene clusters similar to the cluster of TA441 appear in bacterial genome analysis data. In these clusters, ORFs similar to ORFs 28 and 30 are often found side by side and ordered in the same manner as ORFs 28 and 30. PMID:25092028

  1. Dissecting the role of critical residues and substrate preference of a Fatty Acyl-CoA Synthetase (FadD13) of Mycobacterium tuberculosis.

    PubMed

    Khare, Garima; Gupta, Vibha; Gupta, Rakesh K; Gupta, Radhika; Bhat, Rajiv; Tyagi, Anil K

    2009-01-01

    Newly emerging multi-drug resistant strains of Mycobacterium tuberculosis (M.tb) severely limit the treatment options for tuberculosis (TB); hence, new antitubercular drugs are urgently needed. The mymA operon is essential for the virulence and intracellular survival of M.tb and thus represents an attractive target for the development of new antitubercular drugs. This study is focused on the structure-function relationship of Fatty Acyl-CoA Synthetase (FadD13, Rv3089) belonging to the mymA operon. Eight site-directed mutants of FadD13 were designed, constructed and analyzed for the structural-functional integrity of the enzyme. The study revealed that mutation of Lys(487) resulted in approximately 95% loss of the activity thus demonstrating its crucial requirement for the enzymatic activity. Comparison of the kinetic parameters showed the residues Lys(172) and Ala(302) to be involved in the binding of ATP and Ser(404) in the binding of CoenzymeA. The influence of mutations of the residues Val(209) and Trp(377) emphasized their importance in maintaining the structural integrity of FadD13. Besides, we show a synergistic influence of fatty acid and ATP binding on the conformation and rigidity of FadD13. FadD13 represents the first Fatty Acyl-CoA Synthetase to display biphasic kinetics for fatty acids. FadD13 exhibits a distinct preference for C(26)/C(24) fatty acids, which in the light of earlier reported observations further substantiates the role of the mymA operon in remodeling the cell envelope of intracellular M.tb under acidic conditions. A three-dimensional model of FadD13 was generated; the docking of ATP to the active site verified its interaction with Lys(172), Ala(302) and Lys(487) and corresponded well with the results of the mutational studies. Our study provides a significant understanding of the FadD13 protein including the identification of residues important for its activity as well as in the maintenance of structural integrity. We believe that the

  2. Overexpression of acyl-CoA synthetase-1 increases lipid deposition in hepatic (HepG2) cells and rodent liver in vivo.

    PubMed

    Parkes, Heidi A; Preston, Elaine; Wilks, Donna; Ballesteros, Mercedes; Carpenter, Lee; Wood, Leonie; Kraegen, Edward W; Furler, Stuart M; Cooney, Gregory J

    2006-10-01

    Accumulation of intracellular lipid in obesity is associated with metabolic disease in many tissues including liver. Storage of fatty acid as triglyceride (TG) requires the activation of fatty acids to long-chain acyl-CoAs (LC-CoA) by the enzyme acyl-CoA synthetase (ACSL). There are five known isoforms of ACSL (ACSL1, -3, -4, -5, -6), which vary in their tissue specificity and affinity for fatty acid substrates. To investigate the role of ACSL1 in the regulation of lipid metabolism, we used adenoviral-mediated gene transfer to overexpress ACSL1 in the human hepatoma cell-line HepG2 and in liver of rodents. Infection of HepG2 cells with the adenoviral construct AdACSL1 increased ACSL activity >10-fold compared with controls after 24 h. HepG2 cells overexpressing ACSL1 had a 40% higher triglyceride (TG) content (93 +/- 3 vs. 67 +/- 2 nmol/mg protein in controls, P < 0.05) after 24-h exposure to 1 mM oleate. Furthermore, ACSL1 overexpression produced a 60% increase in cellular LCA-CoA content (160 +/- 6 vs. 100 +/- 6 nmol/g protein in controls, P < 0.05) and increased [(14)C]oleate incorporation into TG without significantly altering fatty acid oxidation. In mice, AdACSL1 administration increased ACSL1 mRNA and protein more than fivefold over controls at 4 days postinfection. ACSL1 overexpression caused a twofold increase in TG content in mouse liver (39 +/- 4 vs. 20 +/- 2 mumol/g wet wt in controls, P < 0.05), and overexpression in rat liver increased [1-(14)C]palmitate clearance into liver TG. These in vitro and in vivo results suggest a pivotal role for ACSL1 in regulating TG synthesis in liver. PMID:16705061

  3. COAs: Behind the Masks.

    ERIC Educational Resources Information Center

    Birke, Szifra

    1993-01-01

    Provides information on alcoholism and codependency to help teachers identify and respond to children of alcoholics (COAs). Discusses characteristics of alcoholic homes and problems encountered by children and adult COAs. Examines survival "masks" of COAs, including hero, rebel, adjustor, clown, and caretaker. Lists organizational, print, and…

  4. Two Activities of Long-Chain Acyl-Coenzyme A Synthetase Are Involved in Lipid Trafficking between the Endoplasmic Reticulum and the Plastid in Arabidopsis1

    PubMed Central

    Jessen, Dirk; Roth, Charlotte; Wiermer, Marcel

    2015-01-01

    In plants, fatty acids are synthesized within the plastid and need to be distributed to the different sites of lipid biosynthesis within the cell. Free fatty acids released from the plastid need to be converted to their corresponding coenzyme A thioesters to become metabolically available. This activation is mediated by long-chain acyl-coenzyme A synthetases (LACSs), which are encoded by a family of nine genes in Arabidopsis (Arabidopsis thaliana). So far, it has remained unclear which of the individual LACS activities are involved in making plastid-derived fatty acids available to cytoplasmic glycerolipid biosynthesis. Because of its unique localization at the outer envelope of plastids, LACS9 was regarded as a candidate for linking plastidial fatty export and cytoplasmic use. However, data presented in this study show that LACS9 is involved in fatty acid import into the plastid. The analyses of mutant lines revealed strongly overlapping functions of LACS4 and LACS9 in lipid trafficking from the endoplasmic reticulum to the plastid. In vivo labeling experiments with lacs4 lacs9 double mutants suggest strongly reduced synthesis of endoplasmic reticulum-derived lipid precursors, which are required for the biosynthesis of glycolipids in the plastids. In conjunction with this defect, double-mutant plants accumulate significant amounts of linoleic acid in leaf tissue. PMID:25540329

  5. A Novel Fatty Acyl-CoA Synthetase Is Required for Pollen Development and Sporopollenin Biosynthesis in Arabidopsis[C][W

    PubMed Central

    de Azevedo Souza, Clarice; Kim, Sung Soo; Koch, Stefanie; Kienow, Lucie; Schneider, Katja; McKim, Sarah M.; Haughn, George W.; Kombrink, Erich; Douglas, Carl J.

    2009-01-01

    Acyl-CoA Synthetase (ACOS) genes are related to 4-coumarate:CoA ligase (4CL) but have distinct functions. The Arabidopsis thaliana ACOS5 protein is in clade A of Arabidopsis ACOS proteins, the clade most closely related to 4CL proteins. This clade contains putative nonperoxisomal ACOS enzymes conserved in several angiosperm lineages and in the moss Physcomitrella patens. Although its function is unknown, ACOS5 is preferentially expressed in the flowers of all angiosperms examined. Here, we show that an acos5 mutant produced no pollen in mature anthers and no seeds by self-fertilization and was severely compromised in pollen wall formation apparently lacking sporopollenin or exine. The phenotype was first evident at stage 8 of anther development and correlated with maximum ACOS5 mRNA accumulation in tapetal cells at stages 7 to 8. Green fluorescent protein–ACOS5 fusions showed that ACOS5 is located in the cytoplasm. Recombinant ACOS5 enzyme was active against oleic acid, allowing kinetic constants for ACOS5 substrates to be established. Substrate competition assays indicated broad in vitro preference of the enzyme for medium-chain fatty acids. We propose that ACOS5 encodes an enzyme that participates in a conserved and ancient biochemical pathway required for sporopollenin monomer biosynthesis that may also include the Arabidopsis CYP703A2 and MS2 enzymes. PMID:19218397

  6. Protein tyrosine phosphatases regulate arachidonic acid release, StAR induction and steroidogenesis acting on a hormone-dependent arachidonic acid-preferring acyl-CoA synthetase.

    PubMed

    Cano, Florencia; Poderoso, Cecilia; Cornejo Maciel, Fabiana; Castilla, Rocío; Maloberti, Paula; Castillo, Fernanda; Neuman, Isabel; Paz, Cristina; Podestá, Ernesto J

    2006-06-01

    The activation of the rate-limiting step in steroid biosynthesis, that is the transport of cholesterol into the mitochondria, is dependent on PKA-mediated events triggered by hormones like ACTH and LH. Two of such events are the protein tyrosine dephosphorylation mediated by protein tyrosine phosphatases (PTPs) and the release of arachidonic acid (AA) mediated by two enzymes, ACS4 (acyl-CoA synthetase 4) and Acot2 (mitochondrial thioesterase). ACTH and LH regulate the activity of PTPs and Acot2 and promote the induction of ACS4. Here we analyzed the involvement of PTPs on the expression of ACS4. We found that two PTP inhibitors, acting through different mechanisms, are both able to abrogate the hormonal effect on ACS4 induction. PTP inhibitors also reduce the effect of cAMP on steroidogenesis and on the level of StAR protein, which facilitates the access of cholesterol into the mitochondria. Moreover, our results indicate that exogenous AA is able to overcome the inhibition produced by PTP inhibitors on StAR protein level and steroidogenesis. Then, here we describe a link between PTP activity and AA release, since ACS4 induction is under the control of PTP activity, being a key event for AA release, StAR induction and steroidogenesis.

  7. An arachidonic acid-preferring acyl-CoA synthetase is a hormone-dependent and obligatory protein in the signal transduction pathway of steroidogenic hormones.

    PubMed

    Cornejo Maciel, Fabiana; Maloberti, Paula; Neuman, Isabel; Cano, Florencia; Castilla, Rocío; Castillo, Fernanda; Paz, Cristina; Podestá, Ernesto J

    2005-06-01

    We have described that, in adrenal and Leydig cells, the hormonal regulation of free arachidonic acid (AA) concentration is mediated by the concerted action of two enzymes: an acyl-CoA thioesterase (MTE-I or ARTISt) and an acyl-CoA synthetase (ACS4). In this study we analyzed the potential regulation of these proteins by hormonal action in steroidogenic cells. We demonstrated that ACS4 is rapidly induced by adrenocorticotropin (ACTH) and cAMP in Y1 adrenocortical cells. The hormone and its second messenger increased ACS4 protein levels in a time and concentration dependent way. Maximal concentration of ACTH (10 mIU/ml) produced a significant effect after 15 min of treatment and exerted the highest increase (3-fold) after 30 min. Moreover, (35)S-methionine incorporation showed that the increase in ACS4 protein levels is due to an increase in the de novo synthesis of the protein. On the contrary MTE-I protein levels in Y1 and MA-10 cells did not change after steroidogenic stimuli. In contrast with the effect observed on protein levels, stimulation of both cell lines did not change ACS4 RNA levels during the first hour of treatment, indicating that the effect of both stimuli is exerted at the level of ACS4 protein synthesis.StAR protein induction has a key role on the activation of steroidogenesis since this protein increases the rate of the limiting step of the whole process. In agreement with the fact that the inhibition of ACS4 activity by triacsin C blocks cAMP-stimulated progesterone production by MA-10 Leydig cells, here we demonstrated that ACS4 inhibition also reduces StAR protein levels. Moreover, exogenous AA was able to overcome the effect of triacsin C on both events, StAR induction and steroidogenesis. These results were confirmed by experiments using ACS4-targeted siRNA which result in a reduction in both ACS4 and StAR protein levels. The concomitant decrease in steroid production was overcome by the addition of AA to the knocked-out cells. In summary

  8. The functional interaction between Acyl-CoA synthetase 4, 5-lipooxygenase and cyclooxygenase-2 controls tumor growth: a novel therapeutic target.

    PubMed

    Orlando, Ulises D; Garona, Juan; Ripoll, Giselle V; Maloberti, Paula M; Solano, Ángela R; Avagnina, Alejandra; Gomez, Daniel E; Alonso, Daniel F; Podestá, Ernesto J

    2012-01-01

    The acyl-CoA synthetase 4 (ACSL4), which esterify mainly arachidonic acid (AA) into acyl-CoA, is increased in breast, colon and hepatocellular carcinoma. The transfection of MCF-7 cells with ACSL4 cDNA transforms the cells into a highly aggressive phenotype and controls both lipooxygenase-5 (LOX-5) and cyclooxygenase-2 (COX-2) metabolism of AA, suggesting a causal role of ACSL4 in tumorigenesis. We hypothesized that ACSL4, LOX-5 and COX-2 may constitute potential therapeutic targets for the control of tumor growth. Therefore, the aim of this study was to use a tetracycline Tet-Off system of MCF-7 xenograft model of breast cancer to confirm the effect of ACSL4 overexpression on tumor growth in vivo. We also aim to determine whether a combinatorial inhibition of the ACSL4-LOX-COX-2 pathway affects tumor growth in vivo using a xenograft model based on MDA-MB-231 cells, a highly aggressive breast cancer cell line naturally overexpressing ACSL4. The first novel finding is that stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system of MCF-7 cells resulted in development of growing tumors when injected into nude mice. Tumor xenograft development measured in animals that received doxycycline resulted in tumor growth inhibition. The tumors presented marked nuclear polymorphism, high mitotic index and low expression of estrogen and progesterone receptor. These results demonstrate the transformational capacity of ACSL4 overexpression. We examined the effect of a combination of inhibitors of ACSL4, LOX-5 and COX-2 on MDA-MB-231 tumor xenografts. This treatment markedly reduced tumor growth in doses of these inhibitors that were otherwise ineffective when used alone, indicating a synergistic effect of the compounds. Our results suggest that these enzymes interact functionally and form an integrated system that operates in a concerted manner to regulate tumor growth and consequently may be potential therapeutic targets for the control of

  9. Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells.

    PubMed

    Maloberti, Paula M; Duarte, Alejandra B; Orlando, Ulises D; Pasqualini, María E; Solano, Angela R; López-Otín, Carlos; Podestá, Ernesto J

    2010-11-11

    The acyl-CoA synthetase 4 (ACSL4) is increased in breast cancer, colon and hepatocellular carcinoma. ACSL4 mainly esterifies arachidonic acid (AA) into arachidonoyl-CoA, reducing free AA intracellular levels, which is in contradiction with the need for AA metabolites in tumorigenesis. Therefore, the causal role of ACSL4 is still not established. This study was undertaken to determine the role of ACSL4 in AA metabolic pathway in breast cancer cells. The first novel finding is that ACSL4 regulates the expression of cyclooxygenase-2 (COX-2) and the production of prostaglandin in MDA-MB-231 cells. We also found that ACSL4 is significantly up-regulated in the highly aggressive MDA-MB-231 breast cancer cells. In terms of its overexpression and inhibition, ACSL4 plays a causal role in the control of the aggressive phenotype. These results were confirmed by the increase in the aggressive behaviour of MCF-7 cells stably transfected with a Tet-off ACSL4 vector. Concomitantly, another significant finding was that intramitochondrial AA levels are significantly higher in the aggressive cells. Thus, the esterification of AA by ACSL4 compartmentalizes the release of AA in mitochondria, a mechanism that serves to drive the specific lipooxygenase metabolization of the fatty acid. To our knowledge, this is the first report that ACSL4 expression controls both lipooxygenase and cyclooxygenase metabolism of AA. Thus, this functional interaction represents an integrated system that regulates the proliferating and metastatic potential of cancer cells. Therefore, the development of combinatory therapies that profit from the ACSL4, lipooxygenase and COX-2 synergistic action may allow for lower medication doses and avoidance of side effects.

  10. Acyl Coenzyme A Synthetase Long-Chain 1 (ACSL1) Gene Polymorphism (rs6552828) and Elite Endurance Athletic Status: A Replication Study

    PubMed Central

    Santiago, Catalina; Hu, Yang; Li, Yan-Chun; Gómez-Gallego, Félix; Fiuza-Luces, Carmen; Verde, Zoraida; Muniesa, Carlos A.; Oliván, Jesús; Santalla, Alfredo; Ruiz, Jonatan R.; Lucia, Alejandro

    2012-01-01

    The aim of this study was to determine the association between the rs6552828 polymorphism in acyl coenzyme A synthetase (ACSL1) and elite endurance athletic status. We studied 82 Caucasian (Spanish) World/Olympic-class endurance male athletes, and a group of sex and ethnically matched healthy young adults (controls, n = 197). The analyses were replicated in a cohort of a different ethnic origin (Chinese of the Han ethnic group), composed of elite endurance athletes (runners) [cases, n = 241 (128 male)] and healthy sedentary adults [controls, n = 504 (267 male)]. In the Spanish cohort, genotype (P = 0.591) and minor allele (A) frequencies were similar in cases and controls (P = 0.978). In the Chinese cohort, genotype (P = 0.973) and minor allele (G) frequencies were comparable in female endurance athletes and sedentary controls (P = 0.881), whereas in males the frequency of the G allele was higher in endurance athletes (0.40) compared with their controls (0.32, P = 0.040). The odds ratio (95%CI) for an elite endurance Chinese athlete to carry the G allele compared with ethnically matched controls was 1.381 (1.015–1.880) (P-value = 0.04). Our findings suggest that the ACSL1 gene polymorphism rs6552828 is not associated with elite endurance athletic status in Caucasians, yet a marginal association seems to exist for the Chinese (Han) male population. PMID:22829935

  11. Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer

    PubMed Central

    Chen, Wei-Ching; Wang, Chih-Yang; Hung, Yu-Hsuan; Weng, Tzu-Yang; Yen, Meng-Chi; Lai, Ming-Derg

    2016-01-01

    Dysregulated lipid metabolism contributes to cancer progression. Our previous study indicates that long-chain fatty acyl-Co A synthetase (ACSL) 3 is essential for lipid upregulation induced by endoplasmic reticulum stress. In this report, we aimed to identify the role of ACSL family in cancer with systematic analysis and in vitro experiment. We explored the ACSL expression using Oncomine database to determine the gene alteration during carcinogenesis and identified the association between ACSL expression and the survival of cancer patient using PrognoScan database. ACSL1 may play a potential oncogenic role in colorectal and breast cancer and play a potential tumor suppressor role in lung cancer. Co-expression analysis revealed that ACSL1 was coexpressed with MYBPH, PTPRE, PFKFB3, SOCS3 in colon cancer and with LRRFIP1, TSC22D1 in lung cancer. In accordance with PrognoScan analysis, downregulation of ACSL1 in colon and breast cancer cell line inhibited proliferation, migration, and anchorage-independent growth. In contrast, increase of oncogenic property was observed in lung cancer cell line by attenuating ACSL1. High ACSL3 expression predicted a better prognosis in ovarian cancer; in contrast, high ACSL3 predicted a worse prognosis in melanoma. ACSL3 was coexpressed with SNUPN, TRIP13, and SEMA5A in melanoma. High expression of ACSL4 predicted a worse prognosis in colorectal cancer, but predicted better prognosis in breast, brain and lung cancer. ACSL4 was coexpressed with SERPIN2, HNRNPCL1, ITIH2, PROCR, LRRFIP1. High expression of ACSL5 predicted good prognosis in breast, ovarian, and lung cancers. ACSL5 was coexpressed with TMEM140, TAPBPL, BIRC3, PTPRE, and SERPINB1. Low ACSL6 predicted a worse prognosis in acute myeloid leukemia. ACSL6 was coexpressed with SOX6 and DARC. Altogether, different members of ACSLs are implicated in diverse types of cancer development. ACSL-coexpressed molecules may be used to further investigate the role of ACSL family in

  12. A Hybrid Non-Ribosomal Peptide/Polyketide Synthetase Containing Fatty-Acyl Ligase (FAAL) Synthesizes the β-Amino Fatty Acid Lipopeptides Puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum

    PubMed Central

    Mareš, Jan; Hájek, Jan; Urajová, Petra; Kopecký, Jiří; Hrouzek, Pavel

    2014-01-01

    A putative operon encoding the biosynthetic pathway for the cytotoxic cyanobacterial lipopeptides puwainphycins was identified in Cylindrospermum alatosporum. Bioinformatics analysis enabled sequential prediction of puwainaphycin biosynthesis; this process is initiated by the activation of a fatty acid residue via fatty acyl-AMP ligase and continued by a multidomain non-ribosomal peptide synthetase/polyketide synthetase. High-resolution mass spectrometry and nuclear magnetic resonance spectroscopy measurements proved the production of puwainaphycin F/G congeners differing in FA chain length formed by either 3-amino-2-hydroxy-4-methyl dodecanoic acid (4-methyl-Ahdoa) or 3-amino-2-hydroxy-4-methyl tetradecanoic acid (4-methyl-Ahtea). Because only one puwainaphycin operon was recovered in the genome, we suggest that the fatty acyl-AMP ligase and one of the amino acid adenylation domains (Asn/Gln) show extended substrate specificity. Our results provide the first insight into the biosynthesis of frequently occurring β-amino fatty acid lipopeptides in cyanobacteria, which may facilitate analytical assessment and development of monitoring tools for cytotoxic cyanobacterial lipopeptides. PMID:25369527

  13. Evolution of Acyl-Substrate Recognition by a Family of Acyl-Homoserine Lactone Synthases

    PubMed Central

    Christensen, Quin H.; Brecht, Ryan M.; Dudekula, Dastagiri; Greenberg, E. Peter; Nagarajan, Rajesh

    2014-01-01

    Members of the LuxI protein family catalyze synthesis of acyl-homoserine lactone (acyl-HSL) quorum sensing signals from S-adenosyl-L-methionine and an acyl thioester. Some LuxI family members prefer acyl-CoA, and others prefer acyl-acyl carrier protein (ACP) as the acyl-thioester substrate. We sought to understand the evolutionary history and mechanisms mediating this substrate preference. Our phylogenetic and motif analysis of the LuxI acyl-HSL synthase family indicates that the acyl-CoA-utilizing enzymes evolved from an acyl-ACP-utilizing ancestor. To further understand how acyl-ACPs and acyl-CoAs are recognized by acyl-HSL synthases we studied BmaI1, an octanoyl-ACP-dependent LuxI family member from Burkholderia mallei, and BjaI, an isovaleryl-CoA-dependent LuxI family member from Bradyrhizobium japonicum. We synthesized thioether analogs of their thioester acyl-substrates to probe recognition of the acyl-phosphopantetheine moiety common to both acyl-ACP and acyl-CoA substrates. The kinetics of catalysis and inhibition of these enzymes indicate that they recognize the acyl-phosphopantetheine moiety and they recognize non-preferred substrates with this moiety. We find that CoA substrate utilization arose through exaptation of acyl-phosphopantetheine recognition in this enzyme family. PMID:25401334

  14. Role of 4-Hydroxybutyrate-CoA Synthetase in the CO2 Fixation Cycle in Thermoacidophilic Archaea

    SciTech Connect

    Hawkins, AS; Han, YJ; Bennett, RK; Adams, MWW; Kelly, RM

    2013-02-08

    Metallosphaera sedula is an extremely thermoacidophilic archaeon that grows heterotrophically on peptides and chemolithoautotrophically on hydrogen, sulfur, or reduced metals as energy sources. During autotrophic growth, carbon dioxide is incorporated into cellular carbon via the 3-hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB). To date, all of the steps in the pathway have been connected to enzymes encoded in specific genes, except for the one responsible for ligation of coenzyme A (CoA) to 4HB. Although several candidates for this step have been identified through bioinformatic analysis of the M. sedula genome, none have been shown to catalyze this biotransformation. In this report, transcriptomic analysis of cells grown under strict H-2-CO2 autotrophy was consistent with the involvement of Msed_0406 and Msed_0394. Recombinant versions of these enzymes catalyzed the ligation of CoA to 4HB, with similar affinities for 4HB (K-m values of 1.9 and 1.5 mM for Msed_0406 and Msed_0394, respectively) but with different rates (1.69 and 0.22 mu mol x min(-1) x mg(-1) for Msed_0406 and Msed_0394, respectively). Neither Msed_0406 nor Msed_0394 have close homologs in other Sulfolobales, although low sequence similarity is not unusual for acyl-adenylate-forming enzymes. The capacity of these two enzymes to use 4HB as a substrate may have arisen from simple modifications to acyl-adenylate-forming enzymes. For example, a single amino acid substitution (W424G) in the active site of the acetate/propionate synthetase (Msed_1353), an enzyme that is highly conserved among the Sulfolobales, changed its substrate specificity to include 4HB. The identification of the 4-HB CoA synthetase now completes the set of enzymes comprising the 3HP/4HB cycle.

  15. Purification of Pseudomonas putida acyl coenzyme A ligase active with a range of aliphatic and aromatic substrates.

    PubMed Central

    Fernández-Valverde, M; Reglero, A; Martinez-Blanco, H; Luengo, J M

    1993-01-01

    Acyl coenzyme A (acyl-CoA) ligase (acyl-CoA synthetase [ACoAS]) from Pseudomonas putida U was purified to homogeneity (252-fold) after this bacterium was grown in a chemically defined medium containing octanoic acid as the sole carbon source. The enzyme, which has a mass of 67 kDa, showed maximal activity at 40 degrees C in 10 mM K2PO4H-NaPO4H2 buffer (pH 7.0) containing 20% (wt/vol) glycerol. Under these conditions, ACoAS showed hyperbolic behavior against acetate, CoA, and ATP; the Kms calculated for these substrates were 4.0, 0.7, and 5.2 mM, respectively. Acyl-CoA ligase recognizes several aliphatic molecules (acetic, propionic, butyric, valeric, hexanoic, heptanoic, and octanoic acids) as substrates, as well as some aromatic compounds (phenylacetic and phenoxyacetic acids). The broad substrate specificity of ACoAS from P. putida was confirmed by coupling it with acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum to study the formation of several penicillins. Images PMID:8476289

  16. Thermophilic Coenzyme B12-Dependent Acyl Coenzyme A (CoA) Mutase from Kyrpidia tusciae DSM 2912 Preferentially Catalyzes Isomerization of (R)-3-Hydroxybutyryl-CoA and 2-Hydroxyisobutyryl-CoA

    PubMed Central

    Weichler, Maria-Teresa; Kurteva-Yaneva, Nadya; Przybylski, Denise; Schuster, Judith; Müller, Roland H.; Harms, Hauke

    2015-01-01

    The recent discovery of a coenzyme B12-dependent acyl-coenzyme A (acyl-CoA) mutase isomerizing 3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA in the mesophilic bacterium Aquincola tertiaricarbonis L108 (N. Yaneva, J. Schuster, F. Schäfer, V. Lede, D. Przybylski, T. Paproth, H. Harms, R. H. Müller, and T. Rohwerder, J Biol Chem 287:15502–15511, 2012, http://dx.doi.org/10.1074/jbc.M111.314690) could pave the way for a complete biosynthesis route to the building block chemical 2-hydroxyisobutyric acid from renewable carbon. However, the enzyme catalyzes only the conversion of the stereoisomer (S)-3-hydroxybutyryl-CoA at reasonable rates, which seriously hampers an efficient combination of mutase and well-established bacterial poly-(R)-3-hydroxybutyrate (PHB) overflow metabolism. Here, we characterize a new 2-hydroxyisobutyryl-CoA mutase found in the thermophilic knallgas bacterium Kyrpidia tusciae DSM 2912. Reconstituted mutase subunits revealed highest activity at 55°C. Surprisingly, already at 30°C, isomerization of (R)-3-hydroxybutyryl-CoA was about 7,000 times more efficient than with the mutase from strain L108. The most striking structural difference between the two mutases, likely determining stereospecificity, is a replacement of active-site residue Asp found in strain L108 at position 117 with Val in the enzyme from strain DSM 2912, resulting in a reversed polarity at this binding site. Overall sequence comparison indicates that both enzymes descended from different prokaryotic thermophilic methylmalonyl-CoA mutases. Concomitant expression of PHB enzymes delivering (R)-3-hydroxybutyryl-CoA (beta-ketothiolase PhaA and acetoacetyl-CoA reductase PhaB from Cupriavidus necator) with the new mutase in Escherichia coli JM109 and BL21 strains incubated on gluconic acid at 37°C led to the production of 2-hydroxyisobutyric acid at maximal titers of 0.7 mM. Measures to improve production in E. coli, such as coexpression of the chaperone MeaH and repression of

  17. Thermophilic Coenzyme B12-Dependent Acyl Coenzyme A (CoA) Mutase from Kyrpidia tusciae DSM 2912 Preferentially Catalyzes Isomerization of (R)-3-Hydroxybutyryl-CoA and 2-Hydroxyisobutyryl-CoA.

    PubMed

    Weichler, Maria-Teresa; Kurteva-Yaneva, Nadya; Przybylski, Denise; Schuster, Judith; Müller, Roland H; Harms, Hauke; Rohwerder, Thore

    2015-07-01

    The recent discovery of a coenzyme B12-dependent acyl-coenzyme A (acyl-CoA) mutase isomerizing 3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA in the mesophilic bacterium Aquincola tertiaricarbonis L108 (N. Yaneva, J. Schuster, F. Schäfer, V. Lede, D. Przybylski, T. Paproth, H. Harms, R. H. Müller, and T. Rohwerder, J Biol Chem 287:15502-15511, 2012, http://dx.doi.org/10.1074/jbc.M111.314690) could pave the way for a complete biosynthesis route to the building block chemical 2-hydroxyisobutyric acid from renewable carbon. However, the enzyme catalyzes only the conversion of the stereoisomer (S)-3-hydroxybutyryl-CoA at reasonable rates, which seriously hampers an efficient combination of mutase and well-established bacterial poly-(R)-3-hydroxybutyrate (PHB) overflow metabolism. Here, we characterize a new 2-hydroxyisobutyryl-CoA mutase found in the thermophilic knallgas bacterium Kyrpidia tusciae DSM 2912. Reconstituted mutase subunits revealed highest activity at 55°C. Surprisingly, already at 30°C, isomerization of (R)-3-hydroxybutyryl-CoA was about 7,000 times more efficient than with the mutase from strain L108. The most striking structural difference between the two mutases, likely determining stereospecificity, is a replacement of active-site residue Asp found in strain L108 at position 117 with Val in the enzyme from strain DSM 2912, resulting in a reversed polarity at this binding site. Overall sequence comparison indicates that both enzymes descended from different prokaryotic thermophilic methylmalonyl-CoA mutases. Concomitant expression of PHB enzymes delivering (R)-3-hydroxybutyryl-CoA (beta-ketothiolase PhaA and acetoacetyl-CoA reductase PhaB from Cupriavidus necator) with the new mutase in Escherichia coli JM109 and BL21 strains incubated on gluconic acid at 37°C led to the production of 2-hydroxyisobutyric acid at maximal titers of 0.7 mM. Measures to improve production in E. coli, such as coexpression of the chaperone MeaH and repression of

  18. Characterization of the promoter region of the bovine long-chain acyl-CoA synthetase 1 gene: Roles of E2F1, Sp1, KLF15, and E2F4

    PubMed Central

    Zhao, Zhi-Dong; Zan, Lin-Sen; Li, An-Ning; Cheng, Gong; Li, Shi-Jun; Zhang, Ya-Ran; Wang, Xiao-Yu; Zhang, Ying-Ying

    2016-01-01

    The nutritional value and eating qualities of beef are enhanced when the unsaturated fatty acid content of fat is increased. Long-chain acyl-CoA synthetase 1 (ACSL1) plays key roles in fatty acid transport and degradation, as well as lipid synthesis. It has been identified as a plausible functional and positional candidate gene for manipulations of fatty acid composition in bovine skeletal muscle. In the present study, we determined that bovine ACSL1was highly expressed in subcutaneous adipose tissue and longissimus thoracis. To elucidate the molecular mechanisms involved in bovine ACSL1 regulation, we cloned and characterized the promoter region of ACSL1. Applying 5′-rapid amplification of cDNA end analysis (RACE), we identified multiple transcriptional start sites (TSSs) in its promoter region. Using a series of 5′ deletion promoter plasmids in luciferase reporter assays, we found that the proximal minimal promoter of ACSL1 was located within the region −325/−141 relative to the TSS and it was also located in the predicted CpG island. Mutational analysis and electrophoretic mobility shift assays demonstrated that E2F1, Sp1, KLF15 and E2F4 binding to the promoter region drives ACSL1 transcription. Together these interactions integrate and frame a key functional role for ACSL1 in mediating the lipid composition of beef. PMID:26782942

  19. Rosiglitazone Inhibits Acyl-CoA Synthetase Activity and Fatty Acid Partitioning to Diacylglycerol and Triacylglycerol via a Peroxisome Proliferator–Activated Receptor-γ–Independent Mechanism in Human Arterial Smooth Muscle Cells and Macrophages

    PubMed Central

    Askari, Bardia; Kanter, Jenny E.; Sherrid, Ashley M.; Golej, Deidre L.; Bender, Andrew T.; Liu, Joey; Hsueh, Willa A.; Beavo, Joseph A.; Coleman, Rosalind A.; Bornfeldt, Karin E.

    2010-01-01

    Rosiglitazone is an insulin-sensitizing agent that has recently been shown to exert beneficial effects on atherosclerosis. In addition to peroxisome proliferator–activated receptor (PPAR)-γ, rosiglitazone can affect other targets, such as directly inhibiting recombinant long-chain acyl-CoA synthetase (ACSL)-4 activity. Because it is unknown if ACSL4 is expressed in vascular cells involved in atherosclerosis, we investigated the ability of rosiglitazone to inhibit ACSL activity and fatty acid partitioning in human and murine arterial smooth muscle cells (SMCs) and macrophages. Human and murine SMCs and human macrophages expressed Acsl4, and rosiglitazone inhibited Acsl activity in these cells. Furthermore, rosiglitazone acutely inhibited partitioning of fatty acids into phospholipids in human SMCs and inhibited fatty acid partitioning into diacylglycerol and triacylglycerol in human SMCs and macrophages through a PPAR-γ–independent mechanism. Conversely, murine macrophages did not express ACSL4, and rosiglitazone did not inhibit ACSL activity in these cells, nor did it affect acute fatty acid partitioning into cellular lipids. Thus, rosiglitazone inhibits ACSL activity and fatty acid partitioning in human and murine SMCs and in human macrophages through a PPAR-γ–independent mechanism likely to be mediated by ACSL4 inhibition. Therefore, rosiglitazone might alter the biological effects of fatty acids in these cells and in atherosclerosis. PMID:17259370

  20. Effect of the non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activity toward medium-chain, long-chain and polyunsaturated fatty acids in mitochondria of mouse liver and brain.

    PubMed

    Kasuya, Fumiyo; Kazuhiro, Misumi; Tatsuya, Hasegawa; Nakamoto, Kazuo; Tokuyama, Shogo; Masuyama, Teiichi

    2013-02-01

    Effect of eleven non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activities toward octanoic, palmitic, arachidonic and docosahexaenoic acids was evaluated in mouse liver and brain mitochondria. The drugs tested were aspirin, salicylic acid, diflunisal, mefenamic acid, indomethacin, etodolac, ibuprofen, ketoprofen, naproxen, loxoprofen, flurbiprofen. In mouse liver mitochondria, diflunisal and mefenamic acid exhibited the inhibitory activities not only for octanoic acid (IC(50) = 78.7 and 64.7 µM) and but also for palmitic acid (IC(50) = 236.5 and 284.4 µM), respectively. Aspirin was an inhibitor for the activation of octanoic acid only (IC(50) = 411.0 µM). In the brain, mefenamic acid and diflunisal inhibited strongly palmitoyl-CoA formation (IC(50) = 57.3 and 114.0 µM), respectively. The activation of docosahexaenoic acid in brain was sensitive to inhibition by diflunisal and mefenamic acid compared with liver.

  1. Lessons from the gonadotropin-regulated long chain acyl-CoA synthetase (GR-LACS) null mouse model: a role in steroidogenesis, but not result in X-ALD phenotype.

    PubMed

    Sheng, Yi; Tsai-Morris, Chon-Hwa; Li, Jie; Dufau, Maria L

    2009-03-01

    Gonadotropin-regulated long chain fatty acid Acyl-CoA synthetase (GR-LACS), is a member of the LACS family that is regulated by gonadotropin in the rat Leydig cell (LC). Its mouse/human homologs, lipidosin/bubblegum, have been suggested to participate in X-linked adrenoleukodystrophy (X-ALD), an adreno/neurodegenerative disorder with accumulation of very long chain fatty acids (VLCFA) in tissues and plasma. To further gain insights into its regulatory function, a GR-LACS/lipidosin null mouse was generated. No apparent phenotypic abnormalities were observed in the X-ALD target tissues (brain, testis, adrenal). Nuclear inclusions seen in mice >15 month-old, were present in LC of 9 month-old GR-LACS(-/-) mice. LC of the null mice showed refractoriness to the gonadotropin-induced desensitization of testosterone production that is observed in adult animals. LCFAs were moderately increased in the testis, ovary and brain, but not in the adrenal gland of GR-LACS(-/-) mice, with no major changes in VLCFA. No change in LACS activity was observed in these tissues, suggesting a compensatory mechanism exhibited by other LACS members. The GR-LACS(-/-) model did not support its association with X-ALD. These studies revealed a role of GR-LACS in reducing the aging process of the LC, and its participation in gonadotropin-induced testicular desensitization of testosterone production.

  2. Isolation and characterization of rat liver microsomal R-ibuprofenoyl-CoA synthetase.

    PubMed

    Brugger, R; García Alía, B; Reichel, C; Waibel, R; Menzel, S; Brune, K; Geisslinger, G

    1996-10-11

    Microsomal long-chain acyl-CoA synthetase (EC 6.1.2.3.) has been suggested to be involved in the stereoselective formation of the CoA thioester of ibuprofen. In this study, we demonstrated that the microsomal enzyme from rat liver responsible for palmitoyl-CoA synthesis also catalyzes the formation of R-ibuprofenoyl-CoA in a Mg(2+)- and ATP-dependent process. Long-chain acyl-CoA synthetase from rat liver microsomes was purified to homogeneity as evidenced by SDS-gel electrophoresis. Simultaneous measurements of palmitoyl-CoA and R-ibuprofenoyl-CoA formation with HPLC in various fractions and purification steps during protein isolation revealed a high correlation between both activities. The purification procedure included solubilization of the microsomes obtained from rat livers with Triton X-100 and subsequent chromatography of the 100,000 x g supernatant on blue-sepharose, hydroxyapatite, and phosphocellulose. The purified enzyme exhibited an apparent molecular weight of 72 kDa as estimated by SDS gel electrophoresis, with specific activities of 71 nmol.min-1.mg-1 protein and 901 nmol.min-1.mg-1 protein for formation of R-ibuprofenoyl-CoA and palmitoyl-CoA, respectively. Palmitoyl-CoA formation catalyzed by the purified enzyme exhibited biphasic kinetics indicative of two isoforms, a high-affinity (KM 0.13 +/- 0.11 microM), low-capacity form and a low-affinity (KM 81 +/- 11.5 microM), high-capacity form. In contrast, measurement of R-ibuprofenoyl-CoA synthesis over a concentration range from 5 to 3000 microM showed the participation of a single CoA ligase with a KM of 184 +/- 19 microM, corresponding to the low-affinity isoform of palmitoyl-CoA synthesis with a marked enantioselectivity towards the R-form of ibuprofen. R-ibuprofenoyl-CoA formation of the enzyme preparation was inhibited by palmitic acid (KI 13.5 +/- 0.5 microM) and S-ibuprofen (KI 405 +/- 10 microM). In summary, these data give strong evidence for the identity of R-ibuprofenoyl-CoA and long

  3. Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase.

    PubMed

    Van Hellemond, J J; Opperdoes, F R; Tielens, A G

    1998-03-17

    Hydrogenosome-containing anaerobic protists, such as the trichomonads, produce large amounts of acetate by an acetate:succinate CoA transferase (ASCT)/succinyl CoA synthetase cycle. The notion that mitochondria and hydrogenosomes may have originated from the same alpha-proteobacterial endosymbiont has led us to look for the presence of a similar metabolic pathway in trypanosomatids because these are the earliest-branching mitochondriate eukaryotes and because they also are known to produce acetate. The mechanism of acetate production in these organisms, however, has remained unknown. Four different members of the trypanosomatid family: promastigotes of Leishmania mexicana mexicana, L. infantum and Phytomonas sp., and procyclics of Trypanosoma brucei were analyzed as well as the parasitic helminth Fasciola hepatica. They all use a mitochondrial ASCT for the production of acetate from acetyl CoA. The succinyl CoA that is produced during acetate formation by ASCT is recycled presumably to succinate by a mitochondrial succinyl CoA synthetase, concomitantly producing ATP from ADP. The ASCT of L. mexicana mexicana promastigotes was further characterized after partial purification of the enzyme. It has a high affinity for acetyl CoA (Km 0.26 mM) and a low affinity for succinate (Km 6.9 mM), which shows that significant acetate production can occur only when high mitochondrial succinate concentrations prevail. This study identifies a metabolic pathway common to mitochondria and hydrogenosomes, which strongly supports a common origin for these two organelles.

  4. Biochemical and Crystallographic Analysis of Substrate Binding and Conformational Changes in Acetyl-CoA Synthetase

    SciTech Connect

    Reger,A.; Carney, J.; Gulick, A.

    2007-01-01

    The adenylate-forming enzymes, including acyl-CoA synthetases, the adenylation domains of non-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping-pong mechanism. We have proposed a domain alternation mechanism for these enzymes whereby, upon completion of the initial adenylation reaction, the C-terminal domain of these enzymes undergoes a 140{sup o} rotation to perform the second thioester-forming half-reaction. Structural and kinetic data of mutant enzymes support this hypothesis. We present here mutations to Salmonella enterica acetyl-CoA synthetase (Acs) and test the ability of the enzymes to catalyze the complete reaction and the adenylation half-reaction. Substitution of Lys609 with alanine results in an enzyme that is unable to catalyze the adenylate reaction, while the Gly524 to leucine substitution is unable to catalyze the complete reaction yet catalyzes the adenylation half-reaction with activity comparable to the wild-type enzyme. The positions of these two residues, which are located on the mobile C-terminal domain, strongly support the domain alternation hypothesis. We also present steady-state kinetic data of putative substrate-binding residues and demonstrate that no single residue plays a dominant role in dictating CoA binding. We have also created two mutations in the active site to alter the acyl substrate specificity. Finally, the crystallographic structures of wild-type Acs and mutants R194A, R584A, R584E, K609A, and V386A are presented to support the biochemical analysis.

  5. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    ERIC Educational Resources Information Center

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  6. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    SciTech Connect

    Nemazanyy, Ivan . E-mail: nemazanyy@imbg.org.ua; Panasyuk, Ganna; Breus, Oksana; Zhyvoloup, Alexander; Filonenko, Valeriy; Gout, Ivan T. . E-mail: i.gout@ucl.ac.uk

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.

  7. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development

    PubMed Central

    Böttcher, Christine; Boss, Paul K.; Davies, Christopher

    2011-01-01

    Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes. PMID:21543520

  8. Acyl-CoA synthetase-4, a new regulator of mTOR and a potential therapeutic target for enhanced estrogen receptor function in receptor-positive and -negative breast cancer

    PubMed Central

    Dattilo, Melina A.; Solano, Angela R.; Maloberti, Paula M.; Podesta, Ernesto J.

    2015-01-01

    Although the role of acyl-CoA synthetase 4 (ACSL4) in mediating an aggressive phenotype is well accepted, there is little evidence as to the early steps through which ACSL4 increases tumor growth and progression. In this study, and by means of the stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system (MCF-7 Tet-Off/ACSL4), we identify the mTOR pathway as one of the main specific signatures of ACSL4 expression and demonstrate the partial involvement of the lipoxygenase pathway in the activation of mTOR. The specificity of ACSL4 action on mTOR signaling is also determined by doxycycline inhibition of ACSL4 expression in MCF-7 Tet-Off/ACSL4 cells, by the expression of ACSL4 in the non-aggressive T47D breast cancer cell line and by knocking down this enzyme expression in the MDA-MB-231 breast cancer cells, which constitutively express ACSL4. ACSL4 regulates components of the two complexes of the mTOR pathway (mTORC1/2), along with upstream regulators and substrates. We show that mTOR inhibitor rapamycin and ACSL4 inhibitor rosiglitazone can act in combination to inhibit cell growth. In addition, we demonstrate a synergistic effect on cell growth inhibition by the combination of rosiglitazone and tamoxifen, an estrogen receptor α (ERα) inhibitor. Remarkably, this synergistic effect is also evident in the triple negative MDA-MB-231 cells in vitro and in vivo. These results suggest that ACSL4 could be a target to restore tumor hormone dependence in tumors with poor prognosis for disease-free and overall survival, in which no effective specifically targeted therapy is readily available. PMID:26536660

  9. Acyl-CoA synthetase-4, a new regulator of mTOR and a potential therapeutic target for enhanced estrogen receptor function in receptor-positive and -negative breast cancer.

    PubMed

    Orlando, Ulises D; Castillo, Ana F; Dattilo, Melina A; Solano, Angela R; Maloberti, Paula M; Podesta, Ernesto J

    2015-12-15

    Although the role of acyl-CoA synthetase 4 (ACSL4) in mediating an aggressive phenotype is well accepted, there is little evidence as to the early steps through which ACSL4 increases tumor growth and progression. In this study, and by means of the stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system (MCF-7 Tet-Off/ACSL4), we identify the mTOR pathway as one of the main specific signatures of ACSL4 expression and demonstrate the partial involvement of the lipoxygenase pathway in the activation of mTOR. The specificity of ACSL4 action on mTOR signaling is also determined by doxycycline inhibition of ACSL4 expression in MCF-7 Tet-Off/ACSL4 cells, by the expression of ACSL4 in the non-aggressive T47D breast cancer cell line and by knocking down this enzyme expression in the MDA-MB-231 breast cancer cells, which constitutively express ACSL4. ACSL4 regulates components of the two complexes of the mTOR pathway (mTORC1/2), along with upstream regulators and substrates.We show that mTOR inhibitor rapamycin and ACSL4 inhibitor rosiglitazone can act in combination to inhibit cell growth. In addition, we demonstrate a synergistic effect on cell growth inhibition by the combination of rosiglitazone and tamoxifen, an estrogen receptor α (ERα) inhibitor. Remarkably, this synergistic effect is also evident in the triple negative MDA-MB-231 cells in vitro and in vivo.These results suggest that ACSL4 could be a target to restore tumor hormone dependence in tumors with poor prognosis for disease-free and overall survival, in which no effective specifically targeted therapy is readily available.

  10. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development.

    PubMed

    Böttcher, Christine; Boss, Paul K; Davies, Christopher

    2011-08-01

    Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes.

  11. Recent NASA Dryden COA Experience

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent

    2008-01-01

    This viewgraph presentation concerns the experience that Dryden has had with Certificate of Authorization (COA) in reference to unmanned aerial systems (UAS). It reviews recent Certificate of Authorization UAS's i.e., 2005 Altair NOAA Mission, 2006 Altair Western States Fire Mission, and 2007 Ikhana. The priorities for the safety process is reviewed, as are typical UAS hazards. Slides also review the common COA provisions, best practices and lessons learned, the 2005 NOAA/NASA Science Demonstration Flights and the use of the UAS systems during fire emergencies.

  12. Crystallographic trapping of the glutamyl-CoA thioester intermediate of family I CoA transferases

    SciTech Connect

    Rangarajan,E.; Li, Y.; Ajamian, E.; Iannuzzi, P.; Kernaghan, S.; Fraser, M.; Cygler, M.; Matte, A.

    2005-01-01

    Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 Angstrom resolution, respectively. YdiF is organized into tetramers, with each monomer having an open {alpha}/{beta} structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent {gamma}-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.

  13. Structure of NDP-forming Acetyl-CoA synthetase ACD1 reveals a large rearrangement for phosphoryl transfer

    PubMed Central

    Weiße, Renato H.-J.; Faust, Annette; Schmidt, Marcel; Schönheit, Peter; Scheidig, Axel J.

    2016-01-01

    The NDP-forming acyl-CoA synthetases (ACDs) catalyze the conversion of various CoA thioesters to the corresponding acids, conserving their chemical energy in form of ATP. The ACDs are the major energy-conserving enzymes in sugar and peptide fermentation of hyperthermophilic archaea. They are considered to be primordial enzymes of ATP synthesis in the early evolution of life. We present the first crystal structures, to our knowledge, of an ACD from the hyperthermophilic archaeon Candidatus Korachaeum cryptofilum. These structures reveal a unique arrangement of the ACD subunits alpha and beta within an α2β2-heterotetrameric complex. This arrangement significantly differs from other members of the superfamily. To transmit an activated phosphoryl moiety from the Ac-CoA binding site (within the alpha subunit) to the NDP-binding site (within the beta subunit), a distance of 51 Å has to be bridged. This transmission requires a larger rearrangement within the protein complex involving a 21-aa-long phosphohistidine-containing segment of the alpha subunit. Spatial restraints of the interaction of this segment with the beta subunit explain the necessity for a second highly conserved His residue within the beta subunit. The data support the proposed four-step reaction mechanism of ACDs, coupling acyl-CoA thioesters with ATP synthesis. Furthermore, the determined crystal structure of the complex with bound Ac-CoA allows first insight, to our knowledge, into the determinants for acyl-CoA substrate specificity. The composition and size of loops protruding into the binding pocket of acyl-CoA are determined by the individual arrangement of the characteristic subdomains. PMID:26787904

  14. A Chemo-Enzymatic Road Map to the Synthesis of CoA Esters.

    PubMed

    Peter, Dominik M; Vögeli, Bastian; Cortina, Niña Socorro; Erb, Tobias J

    2016-01-01

    Coenzyme A (CoA) is a ubiquitous cofactor present in every known organism. The thioesters of CoA are core intermediates in many metabolic processes, such as the citric acid cycle, fatty acid biosynthesis and secondary metabolism, including polyketide biosynthesis. Synthesis of CoA-thioesters is vital for the study of CoA-dependent enzymes and pathways, but also as standards for metabolomics studies. In this work we systematically tested five chemo-enzymatic methods for the synthesis of the three most abundant acyl-CoA thioester classes in biology; saturated acyl-CoAs, α,β-unsaturated acyl-CoAs (i.e., enoyl-CoA derivatives), and α-carboxylated acyl-CoAs (i.e., malonyl-CoA derivatives). Additionally we report on the substrate promiscuity of three newly described acyl-CoA dehydrogenases that allow the simple conversion of acyl-CoAs into enoyl-CoAs. With these five methods, we synthesized 26 different CoA-thioesters with a yield of 40% or higher. The CoA esters produced range from short- to long-chain, include branched and α,β-unsaturated representatives as well as other functional groups. Based on our results we provide a general guideline to the optimal synthesis method of a given CoA-thioester in respect to its functional group(s) and the commercial availability of the precursor molecule. The proposed synthetic routes can be performed in small scale and do not require special chemical equipment, making them convenient also for biological laboratories. PMID:27104508

  15. Monogalactosyldiacylglycerol biosynthesis by direct acyl transfer in Anabaene variabilis

    SciTech Connect

    Chen, H.H.; Wickrema, A.; Jaworski, J.

