Science.gov

Sample records for acyl enzyme intermediate

  1. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates.

    PubMed

    Lawrence, D A; Ginsburg, D; Day, D E; Berkenpas, M B; Verhamme, I M; Kvassman, J O; Shore, J D

    1995-10-27

    The serine protease inhibitors of the serpin family are an unusual group of proteins thought to have metastable native structures. Functionally, they are unique among polypeptide protease inhibitors, although their precise mechanism of action remains controversial. Conflicting results from previous studies have suggested that the stable serpin-protease complex is trapped in either a tight Michaelis-like structure, a tetrahedral intermediate, or an acyl-enzyme. In this report we show that, upon association with a target protease, the serpin reactive-center loop (RCL) is cleaved resulting in formation of an acyl-enzyme intermediate. This cleavage is coupled to rapid movement of the RCL into the body of the protein bringing the inhibitor closer to its lowest free energy state. From these data we suggest a model for serpin action in which the drive toward the lowest free energy state results in trapping of the protease-inhibitor complex as an acyl-enzyme intermediate. PMID:7592687

  2. Identification of an Acyl-Enzyme Intermediate in a meta-Cleavage Product Hydrolase Reveals the Versatility of the Catalytic Triad

    SciTech Connect

    Ruzzini, Antonio C.; Ghosh, Subhangi; Horsman, Geoff P.; Foster, Leonard J.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2012-03-14

    Meta-cleavage product (MCP) hydrolases are members of the {alpha}/{beta}-hydrolase superfamily that utilize a Ser-His-Asp triad to catalyze the hydrolysis of a C-C bond. BphD, the MCP hydrolase from the biphenyl degradation pathway, hydrolyzes 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to 2-hydroxypenta-2,4-dienoic acid (HPD) and benzoate. A 1.6 {angstrom} resolution crystal structure of BphD H265Q incubated with HOPDA revealed that the enzyme's catalytic serine was benzoylated. The acyl-enzyme is stabilized by hydrogen bonding from the amide backbone of 'oxyanion hole' residues, consistent with formation of a tetrahedral oxyanion during nucleophilic attack by Ser112. Chemical quench and mass spectrometry studies substantiated the formation and decay of a Ser112-benzoyl species in wild-type BphD on a time scale consistent with turnover and incorporation of a single equivalent of {sup 18}O into the benzoate produced during hydrolysis in H{sub 2}{sup 18}O. Rapid-scanning kinetic studies indicated that the catalytic histidine contributes to the rate of acylation by only an order of magnitude, but affects the rate of deacylation by over 5 orders of magnitude. The orange-colored catalytic intermediate, ES{sup red}, previously detected in the wild-type enzyme and proposed herein to be a carbanion, was not observed during hydrolysis by H265Q. In the newly proposed mechanism, the carbanion abstracts a proton from Ser112, thereby completing tautomerization and generating a serinate for nucleophilic attack on the C6-carbonyl. Finally, quantification of an observed pre-steady-state kinetic burst suggests that BphD is a half-site reactive enzyme. While the updated catalytic mechanism shares features with the serine proteases, MCP hydrolase-specific chemistry highlights the versatility of the Ser-His-Asp triad.

  3. Acyl silicates and acyl aluminates as activated intermediates in peptide formation on clays

    NASA Technical Reports Server (NTRS)

    White, D. H.; Kennedy, R. M.; Macklin, J.

    1984-01-01

    Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. The proposed mechanism has been confirmed by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespead, geologically realistic setting for prebiotic peptide formation via in situ activation.

  4. Mammalian acyl-CoA:lysophosphatidylcholine acyltransferase enzymes.

    PubMed

    Soupene, Eric; Fyrst, Henrik; Kuypers, Frans A

    2008-01-01

    The mammalian RBC lacks de novo lipid synthesis but maintains its membrane composition by rapid turnover of acyl moieties at the sn-2 position of phospholipids. Plasma-derived fatty acids are esterified to acyl-CoA by acyl-CoA synthetases and transferred to lysophospholipids by acyl-CoA:lysophospholipid acyltransferases. We report the characterization of three lysophosphatidylcholine (lysoPC) acyltransferases (LPCATs), products of the AYTL1, -2, and -3 genes. These proteins are three members of a LPCAT family, of which all three genes are expressed in an erythroleukemic cell line. Aytl2 mRNA was detected in mouse reticulocytes, and the presence of the product of the human ortholog was confirmed in adult human RBCs. The three murine Aytl proteins generated phosphatidylcholine from long-chain acyl-CoA and lysoPC when expressed in Escherichia coli membranes. Spliced variants of Aytl1, affecting a conserved catalytic motif, were identified. Calcium and magnesium modulated LPCAT activity of both Aytl1 and -2 proteins that exhibit EF-hand motifs at the C terminus. Characterization of the product of the Aytl2 gene as the phosphatidylcholine reacylating enzyme in RBCs represents the identification of a plasma membrane lysophospholipid acyltransferase and establishes the function of a LPCAT protein.

  5. Theoretical approach to the steady-state kinetics of a bi-substrate acyl-transfer enzyme reaction that follows a hydrolysable-acyl-enzyme-based mechanism. Application to the study of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung.

    PubMed Central

    Martín, J; Pérez-Gil, J; Acebal, C; Arche, R

    1990-01-01

    A kinetic model is proposed for catalysis by an enzyme that has several special characteristics: (i) it catalyses an acyl-transfer bi-substrate reaction between two identical molecules of substrate, (ii) the substrate is an amphiphilic molecule that can be present in two physical forms, namely monomers and micelles, and (iii) the reaction progresses through an acyl-enzyme-based mechanism and the covalent intermediate can react also with water to yield a secondary hydrolytic reaction. The theoretical kinetic equations for both reactions were deduced according to steady-state assumptions and the theoretical plots were predicted. The experimental kinetics of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung fitted the proposed equations with great accuracy. Also, kinetics of inhibition by products behaved as expected. It was concluded that the competition between two nucleophiles for the covalent acyl-enzyme intermediate, and not a different enzyme action depending on the physical state of the substrate, is responsible for the differences in kinetic pattern for the two activities of the enzyme. This conclusion, together with the fact that the kinetic equation for the transacylation is quadratic, generates a 'hysteretic' pattern that can provide the basis of self-regulatory properties for enzymes to which this model could be applied. PMID:2310381

  6. Theoretical approach to the steady-state kinetics of a bi-substrate acyl-transfer enzyme reaction that follows a hydrolysable-acyl-enzyme-based mechanism. Application to the study of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung.

    PubMed

    Martín, J; Pérez-Gil, J; Acebal, C; Arche, R

    1990-02-15

    A kinetic model is proposed for catalysis by an enzyme that has several special characteristics: (i) it catalyses an acyl-transfer bi-substrate reaction between two identical molecules of substrate, (ii) the substrate is an amphiphilic molecule that can be present in two physical forms, namely monomers and micelles, and (iii) the reaction progresses through an acyl-enzyme-based mechanism and the covalent intermediate can react also with water to yield a secondary hydrolytic reaction. The theoretical kinetic equations for both reactions were deduced according to steady-state assumptions and the theoretical plots were predicted. The experimental kinetics of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung fitted the proposed equations with great accuracy. Also, kinetics of inhibition by products behaved as expected. It was concluded that the competition between two nucleophiles for the covalent acyl-enzyme intermediate, and not a different enzyme action depending on the physical state of the substrate, is responsible for the differences in kinetic pattern for the two activities of the enzyme. This conclusion, together with the fact that the kinetic equation for the transacylation is quadratic, generates a 'hysteretic' pattern that can provide the basis of self-regulatory properties for enzymes to which this model could be applied. PMID:2310381

  7. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    SciTech Connect

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  8. Temperature-dependent, competitive 1,3-acyl shift versus decarbonylation of a cyclopropanone intermediate

    PubMed Central

    Erden, Ihsan; Ma, Jingxiang; Gärtner, Christian; Azimi, Saeed; Gronert, Scott

    2013-01-01

    Photooxygenation of 1,1,3-trimethyl-1,2-dihydropentalene gives an unstable endoperoxide which upon decomposition delivers a bicyclic cyclopropanone intermediate; this species either extrudes CO to give a cycloheptadienone or undergoes a 1,3-acyl shift, both processes occurring most likely in a stepwise manner via diradical intermediates. Alternatively, C3a-C4 cleavage in the dioxygen diradical derived from the endoperoxide yields a 2-cyclopropyl substituted cyclopentadienone epoxide. PMID:23956469

  9. The Golgi S-acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity

    PubMed Central

    Lemonidis, Kimon; Gorleku, Oforiwa A.; Sanchez-Perez, Maria C.; Grefen, Christopher; Chamberlain, Luke H.

    2014-01-01

    S-acylation, the attachment of fatty acids onto cysteine residues, regulates protein trafficking and function and is mediated by a family of zDHHC enzymes. The S-acylation of peripheral membrane proteins has been proposed to occur at the Golgi, catalyzed by an S-acylation machinery that displays little substrate specificity. To advance understanding of how S-acylation of peripheral membrane proteins is handled by Golgi zDHHC enzymes, we investigated interactions between a subset of four Golgi zDHHC enzymes and two S-acylated proteins—synaptosomal-associated protein 25 (SNAP25) and cysteine-string protein (CSP). Our results uncover major differences in substrate recognition and S-acylation by these zDHHC enzymes. The ankyrin-repeat domains of zDHHC17 and zDHHC13 mediated strong and selective interactions with SNAP25/CSP, whereas binding of zDHHC3 and zDHHC7 to these proteins was barely detectable. Despite this, zDHHC3/zDHHC7 could S-acylate SNAP25/CSP more efficiently than zDHHC17, whereas zDHHC13 lacked S-acylation activity toward these proteins. Overall the results of this study support a model in which dynamic intracellular localization of peripheral membrane proteins is achieved by highly selective recruitment by a subset of zDHHC enzymes at the Golgi, combined with highly efficient S-acylation by other Golgi zDHHC enzymes. PMID:25253725

  10. Partial deletion of beta9 loop in pancreatic lipase-related protein 2 reduces enzyme activity with a larger effect on long acyl chain substrates.

    PubMed

    Dridi, Kaouthar; Amara, Sawsan; Bezzine, Sofiane; Rodriguez, Jorge A; Carrière, Frédéric; Gaussier, Hélène

    2013-07-01

    Structural studies on pancreatic lipase have revealed a complex architecture of surface loops surrounding the enzyme active site and potentially involved in interactions with lipids. Two of them, the lid and beta loop, expose a large hydrophobic surface and are considered as acyl chain binding sites based on their interaction with an alkyl phosphonate inhibitor. While the role of the lid in substrate recognition and selectivity has been extensively studied, the implication of beta9 loop in acyl chain stabilization remained hypothetical. The characterization of an enzyme with a natural deletion of the lid, guinea pig pancreatic lipase-related protein 2 (GPLRP2), suggests however an essential contribution of the beta9 loop in the stabilization of the acyl enzyme intermediate formed during the lipolysis reaction. A GPLRP2 mutant with a seven-residue deletion of beta9 loop (GPLRP2-deltabeta9) was produced and its enzyme activity was measured using various substrates (triglycerides, monoglycerides, galactolipids, phospholipids, vinyl esters) with short, medium and long acyl chains. Whatever the substrate tested, GPLRP2-deltabeta9 activity is drastically reduced compared to that of wild-type GPLRP2 and this effect is more pronounced as the length of substrate acyl chain increases. Changes in relative substrate selectivity and stereoselectivity remained however weak. The deletion within beta9 loop has also a negative effect on the rate of enzyme inhibition by alkyl phosphonates. All these findings indicate that the reduced enzyme turnover observed with GPLRP2-deltabeta9 results from a weaker stabilization of the acyl enzyme intermediate due to a loss of hydrophobic interactions. PMID:24046870

  11. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.

    PubMed

    Maloney, Finn P; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L

    2016-09-13

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA.

  12. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.

    PubMed

    Maloney, Finn P; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L

    2016-09-13

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA. PMID:27573844

  13. Acylated monogalactosyl diacylglycerol: prevalence in the plant kingdom and identification of an enzyme catalyzing galactolipid head group acylation in Arabidopsis thaliana.

    PubMed

    Nilsson, Anders K; Johansson, Oskar N; Fahlberg, Per; Kommuri, Murali; Töpel, Mats; Bodin, Lovisa J; Sikora, Per; Modarres, Masoomeh; Ekengren, Sophia; Nguyen, Chi T; Farmer, Edward E; Olsson, Olof; Ellerström, Mats; Andersson, Mats X

    2015-12-01

    The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono- and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl-MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl-MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12-oxo-phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA-containing galactolipids in the plant kingdom. While acyl-MGDG was found to be ubiquitous in green tissue of plants ranging from non-vascular plants to angiosperms, OPDA-containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non-oxidized and OPDA-containing acyl-MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl-MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response. PMID:26566971

  14. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa.

    PubMed

    Zhu, Kun; Rock, Charles O

    2008-05-01

    Pseudomonas aeruginosa secretes a rhamnolipid (RL) surfactant that functions in hydrophobic nutrient uptake, swarming motility, and pathogenesis. We show that RhlA supplies the acyl moieties for RL biosynthesis by competing with the enzymes of the type II fatty acid synthase (FASII) cycle for the beta-hydroxyacyl-acyl carrier protein (ACP) pathway intermediates. Purified RhlA forms one molecule of beta-hydroxydecanoyl-beta-hydroxydecanoate from two molecules of beta-hydroxydecanoyl-ACP and is the only enzyme required to generate the lipid component of RL. The acyl groups in RL are primarily beta-hydroxydecanoyl, and in vitro, RhlA has a greater affinity for 10-carbon substrates, illustrating that RhlA functions as a molecular ruler that selectively extracts 10-carbon intermediates from FASII. Eliminating either FabA or FabI activity in P. aeruginosa increases RL production, illustrating that slowing down FASII allows RhlA to more-effectively compete for beta-hydroxydecanoyl-ACP. In Escherichia coli, the rate of fatty acid synthesis increases 1.3-fold when RhlA is expressed, to ensure the continued formation of fatty acids destined for membrane phospholipid even though 24% of the carbon entering FASII is diverted to RL synthesis. Previous studies have placed a ketoreductase, called RhlG, before RhlA in the RL biosynthetic pathway; however, our experiments show that RhlG has no role in RL biosynthesis. We conclude that RhlA is necessary and sufficient to form the acyl moiety of RL and that the flux of carbon through FASII accelerates to support RL production and maintain a supply of acyl chains for phospholipid synthesis.

  15. Crystal structure of Streptococcus pneumoniae acyl carrier protein synthase: an essential enzyme in bacterial fatty acid biosynthesis

    PubMed Central

    Chirgadze, Nickolay Y.; Briggs, Steven L.; McAllister, Kelly A.; Fischl, Anthony S.; Zhao, Genshi

    2000-01-01

    Acyl carrier protein synthase (AcpS) catalyzes the formation of holo-ACP, which mediates the essential transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and lipids in the cell. Thus, AcpS plays an important role in bacterial fatty acid and lipid biosynthesis, making it an attractive target for therapeutic intervention. We have determined, for the first time, the crystal structure of the Streptococcus pneumoniae AcpS and AcpS complexed with 3′5′-ADP, a product of AcpS, at 2.0 and 1.9 Å resolution, respectively. The crystal structure reveals an α/β fold and shows that AcpS assembles as a tightly packed functional trimer, with a non-crystallographic pseudo-symmetric 3-fold axis, which contains three active sites at the interface between protomers. Only two active sites are occupied by the ligand molecules. Although there is virtually no sequence similarity between the S.pneumoniae AcpS and the Bacillus subtilis Sfp transferase, a striking structural similarity between both enzymes was observed. These data provide a starting point for structure-based drug design efforts towards the identification of AcpS inhibitors with potent antibacterial activity. PMID:11032795

  16. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    PubMed Central

    Chankhamhaengdecha, Surang; Hongvijit, Suphatra; Srichaisupakit, Akkaraphol; Charnchai, Pattra; Panbangred, Watanalai

    2013-01-01

    Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30 ± 3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces. PMID:23484156

  17. Endophytic actinomycetes: a novel source of potential acyl homoserine lactone degrading enzymes.

    PubMed

    Chankhamhaengdecha, Surang; Hongvijit, Suphatra; Srichaisupakit, Akkaraphol; Charnchai, Pattra; Panbangred, Watanalai

    2013-01-01

    Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30 ± 3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  18. Utilization of a depsipeptide substrate for trapping acyl—enzyme intermediates of penicillin-sensitive D-alanine carboxypeptidases

    PubMed Central

    Rasmussen, James R.; Strominger, Jack L.

    1978-01-01

    The penicillin-sensitive D-alanine carboxypeptidases of Bacillus subtilis, Escherichia coli, and Staphylococcus aureus catalyzed the hydrolysis of the D-lactic acid residue from the depsipeptide diacetyl-L-lysyl-D-alanyl-D-lactic acid. The ester substrate was hydrolyzed faster than the peptide analogue, diacetyl-L-lysyl-D-alanyl-D-alanine, by the B. subtilis (15-fold) and E. coli (4-fold) carboxypeptidases, presumably because acylation (k2), which is the rate-limiting step of the peptidase reaction, occurred more rapidly during cleavage of the ester bond than during cleavage of the amide bond. No rate acceleration was observed with the S. aureus carboxypeptidase for which deacylation (k3) is already the rate-determining step with the peptide substrate. The efficiency of utilization of the depsipeptide (Vmax/Km) was greatly enhanced (19- to 147-fold) for all three enzymes. After incubation of the B. subtilis carboxypeptidase and [14C]diacetyl-L-lysyl-D-alanyl-D-lactic acid at pH 5.0 and lowering of the pH to 3.0, a radioactive acyl-enzyme intermediate containing 0.43 mol of substrate per mol of enzyme was isolated by Sephadex G-50 chromatography. After acetone precipitation, the acyl group of the denatured acyl-enzyme complex appeared to be bound to the protein by an ester bond. Acyl enzymes were also detected for the S. aureus and E. coli carboxypeptidases after sodium dodecyl sulfate/polyacrylamide gel electrophoresis and fluorography of enzyme incubated with [14C]depsipeptide and precipitated with acetone. Images PMID:415311

  19. Tryptophan fluorescence reveals induced folding of Vibrio harveyi acyl carrier protein upon interaction with partner enzymes.

    PubMed

    Gong, Huansheng; Murphy, Peter W; Langille, Gavin M; Minielly, Sarah J; Murphy, Anne; McMaster, Christopher R; Byers, David M

    2008-11-01

    We have introduced tryptophan as a local fluorescent probe to monitor the conformation of Vibrio harveyi acyl carrier protein (ACP), a small flexible protein that is unfolded at neutral pH but must undergo reversible conformational change during the synthesis and delivery of bacterial fatty acids. Consistent with known 3D structures of ACP, steady-state fluorescence and quenching experiments indicated that Trp at positions 46, 50, and 72 are buried in the hydrophobic core upon Mg(2+)-induced ACP folding, whereas residues 25 and 45 remain in a hydrophilic environment on the protein surface. Attachment of fatty acids to the phosphopantetheine prosthetic group progressively stabilized the folded conformation of all Trp-substituted ACPs, but longer chains (14:0) were less effective than medium chains (8:0) in shielding Trp from acrylamide quenching in the L46W protein. Interaction with ACP-dependent enzymes LpxA and holo-ACP synthase also caused folding of L46W; fluorescence quenching indicated proximity of Trp-45 in helix II of ACP in LpxA binding. Our results suggest that divalent cations and fatty acylation produce differing environments in the ACP core and also reveal enzyme partner-induced folding of ACP, a key feature of "natively unfolded" proteins.

  20. Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins

    PubMed Central

    Hayashi, Shohei; Satoh, Yasuharu; Ujihara, Tetsuro; Takata, Yusuke; Dairi, Tohru

    2016-01-01

    In some microorganisms, polyunsaturated fatty acids (PUFAs) are biosynthesized by PUFA synthases characterized by tandem acyl carrier proteins (ACPs) in subunit A. These ACPs were previously shown to be important for PUFA productivity. In this study, we examined their function in more detail. PUFA productivities increased depending on the number of ACPs without profile changes in each subunit A of eukaryotic and prokaryotic PUFA synthases. We also constructed derivative enzymes from subunit A with 5 × ACPs. Enzymes possessing one inactive ACP at any position produced ~30% PUFAs compared with the parental enzyme but unexpectedly had ~250% productivity compared with subunit A with 4 × ACPs. Enzymes constructed by replacing the 3rd ACP with an inactive ACP from another subunit A or ACP-unrelated sequences produced ~100% and ~3% PUFAs compared with the parental 3rd ACP-inactive enzyme, respectively. These results suggest that both the structure and number of ACP domains are important for PUFA productivity. PMID:27752094

  1. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    PubMed Central

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  2. Mechanism of action of clostridial glycine reductase: Isolation and characterization of a covalent acetyl enzyme intermediate

    SciTech Connect

    Arkowitz, R.A.; Abeles, R.H. )

    1991-04-23

    Clostridial glycine reductase consists of proteins A, B, and C and catalyzes the reaction glycine + P{sub i} + 2e{sup {minus}} {yields} acetyl phosphate + NH{sub 4}{sup +}. Evidence was previously obtained that is consistent with the involvement of an acyl enzyme intermediate in this reaction. The authors now demonstrate that protein C catalyzes exchange of ({sup 32}P)P{sub i} into acetyl phosphate, providing additional support for an acetyl enzyme intermediate on protein C. Furthermore, they have isolated acetyl protein C and shown that it is qualitatively, catalytically competent. Acetyl protein C can be obtained through the forward reaction from protein C and Se-(carboxymethyl)selenocysteine-protein A, which is generated by the reaction of glycine with proteins A and B. Acetyl protein C can also be generated through the reverse reaction by the addition of acetyl phosphate to protein C. Both procedures lead to the same acetyl enzyme. The acetyl enzyme reacts with P{sub i} to give acetyl phosphate. When ({sup 14}C)acetyl protein C is denaturated with TCA and redissolved with urea, radioactivity remained associated with the protein. Treatment with KBH{sub 4} removes all the radioactivity associated with protein C, resulting in the formation of ({sup 14}C)ethanol. They conclude that a thiol group on protein C is acetylated. Proteins A and C together catalyze the exchange of tritium atoms from ({sup 3}H)H{sub 2}O into acetyl phosphate. This exchange reaction supports the proposal that an enol of the acetyl enzyme is an intermediate in the reaction sequence.

  3. Paramagnetic Intermediates Generated by Radical S-Adenosylmethionine (SAM) Enzymes

    PubMed Central

    2015-01-01

    Conspectus A [4Fe–4S]+ cluster reduces a bound S-adenosylmethionine (SAM) molecule, cleaving it into methionine and a 5′-deoxyadenosyl radical (5′-dA•). This step initiates the varied chemistry catalyzed by each of the so-called radical SAM enzymes. The strongly oxidizing 5′-dA• is quenched by abstracting a H-atom from a target species. In some cases, this species is an exogenous molecule of substrate, for example, l-tyrosine in the [FeFe] hydrogenase maturase, HydG. In other cases, the target is a proteinaceous residue as in all the glycyl radical forming enzymes. The generation of this initial radical species and the subsequent chemistry involving downstream radical intermediates is meticulously controlled by the enzyme so as to prevent unwanted reactions. But the manner in which this control is exerted is unknown. Electron paramagnetic resonance (EPR) spectroscopy has proven to be a valuable tool used to gain insight into these mechanisms. In this Account, we summarize efforts to trap such radical intermediates in radical SAM enzymes and highlight four examples in which EPR spectroscopic results have shed significant light on the corresponding mechanism. For lysine 2,3-aminomutase, nearly each possible intermediate, from an analogue of the initial 5′-dA• to the product radical l-β-lysine, has been explored. A paramagnetic intermediate observed in biotin synthase is shown to involve an auxiliary [FeS] cluster whose bridging sulfide is a co-substrate for the final step in the biosynthesis of vitamin B7. In HydG, the l-tyrosine substrate is converted in unprecedented fashion to a 4-oxidobenzyl radical on the way to generating CO and CN– ligands for the [FeFe] cluster of hydrogenase. And finally, EPR has confirmed a mechanistic proposal for the antibiotic resistance protein Cfr, which methylates the unactivated sp2-hybridized C8-carbon of an adenosine base of 23S ribosomal RNA. These four systems provide just a brief survey of the ever-growing set

  4. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli.

    PubMed

    Heath, R J; Rock, C O

    1996-01-26

    Long chain acyl-acyl carrier protein (acyl-ACP) has been implicated as a physiological inhibitor of fatty acid biosynthesis since acyl-ACP degradation by thioesterase overexpression leads to constitutive, unregulated fatty acid production. The biochemical targets for acyl-ACP inhibition were unknown, and this work identified two biosynthetic enzymes that were sensitive to acyl-ACP feedback inhibition. Palmitoyl-ACP inhibited the incorporation of [14C]malonyl-CoA into long chain fatty acids in cell-free extracts of Escherichia coli. A short chain acyl-ACP species with the electrophoretic properties of beta-hydroxybutyryl-ACP accumulated concomitant with the overall decrease in the amount of [14C]malonyl-CoA incorporation, indicating that the first elongation cycle was targeted by acyl-ACP. All of the proteins required to catalyze the first round of fatty acid synthesis from acetyl-CoA plus malonyl-CoA in vitro were isolated, and the first fatty acid elongation cycle was reconstituted with these purified components. Analysis of the individual enzymes and the pattern of intermediate accumulation in the reconstituted system identified initiation of fatty acid synthesis by beta-ketoacyl-ACP synthase III (fabH) and enoyl-ACP reductase (fabI) in the elongation cycle as two steps attenuated by long chain acyl-ACP.

  5. Enzyme Mechanism and Slow-Onset Inhibition of Plasmodium falciparum Enoyl-Acyl Carrier Protein Reductase by an Inorganic Complex

    PubMed Central

    de Medeiros, Patrícia Soares de Maria; Ducati, Rodrigo Gay; Basso, Luiz Augusto; Santos, Diógenes Santiago; da Silva, Luiz Hildebrando Pereira

    2011-01-01

    Malaria continues to be a major cause of children's morbidity and mortality worldwide, causing nearly one million deaths annually. The human malaria parasite, Plasmodium falciparum, synthesizes fatty acids employing the Type II fatty acid biosynthesis system (FAS II), unlike humans that rely on the Type I (FAS I) pathway. The FAS II system elongates acyl fatty acid precursors of the cell membrane in Plasmodium. Enoyl reductase (ENR) enzyme is a member of the FAS II system. Here we present steady-state kinetics, pre-steady-state kinetics, and equilibrium fluorescence spectroscopy data that allowed proposal of P. falciparum ENR (PfENR) enzyme mechanism. Moreover, building on previous results, the present study also evaluates the PfENR inhibition by the pentacyano(isoniazid)ferrateII compound. This inorganic complex represents a new class of lead compounds for the development of antimalarial agents focused on the inhibition of PfENR. PMID:21603269

  6. Enzyme Mechanism and Slow-Onset Inhibition of Plasmodium falciparum Enoyl-Acyl Carrier Protein Reductase by an Inorganic Complex.

    PubMed

    de Medeiros, Patrícia Soares de Maria; Ducati, Rodrigo Gay; Basso, Luiz Augusto; Santos, Diógenes Santiago; da Silva, Luiz Hildebrando Pereira

    2011-01-01

    Malaria continues to be a major cause of children's morbidity and mortality worldwide, causing nearly one million deaths annually. The human malaria parasite, Plasmodium falciparum, synthesizes fatty acids employing the Type II fatty acid biosynthesis system (FAS II), unlike humans that rely on the Type I (FAS I) pathway. The FAS II system elongates acyl fatty acid precursors of the cell membrane in Plasmodium. Enoyl reductase (ENR) enzyme is a member of the FAS II system. Here we present steady-state kinetics, pre-steady-state kinetics, and equilibrium fluorescence spectroscopy data that allowed proposal of P. falciparum ENR (PfENR) enzyme mechanism. Moreover, building on previous results, the present study also evaluates the PfENR inhibition by the pentacyano(isoniazid)ferrateII compound. This inorganic complex represents a new class of lead compounds for the development of antimalarial agents focused on the inhibition of PfENR.

  7. A Thiamine-Dependent Enzyme Utilizes an Active Tetrahedral Intermediate in Vitamin K Biosynthesis.

    PubMed

    Song, Haigang; Dong, Chen; Qin, Mingming; Chen, Yaozong; Sun, Yueru; Liu, Jingjing; Chan, Wan; Guo, Zhihong

    2016-06-15

    Enamine is a well-known reactive intermediate mediating essential thiamine-dependent catalysis in central metabolic pathways. However, this intermediate is not found in the thiamine-dependent catalysis of the vitamin K biosynthetic enzyme MenD. Instead, an active tetrahedral post-decarboxylation intermediate is stably formed in the enzyme and was structurally determined at 1.34 Å resolution in crystal. This intermediate takes a unique conformation that allows only one proton between its tetrahedral reaction center and the exo-ring nitrogen atom of the aminopyrimidine moiety in the cofactor with a short distance of 3.0 Å. It is readily convertible to the final product of the enzymic reaction with a solvent-exchangeable proton at its reaction center. These results show that the thiamine-dependent enzyme utilizes a tetrahedral intermediate in a mechanism distinct from the enamine catalytic chemistry.

  8. A Thiamine-Dependent Enzyme Utilizes an Active Tetrahedral Intermediate in Vitamin K Biosynthesis.

    PubMed

    Song, Haigang; Dong, Chen; Qin, Mingming; Chen, Yaozong; Sun, Yueru; Liu, Jingjing; Chan, Wan; Guo, Zhihong

    2016-06-15

    Enamine is a well-known reactive intermediate mediating essential thiamine-dependent catalysis in central metabolic pathways. However, this intermediate is not found in the thiamine-dependent catalysis of the vitamin K biosynthetic enzyme MenD. Instead, an active tetrahedral post-decarboxylation intermediate is stably formed in the enzyme and was structurally determined at 1.34 Å resolution in crystal. This intermediate takes a unique conformation that allows only one proton between its tetrahedral reaction center and the exo-ring nitrogen atom of the aminopyrimidine moiety in the cofactor with a short distance of 3.0 Å. It is readily convertible to the final product of the enzymic reaction with a solvent-exchangeable proton at its reaction center. These results show that the thiamine-dependent enzyme utilizes a tetrahedral intermediate in a mechanism distinct from the enamine catalytic chemistry. PMID:27213829

  9. Quantum chemical study of penicillin: Reactions after acylation

    NASA Astrophysics Data System (ADS)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  10. Hydrogen-bonding in enzyme catalysis. Fourier-transform infrared detection of ground-state electronic strain in acyl-chymotrypsins and analysis of the kinetic consequences.

    PubMed Central

    White, A J; Wharton, C W

    1990-01-01

    I.r. difference spectra are presented for 3-(indol-3-yl)acryloyl-, cinnamoyl-, 3-(5-methylthien-2-yl)acryloyl-, dehydrocinnamoyl- and dihydrocinnamoyl-chymotrypsins at low pH, where the acyl-enzymes are catalytically inactive. At least two absorption bands are seen in each case in the ester carbonyl stretching region of the spectrum. Cinnamoyl-chymotrypsin substituted at the carbonyl carbon atom with 13C was prepared. A difference spectrum in which 13C-substituted acyl-enzyme was subtracted from [12C]acyl-enzyme shows two bands in the ester carbonyl region and thus confirms the assignment of the features to the single ester carbonyl group. The frequencies of the ester carbonyl bands are interpreted in terms of differential hydrogen-bonding. In each case a lower-frequency relatively narrow band is assigned to a productive potentially reactive binding mode in which the carbonyl oxygen atom is inserted in the oxyanion hole of the enzyme active centre. The higher-frequency band, which is broader, is assigned to a non-productive binding mode in each case, where a water molecule bridges from the carbonyl oxygen atom to His-57; this mode is equivalent to the crystallographically determined structure of 3-(indol-3-yl)acryloyl-chymotrypsin, i.e. the Henderson structure. A difference spectrum of dihydrocinnamoyl-chymotrypsin taken at higher pH shows resolution of a feature centred upon 1731 cm-1, which is assigned to a non-bonded conformer in which the carbonyl oxygen atom is not hydrogen-bonded. Perturbation of the protein spectrum in the presence of acyl groups is interpreted in terms of enhanced structural rigidity. It is reported that the ester carbonyl region of the difference spectrum of cinnamoyl-subtilisin is complicated by overlap of features that arise from protein perturbation. Measurements of carbonyl absorption frequencies in a number of solvents of the methyl esters of the acyl groups used to make acyl-enzymes have permitted determination of the apparent

  11. Evolution of Acyl-Substrate Recognition by a Family of Acyl-Homoserine Lactone Synthases

    PubMed Central

    Christensen, Quin H.; Brecht, Ryan M.; Dudekula, Dastagiri; Greenberg, E. Peter; Nagarajan, Rajesh

    2014-01-01

    Members of the LuxI protein family catalyze synthesis of acyl-homoserine lactone (acyl-HSL) quorum sensing signals from S-adenosyl-L-methionine and an acyl thioester. Some LuxI family members prefer acyl-CoA, and others prefer acyl-acyl carrier protein (ACP) as the acyl-thioester substrate. We sought to understand the evolutionary history and mechanisms mediating this substrate preference. Our phylogenetic and motif analysis of the LuxI acyl-HSL synthase family indicates that the acyl-CoA-utilizing enzymes evolved from an acyl-ACP-utilizing ancestor. To further understand how acyl-ACPs and acyl-CoAs are recognized by acyl-HSL synthases we studied BmaI1, an octanoyl-ACP-dependent LuxI family member from Burkholderia mallei, and BjaI, an isovaleryl-CoA-dependent LuxI family member from Bradyrhizobium japonicum. We synthesized thioether analogs of their thioester acyl-substrates to probe recognition of the acyl-phosphopantetheine moiety common to both acyl-ACP and acyl-CoA substrates. The kinetics of catalysis and inhibition of these enzymes indicate that they recognize the acyl-phosphopantetheine moiety and they recognize non-preferred substrates with this moiety. We find that CoA substrate utilization arose through exaptation of acyl-phosphopantetheine recognition in this enzyme family. PMID:25401334

  12. Genomic Analysis Reveals Versatile Organisms for Quorum Quenching Enzymes: Acyl-Homoserine Lactone-Acylase and -Lactonase

    PubMed Central

    Kalia, Vipin Chandra; Raju, Sajan C; Purohit, Hemant J

    2011-01-01

    Microbial virulence and their resistance to multiple drugs have obliged researchers to look for novel drug targets. Virulence of pathogenic microbes is regulated by signal molecules such as acylated homoserine lactone (AHL) produced during a cell density dependent phenomenon of quorum sensing (QS). In contrast, certain microbes produce AHL-lactonases and -acylases to degrade QS signals, also termed as quorum quenching. Mining sequenced genome databases has revealed organisms possessing conserved domains for AHL-lactonases and –acylases: i) Streptomyces (Actinobacteria), ii) Deinococcus (Deinococcus-Thermus), iii) Hyphomonas (α-Proteobacteria), iv) Ralstonia (β-Proteobacteria), v) Photorhabdus (γ-Proteobacteria), and certain marine gamma proteobacterium. Presence of genes for both the enzymes within an organism was observed in the following: i) Deinococcus radiodurans R1, ii) Hyphomonas neptunium ATCC 15444 and iii) Photorhabdus luminescens subsp. laumondii TTO1. These observations are supported by the presence motifs for lactonase and acylase in these strains. Phylogenetic analysis and multiple sequence alignment of the gene sequences for AHL-lactonases and –acylases have revealed consensus sequences which can be used to design primers for amplifying these genes even among mixed cultures and metagenomes. Quorum quenching can be exploited to prevent food spoilage, bacterial infections and bioremediation. PMID:21660112

  13. Characterization and complete sequence of lactonase enzyme from Bacillus weihenstephanensis isolate P65 with potential activity against acyl homoserine lactone signal molecules.

    PubMed

    Sakr, Masarra Mohammed; Aboshanab, Khaled Mohamed Anwar; Aboulwafa, Mohammad Mabrouk; Hassouna, Nadia Abdel-Haleem

    2013-01-01

    Acyl homoserine lactones (AHLs) are the most common class of quorum sensing signal molecules (autoinducers) that have been reported to be essential for virulence of many relevant pathogenic bacteria such as Pseudomonas aeruginosa. New approach for controlling infections of such bacteria is through quorum quenching. In this study, the acyl homoserine lactone inhibitory activity of the crude enzyme from a Bacillus weihenstephanensis-isolate P65 was characterized. The crude enzyme was found to have relatively high thermal stability and was stable in pH range 6 to 9. The crude enzyme extract was found to have lactonase activity of 36.3 U/mg total protein. Maximum enzyme activity was achieved within a range of 28-50°C and pH 6-9. None of the metals used enhanced the activity neither did EDTA inhibit it. However, a concentration of 10 mM Fe(+2) reduced the activity to 73.8%. Catalytic activity and kinetic constants were determined using hexanoyl homoserine lactone as a substrate. Studying enzyme substrate specificity using synthetic standard signals displayed broad spectrum of activity. The enzyme was found to be constitutive. Isolation and complete nucleotide sequence of the respective lactonase gene were done and submitted to the Genbank database under accession code KC823046.

  14. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators.

    PubMed

    Rogers, Maximillian A; Liu, Jay; Song, Bao-Liang; Li, Bo-Liang; Chang, Catherine C Y; Chang, Ta-Yuan

    2015-07-01

    Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form

  15. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): enzymes with multiple sterols as substrates and as activators

    PubMed Central

    Rogers, Maximillian A.; Liu, Jay; Song, Bao-Liang; Li, Bo-Liang; Chang, Catherine C.Y.; Chang, Ta-Yuan

    2016-01-01

    Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the isooctyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form

  16. Novel C-9, 9'-O-acyl esters of (-)-carinol as free-radical scavengers and xanthine oxidase enzyme inhibitors: synthesis and biological evaluation.

    PubMed

    Suryadevara, Praveen Kumar; Tatipaka, Hari Babu; Vidadala, Rama Subba Rao; Tiwari, Ashok K; Rao, Janaswamy Madhusudana; Babu, Katragadda Suresh

    2013-02-01

    New compounds with hydrophyllic esters of (-)-carinol were synthesized and evaluated as xanthine oxidase enzyme inhibitors and antioxidants. Aliphatic esterfication of C-9,9'-OH groups of (-)-carinol resulted in lowering antioxidant and xanthine oxidase inhibitory activities. However certain aromatic acyl esters considerably improved the xathine oxidase inhibition. Aromatic esterification with electron withdrawing substitutions would preferred for improvement in XOD inhibition while retaining radical scavenging activity, electron withdrawing substitution led to the loss of free radical scavenging property and neutral substituents decrease the enzyme inhibitory potential.

  17. Clarification on the decarboxylation mechanism in KasA based on the protonation state of key residues in the acyl-enzyme state.

    PubMed

    Lee, Wook; Engels, Bernd

    2013-07-11

    The β-ketoacyl ACP synthase I (KasA) is a promising drug target because it is essential for the survival of Mycobacterium tuberculosis , a causative agent of tuberculosis. It catalyzes a condensation reaction that comprises three steps. The resulting elongated acyl chains are subsequently needed for the cell wall construction. While the mechanism of the first step (acylation of Cys171 in the active site) is straightforward already, the second step (decarboxylation of malonyl substrate) has been controversial due to the difficulty in determining the correct protonation states of the involved residues (His311, His345, Lys340, Glu354). Available experimental data suggest three possible mechanisms which differ considerably. They are not consistent with each other because these studies could not be performed for KasA at the beginning of decarboxylation step (acyl-enzyme state of KasA). Instead, different mutants had to be used which are expected to resemble this situation. In this first computational study about this topic, we use the free energy perturbation (FEP) method to compute the relevant pKa values in the acyl-enzyme state of KasA and use molecular dynamics (MD) simulations to rationalize the results. Subsequent density functional theory (DFT)-based quantum mechanical/molecular mechanical (QM/MM) MD simulations and umbrella samplings have been used to disentangle the close relationships between the protonation states of the involved residues. By these simulations, we can address the preferred protonation states and roles of the residues involved in decarboxylation reaction, thereby suggesting the possible mechanism for the decarboxylation step. PMID:23768199

  18. Construction of a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates

    PubMed Central

    Jiang, Wei; Fang, Baishan

    2016-01-01

    Systems that can regulate and coordinate the expression of multiple enzymes for metabolic regulation and synthesis of important drug intermediates are poorly explored. In this work, a strategy for constructing a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates was developed and evaluated by connecting protein-protein expressions, regulating the strength of ribosome binding sites (RBS) and detecting the system capacity for producing chiral amino acid. Results demonstrated that the dual-enzyme system had good enantioselectivity, low cost, high stability, high conversion rate and approximately 100% substrate conversion. This study has paved a new way of exploring metabolic mechanism of functional genes and engineering whole cell-catalysts for synthesis of chiral α-hydroxy acids or chiral amino acids. PMID:27456301

  19. Construction of a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates.

    PubMed

    Jiang, Wei; Fang, Baishan

    2016-01-01

    Systems that can regulate and coordinate the expression of multiple enzymes for metabolic regulation and synthesis of important drug intermediates are poorly explored. In this work, a strategy for constructing a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates was developed and evaluated by connecting protein-protein expressions, regulating the strength of ribosome binding sites (RBS) and detecting the system capacity for producing chiral amino acid. Results demonstrated that the dual-enzyme system had good enantioselectivity, low cost, high stability, high conversion rate and approximately 100% substrate conversion. This study has paved a new way of exploring metabolic mechanism of functional genes and engineering whole cell-catalysts for synthesis of chiral α-hydroxy acids or chiral amino acids. PMID:27456301

  20. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function.

    PubMed

    Dutta, Arnob; Abmayr, Susan M; Workman, Jerry L

    2016-08-18

    Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs. PMID:27540855

  1. Reactive intermediates produced from the metabolism of the vanilloid ring of capsaicinoids by p450 enzymes.

    PubMed

    Reilly, Christopher A; Henion, Fred; Bugni, Tim S; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C; Srivastava, Sanjay K; Yost, Garold S

    2013-01-18

    This study characterized electrophilic and radical products derived from the metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from the trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5'-Dicapsaicin, presumably arising from the bimolecular coupling of free radical intermediates was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated quinone methide and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems. PMID:23088752

  2. Reactive Intermediates Produced from Metabolism of the Vanilloid Ring of Capsaicinoids by P450 Enzymes

    PubMed Central

    Reilly, Christopher A.; Henion, Fred; Bugni, Tim S.; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C.; Srivastava, Sanjay K.; Yost, Garold S.

    2012-01-01

    This study characterized electrophilic and radical products derived from metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin, were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5’-Dicapsaicin, presumably arising from bi-molecular coupling of free radical intermediates, was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated, quinone methide, and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems. PMID:23088752

  3. Characterization of Enzymes Catalyzing Transformations of Cysteine S-Conjugated Intermediates in the Lincosamide Biosynthetic Pathway.

    PubMed

    Ushimaru, Richiro; Lin, Chia-I; Sasaki, Eita; Liu, Hung-Wen

    2016-09-01

    Lincosamides such as lincomycin A, celesticetin, and Bu-2545, constitute an important group of antibiotics. These natural products are characterized by a thiooctose linked to a l-proline residue, but they differ with regards to modifications of the thioacetal moiety, the pyrrolidine ring, and the octose core. Here we report that the pyridoxal 5'-phosphate-dependent enzyme CcbF (celesticetin biosynthetic pathway) is a decarboxylating deaminase that converts a cysteine S-conjugated intermediate into an aldehyde. In contrast, the homologous enzyme LmbF (lincomycin biosynthetic pathway) catalyzes C-S bond cleavage of the same intermediate to afford a thioglycoside. We show that Ccb4 and LmbG (downstream methyltransferases) convert the aldehyde and thiol intermediates into a variety of methylated lincosamide compounds including Bu-2545. The substrates used in these studies are the β-anomers of the natural substrates. The findings not only provide insight into how the biosynthetic pathway of lincosamide antibiotics can bifurcate to generate different lincosamides, but also reveal the promiscuity of the enzymes involved. PMID:27431934

  4. Acyl-acyl carrier protein: Lysomonogalactosyldiacylglycerol acyl transferase in Anabaena variabilis

    SciTech Connect

    Chen, H.H.

    1989-01-01

    Monogalactosyldiacylglycerol was produced when membranes isolated from the cyanobacterium, Anabaena variabilis, and washed free of soluble endogenous constituents, were incubated with ({sup 14}C)acyl-acyl carrier protein. This enzymatic synthesis of monogalactosyldiacylglycerol localized in the membranes was not dependent on any added cofactors, such as ATP, coenzyme A, and dithiothreitol. Palmitoyl-, stearoyl-, and oleoyl-acyl carrier proteins were approximately equally active as substrates with Km of 0.37, 0.36, and 0.23 {mu}M, respectively. The ({sup 14}C)acyl group was exclusively transferred to the sn-1 hydroxyl of the glycerol backbone of monogalactosyldiacylglycerol as demonstrated by hydrolysis of all incorporated acyl groups by the lipase from Rhizopus arrhizus delamar. Using a double labelled ({sup 14}C)acyl-({sup 14}C)acyl carrier protein, this enzyme catalyzed the direct transfer of the acyl group from acyl-acyl carrier protein to an endogenous lysomonogalactosyldiacylglycerol to form monogalactosyldiacylglycerol. The transfer reaction mechanism was also confirmed by the increased activity with the addition of the lysomonogalactosyldiacylglycerol suspension. A specific galactolipid acyl hydrolase activity was released into the soluble protein fraction when the membranes of Anabaena variabilis were treated with 2% Triton X-100. The positional specificity of this acyl hydrolase was demonstrated to be similar to that of Rhizopus lipase, i.e. only the acyl group at the sn-1 position was hydrolyzed. The acyl hydrolase which was also localized in the membrane fraction of Anabaena variabilis was presumably responsible for producing endogenous lysomonogalactosyldiacylglycerol used by the acyltransferase.

  5. Acylated Carrageenan Changes the Physicochemical Properties of Mixed Enzyme-Lipid Ultrathin Films and Enhances the Catalytic Properties of Sucrose Phosphorylase Nanostructured as Smart Surfaces.

    PubMed

    Rocha, Jefferson M; Pavinatto, Adriana; Nobre, Thatyane M; Caseli, Luciano

    2016-06-23

    Control over the catalytic activity of enzymes is important to construct biosensors with a wide range of detectability and higher stability. For this, immobilization of enzymes on solid supports as nanostructured films is a current approach that permits easy control of the molecular architecture as well as tuning of the properties. In this article, we employed acylated carrageenan (AC) mixed with phospholipids at the air-water interface to facilitate the adsorption of the enzyme sucrose phosphorylase (SP). AC stabilized the adsorption of SP at the phospholipid monolayer, as detected by tensiometry, by which thermodynamic parameters could be inferred from the surface pressure-area isotherm. Also, infrared spectroscopy applied in situ over the monolayer showed that the AC-phospholipid system not only permitted the enzyme to be adsorbed but also helped conserve its secondary structure. The mixed monolayers were then transferred onto solid supports as Langmuir-Blodgett (LB) films and investigated with transfer ratio, quartz crystal microbalance, fluorescence spectroscopy, and atomic force microscopy. The enzyme activity of the LB film was then determined, revealing that although there was an expected reduction in activity in relation to the homogeneous environment the activity could be better preserved after 1 month, revealing enhanced stability. PMID:27249064

  6. Copper(II)-catalyzed room temperature aerobic oxidation of hydroxamic acids and hydrazides to acyl-nitroso and azo intermediates, and their Diels-Alder trapping.

    PubMed

    Chaiyaveij, Duangduan; Cleary, Leah; Batsanov, Andrei S; Marder, Todd B; Shea, Kenneth J; Whiting, Andrew

    2011-07-01

    CuCl(2), in the presence of a 2-ethyl-2-oxazoline ligand, is an effective catalyst for the room temperature, aerobic oxidation of hydroxamic acids and hydrazides, to acyl-nitroso and azo dienophiles respectively, which are efficiently trapped in situ via both inter- and intramolecular hetero-Diels-Alder reactions with dienes. Both inter- and intramolecular variants of the Diels-Alder reaction are suitable under the reaction conditions using a variety of solvents. Under the same conditions, an acyl hydrazide was also oxidized to give an acyl-azo dienophile which was trapped intramolecularly by a diene. PMID:21644530

  7. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes.

    PubMed

    Stout, Jake M; Boubakir, Zakia; Ambrose, Stephen J; Purves, Randy W; Page, Jonathan E

    2012-08-01

    The psychoactive and analgesic cannabinoids (e.g. Δ(9) -tetrahydrocannabinol (THC)) in Cannabis sativa are formed from the short-chain fatty acyl-coenzyme A (CoA) precursor hexanoyl-CoA. Cannabinoids are synthesized in glandular trichomes present mainly on female flowers. We quantified hexanoyl-CoA using LC-MS/MS and found levels of 15.5 pmol g(-1) fresh weight in female hemp flowers with lower amounts in leaves, stems and roots. This pattern parallels the accumulation of the end-product cannabinoid, cannabidiolic acid (CBDA). To search for the acyl-activating enzyme (AAE) that synthesizes hexanoyl-CoA from hexanoate, we analyzed the transcriptome of isolated glandular trichomes. We identified 11 unigenes that encoded putative AAEs including CsAAE1, which shows high transcript abundance in glandular trichomes. In vitro assays showed that recombinant CsAAE1 activates hexanoate and other short- and medium-chained fatty acids. This activity and the trichome-specific expression of CsAAE1 suggest that it is the hexanoyl-CoA synthetase that supplies the cannabinoid pathway. CsAAE3 encodes a peroxisomal enzyme that activates a variety of fatty acid substrates including hexanoate. Although phylogenetic analysis showed that CsAAE1 groups with peroxisomal AAEs, it lacked a peroxisome targeting sequence 1 (PTS1) and localized to the cytoplasm. We suggest that CsAAE1 may have been recruited to the cannabinoid pathway through the loss of its PTS1, thereby redirecting it to the cytoplasm. To probe the origin of hexanoate, we analyzed the trichome expressed sequence tag (EST) dataset for enzymes of fatty acid metabolism. The high abundance of transcripts that encode desaturases and a lipoxygenase suggests that hexanoate may be formed through a pathway that involves the oxygenation and breakdown of unsaturated fatty acids.

  8. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    PubMed Central

    Tuck, Laura R.; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D.; Campopiano, Dominic J.; Clarke, David J.; Marles-Wright, Jon

    2016-01-01

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032

  9. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase.

    PubMed

    Zhang, Yuxun; Bharathi, Sivakama S; Rardin, Matthew J; Uppala, Radha; Verdin, Eric; Gibson, Bradford W; Goetzman, Eric S

    2015-01-01

    SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane. PMID:25811481

  10. Structures of the Michaelis Complex (1.2A) and the Covalent Acyl Intermediate (2.0A ) of Cefamandole Bound in the Active Sites of the Mycobacterium tuberculosis beta-Lactamase K72A and E166A Mutants

    SciTech Connect

    L Tremblay; h Xu; J Blanchard

    2011-12-31

    The genome of Mycobacterium tuberculosis (TB) contains a gene that encodes a highly active {beta}-lactamase, BlaC, that imparts TB with resistance to {beta}-lactam chemotherapy. The structure of covalent BlaC-{beta}-lactam complexes suggests that active site residues K73 and E166 are essential for acylation and deacylation, respectively. We have prepared the K73A and E166A mutant forms of BlaC and have determined the structures of the Michaelis complex of cefamandole and the covalently bound acyl intermediate of cefamandole at resolutions of 1.2 and 2.0 {angstrom}, respectively. These structures provide insight into the details of the catalytic mechanism.

  11. Thermal fragmentation of acyl thiolato complexes to reactive metal sulfido intermediates. Structure of Ru([eta][sup 6]-SC[sub 3]Me[sub 3]COMe)(PPh[sub 3])[sub 2

    SciTech Connect

    Feng, Q.; Krautscheid, H.; Rauchfuss, T.B.; Skaugset, A.E.; Venturelli, A. )

    1995-01-01

    In this study we have examined the thermal fragmentation of acyl thiolate complexes of the type (ring)M(SC[sub 3]Me[sub 3]COMe). While the (cymene)Ru derivative only gave insoluble materials, the thermolysis of the corresponding osmium compound, (cymene)Os(SC[sub 3]Me[sub 3]COMe) (2), proved very informative. Here it was established that the tetramethylfuran is indeed released prior to formation of the free cymene. Furthermore, two intermediates were observed, the second of which was identified as (cymene)[sub 3]Os[sub 3]S[sub 2]. This species is more stable with respect to loss of cymene than the corresponding (cymene)[sub 3]Ru[sub 3]S[sub 2]. Attempts were made to intercept intermediates in these fragmentation processes by employing PPh[sub 3] as a trapping agent. For the Ru case, PPh[sub 3] completely changed the course of the reaction and no tetramethylfuran was generated. Instead we obtained the structurally unusual [eta][sup 6]-acyl thiolate complex (5). We propose that this unimolecular step involves the formation of ([eta][sup 4]-cymene)Ru([eta][sup 6]-SC[sub 3]Me[sub 3]COMe). The forward rate for this equilibration is far slower than the rate of isomerization of the acyl thiolate and far faster than that for the unassisted thermal decomposition of (cymene)Ru(SC[sub 3]MesCOMe). This result leads to a more global assessment of the reactivity of the acyl thiolates: the orientation of the carbonyl center determines the decomposition pathway. 21 refs., 7 figs., 1 tab.

  12. Mammalian long-chain acyl-CoA synthetases.

    PubMed

    Soupene, Eric; Kuypers, Frans A

    2008-05-01

    Acyl-CoA synthetase enzymes are essential for de novo lipid synthesis, fatty acid catabolism, and remodeling of membranes. Activation of fatty acids requires a two-step reaction catalyzed by these enzymes. In the first step, an acyl-AMP intermediate is formed from ATP. AMP is then exchanged with CoA to produce the activated acyl-CoA. The release of AMP in this reaction defines the superfamily of AMP-forming enzymes. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different acyl-CoA synthetases (ACS). On this basis, five sub-families of ACS have been characterized. The purpose of this review is to report on the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12 to 20 carbon atoms. Five genes and several isoforms generated by alternative splicing have been identified and limited information is available on their localization. The structure of these membrane proteins has not been solved for the mammalian ACSLs but homology to a bacterial form, whose structure has been determined, points at specific structural features that are important for these enzymes across species. The bacterial form acts as a dimer and has a conserved short motif, called the fatty acid Gate domain, that seems to determine substrate specificity. We will discuss the characterization and identification of the different spliced isoforms, draw attention to the inconsistencies and errors in their annotations, and their cellular localizations. These membrane proteins act on membrane-bound substrates probably as homo- and as heterodimer complexes but have often been expressed as single recombinant isoforms, apparently purified as monomers and tested in Triton X-100 micelles. We will argue that such studies have failed to provide an accurate assessment of the activity and of the distinct function of these enzymes in mammalian cells.

  13. Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme

    PubMed Central

    Chou, Ying-Hao; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Goldman, Robert D.

    2009-01-01

    The intermediate filament (IF) protein nestin coassembles with vimentin and promotes the disassembly of these copolymers when vimentin is hyperphosphorylated during mitosis. The aim of this study is to determine the function of these nonfilamentous particles by identifying their interacting partners. In this study, we report that these disassembled vimentin/nestin complexes interact with insulin degrading enzyme (IDE). Both vimentin and nestin interact with IDE in vitro, but vimentin binds IDE with a higher affinity than nestin. Although the interaction between vimentin and IDE is enhanced by vimentin phosphorylation at Ser-55, the interaction between nestin and IDE is phosphorylation independent. Further analyses show that phosphorylated vimentin plays the dominant role in targeting IDE to the vimentin/nestin particles in vivo, while the requirement for nestin is related to its ability to promote vimentin IF disassembly. The binding of IDE to either nestin or phosphorylated vimentin regulates IDE activity differently, depending on the substrate. The insulin degradation activity of IDE is suppressed ∼50% by either nestin or phosphorylated vimentin, while the cleavage of bradykinin-mimetic peptide by IDE is increased 2- to 3-fold. Taken together, our data demonstrate that the nestin-mediated disassembly of vimentin IFs generates a structure capable of sequestering and modulating the activity of IDE.—Chou, Y.-H., Kuo, W.-L., Rich Rosner, M., Tang, W.-J., Goldman, R. D. Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme. PMID:19584300

  14. Efficient mono-acylation of fructose by lipase-catalyzed esterification in ionic liquid co-solvents.

    PubMed

    Li, Lu; Ji, Fangling; Wang, Jingyun; Jiang, Bo; Li, Yachen; Bao, Yongming

    2015-10-30

    Fructose monoesters are eco-friendly nonionic surfactants in various applications. Selective preparation of mono-acylated fructose is challenging due to the multiple hydroxyl sites available for acylation both chemically and enzymatically. Ionic liquids (ILs) have profound impacts not only on the reaction media but also on the catalytic properties of enzymes in the acylation process. In this study, utilizing an IL co-solvent system, selective synthesis of mono-acylated fructose with lauric acid catalyzed by immobilized Candida antarctica lipase B (CALB) was investigated. The imidazolium-based ILs selected as co-solvents with 2-methyl-2-butanol (2M2B) markedly improved the ratios of monolauroyl fructose in the presence of 60% [BMIM][TfO] (v/v) and 20% [BMIM][BF4] (v/v), in which the mono-acylated fructose was 85% and 78% respectively. Based on a Ping-Pong Bi-Bi model, a kinetic equation was fitted, by which the kinetic parameters revealed that the affinity between fructose and acyl-enzyme intermediate was enhanced. The inhibition effect of fructose on free enzyme was weakened in the presence of IL co-solvents. The conformation of CALB binding substrates also changed in the co-solvent system as demonstrated by Fourier transform infrared spectra. These results demonstrated that the variation of CALB kinetic characteristics was a crucial factor for the selectivity of mono-acylation in ILs/2M2B co-solvents.

  15. Efficient mono-acylation of fructose by lipase-catalyzed esterification in ionic liquid co-solvents.

    PubMed

    Li, Lu; Ji, Fangling; Wang, Jingyun; Jiang, Bo; Li, Yachen; Bao, Yongming

    2015-10-30

    Fructose monoesters are eco-friendly nonionic surfactants in various applications. Selective preparation of mono-acylated fructose is challenging due to the multiple hydroxyl sites available for acylation both chemically and enzymatically. Ionic liquids (ILs) have profound impacts not only on the reaction media but also on the catalytic properties of enzymes in the acylation process. In this study, utilizing an IL co-solvent system, selective synthesis of mono-acylated fructose with lauric acid catalyzed by immobilized Candida antarctica lipase B (CALB) was investigated. The imidazolium-based ILs selected as co-solvents with 2-methyl-2-butanol (2M2B) markedly improved the ratios of monolauroyl fructose in the presence of 60% [BMIM][TfO] (v/v) and 20% [BMIM][BF4] (v/v), in which the mono-acylated fructose was 85% and 78% respectively. Based on a Ping-Pong Bi-Bi model, a kinetic equation was fitted, by which the kinetic parameters revealed that the affinity between fructose and acyl-enzyme intermediate was enhanced. The inhibition effect of fructose on free enzyme was weakened in the presence of IL co-solvents. The conformation of CALB binding substrates also changed in the co-solvent system as demonstrated by Fourier transform infrared spectra. These results demonstrated that the variation of CALB kinetic characteristics was a crucial factor for the selectivity of mono-acylation in ILs/2M2B co-solvents. PMID:26343327

  16. Gene expression of regulatory enzymes involved in the intermediate metabolism of sheep subjected to feed restriction.

    PubMed

    van Harten, S; Brito, R; Almeida, A M; Scanlon, T; Kilminster, T; Milton, J; Greeff, J; Oldham, C; Cardoso, L A

    2013-03-01

    The effect of feed restriction on gene expression of regulatory enzymes of intermediary metabolism was studied in two sheep breeds (Australian Merino and Dorper) subjected to two nutritional treatments: feed restriction (85% of daily maintenance requirements) and control (ad libitum feeding), during 42 days. The experimental animals (ram lambs) were divided into four groups, n = 5 (Australian Merino control (MC), Australian Merino Restriction (MR), Dorper control (DC) and Dorper Restriction (DR)). After the trial, animals were sacrificed and samples were taken from liver tissue to quantify glucose levels and gene expression of relevant intermediary metabolism enzymes (phosphofructokinase (PFK), pyruvate kinase (PK), phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, glucose-6-phosphatase, glycogen synthase (GS), fatty acid synthase (FAS), glutamate dehydrogenase (GDH) and carbamoyl phosphate synthase (CPS)) through real-time PCR. During the experimental period, the MR animals lost 12.6% in BW compared with 5.3% lost by the Dorper lambs. MC and DC rams gained, respectively, 8.8% and 14% during the same period. Within the Dorper breed, restricted feed animals revealed a significant decrease over controls in the transcription of PFK (1.95-fold) and PK (2.26-fold), both glycolytic enzymes. The gluconeogenesis showed no change in the feed restricted animals of both breeds. DR feed group presented a significant decrease over the homologous Merino sheep group on GS. In both experimental breeds, FAS mRNA expression was decreased in restricted feed groups. GDH expression was decreased only in the DR animals (1.84-fold) indicating a reduced catabolism of amino acids in these animals. Finally, CPS was significantly (P < 0.05) higher in the Dorper sheep, indicating a facilitated urea synthesis in this breed. These results indicate a better adaptation of metabolic intermediate regulatory enzymes and hepatic glucose production of Dorper sheep to feed restriction

  17. RNA capping by the vaccinia virus guanylyltransferase. Structure of enzyme-guanylate intermediate.

    PubMed

    Roth, M J; Hurwitz, J

    1984-11-10

    GTP:RNA guanylyltransferase isolated from vaccinia virus catalyzes the transfer of GMP from GTP to the 5' terminus of RNA via an enzyme-guanylate intermediate. Incubation of the purified vaccinia RNA guanylyltransferase with [alpha- 32P]GTP and MgCl2 yields [32P]GMP covalently linked to the Mr = 95,000 subunit. The bond involves the phosphate moiety of GMP and the Ne-amino group of lysine. This was verified by treatment of the isolated 95-kDa subunit-[32P]GMP complex with sodium periodate, followed by methylamine-catalyzed beta-elimination. The product was then hydrolyzed by alkali producing 32P-labeled lysine (Ne-P)phosphate.

  18. Slow onset inhibition of bacterial beta-ketoacyl-acyl carrier protein synthases by thiolactomycin.

    PubMed

    Machutta, Carl A; Bommineni, Gopal R; Luckner, Sylvia R; Kapilashrami, Kanishk; Ruzsicska, Bela; Simmerling, Carlos; Kisker, Caroline; Tonge, Peter J

    2010-02-26

    Thiolactomycin (TLM), a natural product thiolactone antibiotic produced by species of Nocardia and Streptomyces, is an inhibitor of the beta-ketoacyl-acyl carrier protein synthase (KAS) enzymes in the bacterial fatty acid synthase pathway. Using enzyme kinetics and direct binding studies, TLM has been shown to bind preferentially to the acyl-enzyme intermediates of the KASI and KASII enzymes from Mycobacterium tuberculosis and Escherichia coli. These studies, which utilized acyl-enzyme mimics in which the active site cysteine was replaced by a glutamine, also revealed that TLM is a slow onset inhibitor of the KASI enzymes KasA and ecFabB but not of the KASII enzymes KasB and ecFabF. The differential affinity of TLM for the acyl-KAS enzymes is proposed to result from structural change involving the movement of helices alpha5 and alpha6 that prepare the enzyme to bind malonyl-AcpM or TLM and that is initiated by formation of hydrogen bonds between the acyl-enzyme thioester and the oxyanion hole. The finding that TLM is a slow onset inhibitor of ecFabB supports the proposal that the long residence time of TLM on the ecFabB homologues in Serratia marcescens and Klebsiella pneumonia is an important factor for the in vivo antibacterial activity of TLM against these two organisms despite the fact that the in vitro MIC values are only 100-200 microg/ml. The mechanistic data on the interaction of TLM with KasA will provide an important foundation for the rational development of high affinity KasA inhibitors based on the thiolactone skeleton.

  19. Slow onset inhibition of bacterial beta-ketoacyl-acyl carrier protein synthases by thiolactomycin.

    PubMed

    Machutta, Carl A; Bommineni, Gopal R; Luckner, Sylvia R; Kapilashrami, Kanishk; Ruzsicska, Bela; Simmerling, Carlos; Kisker, Caroline; Tonge, Peter J

    2010-02-26

    Thiolactomycin (TLM), a natural product thiolactone antibiotic produced by species of Nocardia and Streptomyces, is an inhibitor of the beta-ketoacyl-acyl carrier protein synthase (KAS) enzymes in the bacterial fatty acid synthase pathway. Using enzyme kinetics and direct binding studies, TLM has been shown to bind preferentially to the acyl-enzyme intermediates of the KASI and KASII enzymes from Mycobacterium tuberculosis and Escherichia coli. These studies, which utilized acyl-enzyme mimics in which the active site cysteine was replaced by a glutamine, also revealed that TLM is a slow onset inhibitor of the KASI enzymes KasA and ecFabB but not of the KASII enzymes KasB and ecFabF. The differential affinity of TLM for the acyl-KAS enzymes is proposed to result from structural change involving the movement of helices alpha5 and alpha6 that prepare the enzyme to bind malonyl-AcpM or TLM and that is initiated by formation of hydrogen bonds between the acyl-enzyme thioester and the oxyanion hole. The finding that TLM is a slow onset inhibitor of ecFabB supports the proposal that the long residence time of TLM on the ecFabB homologues in Serratia marcescens and Klebsiella pneumonia is an important factor for the in vivo antibacterial activity of TLM against these two organisms despite the fact that the in vitro MIC values are only 100-200 microg/ml. The mechanistic data on the interaction of TLM with KasA will provide an important foundation for the rational development of high affinity KasA inhibitors based on the thiolactone skeleton. PMID:20018879

  20. Monogalactosyldiacylglycerol biosynthesis by direct acyl transfer in Anabaene variabilis

    SciTech Connect

    Chen, H.H.; Wickrema, A.; Jaworski, J.

    1987-04-01

    The authors previously reported the direct acylation of monogalactosyldiacylglycerol (MGDG) by an enzyme in the membranes of the cyanobacterium Anabaena variabilis. The enzyme requires acyl-acyl carrier protein (acyl-ACP) as substrate, but had no other additional cofactor requirements. Palmitoyl-, stearoyl- and oleoyl-ACP were all effective substrates. The A. variabilis membranes also had a hydrolase activity which metabolized the acyl-ACP to yield free fatty acid and ACP. Possible mechanisms for the acylation reaction include either acyl exchange with existing MGDG or direct acyl transfer to a lyso-MGDG, with concomitant release of free ACP. The mechanism of this reaction has been resolved using a double labelled (/sup 14/C)acyl-(/sup 14/)ACP substrate prepared with E. coli acyl-ACP synthetase. Following incubation with the enzyme, the unreacted (/sup 14/)acyl-(/sup 14/)ACP was isolated and the (/sup 14/)acyl/(/sup 14/)ACP ratio determined. Comparison of this ratio to that of the original substrate indicated no change and eliminated acyl exchange as a possible mechanism. Therefore, the direct acylation of lyso-MGDG is the proposed mechanism for this enzyme.

  1. A common intermediate for N2 formation in enzymes and zeolites: side-on Cu-nitrosyl complexes.

    PubMed

    Kwak, Ja Hun; Lee, Jong H; Burton, Sarah D; Lipton, Andrew S; Peden, Charles H F; Szanyi, János

    2013-09-16

    Side on! Combined FTIR and NMR studies revealed the presence of a side-on nitrosyl species in the zeolite Cu-SSZ-13. This intermediate is very similar to those found in nitrite reductase enzyme systems. The identification of this intermediate led to the proposal of a reaction mechanism that is fully consistent with the results of both kinetic and spectroscopic studies. PMID:23939905

  2. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  3. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  4. Acyl-lipid metabolism.

    PubMed

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X; Arondel, Vincent; Bates, Philip D; Baud, Sébastien; Bird, David; Debono, Allan; Durrett, Timothy P; Franke, Rochus B; Graham, Ian A; Katayama, Kenta; Kelly, Amélie A; Larson, Tony; Markham, Jonathan E; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  5. Enzyme-substrate complexes of allosteric citrate synthase: evidence for a novel intermediate in substrate binding.

    PubMed

    Duckworth, Harry W; Nguyen, Nham T; Gao, Yin; Donald, Lynda J; Maurus, Robert; Ayed, Ayeda; Bruneau, Brigitte; Brayer, Gary D

    2013-12-01

    The citrate synthase (CS) of Escherichia coli is an allosteric hexameric enzyme specifically inhibited by NADH. The crystal structure of wild type (WT) E. coli CS, determined by us previously, has no substrates bound, and part of the active site is in a highly mobile region that is shifted from the position needed for catalysis. The CS of Acetobacter aceti has a similar structure, but has been successfully crystallized with bound substrates: both oxaloacetic acid (OAA) and an analog of acetyl coenzyme A (AcCoA). We engineered a variant of E. coli CS wherein five amino acids in the mobile region have been replaced by those in the A. aceti sequence. The purified enzyme shows unusual kinetics with a low affinity for both substrates. Although the crystal structure without ligands is very similar to that of the WT enzyme (except in the mutated region), complexes are formed with both substrates and the allosteric inhibitor NADH. The complex with OAA in the active site identifies a novel OAA-binding residue, Arg306, which has no functional counterpart in other known CS-OAA complexes. This structure may represent an intermediate in a multi-step substrate binding process where Arg306 changes roles from OAA binding to AcCoA binding. The second complex has the substrate analog, S-carboxymethyl-coenzyme A, in the allosteric NADH-binding site and the AcCoA site is not formed. Additional CS variants unable to bind adenylates at the allosteric site show that this second complex is not a factor in positive allosteric activation of AcCoA binding.

  6. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean.

    PubMed

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants' pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to

  7. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean

    PubMed Central

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to

  8. Stearoyl-Acyl Carrier Protein and Unusual Acyl-Acyl Carrier Protein Desaturase Activities Are Differentially Influenced by Ferredoxin1

    PubMed Central

    Schultz, David J.; Suh, Mi Chung; Ohlrogge, John B.

    2000-01-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Δ9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [14C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium × hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Δ9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction. PMID:11027717

  9. The Physiology of Protein S-acylation

    PubMed Central

    Chamberlain, Luke H.; Shipston, Michael J.

    2015-01-01

    Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field. PMID:25834228

  10. LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa.

    PubMed

    Chugani, Sudha; Greenberg, Everett Peter

    2010-06-01

    Pseudomonas aeruginosa quorum control of gene expression involves three LuxR-type signal receptors LasR, RhlR, and QscR that respond to the LasI- and RhlI-generated acyl-homoserine lactone (acyl-HSL) signals 3OC12-HSL and C4-HSL. We found that a LasR-RhlR-QscR triple mutant responds to acyl-HSLs by regulating at least 37 genes. LuxR homolog-independent activation of the representative genes antA and catB also occurs in the wild type. Expression of antA was influenced the most by C10-HSL and to a lesser extent by other acyl-HSLs, including the P. aeruginosa 3OC12-HSL and C4-HSL signals. The ant and cat operons encode enzymes for the degradation of anthranilate to tricarboxylic acid cycle intermediates. Our results indicate that LuxR homolog-independent acyl-HSL control of the ant and cat operons occurs via regulation of antR, which codes for the transcriptional activator of the ant operon. Although P. aeruginosa has multiple pathways for anthranilate synthesis, one pathway-the kynurenine pathway for tryptophan degradation-is required for acyl-HSL activation of the ant operon. The kynurenine pathway is also the critical source of anthranilate for energy metabolism via the antABC gene products, as well as the source of anthranilate for synthesis of the P. aeruginosa quinolone signal. Our discovery of LuxR homolog-independent responses to acyl-HSLs provides insight into acyl-HSL signaling. PMID:20498077

  11. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  12. A common intermediate for N2 formation in enzymes and zeolites: side-on Cu-nitrosyl complexes

    SciTech Connect

    Kwak, Ja Hun; Lee, Jong H.; Burton, Sarah D.; Lipton, Andrew S.; Peden, Charles HF; Szanyi, Janos

    2013-09-16

    Understanding the mechanisms of catalytic processes requires the identification of reaction centers and key intermediates, both of which are often achieved by the use of spectroscopic characterization tools. Due to the heterogeneity of active centers in heterogeneous catalysts, it is frequently difficult to identify the specific sites that are responsible for the overall activity. Furthermore, the simultaneous presence of a large number of surface species on the catalyst surface often poses a great challenge for the unambiguous determination of the relevant species in the reaction mechanism. In contrast, enzymes possess catalytically active centers with precisely defined coordination environments that are only able to accommodate intermediates relevant to the specific catalytic process. Here we show that side-on Cu+-NO+ complexes characterized by high magnetic field solid state magic angle spinning nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies are the key intermediates in the selective catalytic reduction of NO over Cu-SSZ-13 zeolite catalysts. Analogous intermediates have been observed and characterized in nitrite reductase enzymes, and shown to be the critical intermediates in the formation of N2 for anaerobic ammonium oxidation reactions.[1] The identification of this key reaction intermediate, combined with the results of our prior kinetic studies, allows us to propose a new reaction mechanism for the selective catalytic reduction of NO with NH3 under oxygen-rich environments over Cu-SSZ-13 zeolites, a key reaction in automotive emission control. The authors acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental

  13. Lipid Acyl Chain Remodeling in Yeast

    PubMed Central

    Renne, Mike F.; Bao, Xue; De Smet, Cedric H.; de Kroon, Anton I. P. M.

    2015-01-01

    Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed. PMID:26819558

  14. Facile synthesis of covalent probes to capture enzymatic intermediates during E1 enzyme catalysis.

    PubMed

    An, Heeseon; Statsyuk, Alexander V

    2016-02-11

    We report a facile synthetic strategy to prepare UBL-AMP electrophilic probes that form a covalent bond with the catalytic cysteine of cognate E1s, mimicking the tetrahedral intermediate of the E1-UBL-AMP complex. These probes enable the structural and biochemical study of both canonical- and non-canonical E1s.

  15. Monogalactosyldiacylglycerol biosynthesis by direct acyl transfer in Anabaena variabilis. [Anabaena variabilis

    SciTech Connect

    Chen, H.H.; Wickrema, A.; Jaworski, J.

    1987-05-01

    The authors previously reported the direct acylation of monogalactosyldiacylglycerol (MGDG) by an enzyme in the membranes of the cyanobacterium (Anabaena variabilis. The enzyme requires acyl-acyl carrier protein (acyl-ACP) as substrate, but had no other additional cofactor requirements. Palmitoyl-, stearoyl- and oleoyl-ACP were all effective substrates. The A. variabilis membranes also had a hydrolase activity which metabolized the acyl-ACP to yield free fatty acid and ACP. Possible mechanisms for the acylation reaction include either acyl exchange with existing MGDG or direct acyl transfer to a lyso-MGDG, with concomitant release of free ACP. The mechanism of this reaction has been resolved using a double labelled (/sup 14/C)acyl-(/sup 14/C)ACP substrate prepared with E. coli acyl-ACP synthetase. Following incubation with the enzyme, the unreacted (/sup 14/C)acyl-(/sup 14/C)ACP was isolated and the (/sup 14/C)acyl/(/sup 14/C)ACP ratio determined. Comparison of this ratio to that of the original substrate indicated no change and eliminated acyl exchange as a possible mechanism. Therefore, the direct acylation of lyso-MGDG is the proposed mechanism for this enzyme. The reaction is apparently specific for MGDG synthesis, as other glycolipids and phospholipids were not labelled during incubations.

  16. Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis.

    PubMed

    Yuan, Yanqiu; Leeds, Jennifer A; Meredith, Timothy C

    2012-10-01

    We identified the fatty acid synthesis (FAS) initiation enzyme in Pseudomonas aeruginosa as FabY, a β-ketoacyl synthase KASI/II domain-containing enzyme that condenses acetyl coenzyme A (acetyl-CoA) with malonyl-acyl carrier protein (ACP) to make the FAS primer β-acetoacetyl-ACP in the accompanying article (Y. Yuan, M. Sachdeva, J. A. Leeds, and T. C. Meredith, J. Bacteriol. 194:5171-5184, 2012). Herein, we show that growth defects stemming from deletion of fabY can be suppressed by supplementation of the growth media with exogenous decanoate fatty acid, suggesting a compensatory mechanism. Fatty acids eight carbons or longer rescue growth by generating acyl coenzyme A (acyl-CoA) thioester β-oxidation degradation intermediates that are shunted into FAS downstream of FabY. Using a set of perdeuterated fatty acid feeding experiments, we show that the open reading frame PA3286 in P. aeruginosa PAO1 intercepts C(8)-CoA by condensation with malonyl-ACP to make the FAS intermediate β-keto decanoyl-ACP. This key intermediate can then be extended to supply all of the cellular fatty acid needs, including both unsaturated and saturated fatty acids, along with the 3-hydroxyl fatty acid acyl groups of lipopolysaccharide. Heterologous PA3286 expression in Escherichia coli likewise established the fatty acid shunt, and characterization of recombinant β-keto acyl synthase enzyme activity confirmed in vitro substrate specificity for medium-chain-length acyl CoA thioester acceptors. The potential for the PA3286 shunt in P. aeruginosa to curtail the efficacy of inhibitors targeting FabY, an enzyme required for FAS initiation in the absence of exogenous fatty acids, is discussed.

  17. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    ERIC Educational Resources Information Center

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  18. Purification of Recombinant Acyl-Coenzyme A:Cholesterol Acyltransferase 1 (ACAT1) from H293 Cells and Binding Studies Between the Enzyme and Substrates Using Difference Intrinsic Fluorescence Spectroscopy†

    PubMed Central

    Chang, Catherine CY; Miyazaki, Akira; Dong, Ruhong; Kheirollah, Alireza; Yu, Chunjiang; Geng, Yong; Higgs, Henry N; Chang, Ta-Yuan

    2010-01-01

    Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is a membrane bound enzyme utilizing long-chain fatty acyl-coenzyme A and cholesterol to form cholesteryl esters and coenzyme A. Previously, we had expressed tagged human ACAT1 (hACAT1) in CHO cells and purified it to homogeneity; however, only a sparse amount of purified protein could be obtained. Here we report that the hACAT1 expression level in H293 cells is 18-fold higher than that in CHO cells. We have developed a milder purification procedure to purify the enzyme to homogeneity. The abundance of the purified protein enabled us to conduct difference intrinsic fluorescence spectroscopy to study the binding between the enzyme and its substrates in CHAPS/phospholipid mixed micelles. The results show that oleoyl CoA binds to ACAT1 with Kd=1.9 μM, and elicits significant structural changes of the protein as manifested by the significantly positive changes in its fluorescence spectrum; stearoyl CoA elicits a similar spectrum change with much lower in magnitude. Previously, kinetic studies had shown that cholesterol is an efficient substrate and an allosteric activator of ACAT1, while its diastereomer epicholesterol is neither a substrate nor an activator. Here we show that both cholesterol and epicholesterol induce positive changes in the ACAT1 fluorescence spectrum; however, the magnitude of spectrum changes induced by cholesterol is much larger than epicholesterol. These results show that stereospecificity, governed by the 3beta-OH moiety in steroid ring A, plays an important role in the binding of cholesterol to ACAT1. PMID:20964445

  19. Analysis of the dynamic properties of Bacillus circulans xylanase upon formation of a covalent glycosyl-enzyme intermediate.

    PubMed Central

    Connelly, G. P.; Withers, S. G.; McIntosh, L. P.

    2000-01-01

    NMR spectroscopy was used to search for mechanistically significant differences in the local mobility of the main-chain amides of Bacillus circulans xylanase (BCX) in its native and catalytically competent covalent glycosyl-enzyme intermediate states. 15N T1, T2, and 15N[1H] NOE values were measured for approximately 120 out of 178 peptide groups in both the apo form of the protein and in BCX covalently modified at position Glu78 with a mechanism-based 2-deoxy-2-fluoro-beta-xylobioside inactivator. Employing the model-free formalism of Lipari and Szabo, the measured relaxation parameters were used to calculate a global correlation time (tau(m)) for the protein in each form (9.2 +/- 0.2 ns for apo-BCX; 9.8 +/- 0.3 ns for the modified protein), as well as individual order parameters for the main-chain NH bond vectors. Average values of the order parameters for the protein in the apo and complexed forms were S2 = 0.86 +/- 0.04 and S2 = 0.91 +/- 0.04, respectively. No correlation is observed between these order parameters and the secondary structure, solvent accessibility, or hydrogen bonding patterns of amides in either form of the protein. These results demonstrate that the backbone of BCX is well ordered in both states and that formation of the glycosyl-enzyme intermediate leads to little change, in any, in the dynamic properties of BCX on the time scales sampled by 15N-NMR relaxation measurements. PMID:10752613

  20. Acyl-coenzyme A:cholesterol acyltransferases

    PubMed Central

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C. Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease. PMID:19141679

  1. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate.

    PubMed

    Baumann, Anna-Maria T; Bakkers, Mark J G; Buettner, Falk F R; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A; de Groot, Raoul J; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host-pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1--a previously identified human candidate gene--is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  2. 4-hydroxyphenylpyruvate dioxygenase catalysis: identification of catalytic residues and production of a hydroxylated intermediate shared with a structurally unrelated enzyme.

    PubMed

    Raspail, Corinne; Graindorge, Matthieu; Moreau, Yohann; Crouzy, Serge; Lefèbvre, Bertrand; Robin, Adeline Y; Dumas, Renaud; Matringe, Michel

    2011-07-22

    4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxyphenylpyruvate (HPP) into homogentisate. HPPD is the molecular target of very effective synthetic herbicides. HPPD inhibitors may also be useful in treating life-threatening tyrosinemia type I and are currently in trials for treatment of Parkinson disease. The reaction mechanism of this key enzyme in both plants and animals has not yet been fully elucidated. In this study, using site-directed mutagenesis supported by quantum mechanical/molecular mechanical theoretical calculations, we investigated the role of catalytic residues potentially interacting with the substrate/intermediates. These results highlight the following: (i) the central role of Gln-272, Gln-286, and Gln-358 in HPP binding and the first nucleophilic attack; (ii) the important movement of the aromatic ring of HPP during the reaction, and (iii) the key role played by Asn-261 and Ser-246 in C1 hydroxylation and the final ortho-rearrangement steps (numbering according to the Arabidopsis HPPD crystal structure 1SQD). Furthermore, this study reveals that the last step of the catalytic reaction, the 1,2 shift of the acetate side chain, which was believed to be unique to the HPPD activity, is also catalyzed by a structurally unrelated enzyme.

  3. Kinetic and structural basis for acyl-group selectivity and NAD+-dependence in Sirtuin-catalyzed deacylation

    PubMed Central

    Thelen, Julie N.; Ito, Akihiro; Yoshida, Minoru; Denu, John M.

    2015-01-01

    Acylation of lysine is an important protein modification regulating diverse biological processes. It was recently demonstrated that members of the human Sirtuin family are capable of catalyzing long-chain deacylation, in addition to the well-known NAD+-dependent deacetylation activity.1 Here we provide a detailed kinetic and structural analysis that describes the interdependence of NAD+ and acyl-group length for a diverse series of human Sirtuins, SIRT1, SIRT2, SIRT3 and SIRT6. Steady-state and rapid-quench kinetic analyses indicated that differences in NAD+ saturation and susceptibility to nicotinamide inhibition reflect unique kinetic behavior displayed by each Sirtuin and depend on acyl-substrate chain length. Though the rate of nucleophilic attack of the 2′-hydroxyl on the C1′-O-alkylimidate intermediate varies with acyl substrate chain length, this step remains rate-determining for SIRT2 and SIRT3; however for SIRT6, this step is no longer rate-limiting for long-chain substrates. Co-crystallization of SIRT2 with myristoylated peptide and NAD+ yielded a co-complex structure with reaction product 2′-O-myristoyl-ADP-ribose, revealing a latent hydrophobic cavity to accommodate the long chain acyl group, and suggesting a general mechanism for long chain deacylation. Comparing two separately solved co-complex structures containing either a myristoylated peptide or 2′-O-myristoyl-ADP-ribose indicate there are conformational changes at the myristoyl-ribose linkage with minimal structural differences in the enzyme active site. During the deacylation reaction, the fatty acyl group is held in a relatively fixed position. We describe a kinetic and structural model to explain how various Sirtuins display unique acyl-substrate preferences and how different reaction kinetics influence NAD+ dependence. The biological implications are discussed. PMID:25897714

  4. Acyl-ACP Substrate Recognition in Burkholderia mallei BmaI1 Acyl-Homoserine Lactone Synthase

    PubMed Central

    2015-01-01

    The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates virulence in several pathogenic bacteria. The hallmark of an efficient quorum sensing system relies on the tight specificity in the signal generated by each bacterium. Since AHL signal specificity is derived from the acyl-chain of the acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must recognize and react with the native acyl-ACP with high catalytic efficiency while keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP substrate recognition in these enzymes, however, remains elusive. In this study, we investigated differences in catalytic efficiencies for shorter and longer chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP, the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA reacting with BmaI1 decreased by greater than 20-fold compared to the native octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest that non-native acyl-ACP substrates are unable to form a stable and productive BmaI1·acyl-ACP·SAM ternary complex and are thus effectively discriminated by the enzyme. These results offer insights into the molecular basis of substrate recognition for the BmaI1 enzyme. PMID:25215658

  5. The role of acyl-glucose in anthocyanin modifications.

    PubMed

    Sasaki, Nobuhiro; Nishizaki, Yuzo; Ozeki, Yoshihiro; Miyahara, Taira

    2014-11-14

    Higher plants can produce a wide variety of anthocyanin molecules through modification of the six common anthocyanin aglycons that they present. Thus, hydrophilic anthocyanin molecules can be formed and stabilized by glycosylation and acylation. Two types of glycosyltransferase (GT) and acyltransferase (AT) have been identified, namely cytoplasmic GT and AT and vacuolar GT and AT. Cytoplasmic GT and AT utilize UDP-sugar and acyl-CoA as donor molecules, respectively, whereas both vacuolar GT and AT use acyl-glucoses as donor molecules. In carnation plants, vacuolar GT uses aromatic acyl-glucoses as the glucose donor in vivo; independently, vacuolar AT uses malylglucose, an aliphatic acyl-glucose, as the acyl-donor. In delphinium and Arabidopsis, p-hydroxybenzoylglucose and sinapoylglucose are used in vivo as bi-functional donor molecules by vacuolar GT and AT, respectively. The evolution of these enzymes has allowed delphinium and Arabidopsis to utilize unique donor molecules for production of highly modified anthocyanins.

  6. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  7. Vertebrate Acyl CoA synthetase family member 4 (ACSF4-U26) is a β-alanine-activating enzyme homologous to bacterial non-ribosomal peptide synthetase.

    PubMed

    Drozak, Jakub; Veiga-da-Cunha, Maria; Kadziolka, Beata; Van Schaftingen, Emile

    2014-03-01

    Mammalian ACSF4-U26 (Acyl CoA synthetase family member 4), a protein of unknown function, comprises a putative adenylation domain (AMP-binding domain) similar to those of bacterial non-ribosomal peptide synthetases, a putative phosphopantetheine attachment site, and a C-terminal PQQDH (pyrroloquinoline quinone dehydrogenase)-related domain. Orthologues comprising these three domains are present in many eukaryotes including plants. Remarkably, the adenylation domain of plant ACSF4-U26 show greater identity with Ebony, the insect enzyme that ligates β-alanine to several amines, than with vertebrate or insect ACSF4-U26, and prediction of its specificity suggests that it activates β-alanine. In the presence of ATP, purified mouse recombinant ACSF4-U26 progressively formed a covalent bond with radiolabelled β-alanine. The bond was not formed in a point mutant lacking the phosphopantetheine attachment site. Competition experiments with various amino acids indicated that the reaction was almost specific for β-alanine, and a KM of ~ 5 μm was calculated for this reaction. The loaded enzyme was used to study the formation of a potential end product. Among the 20 standard amino acids, only cysteine stimulated unloading of the enzyme. This effect was mimicked by cysteamine and dithiothreitol, and was unaffected by absence of the PQQDH-related domain, suggesting that β-alanine transfer onto thiols is catalysed by the ACSF4-U26 adenylation domain, but is physiologically irrelevant. We conclude that ACSF4-U26 is a β-alanine-activating enzyme, and hypothesize that it is involved in a rare intracellular reaction, possibly an infrequent post-translational or post-transcriptional modification.

  8. Oxidative acylation using thioacids

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.

    1997-01-01

    Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.

  9. The role of Δ6-desaturase acyl-carrier specificity in the efficient synthesis of long-chain polyunsaturated fatty acids in transgenic plants.

    PubMed

    Sayanova, Olga; Ruiz-Lopez, Noemi; Haslam, Richard P; Napier, Johnathan A

    2012-02-01

    The role of acyl-CoA-dependent Δ6-desaturation in the heterologous synthesis of omega-3 long-chain polyunsaturated fatty acids was systematically evaluated in transgenic yeast and Arabidopsis thaliana. The acyl-CoA Δ6-desaturase from the picoalga Ostreococcus tauri and orthologous activities from mouse (Mus musculus) and salmon (Salmo salar) were shown to generate substantial levels of Δ6-desaturated acyl-CoAs, in contrast to the phospholipid-dependent Δ6-desaturases from higher plants that failed to modify this metabolic pool. Transgenic plants expressing the acyl-CoA Δ6-desaturases from either O. tauri or salmon, in conjunction with the two additional activities required for the synthesis of C20 polyunsaturated fatty acids, contained higher levels of eicosapentaenoic acid compared with plants expressing the borage phospholipid-dependent Δ6-desaturase. The use of acyl-CoA-dependent Δ6-desaturases almost completely abolished the accumulation of unwanted biosynthetic intermediates such as γ-linolenic acid in total seed lipids. Expression of acyl-CoA Δ6-desaturases resulted in increased distribution of long-chain polyunsaturated fatty acids in the polar lipids of transgenic plants, reflecting the larger substrate pool available for acylation by enzymes of the Kennedy pathway. Expression of the O. tauriΔ6-desaturase in transgenic Camelina sativa plants also resulted in the accumulation of high levels of Δ6-desaturated fatty acids. This study provides evidence for the efficacy of using acyl-CoA-dependent Δ6-desaturases in the efficient metabolic engineering of transgenic plants with high value traits such as the synthesis of omega-3 LC-PUFAs. PMID:21902798

  10. Versatility of acyl-acyl carrier protein synthetases.

    PubMed

    Beld, Joris; Finzel, Kara; Burkart, Michael D

    2014-10-23

    The acyl carrier protein (ACP) requires posttranslational modification with a 4'-phosphopantetheine arm for activity, and this thiol-terminated modification carries cargo between enzymes in ACP-dependent metabolic pathways. We show that acyl-ACP synthetases (AasSs) from different organisms are able to load even, odd, and unnatural fatty acids onto E. coli ACP in vitro. Vibrio harveyi AasS not only shows promiscuity for the acid substrate, but also is active upon various alternate carrier proteins. AasS activity also extends to functional activation in living organisms. We show that exogenously supplied carboxylic acids are loaded onto ACP and extended by the E. coli fatty acid synthase, including unnatural fatty acid analogs. These analogs are further integrated into cellular lipids. In vitro characterization of four different adenylate-forming enzymes allowed us to disambiguate CoA-ligases and AasSs, and further in vivo studies show the potential for functional application in other organisms. PMID:25308274

  11. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  12. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  13. Comparison of pH-dependent allostery and dissociation for phosphofructokinases from Artemia embryos and rabbit muscle: nature of the enzymes acylated with diethylpyrocarbonate.

    PubMed

    Carpenter, J F; Hand, S C

    1986-07-01

    Purified Artemia phosphofructokinase (PFK), unlike the rabbit skeletal muscle enzyme, displays allosteric kinetics at pH 8, a feature that is functionally significant since the intracellular pH of the developing brine shrimp embryo is greater than or equal to 7.9. Catalytic activity of the Artemia enzyme is severely suppressed by acidic pH even when assayed at the adenylate nucleotide concentrations existing in anaerobic embryos, which is consistent with the lack of a Pasteur effect in these organisms. For both PFK homologs, carbethoxylation reduces the sensitivity to ATP and citrate inhibition, the cooperativity as a function of fructose 6-phosphate concentration and the degree of activation in the presence ADP, AMP, and fructose 2,6-bisphosphate. Considering the role of histidine protonation in PFK allosteric control, the capacity for regulatory kinetics seen at pH 8 in the Artemia enzyme could be explained in part by upward shifts in pKa values of ionizable residues. pH-induced dissociation of tetrameric Artemia PFK into inactive subunits does not occur during catalytic inhibition at acidic pH (pH 6.5, 6 degrees C), as judged by 90 degree light scattering. This observation contrasts markedly with the dimerization and inactivation of rabbit PFK, but is shown not to be unique when compared to other selected PFK homologs. Neither the acute pH sensitivity of Artemia PFK nor the pH-induced hysteretic inactivation displayed by the rabbit enzyme are altered by carbethoxylation, suggesting that ionizable residues involved in these two processes are not the same ones involved in allosteric kinetics. PMID:2942107

  14. Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals.

    PubMed

    Kroon, Johan T M; Wei, Wenxue; Simon, William J; Slabas, Antoni R

    2006-12-01

    Seed oil from castor bean (Ricinus communis) contains high amounts of hydroxy fatty acid rich triacylglycerols (TAGs) that can serve as raw material for production of bio-based products such as nylon, cosmetics, lubricants, foams, and surfactants. Diacylglycerol acyltransferase (DGAT) catalyses the terminal reaction in the acyl-CoA dependent Kennedy pathway of triglyceride biosynthesis. There is still some debate whether there are three or four enzymes in yeast that have DGAT activity and catalyse the synthesis of TAG but of these the DGAT2 homologue Dga1 contributes in a major way to TAG biosynthesis. Here we report on the cloning of a cDNA for DGAT2 from castor bean and prove its biological activity following expression in yeast and enzymatic assays using diricinolein as the acceptor and ricinoleoyl-CoA as the donor. Previous reports of DGAT in castor have focussed on DGAT1 which has little amino acid sequence homology to DGAT2. Expressional studies demonstrate that DGAT2 is 18-fold more highly expressed in seeds than in leaves and shows temporal specific expression during seed development. In contrast, DGAT1 shows little difference in expression in seeds versus leaves. We conclude that in castor bean DGAT2 is more likely to play a major role in seed TAG biosynthesis than DGAT1.

  15. Role of acyl carrier protein isoforms in plant lipid metabolism

    SciTech Connect

    Not Available

    1990-01-01

    Although acyl carrier protein (ACP) is the best studied protein in plant fatty acid biosynthesis, the in vivo forms of ACPs and their steady state pools have not been examined previously in either seed or leaf. Information about the relative pool sizes of free ACP and its acyl-ACP intermediates is essential for understanding regulation of de novo fatty acid biosynthesis in plants. In this study we utilized antibodies directed against spinach ACP as a sensitive assay to analyze the acyl groups while they were still covalently attached to ACPs. 4 refs., 4 figs.

  16. Lysine fatty acylation promotes lysosomal targeting of TNF-α

    PubMed Central

    Jiang, Hong; Zhang, Xiaoyu; Lin, Hening

    2016-01-01

    Tumor necrosis factor-α (TNF-α) is a proinflammation cytokine secreted by various cells. Understanding its secretive pathway is important to understand the biological functions of TNF-α and diseases associated with TNF-α. TNF-α is one of the first proteins known be modified by lysine fatty acylation (e.g. myristoylation). We previously demonstrated that SIRT6, a member of the mammalian sirtuin family of enzymes, can remove the fatty acyl modification on TNF-α and promote its secretion. However, the mechanistic details about how lysine fatty acylation regulates TNF-α secretion have been unknown. Here we present experimental data supporting that lysine fatty acylation promotes lysosomal targeting of TNF-α. The result is an important first step toward understanding the biological functions of lysine fatty acylation. PMID:27079798

  17. Structural and Kinetic Evidence That Catalytic Reaction of Human UDP-glucose 6-Dehydrogenase Involves Covalent Thiohemiacetal and Thioester Enzyme Intermediates*

    PubMed Central

    Egger, Sigrid; Chaikuad, Apirat; Klimacek, Mario; Kavanagh, Kathryn L.; Oppermann, Udo; Nidetzky, Bernd

    2012-01-01

    Biosynthesis of UDP-glucuronic acid by UDP-glucose 6-dehydrogenase (UGDH) occurs through the four-electron oxidation of the UDP-glucose C6 primary alcohol in two NAD+-dependent steps. The catalytic reaction of UGDH is thought to involve a Cys nucleophile that promotes formation of a thiohemiacetal enzyme intermediate in the course of the first oxidation step. The thiohemiacetal undergoes further oxidation into a thioester, and hydrolysis of the thioester completes the catalytic cycle. Herein we present crystallographic and kinetic evidence for the human form of UGDH that clarifies participation of covalent catalysis in the enzymatic mechanism. Substitution of the putative catalytic base for water attack on the thioester (Glu161) by an incompetent analog (Gln161) gave a UGDH variant (E161Q) in which the hydrolysis step had become completely rate-limiting so that a thioester enzyme intermediate accumulated at steady state. By crystallizing E161Q in the presence of 5 mm UDP-glucose and 2 mm NAD+, we succeeded in trapping a thiohemiacetal enzyme intermediate and determined its structure at 2.3 Å resolution. Cys276 was covalently modified in the structure, establishing its role as catalytic nucleophile of the reaction. The thiohemiacetal reactive C6 was in a position suitable to become further oxidized by hydride transfer to NAD+. The proposed catalytic mechanism of human UGDH involves Lys220 as general base for UDP-glucose alcohol oxidation and for oxyanion stabilization during formation and breakdown of the thiohemiacetal and thioester enzyme intermediates. Water coordinated to Asp280 deprotonates Cys276 to function as an aldehyde trap and also provides oxyanion stabilization. Glu161 is the Brønsted base catalytically promoting the thioester hydrolysis. PMID:22123821

  18. Identification of charge transfer transitions related to thiamin-bound intermediates on enzymes provides a plethora of signatures useful in mechanistic studies.

    PubMed

    Patel, Hetalben; Nemeria, Natalia S; Andrews, Forest H; McLeish, Michael J; Jordan, Frank

    2014-04-01

    Identification of enzyme-bound intermediates via their spectroscopic signatures, which then allows direct monitoring of the kinetic fate of these intermediates, poses a continuing challenge. As an electrophilic covalent catalyst, the thiamin diphosphate (ThDP) coenzyme forms a number of noncovalent and covalent intermediates along its reaction pathways, and multiple UV-vis and circular dichroism (CD) bands have been identified at Rutgers pertinent to several among them. These electronic transitions fall into two classes: those for which the conjugated system provides a reasonable guide to the observed λmax and others in which there is no corresponding conjugated system and the observed CD bands are best ascribed to charge transfer (CT) transitions. Herein is reported the reaction of four ThDP enzymes with alternate substrates: (a) acetyl pyruvate, its methyl ester, and fluoropyruvate, these providing the shortest side chains attached at the thiazolium C2 atom and leading to CT bands with λmax values of >390 nm, not pertinent to any on-pathway conjugated systems (estimated λmax values of <330 nm), and (b) (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid displaying both a conjugated enamine (430 nm) and a CT transition (480 nm). We suggest that the CT transitions result from an interaction of the π bond on the ThDP C2 side chain as a donor, and the positively charged thiazolium ring as an acceptor, and correspond to covalent ThDP-bound intermediates. Time resolution of these bands allows the rate constants for individual steps to be determined. These CD methods can be applied to the entire ThDP superfamily of enzymes and should find applications with other enzymes.

  19. Identification of Charge Transfer Transitions Related to Thiamin-Bound Intermediates on Enzymes Provides a Plethora of Signatures Useful in Mechanistic Studies

    PubMed Central

    2015-01-01

    Identification of enzyme-bound intermediates via their spectroscopic signatures, which then allows direct monitoring of the kinetic fate of these intermediates, poses a continuing challenge. As an electrophilic covalent catalyst, the thiamin diphosphate (ThDP) coenzyme forms a number of noncovalent and covalent intermediates along its reaction pathways, and multiple UV–vis and circular dichroism (CD) bands have been identified at Rutgers pertinent to several among them. These electronic transitions fall into two classes: those for which the conjugated system provides a reasonable guide to the observed λmax and others in which there is no corresponding conjugated system and the observed CD bands are best ascribed to charge transfer (CT) transitions. Herein is reported the reaction of four ThDP enzymes with alternate substrates: (a) acetyl pyruvate, its methyl ester, and fluoropyruvate, these providing the shortest side chains attached at the thiazolium C2 atom and leading to CT bands with λmax values of >390 nm, not pertinent to any on-pathway conjugated systems (estimated λmax values of <330 nm), and (b) (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid displaying both a conjugated enamine (430 nm) and a CT transition (480 nm). We suggest that the CT transitions result from an interaction of the π bond on the ThDP C2 side chain as a donor, and the positively charged thiazolium ring as an acceptor, and correspond to covalent ThDP-bound intermediates. Time resolution of these bands allows the rate constants for individual steps to be determined. These CD methods can be applied to the entire ThDP superfamily of enzymes and should find applications with other enzymes. PMID:24628377

  20. Peroxisomal bifunctional enzyme deficiency.

    PubMed Central

    Watkins, P A; Chen, W W; Harris, C J; Hoefler, G; Hoefler, S; Blake, D C; Balfe, A; Kelley, R I; Moser, A B; Beard, M E

    1989-01-01

    Peroxisomal function was evaluated in a male infant with clinical features of neonatal adrenoleukodystrophy. Very long chain fatty acid levels were elevated in both plasma and fibroblasts, and beta-oxidation of very long chain fatty acids in cultured fibroblasts was significantly impaired. Although the level of the bile acid intermediate trihydroxycoprostanoic acid was slightly elevated in plasma, phytanic acid and L-pipecolic acid levels were normal, as was plasmalogen synthesis in cultured fibroblasts. The latter three parameters distinguish this case from classical neonatal adrenoleukodystrophy. In addition, electron microscopy and catalase subcellular distribution studies revealed that, in contrast to neonatal adrenoleukodystrophy, peroxisomes were present in the patient's tissues. Immunoblot studies of peroxisomal beta-oxidation enzymes revealed that the bifunctional enzyme (enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase) was deficient in postmortem liver samples, whereas acyl-CoA oxidase and the mature form of beta-ketothiolase were present. Density gradient centrifugation of fibroblast homogenates confirmed that intact peroxisomes were present. Immunoblots of fibroblasts peroxisomal fractions showed that they contained acyl-CoA oxidase and beta-ketothiolase, but bifunctional enzyme was not detected. Northern analysis, however, revealed that mRNA coding for the bifunctional enzyme was present in the patient's fibroblasts. These results indicate that the primary biochemical defect in this patient is a deficiency of peroxisomal bifunctional enzyme. It is of interest that the phenotype of this patient resembled neonatal adrenoleukodystrophy and would not have been distinguished from this disorder by clinical study alone. Images PMID:2921319

  1. Structural Insight into How Streptomyces coelicolor Maltosyl Transferase GlgE Binds α-Maltose 1-Phosphate and Forms a Maltosyl-enzyme Intermediate

    PubMed Central

    2014-01-01

    GlgE (EC 2.4.99.16) is an α-maltose 1-phosphate:(1→4)-α-d-glucan 4-α-d-maltosyltransferase of the CAZy glycoside hydrolase 13_3 family. It is the defining enzyme of a bacterial α-glucan biosynthetic pathway and is a genetically validated anti-tuberculosis target. It catalyzes the α-retaining transfer of maltosyl units from α-maltose 1-phosphate to maltooligosaccharides and is predicted to use a double-displacement mechanism. Evidence of this mechanism was obtained using a combination of site-directed mutagenesis of Streptomyces coelicolor GlgE isoform I, substrate analogues, protein crystallography, and mass spectrometry. The X-ray structures of α-maltose 1-phosphate bound to a D394A mutein and a β-2-deoxy-2-fluoromaltosyl-enzyme intermediate with a E423A mutein were determined. There are few examples of CAZy glycoside hydrolase family 13 members that have had their glycosyl-enzyme intermediate structures determined, and none before now have been obtained with a 2-deoxy-2-fluoro substrate analogue. The covalent modification of Asp394 was confirmed using mass spectrometry. A similar modification of wild-type GlgE proteins from S. coelicolor and Mycobacterium tuberculosis was also observed. Small-angle X-ray scattering of the M. tuberculosis enzyme revealed a homodimeric assembly similar to that of the S. coelicolor enzyme but with slightly differently oriented monomers. The deeper understanding of the structure–function relationships of S. coelicolor GlgE will aid the development of inhibitors of the M. tuberculosis enzyme. PMID:24689960

  2. Progress in the experimental observation of thiamin diphosphate-bound intermediates on enzymes and mechanistic information derived from these observations.

    PubMed

    Jordan, Frank; Nemeria, Natalia S

    2014-12-01

    Thiamin diphosphate (ThDP), the vitamin B1 coenzyme is an excellent representative of coenzymes, which carry out electrophilic catalysis by forming a covalent complex with their substrates. The function of ThDP is to greatly increase the acidity of two carbon acids by stabilizing their conjugate bases, the ylide/carbene/C2-carbanion of the thiazolium ring and the C2α-carbanion/enamine, once the substrate binds to ThDP. In recent years, several ThDP-bound intermediates on such pathways have been characterized by both solution and solid-state methods. Prominent among these advances are X-ray crystallographic results identifying both oxidative and non-oxidative intermediates, rapid chemical quench followed by NMR detection of several intermediates which are stable under acidic conditions, solid-state NMR and circular dichroism detection of the states of ionization and tautomerization of the 4'-aminopyrimidine moiety of ThDP in some of the intermediates. These methods also enabled in some cases determination of the rate-limiting step in the complex series of steps. This review is an update of a review with the same title published by the authors in 2005 in this Journal. Much progress has been made in the intervening decade in the identification of the intermediates and their application to gain additional mechanistic insight.

  3. GOAT induced ghrelin acylation regulates hedonic feeding.

    PubMed

    Davis, J F; Perello, M; Choi, D L; Magrisso, I J; Kirchner, H; Pfluger, P T; Tschoep, M; Zigman, J M; Benoit, S C

    2012-11-01

    Ghrelin is an orexigenic hormone that regulates homeostatic and reward-related feeding behavior. Recent evidence indicates that acylation of ghrelin by the gut enzyme ghrelin O-acyl transferase (GOAT) is necessary to render ghrelin maximally active within its target tissues. Here we tested the hypothesis that GOAT activity modulates food motivation and food hedonics using behavioral pharmacology and mutant mice deficient for GOAT and the ghrelin receptor (GHSR). We evaluated operant responding following pharmacological administration of acyl-ghrelin and assessed the necessity of endogenous GOAT activity for operant responding in GOAT and GHSR-null mice. Hedonic-based feeding behavior also was examined in GOAT-KO and GHSR-null mice using a "Dessert Effect" protocol in which the intake of a palatable high fat diet "dessert" was assessed in calorically-sated mice. Pharmacological administration of acyl-ghrelin augmented operant responding; notably, this effect was dependent on intact GHSR signaling. GOAT-KO mice displayed attenuated operant responding and decreased hedonic feeding relative to controls. These behavioral results correlated with decreased expression of the orexin-1 receptor in reward-related brain regions in GOAT-KO mice. In summary, the ability of ghrelin to stimulate food motivation is dependent on intact GHSR signaling and modified by endogenous GOAT activity. Furthermore, GOAT activity is required for hedonic feeding behavior, an effect potentially mediated by forebrain orexin signaling. These data highlight the significance of the GOAT-ghrelin system for the mediation of food motivation and hedonic feeding.

  4. Photoaffinity Labeling of Mouse Fibroblast Enzymes by a Base Excision Repair Intermediate: New Evidence on the Role of PARP-1 in DNA Repair

    SciTech Connect

    Lavrik, Olga I.; Prasad, Rajendra; Sobol, Robert W.; Horton, Julie K.; Ackerman, Eric J. ); Wilson, Samuel H.

    2001-07-06

    To examine mammalian base excision repair (BER) enzymes interacting with DNA intermediates formed during BER, we used a novel photoaffinity labeling probe and mouse embryonic fibroblast (MEF) crude extract. The probe was formed in situ, using an end-labeled oligonucleotide containing a synthetic abasic site; this site was incised by AP endonuclease creating a nick with 3' hydroxyl and 5' reduced sugar phosphate groups at the margins, and then a dNMP carrying a photoreactive adduct was introduced at the 3' hydroxyl group. With near UV-light exposure (312nm) of the extract-probe mixture, only six proteins were strongly labeled, including poly (ADP-ribose) polymerase (PARP-1) and the well-known BER participants flap endonuclease (FEN-1), DNA polymerase b (b-pol), and AP endonuclease (APE). The amount of probe crosslinked to PARP-1 was greater than that crosslinked to the other proteins. The specificity of PARP-1 labeling was examined by competition experiments involving various oligonucleotide competitors; competition of labeling by the probe was much greater for the BER intermediates tested than for normal double-stranded DNA. The specificity of PARP-1 labeling also was examined using DNA probes with alternate structures; PARP-1 labeling was stronger with a DNA oligomer representing a BER intermediate than with a molecule representing a nick in double-stranded DNA. These results identifying interaction of PARP-1 with a BER intermediate are discussed in light of PARP-1's role in mammalian BER.

  5. Structural Milestones in the Reaction Pathway of an Amide Hydrolase: Substrate, Acyl, and Product Complexes of Cephalothin with AmpC [beta]-Lactamase

    SciTech Connect

    Beadle, Beth M.; Trehan, Indi; Focia, Pamela J.; Shoichet, Brian K.

    2010-03-05

    {beta}-lactamases hydrolyze {beta}-lactam antibiotics and are the leading cause of bacterial resistance to these drugs. Although {beta}-lactamases have been extensively studied, structures of the substrate-enzyme and product-enzyme complexes have proven elusive. Here, the structure of a mutant AmpC in complex with the {beta}-lactam cephalothin in its substrate and product forms was determined by X-ray crystallography to 1.53 {angstrom} resolution. The acyl-enzyme intermediate between AmpC and cephalothin was determined to 2.06 {angstrom} resolution. The ligand undergoes a dramatic conformational change as the reaction progresses, with the characteristic six-membered dihydrothiazine ring of cephalothin rotating by 109{sup o}. These structures correspond to all three intermediates along the reaction path and provide insight into substrate recognition, catalysis, and product expulsion.

  6. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-06-27

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  7. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-01-01

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity. PMID:27355940

  8. Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence

    SciTech Connect

    Byers, D.M.; Meighen, E.A.

    1985-09-01

    Pulse-chase experiments with (/sup 3/H)tetradecanoic acid and ATP showed that the bioluminescence-related 32-kDa acyltransferase from Vibrio harveyi can specifically catalyze the deacylation of a /sup 3/H-labeled 18-kDa protein observed in extracts of this bacterium. The 18-kDa protein has been partially purified and its physical and chemical properties strongly indicate that it is fatty acyl-acyl carrier protein (acyl-ACP). Both this V. harveyi (/sup 3/H)acylprotein and (/sup 3/H)palmitoyl-ACP from Escherichia coli were substrates in vitro for either the V. harveyi 32-kDa acyltransferase or the analogous enzyme (34K) from Photobacterium phosphoreum. TLC analysis indicated that the hexane-soluble product of the reaction is fatty acid. No significant cleavage of either E. coli or V. harveyi tetradecanoyl-ACP was observed in extracts of these bacteria unless the 32-kDa or 34K acyltransferase was present. Since these enzymes are believed to be responsible for the supply of fatty acids for reduction to form the aldehyde substrate of luciferase, the above results suggest that long-chain acyl-ACP is the source of fatty acids for bioluminescence.

  9. Acyl Carrier Protein Synthases from Gram-Negative, Gram-Positive, and Atypical Bacterial Species: Biochemical and Structural Properties and Physiological Implications

    PubMed Central

    McAllister, Kelly A.; Peery, Robert B.; Zhao, Genshi

    2006-01-01

    Acyl carrier protein (ACP) synthase (AcpS) catalyzes the transfer of the 4′-phosphopantetheine moiety from coenzyme A (CoA) onto a serine residue of apo-ACP, resulting in the conversion of apo-ACP to the functional holo-ACP. The holo form of bacterial ACP plays an essential role in mediating the transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and phospholipids. AcpS is therefore an attractive target for therapeutic intervention. In this study, we have purified and characterized the AcpS enzymes from Escherichia coli, Streptococcus pneumoniae, and Mycoplasma pneumoniae, which exemplify gram-negative, gram-positive, and atypical bacteria, respectively. Our gel filtration column chromatography and cross-linking studies demonstrate that the AcpS enzyme from M. pneumoniae, like E. coli enzyme, exhibits a homodimeric structure, but the enzyme from S. pneumoniae exhibits a trimeric structure. Our biochemical studies show that the AcpS enzymes from M. pneumoniae and S. pneumoniae can utilize both short- and long-chain acyl CoA derivatives but prefer long-chain CoA derivatives as substrates. On the other hand, the AcpS enzyme from E. coli can utilize short-chain CoA derivatives but not the long-chain CoA derivatives tested. Finally, our biochemical studies show that M. pneumoniae AcpS is kinetically a very sluggish enzyme compared with those from E. coli and S. pneumoniae. Together, the results of these studies show that the AcpS enzymes from different bacterial species exhibit different native structures and substrate specificities with regard to the utilization of CoA and its derivatives. These findings suggest that AcpS from different microorganisms plays a different role in cellular physiology. PMID:16788183

  10. Adenylating Enzymes in Mycobacterium tuberculosis as Drug Targets

    PubMed Central

    Duckworth, Benjamin P.; Nelson, Kathryn M.; Aldrich, Courtney C.

    2013-01-01

    Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including high-throughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNA-synthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl-AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases. PMID:22283817

  11. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation.

    PubMed

    Sánchez-García, Alicia; Moreno-Pérez, Antonio J; Muro-Pastor, Alicia M; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2010-06-01

    Acyl-acyl carrier protein (ACP) thioesterases are enzymes that terminate the intraplastidial fatty acid synthesis in plants by hydrolyzing the acyl-ACP intermediates and releasing free fatty acids to be incorporated into glycerolipids. These enzymes are classified in two families, FatA and FatB, which differ in amino acid sequence and substrate specificity. In the present work, both FatA and FatB thioesterases were cloned, sequenced and characterized from castor (Ricinus communis) seeds, a crop of high interest in oleochemistry. Single copies of FatA and FatB were found in castor resulting to be closely related with those of Jatropha curcas. The corresponding mature proteins were heterologously expressed in Escherichia coli for biochemical characterization after purification, resulting in high catalytic efficiency of RcFatA on oleoyl-ACP and palmitoleoyl-ACP and high efficiencies of RcFatB for oleoyl-ACP and palmitoyl-ACP. The expression profile of these genes displayed the highest levels in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm and young expanding leaves. The contribution of these two enzymes to the synthesis of castor oil is discussed.

  12. Plant Acyl-CoA:Lysophosphatidylcholine Acyltransferases (LPCATs) Have Different Specificities in Their Forward and Reverse Reactions*

    PubMed Central

    Lager, Ida; Yilmaz, Jenny Lindberg; Zhou, Xue-Rong; Jasieniecka, Katarzyna; Kazachkov, Michael; Wang, Peng; Zou, Jitao; Weselake, Randall; Smith, Mark A.; Bayon, Shen; Dyer, John M.; Shockey, Jay M.; Heinz, Ernst; Green, Allan; Banas, Antoni; Stymne, Sten

    2013-01-01

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for seven LPCATs from five different species, including species accumulating hydroxylated acyl groups in their seed oil, with a preference for C18-unsaturated acyl-CoA and low activity with palmitoyl-CoA and ricinoleoyl (12-hydroxyoctadec-9-enoyl)-CoA. We showed that Arabidopsis LPCAT1 and LPCAT2 enzymes catalyzed the acylation and de-acylation of both sn positions of PC, with a preference for the sn-2 position. When acyl specificities of the Arabidopsis LPCATs were measured in the reverse reaction, sn-2-bound oleoyl, linoleoyl, and linolenoyl groups from PC were transferred to acyl-CoA to a similar extent. However, a ricinoleoyl group at the sn-2-position of PC was removed 4–6-fold faster than an oleoyl group in the reverse reaction, despite poor utilization in the forward reaction. The data presented, taken together with earlier published reports on in vivo lipid metabolism, support the hypothesis that plant LPCAT enzymes play an important role in regulating the acyl-CoA composition in plant cells by transferring polyunsaturated and hydroxy fatty acids produced on PC directly to the acyl-CoA pool for further metabolism or catabolism. PMID:24189065

  13. Combining Laue diffraction and molecular dynamics to study enzyme intermediates: Formation of the Michaelis complex in isocitrate dehydrogenase

    SciTech Connect

    Bash, P.A.; Stoddard, B.L.; Dean, A.

    1996-12-31

    Two separate techniques, Lane diffraction and computational molecular dynamics (MD) simulations, have been developed to allow the visualization and assessment of transient structural states and conformations motions in macromolecules. Recent studies on isocitrate dehydrogenase show that computational MD simulations of an enzymatic Michaelis complex are consistent with difference Fourier election-density maps of the same structure from a Lane experiment. The use of MD facilitates modeling of atoms into regions of experimental density that are poorly defined, due to missing and inaccurate low-resolution diffraction terms that degrade the X-ray scattering contribution from mobile atoms in the active site. The combination of these techniques is used to generate a model for the Michaelis complex of the enzyme isocitrate dehydrogenase with substrate isocitrate and coenzyme nicotinamide-adenine dinucleotide phosphate (NADP). This concerted use of time-resolved X-ray crystallography and of MD simulations has clear importance for the study of enzyme dynamics and function.

  14. Possible Role of Different Yeast and Plant Lysophospholipid:Acyl-CoA Acyltransferases (LPLATs) in Acyl Remodelling of Phospholipids.

    PubMed

    Jasieniecka-Gazarkiewicz, Katarzyna; Demski, Kamil; Lager, Ida; Stymne, Sten; Banaś, Antoni

    2016-01-01

    Recent results have suggested that plant lysophosphatidylcholine:acyl-coenzyme A acyltransferases (LPCATs) can operate in reverse in vivo and thereby catalyse an acyl exchange between the acyl-coenzyme A (CoA) pool and the phosphatidylcholine. We have investigated the abilities of Arabidopsis AtLPCAT2, Arabidopsis lysophosphatidylethanolamine acyltransferase (LPEAT2), S. cerevisiae lysophospholipid acyltransferase (Ale1) and S. cerevisiae lysophosphatidic acid acyltransferase (SLC1) to acylate lysoPtdCho, lysoPtdEtn and lysoPtdOH and act reversibly on the products of the acylation; the PtdCho, PtdEtn and PtdOH. The tested LPLATs were expressed in an S. cervisiae ale1 strain and enzyme activities were assessed in assays using microsomal preparations of the different transformants. The results show that, despite high activity towards lysoPtdCho, lysoPtdEtn and lysoPtdOH by the ALE1, its capacities to operate reversibly on the products of the acylation were very low. Slc1 readily acylated lysoPtdOH, lysoPtdCho and lysoPtdEtn but showed no reversibility towards PtdCho, very little reversibility towards PtdEtn and very high reversibility towards PtdOH. LPEAT2 showed the highest levels of reversibility towards PtdCho and PtdEtn of all LPLATs tested but low ability to operate reversibly on PtdOH. AtLPCAT2 showed good reversible activity towards PtdCho and PtdEtn and very low reversibility towards PtdOH. Thus, it appears that some of the LPLATs have developed properties that, to a much higher degree than other LPLATs, promote the reverse reaction during the same assay conditions and with the same phospholipid. The results also show that the capacity of reversibility can be specific for a particular phospholipid, albeit the lysophospholipid derivatives of other phospholipids serve as good acyl acceptors for the forward reaction of the enzyme. PMID:26643989

  15. Clarification of the Mechanism of Acylation Reaction and Origin of Substrate Specificity of the Serine-Carboxyl Peptidase Sedolisin through QM/MM Free Energy Simulations

    SciTech Connect

    Xu, Qin; Yao, Jianzhuang; Wiodawer, Alexander; Guo, Hong

    2011-01-01

    Quantum mechanical/molecular mechanical (QM/MM) free energy simulations are applied for understanding the mechanism of the acylation reaction catalyzed by sedolisin, a representative serine-carboxyl peptidase, leading to the acyl-enzyme (AE) and first product from the enzyme-catalyzed reaction. One of the interesting questions to be addressed in this work is the origin of the substrate specificity of sedolisin that shows a relatively high activity on the substrates with Glu at P1 site. It is shown that the bond making and breaking events of the acylation reaction involving a peptide substrate (LLE*FL) seem to be accompanied by local conformational changes, proton transfers as well as the formation of alternative hydrogen bonds. The results of the simulations indicate that the conformational change of Glu at P1 site and its formation of a low barrier hydrogen bond with Asp-170 (along with the transient proton transfer) during the acylation reaction might play a role in the relatively high specificity for the substrate with Glu at P1 site. The role of some key residues in the catalysis is confirmed through free energy simulations. Glu-80 is found to act as a general base to accept a proton from Ser-287 during the nucleophilic attack and then as a general acid to protonate the leaving group (N H of P1 -Phe) during the cleavage of the scissile peptide bond. Another acidic residue, Asp-170, acts as a general acid catalyst to protonate the carbonyl of P1-Glu during the formation of the tetrahedral intermediate and as a general base for the formation of the acyl-enzyme. The energetic results from the free energy simulations support the importance of proton transfer from Asp-170 to the carbonyl of P1-Glu in the stabilization of the tetrahedral intermediate and the formation of a low-barrier hydrogen bond between the carboxyl group of P1-Glu and Asp-170 in the lowering of the free energy barrier for the cleavage of the peptide bond. Detailed analyses of the proton transfers

  16. Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds.

    PubMed

    Martínez-Force, E; Cantisán, S; Serrano-Vega, M J; Garcés, R

    2000-10-01

    During sunflower (Helianthus annuus L.) seed formation there was an active period of lipid biosynthesis between 12 and 28 days after flowering (DAF). The maximum in-vitro acyl-acyl carrier protein (ACP) thioesterase activities (EC 3.1.2.14) were found at 15 DAF, preceding the largest accumulation of lipid in the seed. Data from the apparent kinetic parameters, Vmax and Km, from seeds of 15 and 30 DAF, showed that changes in acyl-ACP thioesterase activity are not only quantitative, but also qualitative, since, although the preferred substrate was always oleoyl-ACP, the affinity for palmitoyl-ACP decreased, whereas that for stearoyl-ACP increased with seed maturation. Bisubstrate assays carried out at 30 DAF seemed to indicate that the total activity found in mature seeds is due to a single enzyme with 100/75/15 affinity for oleoyl-ACP/stearoyl-ACP/ palmitoyl-ACP. In contrast, at 15 DAF, enzymatic data together with partial sequences from cDNAs indicated the presence of at least two enzymes with different properties, a FatA-like thioesterase, with a high affinity for oleoyl-ACP, plus a FatB-like enzyme, with preference for long-chain saturated fatty acids, both being expressed during the active lipid biosynthesis period. Competition assays carried out with CAS-5, a mutant with a higher content of palmitic acid in the seed oil, indicated that a modified FatA-type thioesterase is involved in the mutant phenotype.