    1987-04-01

    The authors previously reported the direct acylation of monogalactosyldiacylglycerol (MGDG) by an enzyme in the membranes of the cyanobacterium Anabaena variabilis. The enzyme requires acyl-acyl carrier protein (acyl-ACP) as substrate, but had no other additional cofactor requirements. Palmitoyl-, stearoyl- and oleoyl-ACP were all effective substrates. The A. variabilis membranes also had a hydrolase activity which metabolized the acyl-ACP to yield free fatty acid and ACP. Possible mechanisms for the acylation reaction include either acyl exchange with existing MGDG or direct acyl transfer to a lyso-MGDG, with concomitant release of free ACP. The mechanism of this reaction has been resolved using a double labelled (/sup 14/C)acyl-(/sup 14/)ACP substrate prepared with E. coli acyl-ACP synthetase. Following incubation with the enzyme, the unreacted (/sup 14/)acyl-(/sup 14/)ACP was isolated and the (/sup 14/)acyl/(/sup 14/)ACP ratio determined. Comparison of this ratio to that of the original substrate indicated no change and eliminated acyl exchange as a possible mechanism. Therefore, the direct acylation of lyso-MGDG is the proposed mechanism for this enzyme.

  16. [Phosphoprotein phosphatase nonspecifically hydrolyzes CoA].

    PubMed

    Reziapkin, V I; Moiseenok, A G

    1988-01-01

    CoA hydrolysis was studied by a homogenous phosphoprotein phosphatase (EC 3.1 3.16) preparation from bovine spleen nuclei at pH 5.8. Phosphoprotein phosphatase catalyzed hydrolysis of the CoA 3'-phosphoester bond to form dephospho-CoA and Pi. The Km value for phosphoprotein phosphatase with CoA as substrate was 3.7 mM, the specific activity - 0.26 mmol Pi.min-1.mg-1. Phosphoprotein phosphatase did not essentially catalyze the calcium pantothenate hydrolysis (not more than 2% as compared with the CoA hydrolysis rate). PMID:2849829

  17. Effect of elevated total CoA levels on metabolic pathways in cultured hepatocytes

    SciTech Connect

    Steffen, C.A.; Smith, C.M.

    1987-05-01

    Livers from fasted rats have 30% higher total CoA levels than fed rats. To determine whether this increase of total CoA influences metabolism, the rates of gluconeogenesis, fatty acid oxidation and ketogenesis were measured in hepatocytes with cyanamide (CYM) or pantothenate (PA) deficient medium used to vary total CoA levels independently of hormonal status. Primary cultures of rat hepatocytes were incubated 14 hrs with Bt/sub 2/ cAMP, dexamethasone + theophylline in PA deficient medium or with CYM (500 ..mu..M) + PA, rinsed and preincubated 0.5 hr to remove the CYM. Hepatocytes treated with CYM had total CoA levels 10-24% higher than PA deficient cells and lower rates of glucose production from lactate + pyruvate (L/P) or from alanine (0.23 +/- 0.05 and 0.089 +/- 0.02 ..mu..m/mg protein, respectively in CYM treated cells compared to 0.33 +/- 0.06 and 0.130 +/- 0.006 in PA deficient cells). This decrease was not due to CYM per se, as the direct addition of CYM stimulated glucose production from L/P. CYM treated cells with 15-40% higher total CoA and 30% higher fatty acyl-CoA levels had the same rates of (/sup 14/C)-palmitate oxidation as PA deficient cells. However, rates of ketogenesis were lower in CYM treated cells (163 +/- 11 nm/mg compared to 217 +/- 14 nm/mg protein). These results suggest that physiological alterations of hepatic total CoA levels are not necessary for fasting rates of gluconeogenesis, fatty acid oxidation and ketogenesis.

  18. Determinants within the C-terminal domain of Streptomyces lividans acetyl-CoA synthetase that block acetylation of its active site lysine in vitro by the protein acetyltransferase (Pat) enzyme.

    PubMed

    Tucker, Alex C; Escalante-Semerena, Jorge C

    2014-01-01

    Reversible lysine acetylation (RLA) is a widespread regulatory mechanism that modulates the function of proteins involved in diverse cellular processes. A strong case has been made for RLA control exerted by homologues of the Salmonella enterica protein acetyltransferase (SePat) enzyme on the broadly distributed AMP-forming CoA ligase (a.k.a. acyl-CoA synthetases) family of metabolic enzymes, with acetyl-CoA synthetase (Acs) being the paradigm in the field. Here we investigate why the Acs homologue in Streptomyces lividans (SlAcs) is poorly acetylated in vitro by the S. lividans protein acetyltransferase (SlPat) enzyme. Chimeras of S. enterica Acs (SeAcs) and S. lividans Acs (SlAcs) constructed during the course of this work were acetylated by SlPatA in vitro, retained most of their activity, and were under RLA control in a heterologous host. We identified SeAcs residues N- and C-terminal to the target lysine that when introduced into SlAcs, rendered the latter under RLA control. These results lend further support to the idea that Pat enzymes interact with extensive surfaces of their substrates. Finally, we suggest that acetylation of SlAcs depends on factors or conditions other than those present in our in vitro system. We also discuss possible explanations why SlAcs is not controlled by RLA as defined in other bacterial species.

  19. Peptide synthetase gene in Trichoderma virens.

    PubMed

    Wilhite, S E; Lumsden, R D; Straney, D C

    2001-11-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated N(delta)-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used.

  20. Peptide Synthetase Gene in Trichoderma virens

    PubMed Central

    Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

    2001-01-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated Nδ-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

  1. Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications.

    PubMed

    Kem, Michelle P; Butler, Alison

    2015-06-01

    Acyl peptidic siderophores are produced by a variety of bacteria and possess unique amphiphilic properties. Amphiphilic siderophores are generally produced in a suite where the iron(III)-binding headgroup remains constant while the fatty acid appendage varies by length and functionality. Acyl peptidic siderophores are commonly synthesized by non-ribosomal peptide synthetases; however, the method of peptide acylation during biosynthesis can vary between siderophores. Following biosynthesis, acyl siderophores can be further modified enzymatically to produce a more hydrophilic compound, which retains its ferric chelating abilities as demonstrated by pyoverdine from Pseudomonas aeruginosa and the marinobactins from certain Marinobacter species. Siderophore hydrophobicity can also be altered through photolysis of the ferric complex of certain β-hydroxyaspartic acid-containing acyl peptidic siderophores. PMID:25677460

  2. Monogalactosyldiacylglycerol biosynthesis by direct acyl transfer in Anabaena variabilis. [Anabaena variabilis

    SciTech Connect

    Chen, H.H.; Wickrema, A.; Jaworski, J.

    1987-05-01

    The authors previously reported the direct acylation of monogalactosyldiacylglycerol (MGDG) by an enzyme in the membranes of the cyanobacterium (Anabaena variabilis. The enzyme requires acyl-acyl carrier protein (acyl-ACP) as substrate, but had no other additional cofactor requirements. Palmitoyl-, stearoyl- and oleoyl-ACP were all effective substrates. The A. variabilis membranes also had a hydrolase activity which metabolized the acyl-ACP to yield free fatty acid and ACP. Possible mechanisms for the acylation reaction include either acyl exchange with existing MGDG or direct acyl transfer to a lyso-MGDG, with concomitant release of free ACP. The mechanism of this reaction has been resolved using a double labelled (/sup 14/C)acyl-(/sup 14/C)ACP substrate prepared with E. coli acyl-ACP synthetase. Following incubation with the enzyme, the unreacted (/sup 14/C)acyl-(/sup 14/C)ACP was isolated and the (/sup 14/C)acyl/(/sup 14/C)ACP ratio determined. Comparison of this ratio to that of the original substrate indicated no change and eliminated acyl exchange as a possible mechanism. Therefore, the direct acylation of lyso-MGDG is the proposed mechanism for this enzyme. The reaction is apparently specific for MGDG synthesis, as other glycolipids and phospholipids were not labelled during incubations.

  3. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase.

    PubMed

    Miklaszewska, Magdalena; Banaś, Antoni

    2016-08-01

    Wax esters are used in industry for production of lubricants, pharmaceuticals and cosmetics. The only natural source of wax esters is jojoba oil. A much wider variety of industrial wax esters-containing oils can be generated through genetic engineering. Biotechnological production of tailor-made wax esters requires, however, a detailed substrate specificity of fatty acyl-CoA reductases (FAR) and wax synthases (WS), the two enzymes involved in wax esters synthesis. In this study we have successfully characterized the substrate specificity of jojoba FAR and jojoba WS. The genes encoding both enzymes were expressed heterologously in Saccharomyces cerevisiae and the activity of tested enzymes was confirmed by in vivo studies and in vitro assays using microsomal preparations from transgenic yeast. Jojoba FAR exhibited the highest in vitro activity toward 18:0-CoA followed by 20:1-CoA and 22:1-CoA. The activity toward other 11 tested acyl-CoAs was low or undetectable as with 18:2-CoA and 18:3-CoA. In assays characterizing jojoba WS combinations of 17 fatty alcohols with 14 acyl-CoAs were tested. The enzyme displayed the highest activity toward 14:0-CoA and 16:0-CoA in combination with C16-C20 alcohols as well as toward C18 acyl-CoAs in combination with C12-C16 alcohols. 20:1-CoA was efficiently utilized in combination with most of the tested alcohols.

  4. Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents.

    PubMed

    Matarlo, Joe S; Evans, Christopher E; Sharma, Indrajeet; Lavaud, Lubens J; Ngo, Stephen C; Shek, Roger; Rajashankar, Kanagalaghatta R; French, Jarrod B; Tan, Derek S; Tonge, Peter J

    2015-10-27

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1), which has an IC50 value of ≤25 nM for Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in Staphylococcus aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ∼1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure-activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively charged keto acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future.

  5. Differences among Adult COAs and Adult Non-COAs on Levels of Self-Esteem, Depression, and Anxiety.

    ERIC Educational Resources Information Center

    Dodd, David T.; Roberts, Richard L.

    1994-01-01

    Examined self-esteem, depression, and anxiety among 60 adult children of alcoholics (COAs) and 143 adult non-COAs. Subjects completed Children of Alcoholics Screening Test, demographic questionnaire, Beck Depression Inventory, State-Trait Anxiety Inventory, and Coopersmith Self-Esteem Inventory. Found no significant differences between COAs and…

  6. Ligand binding to the ACBD6 protein regulates the acyl-CoA transferase reactions in membranes[S

    PubMed Central

    Soupene, Eric; Kuypers, Frans A.

    2015-01-01

    The binding determinants of the human acyl-CoA binding domain-containing protein (ACBD) 6 and its function in lipid renewal of membranes were investigated. ACBD6 binds acyl-CoAs of a chain length of 6 to 20 carbons. The stoichiometry of the association could not be fitted to a 1-to-1 model. Saturation of ACBD6 by C16:0-CoA required higher concentration than less abundant acyl-CoAs. In contrast to ACBD1 and ACBD3, ligand binding did not result in the dimerization of ACBD6. The presence of fatty acids affected the binding of C18:1-CoA to ACBD6, dependent on the length, the degree of unsaturation, and the stereoisomeric conformation of their aliphatic chain. ACBD1 and ACBD6 negatively affected the formation of phosphatidylcholine (PC) and phosphatidylethanolamine in the red blood cell membrane. The acylation rate of lysophosphatidylcholine into PC catalyzed by the red cell lysophosphatidylcholine-acyltransferase 1 protein was limited by the transfer of the acyl-CoA substrate from ACBD6 to the acyltransferase enzyme. These findings provide evidence that the binding properties of ACBD6 are adapted to prevent its constant saturation by the very abundant C16:0-CoA and protect membrane systems from the detergent nature of free acyl-CoAs by controlling their release to acyl-CoA-utilizing enzymes. PMID:26290611

  7. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  8. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  9. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Schnable, Patrick S.; Wen, Tsui-Jung

    2009-04-28

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.

  10. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung

    2004-07-20

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.sub..alpha. subunit of pPDH, the E1.sub..beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyurvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.sub..alpha. pPDH, E1.sub..beta. pPDH, E2 pPDH, mtPDH or ALDH.

  11. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung

    2005-09-13

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.

  12. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes.

    PubMed

    Stout, Jake M; Boubakir, Zakia; Ambrose, Stephen J; Purves, Randy W; Page, Jonathan E

    2012-08-01

    The psychoactive and analgesic cannabinoids (e.g. Δ(9) -tetrahydrocannabinol (THC)) in Cannabis sativa are formed from the short-chain fatty acyl-coenzyme A (CoA) precursor hexanoyl-CoA. Cannabinoids are synthesized in glandular trichomes present mainly on female flowers. We quantified hexanoyl-CoA using LC-MS/MS and found levels of 15.5 pmol g(-1) fresh weight in female hemp flowers with lower amounts in leaves, stems and roots. This pattern parallels the accumulation of the end-product cannabinoid, cannabidiolic acid (CBDA). To search for the acyl-activating enzyme (AAE) that synthesizes hexanoyl-CoA from hexanoate, we analyzed the transcriptome of isolated glandular trichomes. We identified 11 unigenes that encoded putative AAEs including CsAAE1, which shows high transcript abundance in glandular trichomes. In vitro assays showed that recombinant CsAAE1 activates hexanoate and other short- and medium-chained fatty acids. This activity and the trichome-specific expression of CsAAE1 suggest that it is the hexanoyl-CoA synthetase that supplies the cannabinoid pathway. CsAAE3 encodes a peroxisomal enzyme that activates a variety of fatty acid substrates including hexanoate. Although phylogenetic analysis showed that CsAAE1 groups with peroxisomal AAEs, it lacked a peroxisome targeting sequence 1 (PTS1) and localized to the cytoplasm. We suggest that CsAAE1 may have been recruited to the cannabinoid pathway through the loss of its PTS1, thereby redirecting it to the cytoplasm. To probe the origin of hexanoate, we analyzed the trichome expressed sequence tag (EST) dataset for enzymes of fatty acid metabolism. The high abundance of transcripts that encode desaturases and a lipoxygenase suggests that hexanoate may be formed through a pathway that involves the oxygenation and breakdown of unsaturated fatty acids.

  13. Structural basis for the binding of succinate to succinyl-CoA synthetase.

    PubMed

    Huang, Ji; Fraser, Marie E

    2016-08-01

    Succinyl-CoA synthetase catalyzes the only step in the citric acid cycle that provides substrate-level phosphorylation. Although the binding sites for the substrates CoA, phosphate, and the nucleotides ADP and ATP or GDP and GTP have been identified, the binding site for succinate has not. To determine this binding site, pig GTP-specific succinyl-CoA synthetase was crystallized in the presence of succinate, magnesium ions and CoA, and the structure of the complex was determined by X-ray crystallography to 2.2 Å resolution. Succinate binds in the carboxy-terminal domain of the β-subunit. The succinate-binding site is near both the active-site histidine residue that is phosphorylated in the reaction and the free thiol of CoA. The carboxy-terminal domain rearranges when succinate binds, burying this active site. However, succinate is not in position for transfer of the phosphoryl group from phosphohistidine. Here, it is proposed that when the active-site histidine residue has been phosphorylated by GTP, the phosphohistidine displaces phosphate and triggers the movement of the carboxylate of succinate into position to be phosphorylated. The structure shows why succinyl-CoA synthetase is specific for succinate and does not react appreciably with citrate nor with the other C4-dicarboxylic acids of the citric acid cycle, fumarate and oxaloacetate, but shows some activity with L-malate.

  14. Structural basis for the binding of succinate to succinyl-CoA synthetase.

    PubMed

    Huang, Ji; Fraser, Marie E

    2016-08-01

    Succinyl-CoA synthetase catalyzes the only step in the citric acid cycle that provides substrate-level phosphorylation. Although the binding sites for the substrates CoA, phosphate, and the nucleotides ADP and ATP or GDP and GTP have been identified, the binding site for succinate has not. To determine this binding site, pig GTP-specific succinyl-CoA synthetase was crystallized in the presence of succinate, magnesium ions and CoA, and the structure of the complex was determined by X-ray crystallography to 2.2 Å resolution. Succinate binds in the carboxy-terminal domain of the β-subunit. The succinate-binding site is near both the active-site histidine residue that is phosphorylated in the reaction and the free thiol of CoA. The carboxy-terminal domain rearranges when succinate binds, burying this active site. However, succinate is not in position for transfer of the phosphoryl group from phosphohistidine. Here, it is proposed that when the active-site histidine residue has been phosphorylated by GTP, the phosphohistidine displaces phosphate and triggers the movement of the carboxylate of succinate into position to be phosphorylated. The structure shows why succinyl-CoA synthetase is specific for succinate and does not react appreciably with citrate nor with the other C4-dicarboxylic acids of the citric acid cycle, fumarate and oxaloacetate, but shows some activity with L-malate. PMID:27487822

  15. The ɛ-Amino Group of Protein Lysine Residues Is Highly Susceptible to Nonenzymatic Acylation by Several Physiological Acyl-CoA Thioesters.

    PubMed

    Simic, Zeljko; Weiwad, Matthias; Schierhorn, Angelika; Steegborn, Clemens; Schutkowski, Mike

    2015-11-01

    Mitochondrial enzymes implicated in the pathophysiology of diabetes, cancer, and metabolic syndrome are highly regulated by acetylation. However, mitochondrial acetyltransferases have not been identified. Here, we show that acetylation and also other acylations are spontaneous processes that depend on pH value, acyl-CoA concentration and the chemical nature of the acyl residue. In the case of a peptide derived from carbamoyl phosphate synthetase 1, the rates of succinylation and glutarylation were up to 150 times than for acetylation. These results were confirmed by using the protein substrate cyclophilin A (CypA). Deacylation experiments revealed that SIRT3 exhibits deacetylase activity but is not able to remove any of the succinyl groups from CypA, whereas SIRT5 is an effective protein desuccinylase. Thus, the acylation landscape on lysine residues might largely depend on the enzymatic activity of specific sirtuins, and the availability and reactivity of acyl-CoA compounds. PMID:26382620

  16. Possible Role of Different Yeast and Plant Lysophospholipid:Acyl-CoA Acyltransferases (LPLATs) in Acyl Remodelling of Phospholipids.

    PubMed

    Jasieniecka-Gazarkiewicz, Katarzyna; Demski, Kamil; Lager, Ida; Stymne, Sten; Banaś, Antoni

    2016-01-01

    Recent results have suggested that plant lysophosphatidylcholine:acyl-coenzyme A acyltransferases (LPCATs) can operate in reverse in vivo and thereby catalyse an acyl exchange between the acyl-coenzyme A (CoA) pool and the phosphatidylcholine. We have investigated the abilities of Arabidopsis AtLPCAT2, Arabidopsis lysophosphatidylethanolamine acyltransferase (LPEAT2), S. cerevisiae lysophospholipid acyltransferase (Ale1) and S. cerevisiae lysophosphatidic acid acyltransferase (SLC1) to acylate lysoPtdCho, lysoPtdEtn and lysoPtdOH and act reversibly on the products of the acylation; the PtdCho, PtdEtn and PtdOH. The tested LPLATs were expressed in an S. cervisiae ale1 strain and enzyme activities were assessed in assays using microsomal preparations of the different transformants. The results show that, despite high activity towards lysoPtdCho, lysoPtdEtn and lysoPtdOH by the ALE1, its capacities to operate reversibly on the products of the acylation were very low. Slc1 readily acylated lysoPtdOH, lysoPtdCho and lysoPtdEtn but showed no reversibility towards PtdCho, very little reversibility towards PtdEtn and very high reversibility towards PtdOH. LPEAT2 showed the highest levels of reversibility towards PtdCho and PtdEtn of all LPLATs tested but low ability to operate reversibly on PtdOH. AtLPCAT2 showed good reversible activity towards PtdCho and PtdEtn and very low reversibility towards PtdOH. Thus, it appears that some of the LPLATs have developed properties that, to a much higher degree than other LPLATs, promote the reverse reaction during the same assay conditions and with the same phospholipid. The results also show that the capacity of reversibility can be specific for a particular phospholipid, albeit the lysophospholipid derivatives of other phospholipids serve as good acyl acceptors for the forward reaction of the enzyme. PMID:26643989

  17. Identification of pantoate kinase and phosphopantothenate synthetase from Methanospirillum hungatei.

    PubMed

    Katoh, Hiroki; Tamaki, Hideyuki; Tokutake, Yuka; Hanada, Satoshi; Chohnan, Shigeru

    2013-04-01

    Pantothenate synthetase (PanC) and pantothenate kinase which function in the canonical coenzyme A (CoA) biosynthetic pathway cannot be found in most archaea. COG1829 and COG1701 intrinsic to archaea were proposed as the candidate proteins for producing 4'-phosphopantothenate instead, and the COG1701 protein from Methanosarcina mazei was assigned as PanC. Meanwhile, the Thermococcus kodakarensis COG1829 and COG1701 proteins were biochemically identified as novel enzymes, i.e., pantoate kinase (PoK) and phosphopantothenate synthetase (PPS). In this study, the functions of Mhun_0831 (COG1829) and Mhun_0832 (COG1701) from Methanospirillum hungatei were identified, and the recombinant enzymes were partially characterized. Plasmids simultaneously possessing the two genes encoding Mhun_0831 and Mhun_0832 complemented the poor growth of the temperature-sensitive Escherichia coli pantothenate kinase mutant ts9. The recombinant Mhun_0831 and Mhun_0832 expressed in E. coli cells exhibited PoK and PPS activities, respectively, being in accord with the functions of T. kodakarensis proteins. The PoK activity was most active at pH 8.5 and 40°C, and accepted ATP and UTP as a phosphate donor. Although CoA did not affect the PoK activity, the end product considerably accelerated the PPS activity. The homologs of both proteins are widely conserved in most archaeal genomes. Taken together, our findings indicate that archaea can synthesize CoA through the unique pathway involving PoK and PPS, in addition to the canonical one that the order Thermoplasmatales employs.

  18. Kinetically and Crystallographically Guided Mutations of a Benzoate CoA Ligase (BadA) Elucidate Mechanism and Expand Substrate Permissivity.

    PubMed

    Thornburg, Chelsea K; Wortas-Strom, Susan; Nosrati, Meisam; Geiger, James H; Walker, Kevin D

    2015-10-13

    A benzoate CoA ligase (BadA), isolated from the bacterium Rhodopseudomonas palustris, catalyzes the conversion of benzoate to benzoyl CoA on the catabolic pathway of aromatic carboxylic acids. Herein, apparent Michaelis constants K(app)cat and K(app)M were determined for an expanded array of 31 substrates chosen to systematically probe the active site architecture of the enzyme and provide a baseline for expansion of wild-type substrate specificity. Acyl CoA products were observed for 25 of the 31 substrates; in general, BadA converted ortho-substituted substrates better than the corresponding meta and para regioisomers, and the turnover number was more affected by steric rather than electronic effects. The kinetic data are interpreted in relation to six crystal structures of BadA in complex with several substrates and a benzoyl-AMP reaction intermediate. In contrast to other known natural substrate-bound benzoate ligase structures, all substrate-bound BadA structures adopted the thiolation conformation instead of the adenylation conformation. We also observed all the aryl carboxylates to be uniquely oriented within the active site, relative to other structures. Together, the kinetics and structural data suggested a mechanism that involves substrate binding in the thiolation conformation, followed by substrate rotation to an active orientation upon the transition to the adenylation conformation. On the basis of this hypothesis and the structural data, sterically demanding active site residues were mutated, and the substrate specificity was expanded substantially versus that of BadA. Novel activities were seen for substrates with larger substituents, including phenyl acetate. Additionally, the mutant Lys427Ala identified this nonconserved residue as essential for the thiolation step of BadA, but not adenylation. These variously acylated CoAs can serve as novel substrates of acyl CoA-dependent acyltransferases in coupled enzyme assays to produce analogues of

  19. Oxidative acylation using thioacids

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.

    1997-01-01

    Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.

  20. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  1. Genetics Home Reference: succinyl-CoA:3-ketoacid CoA transferase deficiency

    MedlinePlus

    ... CoA:3-ketoacid CoA transferase deficiency succinyl-CoA:3-ketoacid CoA transferase deficiency Enable Javascript to view ... PDF Open All Close All Description Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is an inherited ...

  2. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    PubMed Central

    Tuck, Laura R.; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D.; Campopiano, Dominic J.; Clarke, David J.; Marles-Wright, Jon

    2016-01-01

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032

  3. Long chain acyl-CoA synthetases and other acyl activating enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper synthesis and breakdown of molecules containing carboxylic acids is a vital part of metabolism in all living organisms. Given the relatively inert chemical nature of many carboxylic acids, activation is a necessary step prior to use in the various anabolic and catabolic pathways that utilize...

  4. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    PubMed

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.

  5. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution

    PubMed Central

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter

    2014-01-01

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  6. Mammalian acyl-CoA:lysophosphatidylcholine acyltransferase enzymes.

    PubMed

    Soupene, Eric; Fyrst, Henrik; Kuypers, Frans A

    2008-01-01

    The mammalian RBC lacks de novo lipid synthesis but maintains its membrane composition by rapid turnover of acyl moieties at the sn-2 position of phospholipids. Plasma-derived fatty acids are esterified to acyl-CoA by acyl-CoA synthetases and transferred to lysophospholipids by acyl-CoA:lysophospholipid acyltransferases. We report the characterization of three lysophosphatidylcholine (lysoPC) acyltransferases (LPCATs), products of the AYTL1, -2, and -3 genes. These proteins are three members of a LPCAT family, of which all three genes are expressed in an erythroleukemic cell line. Aytl2 mRNA was detected in mouse reticulocytes, and the presence of the product of the human ortholog was confirmed in adult human RBCs. The three murine Aytl proteins generated phosphatidylcholine from long-chain acyl-CoA and lysoPC when expressed in Escherichia coli membranes. Spliced variants of Aytl1, affecting a conserved catalytic motif, were identified. Calcium and magnesium modulated LPCAT activity of both Aytl1 and -2 proteins that exhibit EF-hand motifs at the C terminus. Characterization of the product of the Aytl2 gene as the phosphatidylcholine reacylating enzyme in RBCs represents the identification of a plasma membrane lysophospholipid acyltransferase and establishes the function of a LPCAT protein.

  7. Characterization of an acyl-coenzyme A binding protein predominantly expressed in human primitive progenitor cells*s⃞

    PubMed Central

    Soupene, Eric; Serikov, Vladimir; Kuypers, Frans A.

    2008-01-01

    Human acyl-coenzyme A binding domain-containing member 6 (ACBD6) is a modular protein that carries an acyl-CoA binding domain at its N terminus and two ankyrin motifs at its C terminus. ACBD6 binds long-chain acyl-CoAs with a strong preference for unsaturated, C18:1-CoA and C20:4-CoA, over saturated, C16:0-CoA, acyl species. Deletion of the C terminus, which is not conserved among the members of this family, did not affect the binding capacity or the substrate specificity of the protein. ACBD6 is not a ubiquitous protein, and its expression is restricted to tissues and progenitor cells with functions in blood and vessel development. ACBD6 was detected in bone marrow, spleen, placenta, cord blood, circulating CD34+ progenitors, and embryonic-like stem cells derived from placenta. In placenta, the protein was only detected in CD34+ progenitor cells present in blood and in CD31+ endothelial cells surrounding the blood vessels. These cells were also positive for the marker CD133, and they probably constitute hemangiogenic stem cells, precursors of both blood and vessels. We propose that human ACBD6 represents a cellular marker for primitive progenitor cells with functions in hematopoiesis and vascular endothelium development. PMID:18268358

  8. The presence of acyl-CoA hydrolase in rat brown-adipose-tissue peroxisomes.

    PubMed

    Alexson, S E; Osmundsen, H; Berge, R K

    1989-08-15

    The subcellular distribution of acyl-CoA hydrolase was studied in rat brown adipose tissue, with special emphasis on possible peroxisomal localization. Subcellular fractionation by sucrose-density-gradient centrifugation, followed by measurement of short-chain (propionyl-CoA) acyl-CoA hydrolase in the presence of NADH, resulted in two peaks of activity in the gradient: one peak corresponded to the distribution of cytochrome oxidase (mitochondrial marker enzyme), and another peak of activity coincided with the peroxisomal marker enzyme catalase. The distribution of the NADH-inhibited short-chain hydrolase activity fully resembled that of cytochrome oxidase. The substrate-specificity curve of the peroxisomal acyl-CoA hydrolase activity indicated the presence of a single enzyme exhibiting a broad substrate specificity, with maximal activity towards fatty acids with chain lengths of 3-12 carbon atoms. The mitochondrial acyl-CoA hydrolase substrate specificity, in contrast, indicated the presence of at least two acyl-CoA hydrolases (of short- and medium-chain-length specificity). The peroxisomal acyl-CoA hydrolase activity was inhibited by CoA at low (microM) concentrations and by ATP at high concentrations (greater than 0.8 mM). In contrast with the mitochondrial short-chain hydrolase, the peroxisomal acyl-CoA hydrolase activity was not inhibited by NADH. PMID:2573347

  9. Fatty acylation of proteins: The long and the short of it.

    PubMed

    Resh, Marilyn D

    2016-07-01

    Long, short and medium chain fatty acids are covalently attached to hundreds of proteins. Each fatty acid confers distinct biochemical properties, enabling fatty acylation to regulate intracellular trafficking, subcellular localization, protein-protein and protein-lipid interactions. Myristate and palmitate represent the most common fatty acid modifying groups. New insights into how fatty acylation reactions are catalyzed, and how fatty acylation regulates protein structure and function continue to emerge. Myristate is typically linked to an N-terminal glycine, but recent studies reveal that lysines can also be myristoylated. Enzymes that remove N-terminal myristoyl-glycine or myristate from lysines have now been identified. DHHC proteins catalyze S-palmitoylation, but the mechanisms that regulate substrate recognition by individual DHHC family members remain to be determined. New studies continue to reveal thioesterases that remove palmitate from S-acylated proteins. Another area of rapid expansion is fatty acylation of the secreted proteins hedgehog, Wnt and Ghrelin, by Hhat, Porcupine and GOAT, respectively. Understanding how these membrane bound O-acyl transferases recognize their protein and fatty acyl CoA substrates is an active area of investigation, and is punctuated by the finding that these enzymes are potential drug targets in human diseases. PMID:27233110

  10. A Liver-Specific Defect of Acyl-CoA Degradation Produces Hyperammonemia, Hypoglycemia and a Distinct Hepatic Acyl-CoA Pattern

    PubMed Central

    Gauthier, Nicolas; Wu, Jiang Wei; Wang, Shu Pei; Allard, Pierre; Mamer, Orval A.; Sweetman, Lawrence; Moser, Ann B.; Kratz, Lisa; Alvarez, Fernando; Robitaille, Yves; Lépine, François; Mitchell, Grant A.

    2013-01-01

    Most conditions detected by expanded newborn screening result from deficiency of one of the enzymes that degrade acyl-coenzyme A (CoA) esters in mitochondria. The role of acyl-CoAs in the pathophysiology of these disorders is poorly understood, in part because CoA esters are intracellular and samples are not generally available from human patients. We created a mouse model of one such condition, deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (HL), in liver (HLLKO mice). HL catalyses a reaction of ketone body synthesis and of leucine degradation. Chronic HL deficiency and acute crises each produced distinct abnormal liver acyl-CoA patterns, which would not be predictable from levels of urine organic acids and plasma acylcarnitines. In HLLKO hepatocytes, ketogenesis was undetectable. Carboxylation of [2-14C] pyruvate diminished following incubation of HLLKO hepatocytes with the leucine metabolite 2-ketoisocaproate (KIC). HLLKO mice also had suppression of the normal hyperglycemic response to a systemic pyruvate load, a measure of gluconeogenesis. Hyperammonemia and hypoglycemia, cardinal features of many inborn errors of acyl-CoA metabolism, occurred spontaneously in some HLLKO mice and were inducible by administering KIC. KIC loading also increased levels of several leucine-related acyl-CoAs and reduced acetyl-CoA levels. Ultrastructurally, hepatocyte mitochondria of KIC-treated HLLKO mice show marked swelling. KIC-induced hyperammonemia improved following administration of carglumate (N-carbamyl-L-glutamic acid), which substitutes for the product of an acetyl-CoA-dependent reaction essential for urea cycle function, demonstrating an acyl-CoA-related mechanism for this complication. PMID:23861731

  11. Structure of YciA from Haemophilus influenzae (HI0827), a Hexameric Broad Specificity Acyl-Coenzyme A Thioesterase

    SciTech Connect

    Willis, Mark A.; Zhuang, Zhihao; Song, Feng; Howard, Andrew; Dunaway-Mariano, Debra; Herzberg, Osnat

    2008-04-02

    The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated 'hypothetical protein' in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase 'hot dog' fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupied by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.

  12. Evolution of lanthipeptide synthetases

    PubMed Central

    Zhang, Qi; Yu, Yi; Vélasquez, Juan E.; van der Donk, Wilfred A.

    2012-01-01

    Lanthionine-containing peptides (lanthipeptides) are a family of ribosomally synthesized and posttranslationally modified peptides containing (methyl)lanthionine residues. Here we present a phylogenomic study of the four currently known classes of lanthipeptide synthetases (LanB and LanC for class I, LanM for class II, LanKC for class III, and LanL for class IV). Although they possess very similar cyclase domains, class II–IV synthetases have evolved independently, and LanB and LanC enzymes appear to not always have coevolved. LanM enzymes from various phyla that have three cysteines ligated to a zinc ion (as opposed to the more common Cys-Cys-His ligand set) cluster together. Most importantly, the phylogenomic data suggest that for some scaffolds, the ring topology of the final lanthipeptides may be determined in part by the sequence of the precursor peptides and not just by the biosynthetic enzymes. This notion was supported by studies with two chimeric peptides, suggesting that the nisin and prochlorosin biosynthetic enzymes can produce the correct ring topologies of epilancin 15X and lacticin 481, respectively. These results highlight the potential of lanthipeptide synthetases for bioengineering and combinatorial biosynthesis. Our study also demonstrates unexplored areas of sequence space that may be fruitful for genome mining. PMID:23071302

  13. Purification of isopenicillin N synthetase.

    PubMed Central

    Pang, C P; Chakravarti, B; Adlington, R M; Ting, H H; White, R L; Jayatilake, G S; Baldwin, J E; Abraham, E P

    1984-01-01

    Isopenicillin N synthetase was extracted from Cephalosporium acremonium and purified about 200-fold. The product showed one major protein band, coinciding with synthetase activity, when subjected to electrophoresis in polyacrylamide gel. An isopenicillin N synthetase from Penicillium chrysogenum was purified about 70-fold by similar procedures. The two enzymes resemble each other closely in their Mr, in their mobility on electrophoresis in polyacrylamide gel and in their requirement for Fe2+ and ascorbate for maximum activity. Preliminary experiments have shown that a similar isopenicillin N synthetase can be extracted from Streptomyces clavuligerus. PMID:6435606

  14. Purification and characterization of a novel pumpkin short-chain acyl-coenzyme A oxidase with structural similarity to acyl-coenzyme A dehydrogenases.

    PubMed

    De Bellis, L; Gonzali, S; Alpi, A; Hayashi, H; Hayashi, M; Nishimura, M

    2000-05-01

    A novel pumpkin (Cucurbita pepo) short-chain acyl-coenzyme A (CoA) oxidase (ACOX) was purified to homogeneity by hydrophobic-interaction, hydroxyapatite, affinity, and anion-exchange chromatography. The purified enzyme is a tetrameric protein, consisting of apparently identical 47-kD subunits. The protein structure of this oxidase differs from other plant and mammalian ACOXs, but is similar to the protein structure of mammalian mitochondrial acyl-CoA dehydrogenase (ACDH) and the recently identified plant mitochondrial ACDH. Subcellular organelle separation by sucrose density gradient centrifugation revealed that the enzyme is localized in glyoxysomes, whereas no immunoreactive bands of similar molecular weight were detected in mitochondrial fractions. The enzyme selectively catalyzes the oxidation of CoA esters of fatty acids with 4 to 10 carbon atoms, and exhibits the highest activity on C-6 fatty acids. Apparently, the enzyme has no activity on CoA esters of branched-chain or dicarboxylic fatty acids. The enzyme is slightly inhibited by high concentrations of substrate and it is not inhibited by Triton X-100 at concentrations up to 0.5% (v/v). The characteristics of this novel ACOX enzyme are discussed in relation to other ACOXs and ACDHs. PMID:10806249

  15. Coagglutination (COA) test for the rapid diagnosis of cryptococcal meningitis.

    PubMed

    Koshi, G; Anandi, V; Shastry, J C; Cheriyan, A M; Abraham, J

    1989-07-01

    Cryptococcus coagglutination (COA) test reagent was prepared locally and showed no cross reactions with different species of bacteria or yeasts or with 75 control sera including 25 that gave positive results for RA factor. We used the COA test to detect cryptococcus antigen in the CSF and we could confirm the diagnosis of 11 out of 115 suspected cases of fungal meningitis; the titre varied from 4 to 128. A four-fold rise in titre confirmed the diagnostic value and a steady fall in titre in three patients on therapy indicated the prognostic value of the test. The earliest confirmation was in a renal transplant patient on the eighth day after onset of symptoms. The COA test was negative with the CSF of 118 patients with chronic meningitis. Cryptococcal colony forming units (cfu) in CSF varied from 100 to greater than 100,000/ml and correlated well with microscopy and with the COA antigen titre in CSF. Four out of the 11 patients who had cryptococcaemia, had 50,000-100,000 cfu/ml in the CSF. Cryptococcus antigen was detected by COA in the serum of all 11 patients, even in those with only 100 cfu/ml in CSF. In the three post-renal transplant patients, who were being monitored regularly, the diagnosis was made early and all three recovered on antifungal therapy with no relapse to date (1-2 years). All the others, including the two primary CNS infections, succumbed to the disease because they presented late for diagnosis and therapy. The cryptococcus COA test is a simple and specific test that can be used as a rapid test to confirm early diagnosis and permit prompt therapy, which should improve the prognosis in CNS and other forms of systemic cryptococcosis. Moreover, it is reproducible and cost-effective, particularly in countries where the latex and other expensive test reagents are not generally available. PMID:2664182

  16. Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development

    PubMed Central

    Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Chen, Qin-Fang; Sooriyaarachchi, Sanjeewani; Mowbray, Sherry L.; Napier, Johnathan A.; Tanner, Julian A.; Chye, Mee-Len

    2014-01-01

    Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein–lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isothermal titration calorimetry) in combination with transgenic Arabidopsis lines were used to investigate the roles of these three ACBPs from Arabidopsis thaliana. The dissociation constants, stoichiometry and enthalpy change of AtACBP interactions with various acyl-CoA esters were determined using ITC. Strong binding of recombinant (r) AtACBP6 with long-chain acyl-CoA (C16- to C18-CoA) esters was observed with dissociation constants in the nanomolar range. However, the affinity of rAtACBP4 and rAtACBP5 to these acyl-CoA esters was much weaker (dissociation constants in the micromolar range), suggesting that they interact with acyl-CoA esters differently from rAtACBP6. When transgenic Arabidopsis expressing AtACBP6pro::GUS was generated, strong GUS (β-glucuronidase) expression in cotyledonary-staged embryos and seedlings prompted us to measure the acyl-CoA contents of the acbp6 mutant. This mutant accumulated higher levels of C18:1-CoA and C18:1- and C18:2-CoAs in cotyledonary-staged embryos and seedlings, respectively, in comparison with the wild type. The acbp4acbp5acbp6 mutant showed the lightest seed weight and highest sensitivity to abscisic acid during germination, suggesting their physiological functions in seeds. PMID:25423293

  17. Measurement of tissue acyl-CoAs using flow-injection tandem mass spectrometry: acyl-CoA profiles in short-chain fatty acid oxidation defects

    PubMed Central

    Palladino, Andrew A.; Chen, Jie; Kallish, Staci; Stanley, Charles A.; Bennett, Michael J.

    2013-01-01

    The primary accumulating metabolites in fatty acid oxidation defects are intramitochondrial acyl-CoAs. Typically, secondary metabolites such as acylcarnitines, acylglycines and dicarboxylic acids are measured to study these disorders. Methods have not been adapted for tissue acyl-CoA measurement in defects with primarily acyl-CoA accumulation. Our objective was to develop a method to measure fatty acyl-CoA species that are present in tissues of mice with fatty acid oxidation defects using flow-injection tandem mass spectrometry. Following the addition of internal standards of [13C2] acetyl-CoA, [13C8] octanoyl-CoA, and [C17] heptadecanoic CoA, acyl-CoA’s are extracted from tissue samples and are injected directly into the mass spectrometer. Data is acquired using a 506.9 neutral loss scan and multiple reaction-monitoring (MRM). This method can identify all long, medium and short-chain acyl-CoA species in wild type mouse liver including predicted 3-hydroxyacyl-CoA species. We validated the method using liver of the short-chain-acyl-CoA dehydrogenase (SCAD) knock-out mice. As expected, there is a significant increase in [C4] butyryl-CoA species in the SCAD −/− mouse liver compared to wild type. We then tested the assay in liver from the short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) deficient mice to determine the profile of acyl-CoA accumulation in this less predictable model. There was more modest accumulation of medium chain species including 3-hydroxyacyl-CoA’s consistent with the known chain-length specificity of the SCHAD enzyme. PMID:23117082

  18. Production of stable isotope-labeled acyl-coenzyme A thioesters by yeast stable isotope labeling by essential nutrients in cell culture.

    PubMed

    Snyder, Nathaniel W; Tombline, Gregory; Worth, Andrew J; Parry, Robert C; Silvers, Jacob A; Gillespie, Kevin P; Basu, Sankha S; Millen, Jonathan; Goldfarb, David S; Blair, Ian A

    2015-04-01

    Acyl-coenzyme A (CoA) thioesters are key metabolites in numerous anabolic and catabolic pathways, including fatty acid biosynthesis and β-oxidation, the Krebs cycle, and cholesterol and isoprenoid biosynthesis. Stable isotope dilution-based methodology is the "gold standard" for quantitative analyses by mass spectrometry. However, chemical synthesis of families of stable isotope-labeled metabolites such as acyl-CoA thioesters is impractical. Previously, we biosynthetically generated a library of stable isotope internal standard analogs of acyl-CoA thioesters by exploiting the essential requirement in mammals and insects for pantothenic acid (vitamin B5) as a metabolic precursor for the CoA backbone. By replacing pantothenic acid in the cell medium with commercially available [(13)C3(15)N1]-pantothenic acid, mammalian cells exclusively incorporated [(13)C3(15)N1]-pantothenate into the biosynthesis of acyl-CoA and acyl-CoA thioesters. We have now developed a much more efficient method for generating stable isotope-labeled CoA and acyl-CoAs from [(13)C3(15)N1]-pantothenate using stable isotope labeling by essential nutrients in cell culture (SILEC) in Pan6-deficient yeast cells. Efficiency and consistency of labeling were also increased, likely due to the stringently defined and reproducible conditions used for yeast culture. The yeast SILEC method greatly enhances the ease of use and accessibility of labeled CoA thioesters and also provides proof of concept for generating other labeled metabolites in yeast mutants.

  19. Ralstonia solanacearum RSp0194 Encodes a Novel 3-Keto-Acyl Carrier Protein Synthase III.

    PubMed

    Mao, Ya-Hui; Ma, Jin-Cheng; Li, Feng; Hu, Zhe; Wang, Hai-Hong

    2015-01-01

    Fatty acid synthesis (FAS), a primary metabolic pathway, is essential for survival of bacteria. Ralstonia solanacearum, a β-proteobacteria member, causes a bacterial wilt affecting more than 200 plant species, including many economically important plants. However, thus far, the fatty acid biosynthesis pathway of R. solanacearum has not been well studied. In this study, we characterized two forms of 3-keto-ACP synthase III, RsFabH and RsFabW, in R. solanacearum. RsFabH, the homologue of Escherichia coli FabH, encoded by the chromosomal RSc1050 gene, catalyzes the condensation of acetyl-CoA with malonyl-ACP in the initiation steps of fatty acid biosynthesis in vitro. The RsfabH mutant lost de novo fatty acid synthetic ability, and grows in medium containing free fatty acids. RsFabW, a homologue of Pseudomonas aeruginosa PA3286, encoded by a megaplasmid gene, RSp0194, condenses acyl-CoA (C2-CoA to C10-CoA) with malonyl-ACP to produce 3-keto-acyl-ACP in vitro. Although the RsfabW mutant was viable, RsfabW was responsible for RsfabH mutant growth on medium containing free fatty acids. Our results also showed that RsFabW could condense acyl-ACP (C4-ACP to C8-ACP) with malonyl-ACP, to produce 3-keto-acyl-ACP in vitro, which implies that RsFabW plays a special role in fatty acid synthesis of R. solanacearum. All of these data confirm that R. solanacearum not only utilizes acetyl-CoA, but also, utilizes medium-chain acyl-CoAs or acyl-ACPs as primers to initiate fatty acid synthesis.

  20. [The protective effect of pantothenic acid derivatives and changes in the system of acetyl CoA metabolism in acute ethanol poisoning].

    PubMed

    Moiseenok, A G; Dorofeev, B F; Omel'ianchik, S N

    1988-01-01

    Calcium pantothenate (CaP), calcium 4'-phosphopantothenate (CaPP), pantethine, panthenol, sulfopantetheine and CoA decrease acute toxicity of acetaldehyde in mice. All studied compounds diminish duration of the narcotic action of ethanol--ET (3.5 g/kg intraperitoneally) in mice and rats. In the latter this effect is realized at the expense of "long sleeping" and "middle sleeping" animals. CaP (150 mg/kg subcutaneously) and CaPP (100 mg/kg subcutaneously) prevent hypothermia and a decrease of oxygen consumption in rats induced by ET administration. Combined administration of ET, CaP and CaPP leads to a characteristic increase of acid-soluble CoA fractions in the rat liver and a relative decrease of acetyl CoA synthetase and N-acetyltransferase reactions. The antitoxic effect of preparations of pantothenic acid is not mediated by CoA-dependent reactions of detoxication, but most probably is due to intensification of ET oxidation and perhaps to its elimination from the organism. PMID:2905277

  1. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  2. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  3. Acyl-lipid metabolism.

    PubMed

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X; Arondel, Vincent; Bates, Philip D; Baud, Sébastien; Bird, David; Debono, Allan; Durrett, Timothy P; Franke, Rochus B; Graham, Ian A; Katayama, Kenta; Kelly, Amélie A; Larson, Tony; Markham, Jonathan E; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  4. Global Hawk Pacific (GloPac) COA and Mission Coordination

    NASA Technical Reports Server (NTRS)

    Dillon, Mark; Hall, Philip

    2010-01-01

    This slide presentation reviews the science objectives of the Global Hawk unmanned aircraft system (UAS) in the Pacific region, shows examp le flight tracks, the satellite under-flight requirement, the flight planning, and the agencies coordination of the airspace required for the Certificate of Authorization (COA).

  5. Chlorsulfuron modifies biosynthesis of acyl Acid substituents of sucrose esters secreted by tobacco trichomes.

    PubMed

    Kandra, L; Wagner, G J

    1990-11-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  6. Chlorsulfuron Modifies Biosynthesis of Acyl Acid Substituents of Sucrose Esters Secreted by Tobacco Trichomes

    PubMed Central

    Kandra, Lili; Wagner, George J.

    1990-01-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  7. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria.

    PubMed

    Yao, Jiangwei; Bruhn, David F; Frank, Matthew W; Lee, Richard E; Rock, Charles O

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria.

  8. Acyl Carrier Protein Synthases from Gram-Negative, Gram-Positive, and Atypical Bacterial Species: Biochemical and Structural Properties and Physiological Implications

    PubMed Central

    McAllister, Kelly A.; Peery, Robert B.; Zhao, Genshi

    2006-01-01

    Acyl carrier protein (ACP) synthase (AcpS) catalyzes the transfer of the 4′-phosphopantetheine moiety from coenzyme A (CoA) onto a serine residue of apo-ACP, resulting in the conversion of apo-ACP to the functional holo-ACP. The holo form of bacterial ACP plays an essential role in mediating the transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and phospholipids. AcpS is therefore an attractive target for therapeutic intervention. In this study, we have purified and characterized the AcpS enzymes from Escherichia coli, Streptococcus pneumoniae, and Mycoplasma pneumoniae, which exemplify gram-negative, gram-positive, and atypical bacteria, respectively. Our gel filtration column chromatography and cross-linking studies demonstrate that the AcpS enzyme from M. pneumoniae, like E. coli enzyme, exhibits a homodimeric structure, but the enzyme from S. pneumoniae exhibits a trimeric structure. Our biochemical studies show that the AcpS enzymes from M. pneumoniae and S. pneumoniae can utilize both short- and long-chain acyl CoA derivatives but prefer long-chain CoA derivatives as substrates. On the other hand, the AcpS enzyme from E. coli can utilize short-chain CoA derivatives but not the long-chain CoA derivatives tested. Finally, our biochemical studies show that M. pneumoniae AcpS is kinetically a very sluggish enzyme compared with those from E. coli and S. pneumoniae. Together, the results of these studies show that the AcpS enzymes from different bacterial species exhibit different native structures and substrate specificities with regard to the utilization of CoA and its derivatives. These findings suggest that AcpS from different microorganisms plays a different role in cellular physiology. PMID:16788183

  9. Acyl-acyl carrier protein: Lysomonogalactosyldiacylglycerol acyl transferase in Anabaena variabilis

    SciTech Connect

    Chen, H.H.

    1989-01-01

    Monogalactosyldiacylglycerol was produced when membranes isolated from the cyanobacterium, Anabaena variabilis, and washed free of soluble endogenous constituents, were incubated with ({sup 14}C)acyl-acyl carrier protein. This enzymatic synthesis of monogalactosyldiacylglycerol localized in the membranes was not dependent on any added cofactors, such as ATP, coenzyme A, and dithiothreitol. Palmitoyl-, stearoyl-, and oleoyl-acyl carrier proteins were approximately equally active as substrates with Km of 0.37, 0.36, and 0.23 {mu}M, respectively. The ({sup 14}C)acyl group was exclusively transferred to the sn-1 hydroxyl of the glycerol backbone of monogalactosyldiacylglycerol as demonstrated by hydrolysis of all incorporated acyl groups by the lipase from Rhizopus arrhizus delamar. Using a double labelled ({sup 14}C)acyl-({sup 14}C)acyl carrier protein, this enzyme catalyzed the direct transfer of the acyl group from acyl-acyl carrier protein to an endogenous lysomonogalactosyldiacylglycerol to form monogalactosyldiacylglycerol. The transfer reaction mechanism was also confirmed by the increased activity with the addition of the lysomonogalactosyldiacylglycerol suspension. A specific galactolipid acyl hydrolase activity was released into the soluble protein fraction when the membranes of Anabaena variabilis were treated with 2% Triton X-100. The positional specificity of this acyl hydrolase was demonstrated to be similar to that of Rhizopus lipase, i.e. only the acyl group at the sn-1 position was hydrolyzed. The acyl hydrolase which was also localized in the membrane fraction of Anabaena variabilis was presumably responsible for producing endogenous lysomonogalactosyldiacylglycerol used by the acyltransferase.