  17. A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket.

    PubMed

    Chai, Ai-Fen; Bulloch, Esther M M; Evans, Genevieve L; Lott, J Shaun; Baker, Edward N; Johnston, Jodie M

    2015-04-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Access to iron in host macrophages depends on iron-chelating siderophores called mycobactins and is strongly correlated with Mtb virulence. Here, the crystal structure of an Mtb enzyme involved in mycobactin biosynthesis, MbtN, in complex with its FAD cofactor is presented at 2.30 Å resolution. The polypeptide fold of MbtN conforms to that of the acyl-CoA dehydrogenase (ACAD) family, consistent with its predicted role of introducing a double bond into the acyl chain of mycobactin. Structural comparisons and the presence of an acyl carrier protein, MbtL, in the same gene locus suggest that MbtN acts on an acyl-(acyl carrier protein) rather than an acyl-CoA. A notable feature of the crystal structure is the tubular density projecting from N(5) of FAD. This was interpreted as a covalently bound polyethylene glycol (PEG) fragment and resides in a hydrophobic pocket where the substrate acyl group is likely to bind. The pocket could accommodate an acyl chain of 14-21 C atoms, consistent with the expected length of the mycobactin acyl chain. Supporting this, steady-state kinetics show that MbtN has ACAD activity, preferring acyl chains of at least 16 C atoms. The acyl-binding pocket adopts a different orientation (relative to the FAD) to other structurally characterized ACADs. This difference may be correlated with the apparent ability of MbtN to catalyse the formation of an unusual cis double bond in the mycobactin acyl chain.

  18. Understanding the Role of Histidine in the GHSxG Acyltransferase Active Site Motif: Evidence for Histidine Stabilization of the Malonyl-Enzyme Intermediate

    PubMed Central

    Poust, Sean; Yoon, Isu; Adams, Paul D.; Katz, Leonard; Petzold, Christopher J.; Keasling, Jay D.

    2014-01-01

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. The ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-like subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate. PMID:25286165

  19. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    SciTech Connect

    Poust, Sean; Yoon, Isu; Adams, Paul D.; Katz, Leonard; Petzold, Christopher J.; Keasling, Jay D.

    2014-10-06

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-like subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.

  20. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    DOE PAGES

    Poust, Sean; Yoon, Isu; Adams, Paul D.; Katz, Leonard; Petzold, Christopher J.; Keasling, Jay D.

    2014-10-06

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-likemore » subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.« less

  1. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 4. Mechanism for reaction of nucleophiles with the galactosyl-enzyme intermediates of E461G and E461Q beta-galactosidases.

    PubMed

    Richard, J P; Huber, R E; Heo, C; Amyes, T L; Lin, S

    1996-09-24

    Second-order rate constants for transfer of the beta-D-galactopyranosyl group from the galactosyl-enzyme intermediates of the galactosyl transfer reactions catalyzed by E461G and E461Q beta-galactosidases to anionic nucleophiles have been determined. The second-order rate constant for reaction of the galactosylated E461G enzyme with azide ion is 4900 M-1 s-1. By contrast, there is no detectable reaction of the galactosylated wild type enzyme with azide ion (Richard et al., 1995b), and the E461G mutation leads to a large decrease in the second-order rate constant kcat/Km for catalysis of cleavage of beta-D-galactopyranosyl azide, which is the microscopic reverse of the reaction of azide ion with the galactosyl-enzyme intermediate. These data show that the E461G mutation causes a more than 8000-fold increase in the equilibrium constant for transfer of the beta-D-galactopyranosyl group from beta-galactosidase to azide ion. We propose that this change represents the requirement for the coupling of galactosyl transfer from the native enzyme to the thermodynamically unfavorable protonation of the carboxylate group of Glu-461, but the expression of the full chemical affinity of azide ion for galactosyl transfer from the mutant enzyme which lacks this ionizable side chain at position 461. The reactions of acetate, butyrate and methoxyacetate ions with the galactosylated E461G enzyme and of acetate with the galactosylated E461Q enzyme give both the corresponding beta-galactopyranosyl derivatives and D-galactose, and the formation of the latter represents formal catalysis of the reaction of water with the galactosylated enzyme. However, the reaction of formate ion with the galactosylated E461G enzyme gives only D-galactose. These results suggest that carboxylate anions can take the place of the excised propionate side chain of Glu-461 to provide general base catalysis of the reaction of water with the galactosyl-enzyme intermediates. The relative reactivity of anionic

  2. Calcium-myristoyl Tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclase-activating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity.

    PubMed

    Peshenko, Igor V; Olshevskaya, Elena V; Lim, Sunghyuk; Ames, James B; Dizhoor, Alexander M

    2012-04-20

    Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca(2+)-bound and Mg(2+)-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca(2+) sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca(2+) binding to EF-hand 4 and Ca(2+) sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu(80) and Val(180)) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or "tug") between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca(2+) sensitivity.

  3. Crystal Structure of Reduced and of Oxidized Peroxiredoxin IV Enzyme Reveals a Stable Oxidized Decamer and a Non-disulfide-bonded Intermediate in the Catalytic Cycle*

    PubMed Central

    Cao, Zhenbo; Tavender, Timothy J.; Roszak, Aleksander W.; Cogdell, Richard J.; Bulleid, Neil J.

    2011-01-01

    Peroxiredoxin IV (PrxIV) is an endoplasmic reticulum-localized enzyme that metabolizes the hydrogen peroxide produced by endoplasmic reticulum oxidase 1 (Ero1). It has been shown to play a role in de novo disulfide formation, oxidizing members of the protein disulfide isomerase family of enzymes, and is a member of the typical 2-Cys peroxiredoxin family. We have determined the crystal structure of both reduced and disulfide-bonded, as well as a resolving cysteine mutant of human PrxIV. We show that PrxIV has a similar structure to other typical 2-Cys peroxiredoxins and undergoes a conformational change from a fully folded to a locally unfolded form following the formation of a disulfide between the peroxidatic and resolving cysteine residues. Unlike other mammalian typical 2-Cys peroxiredoxins, we show that human PrxIV forms a stable decameric structure even in its disulfide-bonded state. In addition, the structure of a resolving cysteine mutant reveals an intermediate in the reaction cycle that adopts the locally unfolded conformation. Interestingly the peroxidatic cysteine in the crystal structure is sulfenylated rather than sulfinylated or sulfonylated. In addition, the peroxidatic cysteine in the resolving cysteine mutant is resistant to hyper-oxidation following incubation with high concentrations of hydrogen peroxide. These results highlight some unique properties of PrxIV and suggest that the equilibrium between the fully folded and locally unfolded forms favors the locally unfolded conformation upon sulfenylation of the peroxidatic cysteine residue. PMID:21994946

  4. The ɛ-Amino Group of Protein Lysine Residues Is Highly Susceptible to Nonenzymatic Acylation by Several Physiological Acyl-CoA Thioesters.

    PubMed

    Simic, Zeljko; Weiwad, Matthias; Schierhorn, Angelika; Steegborn, Clemens; Schutkowski, Mike

    2015-11-01

    Mitochondrial enzymes implicated in the pathophysiology of diabetes, cancer, and metabolic syndrome are highly regulated by acetylation. However, mitochondrial acetyltransferases have not been identified. Here, we show that acetylation and also other acylations are spontaneous processes that depend on pH value, acyl-CoA concentration and the chemical nature of the acyl residue. In the case of a peptide derived from carbamoyl phosphate synthetase 1, the rates of succinylation and glutarylation were up to 150 times than for acetylation. These results were confirmed by using the protein substrate cyclophilin A (CypA). Deacylation experiments revealed that SIRT3 exhibits deacetylase activity but is not able to remove any of the succinyl groups from CypA, whereas SIRT5 is an effective protein desuccinylase. Thus, the acylation landscape on lysine residues might largely depend on the enzymatic activity of specific sirtuins, and the availability and reactivity of acyl-CoA compounds. PMID:26382620

  5. The functional size of acyl-coenzyme A (CoA):cholesterol acyltransferase and acyl-CoA hydrolase as determined by radiation inactivation

    SciTech Connect

    Billheimer, J.T.; Cromley, D.A.; Kempner, E.S. )

    1990-05-25

    Frozen rat liver microsomes and rough endoplasmic reticulum were irradiated with high energy electrons. The surviving enzymatic activity of acyl-CoA:cholesterol acyltransferase and activity for esterification of 25-hydroxycholesterol decreased as a simple exponential function of radiation exposure, leading to a target size of 170-180 kDa. The loss of acyl-CoA hydrolase activity with a radiation dose was complex and resolved as a 45-kDa enzyme associated with a large inhibitor. It is interpreted that acyl-CoA hydrolase is the acyl-CoA-binding component and the inhibitor is the cholesterol-binding component of acyl-CoA:cholesterol acyltransferase.

  6. Stabilization of the ADP/metaphosphate intermediate during ATP hydrolysis in pre-power stroke myosin: quantitative anatomy of an enzyme.

    PubMed

    Kiani, Farooq Ahmad; Fischer, Stefan

    2013-12-01

    It has been proposed recently that ATP hydrolysis in ATPase enzymes proceeds via an initial intermediate in which the dissociated γ-phosphate of ATP is bound in the protein as a metaphosphate (PγO3(-)). A combined quantum/classical analysis of this dissociated nucleotide state inside myosin provides a quantitative understanding of how the enzyme stabilizes this unusual metaphosphate. Indeed, in vacuum, the energy of the ADP(3-) · PγO3(-) · Mg(2+) complex is much higher than that of the undissociated ATP(4-). The protein brings it to a surprisingly low value. Energy decomposition reveals how much each interaction in the protein stabilizes the metaphosphate state; backbone peptides of the P-loop contribute 50% of the stabilization energy, and the side chain of Lys-185(+) contributes 25%. This can be explained by the fact that these groups make strong favorable interactions with the α- and β-phosphates, thus favoring the charge distribution of the metaphosphate state over that of the ATP state. Further stabilization (16%) is achieved by a hydrogen bond between the backbone C=O of Ser-237 (on loop Switch-1) and a water molecule perfectly positioned to attack the PγO3(-) in the subsequent hydrolysis step. The planar and singly negative PγO3(-) is a much better target for the subsequent nucleophilic attack by a negatively charged OH(-) than the tetrahedral and doubly negative PγO4(2-) group of ATP. Therefore, we argue that the present mechanism of metaphosphate stabilization is common to the large family of nucleotide-hydrolyzing enzymes. Methodologically, this work presents a computational approach that allows us to obtain a truly quantitative conception of enzymatic strategy. PMID:24165121

  7. Probing the phosphopantetheine arm conformations of acyl carrier proteins using vibrational spectroscopy.

    PubMed

    Johnson, Matthew N R; Londergan, Casey H; Charkoudian, Louise K

    2014-08-13

    Acyl carrier proteins (ACPs) are universal and highly conserved domains central to both fatty acid and polyketide biosynthesis. These proteins tether reactive acyl intermediates with a swinging 4'-phosphopantetheine (Ppant) arm and interact with a suite of catalytic partners during chain transport and elongation while stabilizing the growing chain throughout the biosynthetic pathway. The flexible nature of the Ppant arm and the transient nature of ACP-enzyme interactions impose a major obstacle to obtaining structural information relevant to understanding polyketide and fatty acid biosynthesis. To overcome this challenge, we installed a thiocyanate vibrational spectroscopic probe on the terminal thiol of the ACP Ppant arm. This site-specific probe successfully reported on the local environment of the Ppant arm of two ACPs previously characterized by solution NMR, and was used to determine the solution exposure of the Ppant arm of an ACP from 6-deoxyerythronolide B synthase (DEBS). Given the sensitivity of the probe's CN stretching band to conformational distributions resolved on the picosecond time scale, this work lays a foundation for observing the dynamic action-related structural changes of ACPs using vibrational spectroscopy.

  8. Signature motifs of GDP polyribonucleotidyltransferase, a non-segmented negative strand RNA viral mRNA capping enzyme, domain in the L protein are required for covalent enzyme-pRNA intermediate formation.

    PubMed

    Neubauer, Julie; Ogino, Minako; Green, Todd J; Ogino, Tomoaki

    2016-01-01

    The unconventional mRNA capping enzyme (GDP polyribonucleotidyltransferase, PRNTase; block V) domain in RNA polymerase L proteins of non-segmented negative strand (NNS) RNA viruses (e.g. rabies, measles, Ebola) contains five collinear sequence elements, Rx(3)Wx(3-8)ΦxGxζx(P/A) (motif A; Φ, hydrophobic; ζ, hydrophilic), (Y/W)ΦGSxT (motif B), W (motif C), HR (motif D) and ζxxΦx(F/Y)QxxΦ (motif E). We performed site-directed mutagenesis of the L protein of vesicular stomatitis virus (VSV, a prototypic NNS RNA virus) to examine participation of these motifs in mRNA capping. Similar to the catalytic residues in motif D, G1100 in motif A, T1157 in motif B, W1188 in motif C, and F1269 and Q1270 in motif E were found to be essential or important for the PRNTase activity in the step of the covalent L-pRNA intermediate formation, but not for the GTPase activity that generates GDP (pRNA acceptor). Cap defective mutations in these residues induced termination of mRNA synthesis at position +40 followed by aberrant stop-start transcription, and abolished virus gene expression in host cells. These results suggest that the conserved motifs constitute the active site of the PRNTase domain and the L-pRNA intermediate formation followed by the cap formation is essential for successful synthesis of full-length mRNAs.

  9. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    SciTech Connect

    Halavaty, Andrei S.; Kim, Youngchang; Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James; Zhou, Min; Onopriyenko, Olena; Skarina, Tatiana; Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N.; Joachimiak, Andrzej; Savchenko, Alexei; Anderson, Wayne F.

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  10. Acylation of Ferrocene: A Greener Approach

    ERIC Educational Resources Information Center

    Birdwhistell, Kurt R.; Nguyen, Andy; Ramos, Eric J.; Kobelja, Robert

    2008-01-01

    The acylation of ferrocene is a common reaction used in organic laboratories to demonstrate Friedel-Crafts acylation and the purification of compounds using column chromatography. This article describes an acylation of ferrocene experiment that is more eco-friendly than the conventional acylation experiment. The traditional experiment was modified…

  11. Acylation of Streptomyces type II polyketide synthase acyl carrier proteins.

    PubMed

    Crosby, J; Byrom, K J; Hitchman, T S; Cox, R J; Crump, M P; Findlow, I S; Bibb, M J; Simpson, T J

    1998-08-14

    Acyl derivatives of type II PKS ACPs are required for in vitro studies of polyketide biosynthesis. The presence of an exposed cysteine residue prevented specific chemical acylation of the phosphopantetheine thiol of the actinorhodin PKS holo ACP. Acylation studies were further complicated by intramolecular disulphide formation between cysteine 17 and the phosphopantetheine. The presence of this intramolecular disulphide was confirmed by tryptic digestion of the ACP followed by ESMS analysis of the fragments. An act Cys17Ser ACP was engineered by site-directed mutagenesis. S-Acyl adducts of act C17S, oxytetracycline and griseusin holo ACPs were rapidly formed by reaction with hexanoyl, 5-ketohexanoyl and protected acetoacetyl imidazolides. Comparisons with type 11 FAS ACPs were made.

  12. Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris).

    PubMed

    Vafaei, Fatemeh; Movafeghi, Ali; Khataee, Alireza

    2013-11-01

    The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25 degree C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium. Overall, the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves. Nevertheless, no significant increase in malondialdehyde content was detected in roots or leaves, implying that the high efficiency of antioxidant system in the elimination of reactive oxygen species. Based on these results, pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water, may be effective for phytoremediation dye-contaminated polluted aquatic ecosystems.

  13. Influence of sodium chloride on the regulation of Krebs cycle intermediates and enzymes of respiratory chain in mungbean (Vigna radiata L. Wilczek) seedlings.

    PubMed

    Saha, Papiya; Kunda, Pranamita; Biswas, Asok K

    2012-11-01

    The effect of common salt (NaCl) on ion contents, Krebs cycle intermediates and its regulatory enzymes was investigated in growing mungbean (Vigna radiata L. Wilczek, B 105) seedlings. Sodium and chloride ion contents increased in both root and shoot whereas potassium ion content decreased in shoot of test seedlings with increasing concentrations of NaCl. Organic acids like pyruvate and citrate levels increased whereas malate level decreased under stress in both roots and shoots. Salt stress also variedly affected the activities of different enzymes of respiratory chain. The activity of pyruvate dehydrogenase (E.C. 1.2.4.1) decreased in 50 mM NaCl but increased in 100 mM and 150 mM concentrations, in both root and shoot samples. Succinate dehydrogenase (E.C. 1.3.5.1) activity was reduced in root whereas stimulated in shoot under increasing concentrations of salt. The activity of isocitrate dehydrogenase (E.C. 1.1.1.41) and malate dehydrogenase (E.C. 1.1.1.37) decreased in both root and shoot samples under salt stress. On the contrary, pretreatment of mungbean seeds with sublethal dose of NaCl was able to overcome the adverse effects of stress imposed by NaCl to variable extents with significant alterations of all the tested parameters, resulting in better growth and efficient respiration in mungbean seedlings. Thus, plants can acclimate to lethal level of salinity by pretreatment of seeds with sublethal level of NaCl, which serves to improve their health and production under saline condition, but the sublethal concentration of NaCl should be carefully chosen.

  14. Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris).

    PubMed

    Vafaei, Fatemeh; Movafeghi, Ali; Khataee, Alireza

    2013-11-01

    The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25 degree C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium. Overall, the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves. Nevertheless, no significant increase in malondialdehyde content was detected in roots or leaves, implying that the high efficiency of antioxidant system in the elimination of reactive oxygen species. Based on these results, pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water, may be effective for phytoremediation dye-contaminated polluted aquatic ecosystems. PMID:24552049

  15. The presence of acyl-CoA hydrolase in rat brown-adipose-tissue peroxisomes.

    PubMed

    Alexson, S E; Osmundsen, H; Berge, R K

    1989-08-15

    The subcellular distribution of acyl-CoA hydrolase was studied in rat brown adipose tissue, with special emphasis on possible peroxisomal localization. Subcellular fractionation by sucrose-density-gradient centrifugation, followed by measurement of short-chain (propionyl-CoA) acyl-CoA hydrolase in the presence of NADH, resulted in two peaks of activity in the gradient: one peak corresponded to the distribution of cytochrome oxidase (mitochondrial marker enzyme), and another peak of activity coincided with the peroxisomal marker enzyme catalase. The distribution of the NADH-inhibited short-chain hydrolase activity fully resembled that of cytochrome oxidase. The substrate-specificity curve of the peroxisomal acyl-CoA hydrolase activity indicated the presence of a single enzyme exhibiting a broad substrate specificity, with maximal activity towards fatty acids with chain lengths of 3-12 carbon atoms. The mitochondrial acyl-CoA hydrolase substrate specificity, in contrast, indicated the presence of at least two acyl-CoA hydrolases (of short- and medium-chain-length specificity). The peroxisomal acyl-CoA hydrolase activity was inhibited by CoA at low (microM) concentrations and by ATP at high concentrations (greater than 0.8 mM). In contrast with the mitochondrial short-chain hydrolase, the peroxisomal acyl-CoA hydrolase activity was not inhibited by NADH. PMID:2573347

  16. A novel 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis strain DPN7T acting as a key enzyme during catabolism of 3,3'-dithiodipropionic acid is a member of the acyl-CoA dehydrogenase superfamily.

    PubMed

    Schürmann, Marc; Deters, Anika; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2013-04-01

    3-Sulfinopropionyl coenzyme A (3SP-CoA) desulfinase (AcdDPN7) is a new desulfinase that catalyzes the sulfur abstraction from 3SP-CoA in the betaproteobacterium Advenella mimigardefordensis strain DPN7(T). During investigation of a Tn5::mob-induced mutant defective in growth on 3,3'-dithiodipropionate (DTDP) and also 3-sulfinopropionate (3SP), the transposon insertion was mapped to an open reading frame with the highest homology to an acyl-CoA dehydrogenase (Acd) from Burkholderia phenoliruptrix strain BR3459a (83% identical and 91% similar amino acids). An A. mimigardefordensis Δacd mutant was generated and verified the observed phenotype of the Tn5::mob-induced mutant. For enzymatic studies, AcdDPN7 was heterologously expressed in Escherichia coli BL21(DE3)/pLysS by using pET23a::acdDPN7. The purified protein is yellow and contains a noncovalently bound flavin adenine dinucleotide (FAD) cofactor, as verified by high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) analyses. Size-exclusion chromatography revealed a native molecular mass of about 173 kDa, indicating a homotetrameric structure (theoretically 179 kDa), which is in accordance with other members of the acyl-CoA dehydrogenase superfamily. In vitro assays unequivocally demonstrated that the purified enzyme converted 3SP-CoA into propionyl-CoA and sulfite (SO3(2-)). Kinetic studies of AcdDPN7 revealed a Vmax of 4.19 μmol min(-1) mg(-1), an apparent Km of 0.013 mM, and a kcat/Km of 240.8 s(-1) mM(-1) for 3SP-CoA. However, AcdDPN7 is unable to perform a dehydrogenation, which is the usual reaction catalyzed by members of the acyl-CoA dehydrogenase superfamily. Comparison to other known desulfinases showed a comparably high catalytic efficiency of AcdDPN7 and indicated a novel reaction mechanism. Hence, AcdDPN7 encodes a new desulfinase based on an acyl-CoA dehydrogenase (EC 1.3.8.x) scaffold. Concomitantly, we identified the gene product that is responsible for the

  17. A Novel 3-Sulfinopropionyl Coenzyme A (3SP-CoA) Desulfinase from Advenella mimigardefordensis Strain DPN7T Acting as a Key Enzyme during Catabolism of 3,3′-Dithiodipropionic Acid Is a Member of the Acyl-CoA Dehydrogenase Superfamily

    PubMed Central

    Schürmann, Marc; Deters, Anika; Wübbeler, Jan Hendrik

    2013-01-01

    3-Sulfinopropionyl coenzyme A (3SP-CoA) desulfinase (AcdDPN7) is a new desulfinase that catalyzes the sulfur abstraction from 3SP-CoA in the betaproteobacterium Advenella mimigardefordensis strain DPN7T. During investigation of a Tn5::mob-induced mutant defective in growth on 3,3′-dithiodipropionate (DTDP) and also 3-sulfinopropionate (3SP), the transposon insertion was mapped to an open reading frame with the highest homology to an acyl-CoA dehydrogenase (Acd) from Burkholderia phenoliruptrix strain BR3459a (83% identical and 91% similar amino acids). An A. mimigardefordensis Δacd mutant was generated and verified the observed phenotype of the Tn5::mob-induced mutant. For enzymatic studies, AcdDPN7 was heterologously expressed in Escherichia coli BL21(DE3)/pLysS by using pET23a::acdDPN7. The purified protein is yellow and contains a noncovalently bound flavin adenine dinucleotide (FAD) cofactor, as verified by high-performance liquid chromatography–electrospray ionization mass spectrometry (HPLC-ESI-MS) analyses. Size-exclusion chromatography revealed a native molecular mass of about 173 kDa, indicating a homotetrameric structure (theoretically 179 kDa), which is in accordance with other members of the acyl-CoA dehydrogenase superfamily. In vitro assays unequivocally demonstrated that the purified enzyme converted 3SP-CoA into propionyl-CoA and sulfite (SO32−). Kinetic studies of AcdDPN7 revealed a Vmax of 4.19 μmol min−1 mg−1, an apparent Km of 0.013 mM, and a kcat/Km of 240.8 s−1 mM−1 for 3SP-CoA. However, AcdDPN7 is unable to perform a dehydrogenation, which is the usual reaction catalyzed by members of the acyl-CoA dehydrogenase superfamily. Comparison to other known desulfinases showed a comparably high catalytic efficiency of AcdDPN7 and indicated a novel reaction mechanism. Hence, AcdDPN7 encodes a new desulfinase based on an acyl-CoA dehydrogenase (EC 1.3.8.x) scaffold. Concomitantly, we identified the gene product that is responsible for

  18. Regioselective self-acylating cyclodextrins in organic solvent

    PubMed Central

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-01-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods. PMID:27020946

  19. Regioselective self-acylating cyclodextrins in organic solvent

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-03-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods.

  20. Regioselective self-acylating cyclodextrins in organic solvent.

    PubMed

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D; Choi, Youngjin; Jung, Seunho

    2016-01-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods. PMID:27020946

  1. Evaluating Nonpolar Surface Area and LC/MS Response: An Application for Site Occupancy Measurements for Enzyme Intermediates in Polyketide Biosynthesis

    PubMed Central

    Randall, Shan M.; Koryakina, Irina; Williams, Gavin J.; Muddiman, David C.

    2014-01-01

    RATIONALE Site occupancy measurements using LC/MS are reported throughout the literature. However, site occupancy quantification suffers from ionization bias between modified and unmodified peptides containing the active site. In this study, we explore the MS signal as a function of nonpolar surface area (NPSA) in order to better understand this bias in electrospray response. The correlation between hydrophobicity and LC/MS response was evaluated and applied to study enzyme intermediates in polyketide synthases. METHODS Site occupancy methods were developed to study acyltransferase activity. To further evaluate these methods, several standard peptides containing one cysteine residue were modified with alkylation reagents of increasing hydrophobicity to study the MS signal as a function of nonpolar surface area. RESULTS A consistent trend in MS response was observed which is dependent on the NPSA of the analyte. An optimal NPSA zone was observed for the peptides studied. CONCLUSIONS Nonpolar surface area can be used as metric to determine relative LC/MS response for peptides and evaluate site occupancy measurements. PMID:25366398

  2. Discovery of amide (peptide) bond synthetic activity in Acyl-CoA synthetase.

    PubMed

    Abe, Tomoko; Hashimoto, Yoshiteru; Hosaka, Hideaki; Tomita-Yokotani, Kaori; Kobayashi, Michihiko

    2008-04-25

    Acyl-CoA synthetase, which is one of the acid-thiol ligases (EC 6.2.1), plays key roles in metabolic and regulatory processes. This enzyme forms a carbon-sulfur bond in the presence of ATP and Mg(2+), yielding acyl-CoA thioesters from the corresponding free acids and CoA. This enzyme belongs to the superfamily of adenylate-forming enzymes, whose three-dimensional structures are analogous to one another. We here discovered a new reaction while studying the short-chain acyl-CoA synthetase that we recently reported (Hashimoto, Y., Hosaka, H., Oinuma, K., Goda, M., Higashibata, H., and Kobayashi, M. (2005) J. Biol. Chem. 280, 8660-8667). When l-cysteine was used as a substrate instead of CoA, N-acyl-l-cysteine was surprisingly detected as a reaction product. This finding demonstrated that the enzyme formed a carbon-nitrogen bond (EC 6.3.1 acid-ammonia (or amide) ligase (amide synthase); EC 6.3.2 acid-amino acid ligase (peptide synthase)) comprising the amino group of the cysteine and the carboxyl group of the acid. N-Acyl-d-cysteine, N-acyl-dl-homocysteine, and N-acyl-l-cysteine methyl ester were also synthesized from the corresponding cysteine analog substrates by the enzyme. Furthermore, this unexpected enzyme activity was also observed for acetyl-CoA synthetase and firefly luciferase, indicating the generality of the new reaction in the superfamily of adenylate-forming enzymes.

  3. Permeation and metabolism of a series of novel lipophilic ascorbic acid derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids with a branched-acyl chain, in a human living skin equivalent model.

    PubMed

    Tai, Akihiro; Goto, Satomi; Ishiguro, Yutaka; Suzuki, Kazuko; Nitoda, Teruhiko; Yamamoto, Itaru

    2004-02-01

    A series of novel lipophilic vitamin C derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids possessing a branched-acyl chain of varying length from C(8) to C(16) (6-bAcyl-AA-2G), were evaluated as topical prodrugs of ascorbic acid (AA) with transdermal activity in a human living skin equivalent model. The permeability of 6-bAcyl-AA-2G was compared with those of the derivatives having a straight-acyl chain (6-sAcyl-AA-2G). Out of 10 derivatives of 6-sAcyl-AA-2G and 6-bAcyl-AA-2G, 6-sDode-AA-2G and 6-bDode-AA-2G exhibited most excellent permeability in this model. Measurement of the metabolites permeated from the skin model suggested that 6-bDode-AA-2G was mainly hydrolyzed via 6-O-acyl AA to AA by tissue enzymes, while 6-sDode-AA-2G was hydrolyzed via 2-O-alpha-D-glucopyranosyl-L-ascorbic acid to AA. The former metabolic pathway seems to be advantageous for a readily available source of AA, because 6-O-acyl AA, as well as AA, is able to show vitamin C activity.

  4. Fatty acylation of proteins: The long and the short of it.

    PubMed

    Resh, Marilyn D

    2016-07-01

    Long, short and medium chain fatty acids are covalently attached to hundreds of proteins. Each fatty acid confers distinct biochemical properties, enabling fatty acylation to regulate intracellular trafficking, subcellular localization, protein-protein and protein-lipid interactions. Myristate and palmitate represent the most common fatty acid modifying groups. New insights into how fatty acylation reactions are catalyzed, and how fatty acylation regulates protein structure and function continue to emerge. Myristate is typically linked to an N-terminal glycine, but recent studies reveal that lysines can also be myristoylated. Enzymes that remove N-terminal myristoyl-glycine or myristate from lysines have now been identified. DHHC proteins catalyze S-palmitoylation, but the mechanisms that regulate substrate recognition by individual DHHC family members remain to be determined. New studies continue to reveal thioesterases that remove palmitate from S-acylated proteins. Another area of rapid expansion is fatty acylation of the secreted proteins hedgehog, Wnt and Ghrelin, by Hhat, Porcupine and GOAT, respectively. Understanding how these membrane bound O-acyl transferases recognize their protein and fatty acyl CoA substrates is an active area of investigation, and is punctuated by the finding that these enzymes are potential drug targets in human diseases. PMID:27233110

  5. Structures of enzyme-intermediate complexes of yeast Nit2: insights into its catalytic mechanism and different substrate specificity compared with mammalian Nit2.

    PubMed

    Liu, Hejun; Gao, Yongxiang; Zhang, Mengying; Qiu, Xiaoting; Cooper, Arthur J L; Niu, Liwen; Teng, Maikun

    2013-08-01

    The Nit (nitrilase-like) protein subfamily constitutes branch 10 of the nitrilase superfamily. Nit proteins are widely distributed in nature. Mammals possess two members of the Nit subfamily, namely Nit1 and Nit2. Based on sequence similarity, yeast Nit2 (yNit2) is a homologue of mouse Nit1, a tumour-suppressor protein whose substrate specificity is not yet known. Previous studies have shown that mammalian Nit2 (also a putative tumour suppressor) is identical to ω-amidase, an enzyme that catalyzes the hydrolysis of α-ketoglutaramate (α-KGM) and α-ketosuccinamate (α-KSM) to α-ketoglutarate (α-KG) and oxaloacetate (OA), respectively. In the present study, crystal structures of wild-type (WT) yNit2 and of WT yNit2 in complex with α-KG and with OA were determined. In addition, the crystal structure of the C169S mutant of yNit2 (yNit2-C169S) in complex with an endogenous molecule of unknown structure was also solved. Analysis of the structures revealed that α-KG and OA are covalently bound to Cys169 by the formation of a thioester bond between the sulfhydryl group of the cysteine residue and the γ-carboxyl group of α-KG or the β-carboxyl group of OA, reflecting the presumed reaction intermediates. However, an enzymatic assay suggests that α-KGM is a relatively poor substrate of yNit2. Finally, a ligand was found in the active site of yNit2-C169S that may be a natural substrate of yNit2 or an endogenous regulator of enzyme activity. These crystallographic analyses provide information on the mode of substrate/ligand binding at the active site of yNit2 and insights into the catalytic mechanism. These findings suggest that yNit2 may have broad biological roles in yeast, especially in regard to nitrogen homeostasis, and provide a framework for the elucidation of the substrate specificity and biological role of mammalian Nit1.

  6. Characterization of a Bifunctional Archaeal Acyl Coenzyme A Carboxylase

    PubMed Central

    Chuakrut, Songkran; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2003-01-01

    Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an α4β4γ4 subunit structure. The optimum temperature for the enzyme was 60 to 70°C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent Km for acetyl-CoA was 0.17 ± 0.03 mM, with a Vmax of 43.3 ± 2.8 U mg−1, and the Km for propionyl-CoA was 0.10 ± 0.008 mM, with a Vmax of 40.8 ± 1.0 U mg−1. This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit. PMID:12533469

  7. Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents.

    PubMed

    Matarlo, Joe S; Evans, Christopher E; Sharma, Indrajeet; Lavaud, Lubens J; Ngo, Stephen C; Shek, Roger; Rajashankar, Kanagalaghatta R; French, Jarrod B; Tan, Derek S; Tonge, Peter J

    2015-10-27

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1), which has an IC50 value of ≤25 nM for Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in Staphylococcus aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ∼1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure-activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively charged keto acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future.

  8. N-Acylation During Glidobactin Biosynthesis by the Tridomain Nonribosomal Peptide Synthetase Module GlbF

    PubMed Central

    Imker, Heidi J.; Krahn, Daniel; Clerc, Jérôme; Kaiser, Markus; Walsh, Christopher T.

    2011-01-01

    Summary Glidobactins are hybrid NRPS-PKS natural products that function as irreversible proteasome inhibitors. A variety of medium chain 2(E),4(E)-diene fatty acids N-acylate the peptidolactam core and contribute significantly to the potency of proteasome inhibition. We have expressed the initiation NRPS module GlbF (C-A-T) in Escherichia coli and observe soluble active protein only on co-expression with the 8 kDa MbtH-like protein, GlbE. Following adenylation and installation of Thr as a T-domain thioester, the starter condensation domain utilizes fatty acyl-CoA donors to acylate the Thr1 amino group and generate the fatty acyl-Thr1-S-pantetheinyl-GlbF intermediate to be used in subsequent chain elongation. Previously proposed to be mediated via acyl carrier protein fatty acid donors, direct utilization of fatty acyl-CoA donors for N-acylation of T-domain tethered amino acids is likely a common strategy for chain initiation in NRPS-mediated lipopeptide biosynthesis. PMID:21035730

  9. N-acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF.

    PubMed

    Imker, Heidi J; Krahn, Daniel; Clerc, Jérôme; Kaiser, Markus; Walsh, Christopher T

    2010-10-29

    Glidobactins are hybrid NRPS-PKS natural products that function as irreversible proteasome inhibitors. A variety of medium chain 2(E),4(E)-diene fatty acids N-acylate the peptidolactam core and contribute significantly to the potency of proteasome inhibition. We have expressed the initiation NRPS module GlbF (C-A-T) in Escherichia coli and observe soluble active protein only on coexpression with the 8 kDa MbtH-like protein, GlbE. Following adenylation and installation of Thr as a T-domain thioester, the starter condensation domain utilizes fatty acyl-CoA donors to acylate the Thr(1) amino group and generate the fatty acyl-Thr(1)-S-pantetheinyl-GlbF intermediate to be used in subsequent chain elongation. Previously proposed to be mediated via acyl carrier protein fatty acid donors, direct utilization of fatty acyl-CoA donors for N-acylation of T-domain tethered amino acids is likely a common strategy for chain initiation in NRPS-mediated lipopeptide biosynthesis.

  10. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.

    PubMed

    Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William

    2006-06-01

    The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important. PMID:16531404

  11. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity.

  12. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity. PMID:27451793

  13. Unexpected tautomeric equilibria of the carbanion-enamine intermediate in pyruvate oxidase highlight unrecognized chemical versatility of thiamin.

    PubMed

    Meyer, Danilo; Neumann, Piotr; Koers, Eline; Sjuts, Hanno; Lüdtke, Stefan; Sheldrick, George M; Ficner, Ralf; Tittmann, Kai

    2012-07-01

    Thiamin diphosphate, the vitamin B1 coenzyme, plays critical roles in fundamental metabolic pathways that require acyl carbanion equivalents. Studies on chemical models and enzymes had suggested that these carbanions are resonance-stabilized as enamines. A crystal structure of this intermediate in pyruvate oxidase at 1.1 Å resolution now challenges this paradigm by revealing that the enamine does not accumulate. Instead, the intermediate samples between the ketone and the carbanion both interlocked in a tautomeric equilibrium. Formation of the keto tautomer is associated with a loss of aromaticity of the cofactor. The alternate confinement of electrons to neighboring atoms rather than π-conjugation seems to be of importance for the enzyme-catalyzed, redox-coupled acyl transfer to phosphate, which requires a dramatic inversion of polarity of the reacting substrate carbon in two subsequent catalytic steps. The ability to oscillate between a nucleophilic (carbanion) and an electrophilic (ketone) substrate center highlights a hitherto unrecognized versatility of the thiamin cofactor. It remains to be studied whether formation of the keto tautomer is a general feature of all thiamin enzymes, as it could provide for stable storage of the carbanion state, or whether this feature represents a specific trait of thiamin oxidases. In addition, the protonation state of the two-electron reduced flavin cofactor can be fully assigned, demonstrating the power of high-resolution cryocrystallography for elucidation of enzymatic mechanisms.

  14. Hybrid Potential Simulation of the Acylation of Enterococcus faecium l,d-Transpeptidase by Carbapenems.

    PubMed

    Bhattacharjee, Nicholus; Field, Martin J; Simorre, Jean-Pierre; Arthur, Michel; Bougault, Catherine M

    2016-06-01

    The l,d-transpeptidases, Ldts, catalyze peptidoglycan cross-linking in β-lactam-resistant mutant strains of several bacteria, including Enterococcus faecium and Mycobacterium tuberculosis. Although unrelated to the essential d,d-transpeptidases, which are inactivated by the β-lactam antibiotics, they are nevertheless inhibited by the carbapenem antibiotics, making them potentially useful targets in the treatment of some important diseases. In this work, we have investigated the acylation mechanism of the Ldt from E. faecium by the carbapenem, ertapenem, using computational techniques. We have employed molecular dynamics simulations in conjunction with QC/MM hybrid potential calculations to map out possible reaction paths. We have focused on determining the following: (i) the protonation state of the nucleophilic cysteine of the enzyme when it attacks; (ii) whether nucleophilic attack and β-lactam ring-opening are concerted or stepwise, the latter occurring via an oxyanion intermediate; and (iii) the identities of the proton acceptors at the beginning and end of the reaction. Overall, we note that there is considerable plasticity in the mechanisms, owing to the significant flexibility of the enzyme, but find that the preferred pathways are ones in which nucleophilic attack of cysteine thiolate is concerted with β-lactam ring-opening. PMID:27196382

  15. Hybrid Potential Simulation of the Acylation of Enterococcus faecium l,d-Transpeptidase by Carbapenems.

    PubMed

    Bhattacharjee, Nicholus; Field, Martin J; Simorre, Jean-Pierre; Arthur, Michel; Bougault, Catherine M

    2016-06-01

    The l,d-transpeptidases, Ldts, catalyze peptidoglycan cross-linking in β-lactam-resistant mutant strains of several bacteria, including Enterococcus faecium and Mycobacterium tuberculosis. Although unrelated to the essential d,d-transpeptidases, which are inactivated by the β-lactam antibiotics, they are nevertheless inhibited by the carbapenem antibiotics, making them potentially useful targets in the treatment of some important diseases. In this work, we have investigated the acylation mechanism of the Ldt from E. faecium by the carbapenem, ertapenem, using computational techniques. We have employed molecular dynamics simulations in conjunction with QC/MM hybrid potential calculations to map out possible reaction paths. We have focused on determining the following: (i) the protonation state of the nucleophilic cysteine of the enzyme when it attacks; (ii) whether nucleophilic attack and β-lactam ring-opening are concerted or stepwise, the latter occurring via an oxyanion intermediate; and (iii) the identities of the proton acceptors at the beginning and end of the reaction. Overall, we note that there is considerable plasticity in the mechanisms, owing to the significant flexibility of the enzyme, but find that the preferred pathways are ones in which nucleophilic attack of cysteine thiolate is concerted with β-lactam ring-opening.

  16. Membrane Topology and Transient Acylation of Toxoplasma gondii Glycosylphosphatidylinositols

    PubMed Central

    Kimmel, Jürgen; Smith, Terry K.; Azzouz, Nahid; Gerold, Peter; Seeber, Frank; Lingelbach, Klaus; Dubremetz, Jean-François; Schwarz, Ralph T.

    2006-01-01

    Using hypotonically permeabilized Toxoplasma gondii tachyzoites, we investigated the topology of the free glycosylphosphatidylinositols (GPIs) within the endoplasmic reticulum (ER) membrane. The morphology and permeability of parasites were checked by electron microscopy and release of a cytosolic protein. The membrane integrity of organelles (ER and rhoptries) was checked by protease protection assays. In initial experiments, GPI biosynthetic intermediates were labeled with UDP-[6-3H]GlcNAc in permeabilized parasites, and the transmembrane distribution of the radiolabeled lipids was probed with phosphatidylinositol-specific phospholipase C (PI-PLC). A new early intermediate with an acyl modification on the inositol was identified, indicating that inositol acylation also occurs in T. gondii. A significant portion of the early GPI intermediates (GlcN-PI and GlcNAc-PI) could be hydrolyzed following PI-PLC treatment, indicating that these glycolipids are predominantly present in the cytoplasmic leaflet of the ER. Permeabilized T. gondii parasites labeled with either GDP-[2-3H]mannose or UDP-[6-3H]glucose showed that the more mannosylated and side chain (Glc-GalNAc)-modified GPI intermediates are also preferentially localized in the cytoplasmic leaflet of the ER. PMID:16896225

  17. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed Central

    Jones, A; Davies, H M; Voelker, T A

    1995-01-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase. PMID:7734968

  18. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed

    Jones, A; Davies, H M; Voelker, T A

    1995-03-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase.

  19. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition.

    PubMed

    Moreno-Pérez, Antonio J; Sánchez-García, Alicia; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2011-01-01

    The mechanisms by which macadamia nuts accumulate the unusual palmitoleic and asclepic acyl moieties, which constitute up to 20% of the fatty acids in some varieties, are still unknown. Acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) are intraplastidial enzymes that terminate the synthesis of fatty acids in plants and that facilitate the export of the acyl moieties to the endoplasmic reticulum where they can be used in the production of glycerolipids. Here, we have investigated the possible role of acyl-ACP thioesterase activity in the composition of macadamia kernel oil. Accordingly, two acyl-ACP thioesterases were cloned from developing macadamia kernels, one of the FatA type and the other of the FatB type. These enzymes were heterologously expressed in Escherichia coli, and the recombinant thioesterases were purified, characterized kinetically and assayed with a variety of substrates, demonstrating the high specificity of macadamia FatA towards 16:1-ACP. Acyl-ACP thioesterase activity was also characterized in crude extracts from two different varieties of macadamia, Cate and Beaumont, which accumulate different amounts of n-7 fatty acids. The impact of acyl-ACP thioesterase activities on the oil composition of these kernels is discussed in the light of these results.

  20. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition.

    PubMed

    Moreno-Pérez, Antonio J; Sánchez-García, Alicia; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2011-01-01

    The mechanisms by which macadamia nuts accumulate the unusual palmitoleic and asclepic acyl moieties, which constitute up to 20% of the fatty acids in some varieties, are still unknown. Acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) are intraplastidial enzymes that terminate the synthesis of fatty acids in plants and that facilitate the export of the acyl moieties to the endoplasmic reticulum where they can be used in the production of glycerolipids. Here, we have investigated the possible role of acyl-ACP thioesterase activity in the composition of macadamia kernel oil. Accordingly, two acyl-ACP thioesterases were cloned from developing macadamia kernels, one of the FatA type and the other of the FatB type. These enzymes were heterologously expressed in Escherichia coli, and the recombinant thioesterases were purified, characterized kinetically and assayed with a variety of substrates, demonstrating the high specificity of macadamia FatA towards 16:1-ACP. Acyl-ACP thioesterase activity was also characterized in crude extracts from two different varieties of macadamia, Cate and Beaumont, which accumulate different amounts of n-7 fatty acids. The impact of acyl-ACP thioesterase activities on the oil composition of these kernels is discussed in the light of these results. PMID:21071236

  1. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors

    PubMed Central

    Guasch, Laura; Nicklaus, Marc C.; Meier, Jordan L.

    2015-01-01

    SUMMARY The finding that chromatin modifications are sensitive to changes in cellular cofactor levels potentially links altered tumor cell metabolism and gene expression. However, the specific enzymes and metabolites that connect these two processes remain obscure. Characterizing these metabolic-epigenetic axes is critical to understanding how metabolism supports signaling in cancer, and developing therapeutic strategies to disrupt this process. Here, we describe a chemical approach to define the metabolic regulation of lysine acetyltransferase (KAT) enzymes. Using a novel chemoproteomic probe, we identify a previously unreported interaction between fatty acyl-CoAs and KAT enzymes. Further analysis reveals that palmitoyl-CoA is a potent inhibitor of KAT activity and that fatty acyl-CoA precursors reduce cellular acetylation levels. These studies implicate fatty acyl-CoAs as endogenous regulators of histone acetylation, and suggest novel strategies for the investigation and metabolic modulation of epigenetic signaling. PMID:26190825

  2. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed Central

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase. PMID:12228351

  3. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.

  4. Free Energy Contribution Analysis Using Response Kernel Approximation: Insights into the Acylation Reaction of a Beta-Lactamase.

    PubMed

    Asada, Toshio; Ando, Kanta; Bandyopadhyay, Pradipta; Koseki, Shiro

    2016-09-01

    A widely applicable free energy contribution analysis (FECA) method based on the quantum mechanical/molecular mechanical (QM/MM) approximation using response kernel approaches has been proposed to investigate the influences of environmental residues and/or atoms in the QM region on the free energy profile. This method can evaluate atomic contributions to the free energy along the reaction path including polarization effects on the QM region within a dramatically reduced computational time. The rate-limiting step in the deactivation of the β-lactam antibiotic cefalotin (CLS) by β-lactamase was studied using this method. The experimentally observed activation barrier was successfully reproduced by free energy perturbation calculations along the optimized reaction path that involved activation by the carboxylate moiety in CLS. It was found that the free energy profile in the QM region was slightly higher than the isolated energy and that two residues, Lys67 and Lys315, as well as water molecules deeply influenced the QM atoms associated with the bond alternation reaction in the acyl-enzyme intermediate. These facts suggested that the surrounding residues are favorable for the reactant complex and prevent the intermediate from being too stabilized to proceed to the following deacylation reaction. We have demonstrated that the free energy contribution analysis should be a useful method to investigate enzyme catalysis and to facilitate intelligent molecular design. PMID:27501066

  5. Free Energy Contribution Analysis Using Response Kernel Approximation: Insights into the Acylation Reaction of a Beta-Lactamase.

    PubMed

    Asada, Toshio; Ando, Kanta; Bandyopadhyay, Pradipta; Koseki, Shiro

    2016-09-01

    A widely applicable free energy contribution analysis (FECA) method based on the quantum mechanical/molecular mechanical (QM/MM) approximation using response kernel approaches has been proposed to investigate the influences of environmental residues and/or atoms in the QM region on the free energy profile. This method can evaluate atomic contributions to the free energy along the reaction path including polarization effects on the QM region within a dramatically reduced computational time. The rate-limiting step in the deactivation of the β-lactam antibiotic cefalotin (CLS) by β-lactamase was studied using this method. The experimentally observed activation barrier was successfully reproduced by free energy perturbation calculations along the optimized reaction path that involved activation by the carboxylate moiety in CLS. It was found that the free energy profile in the QM region was slightly higher than the isolated energy and that two residues, Lys67 and Lys315, as well as water molecules deeply influenced the QM atoms associated with the bond alternation reaction in the acyl-enzyme intermediate. These facts suggested that the surrounding residues are favorable for the reactant complex and prevent the intermediate from being too stabilized to proceed to the following deacylation reaction. We have demonstrated that the free energy contribution analysis should be a useful method to investigate enzyme catalysis and to facilitate intelligent molecular design.

  6. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction

    SciTech Connect

    Heroux, A.; Bozinovski, D; Valley, M; Fitzpatrick, P; Orville, A

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 {angstrom} resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.

  7. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate

    PubMed Central

    Kormanik, Kaitlyn; Kang, Heejung; Cuebas, Dean; Vockley, Jerry; Mohsen, Al-Walid

    2012-01-01

    Sodium phenylbutyrate is used for treating urea cycle disorders, providing an alternative for ammonia excretion. Following conversion to its CoA ester, phenylbutyryl-CoA is postulated to undergo one round of β-oxidation to phenylacetyl-CoA, the active metabolite. Molecular modeling suggests that medium chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3), a key enzyme in straight chain fatty acid β-oxidation, could utilize phenylbutyryl-CoA as substrate. Moreover, phenylpropionyl-CoA has been shown to be a substrate for MCAD and its intermediates accumulate in patients with MCAD deficiency. We have examined the involvement of MCAD and other acyl-CoA dehydrogenases (ACADs) in the metabolism of phenylbutyryl-CoA. Anaerobic titration of purified recombinant human MCAD with phenylbutyryl-CoA caused changes in the MCAD spectrum that are similar to those induced by octanoyl-CoA, its bona fide substrate, and unique to the development of the charge transfer ternary complex. The calculated apparent dissociation constant (KD app) for these substrates was 2.16 μM and 0.12 μM, respectively. The MCAD reductive and oxidative half reactions were monitored using the electron transfer flavoprotein (ETF) fluorescence reduction assay. The catalytic efficiency and the Km for phenylbutyryl-CoA were 0.2 mM−1· sec−1 and 5.3 μM compared to 4.0 mM−1· sec−1 and 2.8 μM for octanoyl-CoA. Extracts of wild type and MCAD-deficient lymphoblast cells were tested for the ability to reduce ETF using phenylbutyryl-CoA as substrate. While ETF reduction activity was detected in extracts of wild type cells, it was undetectable in extracts of cells deficient in MCAD. The results are consistent with MCAD playing a key role in phenylbutyrate metabolism. PMID:23141465

  8. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases

    PubMed Central

    Guy, Jodie E.; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-01-01

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals. PMID:21930947

  9. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases.

    PubMed

    Guy, Jodie E; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-10-01

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals. PMID:21930947

  10. Shrinking the FadE proteome of Mycobacterium tuberculosis: insights into cholesterol metabolism through identification of an α2β2 heterotetrameric acyl coenzyme A dehydrogenase family.

    PubMed

    Wipperman, Matthew F; Yang, Meng; Thomas, Suzanne T; Sampson, Nicole S

    2013-10-01

    The ability of the pathogen Mycobacterium tuberculosis to metabolize steroids like cholesterol and the roles that these compounds play in the virulence and pathogenesis of this organism are increasingly evident. Here, we demonstrate through experiments and bioinformatic analysis the existence of an architecturally distinct subfamily of acyl coenzyme A (acyl-CoA) dehydrogenase (ACAD) enzymes that are α2β2 heterotetramers with two active sites. These enzymes are encoded by two adjacent ACAD (fadE) genes that are regulated by cholesterol. FadE26-FadE27 catalyzes the dehydrogenation of 3β-hydroxy-chol-5-en-24-oyl-CoA, an analog of the 5-carbon side chain cholesterol degradation intermediate. Genes encoding the α2β2 heterotetrameric ACAD structures are present in multiple regions of the M. tuberculosis genome, and subsets of these genes are regulated by four different transcriptional repressors or activators: KstR1 (also known as KstR), KstR2, Mce3R, and SigE. Homologous ACAD gene pairs are found in other Actinobacteria, as well as Proteobacteria. Their structures and genomic locations suggest that the α2β2 heterotetrameric structural motif has evolved to enable catalysis of dehydrogenation of steroid- or polycyclic-CoA substrates and that they function in four subpathways of cholesterol metabolism.

  11. Shrinking the FadE Proteome of Mycobacterium tuberculosis: Insights into Cholesterol Metabolism through Identification of an α2β2 Heterotetrameric Acyl Coenzyme A Dehydrogenase Family

    PubMed Central

    Wipperman, Matthew F.; Yang, Meng; Thomas, Suzanne T.

    2013-01-01

    The ability of the pathogen Mycobacterium tuberculosis to metabolize steroids like cholesterol and the roles that these compounds play in the virulence and pathogenesis of this organism are increasingly evident. Here, we demonstrate through experiments and bioinformatic analysis the existence of an architecturally distinct subfamily of acyl coenzyme A (acyl-CoA) dehydrogenase (ACAD) enzymes that are α2β2 heterotetramers with two active sites. These enzymes are encoded by two adjacent ACAD (fadE) genes that are regulated by cholesterol. FadE26-FadE27 catalyzes the dehydrogenation of 3β-hydroxy-chol-5-en-24-oyl-CoA, an analog of the 5-carbon side chain cholesterol degradation intermediate. Genes encoding the α2β2 heterotetrameric ACAD structures are present in multiple regions of the M. tuberculosis genome, and subsets of these genes are regulated by four different transcriptional repressors or activators: KstR1 (also known as KstR), KstR2, Mce3R, and SigE. Homologous ACAD gene pairs are found in other Actinobacteria, as well as Proteobacteria. Their structures and genomic locations suggest that the α2β2 heterotetrameric structural motif has evolved to enable catalysis of dehydrogenation of steroid- or polycyclic-CoA substrates and that they function in four subpathways of cholesterol metabolism. PMID:23836861

  12. Measurement of tissue acyl-CoAs using flow-injection tandem mass spectrometry: acyl-CoA profiles in short-chain fatty acid oxidation defects

    PubMed Central

    Palladino, Andrew A.; Chen, Jie; Kallish, Staci; Stanley, Charles A.; Bennett, Michael J.

    2013-01-01

    The primary accumulating metabolites in fatty acid oxidation defects are intramitochondrial acyl-CoAs. Typically, secondary metabolites such as acylcarnitines, acylglycines and dicarboxylic acids are measured to study these disorders. Methods have not been adapted for tissue acyl-CoA measurement in defects with primarily acyl-CoA accumulation. Our objective was to develop a method to measure fatty acyl-CoA species that are present in tissues of mice with fatty acid oxidation defects using flow-injection tandem mass spectrometry. Following the addition of internal standards of [13C2] acetyl-CoA, [13C8] octanoyl-CoA, and [C17] heptadecanoic CoA, acyl-CoA’s are extracted from tissue samples and are injected directly into the mass spectrometer. Data is acquired using a 506.9 neutral loss scan and multiple reaction-monitoring (MRM). This method can identify all long, medium and short-chain acyl-CoA species in wild type mouse liver including predicted 3-hydroxyacyl-CoA species. We validated the method using liver of the short-chain-acyl-CoA dehydrogenase (SCAD) knock-out mice. As expected, there is a significant increase in [C4] butyryl-CoA species in the SCAD −/− mouse liver compared to wild type. We then tested the assay in liver from the short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) deficient mice to determine the profile of acyl-CoA accumulation in this less predictable model. There was more modest accumulation of medium chain species including 3-hydroxyacyl-CoA’s consistent with the known chain-length specificity of the SCHAD enzyme. PMID:23117082

  13. Morphological and metabolic changes in transgenic wheat with altered glycerol-3-phosphate acyltransferase or acyl-acyl carrier protein (ACP) thioesterase activities.

    PubMed

    Edlin, D A; Kille, P; Wilkinson, M D; Jones, H D; Harwood, J L

    2000-12-01

    We have transformed varieties of wheat with a Pisum sativum glycerol-3-phosphate acyltransferase gene, and also with an Arabidopsis thaliana acyl-ACP thioesterase gene. Morphological (growth, organelle development) and metabolic changes (fatty acid labelling of chloroplast and non-chloroplast lipids) have been observed in transgenics with altered gene expression for either enzyme. PMID:11171169

  14. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter

    1998-01-06

    Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  15. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  16. Construction of a Spirooxindole Amide Library through Nitrile Hydrozirconation-Acylation-Cyclization Cascade

    PubMed Central

    LaPorte, Matthew G.; Tsegay, Sammi; Hong, Ki Bum; Lu, Chunliang; Fang, Cheng; Wang, Lirong; Xie, Xiang-Qun; Floreancig, Paul E.

    2013-01-01

    A library of spirooxindoles containing varied elements of structural and stereochemical diversity has been constructed via a three step, one pot nitrile hydrozirconation-acylation-cyclization reaction sequence from common acyclic indole intermediates. The resulting library was evaluated for novelty through comparison with MLSMR and Maybridge compound collections. PMID:23731121

  17. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ...

  18. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds.

    PubMed

    Aznar-Moreno, Jose A; Venegas Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Mullen, Robert; Gidda, Satinder K; Salas, Joaquín J

    2014-03-01

    Long chain fatty acid synthetases (LACSs) activate the fatty acid chains produced by plastidial de novo biosynthesis to generate acyl-CoA derivatives, important intermediates in lipid metabolism. Oilseeds, like sunflower, accumulate high levels of triacylglycerols (TAGs) in their seeds to nourish the embryo during germination. This requires that sunflower seed endosperm supports very active glycerolipid synthesis during development. Sunflower seed plastids produce large amounts of fatty acids, which must be activated through the action of LACSs, in order to be incorporated into TAGs. We cloned two different LACS genes from developing sunflower endosperm, HaLACS1 and HaLACS2, which displayed sequence homology with Arabidopsis LACS9 and LACS8 genes, respectively. These genes were expressed at high levels in developing seeds and exhibited distinct subcellular distributions. We generated constructs in which these proteins were fused to green fluorescent protein and performed transient expression experiments in tobacco cells. The HaLACS1 protein associated with the external envelope of tobacco chloroplasts, whereas HaLACS2 was strongly bound to the endoplasmic reticulum. Finally, both proteins were overexpressed in Escherichia coli and recovered as active enzymes in the bacterial membranes. Both enzymes displayed similar substrate specificities, with a very high preference for oleic acid and weaker activity toward stearic acid. On the basis of our findings, we discuss the role of these enzymes in sunflower oil synthesis.

  19. Ligand binding to the ACBD6 protein regulates the acyl-CoA transferase reactions in membranes[S

    PubMed Central

    Soupene, Eric; Kuypers, Frans A.

    2015-01-01

    The binding determinants of the human acyl-CoA binding domain-containing protein (ACBD) 6 and its function in lipid renewal of membranes were investigated. ACBD6 binds acyl-CoAs of a chain length of 6 to 20 carbons. The stoichiometry of the association could not be fitted to a 1-to-1 model. Saturation of ACBD6 by C16:0-CoA required higher concentration than less abundant acyl-CoAs. In contrast to ACBD1 and ACBD3, ligand binding did not result in the dimerization of ACBD6. The presence of fatty acids affected the binding of C18:1-CoA to ACBD6, dependent on the length, the degree of unsaturation, and the stereoisomeric conformation of their aliphatic chain. ACBD1 and ACBD6 negatively affected the formation of phosphatidylcholine (PC) and phosphatidylethanolamine in the red blood cell membrane. The acylation rate of lysophosphatidylcholine into PC catalyzed by the red cell lysophosphatidylcholine-acyltransferase 1 protein was limited by the transfer of the acyl-CoA substrate from ACBD6 to the acyltransferase enzyme. These findings provide evidence that the binding properties of ACBD6 are adapted to prevent its constant saturation by the very abundant C16:0-CoA and protect membrane systems from the detergent nature of free acyl-CoAs by controlling their release to acyl-CoA-utilizing enzymes. PMID:26290611

  20. Retrobiosynthetic Approach Delineates the Biosynthetic Pathway and the Structure of the Acyl Chain of Mycobacterial Glycopeptidolipids*

    PubMed Central

    Vats, Archana; Singh, Anil Kumar; Mukherjee, Raju; Chopra, Tarun; Ravindran, Madhu Sudhan; Mohanty, Debasisa; Chatterji, Dipankar; Reyrat, Jean-Marc; Gokhale, Rajesh S.

    2012-01-01

    Glycopeptidolipids (GPLs) are dominant cell surface molecules present in several non-tuberculous and opportunistic mycobacterial species. GPLs from Mycobacterium smegmatis are composed of a lipopeptide core unit consisting of a modified C26-C34 fatty acyl chain that is linked to a tetrapeptide (Phe-Thr-Ala-alaninol). The hydroxyl groups of threonine and terminal alaninol are further modified by glycosylations. Although chemical structures have been reported for 16 GPLs from diverse mycobacteria, there is still ambiguity in identifying the exact position of the hydroxyl group on the fatty acyl chain. Moreover, the enzymes involved in the biosynthesis of the fatty acyl component are unknown. In this study we show that a bimodular polyketide synthase in conjunction with a fatty acyl-AMP ligase dictates the synthesis of fatty acyl chain of GPL. Based on genetic, biochemical, and structural investigations, we determine that the hydroxyl group is present at the C-5 position of the fatty acyl component. Our retrobiosynthetic approach has provided a means to understand the biosynthesis of GPLs and also resolve the long-standing debate on the accurate structure of mycobacterial GPLs. PMID:22798073

  1. Topology and acylation of spiralin.

    PubMed Central

    Wróblewski, H; Nyström, S; Blanchard, A; Wieslander, A

    1989-01-01

    Of the 51 polypeptides detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the plasma membrane of the helical mollicute Spiroplasma melliferum, 21 are acylated, predominantly with myristic (14:0) and palmitic (16:0) chains. This is notably the case for spiralin, the major membrane protein of this bacterium, which contains an average of 0.7 acyl chains per polypeptide, attached very probably by ester bonds to alcohol amino acids. The amphiphilicity of spiralin was demonstrated by the behavior of the protein in charge-shift electrophoresis, its incorporation into liposomes, and its ability to form in the absence of lipids and detergents, globular protein micelles (diameter, approximately 15 nm). The presence of epitopes on the two faces of the cell membrane, as probed by antibody adsorption and crossed immunoelectrophoresis, and the strong interaction between spiralin and the intracytoplasmic fibrils show that spiralin is a transmembrane protein. The mean hydropathy of the amino acid composition of spiralin (-0.30) is on the hydrophilic side of the scale. Surprisingly, the water-insoluble core of spiralin micelles, which is the putative membrane anchor, has a still more hydrophilic amino acid composition (mean hydropathy, -0.70) and is enriched in glycine and serine residues. Taking into account all these properties, we propose a topological model for spiralin featuring a transbilayer localization with hydrophilic domains protruding on the two faces of the membrane and connected by a small domain embedded within the apolar region of the lipid bilayer. In this model, the membrane anchoring of the protein is strengthened by a covalently bound acyl chain. Images PMID:2768198

  2. Nickel-Catalyzed Decarbonylative Borylation of Amides: Evidence for Acyl C-N Bond Activation.

    PubMed

    Hu, Jiefeng; Zhao, Yue; Liu, Jingjing; Zhang, Yemin; Shi, Zhuangzhi

    2016-07-18

    A nickel/N-heterocyclic carbene catalytic system has been established for decarbonylative borylation of amides with B2 nep2 by C-N bond activation. This transformation shows good functional-group compatibility and can serve as a powerful synthetic tool for late-stage borylation of amide groups in complex compounds. More importantly, as a key intermediate, the structure of an acyl nickel complex was first confirmed by X-ray analysis. Furthermore, the decarbonylative process was also observed. These findings confirm the key mechanistic features of the acyl C-N bond activation process. PMID:27258597

  3. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.