  10. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation

    PubMed Central

    Xue, Yan; Xiao, Shi; Kim, Juyoung; Lung, Shiu-Cheung; Chen, Liang; Tanner, Julian A.; Suh, Mi Chung; Chye, Mee-Len

    2014-01-01

    The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)–flame ionization detector (FID) and GC–mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs. PMID:25053648

  11. Inherited disorders of 3-methylcrotonyl CoA carboxylation.

    PubMed

    Leonard, J V; Seakins, J W; Bartlett, K; Hyde, J; Wilson, J; Clayton, B

    1981-01-01

    The clinical course of 4 patients who had reduced activities of 3-methylcrotonyl CoA carboxylase (also called 3-methylcrotonylglycinuria) is described. Two children presented with a metabolic acidosis, one in the neonatal period and the other with episodes of acidosis that started in the second year of life. In the other 2 children neurological symptoms were prominent, one having infantile spasms and the other developmental regression with a skin rash and alopecia. Three of the children responded well to oral biotin and dietary protein restriction but the fourth, despite a biochemical response to biotin, has a severe neurological handicap. The clinical presentation of inborn errors of 3-methylcrotonyl CoA carboxylase is variable. Metabolic acidosis may not be conspicuous and instead neurological features may predominate.

  12. Synthesis and magnetic properties of superparamagnetic CoAs nanostructures

    NASA Astrophysics Data System (ADS)

    Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.

    2015-03-01

    This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.

  13. Changes in acetyl CoA levels during the early embryonic development of Xenopus laevis.

    PubMed

    Tsuchiya, Yugo; Pham, Uyen; Hu, Wanzhou; Ohnuma, Shin-Ichi; Gout, Ivan

    2014-01-01

    Coenzyme A (CoA) is a ubiquitous and fundamental intracellular cofactor. CoA acts as a carrier of metabolically important carboxylic acids in the form of CoA thioesters and is an obligatory component of a multitude of catabolic and anabolic reactions. Acetyl CoA is a CoA thioester derived from catabolism of all major carbon fuels. This metabolite is at a metabolic crossroads, either being further metabolised as an energy source or used as a building block for biosynthesis of lipids and cholesterol. In addition, acetyl CoA serves as the acetyl donor in protein acetylation reactions, linking metabolism to protein post-translational modifications. Recent studies in yeast and cultured mammalian cells have suggested that the intracellular level of acetyl CoA may play a role in the regulation of cell growth, proliferation and apoptosis, by affecting protein acetylation reactions. Yet, how the levels of this metabolite change in vivo during the development of a vertebrate is not known. We measured levels of acetyl CoA, free CoA and total short chain CoA esters during the early embryonic development of Xenopus laevis using HPLC. Acetyl CoA and total short chain CoA esters start to increase around midblastula transition (MBT) and continue to increase through stages of gastrulation, neurulation and early organogenesis. Pre-MBT embryos contain more free CoA relative to acetyl CoA but there is a shift in the ratio of acetyl CoA to CoA after MBT, suggesting a metabolic transition that results in net accumulation of acetyl CoA. At the whole-embryo level, there is an apparent correlation between the levels of acetyl CoA and levels of acetylation of a number of proteins including histones H3 and H2B. This suggests the level of acetyl CoA may be a factor, which determines the degree of acetylation of these proteins, hence may play a role in the regulation of embryogenesis. PMID:24831956

  14. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    SciTech Connect

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  15. Characterization of a Bifunctional Archaeal Acyl Coenzyme A Carboxylase

    PubMed Central

    Chuakrut, Songkran; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2003-01-01

    Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an α4β4γ4 subunit structure. The optimum temperature for the enzyme was 60 to 70°C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent Km for acetyl-CoA was 0.17 ± 0.03 mM, with a Vmax of 43.3 ± 2.8 U mg−1, and the Km for propionyl-CoA was 0.10 ± 0.008 mM, with a Vmax of 40.8 ± 1.0 U mg−1. This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit. PMID:12533469

  16. The apparent coupling between synthesis and posttranslational modification of Escherichia coli acyl carrier protein is due to inhibition of amino acid biosynthesis.

    PubMed

    Keating, D H; Zhang, Y; Cronan, J E

    1996-05-01

    Acyl carrier protein (ACP) is modified on serine 36 by the covalent posttranslational attachment of 4'-phosphopantetheine from coenzyme A (CoA), and this modification is required for lipid biosynthesis. Jackowski and Rock (J. Biol. Chem 258:15186-15191, 1983) reported that upon depletion of the CoA pool by starvation for a CoA precursor, no accumulation of the unmodified form of ACP (apo-ACP) was detected. We report that this lack of apo-ACP accumulation results from decreased translation of the acpP mRNAs because of the limitation of the synthesis of glutamate and other amino acids made directly from tricarboxylic acid cycle intermediates.

  17. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    SciTech Connect

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.

  18. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE PAGES

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  19. Effects of long-chain fatty-acyl esters of coenzyme A and carnitine on cell-free rat heart preparations.

    PubMed

    Varela, A; Savino, E A

    1987-06-01

    The purpose of this study was to investigate the effects of fatty acyl CoA and carnitine esters on the glycolytic system of the rat heart. Using a respiring incubation mixture containing a whole-heart homogenate it was observed that oleoyl-CoA slowed down the glucose disappearance whereas lactate accumulation did not change. Experiments were also performed by means of an incubation mixture prepared with a soluble heart extract, considered to contain all glycolytic enzymes present in heart fibres. Palmitoyl-CoA or oleoyl-CoA as well as palmitoyl carnitine, added separately or together, were unable to alter the glucose disappearance and lactate accumulation in this mixture. These data suggest that long chain acyl-esters have not direct inhibitory actions on the heart glycolytic activity. However, CoA esters seem to exert indirect inhibitory effects which may be relevant to the myocardium under oxygen restriction situations.

  20. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation.

    PubMed

    Abo Alrob, Osama; Lopaschuk, Gary D

    2014-08-01

    CoA (coenzyme A) and its derivatives have a critical role in regulating cardiac energy metabolism. This includes a key role as a substrate and product in the energy metabolic pathways, as well as serving as an allosteric regulator of cardiac energy metabolism. In addition, the CoA ester malonyl-CoA has an important role in regulating fatty acid oxidation, secondary to inhibiting CPT (carnitine palmitoyltransferase) 1, a key enzyme involved in mitochondrial fatty acid uptake. Alterations in malonyl-CoA synthesis by ACC (acetyl-CoA carboxylase) and degradation by MCD (malonyl-CoA decarboxylase) are important contributors to the high cardiac fatty acid oxidation rates seen in ischaemic heart disease, heart failure, obesity and diabetes. Additional control of fatty acid oxidation may also occur at the level of acetyl-CoA involvement in acetylation of mitochondrial fatty acid β-oxidative enzymes. We find that acetylation of the fatty acid β-oxidative enzymes, LCAD (long-chain acyl-CoA dehydrogenase) and β-HAD (β-hydroxyacyl-CoA dehydrogenase) is associated with an increase in activity and fatty acid oxidation in heart from obese mice with heart failure. This is associated with decreased SIRT3 (sirtuin 3) activity, an important mitochondrial deacetylase. In support of this, cardiac SIRT3 deletion increases acetylation of LCAD and β-HAD, and increases cardiac fatty acid oxidation. Acetylation of MCD is also associated with increased activity, decreases malonyl-CoA levels and an increase in fatty acid oxidation. Combined, these data suggest that malonyl-CoA and acetyl-CoA have an important role in mediating the alterations in fatty acid oxidation seen in heart failure. PMID:25110000

  1. Acylation of Ferrocene: A Greener Approach

    ERIC Educational Resources Information Center

    Birdwhistell, Kurt R.; Nguyen, Andy; Ramos, Eric J.; Kobelja, Robert

    2008-01-01

    The acylation of ferrocene is a common reaction used in organic laboratories to demonstrate Friedel-Crafts acylation and the purification of compounds using column chromatography. This article describes an acylation of ferrocene experiment that is more eco-friendly than the conventional acylation experiment. The traditional experiment was modified…

  2. Acylation of Streptomyces type II polyketide synthase acyl carrier proteins.

    PubMed

    Crosby, J; Byrom, K J; Hitchman, T S; Cox, R J; Crump, M P; Findlow, I S; Bibb, M J; Simpson, T J

    1998-08-14

    Acyl derivatives of type II PKS ACPs are required for in vitro studies of polyketide biosynthesis. The presence of an exposed cysteine residue prevented specific chemical acylation of the phosphopantetheine thiol of the actinorhodin PKS holo ACP. Acylation studies were further complicated by intramolecular disulphide formation between cysteine 17 and the phosphopantetheine. The presence of this intramolecular disulphide was confirmed by tryptic digestion of the ACP followed by ESMS analysis of the fragments. An act Cys17Ser ACP was engineered by site-directed mutagenesis. S-Acyl adducts of act C17S, oxytetracycline and griseusin holo ACPs were rapidly formed by reaction with hexanoyl, 5-ketohexanoyl and protected acetoacetyl imidazolides. Comparisons with type 11 FAS ACPs were made.

  3. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves

    SciTech Connect

    Roughan, G.; Nishida, I. )

    1990-01-01

    Fatty acid synthesis from (1-14C)acetate by chloroplasts isolated from peas and amaranthus was linear for at least 15 min, whereas incorporation of the tracer into long-chain acyl-acyl carrier protein (ACP) did not increase after 2-3 min. When reactions were transferred to the dark after 3-5 min, long-chain acyl-ACPs lost about 90% of their radioactivity and total fatty acids retained all of theirs. Half-lives of the long-chain acyl-ACPs were estimated to be 10-15 s. Concentrations of palmitoyl-, stearoyl-, and oleoyl-ACP as indicated by equilibrium labeling during steady-state fatty acid synthesis, ranged from 0.6-1.1, 0.2-0.7, and 0.4-1.6 microM, respectively, for peas and from 1.6-1.9, 1.3-2.6, and 0.6-1.4 microM, respectively, for amaranthus. These values are based on a chloroplast volume of 47 microliters/mg chlorophyll and varied according to the mode of the incubation. A slow increase in activity of the fatty acid synthetase in safflower chloroplasts resulted in long-chain acyl-ACPs continuing to incorporate labeled acetate for 10 min. Upon re-illumination following a dark break, however, both fatty acid synthetase activity and acyl-ACP concentrations increased very rapidly. Palmitoyl-ACP was present at concentrations up to 2.5 microM in safflower chloroplasts, whereas those of stearoyl- and oleoyl-ACPs were in the lower ranges measured for peas. Acyl-ACPs were routinely separated from extracts of chloroplasts that had been synthesising long-chain fatty acids from labeled acetate by a minor modification of the method of Mancha et al. The results compared favorably with those obtained using alternative analytical methods such as adsorption to filter paper and partition chromatography on silicic acid columns.

  4. The Natural Mentors of Adolescent Children of Alcoholics (COAs): Implications for Preventive Practices.

    ERIC Educational Resources Information Center

    Cavell, Timothy A.; Meehan, Barbara T.; Heffer, Robert W.; Holladay, Janice J.

    2002-01-01

    Late adolescent children of alcoholics (COAs) were interviewed about their relationship with a natural mentor. Results showed that a typical mentor was a same-sex relative who had been responsible for initiating the mentor-like relationship. Differences in the reported adjustment of COAs with and without natural mentors are considered in light of…

  5. Production of a Brassica napus Low-Molecular Mass Acyl-Coenzyme A-Binding Protein in Arabidopsis Alters the Acyl-Coenzyme A Pool and Acyl Composition of Oil in Seeds1[C][W][OPEN

    PubMed Central

    Yurchenko, Olga; Singer, Stacy D.; Nykiforuk, Cory L.; Gidda, Satinder; Mullen, Robert T.; Moloney, Maurice M.; Weselake, Randall J.

    2014-01-01

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expression of a Brassica napus ACBP (BnACBP) complementary DNA in the developing seeds of Arabidopsis (Arabidopsis thaliana) resulted in increased levels of polyunsaturated FAs at the expense of eicosenoic acid (20:1cisΔ11) and saturated FAs in seed oil. In this study, we investigated whether alterations in the FA composition of seed oil at maturity were correlated with changes in the acyl-coenzyme A (CoA) pool in developing seeds of transgenic Arabidopsis expressing BnACBP. Our results indicated that both the acyl-CoA pool and seed oil of transgenic Arabidopsis lines expressing cytosolic BnACBP exhibited relative increases in linoleic acid (18:2cisΔ9,12; 17.9%–44.4% and 7%–13.2%, respectively) and decreases in 20:1cisΔ11 (38.7%–60.7% and 13.8%–16.3%, respectively). However, alterations in the FA composition of the acyl-CoA pool did not always correlate with those seen in the seed oil. In addition, we found that targeting of BnACBP to the endoplasmic reticulum resulted in FA compositional changes that were similar to those seen in lines expressing cytosolic BnACBP, with the most prominent exception being a relative reduction in α-linolenic acid (18:3cisΔ9,12,15) in both the acyl-CoA pool and seed oil of the former (48.4%–48.9% and 5.3%–10.4%, respectively). Overall, these data support the role of ACBP in acyl trafficking in developing seeds and validate its use as a biotechnological tool for modifying the FA composition of seed oil. PMID:24740000

  6. Use of sustainable chemistry to produce an acyl amino acid surfactant.

    PubMed

    Reznik, Gabriel O; Vishwanath, Prashanth; Pynn, Michelle A; Sitnik, Joy M; Todd, Jeffrey J; Wu, Jun; Jiang, Yan; Keenan, Brendan G; Castle, Andrew B; Haskell, Richard F; Smith, Temple F; Somasundaran, Ponisseril; Jarrell, Kevin A

    2010-05-01

    Surfactants find wide commercial use as foaming agents, emulsifiers, and dispersants. Currently, surfactants are produced from petroleum, or from seed oils such as palm or coconut oil. Due to concerns with CO(2) emissions and the need to protect rainforests, there is a growing necessity to manufacture these chemicals using sustainable resources In this report, we describe the engineering of a native nonribosomal peptide synthetase pathway (i.e., surfactin synthetase), to generate a Bacillus strain that synthesizes a highly water-soluble acyl amino acid surfactant, rather than the water insoluble lipopeptide surfactin. This novel product has a lower CMC and higher water solubility than myristoyl glutamate, a commercial surfactant. This surfactant is produced by fermentation of cellulosic carbohydrate as feedstock. This method of surfactant production provides an approach to sustainable manufacturing of new surfactants. PMID:20094712

  7. Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592.

    PubMed Central

    Yan, R T; Chen, J S

    1990-01-01

    Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay. Images PMID:2275527

  8. Adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate are synthesized by yeast acetyl coenzyme A synthetase.

    PubMed Central

    Guranowski, A; Günther Sillero, M A; Sillero, A

    1994-01-01

    Yeast (Saccharomyces cerevisiae) acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5'-tetraphosphate (P4A) and adenosine 5'-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4), with relative velocities of 7:1, respectively. Of 12 nucleotides tested as potential donors of nucleotidyl moiety, only ATP, adenosine-5'-O-[3-thiotriphosphate], and acetyl-AMP were substrates, with relative velocities of 100, 62, and 80, respectively. The Km values for ATP, P3, and acetyl-AMP were 0.16, 4.7, and 1.8 mM, respectively. The synthesis of p4A could proceed in the absence of exogenous acetate but was stimulated twofold by acetate, with an apparent Km value of 0.065 mM. CoA did not participate in the synthesis of p4A (p5A) and inhibited the reaction (50% inhibitory concentration of 0.015 mM). At pH 6.3, which was optimum for formation of p4A (p5A), the rate of acetyl-CoA synthesis (1.84 mumol mg-1 min-1) was 245 times faster than the rate of synthesis of p4A measured in the presence of acetate. The known formation of p4A (p5A) in yeast sporulation and the role of acetate may therefore be related to acetyl-CoA synthetase. Images PMID:7910605

  9. Modified branched-chain amino acid pathways give rise to acyl acids of sucrose esters exuded from tobacco leaf trichomes.

    PubMed

    Kandra, G; Severson, R; Wagner, G J

    1990-03-10

    A major diversion of carbon from branched-chain amino acid biosynthesis/catabolism to form acyl moieties of sucrose esters (6-O-acetyl-2,3,4-tri-O-acyl-alpha-D-glucopyranosyl-beta-D- fructofuranosides) was observed to be associated with specialized trichome head cells which secrete large amounts of sucrose esters. Surface chemistry and acetyl and acyl substituent groups of tobacco (T.I. 1068) sucrose esters were identified and quantified by gas chromatography/mass spectrometry. Sucrose esters were prominent surface constituents and 3-methylvaleric acid, 2- and 3-methylbutyric acid, and methylpropionic acid accounted for 60%, 25% and 9%, respectively, of total C3--C7 acyl substituents. Radiolabeled Thr, Ile, Val, Leu, pyruvate and Asp, metabolites of branched-chain amino acid pathways, were compared with radioactively labeled acetate and sucrose as donors of carbon to sucrose, acetyl and acyl components of sucrose esters using epidermal peels with undisturbed trichomes. Preparations of biosynthetically competent trichome heads (site of sucrose ester formation) were also examined. Results indicate that 3-methylvaleryl and 2-methylbutyryl groups are derived from the Thr pathway of branched-chain amino acid metabolism, 3-methylbutyryl and methylpropionyl groups are formed via the pyruvate pathway, and that acetyl groups are principally formed directly via acetyl-CoA. Arguments are presented which rule out participation of fatty acid synthase in the formation of prominent acyl acids. Results suggest that the shunting of carbon away from the biosynthesis of Val, Leu and Ile may be due to a low level of amino acid utilization in protein synthesis in specialized glandular head cells of trichomes. This would result in the availability of corresponding oxo acids for CoA activation and esterification to form sucrose esters. Preliminary evidence was found for the involvement of cycling reactions in oxo-acid-chain lengthening and for utilization of pyruvate-derived 2

  10. Characterization of the acetyl-CoA synthetase of Acetobacter aceti.

    PubMed

    O'Sullivan, J; Ettlinger, L

    1976-12-20

    The acetate activating system of Acetobacter aceti has been studied. The enzyme responsible, acetyl-CoA synthetase, has been purified about 500-fold from crude cell extracts and was approximately 85% pure as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. The purified enzyme showed optimal activity at pH 7.6 in both Tris-HCL and potassium phosphate buffers. In its purest form, the enzyme was stable at 4 degrees-C but denatured upon freezing. The Km values for CoA, ATP and acetate were found to be 0.104 mM, 0.36 mM and 0.25 mM respectively; propionate and acrylate were also activated by the enzyme but not butyrate, isobutyrate or valerate. GTP, UTP, CTP and ADP could not replace ATP in the reaction, and cysteine or pantetheine failed to replace CoA. The cationic requirements were studied and of the divalent cations tested, only Mn2+ could significantly replace Mg2+ in the reaction; K+ and NH4+ stimulated enzyme activity but inhibited at high concentrations; Na+ was a poor activator, but did not inhibit at higher concentrations. The effect of a number of glucose and other metabolites on enzyme activity has been tested. PMID:12800

  11. Characterization of the acetyl-CoA synthetase of Acetobacter aceti.

    PubMed

    O'Sullivan, J; Ettlinger, L

    1976-12-20

    The acetate activating system of Acetobacter aceti has been studied. The enzyme responsible, acetyl-CoA synthetase, has been purified about 500-fold from crude cell extracts and was approximately 85% pure as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. The purified enzyme showed optimal activity at pH 7.6 in both Tris-HCL and potassium phosphate buffers. In its purest form, the enzyme was stable at 4 degrees-C but denatured upon freezing. The Km values for CoA, ATP and acetate were found to be 0.104 mM, 0.36 mM and 0.25 mM respectively; propionate and acrylate were also activated by the enzyme but not butyrate, isobutyrate or valerate. GTP, UTP, CTP and ADP could not replace ATP in the reaction, and cysteine or pantetheine failed to replace CoA. The cationic requirements were studied and of the divalent cations tested, only Mn2+ could significantly replace Mg2+ in the reaction; K+ and NH4+ stimulated enzyme activity but inhibited at high concentrations; Na+ was a poor activator, but did not inhibit at higher concentrations. The effect of a number of glucose and other metabolites on enzyme activity has been tested.

  12. Biochemical and Structural Characterization of Germicidin Synthase: Analysis of a Type III Polyketide Synthase That Employs Acyl-ACP as a Starter Unit Donor

    SciTech Connect

    Chemler, Joseph A.; Buchholz, Tonia J.; Geders, Todd W.; Akey, David L.; Rath, Christopher M.; Chlipala, George E.; Smith, Janet L.; Sherman, David H.

    2012-08-10

    Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 {angstrom} germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.

  13. Protein fatty acid acylation: enzymatic synthesis of an N-myristoylglycyl peptide

    SciTech Connect

    Towler, D.; Glaser, L.

    1986-05-01

    Incubation of Saccharomyces cerevisiae strain JR153 with either (/sup 3/H)myristate or (/sup 3/H)palmitate demonstrates the synthesis of proteins that contain covalently bound fatty acids. A unique set of proteins is labeled by each fatty acid. Detailed analysis of a 20-kDa protein labeled with myristic acid demonstrates that myristate is linked to the amino-terminal glycine. We describe an enzymatic activity in yeast that will transfer myristic acid to the amino terminus of the octapeptide Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg, whose sequence was derived from a known N-myristoylated acyl protein, the catalytic subunit of cAMP-dependent protein kinase of bovine cardiac muscle. The acylation reaction is dependent on ATP and CoA, is enriched in a crude membrane fraction, and will use myristate but not palmitate as the acyl donor. Specificity of the glycyl peptide substrate is demonstrated by the observation that other glycyl peptides do not competitively inhibit myristoylation of Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg.

  14. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    SciTech Connect

    Halavaty, Andrei S.; Kim, Youngchang; Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James; Zhou, Min; Onopriyenko, Olena; Skarina, Tatiana; Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N.; Joachimiak, Andrzej; Savchenko, Alexei; Anderson, Wayne F.

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  15. Radioimmune assay of human platelet prostaglandin synthetase

    SciTech Connect

    Roth, G.J.; Machuga, E.T.

    1982-02-01

    Normal platelet function depends, in part, on platelet PG synthesis. PG synthetase (cyclo-oxygenase) catalyzes the first step in PG synthesis, the formation of PGH/sub 2/ from arachidonic acid. Inhibition of the enzyme by ASA results in an abnormality in the platelet release reaction. Patients with pparent congenital abnormalities in the enzyme have been described, and the effects have been referred to as ''aspirin-like'' defects of the platelet function. These patients lack platelet PG synthetase activity, but the actual content of PG synthetase protein in these individuals' platelets is unknown. Therefore an RIA for human platelet PG synthetase would provide new information, useful in assessing the aspirin-like defects of platelet function. An RIA for human platelet PG synthetase is described. The assay utilizes a rabbit antibody directed against the enzyme and (/sup 125/I)-labelled sheep PG synthetase as antigen. The human platelet enzyme is assayed by its ability to inhibit precipitation of the (/sup 125/I)antigen. The assay is sensitive to 1 ng of enzyme. By the immune assay, human platelets contain approximately 1200 ng of PG synethetase protein per 1.5 mg of platelet protein (approximately 10/sup 9/ platelets). This content corresponds to 10,000 enzyme molecules per platelet. The assay provides a rapid and convenient assay for the human platelet enzyme, and it can be applied to the assessment of patients with apparent platelet PG synthetase (cyclo-oxygenase) deficiency.

  16. Determination of individual long-chain fatty acyl-CoA esters in heart and skeletal muscle.

    PubMed

    Molaparast-Saless, F; Shrago, E; Spennetta, T L; Donatello, S; Kneeland, L M; Nellis, S H; Liedtke, A J

    1988-05-01

    A method has been developed for determination of individual long-chain fatty acyl-CoA esters from heart and skeletal muscle using high performance liquid chromatography (HPLC). The esters were extracted from freeze-clamped tissue of pig and rat hearts and rat skeletal muscle for analysis on a radially compressed C18 5mu reverse-phase column. Nine peaks in the extract with carbon chain lengths from C12 to C20 that subsequently disappeared on alkaline hydrolysis were identified. The major acyl-CoA peaks were 14:1, 18:2, 16:0 and 18:1 and additionally in rat heart 18:0. Total long-chain acyl-CoA esters obtained by summation of the individual molecular species was 11.34 +/- 1.48 nmol/g wet wt. pig heart; 14.51 +/- 2.11 nmol/g wet wt. in rat heart, and 4.35 +/- 0.71 nmol/g wet wt. in rat skeletal muscle. These values were approximately 132% of those obtained using a separate procedure that measured total CoA by HPLC after alkaline hydrolysis of the esters. The described method demonstrates the quantitation of individual acyl-CoA species in muscle tissue. Therefore, it has a number of advantages in that it permits information to be obtained on the individual molecular species under various nutritional and metabolic conditions.

  17. Sequence and Phylogenetic Analysis of FAD Synthetase

    NASA Astrophysics Data System (ADS)

    Schubert, Luisa; Frago, Susana; Martínez-Júlvez, Marta; Medina, Milagros

    2006-08-01

    An evolutionary analysis of the sequences available till now for FAD synthetases has been carried out. Several identical conserved residues have been observed along the sequences of all the FAD synthetases analyzed, which might correlate with role for these residues in the catalytic activity of the enzyme. Phylogenetic analysis shows that FAD synthetase sequences can be organized in two main clusters. One of them mainly contains temperature, pressure or pH resistant organisms, whereas in the other one organisms with pathogenic character can be found.

  18. Neurospora crassa mutants deficient in asparagine synthetase.

    PubMed Central

    MacPhee, K G; Nelson, R E; Schuster, S M

    1983-01-01

    Neurospora crassa mutants deficient in asparagine synthetase were selected by using the procedure of inositol-less death. Complementation tests among the 100 mutants isolated suggested that their alterations were genetically allelic. Recombination analysis with strain S1007t, an asparagine auxotroph, indicated that the mutations were located near or within the asn gene on linkage group V. In vitro assays with a heterokaryon indicated that the mutation was dominant. Thermal instability of cell extracts from temperature-sensitive strains in an in vitro asparagine synthetase assay determined that the mutations were in the structural gene(s) for asparagine synthetase. PMID:6137480

  19. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.

    PubMed

    Maloney, Finn P; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L

    2016-09-13

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA.

  20. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.

    PubMed

    Maloney, Finn P; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L

    2016-09-13

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA. PMID:27573844

  1. Modulation of FadR binding capacity for acyl-CoA fatty acids through structure-guided mutagenesis.

    PubMed

    Bacik, John-Paul; Yeager, Chris M; Twary, Scott N; Martí-Arbona, Ricardo

    2015-10-01

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is thus of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl-CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology. PMID:26385696

  2. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  3. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter

    1998-01-06

    Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  4. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  5. Incorporation of hydrogen atoms from deuterated water and stereospecifically deuterium-labeled nicotin amide nucleotides into fatty acids with the Escherichia coli fatty acid synthetase system.

    PubMed

    Saito, K; Kawaguchi, A; Okuda, S; Seyama, Y; Yamakawa, T

    1980-05-28

    The mechanism of hydrogen incorporation into fatty acids was investigated with intact Escherichia coli cells, a crude enzyme preparation and purified reductases of fatty acid synthetase system. The distributions of deuterium atoms incorporated into fatty acids from 2H2O and stereospecifically deuterium-labeled NADPH or NADH were determined by mass spectrometry. When E. coli was grown in 2H2O, almost every hydrogen atom of cellular fatty acids was incorporated from the medium. When fatty acids were synthesized from acetyl-CoA, malonyl-CoA and NADPH in the presence of a crude enzyme preparation of either E. coli or Bacillus subtilis, almost every hydrogen atom was also incorporated from the medium. In contrast to these results, purified beta-ketoacyl acyl carrier reductase directly transferred the HB hydrogen of NADPH to beta-ketoacyl acyl carrier protein, and purified enoyl acyl carrier protein reductase also transferred the HB hydrogen of NADPH and NADH directly to enoyl acyl carrier protein. In the crude enzyme preparation of E. coli, we found high activities which exchanged the HB hydrogen of NADPH with the deuterium of 2h2o. the conflicting results of the origin of hydrogen atoms of fatty acids mentioned above are explained by the presence of enzymes, which catalyzed the rapid exchange of NADPH with the deterium of 2H2O prior to the reaction of fatty acid synthetase. PMID:6990992

  6. Stearoyl-Acyl Carrier Protein and Unusual Acyl-Acyl Carrier Protein Desaturase Activities Are Differentially Influenced by Ferredoxin1

    PubMed Central

    Schultz, David J.; Suh, Mi Chung; Ohlrogge, John B.

    2000-01-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Δ9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [14C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium × hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Δ9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction. PMID:11027717

  7. The Physiology of Protein S-acylation

    PubMed Central

    Chamberlain, Luke H.; Shipston, Michael J.

    2015-01-01

    Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field. PMID:25834228

  8. Residues in the acetyl CoA binding site of pyruvate carboxylase involved in allosteric regulation.

    PubMed

    Choosangtong, Kamonman; Sirithanakorn, Chaiyos; Adina-Zada, Abdul; Wallace, John C; Jitrapakdee, Sarawut; Attwood, Paul V

    2015-07-22

    We have examined the roles of Asp1018, Glu1027, Arg469 and Asp471 in the allosteric domain of Rhizobium etli pyruvate carboxylase. Arg469 and Asp471 interact directly with the allosteric activator acetyl coenzyme A (acetyl CoA) and the R469S and R469K mutants showed increased enzymic activity in the presence and absence of acetyl CoA, whilst the D471A mutant exhibited no acetyl CoA-activation. E1027A, E1027R and D1018A mutants had increased activity in the absence of acetyl CoA, but not in its presence. These results suggest that most of these residues impose restrictions on the structure and/or dynamics of the enzyme to affect activity. PMID:26149215

  9. Structure of succinyl-CoA:3-ketoacid CoA transferase from Drosophila melanogaster

    PubMed Central

    Zhang, Min; Xu, Han-Yang; Wang, Yi-Cui; Shi, Zhu-Bing; Zhang, Nan-Nan

    2013-01-01

    Succinyl-CoA:3-ketoacid CoA transferase (SCOT) plays a crucial role in ketone-body metabolism. SCOT from Drosophila melanogaster (DmSCOT) was purified and crystallized. The crystal structure of DmSCOT was determined at 2.64 Å resolution and belonged to space group P212121, with unit-cell parameters a = 76.638, b = 101.921, c = 122.457 Å, α = β = γ = 90°. Sequence alignment and structural analysis identified DmSCOT as a class I CoA transferase. Compared with Acetobacter aceti succinyl-CoA:acetate CoA transferase, DmSCOT has a different substrate-binding pocket, which may explain the difference in their substrate specificities. PMID:24100554

  10. Topology and acylation of spiralin.

    PubMed Central

    Wróblewski, H; Nyström, S; Blanchard, A; Wieslander, A

    1989-01-01

    Of the 51 polypeptides detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the plasma membrane of the helical mollicute Spiroplasma melliferum, 21 are acylated, predominantly with myristic (14:0) and palmitic (16:0) chains. This is notably the case for spiralin, the major membrane protein of this bacterium, which contains an average of 0.7 acyl chains per polypeptide, attached very probably by ester bonds to alcohol amino acids. The amphiphilicity of spiralin was demonstrated by the behavior of the protein in charge-shift electrophoresis, its incorporation into liposomes, and its ability to form in the absence of lipids and detergents, globular protein micelles (diameter, approximately 15 nm). The presence of epitopes on the two faces of the cell membrane, as probed by antibody adsorption and crossed immunoelectrophoresis, and the strong interaction between spiralin and the intracytoplasmic fibrils show that spiralin is a transmembrane protein. The mean hydropathy of the amino acid composition of spiralin (-0.30) is on the hydrophilic side of the scale. Surprisingly, the water-insoluble core of spiralin micelles, which is the putative membrane anchor, has a still more hydrophilic amino acid composition (mean hydropathy, -0.70) and is enriched in glycine and serine residues. Taking into account all these properties, we propose a topological model for spiralin featuring a transbilayer localization with hydrophilic domains protruding on the two faces of the membrane and connected by a small domain embedded within the apolar region of the lipid bilayer. In this model, the membrane anchoring of the protein is strengthened by a covalently bound acyl chain. Images PMID:2768198

  11. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.

  12. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  13. Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report

    SciTech Connect

    Ohlrogge, J.B.

    1989-01-01

    Previous research from my lab has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP) and therefore this trait appears highly conserved among higher plants. This level of conservation suggests that the existence of ACP isoforms is not merely the results of neutral gene duplications. We have developed techniques to examine a wider range of species. Acyl carrier proteins can be labelled very specifically and to high specific activity using H-palmitate and the E. coli enzyme acyl-ACP synthetase. Isoforms were then resolved by western blotting and native PAGE of H-palmitate labelled ACP's. Multiple isoforms of ACP were observed the leaf tissue of the monocots Avena sativa and Hordeum vulgare and dicots including Arabidopsis thallina, Cuphea wrightii, and Brassica napus. Lower vascular plants including the cycad, Dioon edule, Ginkgo biloba, the gymnosperm Pinus, the fern Anernia phyllitidis and Psilotum nudum, the most primitive known extant vascular plant, were also found to have multiple ACP isoforms as were the nonvascular liverwort, Marchantia and moss, Polytrichum. Therefore, the development of ACP isoforms occurred early in evolution. However, the uniellular alge Chlamydomonas and Dunaliella and the photosynthetic cyanobacteria Synechocystis and Agmnellum have only a single elecrophotetic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants.

  14. [Studies on regulation of glutamine synthetase activity from Streptomyces lincolnensis].

    PubMed

    Jin, Z; Jiao, R; Mao, Y

    2001-08-01

    Glutamine synthetase in crude extracts from Streptomyces lincolnensis growing under different nitrogen sources were studied. The results showed that NH4+ in high concentration repressed the biosynthesis of the enzyme. To determine whether Streptomyces lincolnensis has undergone covalent modification, a comparison of the glutamine synthetase isolated from cells grown on different nitrogen sources was made. No significant difference was observed in specific activity, pH optima, divalent cation response, and ultraviolet absorption spectra. Glutamine synthetase activity was not influenced by ammonia shock or snake venom phosphodiesterase treatment. Under these conditions, the activity of glutamine synthetase from K. aerogenes was markedly changed. There was therefore no evidence for enzymatic adenylylation of glutamine synthetase from Streptomyces lincolnensis. Glutamine synthetase was subject to feedback inhibition by end products of glutamine metabolism. Cumulative feedback inhibition of the Mn(2+)-dependent glutamine synthetase activity was demonstrated. These results suggest that glutamine synthetase from Streptomyces lincolnensis is an allosteric enzyme. PMID:12552916

  15. Lipid Acyl Chain Remodeling in Yeast

    PubMed Central

    Renne, Mike F.; Bao, Xue; De Smet, Cedric H.; de Kroon, Anton I. P. M.

    2015-01-01

    Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed. PMID:26819558

  16. Chemical reactivity of the naproxen acyl glucuronide and the naproxen coenzyme A thioester towards bionucleophiles.

    PubMed

    Olsen, Jørgen; Bjørnsdottir, Inga; Tjørnelund, Jette; Honoré Hansen, Steen

    2002-06-20

    Drugs may be metabolised to reactive electrophilic species that spontaneously react with proteins. The presence of such drug-protein adducts has been associated with drug toxicity. In this study, the reactivity of the major metabolite of naproxen--the 1-beta-O-glucuronide (Nap-GlcU)--was compared to the corresponding naproxen coenzyme A (Nap-CoA) thioester. The reactivity of the two metabolites was assessed in vitro in a phosphate buffer (pH 7.4; 0.1 M) at 37 degrees C towards the model bionucleophiles glutathione and human serum albumin (HSA). The reaction between the electrophilic species (Nap-GlcU and Nap-CoA) and glutathione forming the Nap-glutathione conjugate was monitored using LC-MS-MS and LC-UV, respectively. It was shown that Nap-CoA resulted in an approximate 100-fold higher formation of Nap-glutathione conjugate than Nap-GlcU. The presence of Nap-CoA also resulted in acylated HSA with a rate and a yield that was significantly higher than reported for Nap-GlcU. In summary, the data suggest that CoA metabolites may be more reactive species than acyl glucuronides that previously have been associated with severe drug related side effects in vivo.

  17. Stability-increasing effects of anthocyanin glycosyl acylation.

    PubMed

    Zhao, Chang-Ling; Yu, Yu-Qi; Chen, Zhong-Jian; Wen, Guo-Song; Wei, Fu-Gang; Zheng, Quan; Wang, Chong-De; Xiao, Xing-Lei

    2017-01-01

    This review comprehensively summarizes the existing knowledge regarding the chemical implications of anthocyanin glycosyl acylation, the effects of acylation on the stability of acylated anthocyanins and the corresponding mechanisms. Anthocyanin glycosyl acylation commonly refers to the phenomenon in which the hydroxyl groups of anthocyanin glycosyls are esterified by aliphatic or aromatic acids, which is synthetically represented by the acylation sites as well as the types and numbers of acyl groups. Generally, glycosyl acylation increases the in vitro and in vivo chemical stability of acylated anthocyanins, and the mechanisms primarily involve physicochemical, stereochemical, photochemical, biochemical or environmental aspects under specific conditions. Additionally, the acylation sites as well as the types and numbers of acyl groups influence the stability of acylated anthocyanins to different degrees. This review could provide insight into the optimization of the stability of anthocyanins as well as the application of suitable anthocyanins in food, pharmaceutical and cosmetic industries. PMID:27507456

  18. LC-quadrupole/Orbitrap high-resolution mass spectrometry enables stable isotope-resolved simultaneous quantification and ¹³C-isotopic labeling of acyl-coenzyme A thioesters.

    PubMed

    Frey, Alexander J; Feldman, Daniel R; Trefely, Sophie; Worth, Andrew J; Basu, Sankha S; Snyder, Nathaniel W

    2016-05-01

    Acyl-coenzyme A (acyl-CoA) thioesters are evolutionarily conserved, compartmentalized, and energetically activated substrates for biochemical reactions. The ubiquitous involvement of acyl-CoA thioesters in metabolism, including the tricarboxylic acid cycle, fatty acid metabolism, amino acid degradation, and cholesterol metabolism highlights the broad applicability of applied measurements of acyl-CoA thioesters. However, quantitation of acyl-CoA levels provides only one dimension of metabolic information and a more complete description of metabolism requires the relative contribution of different precursors to individual substrates and pathways. Using two distinct stable isotope labeling approaches, acyl-CoA thioesters can be labeled with either a fixed [(13)C3(15)N1] label derived from pantothenate into the CoA moiety or via variable [(13)C] labeling into the acyl chain from metabolic precursors. Liquid chromatography-hybrid quadrupole/Orbitrap high-resolution mass spectrometry using parallel reaction monitoring, but not single ion monitoring, allowed the simultaneous quantitation of acyl-CoA thioesters by stable isotope dilution using the [(13)C3(15)N1] label and measurement of the incorporation of labeled carbon atoms derived from [(13)C6]-glucose, [(13)C5(15)N2]-glutamine, and [(13)C3]-propionate. As a proof of principle, we applied this method to human B cell lymphoma (WSU-DLCL2) cells in culture to precisely describe the relative pool size and enrichment of isotopic tracers into acetyl-, succinyl-, and propionyl-CoA. This method will allow highly precise, multiplexed, and stable isotope-resolved determination of metabolism to refine metabolic models, characterize novel metabolism, and test modulators of metabolic pathways involving acyl-CoA thioesters. PMID:26968563

  19. Sub-unit structure and specificity of methionyl-transfer-ribonucleic acid synthetase from Escherichia coli

    PubMed Central

    Bruton, C. J.; Hartley, B. S.

    1968-01-01

    1. The purification of methionyl-transfer-RNA synthetase from Escherichia coli by a modified technique gives a 16% yield of a protein that appears homogeneous by the criteria of disc gel electrophoresis, ultracentrifugation and end-group analysis. 2. The molecular weight is 96000 and the protein consists of two sub-units of 48000, which appear to be identical. The amino acid composition and thiol content are reported. 3. Kinetic data are reported for analogues of methionine and for pure t-RNAF and t-RNAM, which are respectively the methionine transfer RNA that can exist in the formylmethionyl form and the one that can exist only in the methionyl form. The enzyme binds and acylates both species of transfer RNA identically. PMID:4874971

  20. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  1. The utilization of the acyl-CoA and the involvement PDAT and DGAT in the biosynthesis of erucic acid-rich triacylglycerols in Crambe seed oil.

    PubMed

    Furmanek, Tomasz; Demski, Kamil; Banaś, Walentyna; Haslam, Richard; Napier, Jonathan; Stymne, Sten; Banaś, Antoni

    2014-04-01

    The triacylglycerol of Crambe abyssinica seeds consist of 95% very long chain (>18 carbon) fatty acids (86% erucic acid; 22:1∆13) in the sn-1 and sn-3 positions. This would suggest that C. abyssinica triacylglycerols are not formed by the action of the phospholipid:diacylglycerol acyltransferase (PDAT), but are rather the results of acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. However, measurements of PDAT and DGAT activities in microsomal membranes showed that C. abyssinica has significant PDAT activity, corresponding to about 10% of the DGAT activity during periods of rapid seed oil accumulation. The specific activity of DGAT for erucoyl-CoA had doubled at 19 days after flowering compared to earlier developmental stages, and was, at that stage, the preferred acyl donor, whereas the activities for 16:0-CoA and 18:1-CoA remained constant. This indicates that an expression of an isoform of DGAT with high specificity for erucoyl-CoA is induced at the onset of rapid erucic acid and oil accumulation in the C. abyssinica seeds. Analysis of the composition of the acyl-CoA pool during different stages of seed development showed that the percentage of erucoyl groups in acyl-CoA was much higher than in complex lipids at all stages of seed development except in the desiccation phase. These results are in accordance with published results showing that the rate limiting step in erucic acid accumulation in C. abyssinica oil is the utilization of erucoyl-CoA by the acyltransferases in the glycerol-3-phosphate pathway.

  2. Acyl-acyl-carrier protein: lysomonogalactosyldiacylglycerol acyltransferase from the cyanobacterium Anabaena variabilis.

    PubMed

    Chen, H H; Wickrema, A; Jaworski, J G

    1988-12-16

    Membranes isolated from the cyanobacterium, Anabaena variabilis, and washed free of soluble endogenous constituents, were capable of catalyzing the direct transfer of the acyl group from acyl-acyl-carrier protein to an endogenous lysomonogalactosyldiacylglycerol to form monogalactosyldiacylglycerol. Other glycolipids including monoglucosyldiacylglycerol and digalactosyldiacylglycerol were not products of this reaction. The transfer was not dependent on any added cofactors. Palmitoyl-, stearoyl- and oleoyl-acyl-carrier protein were approximately equally active as substrates. Transfer was exclusively to the C-1 of the glycerol, as demonstrated by hydrolysis of all incorporated acyl groups by the lipase from Rhizopus arrhizus delamar. In addition to the single galactolipid, a second minor reaction product was free fatty acid, presumably due to hydrolysis of the acyl-acyl-carrier protein. Using a double-labelled [14C]acyl-[14C]acyl-carrier protein, the reaction was demonstrated to be a transfer reaction, rather than a simple exchange of acyl groups with endogenous monogalactosyldiacylglycerol. The transfer reaction mechanism was also confirmed by increasing activity with the addition of liposomes of lysomonogalactosyldiacylglycerol.

  3. Phosphorylation of eukaryotic aminoacyl-tRNA synthetases

    SciTech Connect

    Pendergast, A.M.

    1986-01-01

    The phosphorylation of the highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes was examined. The synthetase complex contained, in addition to eight aminoacyl-tRNA synthetases, three unidentified proteins and was free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP resulted in the phosphorylation of four synthetases, the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I altered binding to tRNA-Sepharose such that the phosphorylated complex eluted at 190 mM NaCl instead of the 275 mM salt observed for the nonphosphorylated form. Phosphorylation by casein kinase I resulted in a significant inhibition of aminoacylation with the four synthetases; the activities of the nonphosphorylated synthetases were unchanged. One of the unidentified proteins in the complex (M/sub r/ 37,000) was also an excellent substrate for casein kinase I. A comparison of the properties and two-dimensional phosphopeptide pattern of this protein with that of casein kinase I suggest that the 37,000 dalton protein in the synthetase complex is an inactive form of casein kinase I. Two other protein kinases were shown to phosphorylate aminoacyl-tRNA synthetases in the complex. The phosphorylation of threonyl-tRNA synthetase was also investigated. Five aminoacyl-tRNA synthetases in the high molecular weight complex were shown to be phosphorylated in rabbit reticulocytes following labeling with (/sup 32/P)orthophosphate.

  4. Genetics Home Reference: holocarboxylase synthetase deficiency

    MedlinePlus

    ... important for the effective use of biotin, a B vitamin found in foods such as liver, egg yolks, and milk. Holocarboxylase synthetase attaches biotin to certain enzymes that are essential for the normal production and breakdown of proteins, fats, and carbohydrates in ...

  5. Genetics Home Reference: glutathione synthetase deficiency

    MedlinePlus

    ... PubMed Njålsson R. Glutathione synthetase deficiency. Cell Mol Life Sci. 2005 Sep;62(17):1938-45. Review. Citation on PubMed Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis. 2007 Mar 30;2:16. Review. Citation on PubMed or ...

  6. Application of a Propionyl Coenzyme A Synthetase for Poly(3-Hydroxypropionate-co-3-Hydroxybutyrate) Accumulation in Recombinant Escherichia coli

    PubMed Central

    Valentin, Henry E.; Mitsky, Timothy A.; Mahadeo, Debbie A.; Tran, Minhtien; Gruys, Kenneth J.

    2000-01-01

    The genetic operon for propionic acid degradation in Salmonella enterica serovar Typhimurium contains an open reading frame designated prpE which encodes a propionyl coenzyme A (propionyl-CoA) synthetase (A. R. Horswill and J. C. Escalante-Semerena, Microbiology 145:1381–1388, 1999). In this paper we report the cloning of prpE by PCR, its overexpression in Escherichia coli, and the substrate specificity of the enzyme. When propionate was utilized as the substrate for PrpE, a Km of 50 μM and a specific activity of 120 μmol · min−1 · mg−1 were found at the saturating substrate concentration. PrpE also activated acetate, 3-hydroxypropionate (3HP), and butyrate to their corresponding coenzyme A esters but did so much less efficiently than propionate. When prpE was coexpressed with the polyhydroxyalkanoate (PHA) biosynthetic genes from Ralstonia eutropha in recombinant E. coli, a PHA copolymer containing 3HP units accumulated when 3HP was supplied with the growth medium. To compare the utility of acyl-CoA synthetases to that of an acyl-CoA transferase for PHA production, PHA-producing recombinant strains were constructed to coexpress the PHA biosynthetic genes with prpE, with acoE (an acetyl-CoA synthetase gene from R. eutropha [H. Priefert and A. Steinbüchel, J. Bacteriol. 174:6590–6599, 1992]), or with orfZ (an acetyl-CoA:4-hydroxybutyrate-CoA transferase gene from Clostridium propionicum [H. E. Valentin, S. Reiser, and K. J. Gruys, Biotechnol. Bioeng. 67:291–299, 2000]). Of the three enzymes, PrpE and OrfZ enabled similar levels of 3HP incorporation into PHA, whereas AcoE was significantly less effective in this capacity. PMID:11097899

  7. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli.

    PubMed

    Heath, R J; Rock, C O

    1996-01-26

    Long chain acyl-acyl carrier protein (acyl-ACP) has been implicated as a physiological inhibitor of fatty acid biosynthesis since acyl-ACP degradation by thioesterase overexpression leads to constitutive, unregulated fatty acid production. The biochemical targets for acyl-ACP inhibition were unknown, and this work identified two biosynthetic enzymes that were sensitive to acyl-ACP feedback inhibition. Palmitoyl-ACP inhibited the incorporation of [14C]malonyl-CoA into long chain fatty acids in cell-free extracts of Escherichia coli. A short chain acyl-ACP species with the electrophoretic properties of beta-hydroxybutyryl-ACP accumulated concomitant with the overall decrease in the amount of [14C]malonyl-CoA incorporation, indicating that the first elongation cycle was targeted by acyl-ACP. All of the proteins required to catalyze the first round of fatty acid synthesis from acetyl-CoA plus malonyl-CoA in vitro were isolated, and the first fatty acid elongation cycle was reconstituted with these purified components. Analysis of the individual enzymes and the pattern of intermediate accumulation in the reconstituted system identified initiation of fatty acid synthesis by beta-ketoacyl-ACP synthase III (fabH) and enoyl-ACP reductase (fabI) in the elongation cycle as two steps attenuated by long chain acyl-ACP.

  8. Antifibrotic Activity of Acylated and Unacylated Ghrelin

    PubMed Central

    Angelino, Elia; Reano, Simone; Ferrara, Michele; Agosti, Emanuela; Graziani, Andrea; Filigheddu, Nicoletta

    2015-01-01

    Fibrosis can affect almost all tissues and organs, it often represents the terminal stage of chronic diseases, and it is regarded as a major health issue for which efficient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers inflammatory response that, in turn, promotes fibroblast activation and pathological deposition of extracellular matrix. Acylated and unacylated ghrelin are the main products of the ghrelin gene. The acylated form, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH) release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several biological activities. Ghrelin peptides exhibit anti-inflammatory, antioxidative, and antiapoptotic activities, suggesting that they might represent an efficient approach to prevent or reduce fibrosis. The aim of this review is to summarize the available evidence regarding the effects of acylated and unacylated ghrelin on different pathologies and experimental models in which fibrosis is a predominant characteristic. PMID:25960743

  9. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  10. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast.

    PubMed

    Chen, Po-Wei; Fonseca, Luis L; Hannun, Yusuf A; Voit, Eberhard O

    2015-08-01

    The article demonstrates that computational modeling has the capacity to convert metabolic snapshots, taken sequentially over time, into a description of cellular, dynamic strategies. The specific application is a detailed analysis of a set of actions with which Saccharomyces cerevisiae responds to heat stress. Using time dependent metabolic concentration data, we use a combination of mathematical modeling, reverse engineering, and optimization to infer dynamic changes in enzyme activities within the sphingolipid pathway. The details of the sphingolipid responses to heat stress are important, because they guide some of the longer-term alterations in gene expression, with which the cells adapt to the increased temperature. The analysis indicates that all enzyme activities in the system are affected and that the shapes of the time trends in activities depend on the fatty-acyl CoA chain lengths of the different ceramide species in the system.

  11. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast.

    PubMed

    Chen, Po-Wei; Fonseca, Luis L; Hannun, Yusuf A; Voit, Eberhard O

    2015-08-01

    The article demonstrates that computational modeling has the capacity to convert metabolic snapshots, taken sequentially over time, into a description of cellular, dynamic strategies. The specific application is a detailed analysis of a set of actions with which Saccharomyces cerevisiae responds to heat stress. Using time dependent metabolic concentration data, we use a combination of mathematical modeling, reverse engineering, and optimization to infer dynamic changes in enzyme activities within the sphingolipid pathway. The details of the sphingolipid responses to heat stress are important, because they guide some of the longer-term alterations in gene expression, with which the cells adapt to the increased temperature. The analysis indicates that all enzyme activities in the system are affected and that the shapes of the time trends in activities depend on the fatty-acyl CoA chain lengths of the different ceramide species in the system. PMID:26241868

  12. LC-MS/MS-based analysis of coenzyme A and short-chain acyl-coenzyme A thioesters.

    PubMed

    Neubauer, Stefan; Chu, Dinh Binh; Marx, Hans; Sauer, Michael; Hann, Stephan; Koellensperger, Gunda

    2015-09-01

    Absolute quantification of intracellular coenzyme A (CoA), coenzyme A disulfide, and short-chain acyl-coenzyme A thioesters was addressed by developing a tailored metabolite profiling method based on liquid chromatography in combination with tandem mass spectrometric detection (LC-MS/MS). A reversed phase chromatographic separation was established which is capable of separating a broad spectrum of CoA, its corresponding derivatives, and their isomers despite the fact that no ion-pairing reagent was used (which was considered as a key advantage of the method). Excellent analytical figures of merit such as high sensitivity (LODs in the nM to sub-nM range) and high repeatability (routinely 4 %; N = 15) were obtained. Method validation comprised a study on standard purity, stability, and recoveries during sample preparation. Uniformly labeled U(13)C yeast cell extracts offered ideal internal standards for validation purposes and for a quantification exercise in the rumen bacterium Megasphaera elsdenii.

  13. Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism.

    PubMed

    Pougovkina, Olga; Te Brinke, Heleen; Wanders, Ronald J A; Houten, Sander M; de Boer, Vincent C J

    2014-09-01

    Inherited disorders of acyl-CoA metabolism, such as defects in amino acid metabolism and fatty acid oxidation can present with severe clinical symptoms either neonatally or later in life, but the pathophysiological mechanisms are often incompletely understood. We now report the discovery of a novel biochemical mechanism that could contribute to the pathophysiology of these disorders. We identified increased protein lysine butyrylation in short-chain acyl-CoA dehydrogenase (SCAD) deficient mice as a result of the accumulation of butyryl-CoA. Similarly, in SCAD deficient fibroblasts, lysine butyrylation was increased. Furthermore, malonyl-CoA decarboxylase (MCD) deficient patient cells had increased levels of malonylated lysines and propionyl-CoA carboxylase (PCC) deficient patient cells had increased propionylation of lysines. Since lysine acylation can greatly impact protein function, aberrant lysine acylation in inherited disorders associated with acyl-CoA accumulation may well play a role in their disease pathophysiology. PMID:24531926

  14. Microbial Tailoring of Acyl Peptidic Siderophores

    PubMed Central

    2015-01-01

    Marine bacteria produce an abundance of suites of acylated siderophores characterized by a unique, species-dependent headgroup that binds iron(III) and one of a series of fatty acid appendages. Marinobacter sp. DS40M6 produces a suite of seven acylated marinobactins, with fatty acids ranging from saturated and unsaturated C12–C18 fatty acids. In the present study, we report that in the late log phase of growth, the fatty acids are hydrolyzed by an amide hydrolase producing the peptidic marinobactin headgroup. Halomonas aquamarina str. DS40M3, another marine bacterium isolated originally from the same sample of open ocean water as Marinobacter sp. DS40M6, produces the acyl aquachelins, also as a suite composed of a peptidic headgroup distinct from that of the marinobactins. In contrast to the acyl marinobactins, hydrolysis of the suite of acyl aquachelins is not detected, even when H. aquamarina str. DS40M3 is grown into the stationary phase. The Marinobacter cell-free extract containing the acyl amide hydrolase is active toward exogenous acyl-peptidic siderophores (e.g., aquachelin C, loihichelin C, as well as octanoyl homoserine lactone used in quorum sensing). Further, when H. aquamarina str. DS40M3 is cultured together with Marinobacter sp. DS40M6, the fatty acids of both suites of siderophores are hydrolyzed, and the aquachelin headgroup is also produced. The present study demonstrates that coculturing bacteria leads to metabolically tailored metabolites compared to growth in a single pure culture, which is interesting given the importance of siderophore-mediated iron acquisition for bacterial growth and that Marinobacter sp. DS40M6 and H. aquamarina str. DS40M3 were isolated from the same sample of seawater. PMID:24735218

  15. Germline Deletion of Pantothenate Kinases 1 and 2 Reveals the Key Roles for CoA in Postnatal Metabolism

    PubMed Central

    Garcia, Matthew; Leonardi, Roberta; Zhang, Yong-Mei; Rehg, Jerold E.; Jackowski, Suzanne

    2012-01-01

    Pantothenate kinase (PanK) phosphorylates pantothenic acid (vitamin B5) and controls the overall rate of coenzyme A (CoA) biosynthesis. Pank1 gene deletion in mice results in a metabolic phenotype where fatty acid oxidation and gluconeogenesis are impaired in the fasted state, leading to mild hypoglycemia. Inactivating mutations in the human PANK2 gene lead to childhood neurodegeneration, but Pank2 gene inactivation in mice does not elicit a phenotype indicative of the neuromuscular symptoms or brain iron accumulation that accompany the human disease. Pank1/Pank2 double knockout (dKO) mice were derived to determine if the mild phenotypes of the single knockout mice are due to the ability of the two isoforms to compensate for each other in CoA biosynthesis. Postnatal development was severely affected in the dKO mice. The dKO pups developed progressively severe hypoglycemia and hyperketonemia by postnatal day 10 leading to death by day 17. Hyperketonemia arose from impaired whole-body ketone utilization illustrating the requirement for CoA in energy generation from ketones. dKO pups had reduced CoA and decreased fatty acid oxidation coupled with triglyceride accumulation in liver. dKO hepatocytes could not maintain the NADH levels compared to wild-type hepatocytes. These results revealed an important link between CoA and NADH levels, which was reflected by deficiencies in hepatic oleate synthesis and gluconeogenesis. The data indicate that PanK1 and PanK2 can compensate for each other to supply tissue CoA, but PanK1 is more important to CoA levels in liver whereas PanK2 contributes more to CoA synthesis in the brain. PMID:22815849

  16. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  17. Characterization of Novel Acyl Coenzyme A Dehydrogenases Involved in Bacterial Steroid Degradation

    PubMed Central

    Ruprecht, Amanda; Maddox, Jaymie; Stirling, Alexander J.; Visaggio, Nicole

    2015-01-01

    ABSTRACT The acyl coenzyme A (acyl-CoA) dehydrogenases (ACADs) FadE34 and CasC, encoded by the cholesterol and cholate gene clusters of Mycobacterium tuberculosis and Rhodococcus jostii RHA1, respectively, were successfully purified. Both enzymes differ from previously characterized ACADs in that they contain two fused acyl-CoA dehydrogenase domains in a single polypeptide. Site-specific mutagenesis showed that only the C-terminal ACAD domain contains the catalytic glutamate base required for enzyme activity, while the N-terminal ACAD domain contains an arginine required for ionic interactions with the pyrophosphate of the flavin adenine dinucleotide (FAD) cofactor. Therefore, the two ACAD domains must associate to form a single active site. FadE34 and CasC were not active toward the 3-carbon side chain steroid metabolite 3-oxo-23,24-bisnorchol-4-en-22-oyl-CoA (4BNC-CoA) but were active toward steroid CoA esters containing 5-carbon side chains. CasC has similar specificity constants for cholyl-CoA, deoxycholyl-CoA, and 3β-hydroxy-5-cholen-24-oyl-CoA, while FadE34 has a preference for the last compound, which has a ring structure similar to that of cholesterol metabolites. Knockout of the casC gene in R. jostii RHA1 resulted in a reduced growth on cholate as a sole carbon source and accumulation of a 5-carbon side chain cholate metabolite. FadE34 and CasC represent unique members of ACADs with primary structures and substrate specificities that are distinct from those of previously characterized ACADs. IMPORTANCE We report here the identification and characterization of acyl-CoA dehydrogenases (ACADs) involved in the metabolism of 5-carbon side chains of cholesterol and cholate. The two homologous enzymes FadE34 and CasC, from M. tuberculosis and Rhodococcus jostii RHA1, respectively, contain two ACAD domains per polypeptide, and we show that these two domains interact to form a single active site. FadE34 and CasC are therefore representatives of a new class of

  18. Ratio of active to inactive forms of acyl carrier protein in Escherichia coli.

    PubMed

    Jackowski, S; Rock, C O

    1983-12-25

    Acyl carrier protein (ACP) functions as a cofactor in fatty acid biosynthesis due to the covalent linkage of an acyl moiety to its 4'-phosphopantetheine prosthetic group. This prosthetic group undergoes turnover in vivo and since the apoprotein is functionally inactive, the interconversion between ACP and apo-ACP has been considered as a possible regulatory point in lipid biosynthesis. To investigate this possibility, the ratio of ACP to apo-ACP was measured in Escherichia coli. An apo-ACP standard was synthesized using [ACP] phosphodiesterase (EC 3.1.4.14) and could be clearly separated from ACP by conformationally sensitive gel electrophoresis, thus providing a reliable assay for the presence of these two species. Antibodies specific for ACP were purified from rabbit serum on an ACP-Sepharose column and subsequently used to synthesize an immunoaffinity column. Chromatography of leucine-labeled cell extracts on this support resulted in the specific binding of ACP, but apo-ACP was not detected in either logarithmically growing or stationary phase cells, although both ACP species bound to the purified anti-ACP IgG. Apo-ACP was not detected as an intermediate in ACP biosynthesis, suggesting that apo-ACP is rapidly converted to ACP following translation. CoA is the biosynthetic precursor to the ACP prosthetic group, but apo-ACP did not accumulate when the intracellular CoA concentration was severely depressed in strain SJ16 (panD), a beta-alanine auxotroph. Strain MP4 (acpS) is conditionally defective in [ACP]synthase (EC 2.7.8.7) and apo-ACP was the predominant form of ACP synthesized in this strain under nonpermissive conditions. Even under conditions that permitted growth, apo-ACP comprised 70% of the total ACP pool in strain MP4. Strain MP4 possessed a phospholipid to protein ratio within the normal range, suggesting that the ratio of ACP to apo-ACP can be significantly altered without affecting total lipid content. Thus, it appears that the prosthetic group

  19. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  20. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress

    PubMed Central

    Hentchel, Kristy L.

    2015-01-01

    SUMMARY Acylation of biomolecules (e.g., proteins and small molecules) is a process that occurs in cells of all domains of life and has emerged as a critical mechanism for the control of many aspects of cellular physiology, including chromatin maintenance, transcriptional regulation, primary metabolism, cell structure, and likely other cellular processes. Although this review focuses on the use of acetyl moieties to modify a protein or small molecule, it is clear that cells can use many weak organic acids (e.g., short-, medium-, and long-chain mono- and dicarboxylic aliphatics and aromatics) to modify a large suite of targets. Acetylation of biomolecules has been studied for decades within the context of histone-dependent regulation of gene expression and antibiotic resistance. It was not until the early 2000s that the connection between metabolism, physiology, and protein acetylation was reported. This was the first instance of a metabolic enzyme (acetyl coenzyme A [acetyl-CoA] synthetase) whose activity was controlled by acetylation via a regulatory system responsive to physiological cues. The above-mentioned system was comprised of an acyltransferase and a partner deacylase. Given the reversibility of the acylation process, this system is also referred to as reversible lysine acylation (RLA). A wealth of information has been obtained since the discovery of RLA in prokaryotes, and we are just beginning to visualize the extent of the impact that this regulatory system has on cell function. PMID:26179745

  1. Prostaglandin synthetase and prostacyclin synthetase in mature rat skeletal muscles: immunohistochemical localisation to arterioles, tendons and connective tissues.

    PubMed Central

    McLennan, I S; Macdonald, R E

    1991-01-01

    Mature skeletal muscles produce appreciable quantities of prostacyclin (PGI2) and smaller amounts of PGF2 alpha and PGE2, but the sources of these prostaglandins within skeletal muscle are unknown. Monoclonal antibodies to prostaglandin synthetase and prostacyclin synthetase were used to determine which muscle cells produce prostaglandins. The antibody to prostacyclin synthetase stained the tendon, fascia, epimysium and the arteries leading to the muscles. The endothelia of arterioles were also stained in the tibialis anterior and cremaster but not in the soleus muscles. Only trace levels of immunoreactivity were observed with the antibody to prostaglandin synthetase in normal muscles. However, immunoreactivity was observed in the muscles of rats that had been pretreated with aspirin, a drug that inhibits and stabilises prostaglandin synthetase. In muscles of the aspirin-treated rats, all cell types that were stained by the antiprostacyclin synthetase also reacted weakly with the antibody to prostaglandin synthetase. In addition, some cells in the endomysium were strongly stained with the antiprostaglandin synthetase but not with the antiprostacyclin synthetase. We conclude that (1) at least one aspect of the regulation of blood flow in the microcirculation of slow muscles is different from that of fast muscles, (2) that the tendon and connective tissue is the major source of PGI2 in mature skeletal muscles, and (3) that the prostaglandin-dependent effects of insulin and some other stimuli on skeletal muscle may be mediated by the muscle's arterioles or connective tissue. Images Fig. 1 Fig. 2 Fig. 3 PMID:1810931

  2. Acyl-coenzyme A:cholesterol acyltransferases

    PubMed Central

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C. Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease. PMID:19141679

  3. Acyl silicates and acyl aluminates as activated intermediates in peptide formation on clays

    NASA Technical Reports Server (NTRS)

    White, D. H.; Kennedy, R. M.; Macklin, J.

    1984-01-01

    Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. The proposed mechanism has been confirmed by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespead, geologically realistic setting for prebiotic peptide formation via in situ activation.

  4. Identification of N-Acyl Phosphatidylserine Molecules in Eukaryotic Cells

    PubMed Central

    Guan, Ziqiang; Li, Shengrong; Smith, Dale C.; Shaw, Walter A.; Raetz, Christian R. H.

    2008-01-01

    While profiling the lipidome of the mouse brain by mass spectrometry, we discovered a novel family of N-acyl phosphatidylserine (N-acyl-PS) molecules. These N-acyl-PS species were enriched by DEAE-cellulose column chromatography, and they were then characterized by accurate mass measurements, tandem mass spectrometry, liquid chromatography/mass spectrometry, and comparison to an authentic standard. Mouse brain N-acyl-PS molecules are heterogeneous and constitute about 0.1 % of the total lipid. In addition to various ester-linked fatty acyl chains on their glycerol backbones, the complexity of the N-acyl-PS series is further increased by the presence of diverse amide-linked N-acyl chains, which include saturated, mono-unsaturated and poly-unsaturated species. N-acyl-PS molecular species were also detected in the lipids of pig brain, mouse RAW264.7 macrophage tumor cells and yeast, but not E. coli. N-acyl-PSs may be biosynthetic precursors of N-acyl serine molecules, such as the recently reported signaling lipid N-arachidonoyl serine from bovine brain. We suggest that a phospholipase D might cleave N-acyl-PS to generate N-acyl serine, in analogy to the biosynthesis of the endocannabinoid N-arachidonoyl ethanolamine (anadamide) from N-arachidonoyl phosphatidylethanolamine. PMID:18031065

  5. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate

    PubMed Central

    Kormanik, Kaitlyn; Kang, Heejung; Cuebas, Dean; Vockley, Jerry; Mohsen, Al-Walid

    2012-01-01

    Sodium phenylbutyrate is used for treating urea cycle disorders, providing an alternative for ammonia excretion. Following conversion to its CoA ester, phenylbutyryl-CoA is postulated to undergo one round of β-oxidation to phenylacetyl-CoA, the active metabolite. Molecular modeling suggests that medium chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3), a key enzyme in straight chain fatty acid β-oxidation, could utilize phenylbutyryl-CoA as substrate. Moreover, phenylpropionyl-CoA has been shown to be a substrate for MCAD and its intermediates accumulate in patients with MCAD deficiency. We have examined the involvement of MCAD and other acyl-CoA dehydrogenases (ACADs) in the metabolism of phenylbutyryl-CoA. Anaerobic titration of purified recombinant human MCAD with phenylbutyryl-CoA caused changes in the MCAD spectrum that are similar to those induced by octanoyl-CoA, its bona fide substrate, and unique to the development of the charge transfer ternary complex. The calculated apparent dissociation constant (KD app) for these substrates was 2.16 μM and 0.12 μM, respectively. The MCAD reductive and oxidative half reactions were monitored using the electron transfer flavoprotein (ETF) fluorescence reduction assay. The catalytic efficiency and the Km for phenylbutyryl-CoA were 0.2 mM−1· sec−1 and 5.3 μM compared to 4.0 mM−1· sec−1 and 2.8 μM for octanoyl-CoA. Extracts of wild type and MCAD-deficient lymphoblast cells were tested for the ability to reduce ETF using phenylbutyryl-CoA as substrate. While ETF reduction activity was detected in extracts of wild type cells, it was undetectable in extracts of cells deficient in MCAD. The results are consistent with MCAD playing a key role in phenylbutyrate metabolism. PMID:23141465

  6. Biochemical and kinetic characterization of the recombinant ADP-forming acetyl coenzyme A synthetase from the amitochondriate protozoan Entamoeba histolytica.

    PubMed

    Jones, Cheryl P; Ingram-Smith, Cheryl

    2014-12-01

    Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed.

  7. Biochemical and Kinetic Characterization of the Recombinant ADP-Forming Acetyl Coenzyme A Synthetase from the Amitochondriate Protozoan Entamoeba histolytica

    PubMed Central

    Jones, Cheryl P.

    2014-01-01

    Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed. PMID:25303954

  8. Characterization of inhibitors acting at the synthetase site of Escherichia coli asparagine synthetase B.

    PubMed

    Boehlein, S K; Nakatsu, T; Hiratake, J; Thirumoorthy, R; Stewart, J D; Richards, N G; Schuster, S M

    2001-09-18

    Asparagine synthetase catalyzes the ATP-dependent formation of L-asparagine from L-aspartate and L-glutamine, via a beta-aspartyl-AMP intermediate. Since interfering with this enzyme activity might be useful for treating leukemia and solid tumors, we have sought small-molecule inhibitors of Escherichia coli asparagine synthetase B (AS-B) as a model system for the human enzyme. Prior work showed that L-cysteine sulfinic acid competitively inhibits this enzyme by interfering with L-aspartate binding. Here, we demonstrate that cysteine sulfinic acid is also a partial substrate for E. coli asparagine synthetase, acting as a nucleophile to form the sulfur analogue of beta-aspartyl-AMP, which is subsequently hydrolyzed back to cysteine sulfinic acid and AMP in a futile cycle. While cysteine sulfinic acid did not itself constitute a clinically useful inhibitor of asparagine synthetase B, these results suggested that replacing this linkage by a more stable analogue might lead to a more potent inhibitor. A sulfoximine reported recently by Koizumi et al. as a competitive inhibitor of the ammonia-dependent E. coli asparagine synthetase A (AS-A) [Koizumi, M., Hiratake, J., Nakatsu, T., Kato, H., and Oda, J. (1999) J. Am. Chem. Soc. 121, 5799-5800] can be regarded as such a species. We found that this sulfoximine also inhibited AS-B, effectively irreversibly. Unlike either the cysteine sulfinic acid interaction with AS-B or the sulfoximine interaction with AS-A, only AS-B productively engaged in asparagine synthesis could be inactivated by the sulfoximine; free enzyme was unaffected even after extended incubation with the sulfoximine. Taken together, these results support the notion that sulfur-containing analogues of aspartate can serve as platforms for developing useful inhibitors of AS-B. PMID:11551215

  9. GOAT induced ghrelin acylation regulates hedonic feeding.

    PubMed

    Davis, J F; Perello, M; Choi, D L; Magrisso, I J; Kirchner, H; Pfluger, P T; Tschoep, M; Zigman, J M; Benoit, S C

    2012-11-01

    Ghrelin is an orexigenic hormone that regulates homeostatic and reward-related feeding behavior. Recent evidence indicates that acylation of ghrelin by the gut enzyme ghrelin O-acyl transferase (GOAT) is necessary to render ghrelin maximally active within its target tissues. Here we tested the hypothesis that GOAT activity modulates food motivation and food hedonics using behavioral pharmacology and mutant mice deficient for GOAT and the ghrelin receptor (GHSR). We evaluated operant responding following pharmacological administration of acyl-ghrelin and assessed the necessity of endogenous GOAT activity for operant responding in GOAT and GHSR-null mice. Hedonic-based feeding behavior also was examined in GOAT-KO and GHSR-null mice using a "Dessert Effect" protocol in which the intake of a palatable high fat diet "dessert" was assessed in calorically-sated mice. Pharmacological administration of acyl-ghrelin augmented operant responding; notably, this effect was dependent on intact GHSR signaling. GOAT-KO mice displayed attenuated operant responding and decreased hedonic feeding relative to controls. These behavioral results correlated with decreased expression of the orexin-1 receptor in reward-related brain regions in GOAT-KO mice. In summary, the ability of ghrelin to stimulate food motivation is dependent on intact GHSR signaling and modified by endogenous GOAT activity. Furthermore, GOAT activity is required for hedonic feeding behavior, an effect potentially mediated by forebrain orexin signaling. These data highlight the significance of the GOAT-ghrelin system for the mediation of food motivation and hedonic feeding.

  10. Biosynthesis of glycosylphosphatidylinositols of Plasmodium falciparum in a cell-free incubation system: inositol acylation is needed for mannosylation of glycosylphosphatidylinositols.

    PubMed Central

    Gerold, P; Jung, N; Azzouz, N; Freiberg, N; Kobe, S; Schwarz, R T

    1999-01-01

    The structures of glycosylphosphatidylinositols (GPIs) in Plasmodium have been described [Gerold, Schuppert and Schwarz (1994) J. Biol. Chem. 269, 2597-2606]. A detailed understanding of GPI synthesis in Plasmodium is a prerequisite for identifying differences present in biosynthetic pathways of parasites and host cells. A comparison of the biosynthetic pathway of GPIs has revealed differences between mammalian cells and parasitic protozoans. A cell-free incubation system prepared from asexual erythrocytic stages of Plasmodium falciparum, the causative agent of malaria in humans, is capable of synthesizing the same spectrum of GPIs as that found in metabolically labelled parasites. The formation of mannosylated GPIs in the cell-free system is shown to be inhibited by GTP and, unexpectedly, micromolar concentrations of GDP-Man. Lower concentrations of GDP-Man affect the spectrum of GPIs synthesized. The inositol ring of GPIs of P. falciparum is modified by an acyl group. The preferred donor of this fatty acid at the inositol ring is myristoyl-CoA. Inositol acylation has to precede the mannosylation of GPIs because, in the absence of acyl-CoA or CoA, mannosylated GPIs were not detected. Inositol myristoylation is a unique feature of plasmodial GPIs and thus might provide a potential target for drug therapy. PMID:10585859

  11. Acylation of lysophosphatidylcholine and glycerolphosphate and fatty acid pattern in phosphatidylcholine and -ethanolamine in microsomes of normal and dystrophic human muscle.

    PubMed

    Kunze, D; Rüstow, B; Kuksis, A; Myher, J J

    1986-02-01

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were isolated from microsomes obtained from normal and dystrophic human muscle and the fatty acid (FA) pattern estimated by GLC. In PC a decrease of the fatty acids of 16:0 and 18:2 and an increase of 18:0 and 18:1 was observed. In PE the decrease measured 18:2 and the increase 18:0 and 18:1. The acylation of lysophosphatidylcholine (LPC) and glycerol-3-phosphate (G3P) was measured in a microsomal system containing exogenously added LPC or G3P and labelled palmitic and oleic acid CoA esters. The incorporation of both labelled fatty acids in LPC-forming PC is reduced in dystrophic microsomes. On the other hand the acylation of glycerolphosphate and the formation of phosphatidic acid (PA) is greater in dystrophic microsomes when compared with normal controls. Possible correlations between the shifted FA pattern and the acylation rate by dystrophic microsomes measured in vitro in the two systems are discussed.

  12. Retinal Vasculitis in Anti-Synthetase Syndrome.

    PubMed

    Donovan, Christopher P; Pecen, Paula E; Baynes, Kimberly; Ehlers, Justis P; Srivastava, Sunil K

    2016-09-01

    A 31-year-old woman with a history of anti-synthetase syndrome-related myositis and interstitial lung disease presented with acute-onset blurry vision and rash on her hands and feet. Visual acuity was hand motion in her right eye and 20/40 in her left eye. Dilated fundus exam showed extensive retinal vasculitis, diffuse intraretinal hemorrhages, and subretinal fluid. Optical coherence tomography revealed significant macular thickening, and fluorescein angiography revealed vascular leakage with peripheral nonperfusion. Aggressive systemic immunosuppression was initiated, with gradual resolution of her disease during 8 months of follow-up. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:874-879.].

  13. Retinal Vasculitis in Anti-Synthetase Syndrome.

    PubMed

    Donovan, Christopher P; Pecen, Paula E; Baynes, Kimberly; Ehlers, Justis P; Srivastava, Sunil K

    2016-09-01

    A 31-year-old woman with a history of anti-synthetase syndrome-related myositis and interstitial lung disease presented with acute-onset blurry vision and rash on her hands and feet. Visual acuity was hand motion in her right eye and 20/40 in her left eye. Dilated fundus exam showed extensive retinal vasculitis, diffuse intraretinal hemorrhages, and subretinal fluid. Optical coherence tomography revealed significant macular thickening, and fluorescein angiography revealed vascular leakage with peripheral nonperfusion. Aggressive systemic immunosuppression was initiated, with gradual resolution of her disease during 8 months of follow-up. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:874-879.]. PMID:27631486

  14. Characterization of Cereulide Synthetase, a Toxin-Producing Macromolecular Machine

    PubMed Central

    Alonzo, Diego A.; Magarvey, Nathan A.; Schmeing, T. Martin

    2015-01-01

    Cereulide synthetase is a two-protein nonribosomal peptide synthetase system that produces a potent emetic toxin in virulent strains of Bacillus cereus. The toxin cereulide is a depsipeptide, as it consists of alternating aminoacyl and hydroxyacyl residues. The hydroxyacyl residues are derived from keto acid substrates, which cereulide synthetase selects and stereospecifically reduces with imbedded ketoreductase domains before incorporating them into the growing depsipeptide chain. We present an in vitro biochemical characterization of cereulide synthetase. We investigate the kinetics and side chain specificity of α-keto acid selection, evaluate the requirement of an MbtH-like protein for adenylation domain activity, assay the effectiveness of vinylsulfonamide inhibitors on ester-adding modules, perform NADPH turnover experiments and evaluate in vitro depsipeptide biosynthesis. This work also provides biochemical insight into depsipeptide-synthesizing nonribosomal peptide synthetases responsible for other bioactive molecules such as valinomycin, antimycin and kutzneride. PMID:26042597

  15. {alpha}-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice

    SciTech Connect

    Lee, Young; Naseem, R. Haris; Park, Byung-Hyun; Garry, Daniel J.; Richardson, James A.; Schaffer, Jean E.; Unger, Roger H. . E-mail: roger.unger@utsouthwestern.edu

    2006-05-26

    {alpha}-Lipoic acid ({alpha}-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, {alpha}-LA protects against cardiac lipotoxicity, {alpha}-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In {alpha}-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activated receptor-{gamma} cofactor-1{alpha} mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that {alpha}-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity.

  16. Adaptive changes in individual acyl-CoA esters from hamster BAT during cold acclimation.

    PubMed

    Donatello, S; Spennetta, T; Strieleman, P; Woldegiorgis, G; Shrago, E

    1988-02-01

    Long-chain fatty acyl-CoA esters (LCFACoAE) were extracted from freeze-clamped powdered brown adipose tissue (BAT) obtained from thermoneutral control and cold-acclimated hamsters and the CoA esters individually separated by high-performance liquid chromatography. LCFACoAE of carbon chain length C12 to C20 were identified by increasing column retention time in the following order: C12:0, C14:1, C14:0, C16:1, C18:2, C16:0, C18:1, C18:0, and C20:4. The mean total LCFACoAE concentrations were 235 +/- 40 nmol/g protein for the control hamsters and 648 +/- 105 nmol/g protein for the 22-day cold-acclimated hamsters. A rapid fourfold increase in the levels of C16:0, C18:0, and C18:1 occurred within hours after initiation of the cold temperature, whereas the concentrations of the other six LCFACoAE either increased only slightly or remained unchanged. Almost 50% of the total LCFACoAE in the BAT of cold-acclimated hamsters was made up of C16:0, C18:0, and C18:1. These results, which demonstrate some dynamic changes in adipose tissue LCFACoAE, are consistent with their proposed role in the initiation and maintenance of BAT thermogenesis.

  17. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    SciTech Connect

    Hayashi, H.; Miwa, A. )

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  18. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  19. Flexible DAQ card for detector systems utilizing the CoaXPress communication standard

    NASA Astrophysics Data System (ADS)

    Neue, G.; Hejtmánek, M.; Marčišovský, M.; Voleš, P.

    2015-04-01

    This work concerns the design and construction of a flexible FPGA based data acquisition system aimed for particle detectors. The interface card as presented was designed for large area detectors with millions of individual readout channels. Flexibility was achieved by partitioning the design into multiple PCBs, creating a set of modular blocks, allowing the creation of a wide variety of configurations by simply stacking functional PCBs together. This way the user can easily toggle the polarity of the high voltage bias supply or switch the downstream interface from CoaXPress to PCIe or stream directly HDMI. We addressed the issues of data throughput, data buffering, bias voltage generation, trigger timing and fine tuning of the whole readout chain enabling a smooth data transmission. On the current prototype, we have wire-bonded a MediPix2 MXR quad and connected it to a XILINX FPGA. For the downstream interface, we implemented the CoaXPress communication protocol, which enables us to stream data at 3.125 Gbps to a standard PC.

  20. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress.

    PubMed

    Vu, Hieu Sy; Roth, Mary R; Tamura, Pamela; Samarakoon, Thilani; Shiva, Sunitha; Honey, Samuel; Lowe, Kaleb; Schmelz, Eric A; Williams, Todd D; Welti, Ruth

    2014-04-01

    Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG (galactose-acylated monogalactosyldiacylglycerol) depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses. PMID:24286212

  1. Association between the enterotoxin production and presence of Coa, Nuc genes among Staphylococcus aureus isolated from various sources, in Shiraz.

    PubMed

    Moghassem Hamidi, R; Hosseinzadeh, S; Shekarforoush, S S; Poormontaseri, M; Derakhshandeh, A

    2015-01-01

    The present study was aimed to identify the frequency of coagulase (Coa) and thermonuclease (Nuc) genes and Staphylococcal enterotoxin A (Sea) production among Staphylococcus aureus isolated from various sources in Shiraz. Moreover, the correlation between the Sea gene and coagulase and thermonuclease enzymes is also considered. A total of 100 S. aureus were isolated from various sources including 40 humans, 30 animals and 30 food samples by the routine biochemical tests. The frequency of Coa, Nuc and Sea genes was evaluated by PCR assay. Correlation among those genes was finally evaluated by statistical analysis. The PCR results showed that the prevalence of Coa, Nuc and Sea genes was 91%, 100% and 14%, respectively. The evaluation of the enterotoxin production indicated that 78.6% of the Sea gene was expressed. The presence of enterotoxin A was not necessarily correlated to the production of toxin. As a final conclusion to detect the enterotoxigenic strains, both genotypic and phenotypic methods are highly recommended.

  2. Association between the enterotoxin production and presence of Coa, Nuc genes among Staphylococcus aureus isolated from various sources, in Shiraz

    PubMed Central

    Moghassem Hamidi, R; Hosseinzadeh, S; Shekarforoush, S. S.; Poormontaseri, M; Derakhshandeh, A

    2015-01-01

    The present study was aimed to identify the frequency of coagulase (Coa) and thermonuclease (Nuc) genes and Staphylococcal enterotoxin A (Sea) production among Staphylococcus aureus isolated from various sources in Shiraz. Moreover, the correlation between the Sea gene and coagulase and thermonuclease enzymes is also considered. A total of 100 S. aureus were isolated from various sources including 40 humans, 30 animals and 30 food samples by the routine biochemical tests. The frequency of Coa, Nuc and Sea genes was evaluated by PCR assay. Correlation among those genes was finally evaluated by statistical analysis. The PCR results showed that the prevalence of Coa, Nuc and Sea genes was 91%, 100% and 14%, respectively. The evaluation of the enterotoxin production indicated that 78.6% of the Sea gene was expressed. The presence of enterotoxin A was not necessarily correlated to the production of toxin. As a final conclusion to detect the enterotoxigenic strains, both genotypic and phenotypic methods are highly recommended. PMID:27175208

  3. Structural basis for a bispecific NADP+ and CoA binding site in an archaeal malonyl-coenzyme A reductase.

    PubMed

    Demmer, Ulrike; Warkentin, Eberhard; Srivastava, Ankita; Kockelkorn, Daniel; Pötter, Markus; Marx, Achim; Fuchs, Georg; Ermler, Ulrich

    2013-03-01

    Autotrophic members of the Sulfolobales (crenarchaeota) use the 3-hydroxypropionate/4-hydroxybutyrate cycle to assimilate CO2 into cell material. The product of the initial acetyl-CoA carboxylation with CO2, malonyl-CoA, is further reduced to malonic semialdehyde by an NADPH-dependent malonyl-CoA reductase (MCR); the enzyme also catalyzes the reduction of succinyl-CoA to succinic semialdehyde onwards in the cycle. Here, we present the crystal structure of Sulfolobus tokodaii malonyl-CoA reductase in the substrate-free state and in complex with NADP(+) and CoA. Structural analysis revealed an unexpected reaction cycle in which NADP(+) and CoA successively occupy identical binding sites. Both coenzymes are pressed into an S-shaped, nearly superimposable structure imposed by a fixed and preformed binding site. The template-governed cofactor shaping implicates the same binding site for the 3'- and 2'-ribose phosphate group of CoA and NADP(+), respectively, but a different one for the common ADP part: the β-phosphate of CoA aligns with the α-phosphate of NADP(+). Evolution from an NADP(+) to a bispecific NADP(+) and CoA binding site involves many amino acid exchanges within a complex process by which constraints of the CoA structure also influence NADP(+) binding. Based on the paralogous aspartate-β-semialdehyde dehydrogenase structurally characterized with a covalent Cys-aspartyl adduct, a malonyl/succinyl group can be reliably modeled into MCR and discussed regarding its binding mode, the malonyl/succinyl specificity, and the catalyzed reaction. The modified polypeptide surrounding around the absent ammonium group in malonate/succinate compared with aspartate provides the structural basis for engineering a methylmalonyl-CoA reductase applied for biotechnical polyester building block synthesis.

  4. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis

    PubMed Central

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  5. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis.

    PubMed

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  6. Single sequence of a helix-loop peptide confers functional anticodon recognition on two tRNA synthetases.

    PubMed Central

    Auld, D S; Schmimmel, P

    1996-01-01

    The specific aminoacylation of RNA oligonucleotides whose sequences are based on the acceptor stems of tRNAs can be viewed as an operational RNA code for amino acids that may be related to the development of the genetic code. Many synthetases also have direct interactions with tRNA anticodon triplets and, in some cases, these interactions are thought to be essential for aminoacylation specificity. In these instances, an unresolved question is whether interactions with parts of the tRNA outside of the anticodon are sufficient for decoding genetic information. Escherichia coli isoleucyl- and methionyl-tRNA synthetases are closely related enzymes that interact with their respective anticodons. We used binary combinatorial mutagenesis of a 10 amino acid anticodon binding peptide in these two enzymes to identify composite sequences that would confer function to both enzymes despite their recognizing different anticodons. A single peptide was found that confers function to both enzymes in vivo and in vitro. Thus, even in enzymes where anticodon interactions are normally important for distinguishing one tRNA from another, these interactions can be 'neutralized' without losing specificity of amino-acylation. We suggest that acceptor helix interactions may play a role in providing the needed specificity. Images PMID:8605884

  7. A key role of PGC-1α transcriptional coactivator in production of VEGF by a novel angiogenic agent COA-Cl in cultured human fibroblasts.

    PubMed

    Igarashi, Junsuke; Okamoto, Ryuji; Yamashita, Tetsuo; Hashimoto, Takeshi; Karita, Sakiko; Nakai, Kozo; Kubota, Yasuo; Takata, Maki; Yamaguchi, Fuminori; Tokuda, Masaaki; Sakakibara, Norikazu; Tsukamoto, Ikuko; Konishi, Ryoji; Hirano, Katsuya

    2016-03-01

    We previously demonstrated a potent angiogenic effect of a newly developed adenosine-like agent namedCOA-Cl.COA-Cl exerted tube forming activity in human umbilical vein endothelial cells in the presence of normal human dermal fibroblasts (NHDF). We therefore explored whether and howCOA-Cl modulates gene expression and protein secretion ofVEGF, a master regulator of angiogenesis, inNHDFRT-PCRandELISArevealed thatCOA-Cl upregulatedVEGF mRNAexpression and protein secretion inNHDFHIF1α(hypoxia-inducible factor 1α), a transcription factor, andPGC-1α(peroxisome proliferator-activated receptor-γcoactivator-1α), a transcriptional coactivator, are known to positively regulate theVEGFgene. Immunoblot andRT-PCRanalyses revealed thatCOA-Cl markedly upregulated the expression ofPGC-1αprotein andmRNACOA-Cl had no effect on the expression ofHIF1αprotein andmRNAin both hypoxia and normoxia. SilencingPGC-1αgene, but notHIF1αgene, by small interferingRNAattenuated the ability ofCOA-Cl to promoteVEGFsecretion. When an N-terminal fragment ofPGC-1αwas cotransfected with its partner transcription factorERRα(estrogen-related receptor-α) inCOS-7 cells,COA-Cl upregulated the expression of the endogenousVEGF mRNA However,COA-Cl had no effect on the expression ofVEGF, whenHIF1αwas transfected.COA-Cl inducesVEGFgene expression and protein secretion in fibroblasts. The transcriptional coactivatorPGC-1α, in concert withERRα, plays a key role in theCOA-Cl-inducedVEGFproduction.COA-Cl-induced activation ofPGC-1α-ERRα-VEGFpathway has a potential as a novel means for therapeutic angiogenesis.

  8. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea.

    PubMed

    Ostrowski, Maciej; Mierek-Adamska, Agnieszka; Porowińska, Dorota; Goc, Anna; Jakubowska, Anna

    2016-10-01

    Phytohormone conjugation is one of the mechanisms that maintains a proper hormonal homeostasis and that is necessary for the realization of physiological responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases convert indole-3-acetic acid (IAA) to IAA-amino acid conjugates by ATP-dependent reactions. IAA-aspartate (IAA-Asp) exists as a predominant amide conjugate of auxin in pea tissues and acts as an intermediate during IAA catabolism. Here we report a novel recombinant indole-3-acetic acid-amido synthetase in Pisum sativum. In silico analysis shows that amino acid sequence of PsGH3 has the highest homology to Medicago truncatula GH3.3. The recombinant His-tag-PsGH3 fusion protein has been obtained in E. coli cells and is a soluble monomeric polypeptide with molecular mass of 69.18 kDa. The PsGH3 was purified using Ni(2+)-affinity chromatography and native PAGE. Kinetic analysis indicates that the enzyme strongly prefers IAA and L-aspartate as substrates for conjugation revealing Km(ATP) = 0.49 mM, Km(L-Asp) = 2.2 mM, and Km(IAA) = 0.28 mM. Diadenosine pentaphosphate (Ap5A) competes with ATP for catalytic site and diminishes the PsGH3 affinity toward ATP approximately 1.11-fold indicating Ki = 8.5 μM. L-Tryptophan acts as an inhibitor of IAA-amido synthesizing activity by competition with L-aspartate. Inorganic pyrophosphatase (PPase) hydrolyzing pyrophosphate to two phosphate ions, potentiates IAA-Asp synthetase activity of PsGH3. Our results demonstrate that PsGH3 is a novel enzyme that is involved in auxin metabolism in pea seeds.

  9. Comparative Biochemical and Immunological Studies of Bacterial Glutamine Synthetases

    PubMed Central

    Tronick, Steven R.; Ciardi, Joseph E.; Stadtman, E. R.

    1973-01-01

    Antisera prepared against adenylylated and unadenylylated Escherichia coli glutamine synthetase cross-reacted with the glutamine synthetases from a number of gram-negative bacteria and one gram-variable species as demonstrated by immunodiffusion and inhibition of enzyme activity. In contrast, the antisera did not cross-react with the glutamine synthetases from gram-positive bacteria (with one exception) nor with the synthetases of higher organisms. Modification of the various glutamine synthetases by covalent attachment of adenosine 5′-monophosphate (or other nucleotides) was tested for by determining whether or not snake venom phosphodiesterase altered catalytic activity in a manner similar to its effect on adenylylated E. coli glutamine synthetase. Only the activity of the glutamine synthetases from gram-negative bacteria grown with specific levels of nitrogen sources could be altered by snake venom phosphodiesterase. In addition, a relative order of antigenic homology between cross-reacting enzymes was suggested based on the patterns of spur formation in the immunodiffusion assay. Images PMID:4125585

  10. Acylated but not des-acyl ghrelin is neuroprotective in an MPTP mouse model of Parkinson's disease.

    PubMed

    Bayliss, Jacqueline A; Lemus, Moyra; Santos, Vanessa V; Deo, Minh; Elsworth, John D; Andrews, Zane B

    2016-05-01

    The gut hormone ghrelin is widely beneficial in many disease states. However, ghrelin exists in two distinctive isoforms, each with its own metabolic profile. In Parkinson's Disease (PD) acylated ghrelin administration is neuroprotective, however, the role of des-acylated ghrelin remains unknown. In this study, we wanted to identify the relative contribution each isoform plays using the MPTP model of PD. Chronic administration of acylated ghrelin in mice lacking both isoforms of ghrelin (Ghrelin KO) attenuated the MPTP-induced loss on tyrosine hydroxylase (TH) neuronal number and volume and TH protein expression in the nigrostriatal pathway. Moreover, acylated ghrelin reduced the increase in glial fibrillary acidic protein and Ionized calcium binding adaptor molecule 1 microglia in the substantia nigra. However, injection of acylated ghrelin also elevated plasma des-acylated ghrelin, indicating in vivo deacetylation. Next, we chronically administered des-acylated ghrelin to Ghrelin KO mice and observed no neuroprotective effects in terms of TH cell number, TH protein expression, glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 cell number. The lack of a protective effect was mirrored in ghrelin-O-acyltransferase KO mice, which lack the ability to acylate ghrelin and consequently these mice have chronically increased plasma des-acyl ghrelin. Plasma corticosterone was elevated in ghrelin-O-acyltransferase KO mice and with des-acylated ghrelin administration. Overall, our studies suggest that acylated ghrelin is the isoform responsible for in vivo neuroprotection and that pharmacological approaches preventing plasma conversion from acyl ghrelin to des-acyl ghrelin may have clinical efficacy to help slow or prevent the debilitating effects of PD. Ghrelin exists in the plasma as acyl and des-acyl ghrelin. We determined the form responsible for in vivo neuroprotection in a mouse model of Parkinson's disease. Although exogenous acyl ghrelin

  11. The substrate promiscuity of a phosphopantetheinyl transferase SchPPT for coenzyme A derivatives and acyl carrier proteins.

    PubMed

    Wang, Yue-Yue; Luo, Hong-Dou; Zhang, Xiao-Sheng; Lin, Tao; Jiang, Hui; Li, Yong-Quan

    2016-03-01

    Phosphopantetheinyl transferases (PPTases) catalyze the posttranslational modification of acyl carrier proteins (ACPs) in fatty acid synthases (FASs), ACPs in polyketide synthases, and peptidyl carrier proteins (PCPs) in nonribosomal peptide synthetases (NRPSs) in all organisms. Some bacterial PPTases have broad substrate specificities for ACPs/PCPs and/or coenzyme A (CoA)/CoA analogs, facilitating their application in metabolite production in hosts and/or labeling of ACPs/PCPs, respectively. Here, a group II PPTase SchPPT from Streptomyces chattanoogensis L10 was characterized to accept a heterologous ACP and acetyl-CoA. Thus, SchPPT is a promiscuous PPTase and may be used on polyketide production in heterologous bacterial host and labeling of ACPs.

  12. Acyl glucuronides: the good, the bad and the ugly.

    PubMed

    Regan, Sophie L; Maggs, James L; Hammond, Thomas G; Lambert, Craig; Williams, Dominic P; Park, B Kevin

    2010-10-01

    Acyl glucuronidation is the major metabolic conjugation reaction of most carboxylic acid drugs in mammals. The physiological consequences of this biotransformation have been investigated incompletely but include effects on drug metabolism, protein binding, distribution and clearance that impact upon pharmacological and toxicological outcomes. In marked contrast, the exceptional but widely disparate chemical reactivity of acyl glucuronides has attracted far greater attention. Specifically, the complex transacylation and glycation reactions with proteins have provoked much inconclusive debate over the safety of drugs metabolised to acyl glucuronides. It has been hypothesised that these covalent modifications could initiate idiosyncratic adverse drug reactions. However, despite a large body of in vitro data on the reactions of acyl glucuronides with protein, evidence for adduct formation from acyl glucuronides in vivo is limited and potentially ambiguous. The causal connection of protein adduction to adverse drug reactions remains uncertain. This review has assessed the intrinsic reactivity, metabolic stability and pharmacokinetic properties of acyl glucuronides in the context of physiological, pharmacological and toxicological perspectives. Although numerous experiments have characterised the reactions of acyl glucuronides with proteins, these might be attenuated substantially in vivo by rapid clearance of the conjugates. Consequently, to delineate a relationship between acyl glucuronide formation and toxicological phenomena, detailed pharmacokinetic analysis of systemic exposure to the acyl glucuronide should be undertaken adjacent to determining protein adduct concentrations in vivo. Further investigation is required to ascertain whether acyl glucuronide clearance is sufficient to prevent covalent modification of endogenous proteins and consequentially a potential immunological response. PMID:20830700

  13. The molecular weight and thiol residues of acetyl-coenzyme A synthetase from ox heart mitochondria

    PubMed Central

    Londesborough, John C.; Yuan, Sung Ling; Webster, Leslie T.

    1973-01-01

    1. A constant molecular weight of 57000 was obtained by gel filtration of highly purified acetyl-CoA synthetase over a 1000-fold range of enzyme concentrations. The amino acid analysis is reported. 2. With native enzyme at 20°C the relatively rapid reaction of four thiol residues with p-hydroxymercuribenzoate caused an immediate inhibition reversible by either CoA or mercaptoethanol. Other substrates did not protect against this rapid inhibition. 3. The much slower reaction of the remaining four thiol residues was independent of the concentration of the mercurial, first-order with respect to enzyme, and had a large energy of activation (+136kJ/mol), suggesting that a conformation change in the protein was rate-limiting. This slow phase of the reaction was accompanied by an irreversible inactivation of the enzyme. 4. The effects of substrates on this irreversible inactivation at pH7.0 in 5 mm-MgCl2 indicated strong binding of ATP and pyrophosphate by the enzyme (concentrations for half-maximal effects, K½, were <30μm and <10μm respectively) and weaker binding of acetyl-CoA (K½ about 1 mm), AMP (K½ about 2mm) and acetate. In the presence of acetate, MgCl2 and p-hydroxymercuribenzoate, titration of the enzyme with ATP revealed at least two ATP binding sites/mol. 5. The experiments suggest that reaction of the thiol residues with mercurial causes loss of enzymic activity by altering the structure of the enzyme, rather than that the thiol residues play a direct role in the catalysis. PMID:4737256

  14. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress

    PubMed Central

    Vu, Hieu Sy; Roth, Mary R.; Tamura, Pamela; Samarakoon, Thilani; Shiva, Sunitha; Honey, Samuel; Lowe, Kaleb; Schmelz, Eric A.; Williams, Todd D.; Welti, Ruth

    2014-01-01

    Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection, and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses. PMID:24286212

  15. Energetics of S-adenosylmethionine synthetase catalysis.

    PubMed

    McQueney, M S; Anderson, K S; Markham, G D

    2000-04-18

    S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase) catalyzes the only known route of biosynthesis of the primary biological alkylating agent. The internal thermodynamics of the Escherichia coli S-adenosylmethionine (AdoMet) synthetase catalyzed formation of AdoMet, pyrophosphate (PP(i)), and phosphate (P(i)) from ATP, methionine, and water have been determined by a combination of pre-steady-state kinetics, solvent isotope incorporation, and equilibrium binding measurements in conjunction with computer modeling. These studies provided the rate constants for substrate binding, the two chemical interconversion steps [AdoMet formation and subsequent tripolyphosphate (PPP(i)) hydrolysis], and product release. The data demonstrate the presence of a kinetically significant isomerization of the E.AdoMet.PP(i).P(i) complex before product release. The free energy profile for the enzyme-catalyzed reaction under physiological conditions has been constructed using these experimental values and in vivo concentrations of substrates and products. The free energy profile reveals that the AdoMet formation reaction, which has an equilibrium constant of 10(4), does not have well-balanced transition state and ground state energies. In contrast, the subsequent PPP(i) hydrolytic reaction is energetically better balanced. The thermodynamic profile indicates the use of binding energies for catalysis of AdoMet formation and the necessity for subsequent PPP(i) hydrolysis to allow enzyme turnover. Crystallographic studies have shown that a mobile protein loop gates access to the active site. The present kinetic studies indicate that this loop movement is rapid with respect to k(cat) and with respect to substrate binding at physiological concentrations. The uniformly slow binding rates of 10(4)-10(5) M(-)(1) s(-)(1) for ligands with different structures suggest that loop movement may be an intrinsic property of the protein rather than being ligand induced. PMID:10757994

  16. Molecular definition of bovine argininosuccinate synthetase deficiency.

    PubMed Central

    Dennis, J A; Healy, P J; Beaudet, A L; O'Brien, W E

    1989-01-01

    Citrullinemia is an inborn error of metabolism due to deficiency of the urea cycle enzyme, argininosuccinate synthetase [L-citrulline:L-aspartate ligase (AMP-forming), EC 6.3.4.5]. The disease was first described in humans but was recently reported in dairy cattle in Australia. Here we report the nucleotide sequence of the normal bovine cDNA for argininosuccinate synthetase and the mutation present in animals with citrullinemia. Analysis of DNA from affected animals by Southern blotting did not readily identify the mutation in the bovine gene. RNA (Northern) blotting revealed a major reduction in the steady-state amount of mRNA in the liver of affected animals to less than 5% of controls. The bovine cDNA was cloned and sequenced and revealed 96% identity with the deduced human sequence at the amino acid level. Starting with mutant bovine liver, the mRNA was reverse-transcribed; the cDNA product was amplified with the polymerase chain reaction, cloned, and sequenced. The sequence revealed a C----T transition converting arginine-86 (CGA) to a nonsense codon (TGA). A second C----T transition represented a polymorphism in proline-175 (CCC----CCT). The mutation and the polymorphism were confirmed by amplification of genomic DNA and demonstration with restriction endonuclease enzymes of both the loss of an Ava II site in DNA from mutant animals at codon 86 and the presence or absence of a Dde I site at codon 175. The loss of the Ava II site can be used for rapid, economical, nonradioactive detection of heterozygotes for bovine citrullinemia. Images PMID:2813370

  17. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    SciTech Connect

    Wubben, T.; Mesecar, A.D.