  4. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  5. Conserved YjgF protein family deaminates reactive enamine/imine intermediates of pyridoxal 5'-phosphate (PLP)-dependent enzyme reactions.

    PubMed

    Lambrecht, Jennifer A; Flynn, Jeffrey M; Downs, Diana M

    2012-01-27

    The YjgF/YER057c/UK114 family of proteins is conserved in all domains of life, suggesting that the role of these proteins arose early and was maintained throughout evolution. Metabolic consequences of lacking this protein in Salmonella enterica and other organisms have been described, but the biochemical function of YjgF remained unknown. This work provides the first description of a conserved biochemical activity for the YjgF protein family. Our data support the conclusion that YjgF proteins have enamine/imine deaminase activity and accelerate the release of ammonia from reactive enamine/imine intermediates of the pyridoxal 5'-phosphate-dependent threonine dehydratase (IlvA). Results from structure-guided mutagenesis experiments suggest that YjgF lacks a catalytic residue and that it facilitates ammonia release by positioning a critical water molecule in the active site. YjgF is renamed RidA (reactive intermediate/imine deaminase A) to reflect the conserved activity of the protein family described here. This study, combined with previous physiological studies on yjgF mutants, suggests that intermediates of pyridoxal 5'-phosphate-mediated reactions may have metabolic consequences in vivo that were previously unappreciated. The conservation of the RidA/YjgF family suggests that reactive enamine/imine metabolites are of concern to all organisms.

  6. Metabolism of acyl-lipids in Chlamydomonas reinhardtii.

    PubMed

    Li-Beisson, Yonghua; Beisson, Fred; Riekhof, Wayne

    2015-05-01

    Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.

  7. Novel deletion in a patient with an isolated peroxisoml acyl-CoA oxidase deficiency

    SciTech Connect

    Poll-The, B.T.; Fournier, B.; Clevers, H.; Wanders, R.J.A.

    1994-09-01

    Disorders with defective peroxisome assembly are associated with multiple peroxisomal enzymatic abnormalities. Besides these diseases patients have been described suspected of having a single enzyme defect in the peroxisomal {beta}-oxidation pathway. Laboratory findings for these patients include elevated plasma very long chain fatty acids (VLCFA) and impaired VLCFA oxidation in fibroblasts. Complementation analysis between these patients and those with a proven single enzyme deficiency, using peroxisomal {beta}-oxidation of VLCFA as the criterion for complementation, has been used to show whether the patients are deficient in acyl-CoA oxidase, peroxisomal trifunctional protein or thiolase activity. Fibroblasts from a patient showing the clinical and biochemical abnormalities of isolated acyl-CoA oxidase deficiency (using cell complementation) were analyzed at the molecular level. Isolation of RNA from patient`s fibroblasts was followed by random reverse transcription of RNA and PCR amplification. PCR products were blotted and hybridized with the human acyl-CoA oxidase cDNA. A fragment 150 bp shorter than normal was found. Upon sequencing, exon 7 was found to be deleted leading to a frameshift in the acyl-CoA oxidase mRNA. Southern blot analysis of the patient`s DNA did not reveal any deletion in contrast to two siblings previously reported as having a deletion of at least 17 kb in the acyl-CoA oxidase gene.

  8. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins.

    PubMed

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T; Goss, Rebecca J M; Field, Robert A; Osbourn, Anne

    2013-02-01

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.

  9. Theoretical study of enzymatic catalysis explains why the trapped covalent intermediate in the E303C mutant of glycosyltransferase GTB was not detected in the wild-type enzyme.

    PubMed

    Bobovská, Adela; Tvaroška, Igor; Kóňa, Juraj

    2015-01-01

    Hybrid quantum mechanics/molecular mechanics calculations were used to study the catalytic mechanism of the retaining human α-(1,3)-galactosyltransferase (GTBWT) and its E303C mutant (GTBE303C). Both backside (via covalent glycosyl-enzyme intermediate, CGEI) and frontside SNi-like mechanisms (via oxocarbenium-ion intermediate, OCII) were investigated. The calculations suggest that both mechanisms are feasible in the enzymatic catalysis. The nucleophilic attack of the acceptor substrate to the anomeric carbon of OCII is the rate-determining step with an overall reaction barrier (ΔE(‡) = 19.5 kcal mol(-1)) in agreement with an experimental rate constant (kcat = 5.1 s(-1)). A calculated α-secondary kinetic isotope effect (α-KIE) of 1.27 (GTBWT) and 1.26 (GTBE303C) predicts dissociative character of the transition state in agreement with experimentally measured α-KIE of other retaining glycosyltransferases. Remarkably, stable CGEI in GTBE303C compared with its counterpart in GTBWT may explain why the CGEI has been detected by mass spectrometry only in GTBE303C ( Soya N, Fang Y, Palcic MM, Klassen JS. 2011. Trapping and characterization of covalent intermediates of mutant retaining glycosyltransferases. Glycobiology, 21: 547-552). PMID:25138306

  10. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil

    SciTech Connect

    Triggiani, M.; D'Souza, D.M.; Chilton, F.H. )

    1991-04-15

    The biosynthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-2-acetyl-GPC) together with that of 1-alkyl-2-acetyl-GPC (platelet-activating factor) has been demonstrated in a variety of inflammatory cells and tissues. It has been hypothesized that the relative proportion of these phospholipids produced upon cell activation may be influenced by their rates of catabolism. We studied the catabolism of 1-acyl-2-acetyl-GPC in resting and activated human neutrophils and compared it to that of 1-alkyl-2-acetyl-GPC. Neutrophils rapidly catabolize both 1-alkyl-2-acetyl-GPC and 1-acyl-2-acetyl-GPC; however, the rate of catabolism of 1-acyl-2-acetyl-GPC is approximately 2-fold higher than that of 1-alkyl-2-acetyl-GPC. In addition, most of 1-acyl-2-acetyl-GPC is catabolized through a pathway different from that of 1-alkyl-2-acetyl-GPC. The main step in the catabolism of 1-acyl-2-acetyl-GPC is the removal of the long chain at the sn-1 position; the long chain residue is subsequently incorporated either into triglycerides or into phosphatidylcholine. The 1-lyso-2-acetyl-GPC formed in this reaction is then further degraded to glycerophosphocholine, choline, or phosphocholine. 1-Acyl-2-acetyl-GPC is also catabolized, to a lesser extent, through deacetylation at the sn-2 position and reacylation with a long chain fatty acid. Stimulation of neutrophils by A23187 results in a higher rate of catabolism of 1-acyl-2-acetyl-GPC by increasing both the removal of the long chain at the sn-1 position and the deacetylation-reacylation at the sn-2 position. In a broken cell preparation, the cytosolic fraction of the neutrophil was shown to contain an enzyme activity which cleaved the sn-1 position of 1-acyl-2-acetyl-GPC and 1-acyl-2-lyso-GPC but not of 1,2-diacyl-GPC.

  11. Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin.

    PubMed

    Xiong, Jian; Bhaskar, Ujjwal; Li, Guoyun; Fu, Li; Li, Lingyun; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2013-09-10

    Heparin is a critically important anticoagulant drug that is prepared from pig intestine. In 2007-2008, there was a crisis in the heparin market when the raw material was adulterated with the toxic polysaccharide, oversulfated chondroitin sulfate, which was associated with 100 deaths in the U.S. alone. As the result of this crisis, our laboratory and others have been actively pursuing alternative sources for this critical drug, including synthetic heparins and bioengineered heparin. In assessing the bioengineering processing costs it has become clear that the use of both enzyme-catalyzed cofactor recycling and enzyme immobilization will be needed for commercialization. In the current study, we examine the use of immobilization of C₅-epimerase and 2-O-sulfotransferase involved in the first enzymatic step in the bioengineered heparin process, as well as arylsulfotransferase-IV involved in cofactor recycling in all three enzymatic steps. We report the successful immobilization of all three enzymes and their use in converting N-sulfo, N-acetyl heparosan into N-sulfo, N-acetyl 2-O-sulfo heparin. PMID:23835156

  12. Stability-increasing effects of anthocyanin glycosyl acylation.

    PubMed

    Zhao, Chang-Ling; Yu, Yu-Qi; Chen, Zhong-Jian; Wen, Guo-Song; Wei, Fu-Gang; Zheng, Quan; Wang, Chong-De; Xiao, Xing-Lei

    2017-01-01

    This review comprehensively summarizes the existing knowledge regarding the chemical implications of anthocyanin glycosyl acylation, the effects of acylation on the stability of acylated anthocyanins and the corresponding mechanisms. Anthocyanin glycosyl acylation commonly refers to the phenomenon in which the hydroxyl groups of anthocyanin glycosyls are esterified by aliphatic or aromatic acids, which is synthetically represented by the acylation sites as well as the types and numbers of acyl groups. Generally, glycosyl acylation increases the in vitro and in vivo chemical stability of acylated anthocyanins, and the mechanisms primarily involve physicochemical, stereochemical, photochemical, biochemical or environmental aspects under specific conditions. Additionally, the acylation sites as well as the types and numbers of acyl groups influence the stability of acylated anthocyanins to different degrees. This review could provide insight into the optimization of the stability of anthocyanins as well as the application of suitable anthocyanins in food, pharmaceutical and cosmetic industries. PMID:27507456

  13. Acyl-acyl-carrier protein: lysomonogalactosyldiacylglycerol acyltransferase from the cyanobacterium Anabaena variabilis.

    PubMed

    Chen, H H; Wickrema, A; Jaworski, J G

    1988-12-16

    Membranes isolated from the cyanobacterium, Anabaena variabilis, and washed free of soluble endogenous constituents, were capable of catalyzing the direct transfer of the acyl group from acyl-acyl-carrier protein to an endogenous lysomonogalactosyldiacylglycerol to form monogalactosyldiacylglycerol. Other glycolipids including monoglucosyldiacylglycerol and digalactosyldiacylglycerol were not products of this reaction. The transfer was not dependent on any added cofactors. Palmitoyl-, stearoyl- and oleoyl-acyl-carrier protein were approximately equally active as substrates. Transfer was exclusively to the C-1 of the glycerol, as demonstrated by hydrolysis of all incorporated acyl groups by the lipase from Rhizopus arrhizus delamar. In addition to the single galactolipid, a second minor reaction product was free fatty acid, presumably due to hydrolysis of the acyl-acyl-carrier protein. Using a double-labelled [14C]acyl-[14C]acyl-carrier protein, the reaction was demonstrated to be a transfer reaction, rather than a simple exchange of acyl groups with endogenous monogalactosyldiacylglycerol. The transfer reaction mechanism was also confirmed by increasing activity with the addition of liposomes of lysomonogalactosyldiacylglycerol.

  14. Macrocyclic prolinyl acyl guanidines as inhibitors of β-secretase (BACE).

    PubMed

    Boy, Kenneth M; Guernon, Jason M; Wu, Yong-Jin; Zhang, Yunhui; Shi, Joe; Zhai, Weixu; Zhu, Shirong; Gerritz, Samuel W; Toyn, Jeremy H; Meredith, Jere E; Barten, Donna M; Burton, Catherine R; Albright, Charles F; Good, Andrew C; Grace, James E; Lentz, Kimberley A; Olson, Richard E; Macor, John E; Thompson, Lorin A

    2015-11-15

    The synthesis, evaluation, and structure-activity relationships of a class of acyl guanidines which inhibit the BACE-1 enzyme are presented. The prolinyl acyl guanidine chemotype (7c), unlike compounds of the parent isothiazole chemotype (1), yielded compounds with good agreement between their enzymatic and cellular potency as well as a reduced susceptibility to P-gp efflux. Further improvements in potency and P-gp ratio were realized via a macrocyclization strategy. The in vivo profile in wild-type mice and P-gp effects for the macrocyclic analog 21c is presented.

  15. A simple homogeneous scintillation proximity assay for acyl-coenzyme A:diacylglycerol acyltransferase.

    PubMed

    Seethala, Ramakrishna; Peterson, Tara; Dong, Jessica; Chu, Ching-Hsuen; Chen, Luping; Golla, Rajasree; Ma, Zhengping; Panemangalore, Reshma; Lawrence, R Michael; Cheng, Dong

    2008-12-15

    Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) is a key enzyme in triacylglycerol synthesis, and inhibiting this enzyme is a promising approach for treating obesity, type II diabetes, and dyslipidemia. There are two distinct DGAT enzymes: DGAT1 and DGAT2. The conventional assay for measuring DGAT activity is a thin layer chromatography (TLC) method, which is not amenable to screening a large number of compounds. To increase the throughput, we have developed a novel, homogeneous scintillation proximity assay (SPA) for DGAT. In this assay, when (3)H-labeled acyl-CoA is used as the acyl donor and diacylglycerol is used as the acyl acceptor, the (3)H-labeled triacylglycerol product formed in the reaction binds to polylysine SPA beads, producing a signal that is measured in a TopCount or LEADseeker. The apparent Michaelis-Menten kinetic parameters determined by this DGAT SPA method agreed well with the values determined with the conventional TLC assay. The statistical values also indicate that the DGAT SPA is a robust assay, with a Z' of more than 0.60 and a signal/background ratio of approximately 9. These results suggest that the current assay provides high-throughput capacity for the identification of DGAT inhibitors.

  16. Long chain acyl-CoA synthetases and other acyl activating enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper synthesis and breakdown of molecules containing carboxylic acids is a vital part of metabolism in all living organisms. Given the relatively inert chemical nature of many carboxylic acids, activation is a necessary step prior to use in the various anabolic and catabolic pathways that utilize...

  17. Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria.

    PubMed

    Carpenter, K; Pollitt, R J; Middleton, B

    1992-03-16

    We have purified to homogeneity the long-chain specific 3-hydroxyacyl-CoA dehydrogenase from mitochondrial membranes of human infant liver. The enzyme is composed of non-identical subunits of 71 kDa and 47 kDa within a native structure of 230 kDa. The pure enzyme is active with 3-ketohexanoyl-CoA and gives maximum activity with 3-ketoacyl-CoA substrates of C10 to C16 acyl-chain length but is inactive with acetoacetyl-CoA. In addition to 3-hydroxyacyl-CoA dehydrogenase activity, the enzyme possesses 2-enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase activities which cannot be separated from the dehydrogenase. None of these enzymes show activity with C4 substrates but all are active with C6 and longer acyl-chain length substrates. They are thus distinct from any described previously. This human liver mitochondrial membrane-bound enzyme catalyses the conversion of medium- and long-chain 2-enoyl-CoA compounds to: 1) 3-ketoacyl-CoA in the presence of NAD alone and 2) to acetyl-CoA (plus the corresponding acyl-CoA derivatives) in the presence of NAD and CoASH. It is therefore a multifunctional enzyme, resembling the beta-oxidation enzyme of E. coli, but unique in its membrane location and substrate specificity. We propose that its existence explains the repeated failure to detect any intermediates of mitochondrial beta-oxidation.

  18. A Liver-Specific Defect of Acyl-CoA Degradation Produces Hyperammonemia, Hypoglycemia and a Distinct Hepatic Acyl-CoA Pattern

    PubMed Central

    Gauthier, Nicolas; Wu, Jiang Wei; Wang, Shu Pei; Allard, Pierre; Mamer, Orval A.; Sweetman, Lawrence; Moser, Ann B.; Kratz, Lisa; Alvarez, Fernando; Robitaille, Yves; Lépine, François; Mitchell, Grant A.

    2013-01-01

    Most conditions detected by expanded newborn screening result from deficiency of one of the enzymes that degrade acyl-coenzyme A (CoA) esters in mitochondria. The role of acyl-CoAs in the pathophysiology of these disorders is poorly understood, in part because CoA esters are intracellular and samples are not generally available from human patients. We created a mouse model of one such condition, deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (HL), in liver (HLLKO mice). HL catalyses a reaction of ketone body synthesis and of leucine degradation. Chronic HL deficiency and acute crises each produced distinct abnormal liver acyl-CoA patterns, which would not be predictable from levels of urine organic acids and plasma acylcarnitines. In HLLKO hepatocytes, ketogenesis was undetectable. Carboxylation of [2-14C] pyruvate diminished following incubation of HLLKO hepatocytes with the leucine metabolite 2-ketoisocaproate (KIC). HLLKO mice also had suppression of the normal hyperglycemic response to a systemic pyruvate load, a measure of gluconeogenesis. Hyperammonemia and hypoglycemia, cardinal features of many inborn errors of acyl-CoA metabolism, occurred spontaneously in some HLLKO mice and were inducible by administering KIC. KIC loading also increased levels of several leucine-related acyl-CoAs and reduced acetyl-CoA levels. Ultrastructurally, hepatocyte mitochondria of KIC-treated HLLKO mice show marked swelling. KIC-induced hyperammonemia improved following administration of carglumate (N-carbamyl-L-glutamic acid), which substitutes for the product of an acetyl-CoA-dependent reaction essential for urea cycle function, demonstrating an acyl-CoA-related mechanism for this complication. PMID:23861731

  19. Protease-catalyzed peptide synthesis using inverse substrates: the influence of reaction conditions on the trypsin acyl transfer efficiency.

    PubMed

    Schellenberger, V; Jakubke, H D; Zapevalova, N P; Mitin, Y V

    1991-06-01

    Benzyloxycarbonyl-L-alanine p-guanidinophenyl ester behaves as a trypsin "inverse substrate," i.e., a cationic center is included in the leaving group instead of being in the acyl moiety. Using this substrate as an acyl donor, trypsin catalyzes the synthesis of peptide bonds that cannot be split by this enzyme. An optimal acyl transfer efficiency was achieved between pH 8 and 9 at 30 degrees C.The addition of as much as 50% cosolvent was shown to be of minor influence on the acyl transfer efficiency, whereas the reaction velocity decreases by more than one order of magnitude. The efficiency of H-Leu-NH(2) and H-Val-NH(2) in deacylation is almost the same for "inverse" and normal type substrates. PMID:18600704

  20. Antifibrotic Activity of Acylated and Unacylated Ghrelin

    PubMed Central

    Angelino, Elia; Reano, Simone; Ferrara, Michele; Agosti, Emanuela; Graziani, Andrea; Filigheddu, Nicoletta

    2015-01-01

    Fibrosis can affect almost all tissues and organs, it often represents the terminal stage of chronic diseases, and it is regarded as a major health issue for which efficient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers inflammatory response that, in turn, promotes fibroblast activation and pathological deposition of extracellular matrix. Acylated and unacylated ghrelin are the main products of the ghrelin gene. The acylated form, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH) release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several biological activities. Ghrelin peptides exhibit anti-inflammatory, antioxidative, and antiapoptotic activities, suggesting that they might represent an efficient approach to prevent or reduce fibrosis. The aim of this review is to summarize the available evidence regarding the effects of acylated and unacylated ghrelin on different pathologies and experimental models in which fibrosis is a predominant characteristic. PMID:25960743

  1. Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B.

    PubMed

    Martinelle, M; Hult, K

    1995-09-01

    The acyl transfer reactions catalysed by Candida antartica lipase B in organic media followed a bi-bi ping-pong mechanism, with competitive substrate inhibition by the alcohols used as acyl acceptors. The effect of organic solvents on Vm and Km was investigated. The Vm values in acetonitrile was 40-50% of those in heptane. High Km values in acetonitrile compared to those in heptane could partly be explained by an increased solvation of the substrates in acetonitrile. Substrate solvation caused a 10-fold change in substrate specificity, defined as (Vm/Km)ethyl octanoate/(Vm/Km)octanoic acid, going from heptane to acetonitrile. Deacylation was the rate determining step for the acyl transfer in heptane with vinyl- and ethyl octanoate as acyl donors and (R)-2-octanol as acyl acceptor. With 1-octanol, a rate determining deacylation step in heptane was indicated using the same acyl donors. Using 1-octanol as acceptor in heptane, S-ethyl thiooctanoate had a 25- to 30-fold lower Vm/Km value and vinyl octanoate a 4-fold higher Vm/Km value than that for ethyl octanoate. The difference showed to be a Km effect for vinyl octanoate and mainly a Km effect for S-ethyl thiooctanoate. The Vm values of the esterification of octanoic acid with different alcohols was 10-30-times lower than those for the corresponding transesterification of ethyl octanoate. The low activity could be explained by a low pH around the enzyme caused by the acid or a withdrawing of active enzyme by nonproductive binding by the acid. PMID:7669809

  2. Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B.

    PubMed

    Martinelle, M; Hult, K

    1995-09-01

    The acyl transfer reactions catalysed by Candida antartica lipase B in organic media followed a bi-bi ping-pong mechanism, with competitive substrate inhibition by the alcohols used as acyl acceptors. The effect of organic solvents on Vm and Km was investigated. The Vm values in acetonitrile was 40-50% of those in heptane. High Km values in acetonitrile compared to those in heptane could partly be explained by an increased solvation of the substrates in acetonitrile. Substrate solvation caused a 10-fold change in substrate specificity, defined as (Vm/Km)ethyl octanoate/(Vm/Km)octanoic acid, going from heptane to acetonitrile. Deacylation was the rate determining step for the acyl transfer in heptane with vinyl- and ethyl octanoate as acyl donors and (R)-2-octanol as acyl acceptor. With 1-octanol, a rate determining deacylation step in heptane was indicated using the same acyl donors. Using 1-octanol as acceptor in heptane, S-ethyl thiooctanoate had a 25- to 30-fold lower Vm/Km value and vinyl octanoate a 4-fold higher Vm/Km value than that for ethyl octanoate. The difference showed to be a Km effect for vinyl octanoate and mainly a Km effect for S-ethyl thiooctanoate. The Vm values of the esterification of octanoic acid with different alcohols was 10-30-times lower than those for the corresponding transesterification of ethyl octanoate. The low activity could be explained by a low pH around the enzyme caused by the acid or a withdrawing of active enzyme by nonproductive binding by the acid.

  3. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  4. sup 15 N and sup 13 C NMR studies of ligands bound to the 280,000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate

    SciTech Connect

    Jaffe, E.K.; Rajagopalan, J.S. ); Markham, G.D. )

    1990-09-11

    Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through {sup 13}C and {sup 15}N NMR. The authors knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by {sup 13}C or {sup 15}N NMR. Here they extend their {sup 13}C NMR studies to PBGS complexes with (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA and report {sup 15}N NMR studies of ({sup 15}N)ALA bound to PBGS. As in their previous {sup 13}C NMR studies, observation of enzyme-bound {sup 15}N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pK{sub a} is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent. For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C{sub 4} of ALA and an active-site lysine. The {sup 13}C chemical shift of (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between ({sup 15}N)ALA and hydrazine or hydroxylamine, the {sup 15}N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C{sub 4} of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.

  5. Reductive Elimination of H2 Activates Nitrogenase to Reduce the N≡N Triple Bond: Characterization of the E4(4H) Janus Intermediate in Wild-Type Enzyme.

    PubMed

    Lukoyanov, Dmitriy; Khadka, Nimesh; Yang, Zhi-Yong; Dean, Dennis R; Seefeldt, Lance C; Hoffman, Brian M

    2016-08-24

    We proposed a reductive elimination/oxidative addition (re/oa) mechanism for reduction of N2 to 2NH3 by nitrogenase, based on identification of a freeze-trapped intermediate of the α-70(Val→Ile) MoFe protein as the Janus intermediate that stores four reducing equivalents on FeMo-co as two [Fe-H-Fe] bridging hydrides (denoted E4(4H)). The mechanism postulates that obligatory re of the hydrides as H2 drives reduction of N2 to a state (denoted E4(2N2H)) with a moiety at the diazene (HN═NH) reduction level bound to the catalytic FeMo-co. EPR/ENDOR/photophysical measurements on wild type (WT) MoFe protein now establish this mechanism. They show that a state freeze-trapped during N2 reduction by WT MoFe is the same Janus intermediate, thereby establishing the α-70(Val→Ile) intermediate as a reliable guide to mechanism. Monitoring the Janus state in WT MoFe during N2 reduction under mixed-isotope condition, H2O buffer/D2, and the converse, establishes that the bridging hydrides/deuterides do not exchange with solvent during enzymatic turnover, thereby solving longstanding puzzles. Relaxation of E4(2N2H) to the WT resting-state is shown to occur via oa of H2 and release of N2 to form Janus, followed by sequential release of two H2, demonstrating the kinetic reversibility of the re/oa equilibrium. Relative populations of E4(2N2H)/E4(4H) freeze-trapped during WT turnover furthermore show that the reversible re/oa equilibrium between [E4(4H) + N2] and [E4(2N2H) + H2] is ∼ thermoneutral (ΔreG(0) ∼ -2 kcal/mol), whereas, by itself, hydrogenation of N2(g) is highly endergonic. These findings demonstrate that (i) re/oa accounts for the historical Key Constraints on mechanism, (ii) that Janus is central to N2 reduction by WT enzyme, which (iii) indeed occurs via the re/oa mechanism. Thus, emerges a picture of the central mechanistic steps by which nitrogenase carries out one of the most challenging chemical transformations in biology. PMID:27529724

  6. Purification and characterization of a novel pumpkin short-chain acyl-coenzyme A oxidase with structural similarity to acyl-coenzyme A dehydrogenases.

    PubMed

    De Bellis, L; Gonzali, S; Alpi, A; Hayashi, H; Hayashi, M; Nishimura, M

    2000-05-01

    A novel pumpkin (Cucurbita pepo) short-chain acyl-coenzyme A (CoA) oxidase (ACOX) was purified to homogeneity by hydrophobic-interaction, hydroxyapatite, affinity, and anion-exchange chromatography. The purified enzyme is a tetrameric protein, consisting of apparently identical 47-kD subunits. The protein structure of this oxidase differs from other plant and mammalian ACOXs, but is similar to the protein structure of mammalian mitochondrial acyl-CoA dehydrogenase (ACDH) and the recently identified plant mitochondrial ACDH. Subcellular organelle separation by sucrose density gradient centrifugation revealed that the enzyme is localized in glyoxysomes, whereas no immunoreactive bands of similar molecular weight were detected in mitochondrial fractions. The enzyme selectively catalyzes the oxidation of CoA esters of fatty acids with 4 to 10 carbon atoms, and exhibits the highest activity on C-6 fatty acids. Apparently, the enzyme has no activity on CoA esters of branched-chain or dicarboxylic fatty acids. The enzyme is slightly inhibited by high concentrations of substrate and it is not inhibited by Triton X-100 at concentrations up to 0.5% (v/v). The characteristics of this novel ACOX enzyme are discussed in relation to other ACOXs and ACDHs. PMID:10806249

  7. Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism.

    PubMed

    Pougovkina, Olga; Te Brinke, Heleen; Wanders, Ronald J A; Houten, Sander M; de Boer, Vincent C J

    2014-09-01

    Inherited disorders of acyl-CoA metabolism, such as defects in amino acid metabolism and fatty acid oxidation can present with severe clinical symptoms either neonatally or later in life, but the pathophysiological mechanisms are often incompletely understood. We now report the discovery of a novel biochemical mechanism that could contribute to the pathophysiology of these disorders. We identified increased protein lysine butyrylation in short-chain acyl-CoA dehydrogenase (SCAD) deficient mice as a result of the accumulation of butyryl-CoA. Similarly, in SCAD deficient fibroblasts, lysine butyrylation was increased. Furthermore, malonyl-CoA decarboxylase (MCD) deficient patient cells had increased levels of malonylated lysines and propionyl-CoA carboxylase (PCC) deficient patient cells had increased propionylation of lysines. Since lysine acylation can greatly impact protein function, aberrant lysine acylation in inherited disorders associated with acyl-CoA accumulation may well play a role in their disease pathophysiology. PMID:24531926

  8. Microbial Tailoring of Acyl Peptidic Siderophores

    PubMed Central

    2015-01-01

    Marine bacteria produce an abundance of suites of acylated siderophores characterized by a unique, species-dependent headgroup that binds iron(III) and one of a series of fatty acid appendages. Marinobacter sp. DS40M6 produces a suite of seven acylated marinobactins, with fatty acids ranging from saturated and unsaturated C12–C18 fatty acids. In the present study, we report that in the late log phase of growth, the fatty acids are hydrolyzed by an amide hydrolase producing the peptidic marinobactin headgroup. Halomonas aquamarina str. DS40M3, another marine bacterium isolated originally from the same sample of open ocean water as Marinobacter sp. DS40M6, produces the acyl aquachelins, also as a suite composed of a peptidic headgroup distinct from that of the marinobactins. In contrast to the acyl marinobactins, hydrolysis of the suite of acyl aquachelins is not detected, even when H. aquamarina str. DS40M3 is grown into the stationary phase. The Marinobacter cell-free extract containing the acyl amide hydrolase is active toward exogenous acyl-peptidic siderophores (e.g., aquachelin C, loihichelin C, as well as octanoyl homoserine lactone used in quorum sensing). Further, when H. aquamarina str. DS40M3 is cultured together with Marinobacter sp. DS40M6, the fatty acids of both suites of siderophores are hydrolyzed, and the aquachelin headgroup is also produced. The present study demonstrates that coculturing bacteria leads to metabolically tailored metabolites compared to growth in a single pure culture, which is interesting given the importance of siderophore-mediated iron acquisition for bacterial growth and that Marinobacter sp. DS40M6 and H. aquamarina str. DS40M3 were isolated from the same sample of seawater. PMID:24735218

  9. Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus.

    PubMed

    Alves-Bezerra, Michele; Klett, Eric L; De Paula, Iron F; Ramos, Isabela B; Coleman, Rosalind A; Gondim, Katia C

    2016-07-01

    Long-chain acyl-CoA esters are important intermediates in lipid metabolism and are synthesized from fatty acids by long-chain acyl-CoA synthetases (ACSL). The hematophagous insect Rhodnius prolixus, a vector of Chagas' disease, produces glycerolipids in the midgut after a blood meal, which are stored as triacylglycerol in the fat body and eggs. We identified twenty acyl-CoA synthetase genes in R. prolixus, two encoding ACSL isoforms (RhoprAcsl1 and RhoprAcsl2). RhoprAcsl1 transcripts increased in posterior midgut on the second day after feeding, and RhoprAcsl2 was highly transcribed on the tenth day. Both enzymes were expressed in Escherichia coli. Recombinant RhoprACSL1 and RhoprACSL2 had broad pH optima (7.5-9.5 and 6.5-9.5, respectively), were inhibited by triacsin C, and were rosiglitazone-insensitive. Both showed similar apparent Km for palmitic and oleic acid (2-6 μM), but different Km for arachidonic acid (0.5 and 6 μM for RhoprACSL1-Flag and RhoprACSL2-Flag, respectively). The knockdown of RhoprAcsl1 did not result in noticeable phenotypes. However, RhoprACSL2 deficient insects exhibited a 2.5-fold increase in triacylglycerol content in the fat body, and 90% decrease in fatty acid β-oxidation. RhoprAcsl2 knockdown also resulted in 20% increase in lifespan, delayed digestion, 30% reduced oviposition, and 50% reduction in egg hatching. Laid eggs and hatched nymphs showed remarkable alterations in morphology. In summary, R. prolixus ACSL isoforms have distinct roles on lipid metabolism. Although RhoprACSL1 functions remain unclear, we propose that RhoprACSL2 is the main contributor for the formation of the intracellular acyl-CoA pool channeled for β-oxidation in the fat body, and is also required for normal reproduction. PMID:27091636

  10. Remodeling of host phosphatidylcholine by Chlamydia acyltransferase is regulated by acyl-CoA binding protein ACBD6 associated with lipid droplets

    PubMed Central

    Soupene, Eric; Wang, Derek; Kuypers, Frans A

    2015-01-01

    The bacterial human pathogen Chlamydia trachomatis invades cells as an infectious elementary body (EB). The EB is internalized into a vacuole that is hidden from the host defense mechanism, and is modified to sustain the development of the replicative reticulate body (RB). Inside this parasitophorous compartment, called the inclusion, the pathogen survives supported by an active exchange of nutrients and proteins with the host cell. We show that host lipids are scavenged and modified into bacterial-specific lipids by the action of a shared human-bacterial acylation mechanism. The bacterial acylating enzymes for the essential lipids 1-acyl-sn-glycerol 3-phosphate and 1-acyl-sn-phosphatidylcholine were identified as CT453 and CT775, respectively. Bacterial CT775 was found to be associated with lipid droplets (LDs). During the development of C. trachomatis, the human acyl-CoA carrier hACBD6 was recruited to cytosolic LDs and translocated into the inclusion. hACBD6 protein modulated the activity of CT775 in an acyl-CoA dependent fashion and sustained the activity of the bacterial acyltransferase by buffering the concentration of acyl-CoAs. We propose that disruption of the binding activity of the acyl-CoA carrier might represent a new drug-target to prevent growth of C. trachomatis. PMID:25604091

  11. Acylation and deacylation mechanism of Helicobacter pylori AmiF formamidase: A computational DFT study

    NASA Astrophysics Data System (ADS)

    He, Rongxing; Yang, Qinlei; Li, Ming

    2014-04-01

    The acylation and deacylation mechanisms of Helicobacter pylori AmiF formamidase were investigated using DFT method. In the constructed active site, residues Glu60, Glu141 and His167 were taken into account besides Lys133 and Cys166. Calculations provided insight on the details of mechanism and explained crucial roles played by Glu60, Glu141 and His167. For acetylation, we proposed a new stepwise mechanism in which the thiol group first attacks the carbon atom of formamide and produces tetrahedral intermediate. In deacylation, Glu60 activates a water molecule to perform nucleophilic attack and then forms an intermediate, which is different from the usually suggested mechanism.

  12. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis

    PubMed Central

    Nguyen, Chi; Haushalter, Robert W.; Lee, D. John; Markwick, Phineus R. L.; Bruegger, Joel; Caldara-Festin, Grace; Finzel, Kara; Jackson, David R.; Ishikawa, Fumihiro; O’Dowd, Bing; McCammon, J. Andrew; Opella, Stanley J.; Tsai, Shiou-Chuan; Burkart, Michael D.

    2015-01-01

    Acyl carrier protein (ACP) transports the growing fatty acid chain between enzyme domains of fatty acid synthase (FAS) during biosynthesis.1 Because FAS enzymes operate upon ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain.2 The transient nature of ACP-enzyme interactions imposes a major obstacle to gaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to properly study protein-protein interactions. In this work, we describe the application of a mechanism-based probe that allows site-selective covalent crosslinking of AcpP to FabA, the E. coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase. We report the 1.9 Å crystal structure of the crosslinked AcpP=FabA complex as a homo-dimer, in which AcpP exhibits two different conformations likely representing snapshots of ACP in action: the 4′-phosphopantetheine (PPant) group of AcpP first binds an arginine-rich groove of FabA, followed by an AcpP helical conformational change that locks the AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution NMR techniques, including chemical shift perturbations and RDC measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. Combined with molecular dynamics simulations, we show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies will prove general for fatty acid, polyketide and non-ribosomal biosyntheses. Here the foundation is laid for defining the dynamic action of carrier protein activity in primary and secondary metabolism, providing insight into pathways that can play major roles in the treatment of cancer, obesity and infectious

  13. Visible-light-promoted iminyl-radical formation from acyl oximes: a unified approach to pyridines, quinolines, and phenanthridines.

    PubMed

    Jiang, Heng; An, Xiaode; Tong, Kun; Zheng, Tianyi; Zhang, Yan; Yu, Shouyun

    2015-03-23

    A unified strategy involving visible-light-induced iminyl-radical formation has been established for the construction of pyridines, quinolines, and phenanthridines from acyl oximes. With fac-[Ir(ppy)3 ] as a photoredox catalyst, the acyl oximes were converted by 1 e(-) reduction into iminyl radical intermediates, which then underwent intramolecular homolytic aromatic substitution (HAS) to give the N-containing arenes. These reactions proceeded with a broad range of substrates at room temperature in high yield. This strategy of visible-light-induced iminyl-radical formation was successfully applied to a five-step concise synthesis of benzo[c]phenanthridine alkaloids.

  14. Testosterone induction of microsomal acyl-CoA reductase and a cytosolic regulatory protein in mouse preputial glands.

    PubMed

    Lee, T C; Kirk, P; Snyder, F

    1986-01-01

    Alkyl and alk-1-enyl (plasmalogens) ether-linked glycerolipids are prominent components of many mammalian cells; moreover, an acetylated form of an alkyl phospholipid was recently found to possess potent hypotensive, inflammatory and allergic properties. In our studies, preputial glands of mice were selected as a model to investigate the regulation of factors involved in the biosynthesis of ether-linked lipids, since these glands contain high concentrations of ether-linked neutral lipids that are under the influence of hormonal control. We found that a key enzyme in the ether-lipid metabolic pathway, microsomal acyl-CoA reductase that catalyzes the formation of long-chain fatty alcohols (precursor of the O-alkyl chain), was increased 16-fold after injecting testosterone into male, castrated mice. This induction was highly specific, since testosterone did not affect another microsomal enzyme, NADPH-cytochrome c reductase. Based on kinetics of enzyme activity changes, the half-life of acyl-CoA reductase was calculated to be 61-70 h. In addition, the activity of a cytosolic stimulatory protein for the acyl-CoA reductase (but not for a different cytosolic protein, lactate dehydrogenase) was also enhanced in the testosterone-treated, male, castrated mice. These findings indicate that acyl-CoA reductase is an important regulatory enzyme in the reactions that lead to the formation of the ether bond in glycerolipids and that it is modulated through hormonal control. PMID:3940533

  15. Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies

    PubMed Central

    Ogo, Yuko; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Takaiwa, Fumio

    2016-01-01

    Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20–40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances. PMID:26438413

  16. Isolation of Acyl-CoA:cholesterol acyltransferase inhibitor from Persicaria vulgaris.

    PubMed

    Song, Hye Young; Rho, Mun-Chual; Lee, Seung Woong; Kwon, Oh Eok; Chang, Young-Duck; Lee, Hyun Sun; Kim, Young-Kook

    2002-09-01

    In the course of our search for Acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors from natural sources, a new type of ACAT inhibitor was isolated from the methanol extract of Persicaria vulgaris. On the basis of spectral evidence, the structure of the active compound was identified as pheophorbide A. Pheophorbide A inhibited ACAT activity with an IC 50 value of 1.1 microg/ml in an enzyme assay using rat liver microsomes with a dose dependent fashion. PMID:12357403

  17. Sticky swinging arm dynamics: studies of an acyl carrier protein domain from the mycolactone polyketide synthase

    PubMed Central

    Vance, Steven; Tkachenko, Olga; Thomas, Ben; Bassuni, Mona; Hong, Hui; Nietlispach, Daniel; Broadhurst, William

    2016-01-01

    Type I modular polyketide synthases (PKSs) produce polyketide natural products by passing a growing acyl substrate chain between a series of enzyme domains housed within a gigantic multifunctional polypeptide assembly. Throughout each round of chain extension and modification reactions, the substrate stays covalently linked to an acyl carrier protein (ACP) domain. In the present study we report on the solution structure and dynamics of an ACP domain excised from MLSA2, module 9 of the PKS system that constructs the macrolactone ring of the toxin mycolactone, cause of the tropical disease Buruli ulcer. After modification of apo ACP with 4′-phosphopantetheine (Ppant) to create the holo form, 15N nuclear spin relaxation and paramagnetic relaxation enhancement (PRE) experiments suggest that the prosthetic group swings freely. The minimal chemical shift perturbations displayed by Ppant-attached C3 and C4 acyl chains imply that these substrate-mimics remain exposed to solvent at the end of a flexible Ppant arm. By contrast, hexanoyl and octanoyl chains yield much larger chemical shift perturbations, indicating that they interact with the surface of the domain. The solution structure of octanoyl-ACP shows the Ppant arm bending to allow the acyl chain to nestle into a nonpolar pocket, whereas the prosthetic group itself remains largely solvent exposed. Although the highly reduced octanoyl group is not a natural substrate for the ACP from MLSA2, similar presentation modes would permit partner enzyme domains to recognize an acyl group while it is bound to the surface of its carrier protein, allowing simultaneous interactions with both the substrate and the ACP. PMID:26920023

  18. Diacylglycerol Kinase ϵ Is Selective for Both Acyl Chains of Phosphatidic Acid or Diacylglycerol*

    PubMed Central

    Lung, Michael; Shulga, Yulia V.; Ivanova, Pavlina T.; Myers, David S.; Milne, Stephen B.; Brown, H. Alex; Topham, Matthew K.; Epand, Richard M.

    2009-01-01

    The phosphatidylinositol (PI) cycle mediates many cellular events by controlling the metabolism of many lipid second messengers. Diacylglycerol kinase ϵ (DGKϵ) has an important role in this cycle. DGKϵ is the only DGK isoform to show inhibition by its product phosphatidic acid (PA) as well as substrate specificity for sn-2 arachidonoyl-diacylglycerol (DAG). Here, we show that this inhibition and substrate specificity are both determined by selectivity for a combination of the sn-1 and sn-2 acyl chains of PA or DAG, respectively, preferring the most prevalent acyl chain composition of lipids involved specifically in the PI cycle, 1-stearoyl-2-arachidonoyl. Although the difference in rate for closely related lipid species is small, there is a significant enrichment of 1-stearoyl-2-arachidonoyl PI because of the cyclical nature of PI turnover. We also show that the inhibition of DGKϵ by PA is competitive and that the deletion of the hydrophobic segment and cationic cluster of DGKϵ does not affect its selectivity for the acyl chains of PA or DAG. Thus, this active site not only recognizes the lipid headgroup but also a combination of the two acyl chains in PA or DAG. We propose a mechanism of DGKϵ regulation where its dual acyl chain selectivity is used to negatively regulate its enzymatic activity in a manner that ensures DGKϵ remains committed to the PI turnover cycle. This novel mechanism of enzyme regulation within a signaling pathway could serve as a template for the regulation of enzymes in other pathways in the cell. PMID:19744926

  19. Acylation in trypanosomatids: an essential process and potential drug target

    PubMed Central

    Goldston, Amanda M.; Sharma, Aabha I.; Paul, Kimberly S.; Engman, David M.

    2014-01-01

    Fatty acylation—the addition of fatty acid moieties such as myristate and palmitate to proteins—is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their cellular targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of trypanocidal drugs. PMID:24954795

  20. Identification of N-Acyl Phosphatidylserine Molecules in Eukaryotic Cells

    PubMed Central

    Guan, Ziqiang; Li, Shengrong; Smith, Dale C.; Shaw, Walter A.; Raetz, Christian R. H.

    2008-01-01

    While profiling the lipidome of the mouse brain by mass spectrometry, we discovered a novel family of N-acyl phosphatidylserine (N-acyl-PS) molecules. These N-acyl-PS species were enriched by DEAE-cellulose column chromatography, and they were then characterized by accurate mass measurements, tandem mass spectrometry, liquid chromatography/mass spectrometry, and comparison to an authentic standard. Mouse brain N-acyl-PS molecules are heterogeneous and constitute about 0.1 % of the total lipid. In addition to various ester-linked fatty acyl chains on their glycerol backbones, the complexity of the N-acyl-PS series is further increased by the presence of diverse amide-linked N-acyl chains, which include saturated, mono-unsaturated and poly-unsaturated species. N-acyl-PS molecular species were also detected in the lipids of pig brain, mouse RAW264.7 macrophage tumor cells and yeast, but not E. coli. N-acyl-PSs may be biosynthetic precursors of N-acyl serine molecules, such as the recently reported signaling lipid N-arachidonoyl serine from bovine brain. We suggest that a phospholipase D might cleave N-acyl-PS to generate N-acyl serine, in analogy to the biosynthesis of the endocannabinoid N-arachidonoyl ethanolamine (anadamide) from N-arachidonoyl phosphatidylethanolamine. PMID:18031065

  1. Early lignin pathway enzymes and routes to chlorogenic acid in switchgrass (Panicum virgatum L.).

    PubMed

    Escamilla-Treviño, Luis L; Shen, Hui; Hernandez, Timothy; Yin, Yanbin; Xu, Ying; Dixon, Richard A

    2014-03-01

    Studying lignin biosynthesis in Panicum virgatum (switchgrass) has provided a basis for generating plants with reduced lignin content and increased saccharification efficiency. Chlorogenic acid (CGA, caffeoyl quinate) is the major soluble phenolic compound in switchgrass, and the lignin and CGA biosynthetic pathways potentially share intermediates and enzymes. The enzyme hydroxycinnamoyl-CoA: quinate hydroxycinnamoyltransferase (HQT) is responsible for CGA biosynthesis in tobacco, tomato and globe artichoke, but there are no close orthologs of HQT in switchgrass or in other monocotyledonous plants with complete genome sequences. We examined available transcriptomic databases for genes encoding enzymes potentially involved in CGA biosynthesis in switchgrass. The protein products of two hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT) genes (PvHCT1a and PvHCT2a), closely related to lignin pathway HCTs from other species, were characterized biochemically and exhibited the expected HCT activity, preferring shikimic acid as acyl acceptor. We also characterized two switchgrass coumaroyl shikimate 3'-hydroxylase (C3'H) enzymes (PvC3'H1 and PvC3'H2); both of these cytochrome P450s had the capacity to hydroxylate 4-coumaroyl shikimate or 4-coumaroyl quinate to generate caffeoyl shikimate or CGA. Another switchgrass hydroxycinnamoyl transferase, PvHCT-Like1, is phylogenetically distant from HCTs or HQTs, but exhibits HQT activity, preferring quinic acid as acyl acceptor, and could therefore function in CGA biosynthesis. The biochemical features of the recombinant enzymes, the presence of the corresponding activities in plant protein extracts, and the expression patterns of the corresponding genes, suggest preferred routes to CGA in switchgrass.

  2. Synthesis of novel MMT/acyl-protected nucleo alanine monomers for the preparation of DNA/alanyl-PNA chimeras

    PubMed Central

    Roviello, G. N.; Gröschel, S.; Pedone, C.

    2009-01-01

    Alanyl-peptide nucleic acid (alanyl-PNA)/DNA chimeras are oligomers envisaged to be beneficial in efficient DNA diagnostics based on an improved molecular beacon concept. A synthesis of alanyl-PNA/DNA chimera can be based on the solid phase assembly of the oligomer with mixed oligonucleotide/peptide backbone under DNA synthesis conditions, in which the nucleotides are introduced as phosphoramidites, whereas the nucleo amino acids make use of the acid labile monomethoxytrityl (MMT) group for temporary protection of the α-amino groups and acyl protecting groups for the exocyclic amino functions of the nucleobases. In this work, we realized for the first time the synthesis of all four MMT/acyl-protected nucleo alanines, achieved by deprotection/reprotection of the newly synthesized Boc/acyl intermediates, useful monomers for the obtainment of (alanyl-PNA)/DNA chimeras by conditions fully compatible with the standard phosphoramidite DNA synthesis strategy. PMID:19629638

  3. Synthesis of novel MMT/acyl-protected nucleo alanine monomers for the preparation of DNA/alanyl-PNA chimeras.

    PubMed

    Roviello, G N; Gröschel, S; Pedone, C; Diederichsen, U

    2010-05-01

    Alanyl-peptide nucleic acid (alanyl-PNA)/DNA chimeras are oligomers envisaged to be beneficial in efficient DNA diagnostics based on an improved molecular beacon concept. A synthesis of alanyl-PNA/DNA chimera can be based on the solid phase assembly of the oligomer with mixed oligonucleotide/peptide backbone under DNA synthesis conditions, in which the nucleotides are introduced as phosphoramidites, whereas the nucleo amino acids make use of the acid labile monomethoxytrityl (MMT) group for temporary protection of the alpha-amino groups and acyl protecting groups for the exocyclic amino functions of the nucleobases. In this work, we realized for the first time the synthesis of all four MMT/acyl-protected nucleo alanines, achieved by deprotection/reprotection of the newly synthesized Boc/acyl intermediates, useful monomers for the obtainment of (alanyl-PNA)/DNA chimeras by conditions fully compatible with the standard phosphoramidite DNA synthesis strategy.

  4. Structure of YciA from Haemophilus influenzae (HI0827), a Hexameric Broad Specificity Acyl-Coenzyme A Thioesterase

    SciTech Connect

    Willis, Mark A.; Zhuang, Zhihao; Song, Feng; Howard, Andrew; Dunaway-Mariano, Debra; Herzberg, Osnat

    2008-04-02

    The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated 'hypothetical protein' in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase 'hot dog' fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupied by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.

  5. The role of intermediates in mitochondrial fatty acid oxidation.

    PubMed Central

    Stanley, K K; Tubbs, P K

    1975-01-01

    1. Rat liver mitochondria oxidizing [16-14C]palmitoylcarnitine accumulate saturated long-chain thiester intermediates which may be detected by radio-g.1.c.2. Time-courses of intermediate accumulation display no product-precursor relationships and the end product, measured as [14C]citrate, is produced without a detectable initial lag. 3. A short pulse of [16-14C]palmitoylcarnitine followed by unlabelled palmitoylcarnitine showed that the observed intermediates(at least in the greater part)were not the direct precursors of [14C]citrate. 4. The quantity of saturated intermediates depended on the total accumulated flux of acyl units through the pathway provided that some mitochondrial CoA and unused substrate remained. 5. In the presence of rotenone and carnitine, 2-unsaturated, 3-unsaturated and 3-hydroxy intermediates were formed as well as saturated intermediates... PMID:1201010

  6. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress.

    PubMed

    Vu, Hieu Sy; Roth, Mary R; Tamura, Pamela; Samarakoon, Thilani; Shiva, Sunitha; Honey, Samuel; Lowe, Kaleb; Schmelz, Eric A; Williams, Todd D; Welti, Ruth

    2014-04-01

    Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG (galactose-acylated monogalactosyldiacylglycerol) depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses. PMID:24286212

  7. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    PubMed Central

    Rodríguez-Durán, Luis V.; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme. PMID:21941633

  8. Acylated but not des-acyl ghrelin is neuroprotective in an MPTP mouse model of Parkinson's disease.

    PubMed

    Bayliss, Jacqueline A; Lemus, Moyra; Santos, Vanessa V; Deo, Minh; Elsworth, John D; Andrews, Zane B

    2016-05-01

    The gut hormone ghrelin is widely beneficial in many disease states. However, ghrelin exists in two distinctive isoforms, each with its own metabolic profile. In Parkinson's Disease (PD) acylated ghrelin administration is neuroprotective, however, the role of des-acylated ghrelin remains unknown. In this study, we wanted to identify the relative contribution each isoform plays using the MPTP model of PD. Chronic administration of acylated ghrelin in mice lacking both isoforms of ghrelin (Ghrelin KO) attenuated the MPTP-induced loss on tyrosine hydroxylase (TH) neuronal number and volume and TH protein expression in the nigrostriatal pathway. Moreover, acylated ghrelin reduced the increase in glial fibrillary acidic protein and Ionized calcium binding adaptor molecule 1 microglia in the substantia nigra. However, injection of acylated ghrelin also elevated plasma des-acylated ghrelin, indicating in vivo deacetylation. Next, we chronically administered des-acylated ghrelin to Ghrelin KO mice and observed no neuroprotective effects in terms of TH cell number, TH protein expression, glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 cell number. The lack of a protective effect was mirrored in ghrelin-O-acyltransferase KO mice, which lack the ability to acylate ghrelin and consequently these mice have chronically increased plasma des-acyl ghrelin. Plasma corticosterone was elevated in ghrelin-O-acyltransferase KO mice and with des-acylated ghrelin administration. Overall, our studies suggest that acylated ghrelin is the isoform responsible for in vivo neuroprotection and that pharmacological approaches preventing plasma conversion from acyl ghrelin to des-acyl ghrelin may have clinical efficacy to help slow or prevent the debilitating effects of PD. Ghrelin exists in the plasma as acyl and des-acyl ghrelin. We determined the form responsible for in vivo neuroprotection in a mouse model of Parkinson's disease. Although exogenous acyl ghrelin

  9. Two Clades of Type-1 Brassica napus Diacylglycerol Acyltransferase Exhibit Differences in Acyl-CoA Preference.

    PubMed

    Greer, Michael S; Pan, Xue; Weselake, Randall J

    2016-06-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to produce triacylglycerol, which is the main component of the seed oil of Brassica oilseed species. Phylogenetic analysis of the amino acid sequences encoded by four transcriptionally active DGAT1 genes from Brassica napus suggests that the gene forms diverged over time into two clades (I and II), with representative members in each genome (A and C). The majority of the amino acid sequence differences in these forms of DGAT1, however, reside outside of motifs suggested to be involved in catalysis. Despite this, the clade II enzymes displayed a significantly enhanced preference for linoleoyl-CoA when assessed using in-vitro enzyme assays with yeast microsomes containing recombinant enzyme forms. These findings contribute to our understanding of triacylglycerol biosynthesis in B. napus, and may advance our ability to engineer DGAT1s with desired substrate selectivity properties. PMID:27138895

  10. Acyl Coenzyme A Thioesterase Them5/Acot15 Is Involved in Cardiolipin Remodeling and Fatty Liver Development

    PubMed Central

    Gut, Heinz; Hynx, Debby; Marcellin, David; Bleck, Christopher K. E.; Genoud, Christel; Cron, Peter; Keusch, Jeremy J.; Dummler, Bettina; Esposti, Mauro Degli

    2012-01-01

    Acyl coenzyme A (acyl-CoA) thioesterases hydrolyze thioester bonds in acyl-CoA metabolites. The majority of mammalian thioesterases are α/β-hydrolases and have been studied extensively. A second class of Hotdog-fold enzymes has been less well described. Here, we present a structural and functional analysis of a new mammalian mitochondrial thioesterase, Them5. Them5 and its paralog, Them4, adopt the classical Hotdog-fold structure and form homodimers in crystals. In vitro, Them5 shows strong thioesterase activity with long-chain acyl-CoAs. Loss of Them5 specifically alters the remodeling process of the mitochondrial phospholipid cardiolipin. Them5−/− mice show deregulation of lipid metabolism and the development of fatty liver, exacerbated by a high-fat diet. Consequently, mitochondrial morphology is affected, and functions such as respiration and β-oxidation are impaired. The novel mitochondrial acyl-CoA thioesterase Them5 has a critical and specific role in the cardiolipin remodeling process, connecting it to the development of fatty liver and related conditions. PMID:22586271

  11. Acyl coenzyme A thioesterase Them5/Acot15 is involved in cardiolipin remodeling and fatty liver development.

    PubMed

    Zhuravleva, Elena; Gut, Heinz; Hynx, Debby; Marcellin, David; Bleck, Christopher K E; Genoud, Christel; Cron, Peter; Keusch, Jeremy J; Dummler, Bettina; Esposti, Mauro Degli; Hemmings, Brian A

    2012-07-01

    Acyl coenzyme A (acyl-CoA) thioesterases hydrolyze thioester bonds in acyl-CoA metabolites. The majority of mammalian thioesterases are α/β-hydrolases and have been studied extensively. A second class of Hotdog-fold enzymes has been less well described. Here, we present a structural and functional analysis of a new mammalian mitochondrial thioesterase, Them5. Them5 and its paralog, Them4, adopt the classical Hotdog-fold structure and form homodimers in crystals. In vitro, Them5 shows strong thioesterase activity with long-chain acyl-CoAs. Loss of Them5 specifically alters the remodeling process of the mitochondrial phospholipid cardiolipin. Them5(-/-) mice show deregulation of lipid metabolism and the development of fatty liver, exacerbated by a high-fat diet. Consequently, mitochondrial morphology is affected, and functions such as respiration and β-oxidation are impaired. The novel mitochondrial acyl-CoA thioesterase Them5 has a critical and specific role in the cardiolipin remodeling process, connecting it to the development of fatty liver and related conditions. PMID:22586271

  12. Purification of Pseudomonas putida acyl coenzyme A ligase active with a range of aliphatic and aromatic substrates.

    PubMed Central

    Fernández-Valverde, M; Reglero, A; Martinez-Blanco, H; Luengo, J M

    1993-01-01

    Acyl coenzyme A (acyl-CoA) ligase (acyl-CoA synthetase [ACoAS]) from Pseudomonas putida U was purified to homogeneity (252-fold) after this bacterium was grown in a chemically defined medium containing octanoic acid as the sole carbon source. The enzyme, which has a mass of 67 kDa, showed maximal activity at 40 degrees C in 10 mM K2PO4H-NaPO4H2 buffer (pH 7.0) containing 20% (wt/vol) glycerol. Under these conditions, ACoAS showed hyperbolic behavior against acetate, CoA, and ATP; the Kms calculated for these substrates were 4.0, 0.7, and 5.2 mM, respectively. Acyl-CoA ligase recognizes several aliphatic molecules (acetic, propionic, butyric, valeric, hexanoic, heptanoic, and octanoic acids) as substrates, as well as some aromatic compounds (phenylacetic and phenoxyacetic acids). The broad substrate specificity of ACoAS from P. putida was confirmed by coupling it with acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum to study the formation of several penicillins. Images PMID:8476289

  13. Acyl glucuronides: the good, the bad and the ugly.

    PubMed

    Regan, Sophie L; Maggs, James L; Hammond, Thomas G; Lambert, Craig; Williams, Dominic P; Park, B Kevin

    2010-10-01

    Acyl glucuronidation is the major metabolic conjugation reaction of most carboxylic acid drugs in mammals. The physiological consequences of this biotransformation have been investigated incompletely but include effects on drug metabolism, protein binding, distribution and clearance that impact upon pharmacological and toxicological outcomes. In marked contrast, the exceptional but widely disparate chemical reactivity of acyl glucuronides has attracted far greater attention. Specifically, the complex transacylation and glycation reactions with proteins have provoked much inconclusive debate over the safety of drugs metabolised to acyl glucuronides. It has been hypothesised that these covalent modifications could initiate idiosyncratic adverse drug reactions. However, despite a large body of in vitro data on the reactions of acyl glucuronides with protein, evidence for adduct formation from acyl glucuronides in vivo is limited and potentially ambiguous. The causal connection of protein adduction to adverse drug reactions remains uncertain. This review has assessed the intrinsic reactivity, metabolic stability and pharmacokinetic properties of acyl glucuronides in the context of physiological, pharmacological and toxicological perspectives. Although numerous experiments have characterised the reactions of acyl glucuronides with proteins, these might be attenuated substantially in vivo by rapid clearance of the conjugates. Consequently, to delineate a relationship between acyl glucuronide formation and toxicological phenomena, detailed pharmacokinetic analysis of systemic exposure to the acyl glucuronide should be undertaken adjacent to determining protein adduct concentrations in vivo. Further investigation is required to ascertain whether acyl glucuronide clearance is sufficient to prevent covalent modification of endogenous proteins and consequentially a potential immunological response. PMID:20830700

  14. Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant.

    PubMed

    Kumar, Vinod; Jahan, Firdaus; Mahajan, Richi V; Saxena, Rajendra Kumar

    2016-10-01

    The present investigation describes the regioselective enzymatic acylation of quercetin with ferulic acid using Rhizopus oryzae lipase. Optimization of reaction parameters resulted in 93.2% yield of the ester synthesized using 750IU of lipase in cyclo-octane at a temperature of 45°C. The reaction was successfully carried out upto 25g scale. The ester synthesized was analyzed by (1)H Nuclear magnetic resonance spectroscopy. The ester synthesized (quercetin ferulate) showed higher antiradical activity as compared to ascorbic acid using the 2,2-diphenyl-1-picrylhydrazyl radical method. These results on enzyme-catalyzed acylation of quercetin might be used to prepare and scale-up other flavonoids derivatives. PMID:27372535

  15. Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant.

    PubMed

    Kumar, Vinod; Jahan, Firdaus; Mahajan, Richi V; Saxena, Rajendra Kumar

    2016-10-01

    The present investigation describes the regioselective enzymatic acylation of quercetin with ferulic acid using Rhizopus oryzae lipase. Optimization of reaction parameters resulted in 93.2% yield of the ester synthesized using 750IU of lipase in cyclo-octane at a temperature of 45°C. The reaction was successfully carried out upto 25g scale. The ester synthesized was analyzed by (1)H Nuclear magnetic resonance spectroscopy. The ester synthesized (quercetin ferulate) showed higher antiradical activity as compared to ascorbic acid using the 2,2-diphenyl-1-picrylhydrazyl radical method. These results on enzyme-catalyzed acylation of quercetin might be used to prepare and scale-up other flavonoids derivatives.

  16. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production.

    PubMed

    Misra, Namrata; Patra, Mahesh Chandra; Panda, Prasanna Kumar; Sukla, Lala Bihari; Mishra, Barada Kanta

    2013-03-01

    The concept of using microalgae as an alternative renewable source of biofuel has gained much importance in recent years. However, its commercial feasibility is still an area of concern for researchers. Unraveling the fatty acid metabolic pathway and understanding structural features of various key enzymes regulating the process will provide valuable insights to target microalgae for augmented oil content. FabH (β-ketoacyl-acyl carrier protein synthase; KAS III) is a condensing enzyme catalyzing the initial elongation step of type II fatty acid biosynthetic process and acyl carrier protein (ACP) facilitates the shuttling of the fatty acyl intermediates to the active site of the respective enzymes in the pathway. In the present study, a reliable three-dimensional structure of FabH from Chlorella variabilis, an oleaginous green microalga was modeled and subsequently the key residues involved in substrate binding were determined by employing protein-protein docking and molecular dynamics (MD) simulation protocols. The FabH-ACP complex having the lowest docking energy score showed the binding of ACP to the electropositive FabH surface with strong hydrogen bond interactions. The MD simulation results indicated that the substrate-complexed FabH adopted a more stable conformation than the free enzyme. Further, the FabH structure retained its stability throughout the simulation although noticeable displacements were observed in the loop regions. Molecular simulation studies suggested the importance of crucial hydrogen bonding of the conserved Arg(91) of FabH with Glu(53) and Asp(56) of ACP for exhibiting high affinity between the enzyme and substrate. The molecular modeling results are consistent with available experimental results on the flexibility of FabH and the present study provides first in silico insights into the structural and dynamical aspect of catalytic mechanism of FabH, which could be used for further site-specific mutagenic experiments to develop

  17. A thiolate anion buried within the hydrocarbon ruler perturbs PagP lipid acyl chain selection.

    PubMed

    Khan, M Adil; Moktar, Joel; Mott, Patrick J; Bishop, Russell E

    2010-03-23

    The Escherichia coli outer membrane phospholipid:lipid A palmitoyltransferase PagP exhibits remarkable selectivity because its binding pocket for lipid acyl chains excludes those differing in length from palmitate by a solitary methylene unit. This narrow detergent-binding hydrophobic pocket buried within the eight-strand antiparallel beta-barrel is known as the hydrocarbon ruler. Gly88 lines the acyl chain binding pocket floor, and its substitution can raise the floor to correspondingly shorten the selected acyl chain. An aromatic exciton interaction between Tyr26 and Trp66 provides an intrinsic spectroscopic probe located immediately adjacent to Gly88. The Gly88Cys PagP enzyme was engineered to function as a dedicated myristoyltransferase, but the mutant enzyme instead selected both myristoyl and pentadecanoyl groups, was devoid of the exciton, and displayed a 21 degrees C reduction in thermal stability. We now demonstrate that the structural perturbation results from a buried thiolate anion attributed to suppression of the Cys sulfhydryl group pK(a) from 9.4 in aqueous solvent to 7.5 in the hydrocarbon ruler microenvironment. The Cys thiol is sandwiched at the interface between a nonpolar and a polar beta-barrel interior milieu, suggesting that local electrostatics near the otherwise hydrophobic hydrocarbon ruler pocket serve to perturb the thiol pK(a). Neutralization of the Cys thiolate anion by protonation restores wild-type exciton and thermal stability signatures to Gly88Cys PagP, which then functions as a dedicated myristoyltransferase at pH 7. Gly88Cys PagP assembled in bacterial membranes recapitulates lipid A myristoylation in vivo. Hydrocarbon ruler-exciton coupling in PagP thus reveals a thiol-thiolate ionization mechanism for modulating lipid acyl chain selection.