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  18. Discovery of Tumor-Specific Irreversible Inhibitors of Stearoyl CoA Desaturase

    PubMed Central

    Theodoropoulos, Panayotis C.; Gonzales, Stephen S.; Winterton, Sarah E.; Rodriguez-Navas, Carlos; McKnight, John S.; Morlock, Lorraine K.; Hanson, Jordan M.; Cross, Bethany; Owen, Amy E.; Duan, Yingli; Moreno, Jose R.; Lemoff, Andrew; Mirzaei, Hamid; Posner, Bruce A.; Williams, Noelle S.

    2016-01-01

    A hallmark of targeted cancer therapies is selective toxicity among cancer cell lines. We evaluated results from a viability screen of over 200,000 small molecules to identify two chemical series, oxalamides and benzothiazoles, that were selectively toxic to the same four of 12 human lung cancer cell lines at low nanomolar concentrations. Sensitive cell lines expressed cytochrome P450 (CYP) 4F11, which metabolized the compounds into irreversible stearoyl CoA desaturase (SCD) inhibitors. SCD is recognized as a promising biological target in cancer and metabolic disease. However, SCD is essential to sebocytes, and accordingly SCD inhibitors cause skin toxicity. Mouse sebocytes were unable to activate the benzothiazoles or oxalamides into SCD inhibitors, providing a therapeutic window for inhibiting SCD in vivo. We thus offer a strategy to target SCD in cancer by taking advantage of high CYP expression in a subset of tumors. PMID:26829472

  19. The role of acyl-glucose in anthocyanin modifications.

    PubMed

    Sasaki, Nobuhiro; Nishizaki, Yuzo; Ozeki, Yoshihiro; Miyahara, Taira

    2014-11-14

    Higher plants can produce a wide variety of anthocyanin molecules through modification of the six common anthocyanin aglycons that they present. Thus, hydrophilic anthocyanin molecules can be formed and stabilized by glycosylation and acylation. Two types of glycosyltransferase (GT) and acyltransferase (AT) have been identified, namely cytoplasmic GT and AT and vacuolar GT and AT. Cytoplasmic GT and AT utilize UDP-sugar and acyl-CoA as donor molecules, respectively, whereas both vacuolar GT and AT use acyl-glucoses as donor molecules. In carnation plants, vacuolar GT uses aromatic acyl-glucoses as the glucose donor in vivo; independently, vacuolar AT uses malylglucose, an aliphatic acyl-glucose, as the acyl-donor. In delphinium and Arabidopsis, p-hydroxybenzoylglucose and sinapoylglucose are used in vivo as bi-functional donor molecules by vacuolar GT and AT, respectively. The evolution of these enzymes has allowed delphinium and Arabidopsis to utilize unique donor molecules for production of highly modified anthocyanins.

  20. Physiological Consequences of Compartmentalized Acyl-CoA Metabolism*

    PubMed Central

    Cooper, Daniel E.; Young, Pamela A.; Klett, Eric L.; Coleman, Rosalind A.

    2015-01-01

    Meeting the complex physiological demands of mammalian life requires strict control of the metabolism of long-chain fatty acyl-CoAs because of the multiplicity of their cellular functions. Acyl-CoAs are substrates for energy production; stored within lipid droplets as triacylglycerol, cholesterol esters, and retinol esters; esterified to form membrane phospholipids; or used to activate transcriptional and signaling pathways. Indirect evidence suggests that acyl-CoAs do not wander freely within cells, but instead, are channeled into specific pathways. In this review, we will discuss the evidence for acyl-CoA compartmentalization, highlight the key modes of acyl-CoA regulation, and diagram potential mechanisms for controlling acyl-CoA partitioning. PMID:26124277

  1. OUTCROP-BASED HIGH RESOLUTION GAMMA-RAY CHARACTERIZATION OF ARSENIC-BEARING LITHOFACIES IN THE PERMIAN GARBER SANDSTONE AND WELLINGTON FORMATION, CENTRAL OKLAHOMA AQUIFER (COA). CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    The COA supplies drinking water to a number of municipalities in central Oklahoma. Two major stratigraphic units in the COA, the Garber Sandstone and Wellington Formation, contain naturally occurring arsenic that exceeds government mandated drinking-water standards (EPA, 2001). ...

  2. Acyl-CoA-binding and self-associating properties of a recombinant 13.3 kDa N-terminal fragment of diacylglycerol acyltransferase-1 from oilseed rape

    PubMed Central

    Weselake, Randall J; Madhavji, Milan; Szarka, Steve J; Patterson, Nii A; Wiehler, William B; Nykiforuk, Cory L; Burton, Tracy L; Boora, Parveen S; Mosimann, Steven C; Foroud, Nora A; Thibault, Benjamin J; Moloney, Maurice M; Laroche, André; Furukawa-Stoffer, Tara L

    2006-01-01

    Background Diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to generate triacylglycerol and CoA. The deduced amino acid sequence of cDNAs encoding DGAT1 from plants and mammals exhibit a hydrophilic N-terminal region followed by a number of potential membrane-spanning segments, which is consistent with the membrane-bound nature of this enzyme family. In order to gain insight into the structure/function properties of DGAT1 from Brassica napus (BnDGAT1), we produced and partially characterized a recombinant polyHis-tagged N-terminal fragment of the enzyme, BnDGAT1(1–116)His6, with calculated molecular mass of 13,278 Da. Results BnDGAT1(1–116)His6 was highly purified from bacterial lysate and plate-like monoclinic crystals were grown using this preparation. Lipidex-1000 binding assays and gel electrophoresis indicated that BnDGAT1(1–116)His6 interacts with long chain acyl-CoA. The enzyme fragment displayed enhanced affinity for erucoyl (22:1cisΔ13)-CoA over oleoyl (18:1cisΔ9)-CoA, and the binding process displayed positive cooperativity. Gel filtration chromatography and cross-linking studies indicated that BnDGAT1(1–116)His6 self-associated to form a tetramer. Polyclonal antibodies raised against a peptide of 15 amino acid residues representing a segment of BnDGAT1(1–116)His6 failed to react with protein in microsomal vesicles following treatment with proteinase K, suggesting that the N-terminal fragment of BnDGAT1 was localized to the cytosolic side of the ER. Conclusion Collectively, these results suggest that BnDGAT1 may be allosterically modulated by acyl-CoA through the N-terminal region and that the enzyme self-associates via interactions on the cytosolic side of the ER. PMID:17192193

  3. Genetics Home Reference: carbamoyl phosphate synthetase I deficiency

    MedlinePlus

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions carbamoyl phosphate synthetase I deficiency ...

  4. [Regulation of glucosamine synthetase activity by cholesterol and hydrocortisone].

    PubMed

    Sharaev, P N; Ivanov, V G; Bogdanov, N G

    1988-09-01

    The effects of cholesterol and hydrocortisone (cortisol) on the activity of purified glucosamine synthetase from rat liver was studied in vitro. It was found that the enzyme activity is increased by cholesterol and inhibited by hydrocortisone. These steroids block the allosteric effect of vitamin K1 on the enzyme. There is evidence testifying to the allosteric type of cholesterol and hydrocortisone effects on glucosamine synthetase. PMID:3203113

  5. Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence

    SciTech Connect

    Byers, D.M.; Meighen, E.A.

    1985-09-01

    Pulse-chase experiments with (/sup 3/H)tetradecanoic acid and ATP showed that the bioluminescence-related 32-kDa acyltransferase from Vibrio harveyi can specifically catalyze the deacylation of a /sup 3/H-labeled 18-kDa protein observed in extracts of this bacterium. The 18-kDa protein has been partially purified and its physical and chemical properties strongly indicate that it is fatty acyl-acyl carrier protein (acyl-ACP). Both this V. harveyi (/sup 3/H)acylprotein and (/sup 3/H)palmitoyl-ACP from Escherichia coli were substrates in vitro for either the V. harveyi 32-kDa acyltransferase or the analogous enzyme (34K) from Photobacterium phosphoreum. TLC analysis indicated that the hexane-soluble product of the reaction is fatty acid. No significant cleavage of either E. coli or V. harveyi tetradecanoyl-ACP was observed in extracts of these bacteria unless the 32-kDa or 34K acyltransferase was present. Since these enzymes are believed to be responsible for the supply of fatty acids for reduction to form the aldehyde substrate of luciferase, the above results suggest that long-chain acyl-ACP is the source of fatty acids for bioluminescence.

  6. Function of the major synthetase subdomains of carbamyl-phosphate synthetase.

    PubMed

    Guy, H I; Evans, D R

    1996-06-01

    The amidotransferase domain (GLNase) of mammalian carbamyl-phosphate synthetase II hydrolyzes glutamine and transfers ammonia to the synthetase domain where carbamyl phosphate is formed in a three-step reaction sequence. The synthetase domain consists of two homologous subdomains, CPS.A and CPS.B. Recent studies suggest that CPS.A catalyzes the initial ATP dependent-activation of bicarbonate, whereas CPS.B uses a second ATP to form carbamyl phosphate. To establish the function of these substructural elements, we have cloned and expressed the mammalian protein and its subdomains in Escherichia coli. Recombinant CPSase (GLNase-CPS.A-CPS.B) was found to be fully functional. Two other proteins were made; the first consisted of only GLNase and CPS.A, whereas the second lacked CPS.A and had the GLNase domain fused directly to CPS.B. Remarkably, both proteins catalyzed the entire series of reactions involved in glutamine-dependent carbamyl phosphate synthesis. The stoichiometry, like that of the native enzyme, was 2 mol of ATP utilized per mol of carbamyl phosphate formed. GLN-CPS.B is allosterically regulated, whereas GLN-CPS.A was insensitive to effectors, a result consistent with evidence showing that allosteric effectors bind to CPS.B. These properties are not peculiar to the mammalian protein, because the separately cloned CPS.A subdomain of the E. coli enzyme was also found to catalyze carbamyl phosphate synthesis. Gel filtration chromatography and chemical cross-linking studies showed that these molecules are dimers, a structural organization that may be a prerequisite for the overall reaction. Thus, the homologous CPS.A and CPS.B subdomains are functionally equivalent, although in the native enzyme they may have different functions resulting from their juxtaposition relative to the other components in the complex. PMID:8662713

  7. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  8. Acylated iridoids with cytotoxicity from Valeriana jatamansi.

    PubMed

    Lin, Sheng; Shen, Yun-Heng; Li, Hui-Liang; Yang, Xian-Wen; Chen, Tao; Lu, Long-Hai; Huang, Zheng-Sheng; Liu, Run-Hui; Xu, Xi-Ke; Zhang, Wei-Dong; Wang, Hui

    2009-04-01

    Thirteen new acylated iridoids, jatamanvaltrates A-M (1-13), together with nine known valepotriates (14-22), were isolated from the whole plants of Valeriana jatamansi (syn. Valeriana wallichii). The structures of these new compounds were assigned by detailed interpretation of spectroscopic data. Jatamanvaltrates D (4) and H (9) are the first examples of naturally occurring valepotriates containing an o-hydroxybenzoyloxy moiety at C-10. All isolated compounds were tested for their cytotoxicity against lung adenocarcinoma (A549), metastatic prostate cancer (PC-3M), colon cancer (HCT-8), and hepatoma (Bel7402) cell lines.

  9. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site.

    PubMed

    Sayer, Christopher; Finnigan, William; Isupov, Michail N; Levisson, Mark; Kengen, Servé W M; van der Oost, John; Harmer, Nicholas J; Littlechild, Jennifer A

    2016-01-01

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974

  10. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site

    PubMed Central

    Sayer, Christopher; Finnigan, William; Isupov, Michail N.; Levisson, Mark; Kengen, Servé W. M.; van der Oost, John; Harmer, Nicholas J.; Littlechild, Jennifer A.

    2016-01-01

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974

  11. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA.

    PubMed

    Sirithanakorn, Chaiyos; Jitrapakdee, Sarawut; Attwood, Paul V

    2016-08-01

    The mechanism of allosteric activation of pyruvate carboxylase by acetyl CoA is not fully understood. Here we have examined the roles of residues near the acetyl CoA binding site in the allosteric activation of Rhizobium etli pyruvate carboxylase using site-directed mutagenesis. Arg429 was found to be especially important for acetyl CoA binding as substitution with serine resulted in a 100-fold increase in the Ka of acetyl CoA activation and a large decrease in the cooperativity of this activation. Asp420 and Arg424, which do not make direct contact with bound acetyl CoA, were nonetheless found to affect acetyl CoA binding when mutated, probably through changed interactions with another acetyl CoA binding residue, Arg427. Thermodynamic activation parameters for the pyruvate carboxylation reaction were determined from modified Arrhenius plots and showed that acetyl CoA acts to decrease the activation free energy of the reaction by both increasing the activation entropy and decreasing the activation enthalpy. Most importantly, mutations of Asp420, Arg424, and Arg429 enhanced the activity of the enzyme in the absence of acetyl CoA. A main focus of this work was the detailed investigation of how this increase in activity occurred in the R424S mutant. This mutation decreased the activation enthalpy of the pyruvate carboxylation reaction by an amount consistent with removal of a single hydrogen bond. It is postulated that Arg424 forms a hydrogen bonding interaction with another residue that stabilizes the asymmetrical conformation of the R. etli pyruvate carboxylase tetramer, constraining its interconversion to the symmetrical conformer that is required for catalysis. PMID:27379711

  12. Allosteric dominance in carbamoyl phosphate synthetase.

    PubMed

    Braxton, B L; Mullins, L S; Raushel, F M; Reinhart, G D

    1999-02-01

    A linked-function analysis of the allosteric responsiveness of carbamoyl phosphate synthetase (CPS) from E. coli was performed by following the ATP synthesis reaction at low carbamoyl phosphate concentration. All three allosteric ligands, ornithine, UMP, and IMP, act by modifying the affinity of CPS for the substrate MgADP. Individually ornithine strongly promotes, and UMP strongly antagonizes, the binding of MgADP. IMP causes only a slight inhibition at 25 degreesC. When both ornithine and UMP were varied, models which presume a mutually exclusive binding relationship between these ligands do not fit the data as well as does one which allows both ligands (and substrate) to bind simultaneously. The same result was obtained with ornithine and IMP. By contrast, the actions of UMP and IMP together must be explained with a competitive model, consistent with previous reports that UMP and IMP bind to the same site. When ornithine is bound to the enzyme, its activation dominates the effects when either UMP or IMP is also bound. The relationship of this observation to the structure of CPS is discussed. PMID:9931004

  13. Glutamine Synthetase of Nicotiana plumbaginifolia1

    PubMed Central

    Tingey, Scott V.; Coruzzi, Gloria M.

    1987-01-01

    We have characterized the distinct forms of glutamine synthetase (GS) which are present in leaves and roots of Nicotiana plumbaginifolia. Mature leaves contain a single GS polypeptide (44 kilodaltons in size) which is localized to the stroma of intact chloroplasts. In contrast, the GS polypeptide in roots is distinct in size (38 kilodaltons) and charge. A lectin stain of leaf soluble protein indicates that the size difference of these mature GS polypeptides is not the result of posttranslational glycosylation. cDNA clones encoding a GS mRNA of N. plumbaginifolia were characterized and used as molecular probes to examine GS transcripts in leaves and roots. GS mRNA hybrid-selected from leaves or roots translated in vitro into distinct GS primary translation products (49 or 38 kilodaltons). The 49 kilodalton GS primary translation product, specific to leaf poly(A)RNA is proposed to be a precursor to the mature 44 kilodalton chloroplast stromal GS polypeptide. The 38 kilodalton GS primary translation product encoded by root GS mRNA, corresponds in size to the polypeptide encoded by the GS cDNA clones characterized. Southern blot analysis of nuclear DNA indicates that there are several different genomic fragments encoding GS in N. plumbaginifolia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 PMID:16665445

  14. Acyl-ACP Substrate Recognition in Burkholderia mallei BmaI1 Acyl-Homoserine Lactone Synthase

    PubMed Central

    2015-01-01

    The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates virulence in several pathogenic bacteria. The hallmark of an efficient quorum sensing system relies on the tight specificity in the signal generated by each bacterium. Since AHL signal specificity is derived from the acyl-chain of the acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must recognize and react with the native acyl-ACP with high catalytic efficiency while keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP substrate recognition in these enzymes, however, remains elusive. In this study, we investigated differences in catalytic efficiencies for shorter and longer chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP, the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA reacting with BmaI1 decreased by greater than 20-fold compared to the native octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest that non-native acyl-ACP substrates are unable to form a stable and productive BmaI1·acyl-ACP·SAM ternary complex and are thus effectively discriminated by the enzyme. These results offer insights into the molecular basis of substrate recognition for the BmaI1 enzyme. PMID:25215658

  15. Emulsifying properties of acylated rapeseed (Brassica napus L.) peptides.

    PubMed

    Sánchez-Vioque, Raúl; Bagger, Christian L; Larré, Colette; Guéguen, Jacques

    2004-03-01

    A peptide fraction having an average size of 5.6 amino acids has been purified from a rapeseed hydrolyzate, acylated using C(10)-C(14) acyl chlorides, and the surface tension values at the air-water interface and emulsifying properties studied. As compared with standard surface-active proteins, such as bovine serum albumin (BSA), and with detergents such as sodium dodecyl sulfate (SDS), acylated peptides exhibited particular surface characteristics. The surface tension at air-water interface of acylated peptides ranged from 29.1 to 37.8 mN/m at equilibrium; these values were considerably lower than those for BSA and closer those for SDS, suggesting that acylated peptides pack at the air-water interface more like detergents than like proteins. The adsorption of acylated peptides to the oil-water interface was slower than for SDS or BSA, as deduced from the rather large size of oil droplets in emulsions (31-17 microm). Consequently, these emulsions creamed extensively during aging. Nevertheless, emulsions generated from acylated peptides were in general more stable to phase separation than those prepared from SDS. The C(14) acylated peptides were more effective for generating emulsions than the C(10) and C(12) derivatives, especially concerning the stability of emulsions against coalescence and phase separation, which was better than SDS and close to BSA.

  16. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    SciTech Connect

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  17. Are There Acyl-Homoserine Lactones within Mammalian Intestines?

    PubMed Central

    Swearingen, Matthew C.; Sabag-Daigle, Anice

    2013-01-01

    Many Proteobacteria are capable of quorum sensing using N-acyl-homoserine lactone (acyl-HSL) signaling molecules that are synthesized by LuxI or LuxM homologs and detected by transcription factors of the LuxR family. Most quorum-sensing species have at least one LuxR and one LuxI homolog. However, members of the Escherichia, Salmonella, Klebsiella, and Enterobacter genera possess only a single LuxR homolog, SdiA, and no acyl-HSL synthase. The most obvious hypothesis is that these organisms are eavesdropping on acyl-HSL production within the complex microbial communities of the mammalian intestinal tract. However, there is currently no evidence of acyl-HSLs being produced within normal intestinal communities. A few intestinal pathogens, including Yersinia enterocolitica, do produce acyl-HSLs, and Salmonella can detect them during infection. Therefore, a more refined hypothesis is that SdiA orthologs are used for eavesdropping on other quorum-sensing pathogens in the host. However, the lack of acyl-HSL signaling among the normal intestinal residents is a surprising finding given the complexity of intestinal communities. In this review, we examine the evidence for and against the possibility of acyl-HSL signaling molecules in the mammalian intestine and discuss the possibility that related signaling molecules might be present and awaiting discovery. PMID:23144246

  18. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases.

    PubMed

    Sun, Xun; Li, Hao; Alfermann, Jonas; Mootz, Henning D; Yang, Haw

    2014-12-23

    Nonribosomal peptide synthetases (NRPS) incorporate assorted amino acid substrates into complex natural products. The substrate is activated via the formation of a reactive aminoacyl adenylate and is subsequently attached to the protein template via a thioester bond. The reactive nature of such intermediates, however, leads to side reactions that also break down the high-energy anhydride bond. The off-pathway kinetics or their relative weights compared to that of the on-pathway counterpart remains generally elusive. Here, we introduce multiplatform kinetics profiling to quantify the relative weights of on- and off-pathway reactions. Using the well-defined stoichiometry of thioester formation, we integrate a mass spectrometry (MS) kinetics assay, a high-performance liquid chromatography (HPLC) assay, and an ATP-pyrophosphate (PPi) exchange assay to map out a highly efficient on-pathway kinetics profile of the substrate activation and intermediate uploading (>98% relative weight) for wide-type gramicidin S synthetase A (GrsA) and a 87% rate profile for a cysteine-free GrsA mutant. Our kinetics profiling approach complements the existing enzyme-coupled byproduct-release assays, unraveling new mechanistic insights of substrate activation/channeling in NRPS enzymes.

  19. Lysine fatty acylation promotes lysosomal targeting of TNF-α

    PubMed Central

    Jiang, Hong; Zhang, Xiaoyu; Lin, Hening

    2016-01-01

    Tumor necrosis factor-α (TNF-α) is a proinflammation cytokine secreted by various cells. Understanding its secretive pathway is important to understand the biological functions of TNF-α and diseases associated with TNF-α. TNF-α is one of the first proteins known be modified by lysine fatty acylation (e.g. myristoylation). We previously demonstrated that SIRT6, a member of the mammalian sirtuin family of enzymes, can remove the fatty acyl modification on TNF-α and promote its secretion. However, the mechanistic details about how lysine fatty acylation regulates TNF-α secretion have been unknown. Here we present experimental data supporting that lysine fatty acylation promotes lysosomal targeting of TNF-α. The result is an important first step toward understanding the biological functions of lysine fatty acylation. PMID:27079798

  20. Novel type of ADP-forming acetyl coenzyme A synthetase in hyperthermophilic archaea: heterologous expression and characterization of isoenzymes from the sulfate reducer Archaeoglobus fulgidus and the methanogen Methanococcus jannaschii.

    PubMed

    Musfeldt, Meike; Schönheit, Peter

    2002-02-01

    Acetyl coenzyme A (CoA) synthetase (ADP forming) (ACD) represents a novel enzyme of acetate formation and energy conservation (acetyl-CoA + ADP + P(i) right harpoon over left harpoon acetate + ATP + CoA) in Archaea and eukaryotic protists. The only characterized ACD in archaea, two isoenzymes from the hyperthermophile Pyrococcus furiosus, constitute 145-kDa heterotetramers (alpha(2), beta(2)). The coding genes for the alpha and beta subunits are located at different sites in the P. furiosus chromosome. Based on significant sequence similarity of the P. furiosus genes, five open reading frames (ORFs) encoding putative ACD were identified in the genome of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus and one ORF was identified in the hyperthermophilic methanogen Methanococcus jannaschii. The ORFs constitute fusions of the homologous P. furiosus genes encoding the alpha and beta subunits. Two ORFs, AF1211 and AF1938, of A. fulgidus and ORF MJ0590 of M. jannaschii were cloned and functionally overexpressed in Escherichia coli. The purified recombinant proteins were characterized as distinctive isoenzymes of ACD with different substrate specificities. In contrast to the Pyrococcus ACD, the ACDs of Archaeoglobus and Methanococcus constitute homodimers of about 140 kDa composed of two identical 70-kDa subunits, which represent fusions of the homologous P. furiosus alpha and beta subunits in an alphabeta (AF1211 and MJ0590) or betaalpha (AF1938) orientation. The data indicate that A. fulgidus and M. jannaschii contains a novel type of ADP-forming acetyl-CoA synthetase in Archaea, in which the subunit polypeptides and their coding genes are fused.

  1. Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene

    PubMed Central

    Liénard, Marjorie A.; Hagström, Åsa K.; Lassance, Jean-Marc; Löfstedt, Christer

    2010-01-01

    Fatty-acyl CoA reductases (FAR) convert fatty acids into fatty alcohols in pro- and eukaryotic organisms. In the Lepidoptera, members of the FAR gene family serve in the biosynthesis of sex pheromones involved in mate communication. We used a group of closely related species, the small ermine moths (Lepidoptera: Yponomeutidae) as a model to investigate the role of FARs in the biosynthesis of complex pheromone blends. Homology-based molecular cloning in three Yponomeuta species led to the identification of multiple putative FAR transcripts homologous to FAR genes from the Bombyx mori genome. The expression of one transcript was restricted to the female pheromone-gland tissue, suggesting a role in pheromone biosynthesis, and the encoded protein belonged to a recently identified Lepidoptera-specific pgFAR gene subfamily. The Yponomeuta evonymellus pgFAR mRNA was up-regulated in sexually mature females and exhibited a 24-h cyclic fluctuation pattern peaking in the pheromone production period. Heterologous expression confirmed that the Yponomeuta pgFAR orthologs in all three species investigated [Y. evonymellus (L.), Yponomeuta padellus (L.), and Yponomeuta rorellus (Hübner)] encode a functional FAR with a broad substrate range that efficiently promoted accumulation of primary alcohols in recombinant yeast supplied with a series of biologically relevant C14- or C16-acyl precursors. Taken together, our data evidence that a single alcohol-producing pgFAR played a critical function in the production of the multicomponent pheromones of yponomeutids and support the hypothesis of moth pheromone-biosynthetic FARs belonging to a FAR gene subfamily unique to Lepidoptera. PMID:20534481

  2. K2CO3-promoted formation of aryl esters from primary aryl amides by the acyl-acyl exchange process.

    PubMed

    Bian, Yongjun; Qu, Xingyu

    2016-04-28

    A new acyl-acyl exchange reaction has been developed for the formation of aryl esters from primary aryl amides. The reaction could occur under mild reaction conditions with catalytic quantities of K2CO3, and could afford moderate to good yields of the desired products. PMID:27035611

  3. Glutamine synthetase in liver of the American alligator, Alligator mississippiensis.

    PubMed

    Smith, D D; Campbell, J W

    1987-01-01

    Glutamine synthetase was shown to be localized in liver mitochondria of the American alligator, Alligator mississippiensis, by immunofluorescent staining of frozen liver sections and by the detection of enzymatic activity and immunoreactive protein in the mitochondrial fraction following subcellular fractionation of liver tissue by differential centrifugation. The primary translation product of alligator liver glutamine synthetase mRNA was shown to have an Mr = 45,000 which is similar if not identical in size to that of the mature subunit. This mRNA was found to be heterogeneous in size with a major form corresponding to 2.8-3.0 kb and a lesser form corresponding to around 2 kb. Both are in excess of the size required to code for the glutamine synthetase subunit. The synthesis and presumably the mitochondrial import of glutamine synthetase in alligator liver are thus very similar to the same processes in avian liver. Despite the excretion of a high percentage of nitrogen as ammonia, the demonstration of a mitochondrial glutamine synthetase indicates the alligator has the typical avian-type uricotelic ammonia-detoxification system in liver. This suggests that the transition to uricotelism occurred in the sauropsid line of evolution and has persisted through both the lepidosaurian (snakes, lizards) and archosaurian (dinosaurs, crocodilians, birds) lines.

  4. Friedel-Craft acylation of ar-himachalene: synthesis of acyl-ar-himachalene and a new acyl-hydroperoxide.

    PubMed

    Hossini, Issam; Harrad, Mohamed Anoir; Ait Ali, Mustapha; El Firdoussi, Larbi; Karim, Abdallah; Valerga, Pedro; Puerta, M Carmen

    2011-01-01

    Friedel-Craft acylation at 100 °C of 2,5,9,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocycloheptene [ar-himachalene], a sesquiterpenic hydrocarbon obtained by catalytic dehydrogenation of α-, β- and γ-himachalenes, produces a mixture of two compounds: (3,5,5,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-yl)-ethanone (2, in 69% yield), with a conserved reactant backbone, and 3, with a different skeleton, in 21% yield. The crystal structure of 3 reveals it to be 1-(8-ethyl-8-hydroperoxy-3,5,5-trimethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-ethanone. In this compound O-H…O bonds form dimers. These hydrogen-bonds, in conjunction with weaker C-H…O interactions, form a more extended supramolecular arrangement in the crystal. PMID:21760570

  5. A structural mapping of mutations causing succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency.

    PubMed

    Shafqat, Naeem; Kavanagh, Kate L; Sass, Jörn Oliver; Christensen, Ernst; Fukao, Toshiyuki; Lee, Wen Hwa; Oppermann, Udo; Yue, Wyatt W

    2013-11-01

    Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is a rare inherited metabolic disorder of ketone metabolism, characterized by ketoacidotic episodes and often permanent ketosis. To date there are ~20 disease-associated alleles on the OXCT1 gene that encodes the mitochondrial enzyme SCOT. SCOT catalyzes the first, rate-limiting step of ketone body utilization in peripheral tissues, by transferring a CoA moiety from succinyl-CoA to form acetoacetyl-CoA, for entry into the tricarboxylic acid cycle for energy production. We have determined the crystal structure of human SCOT, providing a molecular understanding of the reported mutations based on their potential structural effects. An interactive version of this manuscript (which may contain additional mutations appended after acceptance of this manuscript) may be found on the web address: http://www.thesgc.org/jimd/SCOT . PMID:23420214

  6. Biotin deficiency in the cat and the effect on hepatic propionyl CoA carboxylase.

    PubMed

    Carey, C J; Morris, J G

    1977-02-01

    Biotin deficiency was produced in growing kittens by feeding a diet containing dried, raw egg white. After receiving either an 18.5% egg white diet for 25 weeks, or a 32% egg white diet for 12 weeks, they exhibited dermal lesions characterized by alopecia, scaly dermatitis and achromotrichia, which increased in severity with the deficiency. Females developed accumulations of dried salivary, nasal and lacrymal secretions in the facial region although a male did not. There was a loss of body weight in all cats as the deficiency progressed. Hepatic propionyl CoA carboxylase activities were measured on biopsy samples of liver during biotin deficiency and after biotin supplementation. In the deficient state, activities were 4% and 24% of that following biotin supplementation. Propionyl carboxylase activity in the liver of the cat was comparable to that reported in the rat and chick in the deficient and normal states. Subcutaneous injection of 0.25 mg biotin every other day while continuing to receive the egg white diet caused remission of clinical signs, a body weight gain and increased food intake.

  7. Contribution of CoA Ligases to Benzenoid Biosynthesis in Petunia Flowers[W

    PubMed Central

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A.; Widhalm, Joshua R.; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M.; Cooper, Bruce R.; D’Auria, John C.; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-01-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway. PMID:22649270

  8. Conformational transitions of cinnamoyl CoA reductase 1 from Leucaena leucocephala.

    PubMed

    Sonawane, Prashant D; Khan, Bashir M; Gaikwad, Sushama M

    2014-03-01

    Conformational transitions of cinnamoyl CoA reductase, a key regulatory enzyme in lignin biosynthesis, from Leucaena leucocephala (Ll-CCRH1) were studied using fluorescence and circular dichroism spectroscopy. The native protein possesses four trp residues exposed on the surface and 66% of helical structure, undergoes rapid structural transitions at and above 45 °C and starts forming aggregates at 55 °C. Ll-CCRH1 was transformed into acid induced (pH 2.0) molten globule like structure, exhibiting altered secondary structure, diminished tertiary structure and exposed hydrophobic residues. The molten globule like structure was examined for the thermal and chemical stability. The altered secondary structure of L1-CCRH1 at pH 2.0 was stable up to 90 °C. Also, in presence of 0.25 M guanidine hydrochloride (GdnHCl), it got transformed into different structure which was stable in the vicinity of 2M GdnHCl (as compared to drastic loss of native structure in 2M GdnHCl) as seen in far UV-CD spectra. The structural transition of Ll-CCRH1 at pH 2.0 followed another transition after readjusting the pH to 8.0, forming a structure with hardly any similarity to that of native protein. PMID:24309513

  9. Clustering of mutations in methylmalonyl CoA mutase associated with mut- methylmalonic acidemia.

    PubMed Central

    Crane, A. M.; Ledley, F. D.

    1994-01-01

    Mutations have been described in human methylmalonyl CoA mutase (MCM) that exhibit partial defects in enzyme activity, including cobalamin-dependent (i.e., mut-) or interallelic complementation. This work describes mutations in cells from four patients, three of whom exhibit a cobalamin-dependent phenotype and all four of whom exhibit interallelic complementation. Four novel mutations (R694W, G648D, G630E, and G626C) are identified that cluster near the carboxyl terminus of the protein, a region close to another mut- mutation (G717V). Each of these mutations was shown to express a phenotype congruent with that of the parental cell line, after transfection into mut0 fibroblasts, and each exhibits interallelic complementation in cotransfection assays with clones bearing a R93H mutation. The activity of mutant enzymes expressed in Saccharomyces cerevisiae parallels the residual activity of the parental cell lines and exhibits novel sensitivities to pH and salt. The clustering of these mutations identifies a region of MCM that most likely represents the cobalamin-binding domain. The location of this domain, as well as the pattern of sequence preservation between the homologous human and Probiono-bacterium shermanii enzymes, suggests a mechanism for interallelic complementation in which the cobalamin-binding defect is complemented in trans from the heterologous subunits of the dimer. Images Figure 6 PMID:7912889

  10. Genetic Diversity of Staphylocoagulase Genes (coa): Insight into the Evolution of Variable Chromosomal Virulence Factors in Staphylococcus aureus

    PubMed Central

    Watanabe, Shinya; Ito, Teruyo; Sasaki, Takashi; Li, Shanshuang; Uchiyama, Ikuo; Kishii, Kozue; Kikuchi, Ken; Skov, Robert Leo; Hiramatsu, Keiichi

    2009-01-01

    Background The production of staphylocoagulase (SC) causing the plasma coagulation is one of the important characteristics of Staphylococcus aureus. Although SCs have been classified into 10 serotypes based on the differences in the antigenicity, genetic bases for their diversities and relatedness to chromosome types are poorly understood. Methodology/Principal Findings We compared the nucleotide sequences of 105 SC genes (coa), 59 of which were determined in this study. D1 regions, which contain prothrombin-activating and -binding domains and are presumed to be the binding site of each type-specific antiserum, were classified into twelve clusters having more than 90% nucleotide identities, resulting to create two novel SC types, XI and XII, in addition to extant 10 types. Nine of the twelve SC types were further subdivided into subtypes based on the differences of the D2 or the central regions. The phylogenetical relations of the D1 regions did not correlate exactly with either one of agr types and multilocus sequence types (STs). In addition, genetic analysis showed that recombination events have occurred in and around coa. So far tested, STs of 126 S. aureus strains correspond to the combination of SC type and agr type except for the cases of CC1 and CC8, which contained two and three different SC types, respectively. Conclusion The data suggested that the evolution of coa was not monophyletic in the species. Chromosomal recombination had occurred at coa and agr loci, resulting in the carriage of the combinations of allotypically different important virulence determinants in staphylococcal chromosome. PMID:19492076

  11. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress

    NASA Astrophysics Data System (ADS)

    Vats, P.; Mukherjee, A. K.; Kumria, M. M. L.; Singh, S. N.; Patil, S. K. B.; Rangnathan, S.; Sridharan, K.

    Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28-30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76+/-0.78 mg.g-1 wet tissue in normal unexposed rats; 15.82+/-2.30 mg.g-1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure

  12. The glutamine synthetase gene family in Populus

    PubMed Central

    2011-01-01

    Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1) and 1 which codes for the choroplastic GS isoform (GS2). Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types. PMID:21867507

  13. SUBSURFACE WELL-LOG CORRELATION OF ARSENIC-BEARING LITHOFACIES IN THE PERMIAN GARBER SANDSTONE AND WELLINGTON FORMATION, CENTRAL OKLAHOMA AQUIFER (COA), CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    The fluvial Garber Sandstone and the underlying Wellington Formation are important sources of drinking water in central Oklahoma. These formations, which make up much of the COA, consist of amalgamated sandstones with some interbedded mudstones, siltstones, and local mudstone- a...

  14. Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    PubMed

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Khan, Bashir M

    2013-07-01

    Recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) protein from Leucaena leucocephala was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Optimum pH for forward and reverse reaction was found to be 6.5 and 7.8 respectively. The enzyme was most stable around pH 6.5 at 25°C for 90 min. The enzyme showed Kcat/Km for feruloyl, caffeoyl, sinapoyl, coumaroyl CoA, coniferaldehyde and sinapaldehyde as 4.6, 2.4, 2.3, 1.7, 1.9 and 1.2 (×10(6) M(-1) s(-1)), respectively, indicating affinity of enzyme for feruloyl CoA over other substrates and preference of reduction reaction over oxidation. Activation energy, Ea for various substrates was found to be in the range of 20-50 kJ/mol. Involvement of probable carboxylate ion, histidine, lysine or tyrosine at the active site of enzyme was predicted by pH activity profile. SAXS studies of protein showed radius 3.04 nm and volume 49.25 nm(3) with oblate ellipsoid shape. Finally, metal ion inhibition studies revealed that Ll-CCRH1 is a metal independent enzyme. PMID:23541561

  15. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency.

    PubMed

    Signolet, Isabelle; Chenouard, Rachel; Oca, Florine; Barth, Magalie; Reynier, Pascal; Denis, Marie-Christine; Simard, Gilles

    2016-09-01

    Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA. PMID:27581854

  16. Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds.

    PubMed

    Martínez-Force, E; Cantisán, S; Serrano-Vega, M J; Garcés, R

    2000-10-01

    During sunflower (Helianthus annuus L.) seed formation there was an active period of lipid biosynthesis between 12 and 28 days after flowering (DAF). The maximum in-vitro acyl-acyl carrier protein (ACP) thioesterase activities (EC 3.1.2.14) were found at 15 DAF, preceding the largest accumulation of lipid in the seed. Data from the apparent kinetic parameters, Vmax and Km, from seeds of 15 and 30 DAF, showed that changes in acyl-ACP thioesterase activity are not only quantitative, but also qualitative, since, although the preferred substrate was always oleoyl-ACP, the affinity for palmitoyl-ACP decreased, whereas that for stearoyl-ACP increased with seed maturation. Bisubstrate assays carried out at 30 DAF seemed to indicate that the total activity found in mature seeds is due to a single enzyme with 100/75/15 affinity for oleoyl-ACP/stearoyl-ACP/ palmitoyl-ACP. In contrast, at 15 DAF, enzymatic data together with partial sequences from cDNAs indicated the presence of at least two enzymes with different properties, a FatA-like thioesterase, with a high affinity for oleoyl-ACP, plus a FatB-like enzyme, with preference for long-chain saturated fatty acids, both being expressed during the active lipid biosynthesis period. Competition assays carried out with CAS-5, a mutant with a higher content of palmitic acid in the seed oil, indicated that a modified FatA-type thioesterase is involved in the mutant phenotype.

  17. Bacterial acyl-CoA mutase specifically catalyzes coenzyme B12-dependent isomerization of 2-hydroxyisobutyryl-CoA and (S)-3-hydroxybutyryl-CoA.

    PubMed

    Yaneva, Nadya; Schuster, Judith; Schäfer, Franziska; Lede, Vera; Przybylski, Denise; Paproth, Torsten; Harms, Hauke; Müller, Roland H; Rohwerder, Thore

    2012-05-01

    Coenzyme B(12)-dependent acyl-CoA mutases are radical enzymes catalyzing reversible carbon skeleton rearrangements in carboxylic acids. Here, we describe 2-hydroxyisobutyryl-CoA mutase (HCM) found in the bacterium Aquincola tertiaricarbonis as a novel member of the mutase family. HCM specifically catalyzes the interconversion of 2-hydroxyisobutyryl- and (S)-3-hydroxybutyryl-CoA. Like isobutyryl-CoA mutase, HCM consists of a large substrate- and a small B(12)-binding subunit, HcmA and HcmB, respectively. However, it is thus far the only acyl-CoA mutase showing substrate specificity for hydroxylated carboxylic acids. Complete loss of 2-hydroxyisobutyric acid degradation capacity in hcmA and hcmB knock-out mutants established the central role of HCM in A. tertiaricarbonis for degrading substrates bearing a tert-butyl moiety, such as the fuel oxygenate methyl tert-butyl ether (MTBE) and its metabolites. Sequence analysis revealed several HCM-like enzymes in other bacterial strains not related to MTBE degradation, indicating that HCM may also be involved in other pathways. In all strains, hcmA and hcmB are associated with genes encoding for a putative acyl-CoA synthetase and a MeaB-like chaperone. Activity and substrate specificity of wild-type enzyme and active site mutants HcmA I90V, I90F, and I90Y clearly demonstrated that HCM belongs to a new subfamily of B(12)-dependent acyl-CoA mutases. PMID:22433853

  18. Palladium-Catalyzed Environmentally Benign Acylation.

    PubMed

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-01

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone. PMID:27377566

  19. Defective Pollen Wall is Required for Anther and Microspore Development in Rice and Encodes a Fatty Acyl Carrier Protein Reductase

    SciTech Connect

    Shi, J.; Shanklin, J.; Tan, H.; Yu, X.-H.; Liu, Y.; Liang, W.; Ranathunge, K.; Franke, R. B.; Schreiber, L.; Wang, Y.; Kai, G.; Ma, H.; Zhang, D.

    2011-06-01

    Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.

  20. Role of acyl carrier protein isoforms in plant lipid metabolism

    SciTech Connect

    Not Available

    1990-01-01

    Although acyl carrier protein (ACP) is the best studied protein in plant fatty acid biosynthesis, the in vivo forms of ACPs and their steady state pools have not been examined previously in either seed or leaf. Information about the relative pool sizes of free ACP and its acyl-ACP intermediates is essential for understanding regulation of de novo fatty acid biosynthesis in plants. In this study we utilized antibodies directed against spinach ACP as a sensitive assay to analyze the acyl groups while they were still covalently attached to ACPs. 4 refs., 4 figs.

  1. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis.

    PubMed

    Rastogi, Shubhra; Kumar, Ritesh; Chanotiya, Chandan S; Shanker, Karuna; Gupta, Madan M; Nagegowda, Dinesh A; Shasany, Ajit K

    2013-08-01

    Biosynthesis of eugenol shares its initial steps with that of lignin, involving conversion of hydroxycinnamic acids to their corresponding coenzyme A (CoA) esters by 4-coumarate:CoA ligases (4CLs). In this investigation, a 4CL (OS4CL) was identified from glandular trichome-rich tissue of Ocimum sanctum with high sequence similarity to an isoform (OB4CL_ctg4) from Ocimum basilicum. The levels of OS4CL and OB4CL_ctg4-like transcripts were highest in O. sanctum trichome, followed by leaf, stem and root. The eugenol content in leaf essential oil was positively correlated with the expression of OS4CL in the leaf at different developmental stages. Recombinant OS4CL showed the highest activity with p-coumaric acid, followed by ferulic, caffeic and trans-cinnamic acids. Transient RNA interference (RNAi) suppression of OS4CL in O. sanctum leaves caused a reduction in leaf eugenol content and trichome transcript level, with a considerable increase in endogenous p-coumaric, ferulic, trans-cinnamic and caffeic acids. A significant reduction in the expression levels was observed for OB4CL_ctg4-related transcripts in suppressed trichome compared with transcripts similar to the other four isoforms (OB4CL_ctg1, 2, 3 and 5). Sinapic acid and lignin content were also unaffected in RNAi suppressed leaf samples. Transient expression of OS4CL-green fluorescent protein fusion protein in Arabidopsis protoplasts was associated with the cytosol. These results indicate metabolite channeling of intermediates towards eugenol by a specific 4CL and is the first report demonstrating the involvement of 4CL in creation of virtual compartments through substrate utilization and committing metabolites for eugenol biosynthesis at an early stage of the pathway.

  2. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis.

    PubMed

    Rastogi, Shubhra; Kumar, Ritesh; Chanotiya, Chandan S; Shanker, Karuna; Gupta, Madan M; Nagegowda, Dinesh A; Shasany, Ajit K

    2013-08-01

    Biosynthesis of eugenol shares its initial steps with that of lignin, involving conversion of hydroxycinnamic acids to their corresponding coenzyme A (CoA) esters by 4-coumarate:CoA ligases (4CLs). In this investigation, a 4CL (OS4CL) was identified from glandular trichome-rich tissue of Ocimum sanctum with high sequence similarity to an isoform (OB4CL_ctg4) from Ocimum basilicum. The levels of OS4CL and OB4CL_ctg4-like transcripts were highest in O. sanctum trichome, followed by leaf, stem and root. The eugenol content in leaf essential oil was positively correlated with the expression of OS4CL in the leaf at different developmental stages. Recombinant OS4CL showed the highest activity with p-coumaric acid, followed by ferulic, caffeic and trans-cinnamic acids. Transient RNA interference (RNAi) suppression of OS4CL in O. sanctum leaves caused a reduction in leaf eugenol content and trichome transcript level, with a considerable increase in endogenous p-coumaric, ferulic, trans-cinnamic and caffeic acids. A significant reduction in the expression levels was observed for OB4CL_ctg4-related transcripts in suppressed trichome compared with transcripts similar to the other four isoforms (OB4CL_ctg1, 2, 3 and 5). Sinapic acid and lignin content were also unaffected in RNAi suppressed leaf samples. Transient expression of OS4CL-green fluorescent protein fusion protein in Arabidopsis protoplasts was associated with the cytosol. These results indicate metabolite channeling of intermediates towards eugenol by a specific 4CL and is the first report demonstrating the involvement of 4CL in creation of virtual compartments through substrate utilization and committing metabolites for eugenol biosynthesis at an early stage of the pathway. PMID:23677922

  3. Phosphorylation of five aminoacyl-tRNA synthetases in reticulocytes and identification of the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver

    SciTech Connect

    Pendergast, A.M.; Traugh, J.A.

    1986-05-01

    Five aminoacyl-tRNA synthetases in the high molecular weight complex were phosphorylated in rabbit reticulocytes following labeling with /sup 32/P. The five synthetases phosphorylated were the glutamyl-, glutaminyl-, lysyl-, aspartyl- and methionyl-tRNA synthetases. In addition, a 37,000 dalton protein, associated with the synthetase complex and tentatively identified as casein kinase I, was also phosphorylated in intact cells. Phosphoamino acid analysis of the proteins indicated all of the phosphate was on seryl residues. Incubation of reticulocytes with /sup 32/P in the presence of 8-bromo-cAMP and o, the 3-isobutyl-1-methylxanthine resulted in a six-fold increase in phosphorylation of the glutaminyl-tRNA synthetase, a two-fold increase in phosphorylation of the aspartyl-tRNA synthetase, and a 50 to 60% decrease in phosphorylation of the glutamyl-, methionyl- and lysyl-tRNA synthetases and the M/sub r/ 37,000 protein. When the site(s) on the glutaminyl-tRNA synthetase phosphorylated in response to 8-bromo-cAMP was analyzed by two-dimensional tryptic phosphopeptide mapping, a single phosphopeptide was observed which was identical to that obtained in vitro upon phosphorylation with the cAMP-dependent protein kinase. Also, the authors identify here, the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver. They are protease activated kinase I, the cAMP-dependent protein kinase and protein kinase C.

  4. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    SciTech Connect

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  5. Genetic and Immunological Studies of Bacteriophage T4 Thymidylate Synthetase

    PubMed Central

    Krauss, S. W.; Stollar, B. D.; Friedkin, M.

    1973-01-01

    Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene. Images PMID:4575286

  6. Variant human phosphoribosylpyrophosphate synthetase altered in regulatory and catalytic functions.

    PubMed Central

    Becker, M A; Raivio, K O; Bakay, B; Adams, W B; Nyhan, W L

    1980-01-01

    An inherited, structurally abnormal and superactive form of the enzyme 5-phosphoribosyl 1-pyrophosphate (PP-ribose-P) synthetase (EC 2.7.6.1) has been characterized in fibroblasts cultured from a 14-yr-old male (S.M.) with clinical manifestations of uric acid overproduction present since infancy. PP-ribose-P synthetase from the cells of this child showed four- to fivefold greater than normal resistance to purine nucleotide (ADP and GDP) feedback inhibition of enzyme activity and hyperbolic rather than sigmoidal inorganic phosphate (Pi) activation in incompletely dialyzed extracts. Excessive maximal velocity of the enzyme reaction catalyzed by the mutant enzyme was indicated by: enzyme activities twice those of normal at all concentrations of Pi in chromatographed fibroblast extracts; normal affinity constants for substrates and for the activator, Mg2+; and twofold greater than normal activity per immunoreactive enzyme molecule. The mutant enzyme thus possessed deficient regulatory and superactive catalytic properties, two mechanisms previously demonstrated individually to underlie the excessive PPRribose-P and uric acid synthesis of affected members of families with superactive PP-ribose-P synthetases. Increased PP-ribose-P concentration (4-fold) and generation (2.7-fold) and enhanced rates of PP-ribose-P dependent purine synthetic reactions, including purine synthesis de novo, in S.M. fibroblasts confirmed the functional significance of this patient's mutant enzyme. Diminished stability of the variant PP-ribose-P synthetase was manifested in vitro by increased thermal lability and in vivo by deficiency of enzyme activity at Pi concentrations greater than 0.3 mM in hemolysates and by an accelerated, age-related decrement in enzyme activity in lysates of erythrocytes separated by specific density. Despite the diminished amount of PP-ribose-P synthetase in the S.M. erythrocyte population, S.M. erythrocytes had increased PP-ribose-P concentration and increased rates

  7. Amine, Alcohol and Phosphine Catalysts for Acyl Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Spivey, Alan C.; Arseniyadis, Stellios

    An overview of the area of organocatalytic asymmetric acyl transfer processes is presented including O- and N-acylation. The material has been ordered according to the structural class of catalyst employed rather than reaction type with the intention to draw mechanistic parallels between the manner in which the various reactions are accelerated by the catalysts and the concepts employed to control transfer of chiral information from the catalyst to the substrates.

  8. Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-coa catabolon.

    PubMed

    García, B; Olivera, E R; Miñambres, B; Fernández-Valverde, M; Cañedo, L M; Prieto, M A; García, J L; Martínez, M; Luengo, J M

    1999-10-01

    Novel biodegradable bacterial plastics, made up of units of 3-hydroxy-n-phenylalkanoic acids, are accumulated intracellularly by Pseudomonas putida U due to the existence in this bacterium of (i) an acyl-CoA synthetase (encoded by the fadD gene) that activates the aryl-precursors; (ii) a beta-oxidation pathway that affords 3-OH-aryl-CoAs, and (iii) a polymerization-depolymerization system (encoded in the pha locus) integrated by two polymerases (PhaC1 and PhaC2) and a depolymerase (PhaZ). The complete assimilation of these compounds requires two additional routes that specifically catabolize the phenylacetyl-CoA or the benzoyl-CoA generated from these polyesters through beta-oxidation. Genetic studies have allowed the cloning, sequencing, and disruption of the genes included in the pha locus (phaC1, phaC2, and phaZ) as well as those related to the biosynthesis of precursors (fadD) or to the catabolism of their derivatives (acuA, fadA, and paa genes). Additional experiments showed that the blockade of either fadD or phaC1 hindered the synthesis and accumulation of plastic polymers. Disruption of phaC2 reduced the quantity of stored polymers by two-thirds. The blockade of phaZ hampered the mobilization of the polymer and decreased its production. Mutations in the paa genes, encoding the phenylacetic acid catabolic enzymes, did not affect the synthesis or catabolism of polymers containing either 3-hydroxyaliphatic acids or 3-hydroxy-n-phenylalkanoic acids with an odd number of carbon atoms as monomers, whereas the production of polyesters containing units of 3-hydroxy-n-phenylalkanoic acids with an even number of carbon atoms was greatly reduced in these bacteria. Yield-improving studies revealed that mutants defective in the glyoxylic acid cycle (isocitrate lyase(-)) or in the beta-oxidation pathway (fadA), stored a higher amount of plastic polymers (1.4- and 2-fold, respectively), suggesting that genetic manipulation of these pathways could be useful for isolating

  9. Software interface for high-speed readout of particle detectors based on the CoaXPress communication standard

    NASA Astrophysics Data System (ADS)

    Hejtmánek, M.; Neue, G.; Voleš, P.