  18. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress

    PubMed Central

    Vu, Hieu Sy; Roth, Mary R.; Tamura, Pamela; Samarakoon, Thilani; Shiva, Sunitha; Honey, Samuel; Lowe, Kaleb; Schmelz, Eric A.; Williams, Todd D.; Welti, Ruth

    2014-01-01

    Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection, and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses. PMID:24286212

  19. Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site

    PubMed Central

    Bharathi, Sivakama S.; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E.; Rardin, Matthew J.; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W.; Hirschey, Matthew D.; Goetzman, Eric S.

    2013-01-01

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  20. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site.

    PubMed

    Bharathi, Sivakama S; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E; Rardin, Matthew J; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W; Hirschey, Matthew D; Goetzman, Eric S

    2013-11-22

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  1. Toxic Accumulation of LPS Pathway Intermediates Underlies the Requirement of LpxH for Growth of Acinetobacter baumannii ATCC 19606

    PubMed Central

    Richie, Daryl L.; Takeoka, Kenneth T.; Bojkovic, Jade; Metzger, Louis E.; Rath, Christopher M.; Sawyer, William S.; Wei, Jun-Rong; Dean, Charles R.

    2016-01-01

    The lipid A moiety of lipopolysaccharide (LPS) is the main constituent of the outer leaflet of the Gram-negative bacterial outer membrane (OM) and is essential in many Gram-negative pathogens. An exception is Acinetobacter baumannii ATCC 19606, where mutants lacking enzymes occurring early in lipid A biosynthesis (LpxA, LpxC or LpxD), and correspondingly lacking LPS, can grow. In contrast, we show here that LpxH, an enzyme that occurs downstream of LpxD in the lipid A biosynthetic pathway, is essential for growth in this strain. Multiple attempts to disrupt lpxH on the genome were unsuccessful, and when LpxH expression was controlled by an isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoter, cell growth under typical laboratory conditions required IPTG induction. Mass spectrometry analysis of cells shifted from LpxH-induced to uninduced (and whose growth was correspondingly slowing as LpxH was depleted) showed a large cellular accumulation of UDP-2,3-diacyl-GlcN (substrate of LpxH), a C14:0(3-OH) acyl variant of the LpxD substrate (UDP-3-O-[(R)-3-OH-C14]-GlcN), and disaccharide 1-monophosphate (DSMP). Furthermore, the viable cell counts of the LpxH depleted cultures dropped modestly, and electron microscopy revealed clear defects at the cell (inner) membrane, suggesting lipid A intermediate accumulation was toxic. Consistent with this, blocking the synthesis of these intermediates by inhibition of the upstream LpxC enzyme using CHIR-090 abrogated the requirement for IPTG induction of LpxH. Taken together, these data indicate that LpxH is essential for growth in A. baumannii ATCC19606, because, unlike earlier pathway steps like LpxA or LpxC, blockage of LpxH causes accumulation of detergent-like pathway intermediates that prevents cell growth. PMID:27526195

  2. Toxic Accumulation of LPS Pathway Intermediates Underlies the Requirement of LpxH for Growth of Acinetobacter baumannii ATCC 19606.

    PubMed

    Richie, Daryl L; Takeoka, Kenneth T; Bojkovic, Jade; Metzger, Louis E; Rath, Christopher M; Sawyer, William S; Wei, Jun-Rong; Dean, Charles R

    2016-01-01

    The lipid A moiety of lipopolysaccharide (LPS) is the main constituent of the outer leaflet of the Gram-negative bacterial outer membrane (OM) and is essential in many Gram-negative pathogens. An exception is Acinetobacter baumannii ATCC 19606, where mutants lacking enzymes occurring early in lipid A biosynthesis (LpxA, LpxC or LpxD), and correspondingly lacking LPS, can grow. In contrast, we show here that LpxH, an enzyme that occurs downstream of LpxD in the lipid A biosynthetic pathway, is essential for growth in this strain. Multiple attempts to disrupt lpxH on the genome were unsuccessful, and when LpxH expression was controlled by an isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoter, cell growth under typical laboratory conditions required IPTG induction. Mass spectrometry analysis of cells shifted from LpxH-induced to uninduced (and whose growth was correspondingly slowing as LpxH was depleted) showed a large cellular accumulation of UDP-2,3-diacyl-GlcN (substrate of LpxH), a C14:0(3-OH) acyl variant of the LpxD substrate (UDP-3-O-[(R)-3-OH-C14]-GlcN), and disaccharide 1-monophosphate (DSMP). Furthermore, the viable cell counts of the LpxH depleted cultures dropped modestly, and electron microscopy revealed clear defects at the cell (inner) membrane, suggesting lipid A intermediate accumulation was toxic. Consistent with this, blocking the synthesis of these intermediates by inhibition of the upstream LpxC enzyme using CHIR-090 abrogated the requirement for IPTG induction of LpxH. Taken together, these data indicate that LpxH is essential for growth in A. baumannii ATCC19606, because, unlike earlier pathway steps like LpxA or LpxC, blockage of LpxH causes accumulation of detergent-like pathway intermediates that prevents cell growth. PMID:27526195

  3. Physiological Consequences of Compartmentalized Acyl-CoA Metabolism*

    PubMed Central

    Cooper, Daniel E.; Young, Pamela A.; Klett, Eric L.; Coleman, Rosalind A.

    2015-01-01

    Meeting the complex physiological demands of mammalian life requires strict control of the metabolism of long-chain fatty acyl-CoAs because of the multiplicity of their cellular functions. Acyl-CoAs are substrates for energy production; stored within lipid droplets as triacylglycerol, cholesterol esters, and retinol esters; esterified to form membrane phospholipids; or used to activate transcriptional and signaling pathways. Indirect evidence suggests that acyl-CoAs do not wander freely within cells, but instead, are channeled into specific pathways. In this review, we will discuss the evidence for acyl-CoA compartmentalization, highlight the key modes of acyl-CoA regulation, and diagram potential mechanisms for controlling acyl-CoA partitioning. PMID:26124277

  4. Enantioselective acyl transfer catalysis by a combination of common catalytic motifs and electrostatic interactions

    PubMed Central

    Mandai, Hiroki; Fujii, Kazuki; Yasuhara, Hiroshi; Abe, Kenko; Mitsudo, Koichi; Korenaga, Toshinobu; Suga, Seiji

    2016-01-01

    Catalysts that can promote acyl transfer processes are important to enantioselective synthesis and their development has received significant attention in recent years. Despite noteworthy advances, discovery of small-molecule catalysts that are robust, efficient, recyclable and promote reactions with high enantioselectivity can be easily and cost-effectively prepared in significant quantities (that is, >10 g) has remained elusive. Here, we demonstrate that by attaching a binaphthyl moiety, appropriately modified to establish H-bonding interactions within the key intermediates in the catalytic cycle, and a 4-aminopyridyl unit, exceptionally efficient organic molecules can be prepared that facilitate enantioselective acyl transfer reactions. As little as 0.5 mol% of a member of the new catalyst class is sufficient to generate acyl-substituted all-carbon quaternary stereogenic centres in quantitative yield and in up to 98:2 enantiomeric ratio (er) in 5 h. Kinetic resolution or desymmetrization of 1,2-diol can be performed with high efficiency and enantioselectivity as well. PMID:27079273

  5. Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography

    DOE PAGES

    Vandavasi, Venu Gopal; Weiss, Kevin L.; Cooper, Jonathan B.; Erskine, Peter T.; Tomanicek, Stephen J.; Ostermann, Andreas; Schrader, Tobias E.; Ginell, Stephan L.; Coates, Leighton

    2015-12-02

    The catalytic mechanism of class A beta-lactamases is often debated due in part to the large number of amino acids that interact with bound beta-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type beta-lactamase enzymes is still not well understood after decades of scientific research. To better elucidate the functions of this vital residue, we used both neutron and high-resolution X-ray diffraction to examine both the structures of the ligand free protein and the acyl-enzyme complex of perdeuterated E166A Toho-1 beta-lactamase with the antibiotic cefotaxime. The E166A mutant lacksmore » a critical glutamate residue that has a key role in the deacylation step of the catalytic mechanism, allowing the acyl-enzyme adduct to be captured for study. In our ligand free structures, Lys 73 is present in a single conformation, however in all of our acyl-enzyme structures, Lys 73 is present in two different conformations, in which one conformer is closer to Ser 70 while the other conformer is positioned closer to Ser 130, which supports the existence of a possible pathway by which proton transfer from Lys 73 to Ser 130 can occur. This and further clarifications of the role of Lys 73 in the acylation mechanism may facilitate the design of inhibitors that capitalize on the enzymes native machinery.« less

  6. Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography

    SciTech Connect

    Vandavasi, Venu Gopal; Weiss, Kevin L.; Cooper, Jonathan B.; Erskine, Peter T.; Tomanicek, Stephen J.; Ostermann, Andreas; Schrader, Tobias E.; Ginell, Stephan L.; Coates, Leighton

    2015-12-02

    The catalytic mechanism of class A beta-lactamases is often debated due in part to the large number of amino acids that interact with bound beta-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type beta-lactamase enzymes is still not well understood after decades of scientific research. To better elucidate the functions of this vital residue, we used both neutron and high-resolution X-ray diffraction to examine both the structures of the ligand free protein and the acyl-enzyme complex of perdeuterated E166A Toho-1 beta-lactamase with the antibiotic cefotaxime. The E166A mutant lacks a critical glutamate residue that has a key role in the deacylation step of the catalytic mechanism, allowing the acyl-enzyme adduct to be captured for study. In our ligand free structures, Lys 73 is present in a single conformation, however in all of our acyl-enzyme structures, Lys 73 is present in two different conformations, in which one conformer is closer to Ser 70 while the other conformer is positioned closer to Ser 130, which supports the existence of a possible pathway by which proton transfer from Lys 73 to Ser 130 can occur. This and further clarifications of the role of Lys 73 in the acylation mechanism may facilitate the design of inhibitors that capitalize on the enzymes native machinery.

  7. Construction of Global Acyl Lipid Metabolic Map by Comparative Genomics and Subcellular Localization Analysis in the Red Alga Cyanidioschyzon merolae

    PubMed Central

    Mori, Natsumi; Moriyama, Takashi; Toyoshima, Masakazu; Sato, Naoki

    2016-01-01

    Pathways of lipid metabolism have been established in land plants, such as Arabidopsis thaliana, but the information on exact pathways is still under study in microalgae. In contrast with Chlamydomonas reinhardtii, which is currently studied extensively, the pathway information in red algae is still in the state in which enzymes and pathways are estimated by analogy with the knowledge in plants. Here we attempt to construct the entire acyl lipid metabolic pathways in a model red alga, Cyanidioschyzon merolae, as an initial basis for future genetic and biochemical studies, by exploiting comparative genomics and localization analysis. First, the data of whole genome clustering by Gclust were used to identify 121 acyl lipid-related enzymes. Then, the localization of 113 of these enzymes was analyzed by GFP-based techniques. We found that most of the predictions on the subcellular localization by existing tools gave erroneous results, probably because these tools had been tuned for plants or green algae. The experimental data in the present study as well as the data reported before in our laboratory will constitute a good training set for tuning these tools. The lipid metabolic map thus constructed show that the lipid metabolic pathways in the red alga are essentially similar to those in A. thaliana, except that the number of enzymes catalyzing individual reactions is quite limited. The absence of fatty acid desaturation to produce oleic and linoleic acids within the plastid, however, highlights the central importance of desaturation and acyl editing in the endoplasmic reticulum, for the synthesis of plastid lipids as well as other cellular lipids. Additionally, some notable characteristics of lipid metabolism in C. merolae were found. For example, phosphatidylcholine is synthesized by the methylation of phosphatidylethanolamine as in yeasts. It is possible that a single 3-ketoacyl-acyl carrier protein synthase is involved in the condensation reactions of fatty acid

  8. Construction of Global Acyl Lipid Metabolic Map by Comparative Genomics and Subcellular Localization Analysis in the Red Alga Cyanidioschyzon merolae.

    PubMed

    Mori, Natsumi; Moriyama, Takashi; Toyoshima, Masakazu; Sato, Naoki

    2016-01-01

    Pathways of lipid metabolism have been established in land plants, such as Arabidopsis thaliana, but the information on exact pathways is still under study in microalgae. In contrast with Chlamydomonas reinhardtii, which is currently studied extensively, the pathway information in red algae is still in the state in which enzymes and pathways are estimated by analogy with the knowledge in plants. Here we attempt to construct the entire acyl lipid metabolic pathways in a model red alga, Cyanidioschyzon merolae, as an initial basis for future genetic and biochemical studies, by exploiting comparative genomics and localization analysis. First, the data of whole genome clustering by Gclust were used to identify 121 acyl lipid-related enzymes. Then, the localization of 113 of these enzymes was analyzed by GFP-based techniques. We found that most of the predictions on the subcellular localization by existing tools gave erroneous results, probably because these tools had been tuned for plants or green algae. The experimental data in the present study as well as the data reported before in our laboratory will constitute a good training set for tuning these tools. The lipid metabolic map thus constructed show that the lipid metabolic pathways in the red alga are essentially similar to those in A. thaliana, except that the number of enzymes catalyzing individual reactions is quite limited. The absence of fatty acid desaturation to produce oleic and linoleic acids within the plastid, however, highlights the central importance of desaturation and acyl editing in the endoplasmic reticulum, for the synthesis of plastid lipids as well as other cellular lipids. Additionally, some notable characteristics of lipid metabolism in C. merolae were found. For example, phosphatidylcholine is synthesized by the methylation of phosphatidylethanolamine as in yeasts. It is possible that a single 3-ketoacyl-acyl carrier protein synthase is involved in the condensation reactions of fatty acid

  9. Comparative studies of Acyl-CoA dehydrogenases for monomethyl branched chain substrates in amino acid metabolism.

    PubMed

    Liu, Xiaojun; Wu, Long; Deng, Guisheng; Chen, Gong; Li, Nan; Chu, Xiusheng; Li, Ding

    2013-04-01

    Short/branched chain acyl-CoA dehydrogenase (SBCAD), isovaleryl-CoA dehydrogenase (IVD), and isobutyryl-CoA dehydrogenase (IBD) are involved in metabolism of isoleucine, leucine, and valine, respectively. These three enzymes all belong to acyl-CoA dehydrogenase (ACD) family, and catalyze the dehydrogenation of monomethyl branched-chain fatty acid (mmBCFA) thioester derivatives. In the present work, the catalytic properties of rat SBCAD, IVD, and IBD, including their substrate specificity, isomerase activity, and enzyme inhibition, were comparatively studied. Our results indicated that SBCAD has its catalytic properties relatively similar to those of straight-chain acyl-CoA dehydrogenases in terms of their isomerase activity and enzyme inhibition, while IVD and IBD are different. IVD has relatively broader substrate specificity than those of the other two enzymes in accommodating various substrate analogs. The present study increased our understanding for the metabolism of monomethyl branched-chain fatty acids (mmBCFAs) and branched-chain amino acids (BCAAs), which should also be useful for selective control of a particular reaction through the design of specific inhibitors. PMID:23474214

  10. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition.

    PubMed

    Rodríguez-Rodríguez, Manuel Fernando; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2014-11-01

    Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that terminate de novo fatty acid biosynthesis in the plastids of higher plants by hydrolyzing the thioester bond between ACP and the fatty acid synthesized. Free fatty acids are then esterified with coenzyme A prior to being incorporated into the glycerolipids synthesized through the eukaryotic pathway. Acyl-ACP thioesterases belong to the TE14 family of thioester-active enzymes and can be classified as FatAs and FatBs, which differ in their amino acid sequence and substrate specificity. Here, the FatA and FatB thioesterases from Camelina sativa seeds, a crop of interest in plant biotechnology, were cloned, sequenced and characterized. The mature proteins encoded by these genes were characterized biochemically after they were heterologously expressed in Escherichia coli and purified. C. sativa contained three different alleles of both the FatA and FatB genes. These genes were expressed most strongly in expanding tissues in which lipids are very actively synthesized, such as developing seed endosperm. The CsFatA enzyme displayed high catalytic efficiency on oleoyl-ACP and CsFatB acted efficiently on palmitoyl-ACP. The contribution of these two enzymes to the synthesis of C. sativa oil was discussed in the light of these results.

  11. An ultraviolet resonance Raman study of dehydrogenase enzymes and their interactions with coenzymes and substrates.

    PubMed

    Austin, J C; Wharton, C W; Hester, R E

    1989-02-21

    Ultraviolet resonance Raman (UVRR) spectra, with 260-nm excitation, are reported for oxidized and reduced nicotinamide adenine dinucleotides (NAD+ and NADH, respectively). Corresponding spectra are reported for these coenzymes when bound to the enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and liver and yeast alcohol dehydrogenases (LADH and YADH). The observed differences between the coenzyme spectra are interpreted in terms of conformation, hydrogen bonding, and general environment polarity differences between bound and free coenzymes and between coenzymes bound to different enzymes. The possibility of adenine protonation is discussed. UVRR spectra with 220-nm excitation also are reported for holo- and apo-GAPDH (GAPDH-NAD+ and GAPDH alone, respectively). In contrast with the 260-nm spectra, these show only bands due to vibrations of aromatic amino acid residues of the protein. The binding of coenzyme to GAPDH has no significant effect on the aromatic amino acid bands observed. This result is discussed in the light of the known structural change of GAPDH on binding coenzyme. Finally, UVRR spectra with 240-nm excitation are reported for GAPDH and an enzyme-substrate intermediate of GAPDH. Perturbations are reported for tyrosine and tryptophan bands on forming the acyl enzyme.

  12. Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest an alternative mechanism for medium-chain production in seeds.

    PubMed

    Voelker, T A; Jones, A; Cranmer, A M; Davies, H M; Knutzon, D S

    1997-06-01

    In the current model of medium-chain (C8-14) fatty acid biosynthesis in seeds, specialized FatB acyl-acyl-carrier-protein (ACP) thioesterases are responsible for the production of medium chains. We have isolated and characterized FatB cDNAs from the maturing seeds of elm (Ulmus americana) and nutmeg (Myristica fragrans), which accumulate predominantly caprate (10:0)- and myristate (14:0)-containing oils, respectively. In neither species were we able to find cDNAs encoding enzymes specialized for these chain lengths. Nutmeg FatB hydrolyses C14-18 substrates in vitro and expression in Brassica napus seeds leads to an oil enriched in C14-18 saturates. Elm FatB1 displays a binary specificity: one activity is centered on 10:0-ACP, and a second is centered on palmitate (16:0)-ACP. After expression in B. napus seeds the oil is enriched in C10-18 saturates, predominantly 16:0, 14:0, and 10:0. The composition of free fatty acids produced by elm FatB1 in Escherichia coli shifts from C14-16 to mostly C8-10 by increasing the rate of chain termination by this enzyme. These results suggest the existence of an alternative mechanism used in the evolution of medium-chain production, a model of which is presented. PMID:9193098

  13. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase

    PubMed Central

    Kawelke, Steffen; Feussner, Ivo

    2015-01-01

    Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2) and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2) was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity. PMID:26714272

  14. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase.

    PubMed

    Kawelke, Steffen; Feussner, Ivo

    2015-01-01

    Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2) and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2) was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity.

  15. Acylated iridoids with cytotoxicity from Valeriana jatamansi.

    PubMed

    Lin, Sheng; Shen, Yun-Heng; Li, Hui-Liang; Yang, Xian-Wen; Chen, Tao; Lu, Long-Hai; Huang, Zheng-Sheng; Liu, Run-Hui; Xu, Xi-Ke; Zhang, Wei-Dong; Wang, Hui

    2009-04-01

    Thirteen new acylated iridoids, jatamanvaltrates A-M (1-13), together with nine known valepotriates (14-22), were isolated from the whole plants of Valeriana jatamansi (syn. Valeriana wallichii). The structures of these new compounds were assigned by detailed interpretation of spectroscopic data. Jatamanvaltrates D (4) and H (9) are the first examples of naturally occurring valepotriates containing an o-hydroxybenzoyloxy moiety at C-10. All isolated compounds were tested for their cytotoxicity against lung adenocarcinoma (A549), metastatic prostate cancer (PC-3M), colon cancer (HCT-8), and hepatoma (Bel7402) cell lines.

  16. Secondary acylation of Klebsiella pneumoniae lipopolysaccharide contributes to sensitivity to antibacterial peptides.

    PubMed

    Clements, Abigail; Tull, Dedreia; Jenney, Adam W; Farn, Jacinta L; Kim, Sang-Hyun; Bishop, Russell E; McPhee, Joseph B; Hancock, Robert E W; Hartland, Elizabeth L; Pearse, Martin J; Wijburg, Odilia L C; Jackson, David C; McConville, Malcolm J; Strugnell, Richard A

    2007-05-25

    Klebsiella pneumoniae is an important cause of nosocomial Gram-negative sepsis. Lipopolysaccharide (LPS) is considered to be a major virulence determinant of this encapsulated bacterium and most mutations to the lipid A anchor of LPS are conditionally lethal to the bacterium. We studied the role of LPS acylation in K. pneumoniae disease pathogenesis by using a mutation of lpxM (msbB/waaN), which encodes the enzyme responsible for late secondary acylation of immature lipid A molecules. A K. pneumoniae B5055 (K2:O1) lpxM mutant was found to be attenuated for growth in the lungs in a mouse pneumonia model leading to reduced lethality of the bacterium. B5055DeltalpxM exhibited similar sensitivity to phagocytosis or complement-mediated lysis than B5055, unlike the non-encapsulated mutant B5055nm. In vitro, B5055DeltalpxM showed increased permeability of the outer membrane and an increased susceptibility to certain antibacterial peptides suggesting that in vivo attenuation may be due in part to sensitivity to antibacterial peptides present in the lungs of BALB/c mice. These data support the view that lipopolysaccharide acylation plays a important role in providing Gram-negative bacteria some resistance to structural and innate defenses and especially the antibacterial properties of detergents (e.g. bile) and cationic defensins.

  17. Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report

    SciTech Connect

    Ohlrogge, J.B.

    1989-01-01

    Previous research from my lab has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP) and therefore this trait appears highly conserved among higher plants. This level of conservation suggests that the existence of ACP isoforms is not merely the results of neutral gene duplications. We have developed techniques to examine a wider range of species. Acyl carrier proteins can be labelled very specifically and to high specific activity using H-palmitate and the E. coli enzyme acyl-ACP synthetase. Isoforms were then resolved by western blotting and native PAGE of H-palmitate labelled ACP's. Multiple isoforms of ACP were observed the leaf tissue of the monocots Avena sativa and Hordeum vulgare and dicots including Arabidopsis thallina, Cuphea wrightii, and Brassica napus. Lower vascular plants including the cycad, Dioon edule, Ginkgo biloba, the gymnosperm Pinus, the fern Anernia phyllitidis and Psilotum nudum, the most primitive known extant vascular plant, were also found to have multiple ACP isoforms as were the nonvascular liverwort, Marchantia and moss, Polytrichum. Therefore, the development of ACP isoforms occurred early in evolution. However, the uniellular alge Chlamydomonas and Dunaliella and the photosynthetic cyanobacteria Synechocystis and Agmnellum have only a single elecrophotetic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants.

  18. An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog

    SciTech Connect

    Van De Loo, F.J.; Broun, P.; Turner, S.; Somerville, C.

    1995-07-18

    Recent spectroscopic evidence implicating a binuclear iron site at the reaction center of fatty acyl desaturases suggested to us that certain fatty acyl hydroxylases may share significant amino acid sequence similarity with desaturases. To test this theory, we prepared a cDNA library from developing endosperm of the castor-oil plant (Ricinus communis L.) and obtained partial nucleotide sequences for 468 anonymous clones that were not expressed at high levels in leaves, a tissue deficient in 12-hydroxyoleic acid. This resulted in the identification of several cDNA clones encoding a polypeptide of 387 amino acids with a predicted molecular weight of 44,407 and with {approx}67% sequence homology to microsomal oleate desaturase from Arabidopsis. Expression of a full-length clone under control of the cauliflower mosaic virus 35S promoter in transgenic tobacco resulted in the accumulation of low levels of 12-hydroxyoleic acid in seeds, indicating that the clone encodes the castor oleate hydroxylase. These results suggest that fatty acyl desaturases and hydroxylases share similar reaction mechanisms and provide an example of enzyme evolution. 26 refs., 6 figs., 1 tab.

  19. Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB.

    PubMed

    Schaeffer, M L; Agnihotri, G; Volker, C; Kallender, H; Brennan, P J; Lonsdale, J T

    2001-12-14

    Mycolic acids are vital components of the Mycobacterium tuberculosis cell wall, and enzymes involved in their formation represent attractive targets for the discovery of novel anti-tuberculosis agents. Biosynthesis of the fatty acyl chains of mycolic acids involves two fatty acid synthetic systems, the multifunctional polypeptide fatty acid synthase I (FASI), which performs de novo fatty acid synthesis, and the dissociated FASII system, which consists of monofunctional enzymes, and acyl carrier protein (ACP) and elongates FASI products to long chain mycolic acid precursors. In this study, we present the initial characterization of purified KasA and KasB, two beta-ketoacyl-ACP synthase (KAS) enzymes of the M. tuberculosis FASII system. KasA and KasB were expressed in E. coli and purified by affinity chromatography. Both enzymes showed activity typical of bacterial KASs, condensing an acyl-ACP with malonyl-ACP. Consistent with the proposed role of FASII in mycolic acid synthesis, analysis of various acyl-ACP substrates indicated KasA and KasB had higher specificity for long chain acyl-ACPs containing at least 16 carbons. Activity of KasA and KasB increased with use of M. tuberculosis AcpM, suggesting that structural differences between AcpM and E. coli ACP may affect their recognition by the enzymes. Both enzymes were sensitive to KAS inhibitors cerulenin and thiolactomycin. These results represent important steps in characterizing KasA and KasB as targets for antimycobacterial drug discovery. PMID:11600501

  20. Probing the Mechanism of the Mycobacterium tuberculosis [beta]-Ketoacyl-Acyl Carrier Protein Synthase III mtFabH: Factors Influencing Catalysis and Substrate Specificity

    SciTech Connect

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent; Lindenberg, Sandra; Dover, Lynn G.; Sacchettini, James C.; Besra, Gurdyal S.

    2010-11-30

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH was assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.

  1. Chlorsulfuron modifies biosynthesis of acyl Acid substituents of sucrose esters secreted by tobacco trichomes.

    PubMed

    Kandra, L; Wagner, G J

    1990-11-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  2. Chlorsulfuron Modifies Biosynthesis of Acyl Acid Substituents of Sucrose Esters Secreted by Tobacco Trichomes

    PubMed Central

    Kandra, Lili; Wagner, George J.

    1990-01-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  3. Emulsifying properties of acylated rapeseed (Brassica napus L.) peptides.

    PubMed

    Sánchez-Vioque, Raúl; Bagger, Christian L; Larré, Colette; Guéguen, Jacques

    2004-03-01

    A peptide fraction having an average size of 5.6 amino acids has been purified from a rapeseed hydrolyzate, acylated using C(10)-C(14) acyl chlorides, and the surface tension values at the air-water interface and emulsifying properties studied. As compared with standard surface-active proteins, such as bovine serum albumin (BSA), and with detergents such as sodium dodecyl sulfate (SDS), acylated peptides exhibited particular surface characteristics. The surface tension at air-water interface of acylated peptides ranged from 29.1 to 37.8 mN/m at equilibrium; these values were considerably lower than those for BSA and closer those for SDS, suggesting that acylated peptides pack at the air-water interface more like detergents than like proteins. The adsorption of acylated peptides to the oil-water interface was slower than for SDS or BSA, as deduced from the rather large size of oil droplets in emulsions (31-17 microm). Consequently, these emulsions creamed extensively during aging. Nevertheless, emulsions generated from acylated peptides were in general more stable to phase separation than those prepared from SDS. The C(14) acylated peptides were more effective for generating emulsions than the C(10) and C(12) derivatives, especially concerning the stability of emulsions against coalescence and phase separation, which was better than SDS and close to BSA.

  4. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    SciTech Connect

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  5. Are There Acyl-Homoserine Lactones within Mammalian Intestines?

    PubMed Central

    Swearingen, Matthew C.; Sabag-Daigle, Anice

    2013-01-01

    Many Proteobacteria are capable of quorum sensing using N-acyl-homoserine lactone (acyl-HSL) signaling molecules that are synthesized by LuxI or LuxM homologs and detected by transcription factors of the LuxR family. Most quorum-sensing species have at least one LuxR and one LuxI homolog. However, members of the Escherichia, Salmonella, Klebsiella, and Enterobacter genera possess only a single LuxR homolog, SdiA, and no acyl-HSL synthase. The most obvious hypothesis is that these organisms are eavesdropping on acyl-HSL production within the complex microbial communities of the mammalian intestinal tract. However, there is currently no evidence of acyl-HSLs being produced within normal intestinal communities. A few intestinal pathogens, including Yersinia enterocolitica, do produce acyl-HSLs, and Salmonella can detect them during infection. Therefore, a more refined hypothesis is that SdiA orthologs are used for eavesdropping on other quorum-sensing pathogens in the host. However, the lack of acyl-HSL signaling among the normal intestinal residents is a surprising finding given the complexity of intestinal communities. In this review, we examine the evidence for and against the possibility of acyl-HSL signaling molecules in the mammalian intestine and discuss the possibility that related signaling molecules might be present and awaiting discovery. PMID:23144246

  6. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase.

    PubMed

    Miklaszewska, Magdalena; Banaś, Antoni

    2016-08-01

    Wax esters are used in industry for production of lubricants, pharmaceuticals and cosmetics. The only natural source of wax esters is jojoba oil. A much wider variety of industrial wax esters-containing oils can be generated through genetic engineering. Biotechnological production of tailor-made wax esters requires, however, a detailed substrate specificity of fatty acyl-CoA reductases (FAR) and wax synthases (WS), the two enzymes involved in wax esters synthesis. In this study we have successfully characterized the substrate specificity of jojoba FAR and jojoba WS. The genes encoding both enzymes were expressed heterologously in Saccharomyces cerevisiae and the activity of tested enzymes was confirmed by in vivo studies and in vitro assays using microsomal preparations from transgenic yeast. Jojoba FAR exhibited the highest in vitro activity toward 18:0-CoA followed by 20:1-CoA and 22:1-CoA. The activity toward other 11 tested acyl-CoAs was low or undetectable as with 18:2-CoA and 18:3-CoA. In assays characterizing jojoba WS combinations of 17 fatty alcohols with 14 acyl-CoAs were tested. The enzyme displayed the highest activity toward 14:0-CoA and 16:0-CoA in combination with C16-C20 alcohols as well as toward C18 acyl-CoAs in combination with C12-C16 alcohols. 20:1-CoA was efficiently utilized in combination with most of the tested alcohols.

  7. Interaction of GCAP1 with retinal guanylyl cyclase and calcium: sensitivity to fatty acylation

    PubMed Central

    Peshenko, Igor V.; Olshevskaya, Elena V.; Dizhoor, Alexander M.

    2012-01-01

    Guanylyl cyclase activating proteins (GCAPs) are calcium/magnesium binding proteins within neuronal calcium sensor proteins group (NCS) of the EF-hand proteins superfamily. GCAPs activate retinal guanylyl cyclase (RetGC) in vertebrate photoreceptors in response to light-dependent fall of the intracellular free Ca2+ concentrations. GCAPs consist of four EF-hand domains and contain N-terminal fatty acylated glycine, which in GCAP1 is required for the normal activation of RetGC. We analyzed the effects of a substitution prohibiting N-myristoylation (Gly2 → Ala) on the ability of the recombinant GCAP1 to co-localize with its target enzyme when heterologously expressed in HEK293 cells. We also compared Ca2+ binding and RetGC-activating properties of the purified non-acylated G2A mutant and C14:0 acylated GCAP1 in vitro. The G2A GCAP1 expressed with a C-terminal GFP tag was able to co-localize with the cyclase, albeit less efficiently than the wild type, but much less effectively stimulated cyclase activity in vitro. Ca2+ binding isotherm of the G2A GCAP1 was slightly shifted toward higher free Ca2+ concentrations and so was Ca2+ sensitivity of RetGC reconstituted with the G2A mutant. At the same time, myristoylation had little effect on the high-affinity Ca2+-binding in the EF-hand proximal to the myristoyl residue in three-dimensional GCAP1 structure. These data indicate that the N-terminal fatty acyl group may alter the activity of EF-hands in the distal portion of the GCAP1 molecule via presently unknown intramolecular mechanism. PMID:22371697

  8. Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications.

    PubMed

    Kem, Michelle P; Butler, Alison

    2015-06-01

    Acyl peptidic siderophores are produced by a variety of bacteria and possess unique amphiphilic properties. Amphiphilic siderophores are generally produced in a suite where the iron(III)-binding headgroup remains constant while the fatty acid appendage varies by length and functionality. Acyl peptidic siderophores are commonly synthesized by non-ribosomal peptide synthetases; however, the method of peptide acylation during biosynthesis can vary between siderophores. Following biosynthesis, acyl siderophores can be further modified enzymatically to produce a more hydrophilic compound, which retains its ferric chelating abilities as demonstrated by pyoverdine from Pseudomonas aeruginosa and the marinobactins from certain Marinobacter species. Siderophore hydrophobicity can also be altered through photolysis of the ferric complex of certain β-hydroxyaspartic acid-containing acyl peptidic siderophores. PMID:25677460

  9. K2CO3-promoted formation of aryl esters from primary aryl amides by the acyl-acyl exchange process.

    PubMed

    Bian, Yongjun; Qu, Xingyu

    2016-04-28

    A new acyl-acyl exchange reaction has been developed for the formation of aryl esters from primary aryl amides. The reaction could occur under mild reaction conditions with catalytic quantities of K2CO3, and could afford moderate to good yields of the desired products. PMID:27035611

  10. Vertebrate fatty acyl desaturase with Δ4 activity

    PubMed Central

    Li, Yuanyou; Monroig, Oscar; Zhang, Liang; Wang, Shuqi; Zheng, Xiaozhong; Dick, James R.; You, Cuihong; Tocher, Douglas R.

    2010-01-01

    Biosynthesis of the highly biologically active long-chain polyunsaturated fatty acids, arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids, in vertebrates requires the introduction of up to three double bonds catalyzed by fatty acyl desaturases (Fad). Synthesis of ARA is achieved by Δ6 desaturation of 18∶2n - 6 to produce 18∶3n - 6 that is elongated to 20∶3n - 6 followed by Δ5 desaturation. Synthesis of EPA from 18∶3n - 3 requires the same enzymes and pathway as for ARA, but DHA synthesis reportedly requires two further elongations, a second Δ6 desaturation and a peroxisomal chain shortening step. This paper describes cDNAs, fad1 and fad2, isolated from the herbivorous, marine teleost fish (Siganus canaliculatus) with high similarity to mammalian Fad proteins. Functional characterization of the cDNAs by heterologous expression in the yeast Saccharomyces cerevisiae showed that Fad1 was a bifunctional Δ6/Δ5 Fad. Previously, functional dual specificity in vertebrates had been demonstrated for a zebrafish Danio rerio Fad and baboon Fad, so the present report suggests bifunctionality may be more widespread in vertebrates. However, Fad2 conferred on the yeast the ability to convert 22∶5n - 3 to DHA indicating that this S. canaliculatus gene encoded an enzyme having Δ4 Fad activity. This is a unique report of a Fad with Δ4 activity in any vertebrate species and indicates that there are two possible mechanisms for DHA biosynthesis, a direct route involving elongation of EPA to 22∶5n - 3 followed by Δ4 desaturation, as well as the more complicated pathway as described above. PMID:20826444

  11. Friedel-Craft acylation of ar-himachalene: synthesis of acyl-ar-himachalene and a new acyl-hydroperoxide.

    PubMed

    Hossini, Issam; Harrad, Mohamed Anoir; Ait Ali, Mustapha; El Firdoussi, Larbi; Karim, Abdallah; Valerga, Pedro; Puerta, M Carmen

    2011-01-01

    Friedel-Craft acylation at 100 °C of 2,5,9,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocycloheptene [ar-himachalene], a sesquiterpenic hydrocarbon obtained by catalytic dehydrogenation of α-, β- and γ-himachalenes, produces a mixture of two compounds: (3,5,5,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-yl)-ethanone (2, in 69% yield), with a conserved reactant backbone, and 3, with a different skeleton, in 21% yield. The crystal structure of 3 reveals it to be 1-(8-ethyl-8-hydroperoxy-3,5,5-trimethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-ethanone. In this compound O-H…O bonds form dimers. These hydrogen-bonds, in conjunction with weaker C-H…O interactions, form a more extended supramolecular arrangement in the crystal. PMID:21760570

  12. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    SciTech Connect

    Serek, Robert; Forwood, Jade K.; Hume, David A.; Martin, Jennifer L.; Kobe, Bostjan

    2006-02-01

    The C-terminal domain of the mouse long-chain acyl-CoA thioesterase has been expressed in bacteria and crystallized by vapour diffusion. The crystals diffract to 2.4 Å resolution. The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination.

  13. Characterization of Novel Acyl Coenzyme A Dehydrogenases Involved in Bacterial Steroid Degradation

    PubMed Central

    Ruprecht, Amanda; Maddox, Jaymie; Stirling, Alexander J.; Visaggio, Nicole

    2015-01-01

    ABSTRACT The acyl coenzyme A (acyl-CoA) dehydrogenases (ACADs) FadE34 and CasC, encoded by the cholesterol and cholate gene clusters of Mycobacterium tuberculosis and Rhodococcus jostii RHA1, respectively, were successfully purified. Both enzymes differ from previously characterized ACADs in that they contain two fused acyl-CoA dehydrogenase domains in a single polypeptide. Site-specific mutagenesis showed that only the C-terminal ACAD domain contains the catalytic glutamate base required for enzyme activity, while the N-terminal ACAD domain contains an arginine required for ionic interactions with the pyrophosphate of the flavin adenine dinucleotide (FAD) cofactor. Therefore, the two ACAD domains must associate to form a single active site. FadE34 and CasC were not active toward the 3-carbon side chain steroid metabolite 3-oxo-23,24-bisnorchol-4-en-22-oyl-CoA (4BNC-CoA) but were active toward steroid CoA esters containing 5-carbon side chains. CasC has similar specificity constants for cholyl-CoA, deoxycholyl-CoA, and 3β-hydroxy-5-cholen-24-oyl-CoA, while FadE34 has a preference for the last compound, which has a ring structure similar to that of cholesterol metabolites. Knockout of the casC gene in R. jostii RHA1 resulted in a reduced growth on cholate as a sole carbon source and accumulation of a 5-carbon side chain cholate metabolite. FadE34 and CasC represent unique members of ACADs with primary structures and substrate specificities that are distinct from those of previously characterized ACADs. IMPORTANCE We report here the identification and characterization of acyl-CoA dehydrogenases (ACADs) involved in the metabolism of 5-carbon side chains of cholesterol and cholate. The two homologous enzymes FadE34 and CasC, from M. tuberculosis and Rhodococcus jostii RHA1, respectively, contain two ACAD domains per polypeptide, and we show that these two domains interact to form a single active site. FadE34 and CasC are therefore representatives of a new class of

  14. Palladium-Catalyzed Environmentally Benign Acylation.

    PubMed

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-01

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone. PMID:27377566

  15. Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592.

    PubMed Central

    Yan, R T; Chen, J S

    1990-01-01

    Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay. Images PMID:2275527

  16. Kinetic Intermediates en Route to the Final Serpin-Protease Complex

    PubMed Central

    Maddur, Ashoka A.; Swanson, Richard; Izaguirre, Gonzalo; Gettins, Peter G. W.; Olson, Steven T.

    2013-01-01

    Serpin protein protease inhibitors inactivate their target proteases through a unique mechanism in which a major serpin conformational change, resulting in a 70-Å translocation of the protease from its initial reactive center loop docking site to the opposite pole of the serpin, kinetically traps the acyl-intermediate complex. Although the initial Michaelis and final trapped acyl-intermediate complexes have been well characterized structurally, the intermediate stages involved in this remarkable transformation are not well understood. To better characterize such intermediate steps, we undertook rapid kinetic studies of the FRET and fluorescence perturbation changes of site-specific fluorophore-labeled derivatives of the serpin, α1-protease inhibitor (α1PI), which report the serpin and protease conformational changes involved in transforming the Michaelis complex to the trapped acyl-intermediate complex in reactions with trypsin. Two kinetically resolvable conformational changes were observed in the reactions, ascribable to (i) serpin reactive center loop insertion into sheet A with full protease translocation but incomplete protease distortion followed by, (ii) full conformational distortion and movement of the protease and coupled serpin conformational changes involving the F helix-sheet A interface. Kinetic studies of calcium effects on the labeled α1PI-trypsin reactions demonstrated both inactive and low activity states of the distorted protease in the final complex that were distinct from the intermediate distorted state. These studies provide new insights into the nature of the serpin and protease conformational changes involved in trapping the acyl-intermediate complex in serpin-protease reactions and support a previously proposed role for helix F in the trapping mechanism. PMID:24047901

  17. Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis.

    PubMed

    Maloberti, Paula; Castilla, Rocío; Castillo, Fernanda; Cornejo Maciel, Fabiana; Mendez, Carlos F; Paz, Cristina; Podestá, Ernesto J

    2005-04-01

    Arachidonic acid and its lypoxygenated metabolites play a fundamental role in the hormonal regulation of steroidogenesis. Reduction in the expression of the mitochondrial acyl-CoA thioesterase (MTE-I) by antisense or small interfering RNA (siRNA) and of the arachidonic acid-preferring acyl-CoA synthetase (ACS4) by siRNA produced a marked reduction in steroid output of cAMP-stimulated Leydig cells. This effect was blunted by a permeable analog of cholesterol that bypasses the rate-limiting step in steroidogenesis, the transport of cholesterol from the outer to the inner mitochondrial membrane. The inhibition of steroidogenesis was overcome by addition of exogenous arachidonic acid, indicating that the enzymes are part of the mechanism responsible for arachidonic acid release involved in steroidogenesis. Knocking down the expression of MTE-I leads to a significant reduction in the expression of steroidogenic acute regulatory protein. This protein is induced by arachidonic acid and controls the rate-limiting step. Overexpression of MTE-I resulted in an increase in cAMP-induced steroidogenesis. In summary, our results demonstrate a critical role for ACS4 and MTE-I in the hormonal regulation of steroidogenesis as a new pathway of arachidonic acid release different from the classical phospholipase A2 cascade.

  18. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  19. Specificities of the Acyl-Acyl Carrier Protein (ACP) Thioesterase and Glycerol-3-Phosphate Acyltransferase for Octadecenoyl-ACP Isomers (Identification of a Petroselinoyl-ACP Thioesterase in Umbelliferae).

    PubMed Central

    Dormann, P.; Frentzen, M.; Ohlrogge, J. B.

    1994-01-01

    This study was designed to address the question: How specific for double bond position and conformation are plant enzymes that act on oleoyl-acyl carrier protein (ACP)? Octadecenoyl-ACPs with cis double bonds at positions [delta]6, [delta]7, [delta]8, [delta]9, [delta]10, [delta]11, or [delta]12 and elaidyl (18:1[delta]9trans)-ACP were synthesized and used to characterize the substrate specificity of the acyl-ACP thioesterase and acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The two enzymes were found to be specific for the [delta]9 position of the double bond. The thioesterase was highly specific for the [delta]9 cis conformation, but the transferase was almost equally active with the cis and the trans isomer of 18:1[delta]9-ACP. In plants such as the Umbelliferae species coriander (Coriandrum sativum L.) that accumulate petroselinic acid (18:1[delta]6cis) in their seed triacylglycerols, a high petroselinoyl-ACP thioesterase activity was found in addition to the oleoyl-ACP thioesterase. The two activities could be separated by anion-exchange chromatography, indicating that the petroselinoyl-ACP thioesterase is represented by a distinct polypeptide. PMID:12232130

  20. Structure of enzyme-bound substrates: resonance Raman and kinetic evidence for differential enzyme-substrate contacts in N-(Pentafluoro-benzoyl)glycine dithioacyl and thioacyl papain

    NASA Astrophysics Data System (ADS)

    Lee, H.; Angus, R. H.; Storer, A. C.; Carey, P. R.

    1989-12-01

    Resonance Raman (RR) spectroscopy is used to probe the structure of the substrate in the substrate-enzyme complex N-pentafluorobenzoyl) glycine (dithioacyl) papain (C 6F 5C(=O) NHCH 2C(=S)S-papain). This system was chosen since the high electron withdrawing capacity of the C 6F 5 group markedly affects electron density of the -NH- moiety which, in turn, is known to change catalytic activity. The RR spectrum of the enzyme-substrate complex is interpreted by reference to the model compound N-(pentafluorobenzoyl) glycine ethyl dithioester (C 6F 5(CO))NHCH 2C(=S)SC 2H 5. The RR spectra of this compound in aqueous or organic solvents can be understood in terms of the known conformational states of N-acylglycine dithioesters. Comparison of model with enzyme-substrate RR spectra shows that the substrate is binding in the active site in a conformer known as conformer B characterized by a small-NHCH 2CS(thiol) torsional angle and close N-to-S (thiol) contact. Kinetic rate-structure correlations are developed involving k3, the rate constant for deacylation, and the strength of the N-to-S (thiol) interaction. N-(Pentafluorobenzoyl) glycine dithioacyl papain fits the rate-structure correlation whereas the corresponding pentafluorobenzoyl glycine thiol intermediate does not. It is proposed that the difference in the size of the CS compared to the CO group brings about a small change in the dithioacyl papain compared to the thiolacyl papain conformation such that enzyme-substrate contacts involving ortho and meta F atoms in the thiol acyl enzyme case are weakened or removed in the case of the dithioacyl papain.

  1. Role of intramitochondrial arachidonic acid and acyl-CoA synthetase 4 in angiotensin II-regulated aldosterone synthesis in NCI-H295R adrenocortical cell line.

    PubMed

    Mele, Pablo G; Duarte, Alejandra; Paz, Cristina; Capponi, Alessandro; Podestá, Ernesto J

    2012-07-01

    Although the role of arachidonic acid (AA) in angiotensin II (ANG II)- and potassium-stimulated steroid production in zona glomerulosa cells is well documented, the mechanism responsible for AA release is not fully described. In this study we evaluated the mechanism involved in the release of intramitochondrial AA and its role in the regulation of aldosterone synthesis by ANG II in glomerulosa cells. We show that ANG II and potassium induce the expression of acyl-coenzyme A (CoA) thioesterase 2 and acyl-CoA synthetase 4, two enzymes involved in intramitochondrial AA generation/export system well characterized in other steroidogenic systems. We demonstrate that mitochondrial ATP is required for AA generation/export system, steroid production, and steroidogenic acute regulatory protein induction. We also demonstrate the role of protein tyrosine phosphatases regulating acyl-CoA synthetase 4 and steroidogenic acute regulatory protein induction, and hence ANG II-stimulated aldosterone synthesis.

  2. Anti-Tumor Effects of Novel 5-O-Acyl Plumbagins Based on the Inhibition of Mammalian DNA Replicative Polymerase Activity

    PubMed Central

    Kawamura, Moe; Kuriyama, Isoko; Maruo, Sayako; Kuramochi, Kouji; Tsubaki, Kazunori; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2014-01-01

    We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone) inhibits the activity of human mitochondrial DNA polymerase γ (pol γ). In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins). These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin) showed the strongest suppression of human colon carcinoma (HCT116) cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM) among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin. PMID:24520419

  3. The Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase from Acinetobacter sp. Strain ADP1: Characterization of a Novel Type of Acyltransferase

    PubMed Central

    Stöveken, Tim; Kalscheuer, Rainer; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2005-01-01

    The wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) catalyzes the final steps in triacylglycerol (TAG) and wax ester (WE) biosynthesis in the gram-negative bacterium Acinetobacter sp. strain ADP1. It constitutes a novel class of acyltransferases which is fundamentally different from acyltransferases involved in TAG and WE synthesis in eukaryotes. The enzyme was purified by a three-step purification protocol to apparent homogeneity from the soluble fraction of recombinant Escherichia coli Rosetta (DE3)pLysS (pET23a::atfA). Purified WS/DGAT revealed a remarkably low substrate specificity, accepting a broad range of various substances as alternative acceptor molecules. Besides having DGAT and WS activity, the enzyme possesses acyl-CoA:monoacylglycerol acyltransferase (MGAT) activity. The sn-1 and sn-3 positions of acylglycerols are accepted with higher specificity than the sn-2 position. Linear alcohols ranging from ethanol to triacontanol are efficiently acylated by the enzyme, which exhibits highest specificities towards medium-chain-length alcohols. The acylation of cyclic and aromatic alcohols, such as cyclohexanol or phenylethanol, further underlines the unspecific character of this enzyme. The broad range of possible substrates may lead to biotechnological production of interesting wax ester derivatives. Determination of the native molecular weight revealed organization as a homodimer. The large number of WS/DGAT-homologous genes identified in pathogenic mycobacteria and their possible importance for the pathogenesis and latency of these bacteria makes the purified WS/DGAT from Acinetobacter sp. strain ADP1 a valuable model for studying this group of proteins in pathogenic mycobacteria. PMID:15687201

  4. Effects of acute resistance exercise on acyl-ghrelin and obestatin levels in hemodialysis patients: a pilot study.

    PubMed

    Moraes, Cristiane; Borges, Natália A; Barboza, Jorge; Barros, Amanda F; Mafra, Denise

    2015-11-01

    Chronic physical exercises may be beneficial to modulate appetite hormones as acyl-ghrelin (orexigenic) and obestatin (anorexigenic) in chronic kidney disease (CKD) patients; however, there are no data about the effects of acute exercises on these hormones. Thus, the aim of the present study was to assess the effect of acute resistance exercise on appetite hormones (acyl-ghrelin and obestatin) of patients undergoing hemodialysis (HD). Twenty-five patients (44.7 ± 12.9 years, 68% women) on regular HD program were enrolled into two groups, 16 patients performed exercises and 9 patients comprised the control group. The patients performed the exercises in both lower limbs with ankle-cuffs and elastic bands, 30 min after the initiation of hemodialysis session. Blood samples of both the groups were drawn in the morning before and after 30 min with exercise session (exercise group) and, before and after the same time without exercise (control group). Acyl-ghrelin and obestatin plasma levels were measured using an enzyme immunometric assay. Acyl-ghrelin plasma levels did not change in both the groups. However, when stratified by gender the acyl-ghrelin increased significantly right after exercise in men [32.1 pg/mL (25.6-41.2) to 46.0 pg/mL (39.0-59.5)] (p = 0.04). Obestatin plasma levels reduced after a single bout of exercise and changes remained significantly when the sample was stratified by gender. There was no change in obestatin plasma levels in control group. A single bout of resistance exercise seems to modulate the levels of appetite hormones in HD patients. PMID:26381714

  5. Effects of acute resistance exercise on acyl-ghrelin and obestatin levels in hemodialysis patients: a pilot study.

    PubMed

    Moraes, Cristiane; Borges, Natália A; Barboza, Jorge; Barros, Amanda F; Mafra, Denise

    2015-11-01

    Chronic physical exercises may be beneficial to modulate appetite hormones as acyl-ghrelin (orexigenic) and obestatin (anorexigenic) in chronic kidney disease (CKD) patients; however, there are no data about the effects of acute exercises on these hormones. Thus, the aim of the present study was to assess the effect of acute resistance exercise on appetite hormones (acyl-ghrelin and obestatin) of patients undergoing hemodialysis (HD). Twenty-five patients (44.7 ± 12.9 years, 68% women) on regular HD program were enrolled into two groups, 16 patients performed exercises and 9 patients comprised the control group. The patients performed the exercises in both lower limbs with ankle-cuffs and elastic bands, 30 min after the initiation of hemodialysis session. Blood samples of both the groups were drawn in the morning before and after 30 min with exercise session (exercise group) and, before and after the same time without exercise (control group). Acyl-ghrelin and obestatin plasma levels were measured using an enzyme immunometric assay. Acyl-ghrelin plasma levels did not change in both the groups. However, when stratified by gender the acyl-ghrelin increased significantly right after exercise in men [32.1 pg/mL (25.6-41.2) to 46.0 pg/mL (39.0-59.5)] (p = 0.04). Obestatin plasma levels reduced after a single bout of exercise and changes remained significantly when the sample was stratified by gender. There was no change in obestatin plasma levels in control group. A single bout of resistance exercise seems to modulate the levels of appetite hormones in HD patients.

  6. A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium.

    PubMed

    Matsuba, Yuki; Sasaki, Nobuhiro; Tera, Masayuki; Okamura, Masachika; Abe, Yutaka; Okamoto, Emi; Nakamura, Haruka; Funabashi, Hisakage; Takatsu, Makoto; Saito, Mikako; Matsuoka, Hideaki; Nagasawa, Kazuo; Ozeki, Yoshihiro

    2010-10-01

    Glucosylation of anthocyanin in carnations (Dianthus caryophyllus) and delphiniums (Delphinium grandiflorum) involves novel sugar donors, aromatic acyl-glucoses, in a reaction catalyzed by the enzymes acyl-glucose-dependent anthocyanin 5(7)-O-glucosyltransferase (AA5GT and AA7GT). The AA5GT enzyme was purified from carnation petals, and cDNAs encoding carnation Dc AA5GT and the delphinium homolog Dg AA7GT were isolated. Recombinant Dc AA5GT and Dg AA7GT proteins showed AA5GT and AA7GT activities in vitro. Although expression of Dc AA5GT in developing carnation petals was highest at early stages, AA5GT activity and anthocyanin accumulation continued to increase during later stages. Neither Dc AA5GT expression nor AA5GT activity was observed in the petals of mutant carnations; these petals accumulated anthocyanin lacking the glucosyl moiety at the 5 position. Transient expression of Dc AA5GT in petal cells of mutant carnations is expected to result in the transfer of a glucose moiety to the 5 position of anthocyanin. The amino acid sequences of Dc AA5GT and Dg AA7GT showed high similarity to glycoside hydrolase family 1 proteins, which typically act as β-glycosidases. A phylogenetic analysis of the amino acid sequences suggested that other plant species are likely to have similar acyl-glucose-dependent glucosyltransferases.

  7. Fatty acyl donor selectivity in membrane bound O-acyltransferases and communal cell fate decision-making

    PubMed Central

    Tuladhar, Rubina; Lum, Lawrence

    2015-01-01

    The post-translational modification of proteins with lipid moieties confers spatial and temporal control of protein function by restricting their subcellular distribution or movement in the extracellular milieu. Yet, little is known about the significance of lipid selectivity to the activity of proteins targeted for such modifications. Membrane bound O-acyl transferases (MBOATs) are a superfamily of multipass enzymes that transfer fatty acids on to lipid or protein substrates. Three MBOATs constitute a subfamily with secreted signalling molecules for substrates, the Wnt, Hedgehog (Hh) and Ghrelin proteins. Given their important roles in adult tissue homoeostasis, all three molecules and their respective associated acyltransferases provide a framework for interrogating the role of extracellular acylation events in cell-to-cell communication. Here, we discuss how the preference for a fatty acyl donor in the Wnt acyltransferase porcupine (Porcn) and possibly in other protein lipidation enzymes may provide a means for coupling metabolic health at the single cell level to communal cell fate decision-making in complex multicellular organisms. PMID:25849923

  8. Acylated and Desacylated Ghrelin, Preptin, Leptin, and Nesfatin-1 Peptide Changes Related to the Body Mass Index

    PubMed Central

    Ozkan, Yusuf; Timurkan, Esra Suay; Sahin, İbrahim; Timurkan, Mustafa; Citil, Cihan; Kalayci, Mehmet; Yilmaz, Musa; Catak, Zekiye

    2013-01-01

    This study examines the levels of acylated and desacylated ghrelin, preptin, leptin, and nesfatin-1 peptide changes related to the body mass index (BMI). The subjects were allocated to 5 groups depending on their BMIs as follows: Group I (BMI <18.5 kg/m2); Group II (BMI 18.5–24.9 kg/m2); Group III (BMI 25–29.9 kg/m2); Group IV (BMI 30–39.9 kg/m2); Group V (BMI >40 kg/m2). Serum acylated and desacylated ghrelin, preptin, and leptin levels were measured by the enzyme-linked immunosorbent assay (ELISA) and nesfatin-1 was measured by the enzyme immunoassay (EIA). Desacylated ghrelin levels showed a gradual and statistically significant drop from Group I to Group V, while preptin and leptin levels exhibited a gradual and significant increase from Group I to Group IV. Serum nesfatin-1 levels gradually, but not significantly, increased from Group I to Group III and showed a significant decrease in Groups IV and V. In conclusion, leptin, preptin, and acylated ghrelin (AG) levels increased with higher BMI, whereas desacylated ghrelin (DAG) decreased and nesfatin-1 showed no clear relationship to BMI. PMID:24371438

  9. Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase

    PubMed Central

    Tran, Timothy H.; Hsiao, Yu-Shan; Jo, Jeanyoung; Chou, Chi-Yuan; Dietrich, Lars E.P.; Walz, Thomas; Tong, Liang

    2014-01-01

    Biotin-dependent carboxylases are widely distributed in nature and have important functions in the metabolism of fatty acids, amino acids, carbohydrates, cholesterol and other compounds 1–6. Defective mutations in several of these enzymes have been linked to serious metabolic diseases in humans, and acetyl-CoA carboxylase (ACC) is a target for drug discovery against diabetes, cancer and other diseases 7–9. We report here the identification and biochemical, structural and functional characterizations of a novel single-chain (120 kD), multi-domain biotin-dependent carboxylase in bacteria. It has preference for long-chain acyl-CoA substrates, although it is also active toward short- and medium-chain acyl-CoAs, and we have named it long-chain acyl-CoA carboxylase (LCC). The holoenzyme is a homo-hexamer with molecular weight of 720 kD. The 3.0 Å crystal structure of Mycobacterium avium subspecies paratuberculosis LCC (MapLCC) holoenzyme revealed an architecture that is strikingly different compared to those of related biotin-dependent carboxylases 10,11. In addition, the domains of each monomer have no direct contacts with each other. They are instead extensively swapped in the holoenzyme, such that one cycle of catalysis involves the participation of four monomers. Functional studies in Pseudomonas aeruginosa suggest that the enzyme is involved in the utilization of selected carbon and nitrogen sources. PMID:25383525

  10. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans.

    PubMed

    Zhang, Xinxing; Li, Kunhua; Jones, Rachel A; Bruner, Steven D; Butcher, Rebecca A

    2016-09-01

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state.

  11. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans.

    PubMed

    Zhang, Xinxing; Li, Kunhua; Jones, Rachel A; Bruner, Steven D; Butcher, Rebecca A

    2016-09-01

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state. PMID:27551084

  12. Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma

    PubMed Central

    Marien, Eyra; Meister, Michael; Muley, Thomas; del Pulgar, Teresa Gomez; Derua, Rita; Spraggins, Jeffrey M.; Van de Plas, Raf; Vanderhoydonc, Frank; Machiels, Jelle; Binda, Maria Mercedes; Dehairs, Jonas; Willette-Brown, Jami; Hu, Yinling; Dienemann, Hendrik; Thomas, Michael; Schnabel, Philipp A.; Caprioli, Richard M.; Lacal, Juan Carlos; Waelkens, Etienne; Swinnen, Johannes V.

    2016-01-01

    Lung cancer is the leading cause of cancer death. Beyond first line treatment, few therapeutic options are available, particularly for squamous cell carcinoma (SCC). Here, we have explored the phospholipidomes of 30 human SCCs and found that they almost invariably (in 96.7% of cases) contain phospholipids with longer acyl chains compared to matched normal tissues. This trait was confirmed using in situ 2D-imaging MS on tissue sections and by phospholipidomics of tumor and normal lung tissue of the L-IkkαKA/KA mouse model of lung SCC. In both human and mouse, the increase in acyl chain length in cancer tissue was accompanied by significant changes in the expression of acyl chain elongases (ELOVLs). Functional screening of differentially expressed ELOVLs by selective gene knockdown in SCC cell lines followed by phospholipidomics revealed ELOVL6 as the main elongation enzyme responsible for acyl chain elongation in cancer cells. Interestingly, inhibition of ELOVL6 drastically reduced colony formation of multiple SCC cell lines in vitro and significantly attenuated their growth as xenografts in vivo in mouse models. These findings identify acyl chain elongation as one of the most common traits of lung SCC discovered so far and pinpoint ELOVL6 as a novel potential target for cancer intervention. PMID:26862848

  13. Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds.

    PubMed

    Moreno-Pérez, Antonio Javier; Venegas-Calerón, Mónica; Vaistij, Fabián E; Salas, Joaquin J; Larson, Tony R; Garcés, Rafael; Graham, Ian A; Martínez-Force, Enrique

    2014-03-01

    The substrate specificity of the acyl-acyl carrier protein (ACP) thioesterases significantly determines the type of fatty acids that are exported from plastids. Thus, designing acyl-ACP thioesterases with different substrate specificities or kinetic properties would be of interest for plant lipid biotechnology to produce oils enriched in specialty fatty acids. In the present work, the FatA thioesterase from Helianthus annuus was used to test the impact of changes in the amino acids present in the binding pocket on substrate specificity and catalytic efficiency. Amongst all the mutated enzymes studied, Q215W was especially interesting as it had higher specificity towards saturated acyl-ACP substrates and higher catalytic efficiency compared to wild-type H. annuus FatA. Null, wild type and high-efficiency alleles were transiently expressed in tobacco leaves to check their effect on lipid biosynthesis. Expression of active FatA thioesterases altered the composition of leaf triacylglycerols but did not alter total lipid content. However, the expression of the wild type and the high-efficiency alleles in Arabidopsis thaliana transgenic seeds resulted in a strong reduction in oil content and an increase in total saturated fatty acid content. The role and influence of acyl-ACP thioesterases in plant metabolism and their possible applications in lipid biotechnology are discussed.

  14. Structure of the D-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    SciTech Connect

    Bera, A.K.; Robinson, H.; Atanasova, V.; Gamage, S.; Parsons, J. F.

    2010-06-01

    The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound D-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.

  15. Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    PubMed Central

    Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna; Robinson, Howard; Parsons, James F.

    2010-01-01

    The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-­carboxylate via an adenylyl intermediate. PMID:20516619

  16. Amine, Alcohol and Phosphine Catalysts for Acyl Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Spivey, Alan C.; Arseniyadis, Stellios

    An overview of the area of organocatalytic asymmetric acyl transfer processes is presented including O- and N-acylation. The material has been ordered according to the structural class of catalyst employed rather than reaction type with the intention to draw mechanistic parallels between the manner in which the various reactions are accelerated by the catalysts and the concepts employed to control transfer of chiral information from the catalyst to the substrates.

  17. Reciprocal Influence of Protein Domains in the Cold-Adapted Acyl Aminoacyl Peptidase from Sporosarcina psychrophila

    PubMed Central

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution. PMID:23457536

  18. 3-Oxoacyl-(acyl-carrier protein) reductase from avocado (Persea americana) fruit mesocarp.

    PubMed Central

    Sheldon, P S; Kekwick, R G; Sidebottom, C; Smith, C G; Slabas, A R

    1990-01-01

    The NADPH-linked 3-oxoacyl-(acyl-carrier protein) (ACP) reductase (EC 1.1.1.100), also known as 'beta-ketoacyl-ACP reductase', has been purified from the mesocarp of mature avocado pears (Persea americana). The enzyme is inactivated by low ionic strength and low temperature. On SDS/PAGE under reducing conditions, purified 3-oxoacyl-ACP reductase migrated as a single polypeptide giving a molecular mass of 28 kDa. Gel-filtration chromatography gave an apparent native molecular mass of 130 kDa, suggesting that the enzyme is tetrameric. The enzyme is inactivated by dilution, but some protection is afforded by the presence of NADPH. Kinetic constants have been determined using synthetic analogues as well as the natural ACP substrate. It exhibits a broad pH optimum around neutrality. Phenylglyoxal inactivates the enzyme, and partial protection is given by 1 mM-NADPH. Antibodies have been raised against the protein, which were used to localize it using immunogold electron microscopy. It is localized in plastids. N-Terminal amino-acid-sequence analysis was performed on the enzyme, and it shows close structural similarity with cytochrome f. Internal amino-acid-sequence data, derived from tryptic peptides, shows similarity with the putative gene products encoded by the nodG gene from the nitrogen-fixing bacterium Rhizobium meliloti and the gra III act III genes from Streptomyces spp. Images Fig. 2. Fig. 5. Fig. 6. PMID:2244875

  19. Diastereoselective Three-Component Synthesis of β-Amino Carbonyl Compounds Using Diazo Compounds, Boranes, and Acyl Imines under Catalyst-Free Conditions

    PubMed Central

    2015-01-01

    Diazo compounds, boranes, and acyl imines undergo a three-component Mannich condensation reaction under catalyst-free conditions to give the anti β-amino carbonyl compounds in high diastereoselectivity. The reaction tolerates a variety of functional groups, and an asymmetric variant was achieved using the (−)-phenylmenthol as chiral auxiliary in good yield and selectivity. These β-amino carbonyl compounds are valuable intermediates, which can be transformed to many potential bioactive molecules. PMID:24787904

  20. Deciphering the roles of acyl-CoA-binding proteins in plant cells.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-09-01

    Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed. PMID:26340904

  1. Protonation of a Peroxodiiron(III) Complex and Conversion to a Diiron(III/IV) Intermediate: Implications for Proton-assisted O-O Bond Cleavage in Nonheme Diiron Enzymes

    PubMed Central

    Cranswick, Matthew A.; Meier, Katlyn K.; Shan, Xiaopeng; Stubna, Audria; Kaizer, Jószef; Mehn, Mark P.; Münck, Eckard; Que, Lawrence

    2012-01-01

    Oxygenation of a diiron(II) complex,[FeII2(μ-OH)2(BnBQA)2(NCMe)2]2+ (2) (where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine) results in the formation of a metastable peroxodiferric intermediate (3). Treatment of 3 with strong acid affords its conjugate acid 4 in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter lived than 3 and decays to generate in 20–25% yield a diiron(III/IV) species (5) that can be identified by EPR and Mössbauer spectroscopy. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to the cleavage of the peroxo O–O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase. PMID:22971084

  2. CO extrusion in homogeneous gold catalysis: reactivity of gold acyl species generated through water addition to gold vinylidenes.

    PubMed

    Bucher, Janina; Stößer, Tim; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2015-01-26

    Herein, we describe a new gold-catalyzed decarbonylative indene synthesis. Synergistic σ,π-activation of diyne substrates leads to gold vinylidene intermediates, which upon addition of water are transformed into gold acyl species, a type of organogold compound hitherto only scarcely reported. The latter are shown to undergo extrusion of CO, an elementary step completely unknown for homogeneous gold catalysis. By tuning the electronic and steric properties of the starting diyne systems, this new reactivity could be exploited for the synthesis of indene derivatives in high yields.

  3. Base-promoted C→N acyl rearrangement: an unconventional approach to α-amino acid derivatives.

    PubMed

    Ugarriza, Iratxe; Uria, Uxue; Carrillo, Luisa; Vicario, Jose L; Reyes, Efraim

    2014-09-01

    We have discovered that N-alkyl aminomalonates undergo a fast and selective intramolecular C→N acyl rearrangement reaction in the presence of a strong base, leading to N-protected glycinates in excellent yield. Moreover, the fact that the reaction proceeds through a nucleophilic enolate intermediate has been used for implementing a tandem rearrangement/alkylation sequence that has been applied to the preparation of synthetically relevant nonproteinogenic tertiary and quaternary N-alkyl α-amino acids in a very simple and reliable way.

  4. Nonoxidative ethanol metabolism in rabbit myocardium: purification to homogeneity of fatty acyl ethyl ester synthase

    SciTech Connect

    Mogelson, S.; Lange, L.G.

    1984-08-28

    Fatty acyl ethyl esters arise from an esterification of free fatty acids with ethanol in the absence of ATP and coenzyme A. This study was designed to purify the enzyme(s) in rabbit myocardium that catalyze(s) this reaction. Enzyme activity in homogenates of myocardium, as assayed by the rate of synthesis of ethyl (/sup 14/C)oleate from 0.4 mM (/sup 14/C)oleic acid and 0.2 M ethanol, was 31 nmol/ (g x h), and was recovered in the 48400g supernatant. This soluble ethyl ester synthase activity bound to DEAE-cellulose at pH 8, and elution with a NaCl gradient (0-0.25 M0 separated two enzyme activities accounting for 13 and 87% of recovered synthase activity. The major enzyme activity was purified over 5000-fold to homogeneity. Gel electrophoresis showed a single polypeptide with M/sub r/ 26,000, and gel permeation chromatography under nondenaturing conditions indicated a M/sub r/ of 50,000 for the active enzyme. Kinetic analyses indicated that greatest rates of synthesis were observed with unsaturated octadecanoic fatty acid substrates. K/sub m/'s for these fatty acids were essentially identical and equal to 0.2 mM; substrate specificity resulted from varying K/sub m/'s for methanol, ethanol, 1-propanol, and 1-butanol, while V/sub max/ was constant at approximately 1.5 nmol/(mg x s). The amino acid analysis of this synthase distinguishes it from typical cholesterol esterases. When the enzyme is maximally active with respect to ethyl ester synthesis, it does not hydrolyze cholesterol oleate. Fatty acid ethyl esters are synthesized in myocardium primarily by a soluble dimeric enzyme comprised of two nearly identical subunits which esterifies free fatty acids with ethanol to produce a nonoxidative metabolite.

  5. Enhancement of (stereo)selectivity in dynamic kinetic resolution using a core-shell nanozeolite@enzyme as a bi-functional catalyst.

    PubMed

    Wang, Wanlu; Li, Xiang; Wang, Zhoujun; Tang, Yi; Zhang, Yahong

    2014-08-28

    A core-shell nanozeolite@enzyme bi-functional catalyst is constructed, which greatly improves selectivity and stereoselectivity of products in dynamic kinetic resolution of aromatic secondary alcohols compared with mixed catalysts, especially those involving small acyl donors.

  6. Structure of 3-oxoacyl-(acyl-carrier protein) synthase II from Thermus thermophilus HB8

    SciTech Connect

    Bagautdinov, Bagautdin Ukita, Yoko; Miyano, Masashi; Kunishima, Naoki

    2008-05-01

    The crystal structure of 3-oxoacyl-(acyl-carrier protein) synthase II from T. thermophilus HB8 has been determined at 2.0 Å resolution and compared with the structures of β-keto-ACP synthases from other sources. The β-ketoacyl-(acyl carrier protein) synthases (β-keto-ACP synthases; KAS) catalyse the addition of two-carbon units to the growing acyl chain during the elongation phase of fatty-acid synthesis. As key regulators of bacterial fatty-acid synthesis, they are promising targets for the development of new antibacterial agents. The crystal structure of 3-oxoacyl-ACP synthase II from Thermus thermophilus HB8 (TtKAS II) has been solved by molecular replacement and refined at 2.0 Å resolution. The crystal is orthorhombic, space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 72.07, b = 185.57, c = 62.52 Å, and contains one homodimer in the asymmetric unit. The subunits adopt the well known α-β-α-β-α thiolase fold that is common to ACP synthases. The structural and sequence similarities of TtKAS II to KAS I and KAS II enzymes of known structure from other sources support the hypothesis of comparable enzymatic activity. The dimeric state of TtKAS II is important to create each fatty-acid-binding pocket. Closer examination of KAS structures reveals that compared with other KAS structures in the apo form, the active site of TtKAS II is more accessible because of the ‘open’ conformation of the Phe396 side chain.

  7. Discovery of an Allosteric Inhibitor Binding Site in 3-Oxo-acyl-ACP Reductase from Pseudomonas aeruginosa

    PubMed Central

    2013-01-01

    3-Oxo-acyl-acyl carrier protein (ACP) reductase (FabG) plays a key role in the bacterial fatty acid synthesis II system in pathogenic microorganisms, which has been recognized as a potential drug target. FabG catalyzes reduction of a 3-oxo-acyl-ACP intermediate during the elongation cycle of fatty acid biosynthesis. Here, we report gene deletion experiments that support the essentiality of this gene in P. aeruginosa and the identification of a number of small molecule FabG inhibitors with IC50 values in the nanomolar to low micromolar range and good physicochemical properties. Structural characterization of 16 FabG-inhibitor complexes by X-ray crystallography revealed that the compounds bind at a novel allosteric site located at the FabG subunit–subunit interface. Inhibitor binding relies primarily on hydrophobic interactions, but specific hydrogen bonds are also observed. Importantly, the binding cavity is formed upon complex formation and therefore would not be recognized by virtual screening approaches. The structure analysis further reveals that the inhibitors act by inducing conformational changes that propagate to the active site, resulting in a displacement of the catalytic triad and the inability to bind NADPH. PMID:24015914

  8. Template-induced diverse metal-organic materials as catalysts for the tandem acylation-Nazarov cyclization.

    PubMed

    Huang, Chao; Ding, Ran; Song, Chuanjun; Lu, Jingjing; Liu, Lu; Han, Xiao; Wu, Jie; Hou, Hongwei; Fan, Yaoting

    2014-12-01

    In our continuing quest to develop a metal-organic framework (MOF)-catalyzed tandem pyrrole acylation-Nazarov cyclization reaction with α,β-unsaturated carboxylic acids for the synthesis of cyclopentenone[b]pyrroles, which are key intermediates in the synthesis of natural product (±)-roseophilin, a series of template-induced Zn-based (1-3) metal-organic frameworks (MOFs) have been solvothermally synthesized and characterized. Structural conversions from non-porous MOF 1 to porous MOF 2, and back to non-porous MOF 3 arising from the different concentrations of template guest have been observed. The anion-π interactions between the template guests and ligands could affect the configuration of ligands and further tailor the frameworks of 1-3. Futhermore, MOFs 1-3 have shown to be effective heterogeneous catalysts for the tandem acylation-Nazarov cyclization reaction. In particular, the unique structural features of 2, including accessible catalytic sites and suitable channel size and shape, endow 2 with all of the desired features for the MOF-catalyzed tandem acylation-Nazarov cyclization reaction, including heterogeneous catalyst, high catalytic activity, robustness, and excellent selectivity. A plausible mechanism for the catalytic reaction has been proposed and the structure-reactivity relationship has been further clarified. Making use of 2 as a heterogeneous catalyst for the reaction could greatly increase the yield of total synthesis of (±)-roseophilin. PMID:25303356

  9. Regioselective Acylation of Diols and Triols: The Cyanide Effect.

    PubMed

    Peng, Peng; Linseis, Michael; Winter, Rainer F; Schmidt, Richard R

    2016-05-11

    Central topics of carbohydrate chemistry embrace structural modifications of carbohydrates and oligosaccharide synthesis. Both require regioselectively protected building blocks that are mainly available via indirect multistep procedures. Hence, direct protection methods targeting a specific hydroxy group are demanded. Dual hydrogen bonding will eventually differentiate between differently positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide or acetyl cyanide as an acylating agent, and DMAP as a catalyst yield at -78 °C the thermodynamically unfavorable axial O-acylation product; acyl migration is not observed under these conditions. This phenomenon was substantiated with 3,4-O-unproteced galacto- and fucopyranosides and 2,3-O-unprotected mannopyranosides. Even for 3,4,6-O-unprotected galactopyranosides as triols, axial 4-O-acylation is appreciably faster than O-acylation of the primary 6-hydroxy group. The importance of hydrogen bonding for this unusual regioselectivity could be confirmed by NMR studies and DFT calculations, which indicate favorable hydrogen bonding of cyanide to the most acidic axial hydroxy group supported by hydrogen bonding of the equatorial hydroxy group to the axial oxygen. Thus, the "cyanide effect" is due to dual hydrogen bonding of the axial hydroxy group which enhances the nucleophilicity of the respective oxygen atom, permitting an even faster reaction for diols than for mono-ols. In contrast, fluoride as a counterion favors dual hydrogen bonding to both hydroxy groups leading to equatorial O-acylation. PMID:27104625

  10. Site-specific S-Acylation of Influenza Virus Hemagglutinin

    PubMed Central

    Brett, Katharina; Kordyukova, Larisa V.; Serebryakova, Marina V.; Mintaev, Ramil R.; Alexeevski, Andrei V.; Veit, Michael

    2014-01-01

    S-Acylation of hemagglutinin (HA), the main glycoprotein of influenza viruses, is an essential modification required for virus replication. Using mass spectrometry, we have previously demonstrated specific attachment of acyl chains to individual acylation sites. Whereas the two cysteines in the cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to a cysteine positioned at the end of the transmembrane region (TMR). Here we analyzed recombinant viruses containing HA with exchange of conserved amino acids adjacent to acylation sites or with a TMR cysteine shifted to a cytoplasmic location to identify the molecular signal that determines preferential attachment of stearate. We first developed a new protocol for sample preparation that requires less material and might thus also be suitable to analyze cellular proteins. We observed cell type-specific differences in the fatty acid pattern of HA: more stearate was attached if human viruses were grown in mammalian compared with avian cells. No underacylated peptides were detected in the mass spectra, and even mutations that prevented generation of infectious virus particles did not abolish acylation of expressed HA as demonstrated by metabolic labeling experiments with [3H]palmitate. Exchange of conserved amino acids in the vicinity of an acylation site had a moderate effect on the stearate content. In contrast, shifting the TMR cysteine to a cytoplasmic location virtually eliminated attachment of stearate. Thus, the location of an acylation site relative to the transmembrane span is the main signal for stearate attachment, but the sequence context and the cell type modulate the fatty acid pattern. PMID:25349209

  11. An Artificial Enzyme Made by Covalent Grafting of an Fe(II) Complex into β-Lactoglobulin: Molecular Chemistry, Oxidation Catalysis, and Reaction-Intermediate Monitoring in a Protein.

    PubMed

    Buron, Charlotte; Sénéchal-David, Katell; Ricoux, Rémy; Le Caër, Jean-Pierre; Guérineau, Vincent; Méjanelle, Philippe; Guillot, Régis; Herrero, Christian; Mahy, Jean-Pierre; Banse, Frédéric

    2015-08-17

    An artificial metalloenzyme based on the covalent grafting of a nonheme Fe(II) polyazadentate complex into bovine β-lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the Fe(II) catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin-state conversion of the initial high spin (S=2) Fe(II) complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center's first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2 O2 reveals the generation of a high spin (S=5/2) Fe(III) (η(2) -O2 ) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate.

  12. A Mechanochemical Switch to Control Radical Intermediates

    PubMed Central

    2015-01-01

    B12-dependent enzymes employ radical species with exceptional prowess to catalyze some of the most chemically challenging, thermodynamically unfavorable reactions. However, dealing with highly reactive intermediates is an extremely demanding task, requiring sophisticated control strategies to prevent unwanted side reactions. Using hybrid quantum mechanical/molecular mechanical simulations, we follow the full catalytic cycle of an AdoB12-dependent enzyme and present the details of a mechanism that utilizes a highly effective mechanochemical switch. When the switch is “off”, the 5′-deoxyadenosyl radical moiety is stabilized by releasing the internal strain of an enzyme-imposed conformation. Turning the switch “on,” the enzyme environment becomes the driving force to impose a distinct conformation of the 5′-deoxyadenosyl radical to avoid deleterious radical transfer. This mechanochemical switch illustrates the elaborate way in which enzymes attain selectivity of extremely chemically challenging reactions. PMID:24846280

  13. A mechanochemical switch to control radical intermediates.

    PubMed

    Brunk, Elizabeth; Kellett, Whitney F; Richards, Nigel G J; Rothlisberger, Ursula

    2014-06-17

    B₁₂-dependent enzymes employ radical species with exceptional prowess to catalyze some of the most chemically challenging, thermodynamically unfavorable reactions. However, dealing with highly reactive intermediates is an extremely demanding task, requiring sophisticated control strategies to prevent unwanted side reactions. Using hybrid quantum mechanical/molecular mechanical simulations, we follow the full catalytic cycle of an AdoB₁₂-dependent enzyme and present the details of a mechanism that utilizes a highly effective mechanochemical switch. When the switch is "off", the 5'-deoxyadenosyl radical moiety is stabilized by releasing the internal strain of an enzyme-imposed conformation. Turning the switch "on," the enzyme environment becomes the driving force to impose a distinct conformation of the 5'-deoxyadenosyl radical to avoid deleterious radical transfer. This mechanochemical switch illustrates the elaborate way in which enzymes attain selectivity of extremely chemically challenging reactions.

  14. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, but the acyl-galactose acyl composition varies with the plant species and applied stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Head group acylation of monogalactosyldiacylglycerol is a plant lipid modification occurring during bacterial infection. Little is known about the range of stresses that induce this lipid modification, the molecular species induced, and the function of the modification. Lipidomic analysis using trip...

  15. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner

    PubMed Central

    Sachdeva, Gairik; Garg, Abhishek; Godding, David; Way, Jeffrey C.; Silver, Pamela A.

    2014-01-01

    Co-localization of biochemical processes plays a key role in the directional control of metabolic fluxes toward specific products in cells. Here, we employ in vivo scaffolds made of RNA that can bind engineered proteins fused to specific RNA binding domains. This allows proteins to be co-localized on RNA scaffolds inside living Escherichia coli. We assembled a library of eight aptamers and corresponding RNA binding domains fused to partial fragments of fluorescent proteins. New scaffold designs could co-localize split green fluorescent protein fragments to produce activity as measured by cell-based fluorescence. The scaffolds consisted of either single bivalent RNAs or RNAs designed to polymerize in one or two dimensions. The new scaffolds were used to increase metabolic output from a two-enzyme pentadecane production pathway that contains a fatty aldehyde intermediate, as well as three and four enzymes in the succinate production pathway. Pentadecane synthesis depended on the geometry of enzymes on the scaffold, as determined through systematic reorientation of the acyl-ACP reductase fusion by rotation via addition of base pairs to its cognate RNA aptamer. Together, these data suggest that intra-cellular scaffolding of enzymatic reactions may enhance the direct channeling of a variety of substrates. PMID:25034694

  16. Purification and properties of acyl/alkyl dihydroxyacetone-phosphate reductase from guinea pig liver peroxisomes.

    PubMed

    Datta, S C; Ghosh, M K; Hajra, A K

    1990-05-15

    The peroxisomal acyl/alkyl dihydroxyacetone-phosphate reductase (EC 1.1.1.101) was solubilized and purified 5500-fold from guinea pig liver. The enzyme could be solubilized by detergents only at high ionic strengths in presence of the cosubstrate NADPH. Peroxisomes, isolated from liver by a Nycodenz step density gradient centrifugation, were first treated with 0.2% Triton X-100 to remove the soluble and a large fraction of the membrane-bound proteins. The enzyme was solubilized from the resulting residue by 0.05% Triton X-100, 1 M KCl, 0.3 mM NADPH, and 2 mM dithiothreitol in Tris-HCl buffer (10 mM) at pH 7.5. The enzyme was further purified after precipitating it by dialyzing out the KCl and then resolubilized with 0.8% octyl glucoside in 1 M KCl (plus NADPH and dithiothreitol). The second solubilized enzyme was purified to homogeneity (370-fold from peroxisomes) by gel filtration in a Sepharose CL-6B column followed by affinity chromatography on an NADPH-agarose gel matrix. NADPH-agarose was prepared by reacting periodate-oxidized NADP+ to adipic acid dihydrazide-agarose and then reducing the immobilized NADP+ with NaBH4. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified enzyme showed a single homogeneous band with an apparent molecular weight of 60,000. The molecular weight of the native enzyme was estimated to be 75,000 by size exclusion chromatography. Amino acid analysis of the purified protein showed that hydrophobic amino acid comprised 27% of the molecule. The Km value of the purified enzyme for hexadecyldihydroxyacetone phosphate (DHAP) was 21 microM, and the Vmax value in the presence of 0.07 mM NADPH was 67 mumol/min/mg. The turnover number (Kcat), after correcting for the isotope effect of the cosubstrate NADP3H, was calculated to be 6,000 mol/min/mol of enzyme, assuming the enzyme has a molecular weight of 60,000. The purified enzyme also used palmitoyldihydroxyactone phosphate as a substrate (Km = 15.4 microM, and Vmax = 75

  17. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    PubMed

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry. PMID:22426734

  18. Accessibility of N-acyl-d-mannosamines to N-acetyl-d-neuraminic acid aldolase

    PubMed Central

    Pan, Yanbin; Ayani, Tiffany; Nadas, Janos; Wen, Shouming; Guo, Zhongwu

    2011-01-01

    N-Acetyl-d-neuraminic acid (NeuNAc) aldolase is an important enzyme for the metabolic engineering of cell surface NeuNAc using chemically modified d-mannosamines. To explore the optimal substrates for this application, eight N-acyl derivatives of d-mannosamine were prepared, and their accessibility to NeuNAc aldolase was investigated quantitatively. The N-propionyl-, N-butanoyl-, N-iso-butanoyl-, N-pivaloyl- and N-phenylacetyl-d-mannosamines proved to be as good substrates as, or even better than, the natural N-acetyl-d-mannosamine, while the N-trifluoropropionyl and benzoyl derivatives were poor. It was proposed that the electronic effects might have a significant influence on the enzymatic aldol condensation reaction of d-mannosamine derivatives, with electron-deficient acyl groups having a negative impact. The results suggest that N-propionyl-, N-butanoyl-, N-iso-butanoyl- and N-phenylacetyl-d-mannosamines may be employed to bioengineer NeuNAc on cells. PMID:15280054

  19. Recognition of Acyl Carrier Proteins by Ketoreductases in Assembly Line Polyketide Synthases

    PubMed Central

    Ostrowski, Matthew P.; Cane, David E.; Khosla, Chaitan

    2016-01-01

    Ketoreductases (KRs) are the most widespread tailoring domains found in individual modules of assembly line polyketide synthases (PKSs), and are responsible for controlling the configurations of both the α-methyl and β-hydroxyl stereogenic centers in the growing polyketide chain. Because they recognize substrates that are covalently bound to acyl carrier proteins (ACPs) within the same PKS module, we sought to quantify the extent to which protein-protein recognition contributes to the turnover of these oxidoreductive enzymes using stand-alone domains from the 6-deoxyerythronolide B synthase (DEBS). Reduced 2-methyl-3-hydroxyacyl-ACP substrates derived from two enantiomeric acyl chains and four distinct ACP domains were synthesized and presented to four distinct KR domains. Two KRs, from DEBS modules 2 and 5, displayed little preference for oxidation of substrates tethered to their cognate ACP domains over those attached to the other ACP domains tested. In contrast, the KR from DEBS module 1 showed a ca. 10-50-fold preference for substrate attached to its native ACP domain, whereas the KR from DEBS module 6 actually displayed a ca. 10-fold preference for the ACP from DEBS module 5. Our findings suggest that recognition of the ACP by a KR domain is unlikely to affect the rate of native assembly line polyketide biosynthesis. In some cases, however, unfavorable KR-ACP interactions may suppress the rate of substrate processing when KR domains are swapped to construct hybrid PKS modules. PMID:27118242

  20. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    PubMed

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry.

  1. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  2. Two fatty acyl reductases involved in moth pheromone biosynthesis.

    PubMed

    Antony, Binu; Ding, Bao-Jian; Moto, Ken'Ichi; Aldosari, Saleh A; Aldawood, Abdulrahman S

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective 'single pgFARs' produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a 'single reductase' can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  3. [Intermediate phenotype of schizophrenia].

    PubMed

    Hashimoto, Ryota

    2013-04-01

    Genes are major contributors to schizophrenia. The intermediate phenotype concept represents a strategy for identifying risk genes for schizophrenia and for characterizing the neural systems affected by risk gene variants to elucidate quantitative, mechanistic aspects of brain function implicated in schizophrenia. Intermediate phenotypes are defined by being heritable, being able to measure quantitatively; being related to the disorder and its symptoms in the general population; being stable over time; showing increased expression in unaffected relatives of probands; and cosegregation with the disorder in families. Intermediate phenotypes in schizophrenia are neurocognition, neuroimaging, neurophysiology, etc. In this review, we present concept, recent work, and future perspective of intermediate phenotype.

  4. Structure and Mechanistic Implications of a Tryptophan Synthase Quinonoid Intermediate

    SciTech Connect

    Barends,T.; Domratcheva, T.; Kulik, V.; Blumenstein, L.; Niks, D.; Dunn, M.; Schlichting, I.

    2008-01-01

    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Whereas structures of other PLP-bound reaction intermediates have been determined, a high-quality structure of a quinonoid species has not been reported. We present the crystal structure of the indoline quinonoid intermediate of tryptophan synthase (see figure) and discuss its implications for the enzymatic mechanism and allosteric regulation.

  5. Crystal structure of the liganded SCP-2-like domain of human peroxisomal multifunctional enzyme type 2 at 1.75 A resolution.

    PubMed

    Haapalainen, A M; van Aalten, D M; Meriläinen, G; Jalonen, J E; Pirilä, P; Wierenga, R K; Hiltunen, J K; Glumoff, T

    2001-11-01

    beta-Oxidation of amino acyl coenzyme A (acyl-CoA) species in mammalian peroxisomes can occur via either multifunctional enzyme type 1 (MFE-1) or type 2 (MFE-2), both of which catalyze the hydration of trans-2-enoyl-CoA and the dehydrogenation of 3-hydroxyacyl-CoA, but with opposite chiral specificity. MFE-2 has a modular organization of three domains. The function of the C-terminal domain of the mammalian MFE-2, which shows similarity with sterol carrier protein type 2 (SCP-2), is unclear. Here, the structure of the SCP-2-like domain comprising amino acid residues 618-736 of human MFE-2 (d Delta h Delta SCP-2L) was solved at 1.75 A resolution in complex with Triton X-100, an analog of a lipid molecule. This is the first reported structure of an MFE-2 domain. The d Delta h Delta SCP-2L has an alpha/beta-fold consisting of five beta-strands and five alpha-helices; the overall architecture resembles the rabbit and human SCP-2 structures. However, the structure of d Delta h Delta SCP-2L shows a hydrophobic tunnel that traverses the protein, which is occupied by an ordered Triton X-100 molecule. The tunnel is large enough to accommodate molecules such as straight-chain and branched-chain fatty acyl-CoAs and bile acid intermediates. Large empty apolar cavities are observed near the exit of the tunnel and between the helices C and D. In addition, the C-terminal peroxisomal targeting signal is ordered in the structure and solvent-exposed, which is not the case with unliganded rabbit SCP-2, supporting the hypothesis of a ligand-assisted targeting mechanism.

  6. An Artificial Enzyme Made by Covalent Grafting of an Fe(II) Complex into β-Lactoglobulin: Molecular Chemistry, Oxidation Catalysis, and Reaction-Intermediate Monitoring in a Protein.

    PubMed

    Buron, Charlotte; Sénéchal-David, Katell; Ricoux, Rémy; Le Caër, Jean-Pierre; Guérineau, Vincent; Méjanelle, Philippe; Guillot, Régis; Herrero, Christian; Mahy, Jean-Pierre; Banse, Frédéric

    2015-08-17

    An artificial metalloenzyme based on the covalent grafting of a nonheme Fe(II) polyazadentate complex into bovine β-lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the Fe(II) catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin-state conversion of the initial high spin (S=2) Fe(II) complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center's first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2 O2 reveals the generation of a high spin (S=5/2) Fe(III) (η(2) -O2 ) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate. PMID:26178593

  7. The halo-substituent effect on Pseudomonas cepacia lipase-mediated regioselective acylation of nucleosides: A comparative investigation.

    PubMed

    Wang, Zhao-Yu; Bi, Yan-Hong; Yang, Rong-Ling; Duan, Zhang-Qun; Nie, Ling-Hong; Li, Xiang-Qian; Zong, Min-Hua; Wu, Jie

    2015-10-20

    In this work, comparative experiments were explored to investigate the substrate specificity of Pseudomonas cepacia lipase in regioselective acylation of nucleosides carrying various substituents (such as the H, F, Cl, Br, I) at 2'- and 5-positions. Experimental data indicated that the catalytic performance of the enzyme depended very much on the halo-substituents in nucleosides. The increased bulk of 2'-substituents in ribose moiety of the nucleoside might contribute to the improved 3'-regioselectivity (90-98%, nucleosides a-d) in enzymatic decanoylation, while the enhancement of regioselectivity (93-99%) in 3'-O-acylated nucleosides e-h could be attributable to the increasing hydrophobicity of the halogen atoms at 5-positions. With regard to the chain-length selectivity, P. cepacia lipase displayed the highest 3'-regioselectivity toward the longer chain (C14) as compared to shorter (C6 and C10) ones. The position, orientation and property of the substituent, specific structure of the lipase's active site, and acyl structure could account for the diverse results. PMID:26325198

  8. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress

    PubMed Central

    Hentchel, Kristy L.

    2015-01-01

    SUMMARY Acylation of biomolecules (e.g., proteins and small molecules) is a process that occurs in cells of all domains of life and has emerged as a critical mechanism for the control of many aspects of cellular physiology, including chromatin maintenance, transcriptional regulation, primary metabolism, cell structure, and likely other cellular processes. Although this review focuses on the use of acetyl moieties to modify a protein or small molecule, it is clear that cells can use many weak organic acids (e.g., short-, medium-, and long-chain mono- and dicarboxylic aliphatics and aromatics) to modify a large suite of targets. Acetylation of biomolecules has been studied for decades within the context of histone-dependent regulation of gene expression and antibiotic resistance. It was not until the early 2000s that the connection between metabolism, physiology, and protein acetylation was reported. This was the first instance of a metabolic enzyme (acetyl coenzyme A [acetyl-CoA] synthetase) whose activity was controlled by acetylation via a regulatory system responsive to physiological cues. The above-mentioned system was comprised of an acyltransferase and a partner deacylase. Given the reversibility of the acylation process, this system is also referred to as reversible lysine acylation (RLA). A wealth of information has been obtained since the discovery of RLA in prokaryotes, and we are just beginning to visualize the extent of the impact that this regulatory system has on cell function. PMID:26179745

  9. Identification of Unusual Phospholipid Fatty Acyl Compositions of Acanthamoeba castellanii

    PubMed Central

    Palusinska-Szysz, Marta; Kania, Magdalena; Turska-Szewczuk, Anna; Danikiewicz, Witold; Russa, Ryszard; Fuchs, Beate

    2014-01-01

    Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL). The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0), octadecenoyl (18∶1 Δ9) and hexadecanoyl (16∶0). However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE), phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24) and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of these

  10. Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase

    SciTech Connect

    Vandevoorde, Severine; Saha, Bijali; Mahadevan, Anu; Razdan, Raj K.; Pertwee, Roger G.; Martin, Billy R.; Fowler, Christopher J. . E-mail: cf@pharm.umu.se

    2005-11-11

    Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC{sub 50} values in the range 5.1-8.2 {mu}M), whereas the two compounds with a single unsaturated bond were less potent (IC{sub 50} values 19 and 21 {mu}M). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC{sub 50} values of 12 and 32 {mu}M, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC{sub 50} value 4.5 {mu}M). Introduction of an {alpha}-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL.

  11. Mutation of active site serine residue with cysteine displays change in acyl-acceptor preference of β-peptidyl aminopeptidase from Pseudomonas aeruginosa PAO1.

    PubMed

    Arima, Jiro; Tanaka, Ayumi; Morimoto, Masazumi; Mori, Nobuhiro

    2014-02-01

    A β-peptidyl aminopeptidase, a peptidase belonging to the P1 family, catalyzes aminolysis in accordance with its hydrolytic activity. We specifically examined β-peptidyl aminopeptidase of Pseudomonas aeruginosa PAO1 (BapF) to assess the effects of mutation of catalytic Ser with Cys or Thr on its catalytic ability. Recombinant BapF and its S237C mutant exhibited p-nitroaniline release activity toward β-homo-Gly-p-nitroanilide (βhGly-pNA), but the products of the enzyme reaction differed completely from one another. Wild-type BapF showed βhGly-βhGly-pNA synthetic activity, but the product vanished in a few minutes and converted to free βhGly. In contrast, the product βhGly-βhGly-pNA was synthesized by S237C BapF efficiently without degradation, indicating that because of the mutation, the enzyme came to recognize only the amine group as an acyl acceptor instead of water. Furthermore, a difference in acyl acceptor preference between that of wild type and S237C BapF was observed. When using cysteamine as an acyl acceptor, βhGly-cysteamine was synthesized only in the reaction using S237C BapF. In contrast, S237C BapF was unable to synthesize βhGly-cystamine when using cystamine as an acyl acceptor, although it was synthesized by wild-type BapF. Such a dynamic change in the acyl acceptor by the mutation of catalytic Ser with Cys is regarded as a unique feature of family P1 peptidases.

  12. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. I. Production, isolation, and biological properties.

    PubMed

    Tomoda, H; Kim, Y K; Nishida, H; Masuma, R; Omura, S

    1994-02-01

    Aspergillus fumigatus FO-1289, a soil isolate, was found to produce a series of novel inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). Four active compounds, named pyripyropenes A, B, C and D, were isolated from the fermentation broth of the producing strain by solvent extraction, silica gel column chromatography, ODS column chromatography and preparative HPLC. Pyripyropenes A, B, C and D show very potent ACAT inhibitory activity in an enzyme assay system using rat liver microsomes with IC50 values of 58, 117, 53 and 268 nM, respectively. PMID:8150709

  13. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  14. Structure and Mechanism of ORF36, an Amino Sugar Oxidizing Enzyme in Everninomicin Biosynthesis

    SciTech Connect

    Vey, Jessica L.; Al-Mestarihi, Ahmad; Hu, Yunfeng; Funk, Michael A.; Bachmann, Brian O.; Iverson, T.M.

    2010-12-07

    Everninomicin is a highly modified octasaccharide that belongs to the orthosomycin family of antibiotics and possesses potent Gram-positive antibiotic activity, including broad-spectrum efficacy against multidrug resistant enterococci and Staphylococcus aureus. Among its distinctive structural features is a nitro sugar, L-evernitrose, analogues of which decorate a variety of natural products. Recently, we identified a nitrososynthase enzyme encoded by orf36 from Micromonospora carbonacea var. africana that mediates the flavin-dependent double oxidation of synthetically generated thymidine diphosphate (TDP)-L-epi-vancosamine to the corresponding nitroso sugar. Herein, we utilize a five-enzyme in vitro pathway both to verify that ORF36 catalyzes oxidation of biogenic TDP-L-epi-vancosamine and to determine whether ORF36 exhibits catalytic competence for any of its biosynthetic progenitors, which are candidate substrates for nitrososynthases in vivo. Progenitors solely undergo single-oxidation reactions and terminate in the hydroxylamine oxidation state. Performing the in vitro reactions in the presence of {sup 18}O{sub 2} establishes that molecular oxygen, rather than oxygen from water, is incorporated into ORF36-generated intermediates and products and identifies an off-pathway product that correlates with the oxidation product of a progenitor substrate. The 3.15 {angstrom} resolution X-ray crystal structure of ORF36 reveals a tetrameric enzyme that shares a fold with acyl-CoA dehydrogenases and class D flavin-containing monooxygenases, including the nitrososynthase KijD3. However, ORF36 and KijD3 have unusually open active sites in comparison to these related enzymes. Taken together, these studies map substrate determinants and allow the proposal of a minimal monooxygenase mechanism for amino sugar oxidation by ORF36.

  15. Structure and mechanism of ORF36, an Aminosugar Oxidizing Enzyme in Everninomicin Biosynthesis†

    PubMed Central

    Vey, Jessica L.; Al-Mestarihi, Ahmad; Hu, Yunfeng; Funk, Michael A.; Bachmann, Brian O.; Iverson, T. M.

    2010-01-01

    Everninomicin is a highly modified octasaccharide that belongs to the orthosomycin family of antibiotics and possesses potent gram-positive antibiotic activity, including broad-spectrum efficacy against multidrug resistant enterococci and Staphylococcus aureus. Among its distinctive structural features is a nitrosugar, l-evernitrose, analogs of which decorate a variety of natural products. Recently, we identified a nitrososynthase enzyme encoded by orf36 from Micromonospora carbonacea var. africana that mediates the flavin-dependent double oxidation of synthetically-generated thymidine diphosphate (TDP)-l-epi-vancosamine to the corresponding nitroso sugar. Herein, we utilize a five enzyme in vitro pathway both to verify that ORF36 catalyzes oxidation of biogenic TDP-l-epi-vancosamine and to determine whether ORF36 exhibits catalytic competence for any of its biosynthetic progenitors, which are candidate substrates for nitrososynthases in vivo. Progenitors solely undergo single oxidation reactions and terminate in the hydroxylamine oxidation state. Performing the in vitro reactions in the presence of 18O2 establishes that molecular oxygen, rather than oxygen from water, is incorporated into ORF36-generated intermediates and products, and identifies an off-pathway product that correlates with the oxidation product of a progenitor substrate. The 3.15 Å resolution x-ray crystal structure of ORF36 reveals a tetrameric enzyme that shares a fold with acyl-coA dehydrogenases and class D flavin-containing monooxygenases, including the nitrososynthase KijD3. However, ORF36 and KijD3 have unusually open active sites in comparison to these related enzymes. Taken together, these studies map substrate determinants and allow the proposal of a minimal monooxygenase mechanism for amino sugar oxidation by ORF36. PMID:20866105

  16. Synthesis, crystal structure, and in vitro and in silico molecular docking of novel acyl thiourea derivatives

    NASA Astrophysics Data System (ADS)

    Haribabu, Jebiti; Subhashree, Govindarajulu Rangabashyam; Saranya, Sivaraj; Gomathi, Kannayiram; Karvembu, Ramasamy; Gayathri, Dasararaju

    2015-08-01

    In the present study, a series of six biologically active substituted acyl thiourea compounds (1-6) has been synthesized from cyclohexanecarbonyl isothiocyanate and various primary amines (2-methyl aniline, aniline, 4-methoxy aniline, 4-ethoxy aniline, benzyl amine and 2-methoxy aniline). The synthesized compounds were characterized by elemental analyses, UV-Visible, FT-IR, 1H & 13C NMR and mass spectroscopic techniques. Three dimensional molecular structure of two compounds (1 and 5) was determined by single crystal X-ray crystallography. All the synthesized compounds show good anti-oxidant and anti-haemolytic activities. In silico molecular docking studies were performed to screen against DprE1 and HSP90 enzymes targeting tuberculosis and cancer respectively.

  17. An esterase on the outer membrane of Pseudomonas aeruginosa for the hydrolysis of long chain acyl esters.

    PubMed

    Ohkawa, I; Shiga, S; Kageyama, M

    1979-09-01

    A new esterase activity which hydrolyzes palmitoyl-CoA was found in the membrane fraction of Pseudomonas aeruginosa. All the 11 strains of P. aeruginosa tested possessed this esterase activity. The esterase was constitutive and was fully active on the intact cell bodies toward substrates in the medium. It was located on the outer membrane of the cell envelope, and was not released into the culture medium. This activity was designated as OM (outer membrane) esterase. OM esterase was solubilized from the cell envelope with EDTA-Triton X-100 and purified 690-fold. It was a minor component of the outer membrane. Its molecular weight was approximately 55,000. The activity was rather stable to heat, a wide range of pH, and treatment with detergents and organic solvents. No cofactors were required. The pH optimum of the reaction was 8.5. Among various acyl-CoAs, only long chain (C12--C18) thioesters were hydrolyzed. OM esterase also hydrolyzed some kinds of oxy-esters such as p-nitrophenyl acyl esters, monoacyl esters of sucrose and Tween 80 (polyoxyethylene sorbitan monooleate). On the other hand, triglycerides, phospholipids, or hydrophobic monoesters were not hydrolyzed at all. Thus, this enzyme seems to have specificity for long chain acyl esters with hydrophilic groups, whether thio- or oxy-ester. Mutants deficient in this esterase activity were isolated. These mutants were unable to grow on Tween 80 as a sole carbon source. This suggests a possible role of OM esterase in the utilization of acyl esters as carbon sources.

  18. Novel approach in LC-MS/MS using MRM to generate a full profile of acyl-CoAs: discovery of acyl-dephospho-CoAs[S

    PubMed Central

    Li, Qingling; Zhang, Shenghui; Berthiaume, Jessica M.; Simons, Brigitte; Zhang, Guo-Fang

    2014-01-01

    A metabolomic approach to selectively profile all acyl-CoAs was developed using a programmed multiple reaction monitoring (MRM) method in LC-MS/MS and was employed in the analysis of various rat organs. The programmed MRM method possessed 300 mass ion transitions with the mass difference of 507 between precursor ion (Q1) and product ion (Q3), and the precursor ion started from m/z 768 and progressively increased one mass unit at each step. Acyl-dephospho-CoAs resulting from the dephosphorylation of acyl-CoAs were identified by accurate MS and fragmentation. Acyl-dephospho-CoAs were also quantitatively scanned by the MRM method with the mass difference of 427 between Q1 and Q3 mass ions. Acyl-CoAs and dephospho-CoAs were assayed with limits of detection ranging from 2 to 133 nM. The accuracy of the method was demonstrated by assaying a range of concentrations of spiked acyl-CoAs with the results of 80–114%. The distribution of acyl-CoAs reflects the metabolic status of each organ. The physiological role of dephosphorylation of acyl-CoAs remains to be further characterized. The methodology described herein provides a novel strategy in metabolomic studies to quantitatively and qualitatively profile all potential acyl-CoAs and acyl-dephospho-CoAs. PMID:24367045

  19. Chemoenzymatic Synthesis of Acyl Coenzyme A Substrates Enables in Situ Labeling of Small Molecules and Proteins.

    PubMed

    Agarwal, Vinayak; Diethelm, Stefan; Ray, Lauren; Garg, Neha; Awakawa, Takayoshi; Dorrestein, Pieter C; Moore, Bradley S

    2015-09-18

    A chemoenzymatic approach to generate fully functional acyl coenzyme A molecules that are then used as substrates to drive in situ acyl transfer reactions is described. Mass spectrometry based assays to verify the identity of acyl coenzyme A enzymatic products are also illustrated. The approach is responsive to a diverse array of carboxylic acids that can be elaborated to their corresponding coenzyme A thioesters, with potential applications in wide-ranging chemical biology studies that utilize acyl coenzyme A substrates.

  20. Characterization of a serine hydrolase targeted by acyl-protein thioesterase inhibitors in Toxoplasma gondii.

    PubMed

    Kemp, Louise E; Rusch, Marion; Adibekian, Alexander; Bullen, Hayley E; Graindorge, Arnault; Freymond, Céline; Rottmann, Matthias; Braun-Breton, Catherine; Baumeister, Stefan; Porfetye, Arthur T; Vetter, Ingrid R; Hedberg, Christian; Soldati-Favre, Dominique

    2013-09-20

    In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of β-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the β-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein. PMID:23913689

  1. Characterization of a Serine Hydrolase Targeted by Acyl-protein Thioesterase Inhibitors in Toxoplasma gondii

    PubMed Central

    Kemp, Louise E.; Rusch, Marion; Adibekian, Alexander; Bullen, Hayley E.; Graindorge, Arnault; Freymond, Céline; Rottmann, Matthias; Braun-Breton, Catherine; Baumeister, Stefan; Porfetye, Arthur T.; Vetter, Ingrid R.; Hedberg, Christian; Soldati-Favre, Dominique

    2013-01-01

    In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of β-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the β-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein. PMID:23913689

  2. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase*

    PubMed Central

    Yao, Jiangwei; Dodson, V. Joshua; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  3. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.

    PubMed

    Yao, Jiangwei; Dodson, V Joshua; Frank, Matthew W; Rock, Charles O

    2015-09-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  4. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus.

    PubMed

    Vemula, Harika; Ayon, Navid J; Gutheil, William G

    2016-02-01

    Intracellular cytoplasmic peptidoglycan (PG) intermediate levels were determined in Staphylococcus aureus during log-phase growth in enriched media. Levels of UDP-linked intermediates were quantitatively determined using ion pairing LC-MS/MS in negative mode, and amine intermediates were quantitatively determined stereospecifically as their Marfey's reagent derivatives in positive mode. Levels of UDP-linked intermediates in S. aureus varied from 1.4 μM for UDP-GlcNAc-Enolpyruvyate to 1200 μM for UDP-MurNAc. Levels of amine intermediates (L-Ala, D-Ala, D-Ala-D-Ala, L-Glu, D-Glu, and L-Lys) varied over a range of from 860 μM for D-Ala-D-Ala to 30-260 mM for the others. Total PG was determined from the D-Glu content of isolated PG, and used to estimate the rate of PG synthesis (in terms of cytoplasmic metabolite flux) as 690 μM/min. The total UDP-linked intermediates pool (2490 μM) is therefore sufficient to sustain growth for 3.6 min. Comparison of UDP-linked metabolite levels with published pathway enzyme characteristics demonstrates that enzymes on the UDP-branch range from >80% saturation for MurA, Z, and C, to <5% saturation for MurB. Metabolite levels were compared with literature values for Escherichia coli, with the major difference in UDP-intermediates being the level of UDP-MurNAc, which was high in S. aureus (1200 μM) and low in E. coli (45 μM). PMID:26612730

  5. An inducible hydrolase from Aspergillus niger, acting on carbon–carbon bonds, for phlorrhizin and other C-acylated phenols

    PubMed Central

    Minamikawa, T.; Jayasankar, N. P.; Bohm, B. A.; Taylor, I. E. P.; Towers, G. H. N.

    1970-01-01

    1. An inducible enzyme catalysing the hydrolysis of phloretin to form phloroglucinol and phloretic acid has been extracted from the acetone-dried powders of the mycelial felts of an Aspergillus niger strain grown in the presence of phlorrhizin. The enzyme was partially purified by treatment with protamine sulphate, ammonium sulphate fractionation, negative adsorption on tricalcium phosphate gel, and DEAE-cellulose column chromatography. 2. The hydrolytic activity on phloretin appeared to be maximal at about pH9.6. However, the characteristics of the enzyme were studied at pH7.2, because of the lability of the product, phloroglucinol, under alkaline conditions. 3. The apparent Km value at pH7.2 was about 0.3–0.4mm for phloretin and 0.15mm for 3′-methylphloracetophenone. 4. Maximum activity of the enzyme was obtained without the addition of any cofactor or metal ion. The involvement of thiol groups in the reaction was demonstrated by the potent inhibitory action of both heavy-metal ions and p-chloromercuribenzoate. 5. The enzyme showed a rather broad substrate specificity, and some other C-acylated phenols related to phloretin were hydrolysed. It was found that 3′-methylphloracetophenone, phloracetophenone and 2′,4,4′-trihydroxydihydrochalcone were attacked more efficiently than phloretin. We propose the systematic name C-acylphenol acylhydrolase for the enzyme. This enzyme belongs to EC group 3.7.1. PMID:5441377

  6. Acylation of keratinocyte transglutaminase by palmitic and myristic acids in the membrane anchorage region

    SciTech Connect

    Chakravarty, R.; Rice, R.H.

    1989-01-05

    The membrane-bound form of keratinocyte transglutaminase was found to be labeled by addition of (/sup 3/H) acetic, (/sup 3/H)myristic, or (/sup 3/H)palmitic acids to the culture medium of human epidermal cells. Acid methanolysis and high performance liquid chromatography analysis of palmitate-labeled transglutaminase yielded only methyl palmitate. In contrast, analysis of the myristate-labeled protein yielded approximately 40% methyl myristate and 60% methyl palmitate. Incorporation of neither label was significantly affected by cycloheximide inhibition of protein synthesis. The importance of the fatty acid moiety for membrane anchorage was demonstrated in three ways. First, the enzyme was solubilized from the particulate fraction of cell extracts by treatment with neutral 1 M hydroxylamine, which was sufficient to release the fatty acid label. Second, solubilization of active enzyme from the particulate fraction upon mild trypsin treatment resulted in a reduction in size by approximately 10 kDa and removal of the fatty acid radiolabels. Third, the small fraction of soluble transglutaminase in cell extracts was found almost completely to lack fatty acid labeling. Keratinocyte transglutaminase translated from poly(A+) RNA in a reticulocyte cell-free system was indistinguishable in size from the native enzyme, suggesting anchorage requires only minor post-translational processing. Thus, the data are highly compatible with membrane anchorage by means of fatty acid acylation within 10 kDa of the NH/sub 2/ or COOH terminus.

  7. Mechanistic studies of malonic acid-mediated in situ acylation.

    PubMed

    Chandra, Koushik; Naoum, Johnny N; Roy, Tapta Kanchan; Gilon, Chaim; Gerber, R Benny; Friedler, Assaf

    2015-09-01

    We have previously introduced an easy to perform, cost-effective and highly efficient acetylation technique for solid phase synthesis (SPPS). Malonic acid is used as a precursor and the reaction proceeds via a reactive ketene that acetylates the target amine. Here we present a detailed mechanistic study of the malonic acid-mediated acylation. The influence of reaction conditions, peptide sequence and reagents was systematically studied. Our results show that the methodology can be successfully applied to different types of peptides and nonpeptidic molecules irrespective of their structure, sequence, or conformation. Using alkyl, phenyl, and benzyl malonic acid, we synthesized various acyl peptides with almost quantitative yields. The ketenes obtained from the different malonic acid derived precursors were characterized by in situ (1) H-NMR. The reaction proceeded in short reaction times and resulted in excellent yields when using uronium-based coupling agents, DIPEA as a base, DMF/DMSO/NMP as solvents, Rink amide/Wang/Merrifield resins, temperature of 20°C, pH 8-12 and 5 min preactivation at inert atmosphere. The reaction was unaffected by Lewis acids, transition metal ions, surfactants, or salt. DFT studies support the kinetically favorable concerted mechanism for CO2 and ketene formation that leads to the thermodynamically stable acylated products. We conclude that the malonic acid-mediated acylation is a general method applicable to various target molecules. PMID:25846609

  8. Acyl-CoA-Binding Proteins (ACBPs) in Plant Development.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-01-01

    Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted.

  9. Preservation of polyunsaturated fatty acyl glycerides via intramolecular antioxidant coupling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferulic acid and its esters are known to be effective antioxidants. Feruloyl di-gamma-linolenoylglycerol was assessed for its ability to serve as an antioxidant for preventing the oxidation of its gamma-linolenoyl polyunsaturated fatty acyl groups in model membrane phospholipid vesicles. The molec...

  10. Lubricity characteristics of seed oils modified by acylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemically modified seed oils via acylation of epoxidized and polyhydroxylated derivatives were investigated for their potential as candidates for lubrication. The native oil was preliminarily epoxidized and ring-opened in a one-pot reaction using formic acid-H2O2 followed by aqueous HCl treatment t...

  11. Acyl-CoA-Binding Proteins (ACBPs) in Plant Development.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-01-01

    Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted. PMID:27023243

  12. Separation and quantification of 2-acyl-1-lysophospholipids and 1-acyl-2-lysophospholipids in biological samples by LC-MS/MS

    PubMed Central

    Okudaira, Michiyo; Inoue, Asuka; Shuto, Akira; Nakanaga, Keita; Kano, Kuniyuki; Makide, Kumiko; Saigusa, Daisuke; Tomioka, Yoshihisa; Aoki, Junken

    2014-01-01

    Lysophospholipids (LysoGPs) serve as lipid mediators and precursors for synthesis of diacyl phospholipids (GPs). LysoGPs detected in cells have various acyl chains attached at either the sn-1 or sn-2 position of the glycerol backbone. In general, acyl chains at the sn-2 position of 2-acyl-1-LysoGPs readily move to the sn-1 position, generating 1-acyl-2-lyso isomers by a nonenzymatic reaction called intra-molecular acyl migration, which has hampered the detection of 2-acyl-1-LysoGPs in biological samples. In this study, we developed a simple and versatile method to separate and quantify 2-acyl-1- and 1-acyl-2-LysoGPs. The main point of the method was to extract LysoGPs at pH 4 and 4°C, conditions that were found to completely eliminate the intra-molecular acyl migration. Under the present conditions, the relative amounts of 2-acyl-1-LysoGPs and 1-acyl-2-LysoGPs did not change at least for 1 week. Further, in LysoGPs extracted from cells and tissues under the present conditions, most of the saturated fatty acids (16:0 and 18:0) were found in the sn-1 position of LysoGPs, while most of the PUFAs (18:2, 20:4, 22:6) were found in the sn-2 position. Thus the method can be used to elucidate the in vivo role of 2-acyl-1-LysoGPs. PMID:25114169

  13. Separation of isomeric short-chain acyl-CoAs in plant matrices using ultra-performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Purves, Randy W; Ambrose, Stephen J; Clark, Shawn M; Stout, Jake M; Page, Jonathan E

    2015-02-01

    Acyl coenzyme A (acyl-CoA) thioesters are important intermediates in cellular metabolism and being able to distinguish among them is critical to fully understanding metabolic pathways in plants. Although significant advances have been made in the identification and quantification of acyl-CoAs using liquid chromatography tandem mass spectrometry (LC-MS/MS), separation of isomeric species such as isobutyryl- and n-butyrl-CoA has remained elusive. Here we report an ultra-performance liquid chromatography (UPLC)-MS/MS method for quantifying short-chain acyl-CoAs including isomeric species n-butyryl-CoA and isobutyryl-CoA as well as n-valeryl-CoA and isovaleryl-CoA. The method was applied to the analysis of extracts of hop (Humulus lupulus) and provided strong evidence for the existence of an additional structural isomer of valeryl-CoA, 2-methylbutyryl-CoA, as well as an unexpected isomer of hexanoyl-CoA. The results showed differences in the acyl-CoA composition among varieties of Humulus lupulus, both in glandular trichomes and cone tissues. When compared with the analysis of hemp (Cannabis sativa) extracts, the contribution of isobutyryl-CoAs in hop was greater as would be expected based on the downstream polyketide products. Surprisingly, branched chain valeryl-CoAs (isovaleryl-CoA and 2-methylbutyryl-CoA) were the dominant form of valeryl-CoAs in both hop and hemp. The capability to separate these isomeric forms will help to understand biochemical pathways leading to specialized metabolites in plants.

  14. Enzyme action in the regulation of plant hormone responses.

    PubMed

    Westfall, Corey S; Muehler, Ashley M; Jez, Joseph M

    2013-07-01

    Plants synthesize a chemically diverse range of hormones that regulate growth, development, and responses to environmental stresses. The major classes of plant hormones are specialized metabolites with exquisitely tailored perception and signaling systems, but equally important are the enzymes that control the dose and exposure to the bioactive forms of these molecules. Here, we review new insights into the role of enzyme families, including the SABATH methyltransferases, the methylesterases, the GH3 acyl acid-amido synthetases, and the hormone peptidyl hydrolases, in controlling the biosynthesis and modifications of plant hormones and how these enzymes contribute to the network of chemical signals responsible for plant growth, development, and environmental adaptation.

  15. X-ray, FT-IR, NMR and PM5 structural studies and antibacterial activity of unexpectedly stable salinomycin-benzotriazole intermediate ester

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Antoszczak, Michał; Stefańska, Joanna; Brzezinski, Bogumil

    2012-08-01

    The unexpectedly stable benzotriazole ester of salinomycin (SAL-HOBt) - an intermediate product of the amidation reaction of salinomycin has been isolated and structurally characterised (using a single crystal) by X-ray, FT-IR, NMR and semiempirical methods. The results of the X-ray and spectroscopic studies demonstrated that this intermediate ester exist in the solid state and in solution exclusively as the stable O-acyl form. The molecular structure of SAL-HOBt is stabilised by relatively weak intramolecular hydrogen bonds. The PM5 calculation of possible structures of SAL-HOBt has shown that the O-acyl form is more energetically favourable than its N-oxide-N-acyl isomers. The antimicrobial tests show that SAL-HOBt is active against Gram-positive bacteria and clinical isolates methicillin-resistant Staphylococcus aureus (MIC = 1-2 μg/ml).

  16. The enzymes associated with denitrification

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  17. Draft Genome Sequence of the Thermophile Thermus filiformis ATCC 43280, Producer of Carotenoid-(Di)glucoside-Branched Fatty Acid (Di)esters and Source of Hyperthermostable Enzymes of Biotechnological Interest

    PubMed Central

    Mandelli, Fernanda; Oliveira Ramires, Brenda; Couger, Matthew Brian; Paixão, Douglas A. A.; Camilo, Cesar M.; Polikarpov, Igor; Prade, Rolf

    2015-01-01

    Here, we present the draft genome sequence of Thermus filiformis strain ATCC 43280, a thermophile bacterium capable of producing glycosylated carotenoids acylated with branched fatty acids and enzymes of biotechnological potential. PMID:25977443

  18. Ethanol Metabolism Modifies Hepatic Protein Acylation in Mice

    PubMed Central

    Fritz, Kristofer S.; Green, Michelle F.; Petersen, Dennis R.; Hirschey, Matthew D.

    2013-01-01

    Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated metabolism, induce specific

  19. N-Acylsaccharins: Stable Electrophilic Amide-Based Acyl Transfer Reagents in Pd-Catalyzed Suzuki-Miyaura Coupling via N-C Cleavage.

    PubMed

    Liu, Chengwei; Meng, Guangrong; Liu, Yongmei; Liu, Ruzhang; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2016-09-01

    The development of efficient catalytic methods for N-C bond cleavage in amides remains an important synthetic challenge. The first Pd-catalyzed Suzuki-Miyaura cross-coupling of N-acylsaccharins with boronic acids by selective N-C bond activation is reported. The reaction enables preparation of a variety of functionalized diaryl and alkyl-aryl ketones with broad functional group tolerance and in good to excellent yields. Of general interest, N-acylsaccharins serve as new, highly reactive, bench-stable, economical, amide-based, electrophilic acyl transfer reagents via acyl-metal intermediates. Mechanistic studies strongly support the amide N-C(O) bond twist as the enabling feature of N-acylsaccharins in the N-C bond cleavage. PMID:27513821

  20. Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media.

    PubMed

    Zeuner, Birgitte; Kontogeorgis, Georgios M; Riisager, Anders; Meyer, Anne S

    2012-02-15

    Enzyme-catalyzed synthesis has been widely studied with lipases (EC 3.1.1.3), but feruloyl esterases (FAEs; EC 3.1.1.73) may provide advantages such as higher substrate affinity and regioselectivity in the synthesis of hydroxycinnamate saccharide esters. These compounds are interesting because of their amphiphilicity and antioxidative potential. Synthetic reactions using mono- or disaccharides as one of the substrates may moreover direct new routes for biomass upgrading in the biorefinery. The paper reviews the available data for enzymatic hydroxycinnamate saccharide ester synthesis in organic solvent systems as well as other enzymatic hydroxycinnamate acylations in ionic liquid systems. The choice of solvent system is highly decisive for enzyme stability, selectivity, and reaction yields in these synthesis reactions. To increase the understanding of the reaction environment and to facilitate solvent screening as a crucial part of the reaction design, the review explores the use of activity coefficient models for describing these systems and - more importantly - the use of group contribution model UNIFAC and quantum chemistry based COSMO-RS for thermodynamic predictions and preliminary solvent screening. Surfactant-free microemulsions of a hydrocarbon, a polar alcohol, and water are interesting solvent systems because they accommodate different substrate and product solubilities and maintain enzyme stability. Ionic liquids may provide advantages as solvents in terms of increased substrate and product solubility, higher reactivity and selectivity, as well as tunable physicochemical properties, but their design should be carefully considered in relation to enzyme stability. The treatise shows that thermodynamic modeling tools for solvent design provide a new toolbox to design enzyme-catalyzed synthetic reactions from biomass sources. PMID:22154740

  1. Enhanced Enzymatic Preparation of Biodiesel Using Ricinoleic Acid as Acyl Donor: Optimization Using Response Surface Methodology.