    2015-06-01

    This article is devoted to the software design and development of a high-speed readout application used for interfacing particle detectors via the CoaXPress communication standard. The CoaXPress provides an asymmetric high-speed serial connection over a single coaxial cable. It uses a widely available 75 Ω BNC standard and can operate in various modes with a data throughput ranging from 1.25 Gbps up to 25 Gbps. Moreover, it supports a low speed uplink with a fixed bit rate of 20.833 Mbps, which can be used to control and upload configuration data to the particle detector. The CoaXPress interface is an upcoming standard in medical imaging, therefore its usage promises long-term compatibility and versatility. This work presents an example of how to develop DAQ system for a pixel detector. For this purpose, a flexible DAQ card was developed using the XILINX Spartan 6 FPGA. The DAQ card is connected to the framegrabber FireBird CXP6 Quad, which is plugged in the PCI Express bus of the standard PC. The data transmission was performed between the FPGA and framegrabber card via the standard coaxial cable in communication mode with a bit rate of 3.125 Gbps. Using the Medipix2 Quad pixel detector, the framerate of 100 fps was achieved. The front-end application makes use of the FireBird framegrabber software development kit and is suitable for data acquisition as well as control of the detector through the registers implemented in the FPGA.

  10. Discovery of tumor-specific irreversible inhibitors of stearoyl CoA desaturase | Office of Cancer Genomics

    Cancer.gov

    A hallmark of targeted cancer therapies is selective toxicity among cancer cell lines. We evaluated results from a viability screen of over 200,000 small molecules to identify two chemical series, oxalamides and benzothiazoles, that were selectively toxic at low nanomolar concentrations to the same 4 of 12 human lung cancer cell lines. Sensitive cell lines expressed cytochrome P450 (CYP) 4F11, which metabolized the compounds into irreversible inhibitors of stearoyl CoA desaturase (SCD). SCD is recognized as a promising biological target in cancer and metabolic disease.

  11. Purification of Recombinant Acyl-Coenzyme A:Cholesterol Acyltransferase 1 (ACAT1) from H293 Cells and Binding Studies Between the Enzyme and Substrates Using Difference Intrinsic Fluorescence Spectroscopy†

    PubMed Central

    Chang, Catherine CY; Miyazaki, Akira; Dong, Ruhong; Kheirollah, Alireza; Yu, Chunjiang; Geng, Yong; Higgs, Henry N; Chang, Ta-Yuan

    2010-01-01

    Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is a membrane bound enzyme utilizing long-chain fatty acyl-coenzyme A and cholesterol to form cholesteryl esters and coenzyme A. Previously, we had expressed tagged human ACAT1 (hACAT1) in CHO cells and purified it to homogeneity; however, only a sparse amount of purified protein could be obtained. Here we report that the hACAT1 expression level in H293 cells is 18-fold higher than that in CHO cells. We have developed a milder purification procedure to purify the enzyme to homogeneity. The abundance of the purified protein enabled us to conduct difference intrinsic fluorescence spectroscopy to study the binding between the enzyme and its substrates in CHAPS/phospholipid mixed micelles. The results show that oleoyl CoA binds to ACAT1 with Kd=1.9 μM, and elicits significant structural changes of the protein as manifested by the significantly positive changes in its fluorescence spectrum; stearoyl CoA elicits a similar spectrum change with much lower in magnitude. Previously, kinetic studies had shown that cholesterol is an efficient substrate and an allosteric activator of ACAT1, while its diastereomer epicholesterol is neither a substrate nor an activator. Here we show that both cholesterol and epicholesterol induce positive changes in the ACAT1 fluorescence spectrum; however, the magnitude of spectrum changes induced by cholesterol is much larger than epicholesterol. These results show that stereospecificity, governed by the 3beta-OH moiety in steroid ring A, plays an important role in the binding of cholesterol to ACAT1. PMID:20964445

  12. Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine.

    PubMed

    Mossialos, Dimitris; Ochsner, Urs; Baysse, Christine; Chablain, Patrice; Pirnay, Jean-Paul; Koedam, Nico; Budzikiewicz, Herbert; Fernández, Diana Uría; Schäfer, Mathias; Ravel, Jacques; Cornelis, Pierre

    2002-09-01

    Pyoverdines, the main siderophores of fluorescent pseudomonads, contain a peptide moiety, different for each pyoverdine, and an identical chromophore. While it has been shown that non-ribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of the peptide chain of pyoverdines, this was not demonstrated for the biosynthesis of the chromo-phore part. We found that PvsA, from Pseudomonas fluorescens ATCC 17400, and PvdL (PA2424), from Pseudomonas aeruginosa are similar NRPSs and functional homologues, necessary for the production of pyoverdine. Transcriptional lacZ fusions showed that pvdL is co-transcribed with the upstream PA2425 gene, encoding a putative thioesterase, and is iron-regulated via PvdS. Similarly, RT-PCR analysis revealed that expression of pvsA is repressed by iron. Analysis of the adenylation domains of PvsA, PvdL and their homologues, revealed that their N-terminus starts with an acyl-CoA ligase module, followed by three amino acid activation domains. Computer modelling of these domains suggests that PvsA in P. fluorescens and PvdL in P. aeruginosa are orthologues involved in the biosynthesis of the pyoverdine chromophore. PMID:12354233

  13. Study of the arrangement of the functional domains along the yeast cytoplasmic aspartyl-tRNA synthetase.

    PubMed

    Prevost, G; Eriani, G; Kern, D; Dirheimer, G; Gangloff, J

    1989-03-15

    Aspartyl-tRNA synthetase from yeast (AspRS) was screened for functional domains by measuring the effect of two types of amino acid mutations on its catalytic properties: (a) insertion of a dipeptide or a tetrapeptide along the polypeptide chain, (b) deletion of various lengths from the enzyme C-terminal. It was shown that insertion mutations significantly affect the kinetic properties of AspRS only when occurring in the second quarter of the molecule and the two centrally located mutations even inactivate the enzyme completely. Analysis of kinetic data strongly suggests that, in fact, all the observed activity modifications result from alteration of the activation reaction rate constant, kappa cat only. This led to the conclusion that the domain involved in aspartic acid activation should be located in the second quarter of the molecule. Furthermore, a deletion mutant with a modification of the last five amino acid residues was isolated. This mutant is fully active in the activation step, but has lost 80% of the wild-type aminoacylation activity. This involvement of the C-terminus in acylation implies that it has to be folded towards strategic regions of the enzyme, thus favouring conformations required for catalysis or maintaining the tRNA in a functional position.

  14. Study of the Binding Energies between Unnatural Amino Acids and Engineered Orthogonal Tyrosyl-tRNA Synthetases

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Truong, Tan M.; Ai, Hui-Wang

    2015-07-01

    We utilized several computational approaches to evaluate the binding energies of tyrosine (Tyr) and several unnatural Tyr analogs, to several orthogonal aaRSes derived from Methanocaldococcus jannaschii and Escherichia coli tyrosyl-tRNA synthetases. The present study reveals the following: (1) AutoDock Vina and ROSETTA were able to distinguish binding energy differences for individual pairs of favorable and unfavorable aaRS-amino acid complexes, but were unable to cluster together all experimentally verified favorable complexes from unfavorable aaRS-Tyr complexes; (2) MD-MM/PBSA provided the best prediction accuracy in terms of clustering favorable and unfavorable enzyme-substrate complexes, but also required the highest computational cost; and (3) MM/PBSA based on single energy-minimized structures has a significantly lower computational cost compared to MD-MM/PBSA, but still produced sufficiently accurate predictions to cluster aaRS-amino acid interactions. Although amino acid-aaRS binding is just the first step in a complex series of processes to acylate a tRNA with its corresponding amino acid, the difference in binding energy, as shown by MD-MM/PBSA, is important for a mutant orthogonal aaRS to distinguish between a favorable unnatural amino acid (unAA) substrate from unfavorable natural amino acid substrates. Our computational study should assist further designing and engineering of orthogonal aaRSes for the genetic encoding of novel unAAs.

  15. Crystal Structure of an Indole-3-Acetic Acid Amido Synthetase from Grapevine Involved in Auxin Homeostasis[W

    PubMed Central

    Peat, Thomas S.; Böttcher, Christine; Newman, Janet; Lucent, Del; Cowieson, Nathan; Davies, Christopher

    2012-01-01

    Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5′-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins. PMID:23136372

  16. Regioselective Acylation of Diols and Triols: The Cyanide Effect.

    PubMed

    Peng, Peng; Linseis, Michael; Winter, Rainer F; Schmidt, Richard R

    2016-05-11

    Central topics of carbohydrate chemistry embrace structural modifications of carbohydrates and oligosaccharide synthesis. Both require regioselectively protected building blocks that are mainly available via indirect multistep procedures. Hence, direct protection methods targeting a specific hydroxy group are demanded. Dual hydrogen bonding will eventually differentiate between differently positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide or acetyl cyanide as an acylating agent, and DMAP as a catalyst yield at -78 °C the thermodynamically unfavorable axial O-acylation product; acyl migration is not observed under these conditions. This phenomenon was substantiated with 3,4-O-unproteced galacto- and fucopyranosides and 2,3-O-unprotected mannopyranosides. Even for 3,4,6-O-unprotected galactopyranosides as triols, axial 4-O-acylation is appreciably faster than O-acylation of the primary 6-hydroxy group. The importance of hydrogen bonding for this unusual regioselectivity could be confirmed by NMR studies and DFT calculations, which indicate favorable hydrogen bonding of cyanide to the most acidic axial hydroxy group supported by hydrogen bonding of the equatorial hydroxy group to the axial oxygen. Thus, the "cyanide effect" is due to dual hydrogen bonding of the axial hydroxy group which enhances the nucleophilicity of the respective oxygen atom, permitting an even faster reaction for diols than for mono-ols. In contrast, fluoride as a counterion favors dual hydrogen bonding to both hydroxy groups leading to equatorial O-acylation. PMID:27104625

  17. Site-specific S-Acylation of Influenza Virus Hemagglutinin

    PubMed Central

    Brett, Katharina; Kordyukova, Larisa V.; Serebryakova, Marina V.; Mintaev, Ramil R.; Alexeevski, Andrei V.; Veit, Michael

    2014-01-01

    S-Acylation of hemagglutinin (HA), the main glycoprotein of influenza viruses, is an essential modification required for virus replication. Using mass spectrometry, we have previously demonstrated specific attachment of acyl chains to individual acylation sites. Whereas the two cysteines in the cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to a cysteine positioned at the end of the transmembrane region (TMR). Here we analyzed recombinant viruses containing HA with exchange of conserved amino acids adjacent to acylation sites or with a TMR cysteine shifted to a cytoplasmic location to identify the molecular signal that determines preferential attachment of stearate. We first developed a new protocol for sample preparation that requires less material and might thus also be suitable to analyze cellular proteins. We observed cell type-specific differences in the fatty acid pattern of HA: more stearate was attached if human viruses were grown in mammalian compared with avian cells. No underacylated peptides were detected in the mass spectra, and even mutations that prevented generation of infectious virus particles did not abolish acylation of expressed HA as demonstrated by metabolic labeling experiments with [3H]palmitate. Exchange of conserved amino acids in the vicinity of an acylation site had a moderate effect on the stearate content. In contrast, shifting the TMR cysteine to a cytoplasmic location virtually eliminated attachment of stearate. Thus, the location of an acylation site relative to the transmembrane span is the main signal for stearate attachment, but the sequence context and the cell type modulate the fatty acid pattern. PMID:25349209

  18. Second Acyl Homoserine Lactone Production System in the Extreme Acidophile Acidithiobacillus ferrooxidans▿

    PubMed Central

    Rivas, Mariella; Seeger, Michael; Jedlicki, Eugenia; Holmes, David S.

    2007-01-01

    The acidophilic proteobacterium Acidithiobacillus ferrooxidans is involved in the industrial biorecovery of copper. It is found in acidic environments in biofilms and is important in the biogeochemical cycling of metals and nutrients. Its genome contains a cluster of four genes, glyQ, glysS, gph, and act, that are predicted to encode the α and β subunits of glycine tRNA synthetase, a phosphatase, and an acyltransferase, respectively (GenBank accession no. DQ149607). act, cloned and expressed in Escherichia coli, produces acyl homoserine lactones (AHLs) principally of chain length C14 according to gas chromatography and mass spectrometry measurements. The AHLs have biological activity as shown by in vivo studies using the reporter strain Sinorhizobium meliloti Rm41 SinI−. Reverse transcription-PCR (RT-PCR) experiments indicate that the four genes are expressed as a single transcript, demonstrating that they constitute an operon. According to semiquantitative RT-PCR results, act is expressed more highly when A. ferrooxidans is grown in medium containing iron than when it is grown in medium containing sulfur. Since AHLs are important intercellular signaling molecules used by many bacteria to monitor their population density in quorum-sensing control of gene expression, this result suggests that A. ferrooxidans has two quorum-sensing systems, one based on Act, as described herein, and the other based on a Lux-like quorum-sensing system, reported previously. The latter system was shown to be upregulated in A. ferrooxidans grown in sulfur medium, suggesting that the two quorum-sensing systems respond to different environmental signals that may be related to their abilities to colonize and use different solid sulfur- and iron-containing minerals. PMID:17351095

  19. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, but the acyl-galactose acyl composition varies with the plant species and applied stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Head group acylation of monogalactosyldiacylglycerol is a plant lipid modification occurring during bacterial infection. Little is known about the range of stresses that induce this lipid modification, the molecular species induced, and the function of the modification. Lipidomic analysis using trip...

  20. Screening, identification, and characterization of mechanistically diverse inhibitors of the Mycobacterium tuberculosis enzyme, pantothenate kinase (CoaA).

    PubMed

    Venkatraman, Janani; Bhat, Jyothi; Solapure, Suresh M; Sandesh, Jatheendranath; Sarkar, Debasmita; Aishwarya, Sundaram; Mukherjee, Kakoli; Datta, Santanu; Malolanarasimhan, Krishnan; Bandodkar, Balachandra; Das, Kaveri S

    2012-03-01

    The authors describe the discovery of anti-mycobacterial compounds through identifying mechanistically diverse inhibitors of the essential Mycobacterium tuberculosis (Mtb) enzyme, pantothenate kinase (CoaA). Target-driven drug discovery technologies often work with purified enzymes, and inhibitors thus discovered may not optimally inhibit the form of the target enzyme predominant in the bacterial cell or may not be available at the desired concentration. Therefore, in addition to addressing entry or efflux issues, inhibitors with diverse mechanisms of inhibition (MoI) could be prioritized before hit-to-lead optimization. The authors describe a high-throughput assay based on protein thermal melting to screen large numbers of compounds for hits with diverse MoI. Following high-throughput screening for Mtb CoaA enzyme inhibitors, a concentration-dependent increase in protein thermal stability was used to identify true binders, and the degree of enhancement or reduction in thermal stability in the presence of substrate was used to classify inhibitors as competitive or non/uncompetitive. The thermal shift-based MoI assay could be adapted to screen hundreds of compounds in a single experiment as compared to traditional biochemical approaches for MoI determination. This MoI was confirmed through mechanistic studies that estimated K(ie) and K(ies) for representative compounds and through nuclear magnetic resonance-based ligand displacement assays.

  1. Regioselective self-acylating cyclodextrins in organic solvent

    PubMed Central

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-01-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods. PMID:27020946

  2. Regioselective self-acylating cyclodextrins in organic solvent

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-03-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods.

  3. Regioselective self-acylating cyclodextrins in organic solvent.

    PubMed

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D; Choi, Youngjin; Jung, Seunho

    2016-01-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods. PMID:27020946

  4. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  5. Two fatty acyl reductases involved in moth pheromone biosynthesis.

    PubMed

    Antony, Binu; Ding, Bao-Jian; Moto, Ken'Ichi; Aldosari, Saleh A; Aldawood, Abdulrahman S

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective 'single pgFARs' produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a 'single reductase' can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  6. Hemolytic anemia and metabolic acidosis: think about glutathione synthetase deficiency.

    PubMed

    Ben Ameur, Salma; Aloulou, Hajer; Nasrallah, Fehmi; Kamoun, Thouraya; Kaabachi, Naziha; Hachicha, Mongia

    2015-02-01

    Glutathione synthetase deficiency (GSSD) is a rare disorder of glutathione metabolism with varying clinical severity. Patients may present with hemolytic anemia alone or together with acidosis and central nervous system impairment. Diagnosis is made by clinical presentation and detection of elevated concentrations of 5-oxoproline in urine and low glutathione synthetase activity in erythrocytes or cultured skin fibroblasts. The prognosis seems to depend on early diagnosis and treatment. We report a 4 months old Tunisian male infant who presented with severe metabolic acidosis with high anion gap and hemolytic anemia. High level of 5-oxoproline was detected in her urine and diagnosis of GSSD was made. Treatment consists of the correction of acidosis, blood transfusion, and supplementation with antioxidants. He died of severe metabolic acidosis and sepsis at the age of 15 months.

  7. Glutamine synthetase gene evolution: A good molecular clock

    SciTech Connect

    Pesole, G.; Lanvave, C.; Saccone, C. ); Bozzetti, M.P. ); Preparata, G. )

    1991-01-15

    Glutamine synthetase gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. The calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. The data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves.

  8. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-08-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia.

  9. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase.

    PubMed

    Wang, Dezheng; Wang, Cheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source. PMID:26586402

  10. Glutamine synthetase gene evolution: a good molecular clock.

    PubMed Central

    Pesole, G; Bozzetti, M P; Lanave, C; Preparata, G; Saccone, C

    1991-01-01

    Glutamine synthetase (EC 6.3.1.2) gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. Our calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. Our data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves. PMID:1671172

  11. Aminoacyl-tRNA Synthetase Complexes in Evolution

    PubMed Central

    Havrylenko, Svitlana; Mirande, Marc

    2015-01-01

    Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis. PMID:25807264

  12. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    PubMed Central

    Fewer, David P; Rouhiainen, Leo; Jokela, Jouni; Wahlsten, Matti; Laakso, Kati; Wang, Hao; Sivonen, Kaarina

    2007-01-01

    Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1) and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains. PMID:17908306

  13. A Rationally Engineered Misacylating Aminoacyl-Trna Synthetase

    SciTech Connect

    Bullock, T.L.; Rodriguez-Hernandez, A.; Corigliano, E.M.; Perona, J.J.

    2009-05-12

    Information transfer from nucleic acid to protein is mediated by aminoacyl-tRNA synthetases, which catalyze the specific pairings of amino acids with transfer RNAs. Despite copious sequence and structural information on the 22 tRNA synthetase families, little is known of the enzyme signatures that specify amino acid selectivities. Here, we show that transplanting a conserved arginine residue from glutamyl-tRNA synthetase (GluRS) to glutaminyl-tRNA synthetase (GlnRS) improves the K{sub M} of GlnRS for noncognate glutamate. Two crystal structures of this C229R GlnRS mutant reveal that a conserved twin-arginine GluRS amino acid identity signature cannot be incorporated into GlnRS without disrupting surrounding protein structural elements that interact with the tRNA. Consistent with these findings, we show that cumulative replacement of other primary binding site residues in GlnRS, with those of GluRS, only slightly improves the ability of the GlnRS active site to accommodate glutamate. However, introduction of 22 amino acid replacements and one deletion, including substitution of the entire primary binding site and two surface loops adjacent to the region disrupted in C229R, improves the capacity of Escherichia coli GlnRS to synthesize misacylated Glu-tRNA{sup Gln} by 16,000-fold. This hybrid enzyme recapitulates the function of misacylating GluRS enzymes found in organisms that synthesize Gln-tRNA{sup Gln} by an alternative pathway. These findings implicate the RNA component of the contemporary GlnRS-tRNA{sup Gln} complex in mediating amino acid specificity. This role for tRNA may persist as a relic of primordial cells in which the evolution of the genetic code was driven by RNA-catalyzed amino acid-RNA pairing.

  14. Drosophila phosphopantothenoylcysteine synthetase is required for tissue morphogenesis during oogenesis

    PubMed Central

    Bosveld, Floris; Rana, Anil; Lemstra, Willy; Kampinga, Harm H; Sibon, Ody CM

    2008-01-01

    Background Coenzyme A (CoA) is an essential metabolite, synthesized from vitamin B5 by the subsequent action of five enzymes: PANK, PPCS, PPCDC, PPAT and DPCK. Mutations in Drosophila dPPCS disrupt female fecundity and in this study we analyzed the female sterile phenotype of dPPCS mutants in detail. Results We demonstrate that dPPCS is required for various processes that occur during oogenesis including chorion patterning. Our analysis demonstrates that a mutation in dPPCS disrupts the organization of the somatic and germ line cells, affects F-actin organization and results in abnormal PtdIns(4,5)P2 localization. Improper cell organization coincides with aberrant localization of the membrane molecules Gurken (Grk) and Notch, whose activities are required for specification of the follicle cells that pattern the eggshell. Mutations in dPPCS also induce alterations in scutellar patterning and cause wing vein abnormalities. Interestingly, mutations in dPANK and dPPAT-DPCK result in similar patterning defects. Conclusion Together, our results demonstrate that de novo CoA biosynthesis is required for proper tissue morphogenesis. PMID:18759961

  15. CoaTx-II, a new dimeric Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom with bactericidal potential: Insights into its structure and biological roles.

    PubMed

    Almeida, J R; Lancellotti, M; Soares, A M; Calderon, L A; Ramírez, D; González, W; Marangoni, S; Da Silva, S L

    2016-09-15

    Snake venoms are rich and intriguing sources of biologically-active molecules that act on target cells, modulating a diversity of physiological functions and presenting promising pharmacological applications. Lys49 phospholipase A2 is one of the multifunctional proteins present in these complex secretions and, although catalytically inactive, has a variety of biological activities, including cytotoxic, antibacterial, inflammatory, antifungal activities. Herein, a Lys49 phospholipase A2, denominated CoaTx-II from Crotalus oreganus abyssus, was purified and structurally and pharmacologically characterized. CoaTx-II was isolated with a high degree of purity by a combination of two chromatographic steps; molecular exclusion and reversed-phase high performance liquid chromatography. This toxin is dimeric with a mass of 13868.2 Da (monomeric form), as determined by mass spectrometry. CoaTx-II is rich in Arg and Lys residues and displays high identity with other Lys49 PLA2 homologues, which have high isoelectric points. The structural model of dimeric CoaTx-II shows that the toxin is non-covalently stabilized. Despite its enzymatic inactivity, in vivo CoaTx-II caused local muscular damage, characterized by increased plasma creatine kinase and confirmed by histological alterations, in addition to an inflammatory activity, as demonstrated by mice paw edema induction and pro-inflammatory cytokine IL-6 elevation. CoaTx-II also presents antibacterial activity against gram negative (Pseudomonas aeruginosa 31NM, Escherichia coli ATCC 25922) and positive (Staphyloccocus aureus BEC9393 and Rib1) bacteria. Therefore, data show that this newly purified toxin plays a central role in mediating the degenerative events associated with envenomation, in addition to demonstrating antibacterial properties, with potential for use in the development of strategies for antivenom therapy and combating antibiotic-resistant bacteria. PMID:27530662

  16. CoaTx-II, a new dimeric Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom with bactericidal potential: Insights into its structure and biological roles.

    PubMed

    Almeida, J R; Lancellotti, M; Soares, A M; Calderon, L A; Ramírez, D; González, W; Marangoni, S; Da Silva, S L

    2016-09-15

    Snake venoms are rich and intriguing sources of biologically-active molecules that act on target cells, modulating a diversity of physiological functions and presenting promising pharmacological applications. Lys49 phospholipase A2 is one of the multifunctional proteins present in these complex secretions and, although catalytically inactive, has a variety of biological activities, including cytotoxic, antibacterial, inflammatory, antifungal activities. Herein, a Lys49 phospholipase A2, denominated CoaTx-II from Crotalus oreganus abyssus, was purified and structurally and pharmacologically characterized. CoaTx-II was isolated with a high degree of purity by a combination of two chromatographic steps; molecular exclusion and reversed-phase high performance liquid chromatography. This toxin is dimeric with a mass of 13868.2 Da (monomeric form), as determined by mass spectrometry. CoaTx-II is rich in Arg and Lys residues and displays high identity with other Lys49 PLA2 homologues, which have high isoelectric points. The structural model of dimeric CoaTx-II shows that the toxin is non-covalently stabilized. Despite its enzymatic inactivity, in vivo CoaTx-II caused local muscular damage, characterized by increased plasma creatine kinase and confirmed by histological alterations, in addition to an inflammatory activity, as demonstrated by mice paw edema induction and pro-inflammatory cytokine IL-6 elevation. CoaTx-II also presents antibacterial activity against gram negative (Pseudomonas aeruginosa 31NM, Escherichia coli ATCC 25922) and positive (Staphyloccocus aureus BEC9393 and Rib1) bacteria. Therefore, data show that this newly purified toxin plays a central role in mediating the degenerative events associated with envenomation, in addition to demonstrating antibacterial properties, with potential for use in the development of strategies for antivenom therapy and combating antibiotic-resistant bacteria.

  17. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense.

    PubMed

    Van Dommelen, Anne; Spaepen, Stijn; Vanderleyden, Jozef

    2009-04-01

    Glutamine synthetase, a key enzyme in nitrogen metabolism of both prokaryotes and eukaryotes, is strictly regulated. One means of regulation is the modulation of activity through adenylylation catalyzed by adenylyltransferases. Using PCR primers based on conserved sequences in glutamine synthetase adenylyltransferases, we amplified part of the glnE gene of Azospirillum brasilense Sp7. The complete glnE sequence of A. brasilense Sp245 was retrieved from the draft genome sequence of this organism (http://genomics.ornl.gov/research/azo/). Adenylyltransferase is a bifunctional enzyme consisting of an N-terminal domain responsible for deadenylylation activity and a C-terminal domain responsible for adenylylation activity. Both domains are partially homologous to each other. Residues important for catalytic activity were present in the deduced amino acid sequence of the A. brasilense Sp245 glnE sequence. A glnE mutant was constructed in A. brasilense Sp7 by inserting a kanamycin resistance cassette between the two active domains of the enzyme. The resulting mutant was unable to adenylylate the glutamine synthetase enzyme and was impaired in growth when shifted from nitrogen-poor to nitrogen-rich medium.

  18. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-04-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover.

  19. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed Central

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-01-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover. Images PMID:6113590

  20. Expression of glutamine synthetase in balloon cells: a basis of their antiepileptic role?

    PubMed

    Buccoliero, Anna Maria; Barba, Carmen; Giordano, Flavio; Baroni, Gianna; Genitori, Lorenzo; Guerrini, Renzo; Taddei, Gian Luigi

    2015-01-01

    Glutamine synthetase is an enzyme involved in the clearance of glutamate, the most potent excitatory neurotransmitter. We studied the immunohistochemical expression of glutamine synthetase in neocortical samples from 5 children who underwent surgery for pharmacoresistant epilepsy and a histological diagnosis of focal cortical dysplasia IIb. In all cases, balloon cells, but not dysmorphic neurons, were immunopositive for glutamine synthetase. This finding suggests that balloon cells can be involved in the neutralization of glutamate and play a protective anti-seizure role.

  1. Cross sections for production of the CO(A 1 Pi)-(X 1 Sigma) fourth positive band system and O(3 S) by photodissociation of CO2

    NASA Technical Reports Server (NTRS)

    Gentieu, E. P.; Mentall, J. E.

    1972-01-01

    The CO(A 1 Pi) cross sections reported here, along with previously determined electron impact results, establish the basis for calculating CO fourth positive system volume emission rates in the Martian dayglow. Calculated volume emission rates in turn determine relative distribution of photon vs. electron impact as mechanisms for producing CO(A 1 Pi) in the Mars atmosphere. The smallness of the O(1304) cross section confirms previous indirect evidence that photodissociative excitation of CO2 is not an important source of O(3 S) in the upper atmosphere of Mars.

  2. Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase

    SciTech Connect

    Bonnefond, Luc; Frugier, Magali; Touzé, Elodie; Lorber, Bernard; Florentz, Catherine; Giegé, Richard Rudinger-Thirion, Joëlle; Sauter, Claude

    2007-04-01

    Crystals of human mitochondrial tyrosyl-tRNA synthetase lacking the C-terminal S4-like domain diffract to 2.7 Å resolution and are suitable for structure determination. Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA{sup Tyr} charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4{sub 3}2{sub 1}2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 Å resolution. Complete data sets could be collected and led to structure solution by molecular replacement.

  3. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases

    PubMed Central

    Guy, Jodie E.; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-01-01

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals. PMID:21930947

  4. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases.

    PubMed

    Guy, Jodie E; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-10-01

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals. PMID:21930947

  5. Functional expansion of human tRNA synthetases achieved by structural inventions.

    PubMed

    Guo, Min; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-21

    Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions.

  6. Identification of Unusual Phospholipid Fatty Acyl Compositions of Acanthamoeba castellanii

    PubMed Central

    Palusinska-Szysz, Marta; Kania, Magdalena; Turska-Szewczuk, Anna; Danikiewicz, Witold; Russa, Ryszard; Fuchs, Beate

    2014-01-01

    Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL). The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0), octadecenoyl (18∶1 Δ9) and hexadecanoyl (16∶0). However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE), phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24) and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of these

  7. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.

    PubMed

    Knight, T J; Langston-Unkefer, P J

    1988-08-15

    The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked

  8. The quorum sensing molecule N-acyl homoserine lactone produced by Acinetobacter baumannii displays antibacterial and anticancer properties.

    PubMed

    John, James; Saranathan, Rajagopalan; Adigopula, Lakshmi Narayana; Thamodharan, Vasanth; Singh, Satya Prakash; Lakshmi, T Pragna; CharanTej, Mallu Abhiram; Rao, R Srinivasa; Krishna, R; Rao, H Surya Prakash; Prashanth, K

    2016-10-01

    Secretory N-acyl homoserine lactones (AHLs) mediate quorum sensing (QS) in bacteria. AHLs are shown to be inhibitory for an unrelated group of bacteria and might mimic host signalling elements, thereby subverting the regulatory events in host cells. This study investigated the AHL produced by Acinetobacter baumannii and analysed its effect on other bacterial species and mammalian cells. Chemically characterized AHL had an m/z value of 325 with a molecular formula C18H31NO4 and showed its inhibitory potential against Staphylococcus aureus. Molecular docking studies identified D-alanine-D-alanine synthetase A, a cell wall synthesizing enzyme of S. aureus having a strong binding affinity towards AHL. Electron microscopy showed the disruption and sloughing off of the S. aureus cell wall when treated with AHL. In vitro experiments revealed that this bacteriostatic AHL showed time-dependent activity and induced apoptosis in cancer cell lines. This compound could be a potential structural backbone for constructing new AHL analogues against S. aureus. The findings emphasize the need to re-evaluate all previously characterized AHLs for any additional new biological functions other than QS. PMID:27643959

  9. Cysteinyl-tRNA synthetase: determination of the last E. coli aminoacyl-tRNA synthetase primary structure.

    PubMed Central

    Eriani, G; Dirheimer, G; Gangloff, J

    1991-01-01

    The gene coding for E. coli cysteinyl-tRNA synthetase (cysS) was isolated by complementation of a strain deficient in cysteinyl-tRNA synthetase activity at high temperature (43 degrees C). Sequencing of a 2.1 kbp DNA fragment revealed an open reading frame of 1383 bp coding for a protein of 461 amino acid residues with a Mr of 52,280, a value in close agreement with that observed for the purified protein, which behaves as a monomer. The sequence of CysRS bears the canonical His-Ile- Gly -His (HIGH) and Lys-Met-Ser-Lys-Ser (KMSKS) motifs characteristic of the group of enzymes containing a Rossmann fold; furthermore, it shows striking homologies with MetRS (an homodimer of 677 residues) and to a lesser extent with Ile-, Leu-, and ValRS (monomers of 939, 860, and 951 residues respectively). With its monomeric state and smaller size, CysRS is probably more closely related to the primordial aminoacyl-tRNA synthetase from which all have diverged. Images PMID:2014166

  10. Quantum chemical study of penicillin: Reactions after acylation

    NASA Astrophysics Data System (ADS)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  11. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function.

    PubMed

    Dutta, Arnob; Abmayr, Susan M; Workman, Jerry L

    2016-08-18

    Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs. PMID:27540855

  12. Novel approach in LC-MS/MS using MRM to generate a full profile of acyl-CoAs: discovery of acyl-dephospho-CoAs[S

    PubMed Central

    Li, Qingling; Zhang, Shenghui; Berthiaume, Jessica M.; Simons, Brigitte; Zhang, Guo-Fang

    2014-01-01

    A metabolomic approach to selectively profile all acyl-CoAs was developed using a programmed multiple reaction monitoring (MRM) method in LC-MS/MS and was employed in the analysis of various rat organs. The programmed MRM method possessed 300 mass ion transitions with the mass difference of 507 between precursor ion (Q1) and product ion (Q3), and the precursor ion started from m/z 768 and progressively increased one mass unit at each step. Acyl-dephospho-CoAs resulting from the dephosphorylation of acyl-CoAs were identified by accurate MS and fragmentation. Acyl-dephospho-CoAs were also quantitatively scanned by the MRM method with the mass difference of 427 between Q1 and Q3 mass ions. Acyl-CoAs and dephospho-CoAs were assayed with limits of detection ranging from 2 to 133 nM. The accuracy of the method was demonstrated by assaying a range of concentrations of spiked acyl-CoAs with the results of 80–114%. The distribution of acyl-CoAs reflects the metabolic status of each organ. The physiological role of dephosphorylation of acyl-CoAs remains to be further characterized. The methodology described herein provides a novel strategy in metabolomic studies to quantitatively and qualitatively profile all potential acyl-CoAs and acyl-dephospho-CoAs. PMID:24367045

  13. Chemoenzymatic Synthesis of Acyl Coenzyme A Substrates Enables in Situ Labeling of Small Molecules and Proteins.

    PubMed

    Agarwal, Vinayak; Diethelm, Stefan; Ray, Lauren; Garg, Neha; Awakawa, Takayoshi; Dorrestein, Pieter C; Moore, Bradley S

    2015-09-18

    A chemoenzymatic approach to generate fully functional acyl coenzyme A molecules that are then used as substrates to drive in situ acyl transfer reactions is described. Mass spectrometry based assays to verify the identity of acyl coenzyme A enzymatic products are also illustrated. The approach is responsive to a diverse array of carboxylic acids that can be elaborated to their corresponding coenzyme A thioesters, with potential applications in wide-ranging chemical biology studies that utilize acyl coenzyme A substrates.

  14. Escherichia coli Enoyl-Acyl Carrier Protein Reductase (FabI) Supports Efficient Operation of a Functional Reversal of the β-Oxidation Cycle

    PubMed Central

    Vick, Jacob E.; Clomburg, James M.; Blankschien, Matthew D.; Chou, Alexander; Kim, Seohyoung

    2014-01-01

    We recently used a synthetic/bottom-up approach to establish the identity of the four enzymes composing an engineered functional reversal of the β-oxidation cycle for fuel and chemical production in Escherichia coli (J. M. Clomburg, J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya, and R. Gonzalez, ACS Synth Biol 1:541–554, 2012, http://dx.doi.org/10.1021/sb3000782). While native enzymes that catalyze the first three steps of the pathway were identified, the identity of the native enzyme(s) acting as the trans-enoyl coenzyme A (CoA) reductase(s) remained unknown, limiting the amount of product that could be synthesized (e.g., 0.34 g/liter butyrate) and requiring the overexpression of a foreign enzyme (the Euglena gracilis trans-enoyl-CoA reductase [EgTER]) to achieve high titers (e.g., 3.4 g/liter butyrate). Here, we examine several native E. coli enzymes hypothesized to catalyze the reduction of enoyl-CoAs to acyl-CoAs. Our results indicate that FabI, the native enoyl-acyl carrier protein (enoyl-ACP) reductase (ENR) from type II fatty acid biosynthesis, possesses sufficient NADH-dependent TER activity to support the efficient operation of a β-oxidation reversal. Overexpression of FabI proved as effective as EgTER for the production of butyrate and longer-chain carboxylic acids. Given the essential nature of fabI, we investigated whether bacterial ENRs from other families were able to complement a fabI deletion without promiscuous reduction of crotonyl-CoA. These characteristics from Bacillus subtilis FabL enabled ΔfabI complementation experiments that conclusively established that FabI encodes a native enoyl-CoA reductase activity that supports the β-oxidation reversal in E. coli. PMID:25527535

  15. Substrate specificity, substrate channeling, and allostery in BphJ: an acylating aldehyde dehydrogenase associated with the pyruvate aldolase BphI.

    PubMed

    Baker, Perrin; Carere, Jason; Seah, Stephen Y K

    2012-06-01

    BphJ, a nonphosphorylating acylating aldehyde dehydrogenase, catalyzes the conversion of aldehydes to form acyl-coenzyme A in the presence of NAD(+) and coenzyme A (CoA). The enzyme is structurally related to the nonacylating aldehyde dehydrogenases, aspartate-β-semialdehyde dehydrogenase and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Cys-131 was identified as the catalytic thiol in BphJ, and pH profiles together with site-specific mutagenesis data demonstrated that the catalytic thiol is not activated by an aspartate residue, as previously proposed. In contrast to the wild-type enzyme that had similar specificities for two- or three-carbon aldehydes, an I195A variant was observed to have a 20-fold higher catalytic efficiency for butyraldehyde and pentaldehyde compared to the catalytic efficiency of the wild type toward its natural substrate, acetaldehyde. BphJ forms a heterotetrameric complex with the class II aldolase BphI that channels aldehydes produced in the aldol cleavage reaction to the dehydrogenase via a molecular tunnel. Replacement of Ile-171 and Ile-195 with bulkier amino acid residues resulted in no more than a 35% reduction in acetaldehyde channeling efficiency, showing that these residues are not critical in gating the exit of the channel. Likewise, the replacement of Asn-170 in BphJ with alanine and aspartate did not substantially alter aldehyde channeling efficiencies. Levels of activation of BphI by BphJ N170A, N170D, and I171A were reduced by ≥3-fold in the presence of NADH and ≥4.5-fold when BphJ was undergoing turnover, indicating that allosteric activation of the aldolase has been compromised in these variants. The results demonstrate that the dehydrogenase coordinates the catalytic activity of BphI through allostery rather than through aldehyde channeling. PMID:22574886

  16. Regulation of glutamine synthetase, aspartokinase, and total protein turnover in Klebsiella aerogenes.

    PubMed

    Fulks, R M; Stadtman, E R

    1985-12-13

    When suspensions of Klebsiella aerogenes are incubated in a nitrogen-free medium there is a gradual decrease in the levels of acid-precipitable protein and of aspartokinase III (lysine-sensitive) and aspartokinase I (threonine-sensitive) activities. In contrast, the level of glutamine synthetase increases slightly and then remains constant. Under these conditions, the glutamine synthetase and other proteins continue to be synthesized as judged by the incorporation of [14C]leucine into the acid-precipitable protein fraction and into protein precipitated by anti-glutamine synthetase antibodies, by the fact that growth-inhibiting concentrations of chloramphenicol also inhibit the incorporation of [14C]leucine into protein and into protein precipitated by anti-glutamine synthetase antibody, and by the fact that chloramphenicol leads to acceleration in the loss of aspartokinases I and III and promotes a net decrease in the level of glutamine synthetase and its cross-reactive protein. The loss of aspartokinases I and III in cell suspensions is stimulated by glucose and is inhibited by 2,4-dinitrophenol. Glucose also stimulates the loss of aspartokinases and glutamine synthetase in the presence of chloramphenicol. Cell-free extracts of K. aerogenes catalyze rapid inactivation of endogenous glutamine synthetase as well as exogenously added pure glutamine synthetase. This loss of glutamine synthetase is not associated with a loss of protein that cross-reacts with anti-glutamine synthetase antibodies. The inactivation of glutamine synthetase in extracts is not due to adenylylation. It is partially prevented by sulfhydryl reagents, Mn2+, antimycin A, 2,4-dinitrophenol, EDTA, anaerobiosis and by dialysis. Following 18 h dialysis, the capacity of extracts to catalyze inactivation of glutamine synthetase is lost but can be restored by the addition of Fe2+ (or Ni2+) together with ATP (or other nucleoside di- and triphosphates. After 40-60 h dialysis Fe3+ together with NADH (but

  17. QSAR and Molecular Docking Studies of Oxadiazole-Ligated Pyrrole Derivatives as Enoyl-ACP (CoA) Reductase Inhibitors

    PubMed Central

    Asgaonkar, Kalyani D.; Mote, Ganesh D.; Chitre, Trupti S.

    2014-01-01

    A quantitative structure-activity relationship model was developed on a series of compounds containing oxadiazole-ligated pyrrole pharmacophore to identify key structural fragments required for anti-tubercular activity. Two-dimensional (2D) and three-dimensional (3D) QSAR studies were performed using multiple linear regression (MLR) analysis and k-nearest neighbour molecular field analysis (kNN-MFA), respectively. The developed QSAR models were found to be statistically significant with respect to training, cross-validation, and external validation. New chemical entities (NCEs) were designed based on the results of the 2D- and 3D-QSAR. NCEs were subjected to Lipinski’s screen to ensure the drug-like pharmacokinetic profile of the designed compounds in order to improve their bioavailability. Also, the binding ability of the NCEs with enoyl-ACP (CoA) reductase was assessed by docking. PMID:24634843

  18. Characterization of the JWST Pathfinder mirror dynamics using the center of curvature optical assembly (CoCOA)

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, 18 segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  19. Characterization of the JWST Pathfinder Mirror Dynamics Using the Center of Curvature Optical Assembly (CoCOA)

    NASA Technical Reports Server (NTRS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-01-01

    The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  20. Mechanistic studies of malonic acid-mediated in situ acylation.

    PubMed

    Chandra, Koushik; Naoum, Johnny N; Roy, Tapta Kanchan; Gilon, Chaim; Gerber, R Benny; Friedler, Assaf

    2015-09-01

    We have previously introduced an easy to perform, cost-effective and highly efficient acetylation technique for solid phase synthesis (SPPS). Malonic acid is used as a precursor and the reaction proceeds via a reactive ketene that acetylates the target amine. Here we present a detailed mechanistic study of the malonic acid-mediated acylation. The influence of reaction conditions, peptide sequence and reagents was systematically studied. Our results show that the methodology can be successfully applied to different types of peptides and nonpeptidic molecules irrespective of their structure, sequence, or conformation. Using alkyl, phenyl, and benzyl malonic acid, we synthesized various acyl peptides with almost quantitative yields. The ketenes obtained from the different malonic acid derived precursors were characterized by in situ (1) H-NMR. The reaction proceeded in short reaction times and resulted in excellent yields when using uronium-based coupling agents, DIPEA as a base, DMF/DMSO/NMP as solvents, Rink amide/Wang/Merrifield resins, temperature of 20°C, pH 8-12 and 5 min preactivation at inert atmosphere. The reaction was unaffected by Lewis acids, transition metal ions, surfactants, or salt. DFT studies support the kinetically favorable concerted mechanism for CO2 and ketene formation that leads to the thermodynamically stable acylated products. We conclude that the malonic acid-mediated acylation is a general method applicable to various target molecules. PMID:25846609

  1. Acyl-CoA-Binding Proteins (ACBPs) in Plant Development.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-01-01

    Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted.

  2. Preservation of polyunsaturated fatty acyl glycerides via intramolecular antioxidant coupling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferulic acid and its esters are known to be effective antioxidants. Feruloyl di-gamma-linolenoylglycerol was assessed for its ability to serve as an antioxidant for preventing the oxidation of its gamma-linolenoyl polyunsaturated fatty acyl groups in model membrane phospholipid vesicles. The molec...

  3. Lubricity characteristics of seed oils modified by acylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemically modified seed oils via acylation of epoxidized and polyhydroxylated derivatives were investigated for their potential as candidates for lubrication. The native oil was preliminarily epoxidized and ring-opened in a one-pot reaction using formic acid-H2O2 followed by aqueous HCl treatment t...

  4. Acyl-CoA-Binding Proteins (ACBPs) in Plant Development.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-01-01

    Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted. PMID:27023243

  5. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships

    PubMed Central

    2010-01-01

    Background Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes, found in fungi and bacteria, which biosynthesize peptides without the aid of ribosomes. Although their metabolite products have been the subject of intense investigation due to their life-saving roles as medicinals and injurious roles as mycotoxins and virulence factors, little is known of the phylogenetic relationships of the corresponding NRPSs or whether they can be ranked into subgroups of common function. We identified genes (NPS) encoding NRPS and NRPS-like proteins in 38 fungal genomes and undertook phylogenomic analyses in order to identify fungal NRPS subfamilies, assess taxonomic distribution, evaluate levels of conservation across subfamilies, and address mechanisms of evolution of multimodular NRPSs. We also characterized relationships of fungal NRPSs, a representative sampling of bacterial NRPSs, and related adenylating enzymes, including α-aminoadipate reductases (AARs) involved in lysine biosynthesis in fungi. Results Phylogenomic analysis identified nine major subfamilies of fungal NRPSs which fell into two main groups: one corresponds to NPS genes encoding primarily mono/bi-modular enzymes which grouped with bacterial NRPSs and the other includes genes encoding primarily multimodular and exclusively fungal NRPSs. AARs shared a closer phylogenetic relationship to NRPSs than to other acyl-adenylating enzymes. Phylogenetic analyses and taxonomic distribution suggest that several mono/bi-modular subfamilies arose either prior to, or early in, the evolution of fungi, while two multimodular groups appear restricted to and expanded in fungi. The older mono/bi-modular subfamilies show conserved domain architectures suggestive of functional conservation, while multimodular NRPSs, particularly those unique to euascomycetes, show a diversity of architectures and of genetic mechanisms generating this diversity. Conclusions This work is the first to characterize subfamilies of fungal

  6. A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket.

    PubMed

    Chai, Ai-Fen; Bulloch, Esther M M; Evans, Genevieve L; Lott, J Shaun; Baker, Edward N; Johnston, Jodie M

    2015-04-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Access to iron in host macrophages depends on iron-chelating siderophores called mycobactins and is strongly correlated with Mtb virulence. Here, the crystal structure of an Mtb enzyme involved in mycobactin biosynthesis, MbtN, in complex with its FAD cofactor is presented at 2.30 Å resolution. The polypeptide fold of MbtN conforms to that of the acyl-CoA dehydrogenase (ACAD) family, consistent with its predicted role of introducing a double bond into the acyl chain of mycobactin. Structural comparisons and the presence of an acyl carrier protein, MbtL, in the same gene locus suggest that MbtN acts on an acyl-(acyl carrier protein) rather than an acyl-CoA. A notable feature of the crystal structure is the tubular density projecting from N(5) of FAD. This was interpreted as a covalently bound polyethylene glycol (PEG) fragment and resides in a hydrophobic pocket where the substrate acyl group is likely to bind. The pocket could accommodate an acyl chain of 14-21 C atoms, consistent with the expected length of the mycobactin acyl chain. Supporting this, steady-state kinetics show that MbtN has ACAD activity, preferring acyl chains of at least 16 C atoms. The acyl-binding pocket adopts a different orientation (relative to the FAD) to other structurally characterized ACADs. This difference may be correlated with the apparent ability of MbtN to catalyse the formation of an unusual cis double bond in the mycobactin acyl chain.

  7. Separation and quantification of 2-acyl-1-lysophospholipids and 1-acyl-2-lysophospholipids in biological samples by LC-MS/MS

    PubMed Central

    Okudaira, Michiyo; Inoue, Asuka; Shuto, Akira; Nakanaga, Keita; Kano, Kuniyuki; Makide, Kumiko; Saigusa, Daisuke; Tomioka, Yoshihisa; Aoki, Junken

    2014-01-01

    Lysophospholipids (LysoGPs) serve as lipid mediators and precursors for synthesis of diacyl phospholipids (GPs). LysoGPs detected in cells have various acyl chains attached at either the sn-1 or sn-2 position of the glycerol backbone. In general, acyl chains at the sn-2 position of 2-acyl-1-LysoGPs readily move to the sn-1 position, generating 1-acyl-2-lyso isomers by a nonenzymatic reaction called intra-molecular acyl migration, which has hampered the detection of 2-acyl-1-LysoGPs in biological samples. In this study, we developed a simple and versatile method to separate and quantify 2-acyl-1- and 1-acyl-2-LysoGPs. The main point of the method was to extract LysoGPs at pH 4 and 4°C, conditions that were found to completely eliminate the intra-molecular acyl migration. Under the present conditions, the relative amounts of 2-acyl-1-LysoGPs and 1-acyl-2-LysoGPs did not change at least for 1 week. Further, in LysoGPs extracted from cells and tissues under the present conditions, most of the saturated fatty acids (16:0 and 18:0) were found in the sn-1 position of LysoGPs, while most of the PUFAs (18:2, 20:4, 22:6) were found in the sn-2 position. Thus the method can be used to elucidate the in vivo role of 2-acyl-1-LysoGPs. PMID:25114169

  8. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    PubMed

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  9. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2008-04-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  10. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2012-05-22

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  11. Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2011-09-06

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  12. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2010-05-11

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  13. Ethanol Metabolism Modifies Hepatic Protein Acylation in Mice

    PubMed Central

    Fritz, Kristofer S.; Green, Michelle F.; Petersen, Dennis R.; Hirschey, Matthew D.

    2013-01-01

    Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated metabolism, induce specific

  14. Acylated monogalactosyl diacylglycerol: prevalence in the plant kingdom and identification of an enzyme catalyzing galactolipid head group acylation in Arabidopsis thaliana.

    PubMed

    Nilsson, Anders K; Johansson, Oskar N; Fahlberg, Per; Kommuri, Murali; Töpel, Mats; Bodin, Lovisa J; Sikora, Per; Modarres, Masoomeh; Ekengren, Sophia; Nguyen, Chi T; Farmer, Edward E; Olsson, Olof; Ellerström, Mats; Andersson, Mats X

    2015-12-01

    The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono- and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl-MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl-MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12-oxo-phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA-containing galactolipids in the plant kingdom. While acyl-MGDG was found to be ubiquitous in green tissue of plants ranging from non-vascular plants to angiosperms, OPDA-containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non-oxidized and OPDA-containing acyl-MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl-MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response. PMID:26566971

  15. The Golgi S-acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity

    PubMed Central

    Lemonidis, Kimon; Gorleku, Oforiwa A.; Sanchez-Perez, Maria C.; Grefen, Christopher; Chamberlain, Luke H.

    2014-01-01

    S-acylation, the attachment of fatty acids onto cysteine residues, regulates protein trafficking and function and is mediated by a family of zDHHC enzymes. The S-acylation of peripheral membrane proteins has been proposed to occur at the Golgi, catalyzed by an S-acylation machinery that displays little substrate specificity. To advance understanding of how S-acylation of peripheral membrane proteins is handled by Golgi zDHHC enzymes, we investigated interactions between a subset of four Golgi zDHHC enzymes and two S-acylated proteins—synaptosomal-associated protein 25 (SNAP25) and cysteine-string protein (CSP). Our results uncover major differences in substrate recognition and S-acylation by these zDHHC enzymes. The ankyrin-repeat domains of zDHHC17 and zDHHC13 mediated strong and selective interactions with SNAP25/CSP, whereas binding of zDHHC3 and zDHHC7 to these proteins was barely detectable. Despite this, zDHHC3/zDHHC7 could S-acylate SNAP25/CSP more efficiently than zDHHC17, whereas zDHHC13 lacked S-acylation activity toward these proteins. Overall the results of this study support a model in which dynamic intracellular localization of peripheral membrane proteins is achieved by highly selective recruitment by a subset of zDHHC enzymes at the Golgi, combined with highly efficient S-acylation by other Golgi zDHHC enzymes. PMID:25253725

  16. Inhibition of Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed Central

    Merali, S; Zhang, Y; Sloan, D; Meshnick, S

    1990-01-01

    A new reversed-phase high-pressure liquid chromatography assay procedure for dihydropteroate synthetase (DHPS) that involves the elution of the enzyme incubation solution with a series of three solvents of decreasing polarity (ammonium phosphate buffer, 10% methanol, and 50% methanol) was designed. By this procedure DHPS was detected in Escherichia coli and Pneumocystis carinii with specific activities of 450 and 14 U/mg, respectively. A comparison of the effects of five sulfa drugs on P. carinii DHPS activity revealed that dapsone is the most potent of these drugs. PMID:2203302

  17. The effects of putative lipase and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase gene knockouts on triacylglycerol accumulation in Gordonia sp. KTR9.

    PubMed

    Indest, Karl J; Eberly, Jed O; Ringelberg, David B; Hancock, Dawn E

    2015-02-01

    Previously, we demonstrated triacylglycerol (TAG) accumulation and the in vivo ability to catalyze esters from exogenous short chain alcohol sources in Gordonia sp. strain KTR9. In this study, we investigated the effects that putative lipase (KTR9_0186) and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT; KTR9_3844) gene knockouts had on TAG accumulation. Gene disruption of KTR9_0186 resulted in a twofold increase in TAG content in nitrogen starved cells. Lipase mutants subjected to carbon starvation, following nitrogen starvation, retained 75 % more TAGs and retained pigmentation. Transcriptome expression data confirmed the deletion of KTR9_0186 and identified the up-regulation of key genes involved in fatty acid degradation, a likely compensatory mechanism for reduced TAG mobilization. In vitro assays with purified KTR9_3844 demonstrated WS/DGAT activity with short chain alcohols and C16 and C18 fatty acid Co-As. Collectively, these results indicate that Gordonia sp. KTR9 has a suitable tractable genetic background for TAG production as well as the enzymatic capacity to catalyze fatty acid esters from short chain alcohols.

  18. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile

    PubMed Central

    Gu, Lei; Zhang, Guo-Fang; Kombu, Rajan S.; Allen, Frederick; Kutz, Gerd; Brewer, Wolf-Ulrich; Roe, Charles R.

    2010-01-01

    The anaplerotic odd-medium-chain triglyceride triheptanoin is used in clinical trials for the chronic dietary treatment of patients with long-chain fatty acid oxidation disorders. We previously showed (Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, Kutz G, Brewer WU, Roe CR, Brunengraber H. Am J Physiol Endocrinol Metab 291: E860–E866, 2006) that the intravenous infusion of triheptanoin increases lipolysis traced by the turnover of glycerol. In this study, we tested whether lipolysis induced by triheptanoin infusion is accompanied by the potentially harmful release of long-chain fatty acids. Rats were infused with heptanoate ± glycerol or triheptanoin. Intravenous infusion of triheptanoin at 40% of caloric requirement markedly increased glycerol endogenous Ra but not oleate endogenous Ra. Thus, the activation of lipolysis was balanced by fatty acid reesterification in the same cells. The liver acyl-CoA profile showed the accumulation of intermediates of heptanoate β-oxidation and C5-ketogenesis and a decrease in free CoA but no evidence of metabolic perturbation of liver metabolism such as propionyl overload. Our data suggest that triheptanoin, administered either intravenously or intraduodenally, could be used for intensive care and nutritional support of metabolically decompensated long-chain fatty acid oxidation disorders. PMID:19903863

  19. Defective Pollen Wall Is Required for Anther and Microspore Development in Rice and Encodes a Fatty Acyl Carrier Protein Reductase[C][W][OA

    PubMed Central

    Shi, Jing; Tan, Hexin; Yu, Xiao-Hong; Liu, Yuanyun; Liang, Wanqi; Ranathunge, Kosala; Franke, Rochus Benni; Schreiber, Lukas; Wang, Yujiong; Kai, Guoying; Shanklin, John; Ma, Hong; Zhang, Dabing

    2011-01-01

    Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots. PMID:21705642

  20. Biochemical characteristics of AtFAR2, a fatty acid reductase from Arabidopsis thaliana that reduces fatty acyl-CoA and -ACP substrates into fatty alcohols.

    PubMed

    Doan, Thuy T P; Carlsson, Anders S; Stymne, Sten; Hofvander, Per

    2016-01-01

    Fatty alcohols and derivatives are important for proper deposition of a functional pollen wall. Mutations in specific genes encoding fatty acid reductases (FAR) responsible for fatty alcohol production cause abnormal development of pollen. A disrupted AtFAR2 (MS2) gene in Arabidopsis thaliana results in pollen developing an abnormal exine layer and a reduced fertility phenotype. AtFAR2 has been shown to be targeted to chloroplasts and in a purified form to be specific for acyl-ACP substrates. Here, we present data on the in vitro and in planta characterizations of AtFAR2 from A. thaliana and show that this enzyme has the ability to use both, C16:0-ACP and C16:0-CoA, as substrates to produce C16:0-alcohol. Our results further show that AtFAR2 is highly similar in properties and substrate specificity to AtFAR6 for which in vitro data has been published, and which is also a chloroplast localized enzyme. This suggests that although AtFAR2 is the major enzyme responsible for exine layer functionality, AtFAR6 might provide functional redundancy to AtFAR2. PMID:27274541

  1. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed Central

    Jones, A; Davies, H M; Voelker, T A

    1995-01-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase. PMID:7734968

  2. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed

    Jones, A; Davies, H M; Voelker, T A

    1995-03-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase.

  3. The evolution of Class II Aminoacyl-tRNA synthetases and the first code.

    PubMed

    Smith, Temple F; Hartman, Hyman

    2015-11-30

    Class II Aminoacyl-tRNA synthetases are a set of very ancient multi domain proteins. The evolution of the catalytic domain of Class II synthetases can be reconstructed from three peptidyl-hairpins. Further evolution from this primordial catalytic core leads to a split of the Class II synthetases into two divisions potentially associated with the operational code. The earliest form of this code likely coded predominantly Glycine (Gly), Proline (Pro), Alanine (Ala) and "Lysine"/Aspartic acid (Lys/Asp). There is a paradox in these synthetases beginning with a hairpin structure before the Genetic Code existed. A resolution is found in the suggestion that the primordial Aminoacyl synthetases formed in a transition from a Thioester world to a Phosphate ester world. PMID:26472323

  4. Direct N-acylation of azoles via a metal-free catalyzed oxidative cross-coupling strategy.

    PubMed

    Zhao, Jingjing; Li, Pan; Xia, Chungu; Li, Fuwei

    2014-05-11

    The KI-catalyzed N-acylation of azoles via direct oxidative coupling of C-H and N-H bonds has been developed. It could be smoothly scaled up to gram synthesis of acyl azoles. The reaction occurred by the coupling of acyl radicals and azoles to form the acyl azole radical anion, followed by its further oxidation.

  5. Production of a Brassica napus low-molecular mass acyl-coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expressio...

  6. Holocarboxylase synthetase deficiency pre and post newborn screening.

    PubMed

    Donti, Taraka R; Blackburn, Patrick R; Atwal, Paldeep S

    2016-06-01

    Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS) tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC) deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis.

  7. Mistranslation and its control by tRNA synthetases

    PubMed Central

    Schimmel, Paul

    2011-01-01

    Aminoacyl tRNA synthetases are ancient proteins that interpret the genetic material in all life forms. They are thought to have appeared during the transition from the RNA world to the theatre of proteins. During translation, they establish the rules of the genetic code, whereby each amino acid is attached to a tRNA that is cognate to the amino acid. Mistranslation occurs when an amino acid is attached to the wrong tRNA and subsequently is misplaced in a nascent protein. Mistranslation can be toxic to bacteria and mammalian cells, and can lead to heritable mutations. The great challenge for nature appears to be serine-for-alanine mistranslation, where even small amounts of this mistranslation cause severe neuropathologies in the mouse. To minimize serine-for-alanine mistranslation, powerful selective pressures developed to prevent mistranslation through a special editing activity imbedded within alanyl-tRNA synthetases (AlaRSs). However, serine-for-alanine mistranslation is so challenging that a separate, genome-encoded fragment of the editing domain of AlaRS is distributed throughout the Tree of Life to redundantly prevent serine-to-alanine mistranslation. Detailed X-ray structural and functional analysis shed light on why serine-for-alanine mistranslation is a universal problem, and on the selective pressures that engendered the appearance of AlaXps at the base of the Tree of Life. PMID:21930589

  8. Mammalian folylpoly-. gamma. -glutamate synthetase. 3. Specificity for folate analogues

    SciTech Connect

    George, S.; Cichowicz, D.J.; Shane, B.

    1987-01-27

    A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folypolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the ..gamma..-carboxyl of the terminal glutamate in the correct position for catalysis. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates. Other folate derivatives with tetrahedral chemistry replacing the peptide bond, such as pteroyl-..gamma..-glutamyl-(psi,CH/sub 2/-NH)-glutamate, retain affinity for the protein but are considerably less effective inhibitors than the ornithine derivatives. Enzyme activity was assayed using (/sup 14/C)glutamate.

  9. Novel insights into regulation of asparagine synthetase in conifers.

    PubMed

    Canales, Javier; Rueda-López, Marina; Craven-Bartle, Blanca; Avila, Concepción; Cánovas, Francisco M

    2012-01-01

    Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1) was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed.

  10. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed Central

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-01-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia. PMID:7486915

  11. Holocarboxylase synthetase deficiency pre and post newborn screening.

    PubMed

    Donti, Taraka R; Blackburn, Patrick R; Atwal, Paldeep S

    2016-06-01

    Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS) tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC) deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis. PMID:27114915

  12. Localization of two human autoantigen genes by PCR screening and in situ hybridization-glycyl-tRNA synthetase locates to 7p15 and Alanyl-tRNA synthetase locates to 16q22

    SciTech Connect

    Nichols, R.C.; Pai, S.I.; Liu, P.; Ge, Q.; Targoff, I.N.

    1995-11-01

    Aminoacyl-tRNA synthetases (aminoacyl-RS) catalyze the attachment of an amino acid to its cognate tRNA. Five of 20 human aminoacyl-RS (histidyl-RS, threonyl-RS, isoleucyl-RS, glycyl-RS, and alanyl-RS) have been identified as targets of autoantibodies in the autoimmune disease polymyositis/dermatomyositis (PM/DM; 9). A sixth autoantigenic amino-acyl-RS, lysyl-RS, was recently reported. The genes for histidyl-RS and threonyl-RS have been assigned to chromosome 5, as have the genes for leucyl-RS and arginyl-RS. Six other aminoacyl-RS (glutamyl-prolyl-RS, valyl-RS, cysteinyl-RS, methionyl-RS, tryptophanyl-RS, and asparaginyl-RS) were assigned to chromosomes 1, 6, 11, 12, 14, and 18, respectively. The reason for a preponderance of aminoacyl-RS genes on chromosome 5 is unknown, but it has been suggested that regulatory relatedness might be a factor. Recently the entire or partial cDNA sequences for two autoantigenic aminoacyl-RS genes, glycyl-RS (gene symbol GARS; 4) and alanyl-RS (gene symbol AARS; 1), were reported. To understand further the genesis of autoimmune responses to aminoacyl-RS and to determine whether genes for autoantigenic aminoacyl-RS colocalize to chromosome 5, we have determined the chromosomal site of the GARS and AARS genes by PCR-based screening of somatic cell hybrid panels and by fluorescence in situ hybridization (FISH) analysis. 10 refs., 1 fig.

  13. The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins

    PubMed Central

    Lohman, Jeremy R.; Ma, Ming; Cuff, Marianne E.; Bigelow, Lance; Bearden, Jessica; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2014-01-01

    Carrier proteins (CPs) play a critical role in the biosynthesis of various natural products, especially in nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymology, where the CPs are referred to as peptidyl-carrier proteins (PCPs) or acyl-carrier proteins (ACPs), respectively. CPs can either be a domain in large multifunctional polypeptides or standalone proteins, termed Type I and Type II, respectively. There have been many biochemical studies of the Type I PKS and NRPS CPs, and of Type II ACPs. However, recently a number of Type II PCPs have been found and biochemically characterized. In order to understand the possible interaction surfaces for combinatorial biosynthetic efforts we crystallized the first characterized and representative Type II PCP member, BlmI, from the bleomycin biosynthetic pathway from Streptomyces verticillus ATCC 15003. The structure is similar to CPs in general but most closely resembles PCPs. Comparisons with previously determined PCP structures in complex with catalytic domains reveals a common interaction surface. This surface is highly variable in charge and shape, which likely confers specificity for interactions. Previous nuclear magnetic resonance (NMR) analysis of a prototypical Type I PCP excised from the multimodular context revealed three conformational states. Comparison of the states with the structure of BlmI and other PCPs reveals that only one of the NMR states is found in other studies, suggesting the other two states may not be relevant. The state represented by the BlmI crystal structure can therefore serve as a model for both Type I and Type II PCPs. PMID:25050442

  14. New acylated anthocyanins from purple yam and their antioxidant activity.

    PubMed

    Moriya, Chiemi; Hosoya, Takahiro; Agawa, Sayuri; Sugiyama, Yasumasa; Kozone, Ikuko; Shin-Ya, Kazuo; Terahara, Norihiko; Kumazawa, Shigenori

    2015-01-01

    Purple yam (Dioscorea alata L.), which is widely distributed in tropical and subtropical regions, is characterized by its color and viscosity. Previous studies have shown that purple yams contain a variety of acylated anthocyanins that exhibit higher levels of antioxidant activity than the corresponding nonacylated compounds. In this study, the pigments found in purple yams from the Philippines (D. alata) were isolated and evaluated in terms of antioxidant activity. Four new acylated anthocyanins, alanins (1-4) were isolated from the MeOH extracts of purple yam, which were subsequently determined to be cyanidin (1, 2, and 4) and peonidin (3) type compounds, along with four known anthocyanins (5-8). The structures of 1-4 were determined by spectroscopic methods, including NMR and MS analyses. The antioxidant activities of anthocyanins 1-8 were investigated using oxygen radical absorbing capacity and ferric reducing antioxidant power assays. PMID:25848974

  15. Reaction of Acylated Homoserine Lactone Bacterial Signaling Molecules with Oxidized Halogen Antimicrobials

    PubMed Central

    Borchardt, S. A.; Allain, E. J.; Michels, J. J.; Stearns, G. W.; Kelly, R. F.; McCoy, W. F.

    2001-01-01

    Oxidized halogen antimicrobials, such as hypochlorous and hypobromous acids, have been used extensively for microbial control in industrial systems. Recent discoveries have shown that acylated homoserine lactone cell-to-cell signaling molecules are important for biofilm formation in Pseudomonas aeruginosa, suggesting that biofouling can be controlled by interfering with bacterial cell-to-cell communication. This study was conducted to investigate the potential for oxidized halogens to react with acylated homoserine lactone-based signaling molecules. Acylated homoserine lactones containing a 3-oxo group were found to rapidly react with oxidized halogens, while acylated homoserine lactones lacking the 3-oxo functionality did not react. The Chromobacterium violaceum CV026 bioassay was used to determine the effects of such reactions on acylated homoserine lactone activity. The results demonstrated that 3-oxo acyl homoserine lactone activity was rapidly lost upon exposure to oxidized halogens; however, acylated homoserine lactones lacking the 3-oxo group retained activity. Experiments with the marine alga Laminaria digitata demonstrated that natural haloperoxidase systems are capable of mediating the deactivation of acylated homoserine lactones. This may illustrate a natural defense mechanism to prevent biofouling on the surface of this marine alga. The Chromobacterium violaceum activity assay illustrates that reactions between 3-oxo acylated homoserine lactone molecules and oxidized halogens do occur despite the presence of biofilm components at much greater concentrations. This work suggests that oxidized halogens may control biofilm not only via a cidal mechanism, but also by possibly interfering with 3-oxo acylated homoserine lactone-based cell signaling. PMID:11425738

  16. Testis-specific transcription initiation sites of rat farnesyl pyrophosphate synthetase mRNA.

    PubMed Central

    Teruya, J H; Kutsunai, S Y; Spear, D H; Edwards, P A; Clarke, C F

    1990-01-01

    A variety of rat tissues were screened at low stringency with a rat farnesyl pyrophosphate (FPP) synthetase cDNA. In testis, an FPP synthetase-related RNA was detected that was larger than the liver FPP synthetase mRNA and was present at very high levels comparable with liver FPP synthetase RNA levels obtained from rats fed diets supplemented with cholestyramine and mevinolin. Sequence analysis of testis cDNA clones, together with primer extension and S1 nuclease experiments, indicated that testis FPP synthetase transcripts contain an extended 5' untranslated region. The 5' extension contained one or two out-of-frame upstream ATGs, depending on the site of transcription initiation. Protein in vitro translation studies indicated that the extended 5' untranslated region may play a role in regulating the translation of the FPP synthetase polypeptide in rat testis. Southern blot analysis with a probe containing both testis and liver 5' untranslated sequences provided evidence that both liver and testis transcripts derive from the same gene. The data suggest that an upstream testis-specific promoter results in the abundant production of FPP synthetase transcripts that are translated at low efficiency; another promoter functions in liver and other somatic tissues and directs the regulated synthesis of shorter discrete transcripts. Images PMID:2325654

  17. Effect of Liver Damage and Hyperbaric Oxygenation on Glutamine Synthetase of Hepatocytes.

    PubMed

    Savilov, P N; Yakovlev, V N

    2016-01-01

    Activity of glutamine synthetase in the hepatocytes of healthy animals and animals with chronic CCl4-induced hepatitis was studied on white mature female rats after liver resection (15-20% of organ weight) and hyperbaric oxygenation (3 atm, 50 min, 3 times). Surgically operated left and non-operated middle lobes of the liver were analyzed on day 3 after liver resection and exposure to hyperbaric oxygenation. On day 65 of CCl4 poisoning, activity of glutamine synthetase decreased in both lobes and did not recover on day 3 after toxin cessation. Liver resection under conditions of CCl4-induced hepatitis restored reduced activity of glutamine synthetase in both liver lobes to the normal level. In healthy rats, the increase in glutamine synthetase activity after liver resection was found only in the middle lobe of the liver. Hyperbaric oxygenation enhanced the stimulatory effect of liver resection on glutamine synthetase activity in hepatocytes during chronic CCl4-induced hepatitis. In healthy animals with liver resection, activity of glutamine synthetase did not change after hyperbaric oxygenation, while normally oxygenation inhibited glutamine synthetase activity.

  18. Six new acylated anthocyanins from red radish (Raphanus sativus).

    PubMed

    Tamura, Satoru; Tsuji, Kouji; Yongzhen, Piao; Ohnishi-Kameyama, Mayumi; Murakami, Nobutoshi

    2010-09-01

    Six new acylated anthocyanins (1-6) were isolated along with the three known congeners (7-9) from the fresh roots of red radishes (Raphanus sativus L.) cultivated by our group. Their chemical structures were elucidated by spectroscopic properties. Among the six new anthocyanins, the five constituents (1, 2, 4-6) were shown to contain the malonyl function at 6-OH in the glucopyranosyl residue linked to C-5 in the pelargonidin nucleus.

  19. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins.

    PubMed

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T; Goss, Rebecca J M; Field, Robert A; Osbourn, Anne

    2013-02-01

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.

  20. A new acylated flavonol glycoside from Derris triofoliata.

    PubMed

    Xu, Lu-Rong; Wu, Jun; Zhang, Si

    2006-01-01

    A new acylated flavonol glycoside, kaempferol 3-O-[(6''''-feruloyl)-beta-D-glucopyranosyl-(1 --> 3)]-[alpha-L-rhamnopyranosyl-(1 --> 6)]-beta-D-glucopyranoside and two known cyclolignan glycosides, (+)-lyoniresinol-3alpha-O-beta-D-glucopyranoside and ( - )-lyoniresinol-3alpha-O-beta-D-glucopyranoside were isolated from n-BuOH extracts of the aerial parts of Derris triofoliata, their structures were determined from spectroscopic and chemical evidences.

  1. The functional size of acyl-coenzyme A (CoA):cholesterol acyltransferase and acyl-CoA hydrolase as determined by radiation inactivation

    SciTech Connect

    Billheimer, J.T.; Cromley, D.A.; Kempner, E.S. )

    1990-05-25

    Frozen rat liver microsomes and rough endoplasmic reticulum were irradiated with high energy electrons. The surviving enzymatic activity of acyl-CoA:cholesterol acyltransferase and activity for esterification of 25-hydroxycholesterol decreased as a simple exponential function of radiation exposure, leading to a target size of 170-180 kDa. The loss of acyl-CoA hydrolase activity with a radiation dose was complex and resolved as a 45-kDa enzyme associated with a large inhibitor. It is interpreted that acyl-CoA hydrolase is the acyl-CoA-binding component and the inhibitor is the cholesterol-binding component of acyl-CoA:cholesterol acyltransferase.

  2. Metabolism of acyl-lipids in Chlamydomonas reinhardtii.

    PubMed

    Li-Beisson, Yonghua; Beisson, Fred; Riekhof, Wayne

    2015-05-01

    Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.

  3. Gastrointestinal uptake of nasunin, acylated anthocyanin in eggplant.

    PubMed

    Ichiyanagi, Takashi; Terahara, Norihiko; Rahman, M Mamunur; Konishi, Tetsuya

    2006-07-26

    We previously showed that nasunin, acylated anthocyanins in eggplant peel, comprises two isomers, cis-nasunin and trans-nasunin. In this study, gastrointestinal absorption of cis- and trans-nasunins was studied in rats. Orally administered nasunins were quickly absorbed in their original acylated forms and maximally appeared in blood plasma after 15 min. When the maximum plasma concentration and area under the plasma concentration curve were normalized by orally administered dose (micromoles per kilogram), there was no significant difference in the uptake efficiency between two isomers and both exhibited a plasma level almost identical to that of delphinidin 3-O-beta-D-glucopyranoside. However, metabolites such as 4'-O-methyl analogues and extended glucuronides which were observed for delphinidin 3-O-beta-D-glucopyranoside and cyanidin 3-O-beta-D-glucopyranoside metabolisms were not detected in urine or blood plasma. Moreover, deacylated and glycolytic products of nasunins such as delphinidin 3-O-beta-D-glucopyranoside or delphinidin (aglycone) were also not detected in blood plasma even after oral administration for 8 h. These results indicated that nasunins were absorbed in their original acylated forms and exhibit a bioavailability almost identical to that of nonacylated anthocyanins. PMID:16848510

  4. Naphthalene Derivatives Induce Acyl Chain Interdigitation in Dipalmitoylphosphatidylcholine Bilayers.

    PubMed

    Kamal, Md Arif; Raghunathan, V A

    2016-01-14

    The interdigitated phase of the lipid bilayer results when acyl chains from opposing monolayers fully interpenetrate such that the terminal methyl groups of the respective lipid chains are located at the interfacial region on the opposite sides of the bilayer. Usually, chain interdigitation is not encountered in a symmetric chain phosphatidylcholine (PC) membrane but can be induced under certain special conditions. In this article, we elucidate the contribution of small amphiphatic molecules in altering the physical properties of a symmetric chain PC bilayer membrane, which results in acyl chain interdigitation. Using small-angle X-ray scattering (SAXS), we have carried out a systematic investigation of the physical interactions of three naphthalene derivatives containing hydroxyl groups: β-naphthol, 2,3-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene, with dipalmitoylphosphatidylcholine (DPPC) bilayers. On the basis of the diffraction patterns, we have determined the temperature-composition phase diagrams of these binary mixtures. The present study not only enables us to gain insight into the role played by small molecules in altering the packing arrangement of the acyl chains of the constituting PC lipids of the bilayer but also brings to light some important features that have not yet been reported hitherto. One such feature is the stabilization of the enigmatic asymmetric ripple phase over a wide temperature and concentration range. The results presented here strongly point toward a clear correlation between chain interdigitation and the stability of the ripple phase.

  5. Fatty acid acylation of salivary mucin in rat submandibular glands

    SciTech Connect

    Slomiany, B.L.; Murty, V.L.; Takagi, A.; Tsukada, H.; Kosmala, M.; Slomiany, A.

    1985-11-01

    The acylation of salivary mucin with fatty acids and its biosynthesis was investigated by incubating rat submandibular salivary gland cells with (/sup 3/H)palmitic acid and (/sup 3/H)proline. The elaborated extracellular and intracellular mucus glycoproteins following delipidation, Bio-Gel P-100 chromatography, and CsCl equilibrium density gradient centrifugation were analyzed for the distribution of the labeled tracers. The incorporation of both markers into mucus glycoprotein increased steadily with time up to 4 h, at which time about 65% of (/sup 3/H)palmitate and (/sup 3/H)proline were found in the extracellular glycoprotein and 35% in the intracellular glycoprotein. The incorporation ratio of proline/palmitate, while showing an increase with incubation time in the extracellular glycoprotein, remained essentially unchanged with time in the intracellular glycoprotein and at 4 h reached respective values of 0.14 and 1.12. The fact that the proline/palmitate incorporation ratio in the intracellular glycoprotein at 1 h of incubation was 22 times higher than in the extracellular and 8 times higher after 4 h suggests that acylation occurs intracellularly and that fatty acids are added after apomucin polypeptide synthesis. As the incorporation of palmitate within the intracellular mucin was greater in the mucus glycoprotein subunit, it would appear that fatty acid acylation of mucin subunits preceeds their assembly into the mucus glycoprotein polymer.

  6. Properties of Kaurene Synthetase from Marah macrocarpus1

    PubMed Central

    Frost, Russell G.; West, Charles A.

    1977-01-01

    The kaurene synthetase from immature seeds of Marah macrocarpus (Greene) Greene was partially purified from cell-free homogenates of endosperm by a combination of QAE-Sephadex A-25 chromatography and hydroxyapatite chromatography and freed of contaminating phosphatase activity. The two catalytic activities associated with kaurene synthetase, the cyclization of geranylgeranyl-pyrophosphate to copalyl-pyrophosphate (activity A) and the cyclization of copalyl-pyrophosphate to ent-kaurene (activity B), were not even partially resolved from one another during these procedures. Both activities had identical elution profiles from a calibrated Sepharose 4B column corresponding to a molecular weight less than that of ovalbumin (45,000). The A and B activities had pH optima of 7.3 and 6.9, respectively. Both activities required millimolar concentrations of the following divalent cations in the order: Mg2+ > Mn2+ > Co2+. Activities A and B were both sensitive to inhibition by Hg2+, Cu2+, p-hydroxymercuribenzoate, and N-ethylmaleimide, but activity B was much more sensitive than activity A. The average value of Km′ (apparent Km in the absence of substrate inhibition) for geranylgeranyl-pyrophosphate was 1.6 μm. Values of 0.5 and 0.6 μm were obtained for Km′ and Km, respectively, for copalyl-pyrophosphate. The Vm′ values for the two activities were similar: 12 and 9 pmol/minute·μg protein for activities A and B, respectively. N,N-Dimethylaminoethyl-2,2-diphenylpentanoate (SKF-525A) and N,N-dimethylaminoethyl-2,2-diphenylphentyl ether (SKF-3301A), tributyl-2,4-dichlorobenzylphosphonium chloride (Phosfon D), tributyl-2,4-dichlorobenzylammonium chloride (Phosfon S), 2′-isopropyl-4′-(trimethylammonium chloride)-5′-methylphenyl piperidine-1-carboxylate (Amo-1618), 2-(N,N-dimethyl-N-heptylammonium bromide)-p-methan-1-ol (Q-58), and 2-(N,N-dimethyl-N-octylammonium bromide)-p-methan-1-ol (Q-64), at concentrations from 1 to 5 μm, were effective inhibitors of kaurene

  7. Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke.

    PubMed

    Jeitner, Thomas M; Battaile, Kevin; Cooper, Arthur J L

    2015-12-01

    The following article addresses some seemingly paradoxical observations concerning cerebral glutamine synthetase in ischemia-reperfusion injury. In the brain, this enzyme is predominantly found in astrocytes and catalyzes part of the glutamine-glutamate cycle. Glutamine synthetase is also thought to be especially sensitive to inactivation by the oxygen- and nitrogen-centered radicals generated during strokes. Despite this apparent sensitivity, glutamine synthetase specific activity is elevated in the affected tissues during reperfusion. Given the central role of the glutamine-glutamate cycle in the brain, we sought to resolve these conflicting observations with the view of providing an alternative perspective for therapeutic intervention in stroke.

  8. Effect of thromboxane synthetase inhibitor on feline infectious peritonitis in cats.

    PubMed

    Watari, T; Kaneshima, T; Tsujimoto, H; Ono, K; Hasegawa, A

    1998-05-01

    Two cats with abdominal effusion and anorexia were diagnosed as feline infectious peritonitis (FIP). We tried to evaluate the effect of thromboxane (Tx) synthetase inhibitor, ozagrel hydrochloride, on the progression of symptoms and clinicopathologic data characteristic to FIP. After administration of Tx synthetase inhibitor, improvement of appetite and activity, decreases of peritoneal effusion, reduction of leukocyte number to normal level, and improvement of hyper gamma-globulinemia were found in 2 cats with FIP. These findings suggest that the vasculitis in FIP can be successfully treated with Tx synthetase inhibitor which inhibits platelet aggregation.

  9. The MTCY428.08 Gene of Mycobacterium tuberculosis Codes for NAD+ Synthetase

    PubMed Central

    Cantoni, Rita; Branzoni, Manuela; Labò, Monica; Rizzi, Menico; Riccardi, Giovanna

    1998-01-01

    The product of the MTCY428.08 gene of Mycobacterium tuberculosis shows sequence homology with several NAD+ synthetases. The MTCY428.08 gene was cloned into the expression vectors pGEX-4T-1 and pET-15b. Expression in Escherichia coli led to overproduction of glutathione S-transferase fused and His6-tagged gene products, which were enzymatically assayed for NAD synthetase activity. Our results demonstrate that the MTCY428.08 gene of M. tuberculosis is the structural gene for NAD+ synthetase. PMID:9620974

  10. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain.

    PubMed

    Richardson, Charles J; First, Eric A

    2016-03-15

    Translation of mRNAs by the ribosome is stereospecific, with only l-amino acids being incorporated into the nascent polypeptide chain. This stereospecificity results from the exclusion of d-amino acids at three steps during protein synthesis: (1) the aminoacylation of tRNA by aminoacyl-tRNA synthetases, (2) binding of aminoacyl-tRNAs to EF-Tu, and (3) recognition of aminoacyl-tRNAs by the ribosome. As a first step toward incorporating d-amino acids during protein synthesis, we have altered the enantioselectivity of tyrosyl-tRNA synthetase. This enzyme is unusual among aminoacyl-tRNA synthetases, as it can aminoacylate tRNA with d-tyrosine (albeit at a reduced rate compared to l-tyrosine). To change the enantioselectivity of tyrosyl-tRNA synthetase, we introduced the post-transfer editing domain from Pyrococcus horikoshii phenylalanyl-tRNA synthetase into the connective polypeptide 1 (CP1) domain of Geobacillus stearothermophilus tyrosyl-tRNA synthetase (henceforth designated TyrRS-FRSed). We show that the phenylalanyl-tRNA synthetase editing domain is stereospecific, hydrolyzing l-Tyr-tRNA(Tyr), but not d-Tyr-tRNA(Tyr). We further show that inserting the phenylalanyl-tRNA synthetase editing domain into the CP1 domain of tyrosyl-tRNA synthetase decreases the activity of the synthetic site in tyrosyl-tRNA synthetase. This decrease in activity is critical, as it prevents the rate of synthesis from overwhelming the ability of the editing domain to hydrolyze the l-Tyr-tRNA(Tyr) product. Overall, inserting the phenylalanyl-tRNA synthetase editing domain results in a 2-fold shift in the enantioselectivity of tyrosyl-tRNA synthetase toward the d-Tyr-tRNA(Tyr) product. When a 4-fold excess of d-tyrosine is used, approximately 40% of the tRNA(Tyr) is aminoacylated with d-tyrosine. PMID:26890980

  11. Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling

    SciTech Connect

    Pollard, M.; Ohlrogge, J.

    1999-12-01

    Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [{sup 13}C{sub 2}{sup 18}O{sub 2}]Acetate was incubated with spinach (Spinacia oleracea) leaves and the {sup 18}O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectrometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an {sup 18}O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the {sup 18}O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of {sup 18}O or, less likely, complete loss of {sup 18}O, but not a 50% loss of {sup 18}O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of prokaryotic and eukaryotic lipids have both been confirmed.

  12. Nonthermal rotational distribution of CO/A 1Pi/ fragments produced by dissociative excitation of CO2 by electron impact. [in Mars atmosphere

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Stone, E. J.; Zipf, E. C.

    1975-01-01

    Measurements were made of the rotational profiles of specific bands of the CO fourth-positive group (4PG). The CO 4PG bands were excited by electron impact dissociative excitation of CO2. The results are applicable to analysis of the Mariner observations of the CO 4PG in the dayglow of Mars. The results indicate that dissociative excitation of CO2 by electron impact leads to CO(A 1Pi) fragments with a rotational distribution that is highly nonthermal. The parent CO2 temperature was about 300 K in the experiment, while the fragment CO(A 1Pi) showed emission band profiles consistent with a rotational temperature greater than about 1500 K. Laboratory measurement of the reduced transmission of the hot bands by thermal CO appears to be the most direct way of determining the column density responsible for the CO(v',0) absorption of Mars.

  13. Probing the active site of cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    PubMed

    Sonawane, Prashant; Patel, Krunal; Vishwakarma, Rishi Kishore; Srivastava, Sameer; Singh, Somesh; Gaikwad, Sushama; Khan, Bashir M

    2013-09-01

    Lack of three dimensional crystal structure of cinnamoyl CoA reductase (CCR) limits its detailed active site characterization studies. Putative active site residues involved in the substrate/NADPH binding and catalysis for Leucaena leucocephala CCR (Ll-CCRH1; GenBank: DQ986907) were identified by amino acid sequence alignment and homology modeling. Putative active site residues and proximal H215 were subjected for site directed mutagenesis, and mutated enzymes were expressed, purified and assayed to confirm their functional roles. Mutagenesis of S136, Y170 and K174 showed complete loss of activity, indicating their pivotal roles in catalysis. Mutant S212G exhibited the catalytic efficiencies less than 10% of wild type, showing its indirect involvement in substrate binding or catalysis. R51G, D77G, F30V and I31N double mutants showed significant changes in Km values, specifying their roles in substrate binding. Finally, chemical modification and substrate protection studies corroborated the presence Ser, Tyr, Lys, Arg and carboxylate group at the active site of Ll-CCRH1. PMID:23688416

  14. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2007-07-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids. PMID:17417694

  15. Characterization of carbamoyl phosphate synthetase of Streptomyces spp.

    PubMed

    Vaishnav, P; Randev, S; Jatiani, S; Aggarwal, S; Keharia, H; Vyas, P R; Nareshkumar, G; Archana, G

    2000-09-01

    Carbamoyl phosphate synthetase (CPS) activity in Streptomyces lividans was repressed (70%) by addition of arginine and uracil in the growth medium. Enzyme activity was also inhibited by UMP and activated by ornithine and IMP. Pattern of inhibition and activation was similar irrespective of whether the cells were grown in medium supplemented with arginine or with uracil. A mutant of S. coelicolor with dual auxotrophy for arginine and uracil possessed only about 20% of CPS activity compared to the wild-type strain. An activity staining protocol has been developed for CPS enzyme. Using this method a single CPS band has been observed in the crude extracts of Escherichia coli as well as in S. lividans. Taken together, our results supported the conclusion that Streptomyces species might possess a single CPS enzyme unlike other gram-positive bacteria, which show the presence of two pathway-specific isozymes (Bacillus) or none (Lactobacillus and Leuconostoc). PMID:12561954

  16. Aminoacyl-tRNA synthetase inhibitors as potential antibiotics.

    PubMed

    Vondenhoff, Gaston H M; Van Aerschot, Arthur

    2011-11-01

    Increasing resistance to antibiotics is a major problem worldwide and provides the stimulus for development of new bacterial inhibitors with preferably different modes of action. In search for new leads, several new bacterial targets are being exploited beside the use of traditional screening methods. Hereto, inhibition of bacterial protein synthesis is a long-standing validated target. Aminoacyl-tRNA synthetases (aaRSs) play an indispensable role in protein synthesis and their structures proved quite conserved in prokaryotes and eukaryotes. However, some divergence has occurred allowing the development of selective aaRS inhibitors. Following an outline on the action mechanism of aaRSs, an overview will be given of already existing aaRS inhibitors, which are largely based on mimics of the aminoacyl-adenylates, the natural reaction intermediates. This is followed by a discussion on more recent developments in the field and the bioavailability problem.

  17. Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation.

    PubMed

    Bott, Alex J; Peng, I-Chen; Fan, Yongjun; Faubert, Brandon; Zhao, Lu; Li, Jinyu; Neidler, Sarah; Sun, Yu; Jaber, Nadia; Krokowski, Dawid; Lu, Wenyun; Pan, Ji-An; Powers, Scott; Rabinowitz, Joshua; Hatzoglou, Maria; Murphy, Daniel J; Jones, Russell; Wu, Song; Girnun, Geoffrey; Zong, Wei-Xing

    2015-12-01

    c-Myc is known to promote glutamine usage by upregulating glutaminase (GLS), which converts glutamine to glutamate that is catabolized in the TCA cycle. Here we report that in a number of human and murine cells and cancers, Myc induces elevated expression of glutamate-ammonia ligase (GLUL), also termed glutamine synthetase (GS), which catalyzes the de novo synthesis of glutamine from glutamate and ammonia. This is through upregulation of a Myc transcriptional target thymine DNA glycosylase (TDG), which promotes active demethylation of the GS promoter and its increased expression. Elevated expression of GS promotes cell survival under glutamine limitation, while silencing of GS decreases cell proliferation and xenograft tumor growth. Upon GS overexpression, increased glutamine enhances nucleotide synthesis and amino acid transport. These results demonstrate an unexpected role of Myc in inducing glutamine synthesis and suggest a molecular connection between DNA demethylation and glutamine metabolism in Myc-driven cancers.

  18. Bisphosphonic acids as effective inhibitors of Mycobacterium tuberculosis glutamine synthetase.

    PubMed

    Kosikowska, Paulina; Bochno, Marta; Macegoniuk, Katarzyna; Forlani, Giuseppe; Kafarski, Paweł; Berlicki, Łukasz

    2016-12-01

    Inhibition of glutamine synthetase (GS) is one of the most promising strategies for the discovery of novel drugs against tuberculosis. Forty-three bisphosphonic and bis-H-phosphinic acids of various scaffolds, bearing aromatic substituents, were screened against recombinant GS from Mycobacterium tuberculosis. Most of the studied compounds exhibited activities in micromolar range, with N-(3,5-dichlorophenyl)-2-aminoethylidenebisphoshonic acid, N-(3,5-difluorophenyl)-2-aminoethylidene-bisphoshonic acid and N-(3,4-dichlorophenyl)-1-hydroxy-1,1-ethanebisphosphonic acid showing the highest potency with kinetic parameters similar to the reference compound - L-methionine-S-sulfoximine. Moreover, these inhibitors were found to be much more effective against pathogen enzyme than against the human ortholog. Thus, with the bone-targeting properties of the bisphosphonate compounds in mind, this activity/selectivity profile makes these compounds attractive agents for the treatment of bone tuberculosis.

  19. Astrocyte glutamine synthetase: pivotal in health and disease.

    PubMed

    Rose, Christopher F; Verkhratsky, Alexei; Parpura, Vladimir

    2013-12-01

    The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease.

  20. Studies on the control of hexosamine biosynthesis by glucosamine synthetase

    PubMed Central

    Winterburn, P. J.; Phelps, C. F.

    1971-01-01

    1. The nature of the feedback inhibition of hexosamine biosynthesis on rat liver glucosamine synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) by UDP-N-acetylglucosamine was investigated in detail. 2. Further modifiers of physiological importance are described. Glucose 6-phosphate and AMP potentiated the UDP-N-acetylglucosamine inhibition, and UTP behaved as an activator. These three compounds only exerted their action when the feedback inhibitor was bound to the enzyme. 3. ATP also inhibited the enzyme. 4. The actions of these various effectors are discussed in kinetic terms. 5. An interpretation of these findings with reference to the regulation of hexosamine biosynthesis is presented. PMID:5114979

  1. Aminoacyl-tRNA synthetases in medicine and disease

    PubMed Central

    Yao, Peng; Fox, Paul L

    2013-01-01

    Aminoacyl-tRNA synthetases (ARSs) are essential and ubiquitous ‘house-keeping’ enzymes responsible for charging amino acids to their cognate tRNAs and providing the substrates for global protein synthesis. Recent studies have revealed a role of multiple ARSs in pathology, and their potential use as pharmacological targets and therapeutic reagents. The ongoing discovery of genetic mutations in human ARSs is increasing exponentially and can be considered an important determinant of disease etiology. Several chemical compounds target bacterial, fungal and human ARSs as antibiotics or disease-targeting medicines. Remarkably, ongoing exploration of noncanonical functions of ARSs has shown important contributions to control of angiogenesis, inflammation, tumourigenesis and other important physiopathological processes. Here, we summarize the roles of ARSs in human diseases and medicine, focusing on the most recent and exciting discoveries. PMID:23427196

  2. p59OASL, a 2'-5' oligoadenylate synthetase like protein: a novel human gene related to the 2'-5' oligoadenylate synthetase family.

    PubMed Central

    Hartmann, R; Olsen, H S; Widder, S; Jorgensen, R; Justesen, J

    1998-01-01

    The 2'-5' oligoadenylate synthetases form a well conserved family of interferon induced proteins, presumably present throughout the mammalian class. Using the Expressed Sequence Tag databases, we have identified a novel member of this family. This protein, which we named p59 2'-5' oligoadenylate synthetase-like protein (p59OASL), shares a highly conserved N-terminal domain with the known forms of 2'-5' oligoadenylate synthetases, but differs completely in its C-terminal part. The C-terminus of p59OASL is formed of two domains of ubiquitin-like sequences. Here we present the characterisation of a full-length cDNA clone, the genomic sequence and the expression pattern of this gene. We have addressed the evolution of the 2'-5' oligoadenylate synthetase gene family, in the light of both this new member and new 2'-5' oligoadenylate synthetase sequence data from other species, which have recently appeared in the databases. PMID:9722630

  3. Activity of formylphosphate in the reaction catalyzed by formyltetrahydrofolate synthetase

    SciTech Connect

    Jahansouz, H.; Kofron, J.L.; Smithers, G.W.; Himes, R.H.; Reed, G.H.

    1986-05-01

    Formylphosphate (FP), a putative enzyme-bound intermediate in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase, was synthesized from formylfluoride and Pi. Measurement of hydrolysis rates by /sup 31/P NMR showed that FP is very unstable with a half-life of 48 min at 20/sup 0/C and pH 7. At pH 7 hydrolysis occurs with O-P bond cleavage as shown by /sup 18/O incorporation from /sup 18/O-H/sub 2/O into Pi. The substrate activity of FP was tested in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase isolated from Clostridium cylindrosporum. MgATP + H/sub 4/folate + HCOO/sup -/ in equilibrium MgADP + Pi +N/sup 10/-formylH/sub 4/folate FP supports the reaction in both the forward and reverse directions. Thus, N/sup 10/-formylH/sub 4/folate is produced from H/sub 4/-folate and FP but only if ADP is present, and ATP is produced from FP and ADP but only if H/sub 4/folate is present. The requirements for H/sub 4/folate in the synthesis of ATP from ADP and FP and for ADP in the synthesis of N/sup 10/-formylH/sub 4/folate from FP and H/sub 4/folate, are consistent with past kinetic and isotope exchange studies which showed that the reaction proceeds by a sequential mechanism and that all three substrates must be present for any reaction to occur.

  4. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    SciTech Connect

    Rubin, Edward M.

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  5. Genetic dissection of methylcrotonyl CoA carboxylase indicates a complex role for mitochondrial leucine catabolism during seed development and germination.

    PubMed

    Ding, Geng; Che, Ping; Ilarslan, Hilal; Wurtele, Eve S; Nikolau, Basil J

    2012-05-01

    3-methylcrotonyl CoA carboxylase (MCCase) is a nuclear-encoded, mitochondrial-localized biotin-containing enzyme. The reaction catalyzed by this enzyme is required for leucine (Leu) catabolism, and it may also play a role in the catabolism of isoprenoids and the mevalonate shunt. In Arabidopsis, two MCCase subunits (the biotinylated MCCA subunit and the non-biotinylated MCCB subunit) are each encoded by single genes (At1g03090 and At4g34030, respectively). A reverse genetic approach was used to assess the physiological role of MCCase in plants. We recovered and characterized T-DNA and transposon-tagged knockout alleles of the MCCA and MCCB genes. Metabolite profiling studies indicate that mutations in either MCCA or MCCB block mitochondrial Leu catabolism, as inferred from the increased accumulation of Leu. Under light deprivation conditions, the hyper-accumulation of Leu, 3-methylcrotonyl CoA and isovaleryl CoA indicates that mitochondrial and peroxisomal Leu catabolism pathways are independently regulated. This biochemical block in mitochondrial Leu catabolism is associated with an impaired reproductive growth phenotype, which includes aberrant flower and silique development and decreased seed germination. The decreased seed germination phenotype is only observed for homozygous mutant seeds collected from a parent plant that is itself homozygous, but not from a parent plant that is heterozygous. These characterizations may shed light on the role of catabolic processes in growth and development, an area of plant biology that is poorly understood.

  6. CRP Is an Activator of Yersinia pestis Biofilm Formation that Operates via a Mechanism Involving gmhA and waaAE-coaD.

    PubMed

    Liu, Lei; Fang, Haihong; Yang, Huiying; Zhang, Yiquan; Han, Yanping; Zhou, Dongsheng; Yang, Ruifu

    2016-01-01

    gmhA encodes a phosphoheptose isomerase that catalyzes the biosynthesis of heptose, a conserved component of lipopolysaccharide (LPS). GmhA plays an important role in Yersinia pestis biofilm blockage in the flea gut. waaA, waaE, and coaD constitute a three-gene operon waaAE-coaD in Y. pestis. waaA encodes a transferase that is responsible for binding lipid-A to the core oligosaccharide of LPS. WaaA is a key determinant in Y. pestis biofilm formation, and the waaA expression is positively regulated by the two-component regulatory system PhoP/PhoQ. WaaE is involved in LPS modification and is necessary for Y. pestis biofilm production. In this study, the biofilm-related phenotypic assays indicate that the global regulator CRP stimulates Y. pestis biofilm formation in vitro and on nematodes, while it has no regulatory effect on the biosynthesis of the biofilm-signaling molecular 3',5'-cyclic diguanosine monophosphate. Further gene regulation experiments disclose that CRP does not regulate the hms genes at the transcriptional level but directly promotes the gmhA transcription and indirectly activates the waaAE-coaD transcription through directly acting on phoPQ-YPO1632. Thus, it is speculated that CRP-mediated carbon catabolite regulation of Y. pestis biofilm formation depends on the CRP-dependent carbon source metabolic pathways of the biosynthesis, modification, and transportation of biofilm exopolysaccharide. PMID:27014218

  7. Regulation of active site coupling in glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    LaRonde-LeBlanc, Nicole; Resto, Melissa; Gerratana, Barbara

    2009-05-21

    NAD{sup +} is an essential metabolite both as a cofactor in energy metabolism and redox homeostasis and as a regulator of cellular processes. In contrast to humans, Mycobacterium tuberculosis NAD{sup +} biosynthesis is absolutely dependent on the activity of a multifunctional glutamine-dependent NAD{sup +} synthetase, which catalyzes the ATP-dependent formation of NAD{sup +} at the synthetase domain using ammonia derived from L-glutamine in the glutaminase domain. Here we report the kinetics and structural characterization of M. tuberculosis NAD{sup +} synthetase. The kinetics data strongly suggest tightly coupled regulation of the catalytic activities. The structure, the first of a glutamine-dependent NAD{sup +} synthetase, reveals a homooctameric subunit organization suggesting a tight dependence of catalysis on the quaternary structure, a 40-{angstrom} intersubunit ammonia tunnel and structural elements that may be involved in the transfer of information between catalytic sites.

  8. Evidence for two immunologically distinct acetyl-coenzyme A synthetases in yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Mandel, A. D.; Klein, H. P.

    1974-01-01

    Evidence is presented that clearly establishes the presence of two acetyl-CoA synthetases in Saccharomyces cerevisiae, one elaborated under 'aerobic' conditions, the other under 'nonaerobic' conditions. The antibody produced by each enzyme is immunologically specific.

  9. Diffuse glutamine synthetase overexpression restricted to areas of peliosis in a β-catenin-activated hepatocellular adenoma: a potential pitfall in glutamine synthetase interpretation.

    PubMed

    Berry, Ryan S; Gullapalli, Rama R; Wu, Jin; Morris, Katherine; Hanson, Joshua A

    2014-08-01

    Hepatocellular adenomas have recently been classified into four subtypes based on molecular findings: hepatocyte nuclear factor 1α (HNF1α) inactivated, inflammatory/telangiectatic, β-catenin activated, and unclassifiable. β-catenin-activated adenomas have the potential for malignant transformation and are thus important to recognize. Diffuse glutamine synthetase immunohistochemical positivity has been shown to be a reliable surrogate marker for β-catenin activation, though variations in staining patterns may be difficult to interpret. We report a case of a peliotic adenoma that was morphologically consistent with a β-catenin wild-type hepatocellular adenoma but harbored a β-catenin mutation by molecular analysis. The tumor lacked nuclear β-catenin positivity and demonstrated a hitherto undescribed pattern of glutamine synthetase overexpression restricted to areas of peliosis with mostly negative staining in non-peliotic areas. This pattern was initially interpreted as physiologic and may represent a potential pitfall in glutamine synthetase interpretation.

  10. Lack of protective effect of thromboxane synthetase inhibitor (CGS-13080) on single dose radiated canine intestine

    SciTech Connect

    Barter, J.F.; Marlow, D.; Kamath, R.K.; Harbert, J.; Torrisi, J.R.; Barnes, W.A.; Potkul, R.K.; Newsome, J.T.; Delgado, G. )

    1991-03-01

    The effect of a thromboxane A2 synthetase inhibitor (CGS-13080) on canine intestine was studied using a single dose of radiation, and radioactive microspheres were used to determine resultant blood flow. Thromboxane A2 causes vasospasm and platelet aggregation and may play a dominant role in radiation injury. However, there was no effect on the intestinal blood flow diminution occurring after radiation in this laboratory model using this thromboxane A2 synthetase inhibitor.