    PubMed

    Wang, Ping; Sun, Shangde

    2016-09-01

    Castor oil methyl ester is a kind of biodiesel from castor oil. However, in those previous methods for biodiesel preparation using castor oil as feedstock, glycerol was the main by-product, which had a strong blocking effect on the immobilized enzyme activity and affected the mass transfer of reaction system. For avoiding the negative effect of glycerol on the enzymatic esterification, biodiesel was prepared using ricinoleic acid (RA) as acyl donor. Enzyme screening was also studied, and the effects of reaction temperature, molar ratio of ricinoleic acid and methanol, enzyme load, and reaction time, on the preparation of castor methyl ester were also evaluated. Response surface methodology (RSM) was used to optimize the interaction effect of reaction variables (reaction temperature (30-70°C), enzyme load (2-7%; relative to the weight of total substrates), molar ratio of methanol to ricinoleic acid (2:1-10:1), and reaction time (0.5-2.5 h)) on the acid value (AV) and the degree of esterification (DE). Validation of the RSM model was verified by the good agreement between the experimental and the predicted values of AV and DE. The optimum preparation conditions were as follows: reaction temperature, 48.2°C; enzyme load, 5.8%; molar ratio of methanol to ricinoleic acid, 5.56:1; reaction time, 2.36 h. Under these conditions, the AV and DE of the esterification reaction are 10.36±1.05 mgKOH/g and 94.03±0.60%, respectively. The relationship between initial reaction rate and temperature was also established, and the activation energy (Ea) of the enzymatic esterification is 33.87 KJ/mol. PMID:27477073

  2. Bacterial acyl-CoA mutase specifically catalyzes coenzyme B12-dependent isomerization of 2-hydroxyisobutyryl-CoA and (S)-3-hydroxybutyryl-CoA.

    PubMed

    Yaneva, Nadya; Schuster, Judith; Schäfer, Franziska; Lede, Vera; Przybylski, Denise; Paproth, Torsten; Harms, Hauke; Müller, Roland H; Rohwerder, Thore

    2012-05-01

    Coenzyme B(12)-dependent acyl-CoA mutases are radical enzymes catalyzing reversible carbon skeleton rearrangements in carboxylic acids. Here, we describe 2-hydroxyisobutyryl-CoA mutase (HCM) found in the bacterium Aquincola tertiaricarbonis as a novel member of the mutase family. HCM specifically catalyzes the interconversion of 2-hydroxyisobutyryl- and (S)-3-hydroxybutyryl-CoA. Like isobutyryl-CoA mutase, HCM consists of a large substrate- and a small B(12)-binding subunit, HcmA and HcmB, respectively. However, it is thus far the only acyl-CoA mutase showing substrate specificity for hydroxylated carboxylic acids. Complete loss of 2-hydroxyisobutyric acid degradation capacity in hcmA and hcmB knock-out mutants established the central role of HCM in A. tertiaricarbonis for degrading substrates bearing a tert-butyl moiety, such as the fuel oxygenate methyl tert-butyl ether (MTBE) and its metabolites. Sequence analysis revealed several HCM-like enzymes in other bacterial strains not related to MTBE degradation, indicating that HCM may also be involved in other pathways. In all strains, hcmA and hcmB are associated with genes encoding for a putative acyl-CoA synthetase and a MeaB-like chaperone. Activity and substrate specificity of wild-type enzyme and active site mutants HcmA I90V, I90F, and I90Y clearly demonstrated that HCM belongs to a new subfamily of B(12)-dependent acyl-CoA mutases. PMID:22433853

  3. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria.

    PubMed

    Yao, Jiangwei; Bruhn, David F; Frank, Matthew W; Lee, Richard E; Rock, Charles O

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria.

  4. A novel and widespread class of ketosynthase is responsible for the head-to-head condensation of two acyl moieties in bacterial pyrone biosynthesis

    PubMed Central

    Kresovic, Darko; Schempp, Florence; Cheikh-Ali, Zakaria

    2015-01-01

    Summary The biosynthesis of photopyrones, novel quorum sensing signals in Photorhabdus, has been studied by heterologous expression of the photopyrone synthase PpyS catalyzing the head-to-head condensation of two acyl moieties. The biochemical mechanism of pyrone formation has been investigated by amino acid exchange and bioinformatic analysis. Additionally, the evolutionary origin of PpyS has been studied by phylogenetic analyses also revealing homologous enzymes in Pseudomonas sp. GM30 responsible for the biosynthesis of pseudopyronines including a novel derivative. Moreover this novel class of ketosynthases is only distantly related to other pyrone-forming enzymes identified in the biosynthesis of the potent antibiotics myxopyronin and corallopyronin. PMID:26425196

  5. Time-resolved heme protein intermediates

    NASA Astrophysics Data System (ADS)

    Rousseau, Denis

    2005-03-01

    To determine the enzymatic mechanisms of heme proteins, it is necessary to identify the intermediates along the catalytic pathway and measure the times of their formation and decay. Resonance Raman scattering spectra are especially powerful for obtaining such information as the electronic structure of the heme group and the nature of the ligand coordinated to the heme iron atom may be monitored. The oxygen intermediates of two physiologically important enzymes will be presented. Nitric oxide synthase (NOS) uses oxygen to convert arginine to NO and citrulline; and cytochrome c oxidase (CcO) reduces oxygen to water to support oxidative phosphorylation. The fate or the oxygen in each of these enzymes has been followed by resonance Raman scattering. In NOS the oxygen is slowly converted to an activated species that then reacts fast, whereas in CcO the oxygen is rapidly converted to a reactive species that subsequently reacts slowly. The properties of the intermediates and the origin of the differences between these enzymes will be discussed.

  6. Direct N-acylation of azoles via a metal-free catalyzed oxidative cross-coupling strategy.

    PubMed

    Zhao, Jingjing; Li, Pan; Xia, Chungu; Li, Fuwei

    2014-05-11

    The KI-catalyzed N-acylation of azoles via direct oxidative coupling of C-H and N-H bonds has been developed. It could be smoothly scaled up to gram synthesis of acyl azoles. The reaction occurred by the coupling of acyl radicals and azoles to form the acyl azole radical anion, followed by its further oxidation.

  7. Production of a Brassica napus low-molecular mass acyl-coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expressio...

  8. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  9. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-03-18

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs.

  10. A high-performance liquid chromatography-based radiometric assay for acyl-CoA:alcohol transacylase from jojoba.

    PubMed

    Garver, W S; Kemp, J D; Kuehn, G D

    1992-12-01

    Acyl-CoA:alcohol transacylase catalyzes the final step in the biosynthesis of storage liquid wax esters from acyl-CoA fatty acids and fatty alcohols in a limited number of microbes, algae, and Simmondsia chinensis Link (jojoba). An improved and automated method of enzyme assay for this catalyst from cotyledons of jojoba is described. The assay method uses reversed-phase C18 high performance liquid chromatography (HPLC) to separate the labeled C30:1 liquid wax product, [14C]-dodecanyl-octadecenoate, from the unreacted substrate, [14C]octadecenoyl-CoA (oleyl-CoA), and other components produced from enzymes present in the crude homogenate of jojoba cotyledons, including [14C]-octadecenoic acid (oleic acid) and [14C]octadecenol (oleyol). Methods are also described for microscale chemical synthesis in one vessel of 14C-radiolabeled substrates and products for the transacylase. These labeled reagents are required to confirm the HPLC separations of reaction products. The radioactive components are quantitated using an on-line flow-through scintillation detector enabling sensitive and precise analysis of the reaction products.

  11. Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA

    PubMed Central

    Albesa-Jové, David; Svetlíková, Zuzana; Tersa, Montse; Sancho-Vaello, Enea; Carreras-González, Ana; Bonnet, Pascal; Arrasate, Pedro; Eguskiza, Ander; Angala, Shiva K.; Cifuente, Javier O.; Korduláková, Jana; Jackson, Mary; Mikušová, Katarína; Guerin, Marcelo E.

    2016-01-01

    The biosynthesis of phospholipids and glycolipids are critical pathways for virtually all cell membranes. PatA is an essential membrane associated acyltransferase involved in the biosynthesis of mycobacterial phosphatidyl-myo-inositol mannosides (PIMs). The enzyme transfers a palmitoyl moiety from palmitoyl–CoA to the 6-position of the mannose ring linked to 2-position of inositol in PIM1/PIM2. We report here the crystal structures of PatA from Mycobacterium smegmatis in the presence of its naturally occurring acyl donor palmitate and a nonhydrolyzable palmitoyl–CoA analog. The structures reveal an α/β architecture, with the acyl chain deeply buried into a hydrophobic pocket that runs perpendicular to a long groove where the active site is located. Enzyme catalysis is mediated by an unprecedented charge relay system, which markedly diverges from the canonical HX4D motif. Our studies establish the mechanistic basis of substrate/membrane recognition and catalysis for an important family of acyltransferases, providing exciting possibilities for inhibitor design. PMID:26965057

  12. Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase

    PubMed Central

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D.; Thinon, Emmanuelle; Rodgers, Ursula R.; Owens, Raymond J.; Magee, Anthony I.; Tate, Edward W.

    2016-01-01

    In this data article we describe synthetic and characterisation data for four members of the 5-acyl-6,7-dihydrothieno[3,2-c]pyridine (termed “RU-SKI”) class of inhibitors of Hedgehog acyltransferase, including associated NMR spectra for final compounds. RU-SKI compounds were selected for synthesis based on their published high potencies against the enzyme target. RU-SKI 41 (9a), RU-SKI 43 (9b), RU-SKI 101 (9c), and RU-SKI 201 (9d) were profiled for activity in the related article “Click chemistry armed enzyme linked immunosorbent assay to measure palmitoylation by Hedgehog acyltransferase” (Lanyon-Hogg et al., 2015) [1]. 1H NMR spectral data indicate different amide conformational ratios between the RU-SKI inhibitors, as has been observed in other 5-acyl-6,7-dihydrothieno[3,2-c]pyridines. The synthetic and characterisation data supplied in the current article provide validated access to the class of RU-SKI inhibitors. PMID:27077078

  13. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs)

    PubMed Central

    Recuero-Checa, Maria A.; Sharma, Manu; Lau, Constance; Watkins, Paul A.; Gaydos, Charlotte A.; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3–6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  14. Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase.

    PubMed

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D; Thinon, Emmanuelle; Rodgers, Ursula R; Owens, Raymond J; Magee, Anthony I; Tate, Edward W

    2016-06-01

    In this data article we describe synthetic and characterisation data for four members of the 5-acyl-6,7-dihydrothieno[3,2-c]pyridine (termed "RU-SKI") class of inhibitors of Hedgehog acyltransferase, including associated NMR spectra for final compounds. RU-SKI compounds were selected for synthesis based on their published high potencies against the enzyme target. RU-SKI 41 (9a), RU-SKI 43 (9b), RU-SKI 101 (9c), and RU-SKI 201 (9d) were profiled for activity in the related article "Click chemistry armed enzyme linked immunosorbent assay to measure palmitoylation by Hedgehog acyltransferase" (Lanyon-Hogg et al., 2015) [1]. (1)H NMR spectral data indicate different amide conformational ratios between the RU-SKI inhibitors, as has been observed in other 5-acyl-6,7-dihydrothieno[3,2-c]pyridines. The synthetic and characterisation data supplied in the current article provide validated access to the class of RU-SKI inhibitors. PMID:27077078

  15. Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA.

    PubMed

    Albesa-Jové, David; Svetlíková, Zuzana; Tersa, Montse; Sancho-Vaello, Enea; Carreras-González, Ana; Bonnet, Pascal; Arrasate, Pedro; Eguskiza, Ander; Angala, Shiva K; Cifuente, Javier O; Korduláková, Jana; Jackson, Mary; Mikušová, Katarína; Guerin, Marcelo E

    2016-01-01

    The biosynthesis of phospholipids and glycolipids are critical pathways for virtually all cell membranes. PatA is an essential membrane associated acyltransferase involved in the biosynthesis of mycobacterial phosphatidyl-myo-inositol mannosides (PIMs). The enzyme transfers a palmitoyl moiety from palmitoyl-CoA to the 6-position of the mannose ring linked to 2-position of inositol in PIM1/PIM2. We report here the crystal structures of PatA from Mycobacterium smegmatis in the presence of its naturally occurring acyl donor palmitate and a nonhydrolyzable palmitoyl-CoA analog. The structures reveal an α/β architecture, with the acyl chain deeply buried into a hydrophobic pocket that runs perpendicular to a long groove where the active site is located. Enzyme catalysis is mediated by an unprecedented charge relay system, which markedly diverges from the canonical HX4D motif. Our studies establish the mechanistic basis of substrate/membrane recognition and catalysis for an important family of acyltransferases, providing exciting possibilities for inhibitor design. PMID:26965057

  16. The enzymes of bacterial census and censorship.

    PubMed

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication.

  17. The enzymes of bacterial census and censorship.

    PubMed

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication. PMID:22099187

  18. Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects

    PubMed Central

    Wang, Yan; Song, Qinghao; Zhang, Xiao-Hua

    2016-01-01

    Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes. PMID:27669268

  19. Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects.

    PubMed

    Wang, Yan; Song, Qinghao; Zhang, Xiao-Hua

    2016-09-22

    Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.

  20. Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects.

    PubMed

    Wang, Yan; Song, Qinghao; Zhang, Xiao-Hua

    2016-01-01

    Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes. PMID:27669268

  1. A negative regulating element controlling transcription of the gene encoding acyl-CoA oxidase in Saccharomyces cerevisiae.

    PubMed Central

    Wang, T W; Lewin, A S; Small, G M

    1992-01-01

    Peroxisomes are induced in Saccharomyces cerevisiae when this yeast is grown in the presence of oleate, and are repressed when glucose is supplied as the carbon source. Concomitant with this is an induction/repression of peroxisomal beta-oxidation enzymes. We are investigating the transcriptional control of acyl-CoA oxidase, the first and rate-limiting enzyme in the peroxisomal beta-oxidation cycle. The promoter region of POX1 from S. cerevisiae has been analyzed in POX1/lacZ fusions. Expression of the POX1/lacZ fusion protein underwent glucose repression and oleate induction. By deletion, DNA band shift and DNase I footprinting analyses we have identified a region that is involved in transcriptional repression of POX1. Elimination of this DNA sequence results in constitutive expression of POX1 when S. cerevisiae is grown on a fermentable carbon source or glycerol. Images PMID:1630920

  2. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast.

    PubMed

    Chen, Po-Wei; Fonseca, Luis L; Hannun, Yusuf A; Voit, Eberhard O

    2015-08-01

    The article demonstrates that computational modeling has the capacity to convert metabolic snapshots, taken sequentially over time, into a description of cellular, dynamic strategies. The specific application is a detailed analysis of a set of actions with which Saccharomyces cerevisiae responds to heat stress. Using time dependent metabolic concentration data, we use a combination of mathematical modeling, reverse engineering, and optimization to infer dynamic changes in enzyme activities within the sphingolipid pathway. The details of the sphingolipid responses to heat stress are important, because they guide some of the longer-term alterations in gene expression, with which the cells adapt to the increased temperature. The analysis indicates that all enzyme activities in the system are affected and that the shapes of the time trends in activities depend on the fatty-acyl CoA chain lengths of the different ceramide species in the system.

  3. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast.

    PubMed

    Chen, Po-Wei; Fonseca, Luis L; Hannun, Yusuf A; Voit, Eberhard O

    2015-08-01

    The article demonstrates that computational modeling has the capacity to convert metabolic snapshots, taken sequentially over time, into a description of cellular, dynamic strategies. The specific application is a detailed analysis of a set of actions with which Saccharomyces cerevisiae responds to heat stress. Using time dependent metabolic concentration data, we use a combination of mathematical modeling, reverse engineering, and optimization to infer dynamic changes in enzyme activities within the sphingolipid pathway. The details of the sphingolipid responses to heat stress are important, because they guide some of the longer-term alterations in gene expression, with which the cells adapt to the increased temperature. The analysis indicates that all enzyme activities in the system are affected and that the shapes of the time trends in activities depend on the fatty-acyl CoA chain lengths of the different ceramide species in the system. PMID:26241868

  4. The peroxisomal Acyl-CoA thioesterase Pte1p from Saccharomyces cerevisiae is required for efficient degradation of short straight chain and branched chain fatty acids.

    PubMed

    Maeda, Isamu; Delessert, Syndie; Hasegawa, Seiko; Seto, Yoshiaki; Zuber, Sophie; Poirier, Yves

    2006-04-28

    The role of the Saccharomyces cerevisae peroxisomal acyl-coenzyme A (acyl-CoA) thioesterase (Pte1p) in fatty acid beta-oxidation was studied by analyzing the in vitro kinetic activity of the purified protein as well as by measuring the carbon flux through the beta-oxidation cycle in vivo using the synthesis of peroxisomal polyhydroxyalkanoate (PHA) from the polymerization of the 3-hydroxyacyl-CoAs as a marker. The amount of PHA synthesized from the degradation of 10-cis-heptadecenoic, tridecanoic, undecanoic, or nonanoic acids was equivalent or slightly reduced in the pte1Delta strain compared with wild type. In contrast, a strong reduction in PHA synthesized from heptanoic acid and 8-methyl-nonanoic acid was observed for the pte1Delta strain compared with wild type. The poor catabolism of 8-methyl-nonanoic acid via beta-oxidation in pte1Delta negatively impacted the degradation of 10-cis-heptadecenoic acid and reduced the ability of the cells to efficiently grow in medium containing such fatty acids. An increase in the proportion of the short chain 3-hydroxyacid monomers was observed in PHA synthesized in pte1Delta cells grown on a variety of fatty acids, indicating a reduction in the metabolism of short chain acyl-CoAs in these cells. A purified histidine-tagged Pte1p showed high activity toward short and medium chain length acyl-CoAs, including butyryl-CoA, decanoyl-CoA and 8-methyl-nonanoyl-CoA. The kinetic parameters measured for the purified Pte1p fit well with the implication of this enzyme in the efficient metabolism of short straight and branched chain fatty acyl-CoAs by the beta-oxidation cycle.

  5. Structural Characterisation of the Beta-Ketoacyl-Acyl Carrier Protein Synthases, FabF and FabH, of Yersinia pestis

    PubMed Central

    Nanson, Jeffrey D.; Himiari, Zainab; Swarbrick, Crystall M. D.; Forwood, Jade K.

    2015-01-01

    Yersinia pestis, the causative agent of bubonic, pneumonic, and septicaemic plague, remains a major public health threat, with outbreaks of disease occurring in China, Madagascar, and Peru in the last five years. The existence of multidrug resistant Y. pestis and the potential of this bacterium as a bioterrorism agent illustrates the need for new antimicrobials. The β-ketoacyl-acyl carrier protein synthases, FabB, FabF, and FabH, catalyse the elongation of fatty acids as part of the type II fatty acid biosynthesis (FASII) system, to synthesise components of lipoproteins, phospholipids, and lipopolysaccharides essential for bacterial growth and survival. As such, these enzymes are promising targets for the development of novel therapeutic agents. We have determined the crystal structures of the Y. pestis β-ketoacyl-acyl carrier protein synthases FabF and FabH, and compared these with the unpublished, deposited structure of Y. pestis FabB. Comparison of FabB, FabF, and FabH provides insights into the substrate specificities of these enzymes, and investigation of possible interactions with known β-ketoacyl-acyl carrier protein synthase inhibitors suggests FabB, FabF and FabH may be targeted simultaneously to prevent synthesis of the fatty acids necessary for growth and survival. PMID:26469877

  6. Controlling reaction specificity in pyridoxal phosphate enzymes

    PubMed Central

    Toney, Michael D.

    2012-01-01

    Pyridoxal 5'-phosphate enzymes are ubiquitous in the nitrogen metabolism of all organisms. They catalyze a wide variety of reactions including racemization, transamination, decarboxylation, elimination, retro-aldol cleavage, Claisen condensation, and others on substrates containing an amino group, most commonly α-amino acids. The wide variety of reactions catalyzed by PLP enzymes is enabled by the ability of the covalent aldimine intermediate formed between substrate and PLP to stabilize carbanionic intermediates at Cα of the substrate. This review attempts to summarize the mechanisms by which reaction specificity can be achieved in PLP enzymes by focusing on three aspects of these reactions: stereoelectronic effects, protonation state of the external aldimine intermediate, and interaction of the carbanionic intermediate with the protein side chains present in the active site. PMID:21664990

  7. Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond.

    PubMed

    Horitani, Masaki; Shisler, Krista; Broderick, William E; Hutcheson, Rachel U; Duschene, Kaitlin S; Marts, Amy R; Hoffman, Brian M; Broderick, Joan B

    2016-05-13

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to cleave SAM to initiate diverse radical reactions. These reactions are thought to involve the 5'-deoxyadenosyl radical intermediate, which has not yet been detected. We used rapid freeze-quenching to trap a catalytically competent intermediate in the reaction catalyzed by the radical SAM enzyme pyruvate formate-lyase activating enzyme. Characterization of the intermediate by electron paramagnetic resonance and (13)C, (57)Fe electron nuclear double-resonance spectroscopies reveals that it contains an organometallic center in which the 5' carbon of a SAM-derived deoxyadenosyl moiety forms a bond with the unique iron site of the [4Fe-4S] cluster. Discovery of this intermediate extends the list of enzymatic bioorganometallic centers to the radical SAM enzymes, the largest enzyme superfamily known, and reveals intriguing parallels to B12 radical enzymes.

  8. New acylated anthocyanins from purple yam and their antioxidant activity.

    PubMed

    Moriya, Chiemi; Hosoya, Takahiro; Agawa, Sayuri; Sugiyama, Yasumasa; Kozone, Ikuko; Shin-Ya, Kazuo; Terahara, Norihiko; Kumazawa, Shigenori

    2015-01-01

    Purple yam (Dioscorea alata L.), which is widely distributed in tropical and subtropical regions, is characterized by its color and viscosity. Previous studies have shown that purple yams contain a variety of acylated anthocyanins that exhibit higher levels of antioxidant activity than the corresponding nonacylated compounds. In this study, the pigments found in purple yams from the Philippines (D. alata) were isolated and evaluated in terms of antioxidant activity. Four new acylated anthocyanins, alanins (1-4) were isolated from the MeOH extracts of purple yam, which were subsequently determined to be cyanidin (1, 2, and 4) and peonidin (3) type compounds, along with four known anthocyanins (5-8). The structures of 1-4 were determined by spectroscopic methods, including NMR and MS analyses. The antioxidant activities of anthocyanins 1-8 were investigated using oxygen radical absorbing capacity and ferric reducing antioxidant power assays. PMID:25848974

  9. Reaction of Acylated Homoserine Lactone Bacterial Signaling Molecules with Oxidized Halogen Antimicrobials

    PubMed Central

    Borchardt, S. A.; Allain, E. J.; Michels, J. J.; Stearns, G. W.; Kelly, R. F.; McCoy, W. F.

    2001-01-01

    Oxidized halogen antimicrobials, such as hypochlorous and hypobromous acids, have been used extensively for microbial control in industrial systems. Recent discoveries have shown that acylated homoserine lactone cell-to-cell signaling molecules are important for biofilm formation in Pseudomonas aeruginosa, suggesting that biofouling can be controlled by interfering with bacterial cell-to-cell communication. This study was conducted to investigate the potential for oxidized halogens to react with acylated homoserine lactone-based signaling molecules. Acylated homoserine lactones containing a 3-oxo group were found to rapidly react with oxidized halogens, while acylated homoserine lactones lacking the 3-oxo functionality did not react. The Chromobacterium violaceum CV026 bioassay was used to determine the effects of such reactions on acylated homoserine lactone activity. The results demonstrated that 3-oxo acyl homoserine lactone activity was rapidly lost upon exposure to oxidized halogens; however, acylated homoserine lactones lacking the 3-oxo group retained activity. Experiments with the marine alga Laminaria digitata demonstrated that natural haloperoxidase systems are capable of mediating the deactivation of acylated homoserine lactones. This may illustrate a natural defense mechanism to prevent biofouling on the surface of this marine alga. The Chromobacterium violaceum activity assay illustrates that reactions between 3-oxo acylated homoserine lactone molecules and oxidized halogens do occur despite the presence of biofilm components at much greater concentrations. This work suggests that oxidized halogens may control biofilm not only via a cidal mechanism, but also by possibly interfering with 3-oxo acylated homoserine lactone-based cell signaling. PMID:11425738

  10. Enzymatic Synthesis of Sorboyl-Polydatin Prodrug in Biomass-Derived 2-Methyltetrahydrofuran and Antiradical Activity of the Unsaturated Acylated Derivatives

    PubMed Central

    Yang, Rongling; Zhao, Xiangjie; Jiang, Ling; Zhu, Chun; Zhao, Yuping; Jia, Jianbo

    2016-01-01

    Efficient and highly regioselective synthesis of the potential 6′′-O-sorboyl-polydatin prodrug in biomass-derived 2-methyltetrahydrofuran (2-MeTHF) was achieved using Candida antarctica lipase B for the first time. Under the optimal conditions, the initial reaction rate, maximum substrate conversion, and 6′′-regioselectivity were as high as 8.65 mM/h, 100%, and 100%, respectively. Kinetic and operational stability investigations evidently demonstrated excellent enzyme compatibility of the 2-MeTHF compared to the traditional organic solvents. With respect to the antioxidant properties, three unsaturated ester derivatives showed slightly lower DPPH radical scavenging activities than the parent agent. Interestingly, further studies also revealed that the antiradical capacities of the acylates decreased with the elongation of the unsaturated aliphatic chain length from C4 to C11. The reason might be attributed to the increased steric hindrance derived from the acyl residues in derivatives. PMID:27668253

  11. Enzymatic Synthesis of Sorboyl-Polydatin Prodrug in Biomass-Derived 2-Methyltetrahydrofuran and Antiradical Activity of the Unsaturated Acylated Derivatives

    PubMed Central

    Yang, Rongling; Zhao, Xiangjie; Jiang, Ling; Zhu, Chun; Zhao, Yuping; Jia, Jianbo

    2016-01-01

    Efficient and highly regioselective synthesis of the potential 6′′-O-sorboyl-polydatin prodrug in biomass-derived 2-methyltetrahydrofuran (2-MeTHF) was achieved using Candida antarctica lipase B for the first time. Under the optimal conditions, the initial reaction rate, maximum substrate conversion, and 6′′-regioselectivity were as high as 8.65 mM/h, 100%, and 100%, respectively. Kinetic and operational stability investigations evidently demonstrated excellent enzyme compatibility of the 2-MeTHF compared to the traditional organic solvents. With respect to the antioxidant properties, three unsaturated ester derivatives showed slightly lower DPPH radical scavenging activities than the parent agent. Interestingly, further studies also revealed that the antiradical capacities of the acylates decreased with the elongation of the unsaturated aliphatic chain length from C4 to C11. The reason might be attributed to the increased steric hindrance derived from the acyl residues in derivatives.

  12. Effects of long-chain fatty-acyl esters of coenzyme A and carnitine on cell-free rat heart preparations.

    PubMed

    Varela, A; Savino, E A

    1987-06-01

    The purpose of this study was to investigate the effects of fatty acyl CoA and carnitine esters on the glycolytic system of the rat heart. Using a respiring incubation mixture containing a whole-heart homogenate it was observed that oleoyl-CoA slowed down the glucose disappearance whereas lactate accumulation did not change. Experiments were also performed by means of an incubation mixture prepared with a soluble heart extract, considered to contain all glycolytic enzymes present in heart fibres. Palmitoyl-CoA or oleoyl-CoA as well as palmitoyl carnitine, added separately or together, were unable to alter the glucose disappearance and lactate accumulation in this mixture. These data suggest that long chain acyl-esters have not direct inhibitory actions on the heart glycolytic activity. However, CoA esters seem to exert indirect inhibitory effects which may be relevant to the myocardium under oxygen restriction situations.

  13. Six new acylated anthocyanins from red radish (Raphanus sativus).

    PubMed

    Tamura, Satoru; Tsuji, Kouji; Yongzhen, Piao; Ohnishi-Kameyama, Mayumi; Murakami, Nobutoshi

    2010-09-01

    Six new acylated anthocyanins (1-6) were isolated along with the three known congeners (7-9) from the fresh roots of red radishes (Raphanus sativus L.) cultivated by our group. Their chemical structures were elucidated by spectroscopic properties. Among the six new anthocyanins, the five constituents (1, 2, 4-6) were shown to contain the malonyl function at 6-OH in the glucopyranosyl residue linked to C-5 in the pelargonidin nucleus.

  14. A new acylated flavonol glycoside from Derris triofoliata.

    PubMed

    Xu, Lu-Rong; Wu, Jun; Zhang, Si

    2006-01-01

    A new acylated flavonol glycoside, kaempferol 3-O-[(6''''-feruloyl)-beta-D-glucopyranosyl-(1 --> 3)]-[alpha-L-rhamnopyranosyl-(1 --> 6)]-beta-D-glucopyranoside and two known cyclolignan glycosides, (+)-lyoniresinol-3alpha-O-beta-D-glucopyranoside and ( - )-lyoniresinol-3alpha-O-beta-D-glucopyranoside were isolated from n-BuOH extracts of the aerial parts of Derris triofoliata, their structures were determined from spectroscopic and chemical evidences.

  15. Effects of short-chain acyl-CoA dehydrogenase on cardiomyocyte apoptosis.

    PubMed

    Zeng, Zhenhua; Huang, Qiuju; Shu, Zhaohui; Liu, Peiqing; Chen, Shaorui; Pan, Xuediao; Zang, Linquan; Zhou, Sigui

    2016-07-01

    Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, plays an important role in cardiac hypertrophy. However, its effect on the cardiomyocyte apoptosis remains unknown. We aimed to determine the role of SCAD in tert-butyl hydroperoxide (tBHP)-induced cardiomyocyte apoptosis. The mRNA and protein expression of SCAD were significantly down-regulated in the cardiomyocyte apoptosis model. Inhibition of SCAD with siRNA-1186 significantly decreased SCAD expression, enzyme activity and ATP content, but obviously increased the content of free fatty acids. Meanwhile, SCAD siRNA treatment triggered the same apoptosis as cardiomyocytes treated with tBHP, such as the increase in cell apoptotic rate, the activation of caspase3 and the decrease in the Bcl-2/Bax ratio, which showed that SCAD may play an important role in primary cardiomyocyte apoptosis. The changes of phosphonate AMP-activated protein kinase α (p-AMPKα) and Peroxisome proliferator-activated receptor α (PPARα) in cardiomyocyte apoptosis were consistent with that of SCAD. Furthermore, PPARα activator fenofibrate and AMPKα activator AICAR treatment significantly increased the expression of SCAD and inhibited cardiomyocyte apoptosis. In conclusion, for the first time our findings directly demonstrated that SCAD may be as a new target to prevent cardiomyocyte apoptosis through the AMPK/PPARα/SCAD signal pathways. PMID:26989860

  16. The Shopping Center. Intermediate.

    ERIC Educational Resources Information Center

    Timmons, Darrell; And Others

    This teaching guide is designed to develop thinking skills of intermediate elementary school children by using the concept of a shopping center. Thinking skills defined in the guide are observing, recalling, noticing differences and similarities, ordering, grouping, concept labeling, classifying, concept testing, inferring causes and effects,…

  17. Water oxidation: Intermediate identification

    NASA Astrophysics Data System (ADS)

    Cowan, Alexander J.

    2016-08-01

    The slow kinetics of light-driven water oxidation on haematite is an important factor limiting the material's efficiency. Now, an intermediate of the water-splitting reaction has been identified offering hope that the full mechanism will soon be resolved.

  18. Sara Intermediate Course.

    ERIC Educational Resources Information Center

    Thayer, James E.; Maraby, Julien

    This volume consists of an intermediate course in Sara, a language of the Chad Republic of Africa. It is designed for native speakers of English and includes forty reading selections in Sara and an English translation of each selection. The readings are followed by a corresponding set of dialogues in Sara, accompanied by an English translation.…

  19. Intermediate Mathematics Study Guide.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This SMSG study guide is intended to provide teachers who use "Intermediate Mathematics," as a textbook with references to materials which will help them to gain a better understanding of the mathematics contained in the text. For each chapter of the text a brief resume of its content is followed by a list of annotated references which are…

  20. SPACE: Intermediate Level Modules.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    These modules were developed to assist teachers at the intermediate level to move away from extensive skill practice and toward more meaningful interdisciplinary learning. This packet, to be used by teachers in the summer Extended Learning Program, provides detailed thematic lesson plans matched to the Indiana Curriculum Proficiency Guide. The…

  1. Gastrointestinal uptake of nasunin, acylated anthocyanin in eggplant.

    PubMed

    Ichiyanagi, Takashi; Terahara, Norihiko; Rahman, M Mamunur; Konishi, Tetsuya

    2006-07-26

    We previously showed that nasunin, acylated anthocyanins in eggplant peel, comprises two isomers, cis-nasunin and trans-nasunin. In this study, gastrointestinal absorption of cis- and trans-nasunins was studied in rats. Orally administered nasunins were quickly absorbed in their original acylated forms and maximally appeared in blood plasma after 15 min. When the maximum plasma concentration and area under the plasma concentration curve were normalized by orally administered dose (micromoles per kilogram), there was no significant difference in the uptake efficiency between two isomers and both exhibited a plasma level almost identical to that of delphinidin 3-O-beta-D-glucopyranoside. However, metabolites such as 4'-O-methyl analogues and extended glucuronides which were observed for delphinidin 3-O-beta-D-glucopyranoside and cyanidin 3-O-beta-D-glucopyranoside metabolisms were not detected in urine or blood plasma. Moreover, deacylated and glycolytic products of nasunins such as delphinidin 3-O-beta-D-glucopyranoside or delphinidin (aglycone) were also not detected in blood plasma even after oral administration for 8 h. These results indicated that nasunins were absorbed in their original acylated forms and exhibit a bioavailability almost identical to that of nonacylated anthocyanins. PMID:16848510

  2. Naphthalene Derivatives Induce Acyl Chain Interdigitation in Dipalmitoylphosphatidylcholine Bilayers.

    PubMed

    Kamal, Md Arif; Raghunathan, V A

    2016-01-14

    The interdigitated phase of the lipid bilayer results when acyl chains from opposing monolayers fully interpenetrate such that the terminal methyl groups of the respective lipid chains are located at the interfacial region on the opposite sides of the bilayer. Usually, chain interdigitation is not encountered in a symmetric chain phosphatidylcholine (PC) membrane but can be induced under certain special conditions. In this article, we elucidate the contribution of small amphiphatic molecules in altering the physical properties of a symmetric chain PC bilayer membrane, which results in acyl chain interdigitation. Using small-angle X-ray scattering (SAXS), we have carried out a systematic investigation of the physical interactions of three naphthalene derivatives containing hydroxyl groups: β-naphthol, 2,3-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene, with dipalmitoylphosphatidylcholine (DPPC) bilayers. On the basis of the diffraction patterns, we have determined the temperature-composition phase diagrams of these binary mixtures. The present study not only enables us to gain insight into the role played by small molecules in altering the packing arrangement of the acyl chains of the constituting PC lipids of the bilayer but also brings to light some important features that have not yet been reported hitherto. One such feature is the stabilization of the enigmatic asymmetric ripple phase over a wide temperature and concentration range. The results presented here strongly point toward a clear correlation between chain interdigitation and the stability of the ripple phase.

  3. Fatty acid acylation of salivary mucin in rat submandibular glands

    SciTech Connect

    Slomiany, B.L.; Murty, V.L.; Takagi, A.; Tsukada, H.; Kosmala, M.; Slomiany, A.

    1985-11-01

    The acylation of salivary mucin with fatty acids and its biosynthesis was investigated by incubating rat submandibular salivary gland cells with (/sup 3/H)palmitic acid and (/sup 3/H)proline. The elaborated extracellular and intracellular mucus glycoproteins following delipidation, Bio-Gel P-100 chromatography, and CsCl equilibrium density gradient centrifugation were analyzed for the distribution of the labeled tracers. The incorporation of both markers into mucus glycoprotein increased steadily with time up to 4 h, at which time about 65% of (/sup 3/H)palmitate and (/sup 3/H)proline were found in the extracellular glycoprotein and 35% in the intracellular glycoprotein. The incorporation ratio of proline/palmitate, while showing an increase with incubation time in the extracellular glycoprotein, remained essentially unchanged with time in the intracellular glycoprotein and at 4 h reached respective values of 0.14 and 1.12. The fact that the proline/palmitate incorporation ratio in the intracellular glycoprotein at 1 h of incubation was 22 times higher than in the extracellular and 8 times higher after 4 h suggests that acylation occurs intracellularly and that fatty acids are added after apomucin polypeptide synthesis. As the incorporation of palmitate within the intracellular mucin was greater in the mucus glycoprotein subunit, it would appear that fatty acid acylation of mucin subunits preceeds their assembly into the mucus glycoprotein polymer.

  4. Characterization of oryza sativa acyl activating enzyme3 (OsAAE3)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxalate, the smallest of the dicarboxylic acids, is produced in many plants. This acid has been shown to play an important role in both plant physiology and defense, specifically in regards to metal detoxification, calcium regulation, sucking and chewing insect deterrence, and the production of calc...

  5. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2007-07-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids. PMID:17417694

  6. Insights into tRNA-Dependent Amidotransferase Evolution and Catalysis from the Structure of the Aquifex aeolicus Enzyme

    PubMed Central

    Wu, Jing; Bu, Weishu; Sheppard, Kelly; Kitabatake, Makoto; Kwon, Suk-Tae; Söll, Dieter; Smith, Janet L.

    2010-01-01

    Summary Many bacteria form Gln-tRNAGln and Asn-tRNAAsn by conversion of the misacylated Glu-tRNAGln and Asp-tRNAAsn species catalyzed by the GatCAB amidotransferase in the presence of ATP and an amide donor (glutamine or asparagine). Here we report the crystal structures of GatCAB from the hyperthermophilic bacterium Aquifex aeolicus complexed with glutamine, asparagine, aspartate, ADP, or ATP. In contrast to the Staphylococcus aureus GatCAB, the A. aeolicus enzyme formed acyl-enzyme intermediates with either glutamine or asparagine in line with the equally facile use by the amidotransferase of these amino acids as amide donors in the transamidation reaction. A water-filled ammonia channel is open throughout the length of the A. aeolicus GatCAB from the GatA active site to the kinase catalytic pocket in the B-subunit. A non-catalytic Zn2+ site in the A. aeolicus GatB stabilizes subunit contacts and the ammonia channel. Judged from sequence conservation in the known GatCAB sequences, the Zn2+ binding motif was likely present in the primordial GatB/E, but became lost in certain lineages (e.g. S. aureus GatB). Two divalent metal binding sites, one permanent and the other transient, are present in the catalytic pocket of the A. aeolicus GatB. The two sites enable GatCAB to first phosphorylate the misacylated tRNA substrate and then amidate the activated intermediate to form the cognate products, Gln-tRNAGln or Asn-tRNAAsn.1 PMID:19520089

  7. Insights into tRNA-Dependent Amidotransferase Evolution and Catalysis from the Structure of the Aquifex aeolicus Enzyme

    SciTech Connect

    Wu, Jing; Bu, Weishu; Sheppard, Kelly; Kitabatake, Makoto; Kwon, Suk-Tae; Söll, Dieter; Smith, Janet L.

    2010-08-17

    Many bacteria form Gln-tRNA{sup Gln} and Asn-tRNA{sup ASN} by conversion of the misacylated Glu-tRNA{sup Gln} and Asp-tRNA{sup ASN} species catalyzed by the GatCAB amidotransferase in the presence of ATP and an amide donor (glutamine or asparagine). Here, we report the crystal structures of GatCAB from the hyperthermophilic bacterium Aquifex aeolicus, complexed with glutamine, asparagine, aspartate, ADP, or ATP. In contrast to the Staphylococcus aureus GatCAB, the A. aeolicus enzyme formed acyl-enzyme intermediates with either glutamine or asparagine, in line with the equally facile use by the amidotransferase of these amino acids as amide donors in the transamidation reaction. A water-filled ammonia channel is open throughout the length of the A. aeolicus GatCAB from the GatA active site to the synthetase catalytic pocket in the B-subunit. A non-catalytic Zn{sup 2+} site in the A. aeolicus GatB stabilizes subunit contacts and the ammonia channel. Judged from sequence conservation in the known GatCAB sequences, the Zn{sup 2+} binding motif was likely present in the primordial GatB/E, but became lost in certain lineages (e.g., S. aureus GatB). Two divalent metal binding sites, one permanent and the other transient, are present in the catalytic pocket of the A. aeolicus GatB. The two sites enable GatCAB to first phosphorylate the misacylated tRNA substrate and then amidate the activated intermediate to form the cognate products, Gln-tRNA{sup Gln} or Asn-tRNA{sup ASN}.

  8. The Intermediate Neutrino Program

    SciTech Connect

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  9. Intermediate water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Anderson, A. R. (Editor)

    1973-01-01

    A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.

  10. The in vitro hydrolysis of phytosterol conjugates in food matrices by mammalian digestive enzymes.

    PubMed

    Moreau, Robert A; Hicks, Kevin B

    2004-08-01

    All fruits, vegetables, and grains contain phytosterols. Numerous clinical studies have documented that phytosterols lower LDL-cholesterol levels and thereby reduce the risk of cardiovascular disease. Most experts believe that the cholesterol-lowering mechanism of phytosterols requires that they be in their "free" form. In addition to their occurrence in the free form, phytosterols also occur as four common phytosterol conjugates: (i) fatty acyl esters, (ii) hydroxycinnamate esters, (iii) steryl glycosides, and (iv) fatty acylated steryl glycosides. This study was undertaken to investigate the extent of hydrolysis of four common phytosterol conjugates by mammalian digestive enzymes (cholesterol esterase and pancreatin, a mixture of pancreatic enzymes) and for comparison purposes, by KOH. Two types of purified hydroxycinnamate esters (sitostanyl ferulate and oryzanol, a mixture of hydroxycinnamate esters purified from rice bran oil) were hydrolyzed by cholesterol esterase and by pancreatin. Both cholesterol esterase and pancreatin hydrolyzed the phytosteryl esters in two functional food matrices, and they hydrolyzed the hydroxycinnamate esters in corn fiber oil. This is the first report to demonstrate that phytostanyl ferulate esters (which are present at levels of 3-6% in corn fiber oil) are hydrolyzed by pancreatic cholesterol esterase. It is also the first report that pancreatin contains enzymes that hydrolyze the fatty acyl moiety of fatty acylated steryl glycoside, converting it to steryl glycoside. Pancreatin had no effect on steryl glycosides. The ability of pancreatin to hydrolyze three other types of lipid conjugates was also evaluated. Phospholipids were completely hydrolyzed. About half of the galactolipids were hydrolyzed, and less than 10% of the polyamine conjugates were hydrolyzed. The extents of hydrolysis of phytosteryl esters by base (saponification) were also studied, and conditions commonly used for the saponification of acyl lipids (1.5 N

  11. A new role for penicillin acylases: degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophila penicillin G acylase.

    PubMed

    Mukherji, Ruchira; Varshney, Nishant Kumar; Panigrahi, Priyabrata; Suresh, C G; Prabhune, Asmita

    2014-03-01

    Use of penicillin acylases for the production of semi-synthetic penicillins is well-known. Escherichia coli penicillin G acylase (EcPGA) has been extensively used for this purpose; however, Kluyvera citrophila penicillin G acylase (KcPGA) is assumed to be a better substitute, owing to its increased resilience to extreme pH conditions and ease of immobilization. In the present article we report a new dimension for the amidase activity of KcPGA by demonstrating its ability to cleave bacterial quorum sensing signal molecules, acyl homoserine lactones (AHL) with acyl chain length of 6-8 with or without oxo-substitution at third carbon position. Initial evidence of AHL degrading capability of KcPGA was obtained using CV026 based bioassay method. Kinetic studies performed at pH 8.0 and 50 °C revealed 3-oxo-C6 HSL to be the best substrate for the enzyme with V(max) and K(m) values of 21.37+0.85 mM/h/mg of protein and 0.1+0.01 mM, respectively. C6 HSL was found to be the second best substrate with V(max) and K(m) value of 10.06+0.27 mM/h/mg of protein and 0.28+0.02 mM, respectively. Molecular modeling and docking studies performed on the active site of the enzyme support these findings by showing the fitting of AHLs perfectly within the hydrophobic pocket of the enzyme active site.

  12. Modeling DNA Replication Intermediates

    SciTech Connect

    Broyde, S.; Roy, D.; Shapiro, R.

    1997-06-01

    While there is now available a great deal of information on double stranded DNA from X-ray crystallography, high resolution NMR and computer modeling, very little is known about structures that are representative of the DNA core of replication intermediates. DNA replication occurs at a single strand/double strand junction and bulged out intermediates near the junction can lead to frameshift mutations. The single stranded domains are particularly challenging. Our interest is focused on strategies for modeling the DNA of these types of replication intermediates. Modeling such structures presents special problems in addressing the multiple minimum problem and in treating the electrostatic component of the force field. We are testing a number of search strategies for locating low energy structures of these types and we are also investigating two different distance dependent dielectric functions in the coulombic term of the force field. We are studying both unmodified DNA and DNA damaged by aromatic amines, carcinogens present in the environment in tobacco smoke, barbecued meats and automobile exhaust. The nature of the structure adopted by the carcinogen modified DNA at the replication fork plays a key role in determining whether the carcinogen will cause a mutation during replication that can initiate the carcinogenic process. In the present work results are presented for unmodified DNA.

  13. Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    SciTech Connect

    Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna; Robinson, Howard; Parsons, James F.

    2010-06-01

    The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.

  14. Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily

    SciTech Connect

    Cummings, J.; Fedorov, A; Xu, C; Brown, S; Fedorov, E; Babbitt, P; Almo, S; Raushel, F

    2009-01-01

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k{sub cat}/K{sub m} = 5.8 x 10{sup 6} M{sup -1} s{sup -1}), N-acetyl-d-glutamate (k{sub cat}/K{sub m} = 5.2 x 10{sup 6} M{sup -1} s{sup -1}), and l-methionine-d-glutamate (k{sub cat}/K{sub m} = 3.4 x 10{sup 5} M{sup -1} s{sup -1}). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k{sub cat}/K{sub m} = 3.2 x 104 M{sup -1} s-1), N-acetyl-d-tryptophan (kcat/Km = 4.1 x 104 M-1 s-1), and l-tyrosine-d-leucine (kcat/Km = 1.5 x 104 M-1 s-1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the {alpha}-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional {approx}250

  15. Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids.

    PubMed

    Hofbauer, Harald F; Schopf, Florian H; Schleifer, Hannes; Knittelfelder, Oskar L; Pieber, Bartholomäus; Rechberger, Gerald N; Wolinski, Heimo; Gaspar, Maria L; Kappe, C Oliver; Stadlmann, Johannes; Mechtler, Karl; Zenz, Alexandra; Lohner, Karl; Tehlivets, Oksana; Henry, Susan A; Kohlwein, Sepp D

    2014-06-23

    Membrane phospholipids typically contain fatty acids (FAs) of 16 and 18 carbon atoms. This particular chain length is evolutionarily highly conserved and presumably provides maximum stability and dynamic properties to biological membranes in response to nutritional or environmental cues. Here, we show that the relative proportion of C16 versus C18 FAs is regulated by the activity of acetyl-CoA carboxylase (Acc1), the first and rate-limiting enzyme of FA de novo synthesis. Acc1 activity is attenuated by AMPK/Snf1-dependent phosphorylation, which is required to maintain an appropriate acyl-chain length distribution. Moreover, we find that the transcriptional repressor Opi1 preferentially binds to C16 over C18 phosphatidic acid (PA) species: thus, C16-chain containing PA sequesters Opi1 more effectively to the ER, enabling AMPK/Snf1 control of PA acyl-chain length to determine the degree of derepression of Opi1 target genes. These findings reveal an unexpected regulatory link between the major energy-sensing kinase, membrane lipid composition, and transcription.

  16. Structure of Mycobacterium tuberculosis mtFabD, a malonyl-CoA:acyl carrier protein transacylase (MCAT)

    SciTech Connect

    Ghadbane, Hemza; Brown, Alistair K.; Kremer, Laurent; Besra, Gurdyal S. Fütterer, Klaus

    2007-10-01

    Binding of Ni{sup 2+} ions to the uncleaved affinity tag facilitated de novo phasing of the crystal structure of M. tuberculosis mtFabD to 3.0 Å resolution. Mycobacteria display a unique and unusual cell-wall architecture, central to which is the membrane-proximal mycolyl-arabinogalactan-peptidoglycan core (mAGP). The biosynthesis of mycolic acids, which form the outermost layer of the mAGP core, involves malonyl-CoA:acyl carrier protein transacylase (MCAT). This essential enzyme catalyses the transfer of malonyl from coenzyme A to acyl carrier protein AcpM, thus feeding these two-carbon units into the chain-elongation cycle of the type II fatty-acid synthase. The crystal structure of M. tuberculosis mtFabD, the mycobacterial MCAT, has been determined to 3.0 Å resolution by multi-wavelength anomalous dispersion. Phasing was facilitated by Ni{sup 2+} ions bound to the 20-residue N-terminal affinity tag, which packed between the two independent copies of mtFabD.

  17. Food Enzymes

    ERIC Educational Resources Information Center

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  18. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  19. Molecular dynamics simulations of class C beta-lactamase from Citrobacter freundii: insights into the base catalyst for acylation.

    PubMed

    Díaz, Natalia; Suárez, Dimas; Sordo, Tomás L

    2006-01-17

    Herein, we present results from molecular dynamics (MD) simulations of the class C beta-lactamase from Citrobacter freundii and its Michaelis complex with aztreonam. Four different configurations of the active site were modeled in aqueous solution, and their relative stability was estimated by means of quantum mechanical energy calculations. For the free enzyme, the energetically most stable configurations present a neutral Lys67 residue or an anionic Tyr150 side chain. Our calculations predict that these two configurations are quite close in terms of free energy, the anionic Tyr150 state being favored by approximately 1 kcal/mol. In contrast, for the noncovalent complex formed between the C. freundii enzyme and aztreonam, the energetic analyses predict that the configuration with the neutral Lys67 residue is much more stable than the anionic Tyr150 one (approximately 20 kcal/mol). Moreover, the MD simulations reveal that the neutral Lys67 state results in a proper enzyme-aztreonam orientation for nucleophilic attack and in a very stable contact between the nucleophilic hydroxyl group of Ser64 and the neutral amino side chain of Lys67. Thus, both the computed free energies and the structural analyses support the assignation of Lys67 as the base catalyst for the acylation step in the native form of the C. freundii enzyme.

  20. Acyl-Protein Thioesterase 2 Catalizes the Deacylation of Peripheral Membrane-Associated GAP-43

    PubMed Central

    Tomatis, Vanesa M.; Trenchi, Alejandra; Gomez, Guillermo A.; Daniotti, Jose L.

    2010-01-01

    An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution. PMID:21152083

  1. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase.

    PubMed

    Chung, Jiwoung; Goo, Eunhye; Yu, Sangheon; Choi, Okhee; Lee, Jeehyun; Kim, Jinwoo; Kim, Hongsup; Igarashi, Jun; Suga, Hiroaki; Moon, Jae Sun; Hwang, Ingyu; Rhee, Sangkee

    2011-07-19

    Quorum sensing (QS) controls certain behaviors of bacteria in response to population density. In gram-negative bacteria, QS is often mediated by N-acyl-L-homoserine lactones (acyl-HSLs). Because QS influences the virulence of many pathogenic bacteria, synthetic inhibitors of acyl-HSL synthases might be useful therapeutically for controlling pathogens. However, rational design of a potent QS antagonist has been thwarted by the lack of information concerning the binding interactions between acyl-HSL synthases and their ligands. In the gram-negative bacterium Burkholderia glumae, QS controls virulence, motility, and protein secretion and is mediated by the binding of N-octanoyl-L-HSL (C8-HSL) to its cognate receptor, TofR. C8-HSL is synthesized by the acyl-HSL synthase TofI. In this study, we characterized two previously unknown QS inhibitors identified in a focused library of acyl-HSL analogs. Our functional and X-ray crystal structure analyses show that the first inhibitor, J8-C8, binds to TofI, occupying the binding site for the acyl chain of the TofI cognate substrate, acylated acyl-carrier protein. Moreover, the reaction byproduct, 5'-methylthioadenosine, independently binds to the binding site for a second substrate, S-adenosyl-L-methionine. Closer inspection of the mode of J8-C8 binding to TofI provides a likely molecular basis for the various substrate specificities of acyl-HSL synthases. The second inhibitor, E9C-3oxoC6, competitively inhibits C8-HSL binding to TofR. Our analysis of the binding of an inhibitor and a reaction byproduct to an acyl-HSL synthase may facilitate the design of a new class of QS-inhibiting therapeutic agents.

  2. Reactive Intermediates in Cytochrome P450 Catalysis*

    PubMed Central

    Krest, Courtney M.; Onderko, Elizabeth L.; Yosca, Timothy H.; Calixto, Julio C.; Karp, Richard F.; Livada, Jovan; Rittle, Jonathan; Green, Michael T.

    2013-01-01

    Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis. PMID:23632017

  3. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.

    PubMed

    Metz, J G; Pollard, M R; Anderson, L; Hayes, T R; Lassner, M W

    2000-03-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.

  4. Purification of a Jojoba Embryo Fatty Acyl-Coenzyme A Reductase and Expression of Its cDNA in High Erucic Acid Rapeseed

    PubMed Central

    Metz, James G.; Pollard, Michael R.; Anderson, Lana; Hayes, Thomas R.; Lassner, Michael W.

    2000-01-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes. PMID:10712526

  5. An Ultrahigh Resolution Structure of TEM-1 beta-Lactamase Suggests a Role for Glu166 as the General Base in Acylation

    SciTech Connect

    Minasov, George; Wang, Xiaojun; Shoichet, Brian K.

    2010-03-08

    Although TEM-1 {beta}-lactamase is among the best studied enzymes, its acylation mechanism remains controversial. To investigate this problem, the structure of TEM-1 in complex with an acylation transition-state analogue was determined at ultrahigh resolution (0.85 {angstrom}) by X-ray crystallography. The quality of the data was such as to allow for refinement to an R-factor of 9.1% and an R{sub free} of 11.2%. In the resulting structure, the electron density features were clear enough to differentiate between single and double bonds in carboxylate groups, to identify multiple conformations that are occupied by residues and loops, and to assign 70% of the protons in the protein. Unexpectedly, even at pH 8.0 where the protein was crystallized, the active site residue Glu166 is clearly protonated. This supports the hypothesis that Glu166 is the general base in the acylation half of the reaction cycle. This structure suggests that Glu166 acts through the catalytic water to activate Ser70 for nucleophilic attack on the {beta}-lactam ring of the substrate. The hydrolytic mechanism of class A {beta}-lactamases, such as TEM-1, appears to be symmetrical, as are the serine proteases. Apart from its mechanistic implications, this atomic resolution structure affords an unusually detailed view of the structure, dynamics, and hydrogen-bonding networks of TEM-1, which may be useful for the design of inhibitors against this key antibiotic resistance target.

  6. Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid.

    PubMed

    Dhondt, Sandrine; Gouzerh, Guillaume; Müller, Axel; Legrand, Michel; Heitz, Thierry

    2002-12-01

    We have previously isolated three tobacco genes (NtPat) encoding patatin-like proteins, getting rapidly induced during the hypersensitive response (HR) to tobacco mosaic virus, in advance to jasmonate accumulation. NtPAT enzymes are lipid acyl hydrolases that display high phospholipase A2 (PLA2) activity and may mobilize fatty acid precursors of oxylipins. Here, we performed a detailed study of NtPat gene regulation under various biotic and abiotic stresses. PLA2 activity was poorly induced in response to drought, wounding, reactive oxygen intermediates, salicylic acid (SA) or methyl-jasmonate (MJ) whereas the ethylene (ET) precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), provoked a moderate induction. In contrast, PLA2 activity was strongly induced when ACC was combined with MJ, and in response to the bacterium Erwinia carotovora or to the fungus Botrytis cinerea, as well as to treatment with beta-megaspermin, a cell death-inducing protein elicitor. A simplified system based on the infiltration of beta-megaspermin into leaves was used to dissect the spatio-temporal activation of PLA2 activity with regards to the accumulation of jasmonates and to the influence of endogenous SA. NtPat-encoded PLA2 activity was rapidly induced in the infiltrated zone before the appearance of cell death and with some delay in the surrounding living cells. A massive accumulation of 12-oxo-phytodienoic and jasmonic acids occurred in the elicitor-infiltrated zone, but only low levels were detectable outside this area. A similar picture was found in SA-deficient plants, showing that in tobacco, accumulation of jasmonates is not affected by the concomitant HR-induced build-up of endogenous SA. Finally, ET-insensitive plants showed a weakened induction of PLA2 activity outside the elicitor-infiltrated tissue.

  7. Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases.

    PubMed

    Yuan, Yanqiu; Sachdeva, Meena; Leeds, Jennifer A; Meredith, Timothy C

    2012-10-01

    The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes.

  8. Ratio of active to inactive forms of acyl carrier protein in Escherichia coli.

    PubMed

    Jackowski, S; Rock, C O

    1983-12-25

    Acyl carrier protein (ACP) functions as a cofactor in fatty acid biosynthesis due to the covalent linkage of an acyl moiety to its 4'-phosphopantetheine prosthetic group. This prosthetic group undergoes turnover in vivo and since the apoprotein is functionally inactive, the interconversion between ACP and apo-ACP has been considered as a possible regulatory point in lipid biosynthesis. To investigate this possibility, the ratio of ACP to apo-ACP was measured in Escherichia coli. An apo-ACP standard was synthesized using [ACP] phosphodiesterase (EC 3.1.4.14) and could be clearly separated from ACP by conformationally sensitive gel electrophoresis, thus providing a reliable assay for the presence of these two species. Antibodies specific for ACP were purified from rabbit serum on an ACP-Sepharose column and subsequently used to synthesize an immunoaffinity column. Chromatography of leucine-labeled cell extracts on this support resulted in the specific binding of ACP, but apo-ACP was not detected in either logarithmically growing or stationary phase cells, although both ACP species bound to the purified anti-ACP IgG. Apo-ACP was not detected as an intermediate in ACP biosynthesis, suggesting that apo-ACP is rapidly converted to ACP following translation. CoA is the biosynthetic precursor to the ACP prosthetic group, but apo-ACP did not accumulate when the intracellular CoA concentration was severely depressed in strain SJ16 (panD), a beta-alanine auxotroph. Strain MP4 (acpS) is conditionally defective in [ACP]synthase (EC 2.7.8.7) and apo-ACP was the predominant form of ACP synthesized in this strain under nonpermissive conditions. Even under conditions that permitted growth, apo-ACP comprised 70% of the total ACP pool in strain MP4. Strain MP4 possessed a phospholipid to protein ratio within the normal range, suggesting that the ratio of ACP to apo-ACP can be significantly altered without affecting total lipid content. Thus, it appears that the prosthetic group

  9. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    PubMed

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  10. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives’ Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps

    PubMed Central

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  11. Ortho C-H Acylation of Aryl Iodides by Palladium/Norbornene Catalysis.

    PubMed

    Dong, Zhe; Wang, Jianchun; Ren, Zhi; Dong, Guangbin

    2015-10-19

    Reported herein is a palladium/norbornene-catalyzed ortho-arene acylation of aryl iodides by a Catellani-type C-H functionalization. This transformation is enabled by isopropyl carbonate anhydrides, which serve as both an acyl cation equivalent and a hydride source.

  12. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride.

    PubMed

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen.

  13. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers

    PubMed Central

    Bottomley, Peter J.

    2015-01-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS. PMID:26092466

  14. Synthesis of photoactivatable azido-acyl caged oxazine fluorophores for live-cell imaging.

    PubMed

    Anzalone, Andrew V; Chen, Zhixing; Cornish, Virginia W

    2016-07-19

    We report the design and synthesis of a photoactivatable azido-acyl oxazine fluorophore. Photoactivation is achieved cleanly and rapidly with UV light, producing a single fluorescent oxazine photoproduct. We demonstrate the utility of azido-acyl caged oxazines for protein specific labeling in living mammalian cells using the TMP-tag technology. PMID:27377037

  15. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers.

    PubMed

    Mellbye, Brett L; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2015-09-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.

  16. Turnover of the 4'-phosphopantetheine prosthetic group of acyl carrier protein.

    PubMed

    Jackowski, S; Rock, C O

    1984-02-10

    Acyl carrier protein is an essential cofactor in fatty acid biosynthesis, and in contrast to the stability of the protein moiety during growth, its 4'-phosphopantetheine prosthetic group is metabolically active. The biosynthetic incorporation of deuterium into nonexchangeable positions of acyl carrier protein was found to enhance the sensitivity of the protein to pH-induced hydrodynamic expansion. This constitutional isotope effect was exploited to separate deuterated from normal acyl carrier protein by conformationally sensitive gel electrophoresis, thus providing the analytical framework for separating pre-existing (deuterated) from newly synthesized acyl carrier protein in pulse-chase experiments. The rate of acyl carrier protein prosthetic group turnover was found to depend on the intracellular concentration of coenzyme A. At low coenzyme A levels, prosthetic group turnover was four times faster than the rate of new acyl carrier protein biosynthesis but at the higher coenzyme A concentrations characteristic of logarithmic growth, turnover was an order of magnitude slower, amounting to approximately 25% of the acyl carrier protein pool per generation. These observations suggest that the acyl carrier protein prosthetic group turnover cycle may be related to coenzyme A metabolism rather than to lipid biosynthesis.