  11. Genetic Validation of Aminoacyl-tRNA Synthetases as Drug Targets in Trypanosoma brucei

    PubMed Central

    Kalidas, Savitha; Cestari, Igor; Monnerat, Severine; Li, Qiong; Regmi, Sandesh; Hasle, Nicholas; Labaied, Mehdi; Parsons, Marilyn; Stuart, Kenneth

    2014-01-01

    Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts. PMID:24562907

  12. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence.

    PubMed

    Avila-Ospina, Liliana; Marmagne, Anne; Talbotec, Joël; Krupinska, Karin; Masclaux-Daubresse, Céline

    2015-04-01

    Glutamine synthetase and asparagine synthetase are two master enzymes involved in ammonium assimilation in plants. Their roles in nitrogen remobilization and nitrogen use efficiency have been proposed. In this report, the genes coding for the cytosolic glutamine synthetases (HvGS1) and asparagine synthetases (HvASN) in barley were identified. In addition to the three HvGS1 and two HvASN sequences previously reported, two prokaryotic-like HvGS1 and three HvASN cDNA sequences were identified. Gene structures were then characterized, obtaining full genomic sequences. The response of the five HvGS1 and five HvASN genes to leaf senescence was then studied. Developmental senescence was studied using primary and flag leaves. Dark-exposure or low-nitrate conditions were also used to trigger stress-induced senescence. Well-known senescence markers such as the chlorophyll and Rubisco contents were monitored in order to characterize senescence levels in the different leaves. The three eukaryotic-like HvGS1_1, HvGS1_2, and HvGS1_3 sequences showed the typical senescence-induced reduction in gene expression described in many plant species. By contrast, the two prokaryotic-like HvGS1_4 and HvGS1_5 sequences were repressed by leaf senescence, similar to the HvGS2 gene, which encodes the chloroplast glutamine synthetase isoenzyme. There was a greater contrast in the responses of the five HvASN and this suggested that these genes are needed for N remobilization in senescing leaves only when plants are well fertilized with nitrate. Responses of the HvASN sequences to dark-induced senescence showed that there are two categories of asparagine synthetases, one induced in the dark and the other repressed by the same conditions. PMID:25697791

  13. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence.

    PubMed

    Avila-Ospina, Liliana; Marmagne, Anne; Talbotec, Joël; Krupinska, Karin; Masclaux-Daubresse, Céline

    2015-04-01

    Glutamine synthetase and asparagine synthetase are two master enzymes involved in ammonium assimilation in plants. Their roles in nitrogen remobilization and nitrogen use efficiency have been proposed. In this report, the genes coding for the cytosolic glutamine synthetases (HvGS1) and asparagine synthetases (HvASN) in barley were identified. In addition to the three HvGS1 and two HvASN sequences previously reported, two prokaryotic-like HvGS1 and three HvASN cDNA sequences were identified. Gene structures were then characterized, obtaining full genomic sequences. The response of the five HvGS1 and five HvASN genes to leaf senescence was then studied. Developmental senescence was studied using primary and flag leaves. Dark-exposure or low-nitrate conditions were also used to trigger stress-induced senescence. Well-known senescence markers such as the chlorophyll and Rubisco contents were monitored in order to characterize senescence levels in the different leaves. The three eukaryotic-like HvGS1_1, HvGS1_2, and HvGS1_3 sequences showed the typical senescence-induced reduction in gene expression described in many plant species. By contrast, the two prokaryotic-like HvGS1_4 and HvGS1_5 sequences were repressed by leaf senescence, similar to the HvGS2 gene, which encodes the chloroplast glutamine synthetase isoenzyme. There was a greater contrast in the responses of the five HvASN and this suggested that these genes are needed for N remobilization in senescing leaves only when plants are well fertilized with nitrate. Responses of the HvASN sequences to dark-induced senescence showed that there are two categories of asparagine synthetases, one induced in the dark and the other repressed by the same conditions.

  14. Loss of β-carotene 15,15′-oxygenase in developing mouse tissues alters esterification of retinol, cholesterol and diacylglycerols

    PubMed Central

    Dixon, Joseph L.; Kim, Youn-Kyung; Brinker, Anita; Quadro, Loredana

    2013-01-01

    We provide novel insights into the function(s) of β-carotene-15,15′-oxygenase (CMOI) during embryogenesis. By performing in vivo and in vitro experiments, we showed that CMOI influences not only lecithin:retinol acyltransferase but also acyl CoA:retinol acyltransferase reaction in the developing tissues at mid-gestation. In addition, LC/MS lipidomics analysis of the CMOI−/− embryos showed reduced levels of four phosphatidylcholine and three phosphatidylethanolamine acyl chain species, and of eight triacylglycerol species with four or more unsaturations and fifty-two or more carbons in the acyl chains. Cholesteryl esters of arachidonate, palmitate, linoleate, and DHA were also reduced to less than 30% of control. Analysis of the fatty acyl CoA species ruled out a loss in fatty acyl CoA synthetase capability. Comparison of acyl species suggested significantly decreased 18:2, 18:3, 20:1, 20:4, or 22:6 acyl chains within the above lipids in CMOI-null embryos. Furthermore, LCAT, ACAT1 and DGAT2 mRNA levels were also downregulated in CMOI−/− embryos. These data strongly support the notion that, in addition to cleaving β-carotene to generate retinoids, CMOI serves an additional function(s) in retinoid and lipid metabolism and point to its role in the formation of specific lipids, possibly for use in nervous system tissue. PMID:23988655

  15. Loss of β-carotene 15,15'-oxygenase in developing mouse tissues alters esterification of retinol, cholesterol and diacylglycerols.

    PubMed

    Dixon, Joseph L; Kim, Youn-Kyung; Brinker, Anita; Quadro, Loredana

    2014-01-01

    We provide novel insights into the function(s) of β-carotene-15,15'-oxygenase (CMOI) during embryogenesis. By performing in vivo and in vitro experiments, we showed that CMOI influences not only lecithin:retinol acyltransferase but also acyl CoA:retinol acyltransferase reaction in the developing tissues at mid-gestation. In addition, LC/MS lipidomics analysis of the CMOI-/- embryos showed reduced levels of four phosphatidylcholine and three phosphatidylethanolamine acyl chain species, and of eight triacylglycerol species with four or more unsaturations and fifty-two or more carbons in the acyl chains. Cholesteryl esters of arachidonate, palmitate, linoleate, and DHA were also reduced to less than 30% of control. Analysis of the fatty acyl CoA species ruled out a loss in fatty acyl CoA synthetase capability. Comparison of acyl species suggested significantly decreased 18:2, 18:3, 20:1, 20:4, or 22:6 acyl chains within the above lipids in CMOI-null embryos. Furthermore, LCAT, ACAT1 and DGAT2 mRNA levels were also downregulated in CMOI-/- embryos. These data strongly support the notion that, in addition to cleaving β-carotene to generate retinoids, CMOI serves an additional function(s) in retinoid and lipid metabolism and point to its role in the formation of specific lipids, possibly for use in nervous system tissue.

  16. Loss of β-carotene 15,15'-oxygenase in developing mouse tissues alters esterification of retinol, cholesterol and diacylglycerols.

    PubMed

    Dixon, Joseph L; Kim, Youn-Kyung; Brinker, Anita; Quadro, Loredana

    2014-01-01

    We provide novel insights into the function(s) of β-carotene-15,15'-oxygenase (CMOI) during embryogenesis. By performing in vivo and in vitro experiments, we showed that CMOI influences not only lecithin:retinol acyltransferase but also acyl CoA:retinol acyltransferase reaction in the developing tissues at mid-gestation. In addition, LC/MS lipidomics analysis of the CMOI-/- embryos showed reduced levels of four phosphatidylcholine and three phosphatidylethanolamine acyl chain species, and of eight triacylglycerol species with four or more unsaturations and fifty-two or more carbons in the acyl chains. Cholesteryl esters of arachidonate, palmitate, linoleate, and DHA were also reduced to less than 30% of control. Analysis of the fatty acyl CoA species ruled out a loss in fatty acyl CoA synthetase capability. Comparison of acyl species suggested significantly decreased 18:2, 18:3, 20:1, 20:4, or 22:6 acyl chains within the above lipids in CMOI-null embryos. Furthermore, LCAT, ACAT1 and DGAT2 mRNA levels were also downregulated in CMOI-/- embryos. These data strongly support the notion that, in addition to cleaving β-carotene to generate retinoids, CMOI serves an additional function(s) in retinoid and lipid metabolism and point to its role in the formation of specific lipids, possibly for use in nervous system tissue. PMID:23988655

  17. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    SciTech Connect

    Nolan, N.L.; Kidwell, W.R.

    1982-04-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37/sup 0/C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of ..gamma..-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of ..gamma..-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels.

  18. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae

    PubMed Central

    Chang, Yu-Fang; Carman, George M.

    2008-01-01

    CTP synthetase is a cytosolic-associated glutamine amidotransferase enzyme that catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In the yeast Saccharomyces cerevisiae, the reaction product CTP is an essential precursor of all membrane phospholipids that are synthesized via the Kennedy (CDP-choline and CDP-ethanolamine branches) and CDP-diacylglycerol pathways. The URA7 and URA8 genes encode CTP synthetase in S. cerevisiae, and the URA7 gene is responsible for the majority of CTP synthesized in vivo. The CTP synthetase enzymes are allosterically regulated by CTP product inhibition. Mutations that alleviate this regulation result in an elevated cellular level of CTP and an increase in phospholipid synthesis via the Kennedy pathway. The URA7-encoded enzyme is phosphorylated by protein kinases A and C, and these phosphorylations stimulate CTP synthetase activity and increase cellular CTP levels and the utilization of the Kennedy pathway. The CTPS1 and CTPS2 genes that encode human CTP synthetase enzymes are functionally expressed in S. cerevisiae, and rescue the lethal phenotype of the ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. The expression in yeast has revealed that the human CTPS1-encoded enzyme is also phosphorylated and regulated by protein kinases A and C. PMID:18439916

  19. Acyl-Protein Thioesterase 2 Catalizes the Deacylation of Peripheral Membrane-Associated GAP-43

    PubMed Central

    Tomatis, Vanesa M.; Trenchi, Alejandra; Gomez, Guillermo A.; Daniotti, Jose L.

    2010-01-01

    An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution. PMID:21152083

  20. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase.

    PubMed

    Chung, Jiwoung; Goo, Eunhye; Yu, Sangheon; Choi, Okhee; Lee, Jeehyun; Kim, Jinwoo; Kim, Hongsup; Igarashi, Jun; Suga, Hiroaki; Moon, Jae Sun; Hwang, Ingyu; Rhee, Sangkee

    2011-07-19

    Quorum sensing (QS) controls certain behaviors of bacteria in response to population density. In gram-negative bacteria, QS is often mediated by N-acyl-L-homoserine lactones (acyl-HSLs). Because QS influences the virulence of many pathogenic bacteria, synthetic inhibitors of acyl-HSL synthases might be useful therapeutically for controlling pathogens. However, rational design of a potent QS antagonist has been thwarted by the lack of information concerning the binding interactions between acyl-HSL synthases and their ligands. In the gram-negative bacterium Burkholderia glumae, QS controls virulence, motility, and protein secretion and is mediated by the binding of N-octanoyl-L-HSL (C8-HSL) to its cognate receptor, TofR. C8-HSL is synthesized by the acyl-HSL synthase TofI. In this study, we characterized two previously unknown QS inhibitors identified in a focused library of acyl-HSL analogs. Our functional and X-ray crystal structure analyses show that the first inhibitor, J8-C8, binds to TofI, occupying the binding site for the acyl chain of the TofI cognate substrate, acylated acyl-carrier protein. Moreover, the reaction byproduct, 5'-methylthioadenosine, independently binds to the binding site for a second substrate, S-adenosyl-L-methionine. Closer inspection of the mode of J8-C8 binding to TofI provides a likely molecular basis for the various substrate specificities of acyl-HSL synthases. The second inhibitor, E9C-3oxoC6, competitively inhibits C8-HSL binding to TofR. Our analysis of the binding of an inhibitor and a reaction byproduct to an acyl-HSL synthase may facilitate the design of a new class of QS-inhibiting therapeutic agents.

  1. Aminoacyl-tRNA Synthetases in the Bacterial World.

    PubMed

    Giegé, Richard; Springer, Mathias

    2016-05-01

    Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and

  2. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    PubMed

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  3. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives’ Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps

    PubMed Central

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  4. Ortho C-H Acylation of Aryl Iodides by Palladium/Norbornene Catalysis.

    PubMed

    Dong, Zhe; Wang, Jianchun; Ren, Zhi; Dong, Guangbin

    2015-10-19

    Reported herein is a palladium/norbornene-catalyzed ortho-arene acylation of aryl iodides by a Catellani-type C-H functionalization. This transformation is enabled by isopropyl carbonate anhydrides, which serve as both an acyl cation equivalent and a hydride source.

  5. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride.

    PubMed

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen.

  6. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers

    PubMed Central

    Bottomley, Peter J.

    2015-01-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS. PMID:26092466

  7. Synthesis of photoactivatable azido-acyl caged oxazine fluorophores for live-cell imaging.

    PubMed

    Anzalone, Andrew V; Chen, Zhixing; Cornish, Virginia W

    2016-07-19

    We report the design and synthesis of a photoactivatable azido-acyl oxazine fluorophore. Photoactivation is achieved cleanly and rapidly with UV light, producing a single fluorescent oxazine photoproduct. We demonstrate the utility of azido-acyl caged oxazines for protein specific labeling in living mammalian cells using the TMP-tag technology. PMID:27377037

  8. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers.

    PubMed

    Mellbye, Brett L; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2015-09-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.

  9. Turnover of the 4'-phosphopantetheine prosthetic group of acyl carrier protein.

    PubMed

    Jackowski, S; Rock, C O

    1984-02-10

    Acyl carrier protein is an essential cofactor in fatty acid biosynthesis, and in contrast to the stability of the protein moiety during growth, its 4'-phosphopantetheine prosthetic group is metabolically active. The biosynthetic incorporation of deuterium into nonexchangeable positions of acyl carrier protein was found to enhance the sensitivity of the protein to pH-induced hydrodynamic expansion. This constitutional isotope effect was exploited to separate deuterated from normal acyl carrier protein by conformationally sensitive gel electrophoresis, thus providing the analytical framework for separating pre-existing (deuterated) from newly synthesized acyl carrier protein in pulse-chase experiments. The rate of acyl carrier protein prosthetic group turnover was found to depend on the intracellular concentration of coenzyme A. At low coenzyme A levels, prosthetic group turnover was four times faster than the rate of new acyl carrier protein biosynthesis but at the higher coenzyme A concentrations characteristic of logarithmic growth, turnover was an order of magnitude slower, amounting to approximately 25% of the acyl carrier protein pool per generation. These observations suggest that the acyl carrier protein prosthetic group turnover cycle may be related to coenzyme A metabolism rather than to lipid biosynthesis.

  10. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia.

    PubMed

    Verlander, Jill W; Chu, Diana; Lee, Hyun-Wook; Handlogten, Mary E; Weiner, I David

    2013-09-01

    Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+ -free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism.

  11. Membrane Topology and Transient Acylation of Toxoplasma gondii Glycosylphosphatidylinositols

    PubMed Central

    Kimmel, Jürgen; Smith, Terry K.; Azzouz, Nahid; Gerold, Peter; Seeber, Frank; Lingelbach, Klaus; Dubremetz, Jean-François; Schwarz, Ralph T.

    2006-01-01

    Using hypotonically permeabilized Toxoplasma gondii tachyzoites, we investigated the topology of the free glycosylphosphatidylinositols (GPIs) within the endoplasmic reticulum (ER) membrane. The morphology and permeability of parasites were checked by electron microscopy and release of a cytosolic protein. The membrane integrity of organelles (ER and rhoptries) was checked by protease protection assays. In initial experiments, GPI biosynthetic intermediates were labeled with UDP-[6-3H]GlcNAc in permeabilized parasites, and the transmembrane distribution of the radiolabeled lipids was probed with phosphatidylinositol-specific phospholipase C (PI-PLC). A new early intermediate with an acyl modification on the inositol was identified, indicating that inositol acylation also occurs in T. gondii. A significant portion of the early GPI intermediates (GlcN-PI and GlcNAc-PI) could be hydrolyzed following PI-PLC treatment, indicating that these glycolipids are predominantly present in the cytoplasmic leaflet of the ER. Permeabilized T. gondii parasites labeled with either GDP-[2-3H]mannose or UDP-[6-3H]glucose showed that the more mannosylated and side chain (Glc-GalNAc)-modified GPI intermediates are also preferentially localized in the cytoplasmic leaflet of the ER. PMID:16896225

  12. Fatty acid hydrolysis of acyl marinobactin siderophores by Marinobacter acylases.

    PubMed

    Kem, Michelle P; Naka, Hiroaki; Iinishi, Akira; Haygood, Margo G; Butler, Alison

    2015-01-27

    The marine bacteria Marinobacter sp. DS40M6 and Marinobacter nanhaiticus D15-8W produce a suite of acyl peptidic marinobactin siderophores to acquire iron under iron-limiting conditions. During late-log phase growth, the marinobactins are hydrolyzed to form the marinobactin headgroup with release of the corresponding fatty acid tail. The bntA gene, a homologue of the Pseudomonas aeruginosa pyoverdine acylase gene, pvdQ, was identified from Marinobacter sp. DS40M6. A bntA knockout mutant of Marinobacter sp. DS40M6 produced the suite of acyl marinobactins A-E, without the usual formation of the marinobactin headgroup. Another marinobactin-producing species, M. nanhaiticus D15-8W, is predicted to have two pvdQ homologues, mhtA and mhtB. MhtA and MhtB have 67% identical amino acid sequences. MhtA catalyzes hydrolysis of the apo-marinobactin siderophores as well as the quorum sensing signaling molecule, dodecanoyl-homoserine lactone. In contrast to hydrolysis of the suite of apo-marinobactins by MhtA, hydrolysis of the iron(III)-bound marinobactins was not observed. PMID:25588131

  13. Site‐Selective Acylations with Tailor‐Made Catalysts

    PubMed Central

    Huber, Florian

    2016-01-01

    Abstract The acylation of alcohols catalyzed by N,N‐dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate‐specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor‐made catalysts for the site‐specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site‐selectivity compared with only DMAP. Furthermore, substrate‐optimized catalysts of this type can be used to selectively convert “their” substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances. PMID:26970553

  14. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement.

    PubMed

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon; Strauss, Holger M; Rahbek, Ulrik L; Andresen, Thomas L

    2015-10-01

    Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate its influence on intestinal cell translocation and membrane interaction. We find that acylation drastically increases in vitro intestinal peptide flux and confers a transient permeability enhancing effect on the cell layer. The analogues permeabilize model lipid membranes, indicating that the effect is due to a solubilization of the cell membrane, similar to transcellular oral permeation enhancers. The effect is dependent on pH, with larger effect at lower pH, and is impacted by acylation chain length and position. Compared to the unacylated peptide backbone, N-terminal acylation with a short chain provides 6- or 9-fold increase in peptide translocation at pH 7.4 and 5.5, respectively. Prolonging the chain length appears to hamper translocation, possibly due to self-association or aggregation, although the long chain acylated analogues remain superior to the unacylated peptide. For K(18)-acylation a short chain provides a moderate improvement, whereas medium and long chain analogues are highly efficient, with a 12-fold increase in permeability compared to the unacylated peptide backbone, on par with currently employed oral permeation enhancers. For K(18)-acylation the medium chain acylation appears to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may

  15. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments.

    PubMed

    Blangetti, Marco; Rosso, Heléna; Prandi, Cristina; Deagostino, Annamaria; Venturello, Paolo

    2013-01-17

    Since the first report and due to its handiness and wide scope, the Suzuki-Miyaura (SM) cross coupling reaction has become a routine methodology in many laboratories worldwide. With respect to other common transition metal catalyzed cross couplings, the SM reaction has been so far less exploited as a tool to introduce an acyl function into a specific substrate. In this review, the various approaches found in the literature will be considered, starting from the direct SM acylative coupling to the recent developments of cross coupling between boronates and acyl chlorides or anhydrides. Special attention will be dedicated to the use of masked acyl boronates, alkoxy styryl and alkoxy dienyl boronates as coupling partners. A final section will be then focused on the acyl SM reaction as key synthetic step in the framework of natural products synthesis.

  16. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments.

    PubMed

    Blangetti, Marco; Rosso, Heléna; Prandi, Cristina; Deagostino, Annamaria; Venturello, Paolo

    2013-01-01

    Since the first report and due to its handiness and wide scope, the Suzuki-Miyaura (SM) cross coupling reaction has become a routine methodology in many laboratories worldwide. With respect to other common transition metal catalyzed cross couplings, the SM reaction has been so far less exploited as a tool to introduce an acyl function into a specific substrate. In this review, the various approaches found in the literature will be considered, starting from the direct SM acylative coupling to the recent developments of cross coupling between boronates and acyl chlorides or anhydrides. Special attention will be dedicated to the use of masked acyl boronates, alkoxy styryl and alkoxy dienyl boronates as coupling partners. A final section will be then focused on the acyl SM reaction as key synthetic step in the framework of natural products synthesis. PMID:23344208

  17. Differential expression of argininosuccinate synthetase in serous and non-serous ovarian carcinomas.

    PubMed

    Cheon, Dong-Joo; Walts, Ann E; Beach, Jessica A; Lester, Jenny; Bomalaski, John S; Walsh, Christine S; Ruprecht Wiedemeyer, W; Karlan, Beth Y; Orsulic, Sandra

    2015-01-01

    The current standard of care for epithelial ovarian cancer does not discriminate between different histologic subtypes (serous, clear cell, endometrioid and mucinous) despite the knowledge that ovarian carcinoma subtypes do not respond uniformly to conventional platinum/taxane-based chemotherapy. Exploiting addictions and vulnerabilities in cancers with distinguishable molecular features presents an opportunity to develop individualized therapies that may be more effective than the current 'one size fits all' approach. One such opportunity is arginine depletion therapy with pegylated arginine deiminase, which has shown promise in several cancer types that exhibit low levels of argininosuccinate synthetase including hepatocellular and prostate carcinoma and melanoma. Based on the high levels of argininosuccinate synthetase previously observed in ovarian cancers, these tumours have been considered unlikely candidates for arginine depletion therapy. However, argininosuccinate synthetase levels have not been evaluated in the individual histologic subtypes of ovarian carcinoma. The current study is the first to examine the expression of argininosuccinate synthetase at the mRNA and protein levels in large cohorts of primary and recurrent ovarian carcinomas and ovarian cancer cell lines. We show that the normal fallopian tube fimbria and the majority of primary high-grade and low-grade serous ovarian carcinomas express high levels of argininosuccinate synthetase, which tend to further increase in recurrent tumours. In contrast to the serous subtype, non-serous ovarian carcinoma subtypes (clear cell, endometrioid and mucinous) frequently lack detectable argininosuccinate synthetase expression. The in vitro sensitivity of ovarian cancer cell lines to arginine depletion with pegylated arginine deiminase was inversely correlated with argininosuccinate synthetase expression. Our data suggest that the majority of serous ovarian carcinomas are not susceptible to therapeutic

  18. In vivo acylation of proteolipid protein and DM-20 in myelin and myelin subfractions of developing rat brain: immunoblot identification of acylated PLP and DM-20

    SciTech Connect

    Garwood, M.M.; Gilbert, W.R.; Agrawal, H.C.

    1983-05-01

    The acylation of proteolipid protein (PLP) was examined in myelin and myelin subfractions from rat brain during the active period of myelination. Proteolipid protein and DM-20 in myelin and myelin subfractions were readily acylated in developing rat brain 22 hours after intracerebral injection of (/sup 3/H)palmitic acid. No differences in the relative specific activity of PLP in myelin from 9-, 15-, and 30-day-old rat brains was observed; however, the relative specific activity of PLP in the heavy myelin subfraction tended to be higher than that in the light myelin subfraction. The acylation of PLP was confirmed by fluorography of immuno-stained cellulose nitrate sheets, clearly establishing that the acylated protein is in fact the oligodendroglial cell- and myelin-specific protein, PLP. Since PLP is acylated in the 9-day-old animal, when little compact myelin is present, it is possible that the acylation of PLP is a prerequisite for the incorporation of this protein into the myelin membrane.

  19. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  20. The aminoacyl-tRNA synthetases of Drosophila melanogaster.

    PubMed

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  1. Carbamoyl phosphate synthetase: a crooked path from substrates to products.

    PubMed

    Raushel, F M; Thoden, J B; Reinhart, G D; Holden, H M

    1998-10-01

    The formation of carbamoyl phosphate is catalyzed by a single enzyme using glutamine, bicarbonate and two molecules of ATP via a reaction mechanism that requires a minimum of four consecutive reactions and three unstable intermediates. The recently determined X-ray crystal structure of carbamoyl phosphate synthetase has revealed the location of three separate active sites connected by two molecular tunnels that run through the interior of the protein. It has been demonstrated that the amidotransferase domain within the small subunit of the enzyme from Escherichia coli hydrolyzes glutamine to ammonia via a thioester intermediate with Cys269. The ammonia migrates through the interior of the protein, where it reacts with carboxy phosphate to produce the carbamate intermediate. The carboxy phosphate intermediate is formed by the phosphorylation of bicarbonate by ATP at a site contained within the amino-terminal half of the large subunit. The carbamate intermediate is transported through the interior of the protein to a second site within the carboxy-terminal half of the large subunit, where it is phosphorylated by another ATP to yield the final product, carbamoyl phosphate. The entire journey from substrate to product covers a distance of nearly 100 A. PMID:9818189

  2. Regulation of carbamoyl phosphate synthetase by MAP kinase.

    PubMed

    Graves, L M; Guy, H I; Kozlowski, P; Huang, M; Lazarowski, E; Pope, R M; Collins, M A; Dahlstrand, E N; Earp, H S; Evans, D R

    2000-01-20

    The de novo synthesis of pyrimidine nucleotides is required for mammalian cells to proliferate. The rate-limiting step in this pathway is catalysed by carbamoyl phosphate synthetase (CPS II), part of the multifunctional enzyme CAD. Here we describe the regulation of CAD by the mitogen-activated protein (MAP) kinase cascade. When phosphorylated by MAP kinase in vitro or activated by epidermal growth factor in vivo, CAD lost its feedback inhibition (which is dependent on uridine triphosphate) and became more sensitive to activation (which depends upon phosphoribosyl pyrophosphate). Both these allosteric regulatory changes favour biosynthesis of pyrimidines for growth. They were accompanied by increased epidermal growth factor-dependent phosphorylation of CAD in vivo and were prevented by inhibition of MAP kinase. Mutation of a consensus MAP kinase phosphorylation site abolished the changes in CAD allosteric regulation that were stimulated by growth factors. Finally, consistent with an effect of MAP kinase signalling on CPS II activity, epidermal growth factor increased cellular uridine triphosphate and this increase was reversed by inhibition of MAP kinase. Hence these studies may indicate a direct link between activation of the MAP kinase cascade and de novo biosynthesis of pyrimidine nucleotides. PMID:10659854

  3. Purification and characterization of beef pancreatic asparagine synthetase.

    PubMed

    Luehr, C A; Schuster, S M

    1985-03-01

    Bovine pancreatic asparagine synthetase has been partially purified using ammonium sulfate fractionation, DEAE ion-exchange, Cibacron Blue affinity chromatography, and HPLC anion-exchange chromatography to a specific activity of 170 nmol asparagine produced min-1 mg protein-1, or 1400-fold, from a crude homogenate. Using HPLC size exclusion chromatography, an apparent molecular weight of 110,000-120,000 was determined. An aspartyl-adenylate intermediate was found to occur by demonstrating an 18O transfer from [18O]Asp to AMP that was detected with 31P NMR. A number of divalent metals were found to be able to replace magnesium with retention of activity, but none produced as high an activity as Mg2+, and the stoichiometry of the ATP/Mg2+ ratio was found to be 1. The chloride ion was found to stimulate the glutamine-dependent and glutaminase reactions, but the ammonia-dependent reaction was inhibited. Chloride appeared to be a competitive inhibitor with respect to ammonia and produced negative cooperativity. PMID:2858178

  4. In situ autoradiographic detection of folylpolyglutamate synthetase activity

    SciTech Connect

    Sussman, D.J.; Milman, G.; Osborne, C.; Shane, B.

    1986-11-01

    The enzyme folylpolyglutamate synthetase (FPGS) catalyzes the conversion of folate (pteroylmonoglutamate) to the polyglutamate forms (pteroylpolyglutamates) that are required for folate retention by mammalian cells. A rapid in situ autoradiographic assay for FPGS was developed which is based on the folate cofactor requirement of thymidylate synthase. Chinese hamster AUX B1 mutant cells lack FPGS activity and are unable to accumulate folate. As a result, the conversion of (6-/sup 3/H)deoxyuridine to thymidine via the thymidylate synthase reaction is impaired in AUX B1 cells and no detectable label is incorporated into DNA. In contrast, FPGS in wild-type Chinese hamster CHO cells causes folate retention and enables the incorporation of (6-/sup 3/H)deoxyuridine into DNA. Incorporation may be detected by autoradiography of monolayer cultures or of colonies replica plated onto polyester discs. Introduction of Escherichia coli FPGS into AUX B1 cells restores the activity of the thymidylate synthase pathway and demonstrates that the E. coli FPGS enzyme can provide pteroylpolyglutamates which functions in mammalian cells.

  5. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.

    PubMed

    Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes

    2015-11-01

    Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.

  6. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    SciTech Connect

    Das, S.; Gillin, F.D.

    1987-05-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of /sup 3/H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei.

  7. The aminoacyl-tRNA synthetases of Drosophila melanogaster

    PubMed Central

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  8. Glutamine synthetase predicts adjuvant TACE response in hepatocellular carcinoma

    PubMed Central

    Zhang, Bo; Liu, Kai; Zhang, Jian; Dong, Liwei; Jin, Zhichao; Zhang, Xinji; Xue, Feng; He, Jia

    2015-01-01

    Background: Adjuvant transcatheter arterial chemoembolization (TACE) is associated with better outcome and reduced tumor recurrence in hepatocellular carcinoma (HCC) patients. This study aimed to investigate the relationship between glutamine synthetase (GS) expression and survival of HCC patients after postoperative adjuvant TACE. Methods: We retrospectively analyzed 554 HCC patients in two independent cohorts who underwent curative resection. Immunohistochemistry assay was used to investigate the expression of GS protein and evaluate the association with survival and the response to adjuvant TACE. Results: In training cohort, patients with low GS expression who received postoperative adjuvant TACE showed a better overall survival (OS) (P<0.001) and less early phase recurrence (P=0.016). Adjuvant TACE was an independent prognostic factor for 5-year OS (HR=0.408, 95% CI 0.261-0.639, P<0.001) and early phase recurrence (HR=0.592, 95% CI 0.376-0.931, P=0.023). The same result was confirmed in validation cohort. Patients with high GS expression in both cohorts did not have a significant response to adjuvant TACE in OS and early phase recurrence. Conclusions: GS status in tumor might be a useful tool in the selection of HCC patients who would be likely to benefit from postoperative adjuvant TACE. PMID:26884995

  9. Expression, purification, and characterization of recombinant human glutamine synthetase.

    PubMed Central

    Listrom, C D; Morizono, H; Rajagopal, B S; McCann, M T; Tuchman, M; Allewell, N M

    1997-01-01

    A bacterial expression system has been engineered for human glutamine synthetase (EC 6.3.1.2) that produces approximately 60 mg of enzyme (20% of the bacterial soluble protein) and yields approx. 8 mg of purified enzyme per litre of culture. The recombinant enzyme was purified 5-fold to apparent homogeneity and characterized. It has a subunit molecular mass of approx. 45000 Da. The Vmax value obtained using a radioactive assay with ammonia and l-[G-3H]glutamic acid as substrates was 15.9 micromol/min per mg, 40% higher than that obtained in the colorimetric assay (9.9 micromol/min per mg) with hydroxylamine replacing ammonia as a substrate. Km values for glutamate were 3.0 mM and 3.5 mM, and for ATP they were 2.0 mM and 2. 9 mM for the radioactive and spectrophotometric assays respectively. The Km for ammonia in the radioactive assay was 0.15 mM. The midpoint of thermal inactivation was 49.7 degrees C. Hydroxylamine, Mg(II) and Mg(II)-ATP stabilized the enzyme against thermal inactivation, whereas ATP promoted inactivation. The pure enzyme is stable for several months in storage and provides a source for additional studies, including X-ray crystallography. PMID:9359847

  10. Oxidative inactivation of glutamine synthetase from the cyanobacterium Anabaena variabilis.

    PubMed Central

    Martin, G; Haehnel, W; Böger, P

    1997-01-01

    In crude extracts of the cyanobacterium Anabaena variabilis, glutamine synthetase (GS) could be effectively inactivated by the addition of NADH. GS inactivation was completed within 30 min. Both the inactivated GS and the active enzyme were isolated. No difference between the two enzyme forms was seen in sodium dodecyl sulfate-gels, and only minor differences were detectable by UV spectra, which excludes modification by a nucleotide. Mass spectrometry revealed that the molecular masses of active and inactive GS are equal. While the Km values of the substrates were unchanged, the Vmax values of the inactive GS were lower, reflecting the inactivation factor in the crude extract. This result indicates that the active site was affected. From the crude extract, a fraction mediating GS inactivation could be enriched by ammonium sulfate precipitation and gel filtration. GS inactivation by this fraction required the presence of NAD(P)H, Fe3+, and oxygen. In the absence of the GS-inactivating fraction, GS could be inactivated by Fe2+ and H2O2. The GS-inactivating fraction produced Fe2+ and H2O2, using NADPH, Fe3+, and oxygen. Accordingly, the inactivating fraction was inhibited by catalase and EDTA. This GS-inactivating system of Anabaena is similar to that described for oxidative GS inactivation in Escherichia coli. We conclude that GS inactivation by NAD(P)H is caused by irreversible oxidative damage and is not due to a regulatory mechanism of nitrogen assimilation. PMID:9006027

  11. Purification and some kinetic properties of rat liver glucosamine synthetase

    PubMed Central

    Winterburn, P. J.; Phelps, C. F.

    1971-01-01

    1. Glucosamine synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) was purified about 300-fold from rat liver by two techniques. One procedure utilized the protective action of fructose 6-phosphate and gave a relatively stable preparation, the other yielded an unstable enzyme (half-life of about 20h), free of contaminant activities, on which kinetic experiments were performed. Although the properties of the two preparations showed slight differences, the unstabilized form could be converted into the stabilized form. 2. During preparation the enzyme retained its sensitivity to the feedback inhibitor, UDP-N-acetylglucosamine. 3. The reversibility of the enzyme-catalysed reaction could not be demonstrated. There was no apparent requirement for a cofactor. 4. The pH optimum was at 7.5, at which pH the reaction obeyed a Ping Pong Bi Bi rate equation. At pH values outside the range 6.9–7.6 and at temperatures below 29°C the velocity was described by an ordered Bi Bi rate equation. 5. The molecular weight of the enzyme, determined by two procedures, was 360000–400000. 6. The aminotransferase was unable to utilize ammonia as a substrate. PMID:4255955

  12. Inhibition of Plant Asparagine Synthetase by Monoterpene Cineoles1

    PubMed Central

    Romagni, Joanne G.; Duke, Stephen O.; Dayan, Franck E.

    2000-01-01

    Asparagine (Asn) synthetase (AS) is the key enzyme in Asn biosynthesis and plays an important role in nitrogen mobilization. Despite its important physiological function, little research has been done documenting inhibitors of plant AS. Plant growth inhibition caused by the natural monoterpene 1,4-cineole and its structurally related herbicide cinmethylin was reversed 65% and 55%, respectively, by providing 100 μm Asn exogenously. Reversion of the phytotoxic effect was dependent on the concentration of Asn. The presence of either 1,4-cineole or cinmethylin stimulated root uptake of [14C]Asn by lettuce (Lactuca sativa) seedlings. Although the physiological responses suggested that both compounds affected Asn biosynthesis, biochemical analysis of AS activity showed that the natural monoterpene was a potent inhibitor (I50 = approximately 0.5 μm) of the enzyme, whereas the commercial product was not inhibitory up to levels of 10 mm. Analysis of the putative metabolite, 2-hydroxy-1,4-cineole, showed that the cis-enantiomer was much more active than the trans-enantiomer, suggesting that the hydroxyl group was involved in the specific ligand/active site interaction. This is the first report that AS is a suitable herbicide target site, and that cinmethylin is apparently a proherbicide that requires metabolic bioactivation via cleavage of the benzyl-ether side chain. PMID:10859202

  13. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting...

  14. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl...

  15. COA User's Guide

    SciTech Connect

    Fox, B.; Pautz, J.; Sellers, C.

    1999-01-28

    The Department of Energy (DOE) has one of the largest and most complete collections of information on crude oil composition that is available to the public. The computer program that manages this database of crude oil analyses has recently been rewritten to allow easier access to this information. This report describes how the new system can be accessed and how the information contained in the Crude Oil Analysis Data Bank can be obtained.

  16. Steady state fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1) and its active site mutants.

    PubMed

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Singh, Somesh; Gaikwad, Sushama; Khan, Bashir M

    2014-05-01

    Fluorescence quenching and time resolved fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1), a multitryptophan protein from Leucaena leucocephala and 10 different active site mutants were carried out to investigate tryptophan environment. The enzyme showed highest affinity for feruloyl CoA (K(a)  = 3.72 × 10(5) M(-1)) over other CoA esters and cinnamaldehydes, as determined by fluorescence spectroscopy. Quenching of the fluorescence by acrylamide for wild type and active site mutants was collisional with almost 100% of the tryptophan fluorescence accessible under native condition and remained same after denaturation of protein with 6 M GdnHCl. In wild type Ll-CCRH1, the extent of quenching achieved with iodide (f(a) = 1.0) was significantly higher than cesium ions (f(a) = 0.33) suggesting more density of positive charge around surface of trp conformers under native conditions. Denaturation of wild type protein with 6 M GdnHCl led to significant increase in the quenching with cesium (f(a) = 0.54), whereas quenching with iodide ion was decreased (f(a) = 0.78), indicating reorientation of charge density around trp from positive to negative and heterogeneity in trp environment. The Stern-Volmer plots for wild type and mutants Ll-CCRH1 under native and denatured conditions, with cesium ion yielded biphasic quenching profiles. The extent of quenching for cesium and iodide ions under native and denatured conditions observed in active site mutants was significantly different from wild type Ll-CCRH1 under the same conditions. Thus, single substitution type mutations of active site residues showed heterogeneity in tryptophan microenvironment and differential degree of conformation of protein under native or denatured conditions. PMID:24322526

  17. Effect of Genistein and L-Carnitine and Their Combination on Gene Expression of Hepatocyte HMG-COA Reductase and LDL Receptor in Experimental Nephrotic Syndrome

    PubMed Central

    YOUSEFINEJAD, Abbas; SIASSI, Fereydoon; MIRSHAFIEY, Abbas; ESHRAGHIAN, Mohammad-Reza; KOOHDANI, Fariba; JAVANBAKHT, Mohammad Hassan; SEDAGHAT, Reza; RAMEZANI, Atena; ZAREI, Mahnaz; DJALALI, Mahmoud

    2015-01-01

    Background: Nephrotic syndrome is a disorder that leads to hyperlipidemia. L-carnitine and genistein can effect on lipid metabolism and the syndrome. In the present study, we have delved into the separate and the twin-effects of L-carnitine and genistein on the gene expressions of HMG-COA reductase and LDL receptor in experimental nephrotic syndrome. Methods: In this controlled experimental study, 50 male Sprague–Dawley rats were randomly divided into five groups: NC (normal-control), PC (patient-control), LC (L-carnitine), G (genistein), LCG (L-carnitine-genistein). Adriamycin was used for inducing nephrotic syndrome and the spot urine samples and urine protein-to-creatinine ratio were measured. Hepatocytic RNA was extracted and real-time PCR was used for HMG-COA Reductase and LDL receptor gene Expression measurement. Results: The final weight of the patients groups were lower than the NC group (P=0.001), and weight gain of the NC group was higher than the other groups (P<0.001). The proteinuria and urine protein-to-creatinine ratio showed significant differences between PC group and LC, G and LCG groups at week 7 (P<0.001). The expression of HMGCOA Reductase mRNA down regulated in LC, G and LCG groups in comparison with PC group (P<0.001). ΔCT of LDLr mRNA showed significant differences between the PC group and the other patient groups (P<0.001). Conclusion: This study shows a significant decreasing (P<0.001) and non-significant increasing trend in HMG-COA Reductase and LDLr gene expression, respectively, and synergistic effect of L-carnitine and genistein on these genes in experimental nephrotic syndrome. PMID:26576346

  18. CRP Is an Activator of Yersinia pestis Biofilm Formation that Operates via a Mechanism Involving gmhA and waaAE-coaD

    PubMed Central

    Liu, Lei; Fang, Haihong; Yang, Huiying; Zhang, Yiquan; Han, Yanping; Zhou, Dongsheng; Yang, Ruifu

    2016-01-01

    gmhA encodes a phosphoheptose isomerase that catalyzes the biosynthesis of heptose, a conserved component of lipopolysaccharide (LPS). GmhA plays an important role in Yersinia pestis biofilm blockage in the flea gut. waaA, waaE, and coaD constitute a three-gene operon waaAE-coaD in Y. pestis. waaA encodes a transferase that is responsible for binding lipid-A to the core oligosaccharide of LPS. WaaA is a key determinant in Y. pestis biofilm formation, and the waaA expression is positively regulated by the two-component regulatory system PhoP/PhoQ. WaaE is involved in LPS modification and is necessary for Y. pestis biofilm production. In this study, the biofilm-related phenotypic assays indicate that the global regulator CRP stimulates Y. pestis biofilm formation in vitro and on nematodes, while it has no regulatory effect on the biosynthesis of the biofilm-signaling molecular 3′,5′-cyclic diguanosine monophosphate. Further gene regulation experiments disclose that CRP does not regulate the hms genes at the transcriptional level but directly promotes the gmhA transcription and indirectly activates the waaAE-coaD transcription through directly acting on phoPQ-YPO1632. Thus, it is speculated that CRP-mediated carbon catabolite regulation of Y. pestis biofilm formation depends on the CRP-dependent carbon source metabolic pathways of the biosynthesis, modification, and transportation of biofilm exopolysaccharide. PMID:27014218

  19. Cardiac-specific deletion of acetyl CoA carboxylase 2 (ACC2) prevents metabolic remodeling during pressure-overload hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Olson, David P.; Marney, Luke C.; Garcia-Menendez, Lorena; Synovec, Robert E.; Tian, Rong

    2012-01-01

    Rationale Decreased fatty acid oxidation (FAO) with increased reliance on glucose are hallmarks of metabolic remodeling that occurs in pathological cardiac hypertrophy and is associated with decreased myocardial energetics and impaired cardiac function. To date, it has not been tested whether prevention of the metabolic switch that occurs during the development of cardiac hypertrophy has unequivocal benefits on cardiac function and energetics. Objectives Since malonyl CoA production via acetyl CoA carboxylase 2 (ACC2) inhibits mitochondrial fatty acid transport, we hypothesized that mice with a cardiac-specific deletion of ACC2 (ACC2H−/−) would maintain cardiac fatty acid oxidation (FAO) and improve function and energetics during the development of pressure-overload hypertrophy. Methods and Results ACC2 deletion led to a significant reduction in cardiac malonyl CoA levels. In isolated perfused heart experiments, left ventricular (LV) function and oxygen consumption were similiar in ACC2H−/− mice despite an ~60% increase in FAO compared to controls (CON). After 8 weeks of pressure-overload via transverse aortic constriction (TAC), ACC2H−/− mice exhibited a substrate utilization profile similar to sham animals while CON-TAC hearts had decreased FAO with increased glycolysis and anaplerosis. Myocardial energetics, assessed by 31P NMR spectroscopy, and cardiac function were maintained in ACC2H−/− after 8 weeks of TAC. Furthermore, ACC2H−/−-TAC demonstrated an attenuation of cardiac hypertrophy with a significant reduction in fibrosis relative to CON-TAC. Conclusions These data suggest that reversion to the fetal metabolic profile in chronic pathological hypertrophy is associated with impaired myocardial function and energetics and maintenance of the inherent cardiac metabolic profile and mitochondrial oxidative capacity is a viable therapeutic strategy. PMID:22730442

  20. Regulation of the activity of the Bacillus licheniformis A5 glutamine synthetase.

    PubMed

    Donohue, T J; Bernlohr, R W

    1981-10-01

    The regulation of glutamine synthetase activity by positive and negative effectors of enzyme activity singularly and in combinations was studied by using a homogeneous enzyme preparation from Bacillus licheniformis A5. Phosphorylribosyl pyrophosphate at concentrations greater than 2mM stimulated glutamine synthetase activity by approximately 70%. The concentration of phosphorylribosyl pyrophosphate required for half-maximal stimulation of enzyme activity was 0.4 mM. Results obtained from studies of fractional inhibition of glutamine synthetase activity were consistent with the presence of one allosteric site for glutamine binding (apparent I0.5, 2.2mM) per active enzyme unit at a glutamate concentration of 50 mM. At a glutamate concentration of 30 mM or less, the data were consistent with the enzyme containing two binding sites for glutamine (one of which was an allosteric site with an apparent I0.5 of 0.4 mM). Bases on an analysis of the response of glutamine synthetase activity to positive and negative effectors in vitro and to the intracellular concentration of these effectors in vivo, the primary modulators of glutamine synthetase activity in B. licheniformis A5 appear to be glutamine and alanine (apparent I0.5, 5.2mM). PMID:6169702

  1. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511.

    PubMed

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed. PMID:26270653

  2. Affinity chromatography of aminoacyl-transfer ribonucleic acid synthetases. Small organic ligands.

    PubMed Central

    Clarke, C M; Knowles, J R

    1977-01-01

    The usefulness of affinity chromatography for the purification of aminoacyl-tRNA synthetases was explored by using column ligands derived from the corresponding amino acid and aminoalkyladenylate, a non-labile analogue of the aminoacyladenylate reaction intermediate. Four modes of attachment of the aminoalkyladenylate to Sepharose were studied. The interaction between amino acid derivatives and the corresponding aminoacyl-tRNA synthetases is too weak to allow their use as ligands for affinity chromatography. Attachment of the aminoalkyladenylate via the alpha-nitrogen atom of the amino acid or via C-8 of the nucleotide abolishes synthetase binding, and immobilization via the oxidized ribose ring is only marginally useful. However, attachment of the aminoalkyladenylate to the matrix via N-6 of the nucleotide allows strong and specific synthetase binding, and the use of such columns permits the isolation of homogeneous synthetase from crude mixtures. The effect of non-specific adsorption and the utility of pre-columns and of specific substrate elution are investigated and discussed. Images Fig. 4. Fig. 7. PMID:597251

  3. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511.

    PubMed

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed.

  4. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    SciTech Connect

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A.

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  5. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511

    PubMed Central

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P.; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed. PMID:26270653

  6. Effect of glucose deprivation on rat glutamine synthetase in cultured astrocytes.

    PubMed Central

    Rosier, F; Lambert, D; Mertens-Strijthagen, M

    1996-01-01

    Glutamine synthetase was purified from the cerebral cortex of adult rats and characterized. Polyclonal rabbit antibodies were raised against the enzyme, purified and their specific anti-(glutamine synthetase) activity determined. A primary astroglial culture was prepared from newborn Sprague-Dawley rats. Astrocytes at different ages of development were incubated in the presence and absence of glucose. In glucose-deprived conditions the specific activity of glutamine synthetase decreased. This decrease was more pronounced in 8-day-old than in 21-day-old cultures. Kinetic analysis demonstrated that the reduction in activity was mainly related to a decrease in Vmax. By immunoprecipitation, it was shown that the number of enzyme molecules in astrocytes was decreased in glucose-deprived conditions. On addition of glucose, a total recovery of glutamine synthetase was obtained after 36 h in 8-day-old culture. Rates of degradation and synthesis were investigated. When compared with an incubation in the presence of glucose, glucose deprivation increased enzyme turnover, as estimated from the first-order disappearance of radioactivity from glutamine synthetase. Synthesis rate was estimated from the incorporation of [35S]methionine during a 2 h incubation period and was decreased in glucose-deprived conditions. Trichloroacetate-precipitable proteins changed only slightly in the experimental conditions, and total protein did not vary significantly during the experimental period. A mathematical model is presented which attempts to integrate degradation and synthesis in our experimental model. PMID:8615836

  7. Effect of estrogen administration on rat liver 2-5A synthetase activity.

    PubMed

    Smekens, M; Dumont, J E; Degeyter, A; Galand, P

    1986-08-01

    Interferon-induced 2-5A synthetase is also present in various cells and tissues in the absence of any interferon treatment. The activity of this enzyme, which synthesizes a series of oligoadenylates, ppp(A2'p)n5'A (collectively referred to as 2-5A), was previously shown to vary with the growth status of liver tissue i.e., it decreased before and during the peak of DNA synthesis activity induced in rat liver by a two third hepatectomy. In the course of studies aimed at testing the hypothesis that 2-5A synthetase activity might exert negative control on normal cell growth and multiplication, we show here that a treatment of ovariectomized rats with a single dose of estradiol-17beta (100 micrograms/100 g body weight) induced a transient increase in the [3H]thymidine labelling index in the liver after 24 h and markedly decreased the 2-5A synthetase activity. A time course study revealed that 2-5A synthetase activity started to decrease after 3 h, reaching a minimal value (10% of the control level) after 12 h, then slowly increased to come back to control level at 48 h. These results, together with our similar data on regenerating liver, suggest that low 2-5A synthetase activity is permissive for acquisition of proliferative 'competence' by G0 cells. PMID:3730433

  8. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed Central

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase. PMID:12228351

  9. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.

  10. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis

    PubMed Central

    Nguyen, Chi; Haushalter, Robert W.; Lee, D. John; Markwick, Phineus R. L.; Bruegger, Joel; Caldara-Festin, Grace; Finzel, Kara; Jackson, David R.; Ishikawa, Fumihiro; O’Dowd, Bing; McCammon, J. Andrew; Opella, Stanley J.; Tsai, Shiou-Chuan; Burkart, Michael D.

    2015-01-01

    Acyl carrier protein (ACP) transports the growing fatty acid chain between enzyme domains of fatty acid synthase (FAS) during biosynthesis.1 Because FAS enzymes operate upon ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain.2 The transient nature of ACP-enzyme interactions imposes a major obstacle to gaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to properly study protein-protein interactions. In this work, we describe the application of a mechanism-based probe that allows site-selective covalent crosslinking of AcpP to FabA, the E. coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase. We report the 1.9 Å crystal structure of the crosslinked AcpP=FabA complex as a homo-dimer, in which AcpP exhibits two different conformations likely representing snapshots of ACP in action: the 4′-phosphopantetheine (PPant) group of AcpP first binds an arginine-rich g