  17. Genetics Home Reference: peroxisomal acyl-CoA oxidase deficiency

    MedlinePlus

    ... enzyme is found in sac-like cell structures (organelles) called peroxisomes, which contain a variety of enzymes ... 1 link) Health Topic: Leukodystrophies Genetic and Rare Diseases Information Center (1 link) Pseudoneonatal adrenoleukodystrophy Educational Resources ( ...

  18. Enzyme Kinetics

    PubMed Central

    Lam, C. F.; Priest, D. G.

    1972-01-01

    One of the most generally applicable algorithms for the derivation of steady-state rate equations for complex enzyme reaction mechanisms is that of King and Altman. Several modifications of this algorithm have been suggested; however, each requires the generation of numerous valid and invalid patterns and the subsequent elimination of those that are invalid. A method is presented, employing topological theory of linear graphs, for the systematic generation of only those patterns which are valid. This method is readily adaptable to use on a digital computer. An independent method for the calculation of the number of valid patterns is also presented. This calculation can be used to substantiate the accuracy of the patterns obtained. This calculation is also adaptable to computerization. Examples are included to demonstrate both the generation of patterns and the calculation of their number for specific enzyme mechanisms. PMID:5016111

  19. Alkylating enzymes.

    PubMed

    Wessjohann, Ludger A; Keim, Jeanette; Weigel, Benjamin; Dippe, Martin

    2013-04-01

    Chemospecific and regiospecific modifications of natural products by methyl, prenyl, or C-glycosyl moieties are a challenging and cumbersome task in organic synthesis. Because of the availability of an increasing number of stable and selective transferases and cofactor regeneration processes, enzyme-assisted strategies turn out to be promising alternatives to classical synthesis. Two categories of alkylating enzymes become increasingly relevant for applications: firstly prenyltransferases and terpene synthases (including terpene cyclases), which are used in the production of terpenoids such as artemisinin, or meroterpenoids like alkylated phenolics and indoles, and secondly methyltransferases, which modify flavonoids and alkaloids to yield products with a specific methylation pattern such as 7-O-methylaromadendrin and scopolamine.

  20. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene.

    PubMed

    Knutzon, D S; Thompson, G A; Radke, S E; Johnson, W B; Knauf, V C; Kridl, J C

    1992-04-01

    Molecular gene transfer techniques have been used to engineer the fatty acid composition of Brassica rapa and Brassica napus (canola) oil. Stearoyl-acyl carrier protein (stearoyl-ACP) desaturase (EC 1.14.99.6) catalyzes the first desaturation step in seed oil biosynthesis, converting stearoyl-ACP to oleoyl-ACP. Seed-specific antisense gene constructs of B. rapa stearoyl-ACP desaturase were used to reduce the protein concentration and enzyme activity of stearoyl-ACP desaturase in developing rapeseed embryos during storage lipid biosynthesis. The resulting transgenic plants showed dramatically increased stearate levels in the seeds. A continuous distribution of stearate levels from 2% to 40% was observed in seeds of a transgenic B. napus plant, illustrating the potential to engineer specialized seed oil compositions.

  1. Lipase and esterase-catalyzed acylation of hetero-substituted nitrogen nucleophiles in water and organic solvents.

    PubMed

    Hacking, M A; Akkus, H; van Rantwijk, F; Sheldon, R A

    2000-04-01

    The lipase- and esterase-catalyzed acylations of hydroxylamine and hydrazine derivatives with octanoic acid and ethyl octanoate are described. The influence of solvent and nucleophile on the initial reaction rate was investigated for a number of free and immobilized enzymes. Initial rates were highest in water, but the overall productivity was optimal in dioxane. Octanoic acid (250 g/L) was converted for 93% into the hydroxamic acid in 36 h with only 1% (w/w) Candida antarctica lipase B (Novozym 435) in dioxane at 40 degrees C. This translates to a catalyst productivity of 68.5 g. g(-1). day(-1) and a space time yield of 149 g. L(-1). day(-1), unprecedented figures in the direct reaction of an acid with a nitrogen nucleophile in an organic solvent.

  2. Fatty acid hydrolysis of acyl marinobactin siderophores by Marinobacter acylases.

    PubMed

    Kem, Michelle P; Naka, Hiroaki; Iinishi, Akira; Haygood, Margo G; Butler, Alison

    2015-01-27

    The marine bacteria Marinobacter sp. DS40M6 and Marinobacter nanhaiticus D15-8W produce a suite of acyl peptidic marinobactin siderophores to acquire iron under iron-limiting conditions. During late-log phase growth, the marinobactins are hydrolyzed to form the marinobactin headgroup with release of the corresponding fatty acid tail. The bntA gene, a homologue of the Pseudomonas aeruginosa pyoverdine acylase gene, pvdQ, was identified from Marinobacter sp. DS40M6. A bntA knockout mutant of Marinobacter sp. DS40M6 produced the suite of acyl marinobactins A-E, without the usual formation of the marinobactin headgroup. Another marinobactin-producing species, M. nanhaiticus D15-8W, is predicted to have two pvdQ homologues, mhtA and mhtB. MhtA and MhtB have 67% identical amino acid sequences. MhtA catalyzes hydrolysis of the apo-marinobactin siderophores as well as the quorum sensing signaling molecule, dodecanoyl-homoserine lactone. In contrast to hydrolysis of the suite of apo-marinobactins by MhtA, hydrolysis of the iron(III)-bound marinobactins was not observed. PMID:25588131

  3. Site‐Selective Acylations with Tailor‐Made Catalysts

    PubMed Central

    Huber, Florian

    2016-01-01

    Abstract The acylation of alcohols catalyzed by N,N‐dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate‐specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor‐made catalysts for the site‐specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site‐selectivity compared with only DMAP. Furthermore, substrate‐optimized catalysts of this type can be used to selectively convert “their” substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances. PMID:26970553

  4. Radical [1,3] Rearrangements of Breslow Intermediates.

    PubMed

    Alwarsh, Sefat; Xu, Yi; Qian, Steven Y; McIntosh, Matthias C

    2016-01-01

    Breslow intermediates that bear radical-stabilizing N substituents, such as benzyl, cinnamyl, and diarylmethyl, undergo facile homolytic C-N bond scission under mild conditions to give products of formal [1,3] rearrangement rather than benzoin condensation. EPR experiments and computational analysis support a radical-based mechanism. Implications for thiamine-based enzymes are discussed.

  5. Escherichia coli Enoyl-Acyl Carrier Protein Reductase (FabI) Supports Efficient Operation of a Functional Reversal of the β-Oxidation Cycle

    PubMed Central

    Vick, Jacob E.; Clomburg, James M.; Blankschien, Matthew D.; Chou, Alexander; Kim, Seohyoung

    2014-01-01

    We recently used a synthetic/bottom-up approach to establish the identity of the four enzymes composing an engineered functional reversal of the β-oxidation cycle for fuel and chemical production in Escherichia coli (J. M. Clomburg, J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya, and R. Gonzalez, ACS Synth Biol 1:541–554, 2012, http://dx.doi.org/10.1021/sb3000782). While native enzymes that catalyze the first three steps of the pathway were identified, the identity of the native enzyme(s) acting as the trans-enoyl coenzyme A (CoA) reductase(s) remained unknown, limiting the amount of product that could be synthesized (e.g., 0.34 g/liter butyrate) and requiring the overexpression of a foreign enzyme (the Euglena gracilis trans-enoyl-CoA reductase [EgTER]) to achieve high titers (e.g., 3.4 g/liter butyrate). Here, we examine several native E. coli enzymes hypothesized to catalyze the reduction of enoyl-CoAs to acyl-CoAs. Our results indicate that FabI, the native enoyl-acyl carrier protein (enoyl-ACP) reductase (ENR) from type II fatty acid biosynthesis, possesses sufficient NADH-dependent TER activity to support the efficient operation of a β-oxidation reversal. Overexpression of FabI proved as effective as EgTER for the production of butyrate and longer-chain carboxylic acids. Given the essential nature of fabI, we investigated whether bacterial ENRs from other families were able to complement a fabI deletion without promiscuous reduction of crotonyl-CoA. These characteristics from Bacillus subtilis FabL enabled ΔfabI complementation experiments that conclusively established that FabI encodes a native enoyl-CoA reductase activity that supports the β-oxidation reversal in E. coli. PMID:25527535

  6. Unique oligomeric intermediates of bovine liver catalase.

    PubMed

    Prakash, Koodathingal; Prajapati, Shashi; Ahmad, Atta; Jain, S K; Bhakuni, Vinod

    2002-01-01

    Catalases, although synthesized from single genes and built up from only one type of subunit, exist in heterogeneous form with respect to their conformations and association states in biological systems. This heterogeneity is not of genetic origin, but rather reflects the instability of this oligomeric heme enzyme. To understand better the factors that stabilize the various association states of catalase, we performed studies on the multimeric intermediates that are stabilized during guanidine-hydrochloride- and urea-induced unfolding of bovine liver catalase (BLC). For the first time, we have observed an enzymatically active, folded dimer of native BLC. This dimer has slightly higher enzymatic activity and altered structural properties compared to the native tetramer. Comparative studies of the effect of NaCl, GdmCl, and urea on BLC show that cation binding to negatively charged groups present in amino acid side chains of the enzyme leads to stabilization of an enzymatically active, folded dimer of BLC. Besides the folded dimer, an enzymatically active expanded tetramer and a partially unfolded, enzymatically inactive dimer of BLC were also observed. A complete recovery of native enzyme was observed on refolding of expanded tetramers and folded dimers; however, a very low recovery (maximum of approximately 5%) of native enzyme was observed on refolding of partially unfolded dimers and fully unfolded monomers. PMID:11742121

  7. Molecular mechanism of a hotdog-fold acyl-CoA thioesterase.

    PubMed

    Cantu, David C; Ardèvol, Albert; Rovira, Carme; Reilly, Peter J

    2014-07-14

    Thioesterases are enzymes that hydrolyze thioester bonds between a carbonyl group and a sulfur atom. They catalyze key steps in fatty acid biosynthesis and metabolism, as well as polyketide biosynthesis. The reaction molecular mechanism of most hotdog-fold acyl-CoA thioesterases remains unknown, but several hypotheses have been put forward in structural and biochemical investigations. The reaction of a human thioesterase (hTHEM2), representing a thioesterase family with a hotdog fold where a coenzyme A moiety is cleaved, was simulated by quantum mechanics/molecular mechanics metadynamics techniques to elucidate atomic and electronic details of its mechanism, its transition-state conformation, and the free energy landscape of the process. A single-displacement acid-base-like mechanism, in which a nucleophilic water molecule is activated by an aspartate residue acting as a base, was found, confirming previous experimental proposals. The results provide unambiguous evidence of the formation of a tetrahedral-like transition state. They also explain the roles of other conserved active-site residues during the reaction, especially that of a nearby histidine/serine pair that protonates the thioester sulfur atom, the participation of which could not be elucidated from mutation analyses alone. PMID:24894958

  8. Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor.

    PubMed

    Alavijeh, Razieh Shafiee; Tabandeh, Fatemeh; Tavakoli, Omid; Karkhane, Aliasghar; Shariati, Parvin

    2015-01-01

    Microalgae have become an important source of biomass for biodiesel production. In enzymatic transesterification reaction, the enzyme activity is decreased in presence of alcohols. The use of different acyl acceptors such as methyl/ethyl acetate is suggested as an alternative and effective way to overcome this problem. In this study, ethyl acetate was used for the first time in the enzymatic production of biodiesel by using microalga, Chlorella vulgaris, as a triglyceride source. Enzymatic conversion of such fatty acids to biodiesel was catalyzed by Novozym 435 as an efficient immobilized lipase which is extensively used in biodiesel production. The best conversion yield of 66.71% was obtained at the ethyl acetate to oil molar ratio of 13:1 and Novozym 435 concentration of 40%, based on the amount of oil, and a time period of 72 h at 40℃. The results showed that ethyl acetate have no adverse effect on lipase activity and the biodiesel amount was not decreased even after seven transesterification cycles, so ethyl acetate has a great potential to be substituted for short-chain alcohols in transesterification reaction. PMID:25742923

  9. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5.

    PubMed

    Brigidi, G Stefano; Santyr, Brendan; Shimell, Jordan; Jovellar, Blair; Bamji, Shernaz X

    2015-01-01

    Synaptic plasticity is mediated by the dynamic localization of proteins to and from synapses. This is controlled, in part, through activity-induced palmitoylation of synaptic proteins. Here we report that the ability of the palmitoyl-acyl transferase, DHHC5, to palmitoylate substrates in an activity-dependent manner is dependent on changes in its subcellular localization. Under basal conditions, DHHC5 is bound to PSD-95 and Fyn kinase, and is stabilized at the synaptic membrane through Fyn-mediated phosphorylation of a tyrosine residue within the endocytic motif of DHHC5. In contrast, DHHC5's substrate, δ-catenin, is highly localized to dendritic shafts, resulting in the segregation of the enzyme/substrate pair. Neuronal activity disrupts DHHC5/PSD-95/Fyn kinase complexes, enhancing DHHC5 endocytosis, its translocation to dendritic shafts and its association with δ-catenin. Following DHHC5-mediated palmitoylation of δ-catenin, DHHC5 and δ-catenin are trafficked together back into spines where δ-catenin increases cadherin stabilization and recruitment of AMPA receptors to the synaptic membrane. PMID:26334723

  10. Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor.

    PubMed

    Alavijeh, Razieh Shafiee; Tabandeh, Fatemeh; Tavakoli, Omid; Karkhane, Aliasghar; Shariati, Parvin

    2015-01-01

    Microalgae have become an important source of biomass for biodiesel production. In enzymatic transesterification reaction, the enzyme activity is decreased in presence of alcohols. The use of different acyl acceptors such as methyl/ethyl acetate is suggested as an alternative and effective way to overcome this problem. In this study, ethyl acetate was used for the first time in the enzymatic production of biodiesel by using microalga, Chlorella vulgaris, as a triglyceride source. Enzymatic conversion of such fatty acids to biodiesel was catalyzed by Novozym 435 as an efficient immobilized lipase which is extensively used in biodiesel production. The best conversion yield of 66.71% was obtained at the ethyl acetate to oil molar ratio of 13:1 and Novozym 435 concentration of 40%, based on the amount of oil, and a time period of 72 h at 40℃. The results showed that ethyl acetate have no adverse effect on lipase activity and the biodiesel amount was not decreased even after seven transesterification cycles, so ethyl acetate has a great potential to be substituted for short-chain alcohols in transesterification reaction.

  11. The fatty acyl-CoA reductase Waterproof mediates airway clearance in Drosophila.

    PubMed

    Jaspers, Martin H J; Pflanz, Ralf; Riedel, Dietmar; Kawelke, Steffen; Feussner, Ivo; Schuh, Reinhard

    2014-01-01

    The transition from a liquid to a gas filled tubular network is the prerequisite for normal function of vertebrate lungs and invertebrate tracheal systems. However, the mechanisms underlying the process of gas filling remain obscure. Here we show that waterproof, encoding a fatty acyl-CoA reductase (FAR), is essential for the gas filling of the tracheal tubes during Drosophila embryogenesis, and does not affect branch network formation or key tracheal maturation processes. However, electron microscopic analysis reveals that in waterproof mutant embryos the formation of the outermost tracheal cuticle sublayer, the envelope, is disrupted and the hydrophobic tracheal coating is damaged. Genetic and gain-of-function experiments indicate a non-cell-autonomous waterproof function for the beginning of the tracheal gas filling process. Interestingly, Waterproof reduces very long chain fatty acids of 24 and 26 carbon atoms to fatty alcohols. Thus, we propose that Waterproof plays a key role in tracheal gas filling by providing very long chain fatty alcohols that serve as potential substrates for wax ester synthesis or related hydrophobic substances that ultimately coat the inner lining of the trachea. The hydrophobicity in turn reduces the tensile strength of the liquid inside the trachea, leading to the formation of a gas bubble, the focal point for subsequent gas filling. Waterproof represents the first enzyme described to date that is necessary for tracheal gas filling without affecting branch morphology. Considering its conservation throughout evolution, Waterproof orthologues may play a similar role in the vertebrate lung.

  12. Modulation of Hexa-Acyl Pyrophosphate Lipid A Population under Escherichia coli Phosphate (Pho) Regulon Activation▿

    PubMed Central

    Lamarche, Martin G.; Kim, Sang-Hyun; Crépin, Sébastien; Mourez, Michael; Bertrand, Nicolas; Bishop, Russell E.; Dubreuil, J. Daniel; Harel, Josée

    2008-01-01

    Environmental phosphate is an important signal for microorganism gene regulation, and it has recently been shown to trigger some key bacterial virulence mechanisms. In many bacteria, the Pho regulon is the major circuit involved in adaptation to phosphate limitation. The Pho regulon is controlled jointly by the two-component regulatory system PhoR/PhoB and by the phosphate-specific transport (Pst) system, which both belong to the Pho regulon. We showed that a pst mutation results in virulence attenuation in extraintestinal pathogenic Escherichia coli (ExPEC) strains. Our results indicate that the bacterial cell surface of the pst mutants is altered. In this study, we show that pst mutants of ExPEC strains display an increased sensitivity to different cationic antimicrobial peptides and vancomycin. Remarkably, the hexa-acylated 1-pyrophosphate form of lipid A is significantly less abundant in pst mutants. Among differentially expressed genes in the pst mutant, lpxT coding for an enzyme that transfers a phosphoryl group to lipid A, forming the 1-diphosphate species, was found to be downregulated. Our results strongly suggest that the Pho regulon is involved in lipid A modifications, which could contribute to bacterial surface perturbations. Since the Pho regulon and the Pst system are conserved in many bacteria, such a lipid A modification mechanism could be widely distributed among gram-negative bacterial species. PMID:18515419

  13. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement.

    PubMed

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon; Strauss, Holger M; Rahbek, Ulrik L; Andresen, Thomas L

    2015-10-01

    Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate its influence on intestinal cell translocation and membrane interaction. We find that acylation drastically increases in vitro intestinal peptide flux and confers a transient permeability enhancing effect on the cell layer. The analogues permeabilize model lipid membranes, indicating that the effect is due to a solubilization of the cell membrane, similar to transcellular oral permeation enhancers. The effect is dependent on pH, with larger effect at lower pH, and is impacted by acylation chain length and position. Compared to the unacylated peptide backbone, N-terminal acylation with a short chain provides 6- or 9-fold increase in peptide translocation at pH 7.4 and 5.5, respectively. Prolonging the chain length appears to hamper translocation, possibly due to self-association or aggregation, although the long chain acylated analogues remain superior to the unacylated peptide. For K(18)-acylation a short chain provides a moderate improvement, whereas medium and long chain analogues are highly efficient, with a 12-fold increase in permeability compared to the unacylated peptide backbone, on par with currently employed oral permeation enhancers. For K(18)-acylation the medium chain acylation appears to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may

  14. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments.

    PubMed

    Blangetti, Marco; Rosso, Heléna; Prandi, Cristina; Deagostino, Annamaria; Venturello, Paolo

    2013-01-17

    Since the first report and due to its handiness and wide scope, the Suzuki-Miyaura (SM) cross coupling reaction has become a routine methodology in many laboratories worldwide. With respect to other common transition metal catalyzed cross couplings, the SM reaction has been so far less exploited as a tool to introduce an acyl function into a specific substrate. In this review, the various approaches found in the literature will be considered, starting from the direct SM acylative coupling to the recent developments of cross coupling between boronates and acyl chlorides or anhydrides. Special attention will be dedicated to the use of masked acyl boronates, alkoxy styryl and alkoxy dienyl boronates as coupling partners. A final section will be then focused on the acyl SM reaction as key synthetic step in the framework of natural products synthesis.

  15. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments.

    PubMed

    Blangetti, Marco; Rosso, Heléna; Prandi, Cristina; Deagostino, Annamaria; Venturello, Paolo

    2013-01-01

    Since the first report and due to its handiness and wide scope, the Suzuki-Miyaura (SM) cross coupling reaction has become a routine methodology in many laboratories worldwide. With respect to other common transition metal catalyzed cross couplings, the SM reaction has been so far less exploited as a tool to introduce an acyl function into a specific substrate. In this review, the various approaches found in the literature will be considered, starting from the direct SM acylative coupling to the recent developments of cross coupling between boronates and acyl chlorides or anhydrides. Special attention will be dedicated to the use of masked acyl boronates, alkoxy styryl and alkoxy dienyl boronates as coupling partners. A final section will be then focused on the acyl SM reaction as key synthetic step in the framework of natural products synthesis. PMID:23344208

  16. In vivo acylation of proteolipid protein and DM-20 in myelin and myelin subfractions of developing rat brain: immunoblot identification of acylated PLP and DM-20

    SciTech Connect

    Garwood, M.M.; Gilbert, W.R.; Agrawal, H.C.

    1983-05-01

    The acylation of proteolipid protein (PLP) was examined in myelin and myelin subfractions from rat brain during the active period of myelination. Proteolipid protein and DM-20 in myelin and myelin subfractions were readily acylated in developing rat brain 22 hours after intracerebral injection of (/sup 3/H)palmitic acid. No differences in the relative specific activity of PLP in myelin from 9-, 15-, and 30-day-old rat brains was observed; however, the relative specific activity of PLP in the heavy myelin subfraction tended to be higher than that in the light myelin subfraction. The acylation of PLP was confirmed by fluorography of immuno-stained cellulose nitrate sheets, clearly establishing that the acylated protein is in fact the oligodendroglial cell- and myelin-specific protein, PLP. Since PLP is acylated in the 9-day-old animal, when little compact myelin is present, it is possible that the acylation of PLP is a prerequisite for the incorporation of this protein into the myelin membrane.

  17. Functional Insights into Human HMG-CoA Lyase from Structures of Acyl-CoA-containing Ternary Complexes

    SciTech Connect

    Fu, Zhuji; Runquist, Jennifer A.; Montgomery, Christa; Miziorko, Henry M.; Kim, Jung-Ja P.

    2010-08-16

    HMG-CoA lyase (HMGCL) is crucial to ketogenesis, and inherited human mutations are potentially lethal. Detailed understanding of the HMGCL reaction mechanism and the molecular basis for correlating human mutations with enzyme deficiency have been limited by the lack of structural information for enzyme liganded to an acyl-CoA substrate or inhibitor. Crystal structures of ternary complexes of WT HMGCL with the competitive inhibitor 3-hydroxyglutaryl-CoA and of the catalytically deficient HMGCL R41M mutant with substrate HMG-CoA have been determined to 2.4 and 2.2 {angstrom}, respectively. Comparison of these {beta}/{alpha}-barrel structures with those of unliganded HMGCL and R41M reveals substantial differences for Mg{sup 2+} coordination and positioning of the flexible loop containing the conserved HMGCL 'signature' sequence. In the R41M-Mg{sup 2+}-substrate ternary complex, loop residue Cys{sup 266} (implicated in active-site function by mechanistic and mutagenesis observations) is more closely juxtaposed to the catalytic site than in the case of unliganded enzyme or the WT enzyme-Mg{sup 2+}-3-hydroxyglutaryl-CoA inhibitor complex. In both ternary complexes, the S-stereoisomer of substrate or inhibitor is specifically bound, in accord with the observed Mg{sup 2+} liganding of both C3 hydroxyl and C5 carboxyl oxygens. In addition to His{sup 233} and His{sup 235} imidazoles, other Mg{sup 2+} ligands are the Asp{sup 42} carboxyl oxygen and an ordered water molecule. This water, positioned between Asp{sup 42} and the C3 hydroxyl of bound substrate/inhibitor, may function as a proton shuttle. The observed interaction of Arg{sup 41} with the acyl-CoA C1 carbonyl oxygen explains the effects of Arg{sup 41} mutation on reaction product enolization and explains why human Arg{sup 41} mutations cause drastic enzyme deficiency.

  18. A Peroxisomal Long-Chain Acyl-CoA Synthetase from Glycine max Involved in Lipid Degradation

    PubMed Central

    Jiang, Bingjun; Sun, Xuegang; Gu, Shoulai; Han, Tianfu; Hou, Wensheng

    2014-01-01

    Seed storage oil, in the form of triacylglycerol (TAG), is degraded to provide carbon and energy during germination and early seedling growth by the fatty acid β-oxidation in the peroxisome. Although the pathways for lipid degradation have been uncovered, understanding of the exact involved enzymes in soybean is still limited. Long-chain acyl-CoA synthetase (ACSL) is a critical enzyme that activates free fatty acid released from TAG to form the fatty acyl-CoA. Recent studies have shown the importance of ACSL in lipid degradation and synthesis, but few studies were focused on soybean. In this work, we cloned a ACSL gene from soybean and designated it as GmACSL2. Sequence analysis revealed that GmACSL2 encodes a protein of 733 amino acid residues, which is highly homologous to the ones in other higher plants. Complementation test showed that GmACSL2 could restore the growth of an ACS-deficient yeast strain (YB525). Co-expression assay in Nicotiana benthamiana indicated that GmACSL2 is located at peroxisome. Expression pattern analysis showed that GmACSL2 is highly expressed in germinating seedling and strongly induced 1 day after imbibition, which indicate that GmACSL2 may take part in the seed germination. GmACSL2 overexpression in yeast and soybean hairy root severely reduces the contents of the lipids and fatty acids, compared with controls in both cells, and enhances the β-oxidation efficiency in yeast. All these results suggest that GmACSL2 may take part in fatty acid and lipid degradation. In conclusion, peroxisomal GmACSL2 from Glycine max probably be involved in the lipid degradation during seed germination. PMID:24992019

  19. [Intermediate gastric cancer].

    PubMed

    Fontán, A N; Marzano, C A; Martínez, M M; Palau, G; Rubio, H H

    1980-01-01

    Gastric Cancer comprises two basic types: Advanced Gastric Cancer (A.G.C.) and Early Gastric Cancer (E.G.C.). A.G.C. extends beyond the proper muscle layer with a 5 to 17%, five years survival rate after surgery. E.G.C. does not extend beyond the submucosa (with or without metastasis to regional lymph nodes) and has a 80 - 95% five years survival rate. Intermediate Gastric Cancer, PM G.C. (Gastric cancer of the proper muscle layer) does not surpass the proper muscle layer and offers a five years life expectance of near 60% after adequate surgical treatment, with peculiar features in radiology, endoscopy and evolutivity. We report a case of PM G.C., "depressed" and "protruded". The proper muscle layer was invaded by the depressed lesion". Both lesions were continguous.

  20. Enzyme clustering can induce metabolic channeling

    NASA Astrophysics Data System (ADS)

    Castellana, Michele

    2015-03-01

    Direct channeling of intermediates via a physical tunnel between enzyme active sites is an established mechanism to improve metabolic efficiency. In this talk, I will present a theoretical model that demonstrates that coclustering multiple enzymes into proximity can yield the full efficiency benefits of direct channeling. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with the spacing between coclusters in yeast and mammalian cells. The model also predicts that enzyme agglomerates can regulate steady-state flux division at metabolic branch points: we experimentally test this prediction for a fundamental branch point in Escherichia coli, and the results confirm that enzyme colocalization within an agglomerate can accelerate the processing of a shared intermediate by one branch. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation.

  1. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting...

  2. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl...

  3. Identification of PSD-95 Depalmitoylating Enzymes

    PubMed Central

    Yokoi, Norihiko; Sekiya, Atsushi; Murakami, Tatsuro; Kobayashi, Kenta

    2016-01-01

    Postsynaptic density (PSD)-95, the most abundant postsynaptic scaffolding protein, plays a pivotal role in synapse development and function. Continuous palmitoylation cycles on PSD-95 are essential for its synaptic clustering and regulation of AMPA receptor function. However, molecular mechanisms for palmitate cycling on PSD-95 remain incompletely understood, as PSD-95 depalmitoylating enzymes remain unknown. Here, we isolated 38 mouse or rat serine hydrolases and found that a subset specifically depalmitoylated PSD-95 in heterologous cells. These enzymes showed distinct substrate specificity. α/β-Hydrolase domain-containing protein 17 members (ABHD17A, 17B, and 17C), showing the strongest depalmitoylating activity to PSD-95, showed different localization from other candidates in rat hippocampal neurons, and were distributed to recycling endosomes, the dendritic plasma membrane, and the synaptic fraction. Expression of ABHD17 in neurons selectively reduced PSD-95 palmitoylation and synaptic clustering of PSD-95 and AMPA receptors. Furthermore, taking advantage of the acyl-PEGyl exchange gel shift (APEGS) method, we quantitatively monitored the palmitoylation stoichiometry and the depalmitoylation kinetics of representative synaptic proteins, PSD-95, GluA1, GluN2A, mGluR5, Gαq, and HRas. Unexpectedly, palmitate on all of them did not turn over in neurons. Uniquely, most of the PSD-95 population underwent rapid palmitoylation cycles, and palmitate cycling on PSD-95 decelerated accompanied by its increased stoichiometry as synapses developed, probably contributing to postsynaptic receptor consolidation. Finally, inhibition of ABHD17 expression dramatically delayed the kinetics of PSD-95 depalmitoylation. This study suggests that local palmitoylation machinery composed of synaptic DHHC palmitoylating enzymes and ABHD17 finely controls the amount of synaptic PSD-95 and synaptic function. SIGNIFICANCE STATEMENT Protein palmitoylation, the most common lipid

  4. Characterization of Streptococcus pneumoniae enoyl-(acyl-carrier protein) reductase (FabK).

    PubMed

    Marrakchi, Hedia; Dewolf, Walter E; Quinn, Chad; West, Joshua; Polizzi, Brian J; So, Chi Y; Holmes, David J; Reed, Shannon L; Heath, Richard J; Payne, David J; Rock, Charles O; Wallis, Nicola G

    2003-03-15

    The enoyl-(acyl-carrier protein) (ACP) reductase catalyses the last step in each cycle of fatty acid elongation in the type II fatty acid synthase systems. An extensively characterized NADH-dependent reductase, FabI, is widely distributed in bacteria and plants, whereas the enoyl-ACP reductase, FabK, is a distinctly different member of this enzyme group discovered in Streptococcus pneumoniae. We were unable to delete the fabK gene from Strep. pneumoniae, suggesting that this is the only enoyl-ACP reductase in this organism. The FabK enzyme was purified and the biochemical properties of the reductase were examined. The visible absorption spectrum of the purified protein indicated the presence of a flavin cofactor that was identified as FMN by MS, and was present in a 1:1 molar ratio with protein. FabK specifically required NADH and the protein activity was stimulated by ammonium ions. FabK also exhibited NADH oxidase activity in the absence of substrate. Strep. pneumoniae belongs to the Bacillus / Lactobacillus / Streptococcus group that includes Staphylococcus aureus and Bacillus subtilis. These two organisms also contain FabK-related genes, suggesting that they may also express a FabK-like enoyl-ACP reductase. However, the genes did not complement a fabI (Ts) mutant and the purified flavoproteins were unable to reduce enoyl-ACP in vitro and did not exhibit NAD(P)H oxidase activity, indicating they were not enoyl-ACP reductases. The restricted occurrence of the FabK enoyl-ACP reductase may be related to the role of substrate-independent NADH oxidation in oxygen-dependent anaerobic energy metabolism.

  5. Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism.

    PubMed

    Hoffmann, Laurent; Maury, Stephane; Martz, Francoise; Geoffroy, Pierrette; Legrand, Michel

    2003-01-01

    A protein hydrolyzing hydroxycinnamoyl-CoA esters has been purified from tobacco stem extracts by a series of high pressure liquid chromatography steps. The determination of its N-terminal amino acid sequence allowed design of primers permitting the corresponding cDNA to be cloned by PCR. Sequence analysis revealed that the tobacco gene belongs to a plant acyltransferase gene family, the members of which have various functions. The tobacco cDNA was expressed in bacterial cells as a recombinant protein fused to glutathione S-transferase. The fusion protein was affinity-purified and cleaved to yield the recombinant enzyme for use in the study of catalytic properties. The enzyme catalyzed the synthesis of shikimate and quinate esters shown recently to be substrates of the cytochrome P450 3-hydroxylase involved in phenylpropanoid biosynthesis. The enzyme has been named hydroxycinnamoyl-CoA: shikimate/quinate hydroxycinnamoyltransferase. We show that p-coumaroyl-CoA and caffeoyl-CoA are the best acyl group donors and that the acyl group is transferred more efficiently to shikimate than to quinate. The enzyme also catalyzed the reverse reaction, i.e. the formation of caffeoyl-CoA from chlorogenate (5-O-caffeoyl quinate ester). Thus, hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase appears to control the biosynthesis and turnover of major plant phenolic compounds such as lignin and chlorogenic acid.

  6. Primary enzyme quantitation

    DOEpatents

    Saunders, G.C.

    1982-03-04

    The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

  7. Toxicity of Carboxylic Acid-Containing Drugs: The Role of Acyl Migration and CoA Conjugation Investigated.

    PubMed

    Lassila, Toni; Hokkanen, Juho; Aatsinki, Sanna-Mari; Mattila, Sampo; Turpeinen, Miia; Tolonen, Ari

    2015-12-21

    Many carboxylic acid-containing drugs are associated with idiosyncratic drug toxicity (IDT), which may be caused by reactive acyl glucuronide metabolites. The rate of acyl migration has been earlier suggested as a predictor of acyl glucuronide reactivity. Additionally, acyl Coenzyme A (CoA) conjugates are known to be reactive. Here, 13 drugs with a carboxylic acid moiety were incubated with human liver microsomes to produce acyl glucuronide conjugates for the determination of acyl glucuronide half-lives by acyl migration and with HepaRG cells to monitor the formation of acyl CoA conjugates, their further conjugate metabolites, and trans-acylation products with glutathione. Additionally, in vitro cytotoxicity and mitochondrial toxicity experiments were performed with HepaRG cells to compare the predictability of toxicity. Clearly, longer acyl glucuronide half-lives were observed for safe drugs compared to drugs that can cause IDT. Correlation between half-lives and toxicity classification increased when "relative half-lives," taking into account the formation of isomeric AG-forms due to acyl migration and eliminating the effect of hydrolysis, were used instead of plain disappearance of the initial 1-O-β-AG-form. Correlation was improved further when a daily dose of the drug was taken into account. CoA and related conjugates were detected primarily for the drugs that have the capability to cause IDT, although some exceptions to this were observed. Cytotoxicity and mitochondrial toxicity did not correlate to drug safety. On the basis of the results, the short relative half-life of the acyl glucuronide (high acyl migration rate), high daily dose and detection of acyl CoA conjugates, or further metabolites derived from acyl CoA together seem to indicate that carboxylic acid-containing drugs have a higher probability to cause drug-induced liver injury (DILI). PMID:26558897

  8. Anion-π Enzymes

    PubMed Central

    2016-01-01

    In this report, we introduce artificial enzymes that operate with anion-π interactions, an interaction that is essentially new to nature. The possibility to stabilize anionic intermediates and transition states on an π-acidic surface has been recently demonstrated, using the addition of malonate half thioesters to enolate acceptors as a biologically relevant example. The best chiral anion-π catalysts operate with an addition/decarboxylation ratio of 4:1, but without any stereoselectivity. To catalyze this important but intrinsically disfavored reaction stereoselectively, a series of anion-π catalysts was equipped with biotin and screened against a collection of streptavidin mutants. With the best hit, the S112Y mutant, the reaction occurred with 95% ee and complete suppression of the intrinsically favored side product from decarboxylation. This performance of anion-π enzymes rivals, if not exceeds, that of the best conventional organocatalysts. Inhibition of the S112Y mutant by nitrate but not by bulky anions supports that contributions from anion-π interactions exist and matter, also within proteins. In agreement with docking results, K121 is shown to be essential, presumably to lower the pKa of the tertiary amine catalyst to operate at the optimum pH around 3, that is below the pKa of the substrate. Most importantly, increasing enantioselectivity with different mutants always coincides with increasing rates and conversion, i.e., selective transition-state stabilization. PMID:27413782

  9. Anion-π Enzymes.

    PubMed

    Cotelle, Yoann; Lebrun, Vincent; Sakai, Naomi; Ward, Thomas R; Matile, Stefan

    2016-06-22

    In this report, we introduce artificial enzymes that operate with anion-π interactions, an interaction that is essentially new to nature. The possibility to stabilize anionic intermediates and transition states on an π-acidic surface has been recently demonstrated, using the addition of malonate half thioesters to enolate acceptors as a biologically relevant example. The best chiral anion-π catalysts operate with an addition/decarboxylation ratio of 4:1, but without any stereoselectivity. To catalyze this important but intrinsically disfavored reaction stereoselectively, a series of anion-π catalysts was equipped with biotin and screened against a collection of streptavidin mutants. With the best hit, the S112Y mutant, the reaction occurred with 95% ee and complete suppression of the intrinsically favored side product from decarboxylation. This performance of anion-π enzymes rivals, if not exceeds, that of the best conventional organocatalysts. Inhibition of the S112Y mutant by nitrate but not by bulky anions supports that contributions from anion-π interactions exist and matter, also within proteins. In agreement with docking results, K121 is shown to be essential, presumably to lower the pK a of the tertiary amine catalyst to operate at the optimum pH around 3, that is below the pK a of the substrate. Most importantly, increasing enantioselectivity with different mutants always coincides with increasing rates and conversion, i.e., selective transition-state stabilization. PMID:27413782

  10. A DFT study on the NHC catalysed Michael addition of enols to α,β-unsaturated acyl-azoliums. A base catalysed C-C bond-formation step.

    PubMed

    Domingo, Luis R; Sáez, José A; Arnó, Manuel

    2014-02-14

    The NHC catalysed nucleophilic additions of enols to α,β-unsaturated acyl-azolium intermediates have been investigated using DFT methods at the MPWB1K/6-31G** computational level. In the direct and the conjugate additions, formation of a hydrogen bond (HB) with the carboxyl oxygen is not sufficient to favour the C-C bond formation as a consequence of the low nucleophilic character of enols. Interestingly, when enols form a HB with the chloride counterion, the activation energies associated with the conjugate addition decrease as a consequence of the increased nucleophilic character of enols and the increased electrophilic character of the 'acyl-azolium + Cl' ion pair. Analysis of the DFT reactivity indices allows establishing a base catalysed C-C bond-formation step promoted by the chloride counterion. PMID:24343422

  11. A DFT study on the NHC catalysed Michael addition of enols to α,β-unsaturated acyl-azoliums. A base catalysed C-C bond-formation step.

    PubMed

    Domingo, Luis R; Sáez, José A; Arnó, Manuel

    2014-02-14

    The NHC catalysed nucleophilic additions of enols to α,β-unsaturated acyl-azolium intermediates have been investigated using DFT methods at the MPWB1K/6-31G** computational level. In the direct and the conjugate additions, formation of a hydrogen bond (HB) with the carboxyl oxygen is not sufficient to favour the C-C bond formation as a consequence of the low nucleophilic character of enols. Interestingly, when enols form a HB with the chloride counterion, the activation energies associated with the conjugate addition decrease as a consequence of the increased nucleophilic character of enols and the increased electrophilic character of the 'acyl-azolium + Cl' ion pair. Analysis of the DFT reactivity indices allows establishing a base catalysed C-C bond-formation step promoted by the chloride counterion.

  12. Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade

    PubMed Central

    Zan, Jindong; Liu, Yue; Fuqua, Clay; Hill, Russell T.

    2014-01-01

    Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS) may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments. PMID:24402124

  13. Synthesis of acyl derivatives of salicin, salirepin, and arbutin.

    PubMed

    Stepanova, Elena V; Belyanin, Maxim L; Filimonov, Victor D

    2014-03-31

    The total synthesis of two natural phenolglycosides of the family Salicaceae, namely: populoside and 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) cinnamoate and nine not found yet in plants acyl derivatives of phenoglycosides: 2-(β-d-glucopyranosyloxy)-benzylcinnamoate, 2-(β-d-glucopyranosyloxy)-benzyl (4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-benzyl (3-methoxy-4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3,4-dihydroxy) cinnamoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzylcinnamoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-benzoyloxy benzylbenzoate and 4-(β-d-glucopyranosyloxy)-phenylbenzoate, starting from readily available phenols and glucose was developed for the first time.

  14. Small Antimicrobial Agents Based on Acylated Reduced Amide Scaffold.

    PubMed

    Teng, Peng; Huo, Da; Nimmagadda, Alekhya; Wu, Jianfeng; She, Fengyu; Su, Ma; Lin, Xiaoyang; Yan, Jiyu; Cao, Annie; Xi, Chuanwu; Hu, Yong; Cai, Jianfeng

    2016-09-01

    Prevalence of drug-resistant bacteria has emerged to be one of the greatest threats in the 21st century. Herein, we report the development of a series of small molecular antibacterial agents that are based on the acylated reduced amide scaffold. These molecules display good potency against a panel of multidrug-resistant Gram-positive and Gram-negative bacterial strains. Meanwhile, they also effectively inhibit the biofilm formation. Mechanistic studies suggest that these compounds kill bacteria by compromising bacterial membranes, a mechanism analogous to that of host-defense peptides (HDPs). The mechanism is further supported by the fact that the lead compounds do not induce resistance in MRSA bacteria even after 14 passages. Lastly, we also demonstrate that these molecules have therapeutic potential by preventing inflammation caused by MRSA induced pneumonia in a rat model. This class of compounds could lead to an appealing class of antibiotic agents combating drug-resistant bacterial strains. PMID:27526720

  15. Detection of acyl-homoserine lactones by Escherichia and Salmonella

    PubMed Central

    Soares, Jitesh A.; Ahmer, Brian M. M.

    2011-01-01

    Escherichia and Salmonella do not synthesize quorum sensing signaling molecules of the N-acyl-L-homoserine lactone (AHL) type but they can detect AHLs produced by other species of bacteria. AHLs are present in the bovine rumen but not in the remainder of the gastrointestinal tract. Enterohemorrhagic E. coli (EHEC) responds to AHLs extracted from the bovine rumen. Salmonella fails to detect AHLs in the gastrointestinal tracts of pathogen-free mice or pigs, suggesting that AHLs are not present. However, Salmonella does detect the AHL production of Yersinia enterocolitica in mouse Peyer’s patches. In response to AHLs, EHEC represses flagellar genes and the LEE pathogenicity island while it activates the acid fitness island, whereas Salmonella activates the rck operon and a gene, srgE, encoding a putative Type III secreted effector. PMID:21353625

  16. Acyl spermidines in inflorescence extracts of elder (Sambucus nigra L., Adoxaceae) and elderflower drinks.

    PubMed

    Kite, Geoffrey C; Larsson, Sonny; Veitch, Nigel C; Porter, Elaine A; Ding, Ning; Simmonds, Monique S J

    2013-04-10

    LC-UV-MS analyses of inflorescence extracts of Sambucus nigra L. (elder, Adoxaceae) revealed the presence of numerous acyl spermidines, with isomers of N,N-diferuloylspermidine and N-acetyl-N,N-diferuloylspermidine being most abundant. Pollen was the main source of the acyl spermidines in the inflorescence. Three of the major acyl spermidines were isolated and their structures determined by NMR spectroscopy as N⁵,N¹⁰-di-(E,E)-feruloylspermidine and the new compounds N¹-acetyl-N⁵,N¹⁰-di-(Z,E)-feruloylspermidine and N¹-acetyl-N⁵,N¹⁰-di-(E,E)-feruloylspermidine. An isomer of N,N,N-triferuloylspermidine was also obtained and identified as N¹,N⁵,N¹⁰-tri-(E,E,E)-feruloylspermidine. In addition to stereoisomers of the isolated acyl spermidines, other acyl spermidines detected by the positive ion LC-UV-MS were isomers of N-caffeoyl-N,N-diferuloylspermidine, N-coumaroyl-N,N-diferuloylspermidine, N-caffeoyl-N-feruloylspermidine, N-coumaroyl-N-feruloylspermidine, N-acetyl-N-caffeoyl-N-feruloylspermidine, and N-acetyl-N-coumaroyl-N-feruloylspermidine. Analysis of commercial elderflower drinks showed that acyl spermidines were persistent in these processed elderflower products. Examination of inflorescence extracts from Sambucus canadensis L. (American elder) revealed the presence of acyl spermidines that were different from those of S. nigra.

  17. Preparation and Characterization of O-Acylated Fucosylated Chondroitin Sulfate from Sea Cucumber

    PubMed Central

    Gao, Na; Wu, Mingyi; Liu, Shao; Lian, Wu; Li, Zi; Zhao, Jinhua

    2012-01-01

    Fucosylated chondroitin sulfate (FuCS), a kind of complex glycosaminoglycan from sea cucumber, has potent anticoagulant activity. In order to understand the relationship between structures and activity, the depolymerized FuCS (dFuCS) was chosen to prepare its derivates by selective substitution at OH groups. Its O-acylation was carried out in a homogeneous way using carboxylic acid anhydrides. The structures of O-acylated derivatives were characterized by NMR. The results indicated that the 4-O-sulfated fucose residues may be easier to be acylated than the other ones in the sulfated fucose branches. But the O-acylation was always accompanied by the β-elimination, and the degree of elimination was higher as that of acylation was higher. The results of clotting assay indicated that the effect of partial O-acylation of the dFuCS on their anticoagulant potency was not significant and the O-acylation of 2-OH groups of 4-O-sulfated fucose units did not affect the anticoagulant activity. PMID:23015767

  18. Preparation and characterization of O-acylated fucosylated chondroitin sulfate from sea cucumber.

    PubMed

    Gao, Na; Wu, Mingyi; Liu, Shao; Lian, Wu; Li, Zi; Zhao, Jinhua

    2012-08-01

    Fucosylated chondroitin sulfate (FuCS), a kind of complex glycosaminoglycan from sea cucumber, has potent anticoagulant activity. In order to understand the relationship between structures and activity, the depolymerized FuCS (dFuCS) was chosen to prepare its derivates by selective substitution at OH groups. Its O-acylation was carried out in a homogeneous way using carboxylic acid anhydrides. The structures of O-acylated derivatives were characterized by NMR. The results indicated that the 4-O-sulfated fucose residues may be easier to be acylated than the other ones in the sulfated fucose branches. But the O-acylation was always accompanied by the β-elimination, and the degree of elimination was higher as that of acylation was higher. The results of clotting assay indicated that the effect of partial O-acylation of the dFuCS on their anticoagulant potency was not significant and the O-acylation of 2-OH groups of 4-O-sulfated fucose units did not affect the anticoagulant activity.

  19. Synthesis and evaluation of novel acyl derivatives from jatropha oil as potential lubricant basestocks.

    PubMed

    Sammaiah, Arukali; Padmaja, Korlipara V; Prasad, Rachapudi B N

    2014-05-21

    A novel class of jatropha oil-based acylated derivatives from hydroxy alkyl esters of jatropha fatty acids (C1, C3, C4, and C8) and various anhydrides (C2, C3, C4, and C6) were synthesized and their physicochemical and lubricant properties reported. Jatropha fatty acid alkyl esters were dihydroxylated using the in situ performic acid method and further acylated with different anhydrides to produce acylated derivatives. Acylated derivatives of dihydroxy jatropha fatty acid alkyl esters were charaterized by NMR, FTIR, GC, and GC-MS analysis and were evaluated for their viscosity, viscosity index, pour and flash points, and oxidation stability. Most of the derivatives are either in ISO VG 22 or 32 viscosity grade with good viscosity index. It was observed that increase in acyl chain length and branching in the end-chain ester improved the pour point of the diacyl derivatives. All of the hexanoylated esters exhibited better oxidation stability compared to other acylated products, and their pour points are comparable to those of synthetic esters such as TMP trioleates. In general, isoalcohol esters with longer acyl chains showed promise as potential candidates for hydraulic fluids and metal-working fluids in ISO VG 22 and 32 viscosity range.

  20. Lipid-protein interactions as agents of quality deterioration in intermediate moisture meats: An appraisal.

    PubMed

    Obanu, Z A; Ledward, D A; Lawrie, R A

    1980-04-01

    The literature on lipid-protein interactions which lead to loss of solubility, complex formation, chain scission and loss of specific amino acids in intermediate moisture foods is reviewed. This knowledge is used to explain reported observations on the quality and nutritive value of proteins in intermediate moisture meats as well as the conflicting reports on the significance of oxidative rancidity and non-enzymic browning in intermediate moisture food systems. PMID:22055615

  1. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    SciTech Connect

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  2. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria.

    PubMed

    Long, Jonathan Z; Svensson, Katrin J; Bateman, Leslie A; Lin, Hua; Kamenecka, Theodore; Lokurkar, Isha A; Lou, Jesse; Rao, Rajesh R; Chang, Mi Ra; Jedrychowski, Mark P; Paulo, Joao A; Gygi, Steven P; Griffin, Patrick R; Nomura, Daniel K; Spiegelman, Bruce M

    2016-07-14

    Brown and beige adipocytes are specialized cells that express uncoupling protein 1 (UCP1) and dissipate chemical energy as heat. These cells likely possess alternative UCP1-independent thermogenic mechanisms. Here, we identify a secreted enzyme, peptidase M20 domain containing 1 (PM20D1), that is enriched in UCP1(+) versus UCP1(-) adipocytes. We demonstrate that PM20D1 is a bidirectional enzyme in vitro, catalyzing both the condensation of fatty acids and amino acids to generate N-acyl amino acids and also the reverse hydrolytic reaction. N-acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. Mice with increased circulating PM20D1 have augmented respiration and increased N-acyl amino acids in blood. Lastly, administration of N-acyl amino acids to mice improves glucose homeostasis and increases energy expenditure. These data identify an enzymatic node and a family of metabolites that regulate energy homeostasis. This pathway might be useful for treating obesity and associated disorders. PMID:27374330

  3. The Cytochrome P450 CYP86A22 Is a Fatty Acyl-CoA ω-Hydroxylase Essential for Estolide Synthesis in the Stigma of Petunia hybrida*

    PubMed Central

    Han, Jixiang; Clement, Joel M.; Li, Jia; King, Andrew; Ng, Shirley; Jaworski, Jan G.

    2010-01-01

    The stigmatic estolide is a lipid-based polyester constituting the major component of exudate in solanaceous plants. Although the exudate is believed to play important roles in the pollination process, the biosynthetic pathway of stigmatic estolide, including genes encoding the key enzymes, remains unknown. Here we report the cloning and characterization of the cytochrome P450 gene CYP86A22, which encodes a fatty acyl-CoA ω-hydroxylase involved in estolide biosynthesis in the stigma of Petunia hybrida. A CYP86A22 cDNA was isolated from a developing stigma cDNA library, and the corresponding gene was shown to express predominantly in the developing stigma. Among six P450 genes isolated from this library, only CYP86A22 was implicated in ω-hydroxylation following RNA interference (RNAi)-mediated suppression. Unlike wild-type plants in which ω-hydroxy fatty acids (mainly in the form of 18-hydroxy oleic acid and 18-hydroxy linoleic acid) compose 96% of total stigma fatty acids, the ω-hydroxy fatty acids were essentially absent in the stigmas from 18 of 46 CYP86A22-RNAi transgenic plants and had varying levels of suppression in the remaining 28 plants. Furthermore, lipids in the 18 CYP86A22-RNAi stigmas were predominantly triacylglycerols and diacylglycerols instead of the estolides, which characterize the wild-type stigma. Analyses of recombinant CYP86A22 conclusively demonstrated that this P450 is a ω-hydroxylase with a substrate preference for both saturated and unsaturated acyl-CoAs rather than free fatty acids. We conclude that the cytochrome P450 enzyme CYP86A22 is the key fatty acyl-CoA ω-hydroxylase essential for the production of ω-hydroxy fatty acids and the biosynthesis of triacylglycerol-/diacylglycerol-based estolide polyesters in the petunia stigma. PMID:19940120

  4. Peroxisomal. beta. -oxidation enzyme proteins in adrenoleukodystrophy: distinction between x-linked adrenoleukodystrophy and neonatal adrenoleukodystrophy

    SciTech Connect

    Chen, W.W.; Watkins, P.A.; Osumi, T.; Hashimoto, T.; Moser, H.W.

    1987-03-01

    Very long chain fatty acids, which accumulate in plasma and tissues in x-linked adrenoleukodystrophy (ALD), neonatal ALD, and the Zellweger cerebrohepatorenal syndrome, are degraded by the peroxisomal ..beta..-oxidation pathway, consisting of acyl-CoA oxidase, the bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, and ..beta..-ketothiolase. A marked deficiency of all three enzyme proteins was reported in livers from patients with the Zellweger syndrome, a disorder in which peroxisomes are decreased or absent. Peroxisomes are not as markedly decreased in neonatal ALD and appear normal in x-linked ALD. Immunoblot analysis of the peroxisomal ..beta..-oxidation enzymes revealed an almost complete lack of the bifunctional enzymes in neonatal ALD liver, similar to the finding in Zellweger tissues. In contrast, acyl-CoA oxidase and ..beta..-ketothiolase were present in neonatal ALD liver, although the thiolase appeared to be in precursor form (2-3 kDa larger than the mature enzyme) in neonatal ALD. Unlike either neonatal ALD or Zellweger syndrome, all three peroxisomal ..beta..-oxidation enzymes were present in x-linked ALD liver. Despite the absence in neonatal ALD liver of bifunctional enzyme protein, its mRNA was detected by RNA blot analysis in fibroblasts from these patients. These observations suggest that lack of bifunctional enzyme protein in neonatal ALD results from either abnormal translation of the mRNA or degradation of the enzyme prior to its entry into peroxisomes.

  5. Exploring Cooperative Effects in Oxidative NHC Catalysis: Regioselective Acylation of Carbohydrates.

    PubMed

    Cramer, David L; Bera, Srikrishna; Studer, Armido

    2016-05-23

    The utility of oxidative NHC catalysis for both the regioselective and chemoselective functionalization of carbohydrates is explored. Chiral NHCs allow for the highly regioselective oxidative esterification of various carbohydrates using aldehydes as acylation precursors. The transformation was also shown to be amenable to both cis/trans diol isomers, free amino groups, and selective for specific sugar epimers in competition experiments. Efficiency and regioselectivity of the acylation can be improved upon using two different NHC catalysts that act cooperatively. The potential of the method is documented by the regioselective acylation of an amino-linked neodisaccharide.

  6. Intermediate Filament Diseases: Desminopathy

    PubMed Central

    Goldfarb, Lev G.; Olivé, Montse; Vicart, Patrick; Goebel, Hans H.

    2009-01-01

    Desminopathy is one of the most common intermediate filament human disorders associated with mutations in closely interacting proteins, desmin and alphaB-crystallin. The inheritance pattern in familial desminopathy is characterized as autosomal dominant or autosomal recessive, but many cases have no family history. At least some and likely most sporadic desminopathy cases are associated with de novo DES mutations. The age of disease onset and rate of progression may vary depending on the type of inheritance and location of the causative mutation. Typically, the illness presents with lower and later upper limb muscle weakness slowly spreading to involve truncal, neck-flexor, facial and bulbar muscles. Skeletal myopathy is often combined with cardiomyopathy manifested by conduction blocks, arrhythmias and chronic heart failure resulting in premature sudden death. Respiratory muscle weakness is a major complication in some patients. Sections of the affected skeletal and cardiac muscles show abnormal fibre areas containing chimeric aggregates consisting of desmin and other cytoskeletal proteins. Various DES gene mutations: point mutations, an insertion, small in-frame deletions and a larger exon-skipping deletion, have been identified in desminopathy patients. The majority of these mutations are located in conserved alpha-helical segments, but additional mutations have recently been identified in the tail domain. Filament and network assembly studies indicate that most but not all disease-causing mutations make desmin assembly-incompetent and able to disrupt a pre-existing filamentous network in dominant-negative fashion. AlphaB-crystallin serves as a chaperone for desmin preventing its aggregation under various forms of stress; mutant CRYAB causes cardiac and skeletal myopathies identical to those resulting from DES mutations. PMID:19181099

  7. Identification of 9α-Hydroxy-17-Oxo-1,2,3,4,10,19-Hexanorandrostan-5-Oic Acid in Steroid Degradation by Comamonas testosteroni TA441 and Its Conversion to the Corresponding 6-En-5-Oyl Coenzyme A (CoA) Involving Open Reading Frame 28 (ORF28)- and ORF30-Encoded Acyl-CoA Dehydrogenases

    PubMed Central

    Hayashi, Toshiaki; Koshino, Hiroyuki; Malon, Michal; Hirota, Hiroshi; Kudo, Toshiaki

    2014-01-01

    Comamonas testosteroni TA441 degrades steroids via aromatization and meta-cleavage of the A ring, followed by hydrolysis, and produces 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid as an intermediate compound. Herein, we identify a new intermediate compound, 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. Open reading frame 28 (ORF28)- and ORF30-encoded acyl coenzyme A (acyl-CoA) dehydrogenase was shown to convert the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid to the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid. A homology search of the deduced amino acid sequences suggested that the ORF30-encoded protein is a member of the acyl-CoA dehydrogenase_fadE6_17_26 family, whereas the deduced amino acid sequence of ORF28 showed no significant similarity to specific acyl-CoA dehydrogenase family proteins. Possible steroid degradation gene clusters similar to the cluster of TA441 appear in bacterial genome analysis data. In these clusters, ORFs similar to ORFs 28 and 30 are often found side by side and ordered in the same manner as ORFs 28 and 30. PMID:25092028

  8. Masonry. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Thompson, Moses

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate masonry course. These materials, developed for a two-semester (3 hours daily) course, are designed to provide the student with the skills and knowledge necessary for entry level employment in the field…

  9. Welding. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  10. Printing. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Seivert, Chester

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate printing course. The materials were developed for a two-semester (3 hours daily) course with specialized classroom, shop, and practical experiences designed to enable the student to develop proficiency…

  11. Predicting the functions and specificity of triterpenoid synthases: a mechanism-based multi-intermediate docking approach.

    PubMed

    Tian, Bo-Xue; Wallrapp, Frank H; Holiday, Gemma L; Chow, Jeng-Yeong; Babbitt, Patricia C; Poulter, C Dale; Jacobson, Matthew P

    2014-10-01

    Terpenoid synthases construct the carbon skeletons of tens of thousands of natural products. To predict functions and specificity of triterpenoid synthases, a mechanism-based, multi-intermediate docking approach is proposed. In addition to enzyme function prediction, other potential applications of the current approach, such as enzyme mechanistic studies and enzyme redesign by mutagenesis, are discussed.

  12. Predicting the Functions and Specificity of Triterpenoid Synthases: A Mechanism-Based Multi-intermediate Docking Approach

    PubMed Central

    Tian, Bo-Xue; Wallrapp, Frank H.; Holiday, Gemma L.; Chow, Jeng-Yeong; Babbitt, Patricia C.; Poulter, C. Dale; Jacobson, Matthew P.

    2014-01-01

    Terpenoid synthases construct the carbon skeletons of tens of thousands of natural products. To predict functions and specificity of triterpenoid synthases, a mechanism-based, multi-intermediate docking approach is proposed. In addition to enzyme function prediction, other potential applications of the current approach, such as enzyme mechanistic studies and enzyme redesign by mutagenesis, are discussed. PMID:25299649

  13. Synthetic mononuclear nonheme iron-oxygen intermediates.

    PubMed

    Nam, Wonwoo

    2015-08-18

    Mononuclear nonheme iron-oxygen species, such as iron-superoxo, -peroxo, -hydroperoxo, and -oxo, are key intermediates involved in dioxygen activation and oxidation reactions catalyzed by nonheme iron enzymes. Because these iron-oxygen intermediates are short-lived due to their thermal instability and high reactivity, it is challenging to investigate their structural and spectroscopic properties and reactivity in the catalytic cycles of the enzymatic reactions themselves. One way to approach such problems is to synthesize biomimetic iron-oxygen complexes and to tune their geometric and electronic structures for structural characterization and reactivity studies. Indeed, a number of biologically important iron-oxygen species, such as mononuclear nonheme iron(III)-superoxo, iron(III)-peroxo, iron(III)-hydroperoxo, iron(IV)-oxo, and iron(V)-oxo complexes, were synthesized recently, and the first X-ray crystal structures of iron(III)-superoxo, iron(III)-peroxo, and iron(IV)-oxo complexes in nonheme iron models were successfully obtained. Thus, our understanding of iron-oxygen intermediates in biological reactions has been aided greatly from the studies of the structural and spectroscopic properties and the reactivities of the synthetic biomimetic analogues. In this Account, we describe our recent results on the synthesis and characterization of mononuclear nonheme iron-oxygen complexes bearing simple macrocyclic ligands, such as N-tetramethylated cyclam ligand (TMC) and tetraamido macrocyclic ligand (TAML). In the case of iron-superoxo complexes, an iron(III)-superoxo complex, [(TAML)Fe(III)(O2)](2-), is described, including its crystal structure and reactivities in electrophilic and nucleophilic oxidative reactions, and its properties are compared with those of a chromium(III)-superoxo complex, [(TMC)Cr(III)(O2)(Cl)](+), with respect to its reactivities in hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactions. In the case of iron-peroxo intermediates

  14. Male Sterile2 Encodes a Plastid-Localized Fatty Acyl Carrier Protein Reductase Required for Pollen Exine Development in Arabidopsis

    SciTech Connect

    Chen, W.; Shanklin, J.; Yu, X.-H.; Zhang, K.; Shi, J.; De Oliveira, S.; Schreiber, L.; Zhang, D.

    2011-10-01

    Male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana). Transient expression of MS2 in tobacco (Nicotiana benthamiana) leaves resulted in the accumulation of significant levels of C16 and C18 fatty alcohols. Expression of MS2 fused with green fluorescent protein revealed that an amino-terminal transit peptide targets the MS2 to plastids. The plastidial localization of MS2 is biologically important because genetic complementation of MS2 in ms2 homozygous plants was dependent on the presence of its amino-terminal transit peptide or that of the Rubisco small subunit protein amino-terminal transit peptide. In addition, two domains, NAD(P)H-binding domain and sterile domain, conserved in MS2 and its homologs were also shown to be essential for MS2 function in pollen exine development by genetic complementation testing. Direct biochemical analysis revealed that purified recombinant MS2 enzyme is able to convert palmitoyl-Acyl Carrier Protein to the corresponding C16:0 alcohol with NAD(P)H as the preferred electron donor. Using optimized reaction conditions (i.e. at pH 6.0 and 30 C), MS2 exhibits a K{sub m} for 16:0-Acyl Carrier Protein of 23.3 {+-} 4.0 {mu}m, a V{sub max} of 38.3